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Evolutionary rate covariation reveals shared
functionality and coexpression of genes
Nathan L. Clark,1,2 Eric Alani, and Charles F. Aquadro
Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA

Evolutionary rate covariation (ERC) is a phylogenetic signature that reflects the covariation of a pair of proteins over
evolutionary time. ERC is typically elevated between interacting proteins and so is a promising signature to characterize
molecular and functional interactions across the genome. ERC is often assumed to result from compensatory changes at
interaction interfaces (i.e., intermolecular coevolution); however, its origin is still unclear and is likely to be complex.
Here, we determine the biological factors responsible for ERC in a proteome-wide data set of 4459 proteins in 18 budding
yeast species. We show that direct physical interaction is not required to produce ERC, because we observe strong
correlations between noninteracting but cofunctional enzymes. We also demonstrate that ERC is uniformly distributed
along the protein primary sequence, suggesting that intermolecular coevolution is not generally responsible for ERC
between physically interacting proteins. Using multivariate analysis, we show that a pair of proteins is likely to exhibit
ERC if they share a biological function or if their expression levels coevolve between species. Thus, ERC indicates shared
function and coexpression of protein pairs and not necessarily coevolution between sites, as has been assumed in previous
studies. This full interpretation of ERC now provides us with a powerful tool to assign uncharacterized proteins to
functional groups and to determine the interconnectedness between entire genetic pathways.

[Supplemental material is available for this article.]

A protein’s amino acid sequence does not evolve at a constant rate

over time, as shown by the rate variation between different evo-

lutionary lineages (Li et al. 1987). Although each individual pro-

tein has a unique pattern of rate variation, the rates of physically

interacting proteins have been observed to covary over a phylo-

genetic tree, as has been observed among prokaryotes, abalone,

yeast, and Drosophila species (Pazos and Valencia 2001; Hakes et al.

2007; Clark et al. 2009; Clark and Aquadro 2010). This signature,

which we term evolutionary rate covariation (ERC), is detected by

comparing a protein’s individual branch rates to the correspond-

ing branch rates of another protein (Fig. 1). As such, the rates of

two proteins will covary if they have experienced similar acceler-

ation and deceleration of their evolutionary rate over various

branches of a phylogenetic tree. Note that a pair of proteins could

evolve at very different average rates and still exhibit ERC. Simi-

larly, consistently fast evolving proteins or slow evolving proteins

would show correlated average rates but would not necessarily

show ERC.

Many studies have aimed to improve the detection of ERC

because it is thought to provide a means to infer new physical in-

teractions (Fraser et al. 2004; Pazos et al. 2005; Sato et al. 2005).

However, our incomplete understanding of the causes of ERC

makes it difficult to confidently make such biological inferences.

Early studies assumed that ERC resulted solely from intermolecular

coevolution that occurs at the physical interface between inter-

acting proteins (Goh et al. 2000; Pazos and Valencia 2001;). There

is evidence that some residues across interaction interfaces change

in a statistically correlated manner to maintain binding comple-

mentarity (Moyle et al. 1994; Travers and Fares 2007; Madaoui and

Guerois 2008; Kann et al. 2009). However, it is unclear if inter-

molecular coevolution at the limited number of interface residues

is sufficient to create the observed signatures of ERC that typically

involve the entire protein sequence (Lovell and Robertson 2010).

Furthermore, Hakes et al. (2007) found that ERC is not stronger for

the actual interface residues compared to all surface residues, al-

though Kann et al. (2009) found evidence to the contrary. How-

ever, we and others have observed that physically distant members

of several protein complexes correlate despite their lack of direct

physical interaction (Juan et al. 2008; Clark and Aquadro 2010).

Moving away from the simple intermolecular coevolution

model, there is increasing emphasis in the field on additional forces

that could affect evolutionary rate over the entire protein (Lovell

and Robertson 2010). One potential force is the dispensability of

a pathway. For example, as a species occupies a new environment,

a particular metabolic pathway could become more important and,

hence, become more constrained, while other pathways could be

allowed to drift and diverge due to lack of use. Another potential

force is a protein’s expression pattern. Expression level is highly

correlated with the rate of amino acid evolution (Duret and

Mouchiroud 2000; Pal et al. 2001; Drummond et al. 2006), so that

a change in expression for all the proteins in a pathway could affect

their evolutionary rates in a correlated way.

We considered these and other potential driving forces of ERC

on a proteome-wide scale using the well-annotated yeast (Saccharo-

myces cerevisiae) protein interactome and the full genome sequences

of 18 budding yeast species. We demonstrate that physically and

genetically interacting proteins exhibit ERC on a proteome-

wide scale. We also reveal that noninteracting but functionally

related proteins show significant ERC. Finally, we quantify the

forces contributing to ERC, implicating cofunctionality and change

in expression level as two major, independent contributors. Thus,

ERC across the genome most reliably reflects shared biological

function and does not necessarily imply direct physical interaction.

In fact, we propose that physical interaction and coevolution,

although they may be important for some ERC signals, are minor
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contributors to genome-wide patterns of ERC. Our findings widen

the breadth of biological insight that can be gained from ERC to

include entire pathways and functional groups.

Results

Calculating evolutionary rate covariation proteome-wide

We compiled 4459 orthologous protein groups from 18 budding

yeast species (family Saccharomycetaceae) and estimated each pro-

tein’s phylogenetic branch lengths (sequence divergence) over the

18-species tree (Fitzpatrick et al. 2006). Raw branch lengths were

then transformed into their relative deviation from that expected in

an average proteome-wide tree (Fig. 1). This transformation greatly

improves power to discern functionally related from unrelated

protein pairs (Sato et al. 2005). ERC was then calculated between all

protein pairs (;8.4 million pairs) as the correlation coefficient (r)

of their transformed branch rates, so that possible ERC values

range from �1 (negative correlation) to 1 (positive correlation).

Functionally related proteins exhibit evolutionary
rate covariation

We first assessed the proteome-wide relationship between ERC and

functionally related proteins. We designated a control set of pro-

tein pairs between which there were no annotated functional re-

lationships or interactions; the control set was, on average, not

correlated (median r =�0.004). Furthermore, the control set is very

similar to the proteome-wide set of pairwise comparisons because

the vast majority of all possible pairs are not functionally related.

Physically interacting protein pairs, as discovered by yeast two-

hybrid and coimmunoprecipitation, for example, were generally

positively correlated (median r = 0.275, Fig. 2), and the difference

between these and the control set was highly significant (Wilcoxon

rank sum test, P < 2.2 3 10�16). Protein pairs in the same complex

were also generally correlated (median r = 0.245, P < 2.2 3 10�16),

and the intersection of cocomplexed and physically interacting pairs

was even more pronounced (median r = 0.369, P < 2.2 3 10�16).

Many individual protein complexes demonstrated highly corre-

lated evolution, such as the CCR4-NOT transcriptional regulation

complex. The mean RVC value between the nine members of the

CCR4-NOT complex was >0.6, and this high degree of correlation

was not observed in one million random sets of nine genes (P < 1 3

10�6). Using this permutation test, 62% of all annotated com-

plexes had a significantly elevated mean ERC (P < 0.05) (Supple-

mental Table S1). We also examined genes showing epistatic ge-

netic interactions, such as those detected in high-throughput

synthetic genetic arrays (Tong et al. 2001), and found that protein

pairs in genetic interactions were significantly correlated, although

not to the same degree as physically interacting proteins (median

r = 0.075, P < 2.2 3 10�16). Because our method includes some

genes without all 18 species, we were concerned that these missing

sequences could create some type of bias. However, we found the

same patterns of ERC presented above when we restricted analysis

to only genes whose orthologs were found in all 18 species (data

not shown).

Evolutionary rate covariation is uniformly distributed
over the protein primary sequence

If intermolecular coevolution contributes greatly to ERC, we would

expect the correlation to be stronger between physically interact-

ing subregions. We tested this hypothesis by dividing all sequence

alignments at the midpoint into two subalignments. The rationale

is that the subalignment containing the interaction domain would

be more strongly correlated with its interacting partner, whereas in

noninteracting protein pairs, there would be no reason to expect

a consistent increase in correlation after subdivision.

The subdivided analysis did not increase statistical power to

distinguish physically interacting proteins from control proteins

compared to the original, full-protein analysis (power = 0.72 and

0.75 for subdivided and full data sets, respectively). To assure that

shorter alignments do not result in a general decrease in power, we

also tested a staggered subdivision based on odd- and even-num-

bered alignment columns. Its statistical power was equal to that of

the full-protein analysis (power = 0.75). These results are consistent

with a uniform distribution of ERC along the protein primary se-

quence and do not support the hypothesis that coevolution of

interaction interfaces is responsible for genome-wide ERC in yeast.

Figure 2. ERC is elevated between functionally related proteins. Here,
we contrast ERC between protein pairs that: (left to right) have no anno-
tated relationship (control), physically interact, are in the same complex,
physically interact and are in the same complex, and genetically interact.
All classes are significantly different from the control class (Wilcoxon rank
sum test, P < 2.2 3 10�16). The box limits are the upper and lower quartiles
of each distribution, while the bold line represents the median. Whiskers
extend to the most extreme data point outside the box that is no more
than 1.5 times the interquartile range.

Figure 1. Parallel change in evolutionary rate leads to rate covariation.
Most proteins encoded in a genome evolve over the same species tree
and so have evolved for the same amount of chronological time over each
branch. Yet individual proteins experience varying rates of sequence
evolution over those same branches. Hypothetical protein ‘‘A’’ experienced
rapid evolution in one species lineage (red branch) and an exceptionally
slow rate of evolution in another (blue branch). Another protein ‘‘B’’ ex-
perienced very similar rate variation during the evolution of these species,
so that its branch rates are positively correlated with the rates of protein A
(upper plot). Their evolutionary rate covariation suggests a relationship
between A and B. Another protein, ‘‘C,’’ also experienced acceleration and
deceleration, but its evolutionary pattern did not result in ERC with protein
B (lower plot). Note that the values in these plots are rates of sequence
evolution normalized to the expected rate given the species tree.
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In addition, these findings are in agreement with those of Hakes

et al. (2007) who reported that ERC was not localized to interaction

interfaces.

Direct physical interaction is not required
for evolutionary rate covariation

We hypothesized that ERC best reflects fluctuations in external

evolutionary pressures that act on functionally related proteins

that do not necessarily physically interact. To test this, we exam-

ined proteins involved in metabolic pathways that are unlikely to

physically interact. We sampled 12 diverse pathways that metab-

olize carbohydrates, amino acids, cofactors, or lipids and included

both anabolic (biosynthetic) and catabolic (degradation) pathways.

The few cases of known direct physical interaction in these path-

ways were removed from analysis. If variation in shared evolu-

tionary pressures contributes to ERC, we would predict that pro-

teins in these pathways would be positively correlated. Indeed,

each of the 12 pathways had positive median ERC values, and nine

out of 12 (75%) had distributions that were significantly elevated

at P < 0.05 (Table 1). We also found that the intensity of ERC be-

tween these noninteracting but cofunctional metabolic enzymes is

not different from physically interacting protein complexes. The

distribution of median ERC values in the 12 metabolic pathways is

not significantly different from that of the 244 protein complexes

analyzed above (Kolmogorov-Smirnov test, P = 0.47; metabolic

median r = 0.19; complexes median r = 0.20) (Table 1; Supple-

mental Table S1).

The well-characterized galactose pathway provides a useful

illustration of ERC in a metabolic pathway. There are four metabolic

steps carried out by the galactose pathway proteins Gal1p, Gal7p,

Gal10p, and Gal5p (Fig. 3A). All of the correlation coefficients

between these enzymes are positive (Fig. 3B), and the pathway as a

whole shows significantly elevated ERC, despite there being no

known physical interactions between them (P = 0.004). The most

notable correlation is between Gal7p and Gal10p (r = 0.918), which

is the highest ERC value observed for both proteins out of the en-

tire analyzed proteome (>4000 proteins). Interestingly, the GAL7,

GAL1, and GAL10 genes are colinear on the second chromosome of

Saccharomyces cerevisiae. This raises the possibility that chromo-

somal vicinity could be involved in ERC. However, the other 11

metabolic pathways analyzed do not contain neighboring genes,

except for heme biosynthesis in which HEM12 and HEM13 are

separated by two genes. Expression of GAL7, GAL1, and GAL10 is

regulated by a single group of genes (GAL4, GAL80, and GAL3),

suggesting that gene expression pattern could contribute to ERC

(De Robichon-Szulmajster 1958; Platt and Reece 1998).

Thus, our analysis of proteins in metabolic pathways dem-

onstrates that direct physical interaction is not required for ERC in

yeast. Rather, more general forces such as shared evolutionary

pressures and coevolution of expression level, which we explore in

the next section, could be enough to create the observed correla-

tions throughout the proteome.

No simple relationship between coevolution of expression level
and rate covariation

Since complexes and pathways perform better with balanced

abundances of their members (Papp et al. 2003; Veitia et al. 2008),

there may be strong selection for their expression levels to coevolve

over phylogenetic lineages (Lemos et al. 2004). Such coevolution

of expression could result in parallel changes in amino acid sub-

stitution rate and thus create ERC, because expression level and

evolutionary rate are correlated (Drummond et al. 2006). Evidence

for coevolution of expression level was previously reported using

a set of four yeast species and employing codon bias as a proxy for

gene expression level (Fraser et al. 2004). This proxy is justified

because codon bias is strongly correlated with expression level in

yeast (Bennetzen and Hall 1982). In fact, codon bias is perhaps

better than directly measuring mRNA expression levels under an

arbitrary laboratory condition that is not likely to reflect a species’

current or past natural environment.

We, too, found that species-specific

expression level was significantly cor-

related between physically interacting

proteins compared to the control set

(Wilcoxon rank sum test, P < 2.2 3 10�16).

However, coevolution of expression level

was not as statistically powerful as ERC

(power = 0.62 and 0.74 for expression and

ERC, respectively). Yet, there are certain

sets of cofunctional genes that demon-

strated very strong coevolution of expres-

sion level, suggesting that there is a great

deal of functional information to glean

from these correlations (Fig. 4, values

below diagonal). For example, the mean

correlation for expression coevolution

between glycolysis enzymes was 0.73,

Table 1. ERC and expression coevolution within metabolic pathways

Pathway N Mean ERC
ERC

P-value
Mean expression

coevolution
Expression

P-value

Galactose metabolism 4 0.46 0.0040* 0.61 0.0018*
Glycolysis 12 0.18 0.0020* 0.73 0.0001*
Pentose phosphate 7 0.35 0.0006* 0.27 0.0039*
Tricarboxylic acid cycle 19 0.19 0.0001* 0.49 0.0001*
Adenine biosynthesis 8 0.25 0.0033* 0.45 0.0001*
Arginine biosynthesis 7 0.23 0.0090* 0.44 0.0002*
Ergosterol biosynthesis 21 0.08 0.0105* 0.34 0.0001*
FAD biosynthesis 8 0.04 0.2488 0.14 0.0680
Folate biosynthesis II 6 0.07 0.1849 0.00 0.4700
Heme biosynthesis 10 0.17 0.0067* 0.01 0.4000
Histidine biosynthesis 7 0.19 0.0187* 0.11 0.1300
Uracil biosynthesis 7 0.03 0.2782 0.41 0.0003*

(*) P < 0.05.

Figure 3. Galactose enzymes exhibit ERC. The classic galactose metabolic
pathway (A) converts galactose (Gal) into glucose 6-phosphate (Glu-6-P)
via four enzymes: Gal1p, Gal7p, Gal10p, and Gal5p. A pairwise compar-
ison table (B) shows the strength of ERC (correlation coefficient) between
each protein pair. RVC between Gal1p, Gal7p, and Gal10p is notably el-
evated, while that with Gal5p is less elevated but also positive. ERC be-
tween Gal7p and Gal10p is the highest value proteome-wide for both
proteins.

Evolutionary rate covariation
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compared to the genome-wide background mean of �0.01 (per-

mutation test, P < 0.0001) (Table 1).

Our analysis suggests that expression coevolution and ERC

are not entirely derivative of each other and contain independent

information. In the full 18-species data set, there was only a weak

correlation between them (r = 0.05), and there are multiple bi-

ological pathways in which ERC is stronger than expression co-

evolution and vice versa. For example, in glycolysis, expression

coevolution (mean r = 0.73) was much stronger than ERC (mean r =

0.18), while in the CCR4-NOT complex, expression coevolution

was substantially weaker (mean r = 0.18) than ERC (mean r = 0.60)

(Fig. 4). In addition, the 12 metabolic pathways examined above

demonstrate that ERC and expression coevolution are not always

coincidental or of equal intensity (Table 1). If coevolution of ex-

pression level contributes to genome-wide ERC in yeast, the

question is to what degree. In the next section, we quantify this

and other potential biological contributors to ERC using multi-

variate analysis.

Cofunctionality and coevolution of expression both contribute
to rate covariation

We compiled a set of six variables representing physical inter-

action, shared function, and coevolution of expression in order to

dissect their relative contributions to genome-wide ERC. Physical

interaction (variable 1) was scored using annotated physical in-

teractions and protein complexes (see Methods). Coevolution of

expression level (variable 2) was approximated by the covariation

of codon bias between species, as described in the previous section.

Shared function was represented by four variables: genetic inter-

action (variable 3) and the semantic similarity of Gene Ontology

categories: biological process (variable 4), molecular function (vari-

able 5), and cellular component (variable 6) (Ashburner et al. 2000).

We found most of these predictor variables to be significantly cor-

related with ERC, but importantly, they also correlated with each

other (Supplemental Tables S1, S2). Correlated predictors make it

difficult to disentangle their potential influence on ERC. Thus, we

separated the six predictor variables into six principal compo-

nents, each independently explaining a portion of predictor vari-

ance. We then regressed each principal component against ERC and

calculated the percent of variation in ERC that each principal com-

ponent explained (i.e., principal components regression) (Mandel

1982). Note that principal components are ordered by the amount

of explained predictor variance, not by explained ERC variance.

We first analyzed 59 proteins from two distinct processes, the

nuclear pore complex and DNA mismatch repair, so that there

would be similar numbers of related and unrelated protein pairs.

Together, the six principal components explained 10.7% of the total

variance in ERC (Fig. 5A). The first principal component (Fig. 5A,

first column) was significantly associated with ERC (P = 1.1 3 10�9)

Figure 4. ERC and coevolution of expression are not coincidental.
Pairwise correlation matrices show values of ERC (above diagonal) and
coevolution of expression level (below diagonal) between glycolysis (A)
and CCR4-NOT complex (B) proteins. Both ERC and expression co-
evolution are significantly elevated for both sets of proteins (P < 0.01).
However, ERC is much stronger than expression coevolution in the CCR4-
NOT complex, while it is the opposite case between glycolysis proteins.
(Red) Values greater than 0.75; (orange) values between 0.5 and 0.75;
(beige) values between 0.3 and 0.5.

Figure 5. Multivariate analysis reveals biological variables associated with ERC. Two principal components regressions were performed: one on nuclear
pore and DNA repair proteins (A) and the second on a larger 982-protein data set (B). The predictor variables (rows) were broken into six principal
components (columns). Table values are the percentage of each predictor variable composing a principal component. For visual clarity, values <10% are
not displayed. Each component was regressed against ERC to determine its individual contribution, and the bar above a component shows the percent of
ERC variance explained. Components significantly associated with ERC have black bars (P < 0.01).
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and alone explained 5.8% of ERC variance (bar plot). The first

principal component was composed of four predictor variables

in roughly equal percentages (numerical values in first column):

physical interaction and shared biological process, molecular

function, and cellular component. Physical interaction and func-

tional similarity were not separated in this principal component

since physical interaction and function are often intertwined. The

combination of these variables could be described as the general

cofunctionality of a protein pair. The third principal component

of predictor variables was composed of genetic interaction and co-

evolution of expression level and explained 2.8% of ERC variance

(P = 2.5 3 10�5). The third principal component largely separated

genetic interaction from other predictor variables, suggesting that

it independently influences ERC.

We then examined a larger, more diverse data set consisting

of all pairwise comparisons between 982 proteins, chosen for their

completeness of annotation and presence in all 18 species. The pre-

dictor variables explained a much smaller amount of ERC variance

in this data set (0.69%) because the vast majority of comparisons are

between unrelated genes. However, the analysis indicated similar

global forces associated with ERC (Fig. 5B). The greatest amount

of variance was explained by coevolution of expression and ge-

netic interaction (third principal component: 0.33% of variance;

P < 2.2 3 10�16). It is notable that the contribution of coevolution

of expression is much greater in this genome-wide data set, sug-

gesting that it could be a major factor in many pathways. Physical

interaction and shared function were again associated with ERC

(first principal component: 0.28% of variance; P < 2.2 3 10�16),

and we speculate that they could explain much more because the

annotation of physical interaction and function is largely in-

complete, even in the yeast genome.

Discussion
We performed a proteome-wide study in 18 budding yeast species

to define and discriminate the forces behind evolutionary rate

covariation. A popular conception has been that ERC arises due to

coevolution between interacting protein sites (Goh et al. 2000;

Pazos and Valencia 2001). However, the totality of evidence pre-

sented here indicates that ERC in the yeast proteome is more

complex and most reliably reflects shared function between pro-

teins. We demonstrated that direct physical interaction is not re-

quired to produce ERC between proteins, since noninteracting but

functionally related metabolic enzymes are just as correlated as

physically interacting proteins. It has been argued that coevolution

and compensatory changes are not major contributors to the sig-

nature of ERC between physically interacting proteins (Hakes et al.

2007; Lovell et al. 2010), but evidence to the contrary has also been

presented (Kann et al. 2009). Our major assertion here is that the

previous preoccupation with physical interaction may have ob-

scured the true potential of ERC to predict functional classes more

broadly. One must not assume that a signal of ERC requires that two

proteins are physically interacting, because they are just as likely to

be only functionally related. This greatly expands the potential

impact that ERC can have on genome annotation.

A multivariate analysis allowed us to estimate the relative

contributions of biological variables to ERC on a proteome-wide

scale. In two different data sets, the two major components asso-

ciated with ERC were (1) cofunctionality, seen as a combination of

shared functional annotation and physical interaction, and (2)

coevolution of expression level. While we found the physical in-

teraction variable to be intertwined in a principal component with

functional annotation, this does not necessarily implicate direct

physical interaction as a driving force; it just could not be sepa-

rated from functional annotation in this analysis. The novel

finding from the multivariate analysis was that coevolution of ex-

pression level was a major variable associated with ERC. Whether

this association results from a causative relationship remains to be

determined.

We propose that ERC results mainly from fluctuation in the

evolutionary pressures shared by functionally linked proteins.

Such fluctuation could result from changes in either constraint

(negative selection) or in adaptive evolution (positive selection).

We would argue that fluctuation in constraint is the greater con-

tributor to ERC because it acts on all proteins. Indeed, we observe

ERC proteome-wide, including between many highly conserved

proteins that would only on rare occasion experience positively

selected substitutions. In addition, Elyashiv et al. (2010) have used

polymorphism data to argue that most amino acid fixations be-

tween S. cerevisiae and Saccharomyces paradoxus were driven by re-

laxed constraint, rather than positive selection. Episodes of posi-

tive selection could contribute to ERC within adaptively evolving

pathways, such as immunity or reproduction; however, only lim-

ited functional classes undergo frequent positive selection (Kosiol

et al. 2008). In summary, we propose that the greater contributor

to proteome-wide ERC is pathway-specific fluctuation in selective

constraint, which thereby produces correlated rates, primarily

through nearly neutral substitutions.

We still do not understand why certain groups of functionally

related proteins correlate, while others do not. For example, we

observed significantly elevated ERC in 62% of protein complexes,

while many other well-annotated complexes showed no elevated

ERC at all. What determines whether a group of functionally re-

lated proteins will demonstrate this signature? Some possibilities

to consider will be network properties, biological function, dis-

pensability, and expression pattern. Despite theses limitations,

the study of ERC does provide insight into biological function

and should serve as an additional tool for the functional analysis

of genomes.

Methods

Proteome-wide orthologous groups
We analyzed the predicted amino acid sequences for 18 fungal
species from both the Fungal Genome Research database (http://
fungalgenomes.org/) (Fitzpatrick et al. 2006) and the National Cen-
ter for Biotechnology Information (http://www.ncbi.nlm.nih.gov/).
These species were: S. cerevisiae, S. paradoxus, Saccharomyces mikatae,
Saccharomyces bayanus, Saccharomyces kluyveri, Candida glabrata,
Kluyveromyces thermotolerans, Kluyveromyces waltii, Kluyveromyces
lactis, Kluyveromyces polysporus, Ashbya gossypii, Candida albicans,
Candida dubliniensis, Candida tropicalis, Candida guilliermondii,
Candida lusitaniae, Lodderomyces elongisporus, Debaryomyces han-
senii, and Scheffersomyces stipitis. Starting with the proteins from S.
cerevisiae, we determined the best single ortholog, if present, from
all other 17 species using the program InParanoid (Remm et al.
2001). Inparanoid was configured to find orthologous sequences
using the reciprocal best BLAST hit criterion with a similarity
score cut-off of 50 bits. In cases with multiple orthologs due to
duplications since speciation (in-paralogs), we conservatively
designated only the best two-species pair as orthologs (i.e., 100%
confidence orthologs as assigned by InParanoid). The resulting
4459 orthologous groups of proteins were aligned using MUSCLE
(Edgar 2004).

Evolutionary rate covariation
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Calculating evolutionary rate covariation

For each amino acid alignment we estimated branch lengths using
the ‘‘aaml’’ program from the phylogenetic analysis using the
maximum likelihood (PAML) package (Yang 2007). Branch lengths
were estimated under an empirical model of amino acid sub-
stitution rates (Whelan and Goldman 2001) with rate variability
between sites modeled as a gamma distribution approximated with
four discrete classes (for computational efficiency) plus a class for
invariable sites (aaml model ‘‘Empirical+F’’) (Yang 1996). These
lengths were all estimated on the same species tree topology as
reported by Fitzpatrick et al. (2006). The resulting branch lengths
can be directly used to calculate a correlation coefficient (r) between
any two proteins; however, this direct approach provided limited
power to discern physically interacting from noninteracting protein
pairs. The alternative is to analyze the relative rates of evolution
along each branch compared to the expected length in a hypo-
thetical proteome-wide tree. We transformed the raw branch rates
into relative rates using the projection operator method of Sato et al.
(2005). This greatly improved the power to distinguish physically
interacting pairs from controls; power improved from 0.66 to 0.74.
To improve gene coverage, pairwise comparisons were made in such
a way that allowed for missing sequences by considering only those
species shared between each protein pair. Pairs were required to have
a minimum of 12 shared species. Any missing species were pruned
from the tree topology using the BioPerlTTrees package (Stajich
2007). We were not interested in correlations driven by a single
outlier data point, so we set a protein-specific limit of evolutionary
rate at two standard deviations from the mean. This limit biased
high correlations to those consistently involving multiple branches
instead of one outlier branch.

Gene annotation and power analysis

All annotated physical and genetic interactions were downloaded
from the Saccharomyces Genome Database (SGD) (http://www.
yeastgenome.org). Because high-throughput methods to detect
physical interactions have high false positive rates, we created a
more confident reference set by including only those inferred by
at least two independent experimental methods. We estimated
the statistical power of ERC to distinguish interacting from non-
interacting protein pairs using the area under the receiver operator
characteristic (ROC) curve using the R-project module ‘‘ROCR’’
(Sing et al. 2005). In this measure, a perfect predictor will have an
area of 1, and a method that has no predictive value will have an
area of 0.5. In the subdivided analysis, we selected the highest ERC
value for each protein pair out of all four combinations of sub-
divisions. The proteins involved in specific metabolic pathways
were taken from the Saccharomyces Biochemical Pathway Overview
available from SGD (September 2010). There were a few annotated
physical interactions in the ergosterol, glycolysis, and tricarboxylic
acid cycle pathways, so those specific protein pairs were excluded
from analysis.

Coevolution of expression level

Coevolution of expression level was calculated using codon bias as
a proxy for expression level in each of the 18 species. Codon bias
was measured using the codon adaptation index (CAI) estimated
by correspondence analysis of codon usage using the program
‘‘codonw,’’ written by John Peden (http://codonw.sourceforge.net/)
(Sharp and Li 1987). High-frequency and presumably preferred
codons were determined for each species using a set of highly
expressed genes from Saccharomyces cerevisiae and their corre-
sponding orthologs in the other species. This highly expressed set
encoded mostly ribosomal proteins and metabolic enzymes. Ex-

pression level correlations were calculated after transforming the
values with the projection operator used above for ERC (Sato et al.
2005).

Multivariate analysis

Predictor variables were compiled from annotation in SGD. Be-
cause physical interaction data contain many false positives and
because binary variables can produce misleading results in a prin-
cipal components analysis, we configured the physical interaction
variable to reflect the relative confidence in that interaction using the
formula: (1 – 0.5t 3 0.3(m-1) 3 0.1c), where t is the number of times
this interaction is reported in SGD, m is the number of independent
experimental methods that found this interaction, and c is an in-
dicator variable reporting whether the protein pair is in the same
protein complex or not. This formula transforms the separate binary
variables onto a more continuous range. The resulting variable is
zero for no annotated interaction and approaches one as more in-
dependent evidence for an interaction is present. Although there are
many possible coefficients for this formula, we found the conclu-
sions of the principal components regression to be robust to alter-
nate encodings. For example, when we ran the analysis with each
factor (complex, physical interaction, etc.) as separate binary vari-
ables, the main contributing factors to ERC were more complex but
unchanged (data not shown). The genetic interaction variable was
either scored ‘‘one’’ for an annotated interaction or ‘‘zero’’ for none.
The similarity of functional classifications for a protein pair was
quantified by the semantic similarity of their Gene Ontology an-
notations (Ashburner et al. 2000). Semantic similarity gives a nu-
merical score to the relatedness of the annotation between a pair of
genes and, hence, represents how similar they are in function or
localization. Semantic similarity, as we calculated with the program
GOSemSim, also takes into account the hierarchical structure of the
Gene Ontology (Yu et al. 2010). Principal components regression
was performed using singular value decomposition in the R Module
‘‘pls,’’ written by Ron Wehrens and Bjørn-Helge Mevik. All predictor
variables were scaled by their sample standard deviation before
principal components analysis.

Data access
The full genome-wide ERC matrix is available for download at
http://www.csb.pitt.edu/faculty/clark/data.html.
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