Strai	n Number ¹					
Hetero-						
karyon	Homo-		Mating		De	pth ⁶
	karyon ²	Location ³	type ⁴	Lineage ⁵	2509	2508
N. tetrasperma						
RLM131	FGSC7585	Coba, Mexico	А	L4	26	25
	FGSC7586		а	L4	26	25
P4492	FGSC9033	Franklin, LA, USA	А	L1	45	43
	FGSC9034		а	L1	28	26
FGSC965	965A/FGSC10751	Liberia	А	L9	45	42
	965a/FGSC10752		а	L9	25	24
UK26	CJ01/FGSC10703	Surrey, England	А	L10	29	27
	$CJ02/FGSC10704^{H}$		а	L10	29	27
UK12	CJ03/FGSC10705	Surrey, England	А	L10	28	27
	CJ04/FGSC10706		а	L10	28	25
UK33	CJ05/FGSC10707	Surrey, England	А	L10	28	27
	CJ06/FGSC10708		а	L10	29	26
UK43	CJ07/FGSC709 ^H	Surrey, England	А	L10	27	26
	CJ08/FGSC710		а	L10	30	27
UK23	CJ09/FGSC711	Surrey, England	А	L10	27	26
	CJ10/FGSC712		а	L10	29	27
UK1	CJ11/FGSC10713 ^H	Surrey, England	А	L10	28	27
	CJ12 FGSC10714 $^{\rm H}$		а	L10	29	27
UK41	CJ13/FGSC10715	Surrey, England	А	L10	28	26
	CJ14/FGSC10716		a	L10	29	27
UK54	CJ15/FGSC10717	Surrey, England	А	L10	27	26
	CJ16/FGSC718		а	L10	28	26
UK77	CJ17/FGSC719 ^H	Surrey, England	A+a	L10	28	27
	CJ18/FGSC720 ^H		а	L10	29	27
UK65	CJ19/FGSC721	Surrey, England	А	L10	28	27
	CJ20/FGSC722		а	L10	29	27
UK86	CJ21/FGSC10723 ^H	Surrey, England	A+a	L10	28	26
	CJ22/FGSC10724		а	L10	29	27
UK100	CJ23/FGSC10725	Surrey, England	А	L10	29	27
	CJ24/FGSC10726		а	L10	29	27
P3358	CJ25/FGSC10727	Pirongia, NZ	А	L5	29	30

Supplementary Table 1. *Neurospora* strains sequenced in this study and the mean sequencing depth across the genome.

	CJ26/FGSC10728		а	L5	31	29
P2252	CJ27/FGSC10729	Dargaville, NZ	А	L5	29	30
	CJ28/FGSC10730		а	L5	31	29
P2331	CJ29/FGSC10731	Te Hana, NZ	А	L5	30	31
	CJ30/FGSC10732 ^{C2}		а	L5	31	29
P3359	CJ31/FGSC10733 ^H	Pirongia, NZ	A+a	L5	29	30
	CJ32/FGSC10734		а	L5	31	28
P2317	CJ33/FGSC10735	Brookby, NZ	А	L5	29	30
	CJ34/FGSC10736		а	L5	31	29
P2275	CJ35/FGSC10737 ^{C1}	Herekino, NZ	а	L5	31	28
	CJ36/FGSC10738		а	L5	31	29
P2284	CJ37/FGSC10739 ^{C2}	Omapere, NZ	А	L5	30	31
	CJ38/FGSC10740		а	L5	31	29
P2253	CJ39/FGSC10741 ^{C2}	Dargaville, NZ	А	L5	30	31
	CJ40/FGSC10742		а	L5	31	28
P2299	CJ41/FGSC10743	Waitakere, NZ	А	L5	30	30
	CJ42/FGSC10744		а	L5	30	28
P2273	CJ43/FGSC10745	Herekino, NZ	А	L5	30	31
	CJ44/FGSC10746		а	L5	31	29
P2356	CJ45	Ahipara, NZ	А	L5	29	30
	CJ46		а	L5	30	27
P2357	CJ47/FGSC10747	Ahipara, NZ	А	L5	28	29
	CJ48/FGSC10748 ^{C1}		А	L5	27	28
P2361	CJ49/P4371	Ahipara, NZ	А	L5	28	29
	CJ50/P4372		а	L5	30	27
P2294	CJ51/FGSC10749	Mt. Albert, NZ	А	L5	30	31
P2303	CJ52/FGSC10750 ^H	Cornwallis Bch,NZ	A+a	L5	31	29
P4495	CJ55/FGSC9024	Franklin, LA, USA	А	L1	33	31
	CJ56/FGSC9025		а	L1	31	30
P4488	CJ57/FGSC9026	Franklin, LA, USA	А	L8	34	32
	CJ58/FGSC9027		а	L8	30	28
P4466	CJ59/FGSC9028	Franklin, LA, USA	А	L8	30	29
	CJ60/FGSC9029		а	L8	34	32
P4460	CJ61/FGSC9030	Franklin, LA, USA	А	L8	29	28
	CJ62/FGSC9031		а	L8	31	30
J3	CJ63/FGSC9035	Franklin, LA, USA	А	L8	33	32
	CJ64/FGSC9036		а	L8	31	30
P4461	CJ65/FGSC9037 ^{C2}	Franklin, LA, USA	А	L1	35	33
	CJ66/FGSC9038 ^{C2}		а	L1	31	30
J14	CJ67/FGSC9039	Franklin, LA, USA	А	L8	34	33

NA	FGSC8817	Carrefour Dufort, Haiti	А	NA	31	30
	N. hispaniola					
NA	FGSC1135	Panama	А	NA	32	30
	N. sitophila					
P0655	CJ88/FGSC2506 ^H		A+a	L8	30	29
P0654	CJ87/FGSC2505 ^H	Perkins, LA, USA	A+a	L8	32	30
	CJ86/FGSC2504		а	L8	32	30
P505	CJ85/FGSC2503	Welsh, LA, USA	А	L8	33	31
unknown	CJ84/FGSC2502		а	L7	33	31
P470	CJ83/FGSC2501	Empire, LA, USA	А	L7	30	28
P4382	CJ82/FGSC9054		а	L7	28	27
P4381	CJ81/FGSC9053	Welsh, LA, USA	А	L7	29	28
P4380	CJ80/FGSC9052		а	L8	31	30
P4379	CJ79/FGSC9051	Welsh, LA, USA	А	L8	32	30
	CJ78/FGSC9050		а	L8	33	31
J13	CJ77/FGSC9049	Franklin, LA, USA	А	L8	32	30
	CJ76/FGSC9048		а	L8	30	29
J9	CJ75/FGSC9047	Franklin, LA, USA	А	L8	31	29
	CJ74/FGSC9046		а	L7	32	30
J2	CJ73/FGSC9045	Franklin, LA, USA	А	L7	29	27
	CJ72/FGSC9044		а	L8	35	33
J8	CJ71/FGSC9043	Franklin, LA, USA	А	L8	33	32
	CJ70/FGSC9041		а	L7	33	31
P4477	CJ69/FGSC9042	Franklin, LA, USA	A	L7	34	33
	CJ68/FGSC9040		а	L8	30	28

1. Strain Names are Fungal Genetic Stock Center (FGSC), Perkins collection (P), Jacobson collection (J), RL Metzenberg (RLM) and UK/CJ numbers are from Corcoran et al (2012).

2. Genomes excluded from analyses due to "H": heterokaryosis, "C": identity (clonality) with other strain originating from the same heterokaryon "C1" or a different heterokaryon "C2."

3. Abbreviations: Louisiana (LA); New Zealand (NZ).

4. Mating type is either mat A (A), mat a (a) or heterokaryotic (A+a).

5. Lineage to which the *N. tetrasperma* strains are assigned, based on Menkis *et al.* (2009) and Corcoran *et al.* (2014).

Neurospora tetrasperma has two reference genomes from L6. The FGSC 2508 (*mat A*) and 2509 (*mat a*) homokarons were isolated from P581 (see Ellison et al. (2011), for details). Sequencing depths were calculated using the samtools depth command.

Supplementary Table 2. Comparison of genetic variation in *N. tetrasperma* and *N. crassa*¹. Nucleotide diversity (π) of autosomes, and distance over which linkage disequilibrium (LD) decays to half its maximum.

Population	π	LD decay (kb)
L10 (UK)	0.0050	>500
L5 (NZ)	0.0022	11
L8 (LA)	0.0008	31
N. crassa (Louisiana)	0.0024	0.70
N. crassa (Caribbean)	0.0023	0.85

¹Data for *N. crassa* Ellison *et al.* 2011a.

Supplementary Table 3. Mean nucleotide diversity at synonymous sites (π_s) across genes in recombining regions (R) and regions of suppressed recombination (SR) of the genome in Lineages of *N. tetrasperma*.

Lineage	R	SR (mat A)	SR (mat a)	R/SR^1 (mat A)	$\mathbf{R}/\mathbf{SR}^{1}$ (mat a)
L10 (UK)	0.01061	0.00007	0.00008	75.8	66.7
L5 (NZ)	0.00424	0.00065	0.00043	3.3	4.9
L8 (LA)	0.00194	0.00078	0.00004	1.24	24.25

¹These ratios are divided by a factor of two to account for half the effective population size in the SR compared to R.

Supplementary Table 4. Divergence between the *N. tetrasperma* lineages and the three heterothallic species within the recombining regions of the genome (R) and regions of suppressed recombination on the *mat* chromosome. Divergence values in SR regions that are more extreme than expected under the isolation model are highlighted in bold.

		N. crassa		N. hisp	paniola	N. sitophila		
Lineage	Region ¹	Median	p-value ²	Median	p-value	Median	p-value	
L1	R	0.0434	n/a	0.0235	n/a	0.0264	n/a	
L1	SRa	0.0353	0.4271	0.0197	0.48298	0.0248	0.53406	
L1	SRA	0.0363	0.4469	0.0208	0.51916	0.0211	0.37128	
L4	R	0.0436	n/a	0.0225	n/a	0.0267	n/a	
L4	SRa	0.0369	0.4586	0.0058	0	0.0269	0.39266	
L4	SRA	0.0374	0.4685	0.0205	0.50928	0.0227	0.50928	
L5	R	0.0459	n/a	0.0248	n/a	0.0274	n/a	
L5	SRa	0.0387	0.49224	0.0216	0.54458	0.0220	0.4151	
L5	SRA	0.0362	0.55482	0.0302	0.2575	0.0352	0.19812	
L6	R	0.0476	n/a	0.0252	n/a	0.0278	n/a	
L6	SRa	0.0389	0.50424	0.0220	0.5567	0.0225	0.15882	
L6	SRA	0.0400	0.4853	0.0320	0.22828	0.0379	0.43722	
L7	R	0.0416	n/a	0.0216	n/a	0.0259	n/a	
L7	SRa	0.0345	0.40986	0.0074	0	0.0247	0.52916	
L7	SRA	0.0344	0.41134	0.0186	0.44436	0.0236	0.48504	
L8	R	0.0423	n/a	0.0222	n/a	0.0257	n/a	
L8	SRa	0.0360	0.44184	0.0208	0.51916	0.0210	0.36798	
L8	SRA	0.0357	0.43556	0.0192	0.46582	0.0233	0.47148	
L9	R	0.0444	n/a	0.0239	n/a	0.0268	n/a	
L9	SRa	0.0275	0.25022	0.0300	0.26102	0.0342	0.2156	
L9	SRA	0.0370	0.46088	0.0216	0.4564	0.0222	0.4242	
L10	R	0.0440	n/a	0.0234	n/a	0.0272	n/a	
L10	SRa	0.0377	0.47318	0.0213	0.5345	0.0211	0.37128	
L10	SRA	0.0369	0.4586	0.0047	0	0.0280	0.35892	

¹The R region is composed of pseudoautosomal regions (PAR) and autosomes.

 2 This is the proportion of simulated sequence divergence values that were as extreme or more extreme than the observed median divergence to a heterothallic species (50000 replicate simulations of 25kb a locus). Paramaters used as input for the MCcoal simulations were taken from the estimates produced with the M0 model in 3S run on autosomal intergenic regions (see methods for further details). ³ n/a is not applicable.

Supplementary Table 5. Patterson's *D*-statistic (D), which measures excess of ABBA sites over BABA sites or vice versa, for the comparison of strain 9033 (P1) of L1 *N. tetrasperma* (L1 column), and a strain (P2) from each of the other seven lineages (L2 column) of *N. tetrasperma*, 8817 from *N. hispaniola* (P3) and *N. discreta* as the outgroups (O). A significantly positive D-statistic supports introgression from *N. hispaniola* and P2.

L1	L2	P1	P2	P3	0	D	Standard Error	Z-score	p-value
L1	L6	9033	2508	8817	Ndis	0.0352	0.0126	2.8010	3.77E-01
L1	L6	9033	2509	8817	Ndis	0.0383	0.0127	3.0243	1.84E-01
L1	L4	9033	7585	8817	Ndis	0.0934	0.0165	5.6636	1.10E-06
L1	L4	9033	7586	8817	Ndis	0.0942	0.0166	5.6708	1.05E-06
L1	L9	9033	965a	8817	Ndis	-0.0438	0.0110	-3.9995	4.70E-03
L1	L9	9033	965BA	8817	Ndis	-0.0439	0.0107	-4.1196	2.81E-03
L1	L10	9033	CJ01	8817	Ndis	0.0978	0.0134	7.3088	2.00E-11
L1	L10	9033	CJ03	8817	Ndis	0.0875	0.0178	4.8996	7.10E-05
L1	L10	9033	CJ04	8817	Ndis	0.0838	0.0181	4.6413	2.56E-04
L1	L10	9033	CJ05	8817	Ndis	0.0807	0.0200	4.0373	4.00E-03
L1	L10	9033	CJ06	8817	Ndis	0.3841	0.0548	7.0115	1.75E-10
L1	L10	9033	CJ08	8817	Ndis	0.0754	0.0153	4.9410	5.75E-05
L1	L10	9033	CJ09	8817	Ndis	0.3805	0.0551	6.9114	3.55E-10
L1	L10	9033	CJ10	8817	Ndis	0.0819	0.0186	4.4119	7.55E-04
L1	L10	9033	CJ13	8817	Ndis	0.0691	0.0155	4.4521	6.29E-04
L1	L10	9033	CJ14	8817	Ndis	0.0890	0.0137	6.4954	6.13E-09
L1	L10	9033	CJ15	8817	Ndis	0.0911	0.0168	5.4154	4.53E-06
L1	L10	9033	CJ16	8817	Ndis	0.3994	0.0550	7.2557	2.95E-11
L1	L10	9033	CJ19	8817	Ndis	0.3898	0.0549	7.0944	9.62E-11
L1	L10	9033	CJ20	8817	Ndis	0.0804	0.0191	4.2023	1.95E-03
L1	L10	9033	CJ22	8817	Ndis	0.0825	0.0189	4.3730	9.10E-04
L1	L10	9033	CJ23	8817	Ndis	0.0855	0.0190	4.4916	5.23E-04
L1	L10	9033	CJ24	8817	Ndis	0.0697	0.0203	3.4342	4.40E-02
L1	L5	9033	CJ25	8817	Ndis	0.0048	0.0120	0.3993	1.00E+00
L1	L5	9033	CJ26	8817	Ndis	0.0037	0.0118	0.3169	1.00E+00
L1	L5	9033	CJ27	8817	Ndis	0.0029	0.0116	0.2536	1.00E+00
L1	L5	9033	CJ28	8817	Ndis	0.0025	0.0116	0.2141	1.00E+00
L1	L5	9033	CJ29	8817	Ndis	0.0040	0.0121	0.3300	1.00E+00
L1	L5	9033	CJ32	8817	Ndis	0.0047	0.0112	0.4232	1.00E+00
L1	L5	9033	CJ33	8817	Ndis	0.0095	0.0122	0.7810	1.00E+00
L1	L5	9033	CJ34	8817	Ndis	0.0101	0.0122	0.8257	1.00E+00
L1	L5	9033	CJ36	8817	Ndis	0.0047	0.0111	0.4280	1.00E+00
L1	L5	9033	CJ38	8817	Ndis	0.0050	0.0116	0.4292	1.00E+00
L1	L5	9033	CJ40	8817	Ndis	0.0095	0.0115	0.8231	1.00E+00
L1	L5	9033	CJ41	8817	Ndis	0.0045	0.0118	0.3859	1.00E+00

L1	L5	9033	CJ42	8817	Ndis	0.0045	0.0116	0.3898	1.00E+00
L1	L5	9033	CJ43	8817	Ndis	0.0034	0.0118	0.2890	1.00E+00
L1	L5	9033	CJ44	8817	Ndis	0.0050	0.0116	0.4264	1.00E+00
L1	L5	9033	CJ45	8817	Ndis	0.0101	0.0120	0.8423	1.00E+00
L1	L5	9033	CJ46	8817	Ndis	0.0137	0.0120	1.1380	1.00E+00
L1	L5	9033	CJ47	8817	Ndis	0.0046	0.0121	0.3826	1.00E+00
L1	L5	9033	CJ49	8817	Ndis	0.0077	0.0118	0.6534	1.00E+00
L1	L5	9033	CJ50	8817	Ndis	0.0069	0.0117	0.5901	1.00E+00
L1	L5	9033	CJ51	8817	Ndis	0.0032	0.0111	0.2925	1.00E+00
L1	L1	9033	CJ55	8817	Ndis	0.0047	0.0351	0.1325	1.00E+00
L1	L1	9033	CJ56	8817	Ndis	0.0090	0.0336	0.2692	1.00E+00
L1	L8	9033	CJ57	8817	Ndis	0.0744	0.0136	5.4648	3.43E-06
L1	L8	9033	CJ58	8817	Ndis	0.0752	0.0136	5.5090	2.67E-06
L1	L8	9033	CJ59	8817	Ndis	0.0695	0.0140	4.9563	5.32E-05
L1	L8	9033	CJ60	8817	Ndis	0.0692	0.0138	5.0064	4.11E-05
L1	L8	9033	CJ61	8817	Ndis	0.0767	0.0138	5.5539	2.06E-06
L1	L8	9033	CJ62	8817	Ndis	0.0751	0.0137	5.4733	3.27E-06
L1	L8	9033	CJ63	8817	Ndis	0.0739	0.0136	5.4466	3.80E-06
L1	L8	9033	CJ64	8817	Ndis	0.0746	0.0136	5.4958	2.88E-06
L1	L8	9033	CJ67	8817	Ndis	0.0675	0.0139	4.8413	9.55E-05
L1	L8	9033	CJ68	8817	Ndis	0.0703	0.0139	5.0636	3.04E-05
L1	L7	9033	CJ69	8817	Ndis	0.0461	0.0128	3.5924	2.42E-02
L1	L7	9033	CJ70	8817	Ndis	0.0464	0.0129	3.5892	2.45E-02
L1	L8	9033	CJ71	8817	Ndis	0.0717	0.0139	5.1469	1.96E-05
L1	L8	9033	CJ72	8817	Ndis	0.0711	0.0140	5.0939	2.60E-05
L1	L7	9033	CJ73	8817	Ndis	0.0939	0.0132	7.1346	7.19E-11
L1	L7	9033	CJ74	8817	Ndis	0.0942	0.0132	7.1433	6.74E-11
L1	L8	9033	CJ75	8817	Ndis	0.0688	0.0138	4.9772	4.77E-05
L1	L8	9033	CJ76	8817	Ndis	0.0688	0.0139	4.9599	5.22E-05
L1	L8	9033	CJ77	8817	Ndis	0.0759	0.0141	5.3998	4.94E-06
L1	L8	9033	CJ78	8817	Ndis	0.0764	0.0141	5.4177	4.47E-06
L1	L8	9033	CJ79	8817	Ndis	0.0735	0.0138	5.3392	6.91E-06
L1	L8	9033	CJ80	8817	Ndis	0.0740	0.0137	5.4059	4.77E-06
L1	L7	9033	CJ81	8817	Ndis	0.1007	0.0131	7.6911	1.09E-12
L1	L7	9033	CJ82	8817	Ndis	0.1007	0.0131	7.7091	9.40E-13
L1	L7	9033	CJ83	8817	Ndis	0.0982	0.0131	7.4945	4.93E-12
L1	L7	9033	CJ84	8817	Ndis	0.0977	0.0131	7.4344	7.77E-12
L1	L8	9033	CJ85	8817	Ndis	0.0752	0.0137	5.4898	2.97E-06
L1	L8	9033	CJ86	8817	Ndis	0.0752	0.0138	5.4599	3.52E-06

Supplementary Table 6. Patterson's *D*-statistic (D), which measures excess of ABBA sites over BABA sites or vice versa, for the comparison of strain 9033 (P1) of L1 *N. tetrasperma* (L1 column), a single strain (P2) from each of the other seven lineages (L2 column) of *N. tetrasperma*, 1135 from *N. sitophila* (P3) and *N. discreta* as the outgroups (O). A significantly positive D-statistic supports introgression between *N. sitophila* and P2.

L1	L2	P1	P2	P3	0	Dstat	SE	Z	p-value
L1	L6	9033	2508	1135	Ndis	0.0743	0.0120	6.1768	4.84E-08
L1	L6	9033	2509	1135	Ndis	0.0772	0.0120	6.4369	9.03E-09
L1	L4	9033	7585	1135	Ndis	-0.0437	0.0178	-2.4548	1.00E+00
L1	L4	9033	7586	1135	Ndis	-0.0439	0.0181	-2.4307	1.00E+00
L1	L9	9033	965a	1135	Ndis	-0.0099	0.0121	-0.8207	1.00E+00
L1	L9	9033	965BA	1135	Ndis	-0.0103	0.0122	-0.8431	1.00E+00
L1	L10	9033	CJ01	1135	Ndis	-0.0410	0.0112	-3.6506	1.94E-02
L1	L10	9033	CJ03	1135	Ndis	-0.0612	0.0185	-3.3099	6.91E-02
L1	L10	9033	CJ04	1135	Ndis	-0.0604	0.0176	-3.4383	4.33E-02
L1	L10	9033	CJ05	1135	Ndis	-0.0341	0.0230	-1.4850	1.00E+00
L1	L10	9033	CJ06	1135	Ndis	-0.1824	0.0307	-5.9503	1.98E-07
L1	L10	9033	CJ08	1135	Ndis	-0.0328	0.0180	-1.8247	1.00E+00
L1	L10	9033	CJ09	1135	Ndis	-0.1590	0.0342	-4.6430	2.54E-04
L1	L10	9033	CJ10	1135	Ndis	-0.0341	0.0224	-1.5231	1.00E+00
L1	L10	9033	CJ13	1135	Ndis	-0.0196	0.0164	-1.1976	1.00E+00
L1	L10	9033	CJ14	1135	Ndis	-0.0368	0.0111	-3.3117	6.86E-02
L1	L10	9033	CJ15	1135	Ndis	-0.0629	0.0191	-3.2861	7.52E-02
L1	L10	9033	CJ16	1135	Ndis	-0.1568	0.0365	-4.2982	1.27E-03
L1	L10	9033	CJ19	1135	Ndis	-0.1637	0.0358	-4.5735	3.55E-04
L1	L10	9033	CJ20	1135	Ndis	-0.0317	0.0228	-1.3891	1.00E+00
L1	L10	9033	CJ22	1135	Ndis	-0.0661	0.0189	-3.4906	3.57E-02
L1	L10	9033	CJ23	1135	Ndis	-0.0623	0.0191	-3.2621	8.18E-02
L1	L10	9033	CJ24	1135	Ndis	-0.0360	0.0227	-1.5872	1.00E+00
L1	L5	9033	CJ25	1135	Ndis	0.0459	0.0120	3.8115	1.02E-02
L1	L5	9033	CJ26	1135	Ndis	0.0447	0.0121	3.6809	1.72E-02
L1	L5	9033	CJ27	1135	Ndis	0.0450	0.0121	3.7095	1.54E-02
L1	L5	9033	CJ28	1135	Ndis	0.0450	0.0121	3.7328	1.40E-02
L1	L5	9033	CJ29	1135	Ndis	0.0435	0.0123	3.5393	2.97E-02
L1	L5	9033	CJ32	1135	Ndis	0.0425	0.0121	3.5224	3.16E-02
L1	L5	9033	CJ33	1135	Ndis	0.0487	0.0118	4.1148	2.87E-03
L1	L5	9033	CJ34	1135	Ndis	0.0487	0.0119	4.1039	3.00E-03
L1	L5	9033	CJ36	1135	Ndis	0.0422	0.0120	3.5104	3.31E-02
L1	L5	9033	CJ38	1135	Ndis	0.0468	0.0117	4.0168	4.37E-03
L1	L5	9033	CJ40	1135	Ndis	0.0420	0.0122	3.4455	4.22E-02
L1	L5	9033	CJ41	1135	Ndis	0.0448	0.0121	3.7149	1.50E-02

L1	L5	9033	CJ42	1135	Ndis	0.0460	0.0120	3.8217	9.81E-03
L1	L5	9033	CJ43	1135	Ndis	0.0416	0.0121	3.4377	4.34E-02
L1	L5	9033	CJ44	1135	Ndis	0.0421	0.0120	3.5005	3.44E-02
L1	L5	9033	CJ45	1135	Ndis	0.0447	0.0121	3.6881	1.67E-02
L1	L5	9033	CJ46	1135	Ndis	0.0478	0.0123	3.8905	7.40E-03
L1	L5	9033	CJ47	1135	Ndis	0.0452	0.0121	3.7319	1.41E-02
L1	L5	9033	CJ49	1135	Ndis	0.0477	0.0119	3.9960	4.77E-03
L1	L5	9033	CJ50	1135	Ndis	0.0469	0.0120	3.9061	6.94E-03
L1	L5	9033	CJ51	1135	Ndis	0.0452	0.0120	3.7670	1.22E-02
L1	L1	9033	CJ55	1135	Ndis	-0.0102	0.0360	-0.2827	1.00E+00
L1	L1	9033	CJ56	1135	Ndis	-0.0143	0.0354	-0.4045	1.00E+00
L1	L8	9033	CJ57	1135	Ndis	0.0022	0.0177	0.1242	1.00E+00
L1	L8	9033	CJ58	1135	Ndis	0.0028	0.0178	0.1575	1.00E+00
L1	L8	9033	CJ59	1135	Ndis	0.0023	0.0176	0.1316	1.00E+00
L1	L8	9033	CJ60	1135	Ndis	0.0010	0.0176	0.0572	1.00E+00
L1	L8	9033	CJ61	1135	Ndis	0.0013	0.0178	0.0704	1.00E+00
L1	L8	9033	CJ62	1135	Ndis	0.0000	0.0178	0.0000	1.00E+00
L1	L8	9033	CJ63	1135	Ndis	0.0075	0.0175	0.4262	1.00E+00
L1	L8	9033	CJ64	1135	Ndis	0.0090	0.0175	0.5138	1.00E+00
L1	L8	9033	CJ67	1135	Ndis	0.0010	0.0178	0.0553	1.00E+00
L1	L8	9033	CJ68	1135	Ndis	0.0032	0.0177	0.1787	1.00E+00
L1	L7	9033	CJ69	1135	Ndis	-0.1516	0.0191	-7.9488	1.32E-13
L1	L7	9033	CJ70	1135	Ndis	-0.1520	0.0190	-8.0117	8.21E-14
L1	L8	9033	CJ71	1135	Ndis	0.0042	0.0175	0.2422	1.00E+00
L1	L8	9033	CJ72	1135	Ndis	0.0032	0.0175	0.1820	1.00E+00
L1	L7	9033	CJ73	1135	Ndis	-0.0936	0.0180	-5.1894	1.56E-05
L1	L7	9033	CJ74	1135	Ndis	-0.0936	0.0180	-5.1854	1.60E-05
L1	L8	9033	CJ75	1135	Ndis	0.0011	0.0177	0.0605	1.00E+00
L1	L8	9033	CJ76	1135	Ndis	0.0008	0.0176	0.0454	1.00E+00
L1	L8	9033	CJ77	1135	Ndis	0.0035	0.0180	0.1970	1.00E+00
L1	L8	9033	CJ78	1135	Ndis	0.0033	0.0179	0.1843	1.00E+00
L1	L8	9033	CJ79	1135	Ndis	0.0059	0.0178	0.3298	1.00E+00
L1	L8	9033	CJ80	1135	Ndis	0.0063	0.0179	0.3548	1.00E+00
L1	L7	9033	CJ81	1135	Ndis	-0.0940	0.0181	-5.2042	1.44E-05
L1	L7	9033	CJ82	1135	Ndis	-0.0942	0.0180	-5.2300	1.25E-05
L1	L7	9033	CJ83	1135	Ndis	-0.0946	0.0180	-5.2687	1.01E-05
L1	L7	9033	CJ84	1135	Ndis	-0.0943	0.0179	-5.2668	1.03E-05
L1	L8	9033	CJ85	1135	Ndis	0.0042	0.0178	0.2368	1.00E+00
L1	L8	9033	CJ86	1135	Ndis	0.0053	0.0177	0.2962	1.00E+00

Supplementary Table 7. Patterson's *D*-statistic (D), which measures excess of ABBA sites over BABA sites or vice versa, for the comparison of strain 9033 (P1) of L1 *N. tetrasperma* (L1 column), a single strain (P2) from each of the other seven lineages (L2 column) of *N. tetrasperma*, from *N. crassa* (P3) and *N. discreta* as the outgroups (O). A significantly positive D-statistic supports introgression between *N. crassa* and P2.

L1	L2	P1	P2	P3	0	Dstat	SE	Ζ	p-value
L1	L6	9033	2508	Ncra	Ndis	-0.0027	0.0076	-0.3536	1.00E+00
L1	L6	9033	2509	Ncra	Ndis	-0.0024	0.0076	-0.3112	1.00E+00
L1	L4	9033	7585	Ncra	Ndis	-0.0219	0.0072	-3.0510	1.00E+00
L1	L4	9033	7586	Ncra	Ndis	-0.0217	0.0071	-3.0434	1.00E+00
L1	L9	9033	965a	Ncra	Ndis	-0.0049	0.0066	-0.7334	1.00E+00
L1	L9	9033	965BA	Ncra	Ndis	-0.0045	0.0065	-0.6820	1.00E+00
L1	L10	9033	CJ01	Ncra	Ndis	0.0093	0.0068	1.3538	1.00E+00
L1	L10	9033	CJ03	Ncra	Ndis	0.0007	0.0072	0.0973	1.00E+00
L1	L10	9033	CJ04	Ncra	Ndis	0.0015	0.0073	0.2096	1.00E+00
L1	L10	9033	CJ05	Ncra	Ndis	0.0000	0.0077	-0.0051	1.00E+00
L1	L10	9033	CJ06	Ncra	Ndis	-0.0075	0.0077	-0.9645	1.00E+00
L1	L10	9033	CJ08	Ncra	Ndis	-0.0024	0.0059	-0.3976	1.00E+00
L1	L10	9033	CJ09	Ncra	Ndis	-0.0088	0.0077	-1.1401	1.00E+00
L1	L10	9033	CJ10	Ncra	Ndis	0.0006	0.0071	0.0914	1.00E+00
L1	L10	9033	CJ13	Ncra	Ndis	0.0051	0.0066	0.7662	1.00E+00
L1	L10	9033	CJ14	Ncra	Ndis	0.0012	0.0063	0.1903	1.00E+00
L1	L10	9033	CJ15	Ncra	Ndis	0.0111	0.0073	1.5131	1.00E+00
L1	L10	9033	CJ16	Ncra	Ndis	-0.0137	0.0077	-1.7877	1.00E+00
L1	L10	9033	CJ19	Ncra	Ndis	-0.0150	0.0075	-1.9880	1.00E+00
L1	L10	9033	CJ20	Ncra	Ndis	-0.0014	0.0073	-0.1903	1.00E+00
L1	L10	9033	CJ22	Ncra	Ndis	-0.0027	0.0080	-0.3365	1.00E+00
L1	L10	9033	CJ23	Ncra	Ndis	-0.0009	0.0077	-0.1143	1.00E+00
L1	L10	9033	CJ24	Ncra	Ndis	-0.0001	0.0076	-0.0147	1.00E+00
L1	L5	9033	CJ25	Ncra	Ndis	0.0106	0.0070	1.5050	1.00E+00
L1	L5	9033	CJ26	Ncra	Ndis	0.0098	0.0069	1.4299	1.00E+00
L1	L5	9033	CJ27	Ncra	Ndis	0.0083	0.0067	1.2372	1.00E+00
L1	L5	9033	CJ28	Ncra	Ndis	0.0086	0.0067	1.2789	1.00E+00
L1	L5	9033	CJ29	Ncra	Ndis	0.0092	0.0069	1.3346	1.00E+00
L1	L5	9033	CJ32	Ncra	Ndis	0.0086	0.0066	1.2981	1.00E+00
L1	L5	9033	CJ33	Ncra	Ndis	0.0091	0.0071	1.2871	1.00E+00
L1	L5	9033	CJ34	Ncra	Ndis	0.0099	0.0070	1.4062	1.00E+00
L1	L5	9033	CJ38	Ncra	Ndis	0.0062	0.0070	0.8864	1.00E+00
L1	L5	9033	CJ40	Ncra	Ndis	0.0057	0.0070	0.8099	1.00E+00
L1	L5	9033	CJ41	Ncra	Ndis	0.0089	0.0067	1.3328	1.00E+00
L1	L5	9033	CJ42	Ncra	Ndis	0.0086	0.0068	1.2526	1.00E+00

L1	L5	9033	CJ43	Ncra	Ndis	0.0046	0.0071	0.6437	1.00E+00
L1	L5	9033	CJ44	Ncra	Ndis	0.0050	0.0070	0.7072	1.00E+00
L1	L5	9033	CJ45	Ncra	Ndis	0.0066	0.0069	0.9576	1.00E+00
L1	L5	9033	CJ46	Ncra	Ndis	0.0063	0.0068	0.9224	1.00E+00
L1	L5	9033	CJ47	Ncra	Ndis	0.0076	0.0072	1.0500	1.00E+00
L1	L5	9033	CJ49	Ncra	Ndis	0.0053	0.0070	0.7640	1.00E+00
L1	L5	9033	CJ50	Ncra	Ndis	0.0034	0.0069	0.4962	1.00E+00
L1	L1	9033	CJ55	Ncra	Ndis	0.0112	0.0203	0.5499	1.00E+00
L1	L1	9033	CJ56	Ncra	Ndis	0.0103	0.0191	0.5385	1.00E+00
L1	L8	9033	CJ57	Ncra	Ndis	0.0021	0.0066	0.3226	1.00E+00
L1	L8	9033	CJ58	Ncra	Ndis	0.0021	0.0066	0.3185	1.00E+00
L1	L8	9033	CJ59	Ncra	Ndis	0.0002	0.0066	0.0327	1.00E+00
L1	L8	9033	CJ60	Ncra	Ndis	-0.0005	0.0066	-0.0813	1.00E+00
L1	L8	9033	CJ61	Ncra	Ndis	-0.0021	0.0067	-0.3146	1.00E+00
L1	L8	9033	CJ62	Ncra	Ndis	-0.0039	0.0068	-0.5795	1.00E+00
L1	L8	9033	CJ63	Ncra	Ndis	0.0029	0.0063	0.4685	1.00E+00
L1	L8	9033	CJ64	Ncra	Ndis	0.0029	0.0063	0.4578	1.00E+00
L1	L8	9033	CJ67	Ncra	Ndis	-0.0017	0.0067	-0.2529	1.00E+00
L1	L8	9033	CJ68	Ncra	Ndis	-0.0019	0.0068	-0.2714	1.00E+00
L1	L7	9033	CJ69	Ncra	Ndis	-0.0119	0.0072	-1.6629	1.00E+00
L1	L7	9033	CJ70	Ncra	Ndis	-0.0119	0.0071	-1.6687	1.00E+00
L1	L8	9033	CJ71	Ncra	Ndis	0.0022	0.0064	0.3409	1.00E+00
L1	L8	9033	CJ72	Ncra	Ndis	0.0022	0.0065	0.3303	1.00E+00
L1	L7	9033	CJ73	Ncra	Ndis	-0.0007	0.0072	-0.1024	1.00E+00
L1	L7	9033	CJ74	Ncra	Ndis	-0.0013	0.0071	-0.1864	1.00E+00
L1	L8	9033	CJ75	Ncra	Ndis	-0.0012	0.0067	-0.1825	1.00E+00
L1	L8	9033	CJ76	Ncra	Ndis	-0.0013	0.0066	-0.1917	1.00E+00
L1	L8	9033	CJ77	Ncra	Ndis	-0.0015	0.0068	-0.2243	1.00E+00
L1	L8	9033	CJ78	Ncra	Ndis	-0.0012	0.0068	-0.1741	1.00E+00
L1	L8	9033	CJ79	Ncra	Ndis	0.0010	0.0066	0.1474	1.00E+00
L1	L8	9033	CJ80	Ncra	Ndis	0.0012	0.0065	0.1844	1.00E+00
L1	L7	9033	CJ81	Ncra	Ndis	0.0000	0.0069	0.0053	1.00E+00
L1	L7	9033	CJ82	Ncra	Ndis	0.0005	0.0068	0.0696	1.00E+00
L1	L7	9033	CJ83	Ncra	Ndis	0.0003	0.0069	0.0422	1.00E+00
L1	L7	9033	CJ84	Ncra	Ndis	0.0007	0.0068	0.1080	1.00E+00
L1	L8	9033	CJ85	Ncra	Ndis	0.0001	0.0067	0.0217	1.00E+00
L1	L8	9033	CJ86	Ncra	Ndis	0.0013	0.0066	0.1908	1.00E+00

Supplementary Table 8 Maximum likelihood estimates of parameters under Model M1 and the likelihood ratio test statistic $(2\Delta l)$ between M1 (model with gene flow) and M0 (isolation model) for species divergence between lineages of *N. tetrasperma* and heterothallics species. Parameters θ and τ are scaled by 100.

Species Triplet	Loci	$2\Delta l^{1}$	M0			M1				
((1,2),Outgroup)			θ ₄	θ5	$ au_0$	τ1	θ_4	θ5	$ au_0$	τ ₁
((L1, N. sit), N. dis)	719	19.23	7.06	1.25	4.32	0.76	7.11	1.11	4.11	0.64
((L4, N. sit), N. dis)	725	13.48	7.17	1.25	4.32	0.81	6.92	1.22	4.16	0.63
((L5, N. sit), N. dis)	713	16.33	7.37	1.45	4.33	0.75	7.19	1.24	4.19	0.64
((L6, <i>N. sit</i>), <i>N. dis</i>)	728	10.86	7.55	1.88	4.33	0.81	7.40	1.04	4.18	0.83
((L7, N. sit), N. dis)	732	4.50	7.02	1.28	4.30	0.80	6.99	1.25	4.20	0.64
((L8, N. sit), N. dis)	710	11.72	7.08	1.25	4.26	0.75	7.95	1.52	4.15	0.79
((L9, N. sit), N. dis)	712	10.19	7.16	1.25	4.34	0.79	6.97	1.23	4.23	0.68
((L10, N. sit), N. dis)	719	11.00	7.07	1.43	4.35	0.73	7.54	0.95	4.12	0.73
((L1, N. his), N. dis)	719	4.92	6.97	1.45	4.20	0.54	7.04	1.14	4.29	0.88
((L4, N. his), N. dis)	714	13.86	7.17	1.56	4.20	0.48	7.59	1.58	4.31	0.96
((L5, N. his), N. dis)	732	20.92	7.31	1.70	4.21	0.50	7.12	1.00	4.24	0.87
((L6, N. his), N. dis)	737	20.46	7.90	1.98	4.17	0.57	7.20	0.90	4.30	0.99
((L7, N. his), N. dis)	705	13.90	6.90	1.53	4.17	0.47	7.11	0.84	4.30	0.96
((L8, N. his), N. dis)	712	13.19	7.09	1.52	4.12	0.44	7.20	1.00	4.33	0.91
((L9, N. his), N. dis)	714	7.49	6.95	1.49	4.24	0.55	7.10	1.06	4.33	0.92
((L10, N. his), N. dis)	719	31.10	7.46	1.70	4.14	0.36	7.41	0.96	4.30	0.99
((L1,N. cra), N. dis))	772	5.86	7.45	2.96	4.64	0.97	6.96	2.65	4.66	1.09
((L4,N. cra), N. dis))	756	5.04	6.93	2.87	4.67	0.99	8.14	3.55	4.63	1.03
((L5,N. cra), N. dis))	786	2.11	7.99	3.31	4.63	1.00	8.02	3.19	4.63	1.05
((L6,N. cra), N. dis))	796	1.44	8.12	3.69	4.64	0.97	7.42	2.86	4.56	0.96
((L7,N. cra), N. dis))	756	0.05	7.41	2.88	4.57	0.96	7.76	2.98	4.59	1.01
((L8,N. cra), N. dis))	761	1.27	7.15	2.86	4.60	0.97	7.16	2.76	4.59	1.01
((L9,N. cra), N. dis))	769	2.77	7.67	3.03	4.61	1.00	7.51	2.74	4.62	1.08
((L10,N. cra), N. dis))	773	2.37	7.73	3.14	4.60	0.94	7.70	2.89	4.60	1.06

¹Statistically significant results are in bold (5% critical value 2.71 (Yang 2010))

Lineage	Polymorphism	Re	gion	P-value
	type			
		SR A	R	_
L5 (NZ)	Ν	766	11522	2.2e-16
	S	960	25147	
L8 (LA)	Ν	791	5699	2.2e-16
	S	782	11046	
L10 (UK)	Ν	103	20997	1.73e-07
	S	131	54043	
	—	SR a	R	_
L5 (NZ)	N	797	11522	2.2e-16
	S	835	25147	
L8 (LA)	Ν	120	5699	7.063e-10
	S	100	11046	
L10 (UK)	Ν	115	20997	2.2e-16
	S	85	54043	
	—	SR A	SR a	_
L5 (NZ)	N	766	797	0.01043
	S	960	835	
L8 (LA)	Ν	791	120	0.2497
	S	782	100	
L10 (UK)	Ν	103	115	0.005344
	S	131	85	

Supplementary Table 9. Counts of synonymous polymorphisms (S) to non-synonymous polymorphisms (N) in recombining (R) and non-recombining region (SR) of *N. tetrasperma*.

Supplementary Table 10. The median d_N/d_S values for 1133 genes within the *mat* chromosome SR region common to all lineages of *N. tetrasperma*. The p-value was obtained from a one-sided Mann-Whitney U test (MWU) for L5, L7, L9 and L10. A two-sided MWU test was used with L1 and L8.

Lineage ¹	Median d _N /d _S ²		P-value
-	mat A	mat a	-
L1 (LA)	0.121	0.125	0.9028
$L5 (NZ)^3$	0.094	0.119	0.03645
L7 (LA)	0.135	0.118	0.055
L8 (LA)	0.131	0.129	0.9138
L9 (LB)	0.137	0.103	0.0007221
L10 (UK)	0.095	0.119	0.008701

¹Lineages L4, L5a and L6 were excluded from the analyses due to low divergence with other lineages.

² The d_N/d_S values marked in bold indicate the introgressed *mat* chromosome for the lineage being considered.

³ Values used here from the L10 *mat a* branch.

Supplementary Table 11. Numbers of synonymous substitution in the SR region. Subsitution were catergorised as optimal or non-optimal. Counts of synonymous substitions resulting in switches from optimal to non-optimal codons ($OP \rightarrow NOP$) and non-optimal to optimal codons were ($NOP \rightarrow OP$) were determined as described in the methods section. Neutral substitutions include $OP \rightarrow OP$ and $NOP \rightarrow NOP$ switches.

Lineage	Synonymous	mat A	<i>mat</i> a	Ratio	P-value
	subsitutions				
L1 (LA)	$OP \rightarrow NOP^1$	1719	1566	1.10	0.54 (FET)
	$NOP \rightarrow OP^{l}$	1025	968	1.06	0.23 (FET)
	Neutral ²	2677	2371	1.13	<0.0001 (ST)
L4 (MX)	$OP \rightarrow NOP$	2253	2148	1.05	0.03 (FET)
	$NOP \rightarrow OP$	1268	1260	1.01	0.74 (FET)
	Neutral	3309	3383	0.98	0.37 (ST)
L5 (NZ)	$OP \rightarrow NOP$	3212	3097	1.04	0.26 (FET)
	$NOP \rightarrow OP$	2035	1823	1.12	0.09 (FET)
	Neutral	4975	4698	1.06	0.005 (ST)
L6 (HI)	$OP \rightarrow NOP$	3606	3496	1.03	0.82 (FET)
	$NOP \rightarrow OP$	2311	2095	1.11	0.004 (FET)
	Neutral	5307	5291	1.00	0.88 (ST)
L7 (LA)	$OP \rightarrow NOP$	1950	2086	0.93	0.55 (FET)
	$NOP \rightarrow OP$	1119	1194	0.94	0.49 (FET)
	Neutral	2972	3164	0.94	0.0002 (ST)
L8 (LA)	$OP \rightarrow NOP$	1636	1814	0.90	0. 44 (FET)
	$NOP \rightarrow OP$	935	997	0.94	0.93 (FET)
	Neutral	2536	2718	0.94	0.01 (ST)
L9 (LB)	$OP \rightarrow NOP$	3145	3833	0.82	0.10 (FET)
	$NOP \rightarrow OP$	1761	2567	0.69	<0.0001 (FET)
	Neutral	4779	6064	0.79	0.009 (ST)
L10 (UK)	$OP \rightarrow NOP$	2557	2520	1.01	0.35 (FET)
	$NOP \rightarrow OP$	1507	1439	1.05	0.35 (FET)
	Neutral	3940	3827	1.04	0.20 (ST)

¹ Statistical significance differences in $OP \rightarrow NOP$ and $NOP \rightarrow OP$ was determined using a Fisher's Exact test (FET) with a contingency table containing the $OP \rightarrow NOP$ and Neutral, or $NOP \rightarrow OP$ and Neutral. Statistical significance differences between Neutral synonymous subsitutions was determined using a sign test (ST).

Gene	Region	Alignment Length (bp)
ad-9*	SR	693
al-1*	SR	839
arg-1*	SR	1646
cys-9	SR	1050
eth-1	SR	982
lys-4*	SR	777
phr	PAR	1917
ro-10*	PAR	662

Supplementary Table 12. Information on genes from the SR and PAR region shared by all *N. tetrasperma* lineages sequenced and the heterothallic species used for the phylogenetic analysis presented in Fig 5.

*New gene sequence data for heterothallic species not represented in Sun et al. (2012)