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ABSTRACT 1 

Cataglyphis are thermophilic ants that forage during the day when temperatures are highest and 2 

sometimes close to their critical thermal limit. Several Cataglyphis species have evolved unusual 3 

reproductive systems such as facultative queen parthenogenesis or social hybridogenesis, which 4 

have not yet been investigated in detail at the molecular level. We generated high-quality genome 5 

assemblies for two hybridogenetic lineages of the Iberian ant Cataglyphis hispanica using long-read 6 

Nanopore sequencing and exploited chromosome conformation capture (3C) sequencing to 7 

assemble contigs into 26 and 27 chromosomes, respectively. Further karyotype analyses confirm 8 

this difference in chromosome numbers between lineages; however, they also suggest it may not 9 

be fixed among lineages. We obtained transcriptomic data to assist gene annotation and built 10 

custom repeat libraries for each of the two assemblies. Comparative analyses with 19 other 11 

published ant genomes were also conducted. These new genomic resources pave the way for 12 

exploring the genetic mechanisms underlying the remarkable thermal adaptation and the molecular 13 

mechanisms associated with transitions between different genetic systems characteristics of the 14 

ant genus Cataglyphis. 15 
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BACKGROUND 20 

Ants of the genus Cataglyphis inhabit arid regions throughout the Old World, including inhospitable 21 

deserts such as the Sahara (Boulay et al. 2017; Lenoir et al. 1990). Their foraging activities are 22 

strictly diurnal, with most species being active during the hottest hours of the day (Cerda et al. 1998; 23 

Wehner et al. 1992). Some Cataglyphis species even forage at temperatures close to their critical 24 

thermal limits (Cerda et al. 1998). For instance, workers of the silver ant Cataglyphis bombycina 25 

have been observed to forage when ground temperatures exceed 60°C (Wehner et al. 1992), which 26 

supposedly provides a competitive advantage against lizard predators who avoid such harsh 27 

conditions. The high thermal tolerance seen in Cataglyphis species relies on a range of behavioral, 28 

morphological, physiological and molecular adaptations, such as exploitation of thermal refuges, 29 

elongated legs, high speed of movement and intense recruitment of heat-shock chaperone proteins 30 

(Aron and Wehner 2021; Gehring and Wehner 1995; Perez and Aron 2020; Perez et al. 2021; 31 

Pfeffer et al. 2019; Sommer and Wehner 2012; Willot et al. 2017). 32 

In addition to their impressive heat tolerance, Cataglyphis ants are prominent social insect 33 

models because of their amazing diversity of reproductive traits: the number of queens per colony, 34 

the mating frequencies, the dispersal strategies and the modes of production of different castes all 35 

vary greatly among species (Aron et al. 2016a, 2016b; Mardulyn and Leniaud 2016; Peeters and 36 

Aron 2017). Unusual reproductive systems relying on conditional use of sex to produce different 37 

female castes have evolved repeatedly in different Cataglyphis groups. Under these systems, non-38 

reproductive workers are sexually generated, while reproductive queens are asexually produced by 39 

thelytokous parthenogenesis – a strategy that allows queens to increase the transmission rate of 40 

their genes to their reproductive female offspring while maintaining genetic diversity in the worker 41 

force (Kuhn et al. 2020; Pearcy et al. 2004). Males arise from arrhenotokous parthenogenesis, as 42 

is usually the case in Hymenoptera. In several species, the conditional use of sex evolved into a 43 

unique reproductive system, named clonal social hybridogenesis, whereby male and female 44 

sexuals are produced by parthenogenesis while workers are produced exclusively from 45 

interbreeding between two sympatric, yet non-recombining genetic lineages (Darras et al. 2014; 46 

Eyer et al. 2013; Kuhn et al. 2020; Leniaud et al. 2012). 47 



The unique characteristics of Cataglyphis make this ant genus an interesting model to 48 

investigate the genetic mechanisms underlying thermal adaptation and the evolution of alternative 49 

reproductive strategies. To date, only one incomplete assembly of the genome of Cataglyphis niger, 50 

a species characterized by classical haplodiploid reproduction, is available for genomic analyses 51 

(Yahav and Privman, 2019). To fill this gap, we combined Oxford Nanopore long reads, Illumina 52 

short reads and chromosome conformation capture (3C) sequencing (Flot et al.  2015; Lieberman-53 

Aiden et al. 2009; Marie-Nelly et al. 2014) to generate high-quality chromosome-scale genome 54 

assemblies of two lineages of the Iberian ant Cataglyphis hispanica (Figure 1). We also annotated 55 

and compared the repeats and gene sets of this species with those of other ant genera. 56 

 57 
 58 

 59 

Figure 1. The ant Cataglyphis hispanica. (A) A queen of C. hispanica (red arrow) surrounded by 60 

workers. (B) Sampled sites in southwest Spain. The two interdependent lineages of the species, 61 

Chis1 and Chis2, were collected in Caceres (red), Merida (yellow) and Bonares (blue). For each 62 

lineage, a male from Bonares was used for whole genome short read sequencing (WGS Illumina) 63 

and queens from Caceres were used for both long read sequencing (WGS Nanopore) and 64 

chromosome conformation capture sequencing (3C-seq). Karyotypes of two Chis2 males and three 65 

hybrid (F1) workers were obtained from Merida and Bonares. To assist gene annotation, 66 

transcriptomes (RNA-seq) were generated from Chis1 and Chis2 individuals from Caceres. The 67 

complete range of the species C. hispanica is shown in grey.  68 

 69 



RESULTS AND DISCUSSION 70 

Genome assemblies 71 

Cataglyphis hispanica inhabits the most arid habitats of the Iberian Peninsula. Two sympatric 72 

hybridogenetic lineages (Chis1 and Chis2) co-occur as a complementary pair across the distribution 73 

range of the species (Leniaud et al. 2012; Darras et al. 2014). Queens of each lineage mate with 74 

males from the other lineage and produce non-reproductive workers by sexual reproduction. By 75 

contrast, male and female reproductive individuals are produced clonally through arrhenotokous 76 

and thelytokous parthenogenesis, respectively. As a result, all workers in the colonies are inter-77 

lineage hybrids, but the two reproductive lineages are maintained divergent. 78 

The genomes of the two hybridogenetic lineages were assembled independently (see Figure 79 

S1 for a schematic drawing of the assembly pipeline). For each of the Chis1 and Chis2 lineages, 80 

we generated respectively 5.7 and 5.1 Gbp of Nanopore reads from a pool of sister clonal queens 81 

(for de novo long-read assemblies); 32.2 and 34.2 Gbp of PE 2 x 100 bp Illumina reads with insert 82 

sizes ranging from 170 bp to 800 bp from a single male (for short read error correction/polishing); 83 

and 8.7 and 7.0 Gbp of 3C-seq PE 2 x 66 bp (after demultiplexing) Illumina reads from a single 84 

queen (for scaffolding). The long-read assembler Flye (Kolmogorov et al. 2019) generated 85 

assemblies consisting of several hundreds of contigs (439 and 929, respectively). The contigs were 86 

scaffolded using the 3C data (Marie-Nelly et al. 2014; Baudry et al. 2020): 99.7% of the Chis1 87 

assembly was scaffolded into 26 chromosome-scale (> 2.4 Mb in length) scaffolds (Figure 2A), 88 

while 98.8 % of the Chis2 assembly was scaffolded into 27 chromosome-scale scaffolds (Figure 89 

2B). These chromosome-scale scaffolds were numbered by decreasing size. The remaining 0.3 – 90 

1.2% unscaffolded sequences were all relatively small (<40 kb for Chis1, <120 kb for Chis2). The 91 

overall sizes of the two scaffolded assemblies were 206 Mb and 209 Mb, respectively. Assembly 92 

completeness, as estimated by BUSCO scores (Manni et al. 2021), was very high: among the 5,991 93 

highly conserved single-copy genes of the Hymenoptera odb10 database, 96.8% (Chis1) and 94 

96.1% (Chis2) were complete in each assembly. In addition, only 0.5-0.4% of the BUSCO genes 95 

appeared duplicated for both assemblies, suggesting that our assemblies did not contain much 96 

uncollapsed haplotypes, if any. In line with these results, KAT analyses based on the Illumina reads 97 



of each lineage showed a single peak of k-mer multiplicity, which were almost all represented 98 

exactly once in the assemblies as expected for high-quality genomes (Figure S2); k-mer 99 

completeness was estimated as 98.86% for Chis1 and 98.45%for Chis2 (Mapleson et al. 2016). For 100 

each assembly, a region with no large-scale synteny pattern was assembled at the extremity of one 101 

scaffold (the first 5.4 Mb of scaffold #9 of Chis1 and the first 3.1 Mb of scaffold #7 of Chis2). Each 102 

of these regions consisted of a collection of small contigs (mostly in the 2-10 Kb range) with 2 to 5 103 

times higher average coverage compared to other genomic regions. These sequences exhibited 104 

microsyntenies with the extremities of other large scaffolds (Figure 2 and S3) suggesting that they 105 

correspond to repeat sequences that were improperly assembled into fragmented contigs. 106 

 107 
 108 

 109 

Figure 2. Assembly of the Cataglyphis hispanica Chis1 (A) and Chis2 (B) genomes into 110 

chromosomes. Hi-C interaction map revealing the presence of 26 and 27 linkage groups. The color 111 

scale represents the interaction frequencies. The positions of the rearranged chromosome are 112 

indicated, and the arrows show the assembly artefact found in each genome (see main text). The 113 

longest chromosome of Chis1 is split in two chromosomes in Chis2 (scaffolds 5 and 9, shown with 114 

red and blue colors). 115 

 116 
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Comparison of the Chis1 and Chis2 assemblies revealed that 25 of the chromosome-scale 117 

scaffolds had a one-to-one homolog in each of the two lineages. In addition, and by contrast, the 118 

largest scaffold of Chis1 (#1) was split into two chromosome-scale scaffolds (# 5 and #9) in the 119 

Chis2 assembly (Figure S3). The 3C contact maps of both lineages showed that these scaffolds 120 

(Chis1 #1 and Chis2 #5, #9) correspond to well-individualized 3D features, thereby ruling out a 121 

scaffolding error (Figure 2). These observations support that a centric fusion or fission 122 

(Robertsonian translocation) took place in one of the two lineages studied. Robertsonian 123 

translocations are the main mechanism of karyotype evolution in many animal groups, including 124 

ants (Lorite and Palomeque, 2010) and can promote speciation through the suppression of genetic 125 

recombination in the vicinity of rearranged centromeric regions or the reduction of fertility in 126 

karyotypic hybrids (Davisson and Akeson, 1993; Faria and Navarro, 2010). Intrachromosomal 127 

rearrangements between the lineages, consisting in large translocations and inversions, were also 128 

observed for 6 of the 25 large orthologous scaffolds (Figure S3), but these could not be confirmed 129 

independently with the current data.  130 

 131 

Karyotyping 132 

The numbers of chromosomes inferred for the Chis1 and Chis2 assemblies (n=26 and 27, 133 

respectively) are within the range observed in karyotypes of Cataglyphis bicolor (n=26), Cataglyphis 134 

iberica (n=26) and Cataglyphis setipes (n=26), as well as other Formicine species of the genera 135 

Formica (n=26-27), Iberoformica (n=26) and Polyergus (n=27) (Hauschteck-Jungen and Jungen, 136 

1983; Imai et al. 1984; Lorite and Palomeque 2010). To determine whether the two lineages of C. 137 

hispanica are fixed for different chromosomal arrangements, we inspected metaphase chromosome 138 

slides from male and worker pupae from different populations (Figure 1B). In ants, as in other social 139 

Hymenoptera, males are haploid (n) whereas workers are diploid females (2n). Two males of the 140 

Chis2 lineage from Merida and Bonares were analyzed (Figure 3A and S4A-D). Both male 141 

karyotypes carried 27 chromosomes as was inferred with 3C data for the Chis2 lineage from the 142 

Caceres population. The precise morphology of the chromosomes could not be determined due to  143 

 144 
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 145 

 146 

Figure 3. Karyotype analyses of Cataglyphis hispanica. (A,C and E) Metaphase chromosome slides 147 

of one haploid Chis2 male from Merida (A) and two F1 hybrid workers from Bonares (C) and Merida 148 

(E). (B,D and F) Corresponding karyotypes showing that the haploid chromosome number varies 149 

across populations from an haploid number of 26 (F) to 27 (B, D and F). The bar in all the images 150 

is 2 μm.  151 

 152 
their small sizes (Figure 3). No male or queen pupa of the Chis1 lineage could be obtained for  153 

karyotyping. Instead, we indirectly inferred the karyotype variation in the Chis1 lineage using worker 154 

samples. Workers of C. hispanica are first generation hybrids and would, therefore, be expected to 155 
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carry odd chromosome numbers (i.e. 2n=26+27) if the two lineages were fixed for different 156 

karyotypes. Workers from Bonares (N=2 from different colonies) and Merida (N=1) were analyzed. 157 

The two workers from Bonares carried odd number of chromosomes (2n=54, Figure 3C and S4E) 158 

suggesting that the parental lineages carry the same number of chromosomes in this population 159 

(i.e. n=27). By contrast, the worker from Merida carried 53 chromosomes consistent with 160 

expectations based on genome assemblies (Figure 3E and S5). If our assumptions are correct, 161 

these results indicate that the number of chromosomes in the Chis1 lineage may vary in different 162 

populations from n=26 (in the population used for 3C sequencing) to n=27 (in the population used 163 

for karyotyping). The chromosomal polymorphism observed between our Chis1 and Chis2 genome 164 

assemblies is therefore unlikely to be linked to the long-term maintenance of the two lineages.  165 

Without clear karyotypes of pure Chis 1 individuals at hand, we were however unable to verify this 166 

hypothesis. An alternative scenario would be that during the generation of the hybrid individuals a 167 

fission sometimes occurs in the large chromosome #1 of Chis 1 producing  27 Chis1 chromosomes 168 

in workers instead of 26. 169 

 170 

Gene annotation 171 

We annotated the genome of the Chis2 lineage (see Figure S1 for a schematic drawing describing 172 

the genome annotation pipeline). Ab initio gene prediction using AUGUSTUS and homology-based 173 

predictions using GenomeThreader (Gremme et al. 2005) identified 16,993 and 8,234 gene models, 174 

respectively. A total of 40,969 models (including isoforms) were also predicted by the 175 

PASA/Transdecoder (Haas et al. 2003) pipeline using direct evidence from 13 Gbp of Illumina RNA-176 

seq data. The three annotation sets were validated and combined into a single annotation of 16,146 177 

non-overlapping models using EvidenceModeler (Haas et al. 2008). Among these, 11,101 gene 178 

models showed significant similarity to proteins predicted in other ant species (blastp against 18 ant 179 

proteomes from the RefSeq collection) and 10,543 had functional information inferred through 180 

sequence orthology with the eggnog v5.0 database which covers more than five thousands 181 

organisms (Huerta-Cepas et al. 2017, 2019). We filtered out all gene models non validated by at 182 

least one of these databases to obtain a final dataset of 11,290 high quality gene models, 11,033 183 
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(98%) of which are placed within the 27 chromosome-scale scaffolds. This gene set is comparable 184 

in size to those annotated by the NCBI Eukaryotic Genome Annotation Pipeline for other ant 185 

genomes (range: 10,491-15,668; N= 18 different RefSeq ant genera; Table S1). We compared the 186 

obtained gene set of C. hispanica (Chis2) with 19 published ant annotations. Out of the 258,587 187 

protein-coding genes analyzed using OrthoFinder (Emms and Kelly 2019), 96.82% (250,353) were 188 

placed in 13,698 orthogroups. Of these, 1,407 were species-specific and 6,199 were found in all 189 

species including 3,365 single-copy genes. The orthogroup profile of C. hispanica was overall 190 

comparable to that of other ants (Figure 4). However, our annotation had one of the smallest number 191 

of genes placed in orthogroups (10,918), and one of the largest proportions of unassigned genes 192 

(3.3%).  193 

 194 
 195 

 196 

Figure 4. Summary values from the ortholog analyses. The color intensity indicates the z-score of 197 

variation (deviation from the mean) among all species, from the smallest value (blue) to the highest 198 

value (orange). Species are ordered according to their phylogenetic positions inferred from a 199 

concatenated alignment of single-copy orthologs. The published Lasius niger assembly was 200 

removed from this comparison due to its low quality. 201 

 202 
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Repeat annotation 203 

We built custom repeat libraries for each of the two assemblies of C. hispanica and for the 19 204 

published ant genomes (see genome accessions in Table S1). The Chis1 and Chis2 assemblies 205 

contained 1,708 and 1,673 different repetitive elements, which accounted for 15.43% (31,851,170 206 

bp) and 15.1% (31,512,815 bp) of their assembly sizes, respectively (Figure 5). A large proportion 207 

of these corresponded to unclassified interspersed repeats (6.7% / 6.78% of the genomes; Figure 208 

S6). The two genomes also contained 2.0% / 1.8% of Class I (retroelements), and 2.18% / 1.85% 209 

of Class II elements (DNA transposons). In total, 56 different families of repetitive elements were 210 

annotated in C. hispanica. LTR/Gypsy were the most frequent transposable elements of Class I in 211 

the genomes (0.53% / 0.82%), while large Polintons / Mavericks were the most abundant Class II 212 

transposable elements (0.98% / 0.67%).  213 
 

 214 

Figure 5. Summary of the repetitive elements’ categories annotated in 20 different ant species using 215 

our custom pipeline. The ratios of the major categories of repetitive elements identified in each 216 

species is shown on the left. The total proportion of repetitive elements found in each genome is 217 

shown on the right. Species are ordered accordingly to their phylogenetic positions inferred from a 218 

concatenated alignment of single-copy orthologs. 219 
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Across published ant assemblies, the total proportion of transposable elements appeared quite 220 

variable irrespective of their phylogenetic relationships (range: 17.27 – 48.47%; N= 19 ant species; 221 

Figure 5; Table S2). The C. hispanica assemblies had smaller proportions of repetitive elements 222 

(15.1% - 15.43%) than any of these assemblies, including that of Formica exsecta (18.53 %), the 223 

closest species available for comparison. The relatively low proportion of transposable elements 224 

observed in the genomes of C. hispanica may be due to the fact that it was assembled primarily 225 

from noisy nanopore long-reads, possibly leading to a collapse of repeated regions. Alternatively, 226 

C. hispanica may resist the invasion and proliferation of transposable elements more efficiently than 227 

other species. Whether its unusual reproductive system, combining both diploid and haploid 228 

parthenogenesis for queen and male production, could help keep transposable elements at bay 229 

deserves further exploration. 230 

 231 

Lineage comparison 232 

We previously showed that Cataglyphis hispanica consists of two divergent lineages that are readily 233 

identifiable using microsatellite markers (Darras et al. 2014). Individuals from Chis1 and Chis2 234 

lineages can however not be distinguished based on external traits: they share virtually the same 235 

morphologies for the queen and male castes, co-occur in the same localities and do not differ in 236 

any obvious colony characteristics. Furthermore, although queens mate with a partner originating 237 

from the alternative lineage to successfully produce workers, we have no evidence that lineages 238 

can recognize each other and avoid assortative mating. This apparent lack of differences among 239 

lineages suggests low overall genomic divergence. The interdependent nature of the lineages could 240 

stem from a small number of recessive mutations biasing development toward the queen caste in 241 

each lineage. Such “royal cheats” (Hughes and Boomsma 2008) seem common in eusocial 242 

Hymenoptera and have been hypothesized to be at the origin of caste determination and possibly 243 

social hybridogenesis (Anderson et al. 2008; Weyna et al. 2021; Withrow and Tarpy 2018). In line 244 

with this prediction of low inter-lineage genomic divergence, assemblies of the two lineages appear 245 

highly similar and syntenic (Figure S3). Large indel (>10kb) variation among lineages account for 246 

6.6 % (13.6 Mb, Chis1) and 6.4 % (13.2 Mb, Chis2) of the chromosome-scale scaffolds. These 247 
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“lineage-specific” indels are scattered across the assemblies (Figure S7) and are gene-deprived; 248 

only 35 of the 11,033 (0.3%) genes models from the Chis2 chromosome-scale scaffolds turned 249 

missing from Chis1 when performing an annotation lift-over using Liftoff (Table S3). Small inter-250 

lineage polymorphism (i.e. SNPs and indels smaller than 100 bp) also appear uniformly distributed 251 

across chromosomes, with no large portion of chromosomes showing elevated divergence among 252 

assemblies (Figure S7). This later result contradicts previous hypotheses that hybridogenetic 253 

lineage pairs might be determined by ancient non-recombining regions, as found in other dimorphic 254 

system such as sex chromosomes or social chromosomes (Darras et al. 2014; Linksvayer et al. 255 

2013; Schwander et al. 2014). 256 

We additionally estimated divergence between the two genomes sequenced analyzing 257 

polymorphism at four-fold-degenerate sites, which are expected to be neutrally evolving since every 258 

mutation at a four-fold site is synonymous. Our annotation of the Chis2 genome contained 259 

2,620,448 four-fold-degenerate sites. Among these, 13,048 had a different allele in the Chis1 and 260 

Chis2 males used to obtain haploid genome consensus. Assuming no recombination and a typical 261 

insect mutation rate of approximately 3 x 10-9 mutations per neutral site per haploid genome per 262 

generation (Keightley et al. 2014, 2015; Yang et al. 2015; Liu et al. 2017; Oppold & Pfenninger, 263 

2017), this proportion of mutated four-fold-degenerate sites translated into an average divergence 264 

time of about 830,000 generations between the alleles of the two males sequenced  (Obbard et al. 265 

2012). Hence, the two genomes sequenced may have diverged almost 1 million years ago 266 

(assuming one generation per year) - a divergence time similar to that observed between closely 267 

related species of fire ants (Cohen & Privman, 2019). The origin of the hybridogenetic lineages 268 

themselves could be much younger though, considering they might have emerged from two 269 

divergent populations or shared ancestral polymorphism  (Darras et al. 2019).  270 

 271 

CONCLUSIONS 272 

We generated high-quality chromosome level genome assemblies of the two lineages of the 273 

hybridogenetic ant C. hispanica, a representative species of the thermophilic ant genus Cataglyphis. 274 

Using chromosome conformation capture, we identified a Robertsonian translocation between the 275 
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two queens sequenced, resulting in 26 and 27 chromosomes, respectively. However, this difference 276 

in chromosome numbers seem not fixed between lineages, suggesting that this chromosome 277 

rearrangement was not pivotal in the origin and maintenance of social hybridogenesis in C. 278 

hispanica. The two lineage assemblies were overall very similar with no large-scale region showing 279 

high divergence. Future work using population genomic approaches and genomic comparisons with 280 

other Cataglyphis species exhibiting social hybridogenesis will be necessary to identifying 281 

polymorphic genes or regulatory regions that are involved in the differentiation of queens and 282 

workers during development. 283 

 284 

METHODS 285 

Biological samples 286 

Permits were obtained to collect colonies of Cataglyphis hispanica in three Spanish locations 287 

(Bonares, Caceres and Merida; Figure 1B). Male samples from Bonares were used for Illumina 288 

DNA sequencing. Shortly after sampling, the Bonares population was wiped out by human activities. 289 

Consequently, samples from another locality (Caceres) were used for subsequent Nanopore 290 

sequencing, 3C-seq and RNA-seq. Male and worker pupae from two distant localities (Bonares and 291 

Merida) were used for karyotyping. Twelve diagnostic microsatellite loci were genotyped prior to 292 

sequencing and karyotyping to assess the lineage membership of each queen and male and to 293 

confirm that workers were all first generation hybrids (Darras et al. 2014). 294 

 295 

DNA and RNA-Sequencing 296 

Genomic resources were generated for both the Chis1 and the Chis2 lineages. High-molecular-297 

weight DNA was extracted from pure lineage queen and male individuals using QIAGEN Genomic-298 

tips. For each lineage, two queen clones originating from the same nest were used for Nanopore 299 

sequencing. Queens of C. hispanica are produced through automictic parthenogenesis with central 300 

fusion which results into diploid individuals that are highly homozygous (Darras et al. 2014; Pearcy 301 

et al. 2011) and thus suitable for genome assembly. Nanopore libraries were prepared using rapid 302 

sequencing kits (SQK-RAD001 and SQK-RAD004). The resulting long read libraries were 303 
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sequenced on MIN106 flow cells and basecalled using Albacore v2.1.10. For each lineage, three 304 

Illumina libraries were generated from whole-genome amplified DNA extracted from a single male 305 

with mean insert sizes of 170 bp, 500 bp and 800 bp, and sequenced with a HiSeq2000 (paired-306 

end 2 x 100 bp mode).  307 

3C-seq libraries were prepared according to the protocol described in (Marie-Nelly et al. 2014). 308 

Briefly, queens from both lineages had their gut removed and were immediately suspended in 30 309 

mL of formaldehyde solution (Sigma Aldrich; 3% final concentration in 1X tris-EDTA buffer). After 310 

one hour of incubation, quenching of the remaining formaldehyde was done by adding 10 mL of 311 

glycine (0.25 M final concentration) to the mix for during 20 min. The cross-linked tissues were 312 

pelleted and stored at −80°C until further use. The 3C-seq libraries were prepared using the DpnII 313 

enzyme and sequenced using an Illumina NextSeq 500 apparatus (paired-end 2×75 bp; first ten 314 

bases corresponding to custom-made tags). 3C-seq libraries are similar to Hi-C libraries except that 315 

they contain a higher percentage of paired-end reads due to the lack of an enrichment step (Flot et 316 

al. 2015). 317 

To help annotate the genomes, three normalized RNA-seq cDNA Illumina libraries were obtained: 318 

one from an adult Chis1 queen, one from a Chis2 queen and one from a brood pool comprising 319 

multiple developmental stages and adult workers originated from colonies of the two lineages 320 

(HiSeq2000, paired-end 2 x 100 bp mode). 321 

 322 

Genomes assembly 323 

The genome of each hybridogenetic lineage was assembled independently following the pipeline 324 

depicted in Figure S1. Nanopore data were assembled using Flye v2.7 with four iterations of 325 

polishing based on long reads (Kolmogorov et al. 2019). Raw Illumina reads were trimmed for 326 

quality and adapters were removed using Trimmomatic v0.32 with options 327 

ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 328 

MINLEN:36 (Bolger et al. 2014). The trimmed reads were then aligned to the long-read assemblies 329 

using BWA-MEM v0.7.15 (Li and Durbin 2009). SNPs and indels with at least three supporting 330 
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observations were called using freebayes v1.2 (Garrison and Marth 2012), and error-corrected 331 

consensus sequences were obtained using BCFtools v1.4 (Li et al. 2009).  332 

To obtain chromosome-scale assemblies, we scaffolded the polished contigs with the 3C reads 333 

using instaGRAAL, a MCMC, proximity-ligation based scaffolder  (Baudry et al. 2020; Marie-Nelly 334 

et al. 2014). The 3C reads were trimmed using cutadapt (Martin  2011) and subsequently processed 335 

using hicstuff (https://zenodo.org/record/4722873) with the following parameters –aligner bowtie2 –336 

iterative –enzyme DpnII. The instaGRAAL scaffolder was run on the pre-processed data for 100 337 

cycles (parameters: level 4, with options --coverage-std 1 –level 4 –cycles 100) (Baudry et al. 2020) 338 

and final scaffolds were obtained using the instaGRAAL -polish script, with all corrective procedures 339 

at once (only one parameter: -m polish). Briefly, instaGRAAL explores the chromosome structures 340 

by testing the relative positions and/or orientations of DNA segments (or bins) according to the 341 

contacts expected given a simple three-parameter power-law model. These modifications take the 342 

form of a fixed set of operations (swapping, flipping, inserting, merging, etc.) of bins corresponding 343 

to 34 = 81 DpnII restriction fragments. The likelihood of the model is then maximized by sampling 344 

the parameters using a MCMC approach (Marie-Nelly et al. 2014). After 100 iterations (i.e., a likely 345 

position for each bin is tested 100 times), the genome structure converges towards a relatively 346 

stable structure that does not evolve anymore when more iterations are added, resulting in 347 

chromosome-level scaffolds. The algorithm is probabilistic and ignores initially part of the intrinsic 348 

structure of the original contigs in order to sample a larger range of genome space (Baudry et al. 349 

2020). Therefore, some trustworthy information contained in the initial polished assembly can be 350 

lost, or modified, along the way. The final correction step of instaGRAAL consists in reintegrating 351 

this lost information into the final assembly, to correct for instance local untrustworthy tiny inversions 352 

of individual bins within a contig. The contact maps of the scaffolded assemblies were built using 353 

hicstuff. Gaps created during the scaffolding process were closed using Nanopore data with four 354 

iterations of TGS-GapCloser (Xu et al. 2019) and new polished consensus sequences were 355 

obtained using BCFtools (see method above). Completeness of the assemblies were assessed at 356 

each step using BUSCO v5.2.2 with the Hymenoptera odb10 lineage (Simão et al. 2015; 357 

Waterhouse et al. 2017). We also ran KAT v2.4.1 to compare the k-mer frequencies of Illumina 358 
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reads to final assemblies (Mapleson et al. 2016). To investigate differences in chromosomal 359 

arrangement among lineages, the two genome assemblies were aligned with minimap2 v2.17 360 

(exact preset: -x asm5) and alignments were visualized using dot plots obtained with D-GENIES 361 

(Cabanettes & Klopp, 2018). 362 

 363 

Karyotyping 364 

To validate the number of chromosomes inferred from 3C contact information, chromosome 365 

preparations were made from brains of male and worker larvae following the protocol described by 366 

(Lorite et al. 1996), with some modifications. Briefly, larvae at the last instar stage were dissected 367 

and their cerebral ganglia were transferred to microplate wells with 0.05% colchicine in distilled 368 

water. After 30 min, samples were transferred to a fixative solution (acetic acid:ethanol, 3:1) and 369 

incubated for 45 min. Ganglia cells were disaggregated in a drop of 50% acetic acid on a clean 370 

slide, new fixative solution was added and the slides were dried at 60ºC. Chromosome preparations 371 

were stained with 10% Giemsa in phosphate buffer (pH 7). Microscopy images were captured with 372 

a CCD camera (Olympus DP70) coupled to a microscope (Olympus BX51) and were processed 373 

using Adobe Photoshop. 374 

  375 

Gene annotation 376 

We used the Chis2 chromosome-level assembly for gene annotation. A repeat library was 377 

constructed using the REPET package v2.5 ( Flutre et al. 2011; Quesneville et al. 2005). This repeat 378 

library was cleaned up manually to remove bacterial genes, mitochondrial genes and genes with 379 

hits to the gene set of the ant Cardiocondyla obscurior (v1.4) which had been purged of 380 

transposable elements (Schrader et al. 2014). The fraction of the genome classified by 381 

RepeatClassifier as "Unknown" was reduced from 2.2% to 0.9% as a result of this procedure. 382 

Repeats were soft-masked using RepeatMasker v4.0.7 (Smit and Hubley, 383 

http://www.repeatmasker.org) prior to de novo gene prediction. 384 

Gene models were inferred from RNA-seq, homology data and ab initio predictions. The three 385 

RNA-seq libraries were aligned to the Chis2 genome using STAR v2.6.0 (Dobin et al. 2013) with 386 
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the multi-sample 2-pass mapping strategy. Transcripts were then assembled using Trinity v2.10.0 387 

(Grabherr et al. 2011; Haas et al. 2013)(options --genome_guided_max_intron 100000 --388 

jaccard_clip) and combined into gene models using PASA (Haas et al. 2003). Ant proteomes 389 

annotated using the NCBI Eukaryotic Genome Annotation pipeline (RefSeq, taxid:36668) were 390 

aligned to the genome using GenomeThreader v1.5.10 (Gremme et al. 2005) in order to predict 391 

gene structures. AUGUSTUS ab initio predictions were generated using BRAKER v2.1.02 (Hoff et 392 

al. 2016, 2019) based on hints from RNA-seq data and GenomeThreader protein alignments (--393 

etpmode). BRAKER was first run with preliminary AUGUSTUS parameters trained by running 394 

BUSCO v3.0.2 on the genome assembly (--long option; Hymenoptera odb9 database). To refine 395 

the training of AUGUSTUS, the most accurate gene models inferred by BRAKER were then 396 

identified using GeneValidator (Drăgan et al. 2016) with RefSeq ant proteomes as references and 397 

an arbitrary quality threshold of Q89. To avoid biases, predicted proteins with more than 70% 398 

sequence identity to another protein in the set were removed from the selected gene models using 399 

the aa2nonred.pl script provided with BRAKER. The resulting gene models were used to train 400 

AUGUSTUS again, and BRAKER was run with the new parameter set. Ab initio, RNA-seq-based 401 

and homology-based gene predictions were combined into a single gene set using 402 

EvidenceModeler v1.1.1 (Haas et al. 2008) with the following weight settings: PASA alignments: 403 

10; GenomeThreader alignments: 3, Augustus predictions: 1, PASA/Transdecoder predictions: 1, 404 

GenomeThreader predictions: 1. Functional information was obtained from eggNOG-mapper v2 405 

(Huerta-Cepas et al. 2017, 2019) with the options "taxonomic scope adjusted per query" and 406 

"annotations transferred from any ortholog". Protein sequences with similarity to RefSeq ant 407 

proteins (as of July 2019) were identified using blastp and an E-value threshold of 10-5. Annotations 408 

with no known functional information and no hits to any RefSeq ant proteins were filtered out. 409 

 410 

Comparative analyses 411 

To identify orthologous and taxonomically restricted genes, we compared the proteomes of C. 412 

hispanica, of 18 ants annotated by the NCBI Eukaryotic Genome Annotation Pipeline (Table S1) 413 

and of Lasius niger (Konorov et al. 2017) using OrthoFinder v2.3.12 (Emms and Kelly, 2019) with 414 
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its standard DEndroBLAST workflow. We used the feature annotation tables from RefSeq 415 

annotations to select the longest isoform of each gene annotated by NCBI prior to analysis. The 416 

published genome of L. Niger is highly incomplete (no more than 65% of the 4,415 highly conserved 417 

single-copy genes of BUSCO’s Hymenoptera odb9 database are found in this assembly). 418 

Consequently, it was only used to guide phylogenetic analyses due to its relative proximity with 419 

Cataglyphis. A preliminary catalog of single-copy orthologs was obtained from a first run of 420 

OrthoFinder. Single-copy sequences were aligned with Mafft v7.310 (Katoh and Standley, 2013) 421 

and the alignments were trimmed with trimAL v1.4.1(options "-gt 0.8 -st 0.001") (Capella-Gutiérrez 422 

et al. 2009). The concatenated alignments were then passed to IQ-TREE v1.7.17 (option "-m 423 

LG+R4") (Nguyen et al. 2015) to infer a species tree. The tree was converted to an ultrametric 424 

topology with the r8s program with options "mrca root Obir Hsal; fixage taxon=root age=150; divtime 425 

method=LF algorithm=TN" (Sanderson  2003). The resulting species tree was used for a second, 426 

more precise run of OrthoFinder.  427 

 428 

Repeat annotation 429 

To compare the frequency of repetitive elements found in the genome of C. hispanica to the 430 

frequencies found in the genomes of other ant species available (Table S2), we constructed 431 

optimized repeat libraries for each species using a custom pipeline 432 

(https://github.com/nat2bee/repetitive_elements_pipeline). Shortly, repeat libraries were built with 433 

RepeatModeler v1.0.11 (http://www.repeatmasker.org/RepeatModeler/), TransposonPSI 434 

(http://transposonpsi.sourceforge.net/) and LTRharvest from GenomeTools v1.6.1 (Ellinghaus et al. 435 

2008). For each species, the different libraries were merged into a non-redundant library (<80% 436 

identity) using USEARCH v11.0.667 (Edgar 2010). Library annotations were obtained with 437 

RepeatClassifier. Each custom library was concatenated with the Dfam v3.1 Hymenoptera library 438 

of RepeatMasker v4.1.0 and used to annotate repeats in the genome of the corresponding species 439 

using RepeatMasker. Summary statistics of the annotated repeats were obtained with 440 

RepeatMasker_stats.py (https://github.com/nat2bee/repetitive_elements_pipeline). 441 

 442 
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Lineage comparison 443 

The two assemblies were aligned with minimap v2.19 (-cx asm5 –cs) and variants were called with 444 

paftools (paftools.js call -L5000 -l1000). The distribution of large indels (>10 kb) and the density of 445 

small polymorphisms (SNPs and indels no larger than 100 bp) across the genomes were calculated 446 

using custom scripts. Annotation lift-over from the Chis2 assembly on to the Chis1 assembly was 447 

performed with Liftoff v1.6.3 (Shumate and Salzberg 2020). To verify if missing annotations did not 448 

result from misassemblies, we also lift these on a consensus Chis1 assembly derived from 449 

alignment of the Chis1 haploid short reads on the Chis2 assemblies using BCFtools as described 450 

above (see Genomes assembly) with regions not covered by reads masked to avoid reference bias 451 

(--mask --mask-with N). 452 

To estimate the divergences of the two lineages of C. hispanica, we investigated the 453 

polymorphism at 4-fold-degenerate sites, which we assumed to be neutrally evolving.  The Illumina 454 

read of the Chis1 lineage were mapped onto the Chis2 reference genome and single-nucleotide 455 

variants were called using MapCaller v0.9.9.41 (Lin and Hsu 2019). The resulting vcf file was filtered 456 

to keep only single-nucleotide variants with two alleles and a ‘PASS’ quality filter. To determine the 457 

proportion of 4-fold sites that were polymorphic among our male samples of the two lineages, the 458 

positions of 4-fold sites in coding sequences of our annotation were identified using a custom script 459 

(T. Sackton, github.com/tsackton/linked-selection.git). 460 
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