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We present a review of case reports that 
link craniosynostosis and choanal atre-
sia to highlight the uncertainty of a 

choanal atresia diagnosis in pediatric cranio-
synostosis patients and provide anatomical data 
from human and mouse to more fully define 
choanal and associated dysmorphologies. The 
lack of a precise definition of choanal atresia in 
the current craniosynostosis literature results in 
an unclear set of standards for the diagnosis of 

choanal dysmorphologies. The developmental 
genetic significance of the association of choanal 
atresia and craniosynostosis and the implications 
for developing appropriate therapeutics require a 
clear understanding of these anomalies.

THE HUMAN CHOANAE
In humans, the choanae are defined in sev-

eral ways. Osteologically, the choanae are the 
posterior openings of the right and left nasal pas-
sages that are bordered medially by the posterior 
border of the vomer, superiorly by the sphenoid 
body, laterally by the medial pterygoid plates, and 
inferiorly by the horizontal plate of the palatine 
bones1 (Fig. 1). An anatomical definition includes 
these osteologic borders of the choanae, or pos-
terior nares, while incorporating the surrounding 
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soft tissues: the choanae are the pair of poste-
rior apertures of the nasal cavity that open into 
the nasopharynx. Each choana can be defined 
functionally, as an internal nostril, connecting 
the nasal air space and the posterior roof of the 
pharyngeal cavity (Fig. 2). Study of extant jawed 
fishes and fossil vertebrates shows that choanae 
evolved from a condition in which anterior and 
posterior external nostrils functioned without a 
connection between the nasal sac and the oral 

cavity.2 The tetrapod choanae (“internal nostrils”) 
are homologous to the posterior external nostrils 
of jawed fishes2 and are a key feature of the evolu-
tion of tetrapods, a group that includes, reptiles, 
mammals, and humans. The tetrapod respiratory 
system appeared with the evolution of the palate 
separating the nasal and oral respiratory systems. 
Only tetrapods possess choanae.2

Embryogenesis of the choanae is complex, 
characterized by several distinct developmental 

Fig. 1. Three-dimensional computed tomographic reconstruction 
of the cranium of a typically developing child viewed from below 
showing the osteologic borders of the choanae: vomer (blue), sphe-
noid body (pink), medial pterygoid plates (red), and horizontal plates 
of the palatine bones (purple).

Fig. 2. Midsagittal section of an adult human showing the position of the cho-
anae relative to the human nasal, oral, and pharyngeal airways.
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periods, each requiring the precise spatiotempo-
ral coordination of the development of diverse 
tissues and functioning spaces before the final 
structure and function are reached (Fig. 3). At 
the end of the seventh week of prenatal ontogeny, 
the medial nasal prominences fuse,3 providing the 
foundation for the primary palate.3,4 The posterior 
portion of the intermaxillary process becomes the 
oro-olfactory, oronasal, or nasobuccal membrane, 
which separates the developing olfactory sac from 
the oral cavity.3,5 When this membrane ruptures, 
the primary choanae are formed, permitting com-
munication between the nasal and oral cavities.3,6 
At this stage, the lateral palatal shelves are still 
oriented vertically.3,6 As these shelves transition 
downward to their final horizontal position, the 
remnants of the primary choanae become the 
incisive foramen, the primary palate fuses to the 
secondary palate posteriorly, the right and left lat-
eral shelves of the secondary palate fuse along the 
midline, and the posterior or secondary choanae are 
formed and shifted posteriorly following this pro-
gressive fusion.3,5–8 During this time, the nasal sep-
tum has formed from the roof of the nasal cavity 
to meet the superior surfaces of the primary and 
secondary palates along the midline, dividing the 
left and right nasal cavities.3 The completion of 
this process results in separation of the right and 
left nostrils and separation of the nasal and oral 
cavities, with the secondary choanae defining the 
posterior aspect of the left and right nasal cavities 
immediately rostral to the nasopharynx. For the 
purposes of this article, the secondary choanae 
are referred to generally as the choanae.

CHOANAL ATRESIA: DEFINITION, 
DEVELOPMENT AND DIAGNOSIS

Errors in timing, organization, or develop-
ment of the palate can give rise to numerous dys-
morphic conditions, including various degrees of 
clefting of the hard and/or soft palate.4 Choanal 
atresia is a less common, though medically sig-
nificant, anomaly associated with errors of devel-
opment of the nasal cavity and palate. Choanal 
atresia is defined as the complete obstruction of 
the posterior nasal apertures (choanae) by osse-
ous tissue, either alone or in combination with 
nonosseous tissue.1,9–11 This blockage may occur 
unilaterally or bilaterally and results in a lack of 
communication of the nasal cavity with the pha-
ryngeal cavity by means of the nasopharynx,1 
thereby preventing inhalation and exhalation of 
air through the affected nasal passage(s). Two 
major osteologic deformities have been described 
in choanal atresia: (1) a medialization of the 
medial pterygoid plates and (2) a thickening of 
the posterior vomer.9,10,12,13 Either of these defor-
mations can lead to a narrowing of the choanae, 
potentially resulting in complete obstruction of 
the choanae. Several developmental theories 
are commonly cited in the formation of choanal 
atresia: (1) persistence of the buccopharyngeal 
membrane from the foregut; (2) persistence or 
abnormal location of mesoderm-forming adhe-
sions in the nasochoanal region; (3) persistence 
of the nasobuccal membrane of Hochstetter; and 
(4) misdirection of neural crest cell migration 
and subsequent flow of mesoderm.1,5,9–11,14 How-
ever, none of these provides a precise explanation 

Fig. 3. Formation of the secondary palate and choanae. Inferior view of the forming palate showing (left) vertically oriented palatal 
shelves, (center) the palatal shelves as they rotate downward into a horizontal position and begin to approximate one another to 
form the primary choanae, and (right) fused palatal shelves in their final orientation, with the incisive foramen at the intersection of 
the primary and secondary palate and the secondary, or definitive, choanal openings at the posterior end of the palate. (Adapted 
from Jankowski R. The Evo-Devo Origin of the Nose, Anterior Skull Base and Midface. Paris: Springer Paris; 2013.3)
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for obstruction or minimization of the size of the 
choanal openings by developmental processes, 
and to date, there has been no definitive evidence 
supporting one theory over the others.

Significantly, choanal atresia must be differen-
tiated from choanal stenosis, a diagnosis defined 
as the narrowing of the posterior choanae with-
out complete obstruction,15 and from nasal pyri-
form aperture stenosis, which involves narrowing 
of the skeletal borders of the anterior nasal cav-
ity.1,16,17 Precise definitions are required to correct 
common errors that incorporate narrowing or 
incomplete obstruction of the choanae within the 
definition of choanal atresia or that conflate cho-
anal atresia with choanal stenosis (e.g., Corrales 
and Koltai,10 Ramsden et al.,18 Meyers et al.,19 and 
Wilkes et al.20). The potential for the misdiagnosis 
of choanal atresia has been recognized in pedi-
atric patients with major craniofacial anomalies 
because these conditions routinely include some 
form of midfacial retrusion. Airway obstruction 
is common in craniofacial syndromes because of 
potential maldevelopment of the palate (floor of 
the pyriform aperture), the nasal airway, the naso-
pharynx, or the entire midfacial skeleton in the 
production of midfacial dysmorphogenesis.1,21–23

Choanal atresia is typically suspected in infants 
exhibiting respiratory distress, particularly when 
feeding.12,13 Bilateral choanal atresia in neonates 
presents an emergent situation, as infants are obli-
gate nasal breathers. Bilateral choanal atresia leads 
to cyclic cyanosis relieved by crying, which facilitates 
mouth breathing.1,10,11 Although truly complete 
obstruction of the posterior choanae can be con-
firmed only through diagnostic imaging or endos-
copy, choanal atresia is often diagnosed by the 
inability to cannulate the nasal passage with a small 
catheter, a procedure that cannot definitively dis-
tinguish partial stenosis from complete obstruction 
of the choanae.9,12,17,22,24 The incidence of choanal 
atresia ranges from one in 5000 to 8000 live births, 
with a 2:1 higher occurrence in  females.9,10,13,24,25 
Unilateral choanal atresia is slightly more common 
than bilateral atresia, whereas bilateral atresia is 
more common when other craniofacial malforma-
tions are present.9,10,13,24

In an early review, Durward and colleagues 
defined choanal atresia as a very rare condition 
and concluded that the association between cho-
anal atresia and other syndromic craniofacial 
dysmorphologies was no more than spurious.26 
Improvements in diagnostic imaging and neo-
natal care have permitted researchers to make 
the explicit link between choanal atresia and a 
number of craniofacial disorders, most notably 

CHARGE syndrome, with an estimated 7 to 29 
percent of choanal atresia patients also being 
diagnosed with CHARGE syndrome.10 Syndromic 
craniosynostosis patients make up another core 
subset of patients diagnosed with choanal atresia, 
with specific associations made between choanal 
atresia and Antley-Bixler, Apert, Beare-Stevenson, 
Crouzon, Crouzonodermoskeletal (Crouzon with 
acanthosis nigricans), Jackson-Weiss, and Pfeiffer 
syndromes.1,10,15,17,18,27–29

CHOANAL ATRESIA AND SYNDROMIC 
CRANIOSYNOSTOSIS IN PEDIATRIC 

PATIENTS
Craniosynostosis is a condition with a complex 

cause that always involves the premature fusion of 
one or multiple cranial sutures and includes vari-
ous anomalies of the soft and hard tissues of the 
head.30 In cases of syndromic craniosynostosis, the 
closed suture occurs as part of a suite of symptoms 
or features, and mutations in a number of genes 
have been identified as being associated with these 
syndromes (e.g., Flaherty et al.,30 Heuzé et al.,31 
and Lattanzi et al.32). The nearly 200 identified 
craniosynostosis syndromes account for approxi-
mately 15 percent of all craniosynostosis cases.30 
Recent work stresses the complexity of craniosyn-
ostosis phenotypes even in cases of nonsyndromic 
(isolated) craniosynostosis, emphasizing that cra-
niosynostosis conditions need to be defined not 
simply by premature suture closure, but more 
broadly as growth disorders that affect many dif-
ferent cell and tissue lineages.30,31,33–35 Consequent 
to the broad developmental impact of the genes 
on which craniosynostosis-causing mutations are 
located (e.g., fibroblast growth factor receptors, 
TWIST), many craniofacial tissues are affected 
in craniosynostosis syndromes, including skeletal 
(bone and cartilage), muscular, neural, and circu-
latory structures. Facial dysmorphologies poten-
tially associated with craniosynostosis syndromes 
include maxillary dysmorphogenesis resulting in 
a reduced midface, hypertelorism, exophthalmos, 
depressed or low nasal bridge, mandibular prog-
nathism, cleft palate, and highly arched and/or 
constricted palate.27,36–40 Any one of these struc-
tural anomalies has the potential to contribute to 
altering the position, size, shape, or patency of the 
choanae.

Craniosynostosis has been explicitly linked 
with choanal atresia in one of the seminal texts 
on the diagnosis and evaluation of craniosynosto-
sis, noting that atresia or stenosis is an “expected” 
clinical finding in craniosynostosis syndromes, 
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particularly where there have been structural 
rearrangements in the cranial base,27 a region of 
the skull that forms endochondrally from a com-
plex series of cartilages that underlie the brain. 
Additional links between syndromic craniosynos-
tosis and choanal atresia can be found in review 
and research articles throughout the clinical lit-
erature (e.g., Adil,1 Corrales and Koltai,10 Lowe  
et al.,15 Keller and Kacker,17 Ramsden et al.,18 Hehr 
and Muenke,29 and Cunningham et al.37). Table 1 
lists published case reports that have explicitly 
reported choanal atresia in patients diagnosed 
with syndromic craniosynostosis. Craniosynosto-
sis cases reporting only choanal stenosis are not 
included.

Of the 54 case reports reviewed, none included 
a definition of choanal atresia, and several pro-
vide descriptions suggesting that the condition 
may have more likely been choanal stenosis.19,20,79 
For example, various authors reported (emphases 
added):

• “all four of our patients exhibited choanal 
atresia (narrowed nasal passage).”19

• “incomplete choanal atresia led to respiratory 
difficulties.”20

• condition was first labeled “choanal atre-
sia” and later as “choanal hypoplasia,”79 the 
former being a diagnostic category and the 
latter being a description that suggests the 
developmental basis of this anomaly.

In addition, the methods of evaluation and 
diagnosis were often not indicated, and the fun-
damental differences among diagnostic tools 
were not discussed by these authors. Only eight 
cases reported the use of computed tomographic 
imaging to confirm the choanal atresia diagno-
sis,43,44,59,62,64,65,67,75 whereas others cited Doppler 
evidence,42 choanography,48 inability to pass a 
nasogastric tube through the posterior choanae,49 
simple reference to “imaging,”44 and pharyngogra-
phy66. Although computed tomographic imaging 
was mentioned in seven additional case reports, 
those reports did not include an indication of 
whether the scan was used in the choanal atresia 
diagnosis.54–56,66,76,77,80 Another nine reports men-
tioned various types of surgical intervention in 
which direct visualization may have been possible, 
but no explicit description of the surgical evalu-
ation was given.45,50,53,54,61,68,71,73,76 These reports 
also varied widely in the detail of the description 
of co-occurring facial anomalies that might con-
tribute to respiratory difficulties. It is important 
to note that, unless the above-referenced case 

reports included images of the diagnostic scans, 
it is impossible to say for certain whether the sug-
gested choanal atresia was correctly diagnosed.

LOOKING FORWARD
The clear implication of the case reports 

(Table 1) is the need for a consistent applica-
tion of an invariant clinical definition of choanal 
atresia that is distinct from choanal stenosis. The 
term “choanal atresia” was used in a number of 
these case reports, yet the condition described 
may actually be choanal stenosis. Without review 
of each described patient’s medical records and 
associated diagnostic images and results, we are 
only able to note that the diagnosis is not well sup-
ported based on the published information and 
cannot definitively state whether any of these cho-
anal atresia diagnoses are truly erroneous. Other 
reports simply group the conditions together and 
report a finding of “choanal stenosis/atresia.” 
Although options may be similar from a treat-
ment perspective, understanding choanal steno-
sis and atresia as potentially different pathologic 
conditions with distinct causes requires more 
precise descriptions and further research. While 
several craniofacial textbooks and journal articles 
provide clear definitions of choanal atresia,1,9–11,16 
many authors either omit a definition from pub-
lished case reports or fail to explicitly match a 
given definition to their clinical observations and 
reports. In addition, although medical computed 
tomography is acknowledged to be the gold stan-
dard for the diagnosis of choanal atresia,1,11,15,17,18,81 
the vast majority of published case reports either 
fail to report the use of this preferred diagnostic 
methodology or use less reliable techniques that 
may erroneously lead to a choanal atresia diag-
nosis when choanal stenosis or an other choanal 
or nasal dysmorphology is present. Sculerati and 
colleagues’ previous study of over 250 pediatric 
patients with major craniofacial anomalies pro-
duced results that support our observations, find-
ing that choanal atresia was often misdiagnosed 
when respiratory difficulties were actually being 
caused by nasal obstructions secondary to midfa-
cial retrusion.21 In addition to the need for a better 
understanding of the facial dysmorphologies asso-
ciated with midfacial retrusion (e.g., hypoplasia, 
flattening, dysgenesis), further research should 
be directed toward the investigation of the rela-
tionship between choanal stenosis and choanal 
atresia and whether they are distinct abnormali-
ties or represent unique conditions along a con-
tinuum of choanal dysmorphogenesis. Given the 
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state of the existing literature, it is recommended 
that case reports and research articles focusing on 
choanal atresia provide both an explicit definition 
of the condition, and details regarding the meth-
odology used to detect and diagnose the condi-
tion. Recent caution regarding radiation exposure 
when using computed tomography as a primary 
diagnostic tool82 provides a timely opportunity to 
refine both the clinical definition of choanal atre-
sia and to develop a new standard for detection 
and diagnosis.

Research focused on choanal development, 
structure, and morphology in humans (especially 
within the pediatric craniosynostosis syndrome 
population) and animal models is needed to bet-
ter understand the true incidence of choanal atre-
sia within this patient population. Several studies 
have reported nasal airway volume or morphology 
in pediatric choanal atresia patients,12,13 but little 
work has been done to quantify or describe cho-
anal or nasal airway morphology in syndromic cra-
niosynostosis patients. Perhaps more importantly, 
there have been few serious attempts to tie cranio-
synostosis conditions to choanal atresia develop-
mentally or by molecular causation.

A recent analysis of three-dimensional medical 
computed tomographic scans comprising children 
diagnosed with Apert, Pfeiffer, Muenke, or Crou-
zon syndrome and typically developing children 
(aged 0 to 23 months) without craniosynostosis 
who underwent computed tomographic imaging 
for unrelated conditions (e.g., seizures) provides 
information about differences in facial skeletal 
shape among craniosynostosis syndromes.40 The 
three-dimensional isosurfaces were reconstructed 
from the set of Digital Imaging and Communica-
tion in Medicine (DICOM) images,40 and these 
three-dimensional computed tomographic scans 
were evaluated visually for the presence of cho-
anal atresia. Of 33 individuals diagnosed with 
syndromic craniosynostosis, none had choanal 
atresia. Nasopharyngeal volume, including the 
ethmoidal air cells, was estimated for each patient 
using the segmentation editor of the software pack-
age Avizo 6.3 (Visualization Sciences Group, Bur-
lington, Mass.). The nasal vestibule defined the 
anterior end of the nasal cavity, with the borders 
defined by soft tissue when present in individual 
three-dimensional computed tomographic slices 
or by manually closing the nostrils when soft tissue 
was not present (Fig. 4, above and below, left). Pos-
teriorly, only the nasopharyngeal lumen that was 
present anterior to or coincident with a line con-
necting the most posterior points on the right and 
left medial plates of the pterygoid was included  FG
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in the segmented volume (Fig. 4, below, right). 
Comparisons between unaffected children and 
those diagnosed with syndromic craniosynostosis 
reveal potentially reduced nasal airway volumes 
in children diagnosed with Apert and Pfeiffer syn-
dromes (Figs. 5 and 6). Analysis of cross-sectional 
data representing nasal airway volumes of varying 
groups from birth to approximately 30 months of 
age shows that children diagnosed with Apert and 
Pfeiffer syndromes appear to share similar nasal 
airway volumes with children diagnosed with 
Muenke syndromes and their typically developing 
peers at birth. Although the sample size is small, 
the results also indicate that children diagnosed 
with Crouzon syndrome may have reduced nasal 
airway volumes at birth. Based on this analysis 
using limited samples, children diagnosed with 
Apert and Pfeiffer syndromes may experience an 
early postnatal developmental divergence that 
results in smaller overall nasal airways within the 
first year of life (Fig. 5).

The distinction between true choanal atre-
sia and more diffuse nasal airway stenosis that 
is often present in syndromic craniosynostosis 
is important for both clinical and basic research 
reasons. Although it is essential that researchers 
in the field have a clear understanding of the 
correct terminology to ensure appropriate com-
munication and reporting, there are also poten-
tial clinical ramifications to consider. Choanal 
atresia in the newborn is a condition that is very 
amenable to early surgical intervention, which 
can often obviate the need for tracheostomy, 
prolonged neonatal intensive care unit hospital-
ization, and continued respiratory monitoring. 
Nasal airway obstruction in the newborn with 
syndromic craniosynostosis may not be as read-
ily surgically correctable in early life. Incorrect 
terminology may lead a surgeon down an errant 
pathway and may lead the child’s family to have 
unrealistic expectations. Knowledge of asso-
ciations between craniosynostosis and choanal 

Fig. 4. Nasal airway segmented from a computed tomographic image of a typically developing child at 10 months, 
as an example of how the nasal airway volume data presented in Figure 5 were collected. (Above, left) Axial com-
puted tomographic image at the level of the orbits indicating area of close-up (red box) for three additional ana-
tomical levels, including (above, right) the nasal cavity (red) with soft tissue of the nose bordering the anterior 
nares at the level of the maxillary sinuses; (below, left) midnares level with partial soft-tissue border of the anterior 
nares; and (below, right) at the level of the alveolar processes of the maxillae showing the nasopharyngeal lumen 
(red) anterior to a line (blue) connecting the most posterior points on the medial plates of the pterygoid bone.
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atresia will require development of standards of 
diagnosis and application of those standards.

Mouse models have been developed for a 
number of craniosynostosis syndromes that rep-
licate the genetic cause and the skeletal and 
soft-tissue phenotypes seen in human patients, 
including midfacial hypoplasia.83–89 Several of 
these models have also been used to investigate 
nasal airway volumes. A recent study of the soft-
tissue phenotype of the Fgfr2c+/C342Y Crouzon/Pfei-
ffer syndrome mouse model found a significant 
reduction in nasal airway volumes in littermates 
carrying this mutation relative to unaffected litter-
mates.35 The C342Y mutation is equivalent to the 
most common mutation associated with human 
patients diagnosed with Crouzon syndrome. The 

human Crouzon syndrome phenotype has been 
associated with a number of craniofacial dysmor-
phologies related to both hard and soft tissues, 
such as premature closure of the coronal suture, 
midfacial hypoplasia/retrusion, and alterations to 
nasopharyngeal morphology.27,38 Skeletal pheno-
typic correspondences between human patients 
with Crouzon syndrome and the Fgfr2c+/C342Y 
mouse model of Crouzon syndrome have been 
demonstrated, and this mouse model also mimics 
the altered human nasopharyngeal phenotype.35 
On the day of birth, heterozygous Fgfr2c+/C342Y lit-
termates exhibited a statistically significant restric-
tion in nasal airway volume (2.81 ± 0.17 mm3) 
compared with their unaffected littermates (3.28 
± 0.13 mm3; p = 0.012).35 However, choanal atresia 

Fig. 5. Scatterplot of total nasal airway volume and age (in months) of individuals 
diagnosed with various craniosynostosis syndromes and typically developing indi-
viduals. Sample sizes are as follows: Apert syndrome (n = 13), Crouzon syndrome  
(n = 10), Muenke syndrome (n = 5), Pfeiffer syndrome (n = 5), and unaffected (n = 39). 
Lines represent the results of regression analysis showing the relationship between 
age and total nasal airway volume (including the ethmoidal air cells) for each group. 
It is important to note that this plot and the regression lines estimated from the 
cross-sectional data are used to demonstrate the variation in nasal airway volumes 
among craniosynostosis syndromes. As the nasal airway volume data are based on 
cross-sectional data sets for each diagnostic category, these regression lines do not 
necessarily indicate growth patterns or growth trajectories.
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Fig. 6. Three-dimensional computed tomographic reconstruction of a typically developing child (left) showing superim-
posed segmentations of skin surface (beige), brain surface (gray), and upper airway lumen (blue). At right are “virtual endo-
casts” of the nasopharynx of a child with Apert syndrome (pink, left) and a typically developing child (maroon, right) as 
segmented from high resolution three-dimensional computed tomographic reconstruction. Superimposition of the two 
virtual endocasts (second from right) shows local areas of greatest shape difference. This comparison is not a statistical com-
parison of the nasopharyngeal anatomy of patients with Apert syndrome and typically developing individuals; rather, this 
superimposition provides an example of how nasopharyngeal morphology of craniosynostosis patients may differ from 
typically developing individuals.

Fig. 7. Three-dimensional computed tomographic reconstruction of the cranium 
of a 6-week-old C57BL/6J mouse showing the bones that form the osteologic 
borders of the choanae in the human skull: vomer (blue), basisphenoid (pink), 
medial pterygoid plates (red), and horizontal plates of the palatine bones (purple). 
The vomer (which is ghosted in this illustration) lies deep to the maxillae and so is 
hidden in an inferior view. The presphenoid is shown in green. Note the anatomi-
cal separation of these bones compared to the human skull in Figure 1. The black 
arrow indicates the position of the choanae in mice at the soft-tissue intersection 
of the posterior nasal cavity and nasopharynx.
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was not reported in any of the mice studied. As of 
this date, there have been no published reports of 
definitive choanal atresia in any mouse models of 
syndromic craniosynostosis.

While murine data provide valuable infor-
mation about the molecular and developmental 
mechanisms that produce the choanae, significant 
differences in human and murine craniofacial 
anatomy and development must be taken into con-
sideration when evaluating the comorbidity of cho-
anal atresia and craniosynostosis using cross-species 
comparisons. Because of the rostral-caudal elonga-
tion of the murine premaxillae, maxillae, palatine 
bones, and the soft palate, different osteologic and 
soft-tissue boundaries define the murine choanae 
relative to humans. In humans, choanal atresia has 
been attributed to a combination of a thickening 
of the posterior vomer with medialization of the 
pterygoid plates of the sphenoid. Although use-
ful murine models of choanal atresia have recently 
been produced and will be critical to determining 
the molecular and developmental basis of choanal 
atresia,90 species-specific differences including the 
anatomical separation of the vomer and pterygoid 
plates along the rostrocaudal axis in mice suggests 
an alternate structural foundation for murine 
choanal atresia (Fig. 7). While mouse models are  
an excellent tool for understanding the cause of 
human craniofacial disorders such as craniosyn-
ostosis, given the tremendous number of genetic 
mutations implicated in craniosynostosis condi-
tions, each model can represent only a single 
development pathway to the craniosynostosis phe-
notype. We propose that there are potentially as 
many ways to produce choanal atresia.

The significant correlation between specific 
craniosynostosis syndromes and reduced nasal air-
way volume in mouse models for craniosynostosis 
and human pediatric patients indicates comorbid-
ity of choanal and nasopharyngeal dysmorpholo-
gies and craniosynostosis conditions. Genetic, 
developmental, and epidemiologic sources of 
these interactions are areas particularly worthy of 
further research.
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