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Abstract

The Torelli map associates to a smooth genus g projective curve a g-dimensional principally

polarized abelian variety and is a map on the respective moduli spaces Mg → Ag. There is

a somewhat canonical compactification of Mg, the Deligne-Mumford compactification M g,

but there are many natural compactifications of Ag. In this thesis we consider two toroidal

compactifications, the central cone compactification A
cent

g and the second Voronoi compact-

ification A
Vor

g . Specifically, we answer the following two questions: Does the Torelli map

extend to a regular map M g → A
cent

g in genera 7 and 8? What singularities occur on pairs

in the image of the extended Torelli map M g → A
Vor

g ?

The first question is important because genera 7 and 8 represented the only remaining

cases in which this particular extension question was unknown. The result, which is a prod-

uct of joint work, is that the map does extend in these cases. The second question seeks to

extend the 1995 result of Kollár which states that principally polarized abelian pairs (X,Θ)

are log canonical. In this thesis we show that in fact all pairs (X,Θ) in the boundary of A
Vor

g

are semi-log canonical, the analog of log canonical in the non-normal setting.
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Chapter 1

Introduction

Throughout this thesis we work over an algebraically closed field of characteristic zero. The

classical Torelli map associates to a smooth, projective curve C of genus g a g-dimensional

principally polarized abelian variety (JC,Θ), known as the Jacobian variety of C. An abelian

variety is a connected complete group variety, and a principal polarization can be viewed as

a choice of ample Cartier divisor on it satisfying h0(JC,OJC(Θ)) = 1. More classically, over

the complex numbers, JC may be constructed as the quotient

H0(C,Ω1
C)∨

H1(C,Z)

where H0(C,Ω1
C)∨ is the vector space dual of the g-dimensional space of global holomor-

phic 1-forms on C and H1(C,Z) is the lattice of homology classes of 1-cycles in C. The

principal polarization Θ may be described in terms of a polarizing form θ ∈ H2(JC,Z) ∼=

HomZ(∧2H1(C,Z),Z) given by intersecting cycles [12, p.307]. More generally, one can con-

struct JC as the abelian variety Pic0(C) of degree 0 invertible sheaves on C.

This association produces a map t : Mg → Ag from the moduli space of smooth, projective

genus g curves to the moduli space of g-dimensional principally polarized abelian varieties.
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In [8], Deligne and Mumford constructed a space M g of genus g stable curves which gives

a compactification of Mg. By the work of Ash, Mumford, Rapoport, and Tai [7], there is a

compactification of Ag for every choice of a fan which is periodic with respect to GL(g,Z),

supported on the space of quadratic forms in g variables which are positive semidefinite.

In this thesis we will consider two compactifications arising in this way: the central cone

compactification A
cent

g and the second Voronoi compactification A
Vor

g .

One might ask, for a given compactification Ag of Ag, if the Torelli map extends to a

regular map M g → Ag. Indeed this question has been asked and answered for different

compactifications. A nice summary of the history of this question appears in [3].

The central cone compactification was defined by Igusa in 1967 in [16], and it may be

obtained by blowing up the Satake-Baily-Borel compactification of Ag along the boundary

and then normalizing the resulting space. In 1973, Namikawa in [23] showed that the map

extended in low genus though no proof is given for the stated bound of g ≤ 6. In 2012,

Alexeev and Brunyate in [3] showed that the Torelli map does extend to A
cent

g for g ≤ 6

and does not extend for g ≥ 9. Moreover, this paper provides a means for settling the

extension question for g = 7, 8 by undertaking a large computation. The first result of this

thesis represents joint work published in [4] which completes this computation and settles

the remaining two cases via the following theorem:

Theorem 1.0.1. The Torelli map extends to a regular morphism M g → A
cent

g for g ≤ 8.

The second part of the thesis deals with the second Voronoi compactification. The second

Voronoi compactification was defined by G. Voronoi in [26] which appeared in 1908. By 1976,

Mumford and Namikawa had shown in [24] that the Torelli map did indeed extend in this

case to a map tV or : M g → A
Vor

g . In 2002, Alexeev in [1] constructed the moduli space AP g of

stable semiabelic pairs. The space A
Vor

g appears as the normalization of the main irreducible

component of AP g, thus providing a modular interpretation to A
Vor

g . In particular, this

allows us to ask questions such as: if we map a stable curve, which has at worst nodal
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singularities, under this extended Torelli map, what can we say about the singularities of

the pair (X,Θ) corresponding to the image?

As a starting point, one might consider the following theorem of Kollár from 1995 [18,

Thm.17.13]:

Theorem 1.0.2. If (X,Θ) is a principally polarized abelian variety, then (X,Θ) is log canon-

ical.

It is easy to see that the pairs in A
Vor

g arising as images under tV or, called Compactified

Jacobians, are not even normal. So the most optimistic result one might hope for would be

for such pairs to be semi-log canonical. In this thesis we prove that in fact all pairs in A
Vor

g

satisfy this condition.

Theorem 1.0.3. Let (X0,Θ0) ∈ A
Vor

g be a pair which is not a principally polarized abelian

variety. Then (X0,Θ0) is semi-log canonical.
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Chapter 2

Extended Torelli map to the Igusa

blowup in genus 6, 7, and 8

This chapter describes the joint work found in [4].

2.1 Reducing to a question about graphs

Given a stable curve C, we can associate to it its dual graph Γ in the following way. For

every irreducible component Ci ⊂ C there is a vertex vi. Given two vertices vi and vj, they

are adjacent if and only if their corresponding irreducible components Ci and Cj intersect

nontrivially. Let C be a stable curve and Γ its dual graph. In [3], Alexeev and Brunyate

showed that the rational map M g → A
cent

g is regular in a neighborhood of [C] ∈ M g if and

only if there is a positive definite integral valued quadratic form q on H1(Γ,Z) satisfying

q(e∗i ) = 1 for every non-bridge edge ei of G. Such a quadratic form is called an integral

edge-minimizing metric or Z-emm.

We now recall some terminology from graph theory that we will need for this chapter.

An edge e of a graph Γ is said to be a bridge if Γ− e has more connected components than
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Γ. We say an edge is a loop if it incident to only one vertex. We call a graph planar if it

embeds into R2 and projective planar if it embeds into RP2. After choosing an orientation

on Γ, one constructs H1(Γ,Z) as

H1(Γ,Z) = C1(Γ,Z)/dC0(Γ,Z)

where C1(Γ,Z) = ⊕edges eiZe∗i , C0(Γ,Z) = ⊕vertices vjZv∗j and the map d : C0(Γ,Z) →

C1(Γ,Z) is given by

dv∗j =
∑

ei begins with vj

e∗i −
∑

ei ends with vj

e∗i

Given e∗i ∈ C1(Γ,Z), we will also use e∗i for its image in H1(Γ,Z) and call it a coedge.

Following [3], we define a graph Γ to be cohomology-irreducible if one cannot partition

the edges into two non-empty set I1 and I2 such that H1(Γ,Z) = 〈e∗i , i ∈ I1〉 ⊕ 〈e∗i , i ∈ I2〉.

A graph is cohomology-irreducible if and only if it contains no bridges and no loops. As

pointed out in [3], for every graph one Γ, one has the decomposition

H1(Γ,Z) = ⊕H1(Γk,Z)

where the Γk are cohomology-irreducible. Moreover, there exists a Z-emm for Γ if and only

if there exist Z-emms for all Γk.

The final result from [3] we will need is a categorization of the possible Z-emms. Specif-

ically, if Γ is cohomology-irreducible and q is a Z-emm, then (H1(Γ,Z), 2q) is a root lattice

of type Ag, Dg (g ≥ 4) or E6, E7 or E8. Moreover, Γ has a Z-emm of type Ag (g ≥ 4) if and

only if Γ is planar and a Z-emm of type Dg if and only if Γ is projective planar.

Thus, thanks to the work of Alexeev and Brunyate the extension question becomes a

question of existence of some quadratic forms. Specifically, we would like to prove the

following:
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Theorem 2.1.1. Let Γ be a cohomology-irreducible nonprojectively planar graph of genus

g = 6, 7 or 8. Then Γ admits a Z-emm of type Eg.

In the following section we describe how to reduce this question to a finite computation.

2.2 Reduction to finitely many graphs

The Kuratowski theorem states that a graph is nonplanar if and only if it contains a subgraph

homeomorphic to K5 or K3,3. In [11] a list of 103 graphs was produced in an attempt to

create a similar theorem for the projective plane. In [6, 5] it was confirmed that this list was

indeed a complete list of minimal non-projectively planar graphs. Since the smallest graph

on the list has genus 6, by the work of [3], there is a regular map M g → A
cent

g for g ≤ 5

and there is no hope for a regular extension in genera ≥ 9. Thus, we are left to consider the

cases of g = 6, 7, 8.

As noted in [3, Sec.2], for the proof of 2.1.1 we may reduce to graphs which are trivalent.

So letH be a cohomology-irreducible non-projectively planar trivalent graph of genus g = 6, 7

or 8. One says that H is irreducible with respect to P if H does not embed into P , but for

any edge e in H, H − e does embed into P . We now describe a process which will reduce

H to a trivalent graph irreducible with respect to P . The operations (3a), (3b), (3c) are

illustrated in Figures 2.2, 2.3, 2.4.

1. If the graph is irreducible with respect to P , stop and call this graph H ′.

2. If not, choose an edge e so that H − e does not embed into P and delete e from the

graph.

(3a) If e was not a loop and did not have a parallel edge, then, denoting by v1 and v2 the

distinct vertices to which e is incident, contract an edge incident to v1 and an edge

incident to v2.
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(3b) If e was not a loop but had a parallel edge f , then, denoting by v1 and v2 the distinct

vertices to which e and f are incident, contract the edge incident to v1 and different

from f and the edge incident to v2 and different from f .

(3c) If e was a loop incident to v, then delete the remaining edge f incident to v and,

denoting by w the other vertex to which f is incident, contract one of the other two

edges incident to w and different from f .

Notice that the above operations (3a)-(3b)-(3c) reduce the genus of the graph by 1 except

for operation (3a) when e is a bridge. Repeating this process we get a graph H ′ irreducible

with respect to P which is of the form H ′ = H̃ ∪ {u1, . . . , uk} where the ui are isolated

vertices and H̃ is a trivalent graph irreducible with respect to P . By [10, 21] (see also [5, 6]),

H̃ is isomorphic to one of the following:

(i) The connected graph G of genus 6 shown in Figure 2.8.

(ii) The connected graphs F11, F12, F13, F14 of genus 7 shown in Figures 2.9-2.12.

(iii) The graph E42 shown in Figure 2.1.

Figure 2.1: The Graph E42.

Thus, we may construct H from H̃ by reversing the algorithm above. We make this

explicit for the relevant genera 6, 7 and 8.
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Consider the case when H has genus 6. Since H is cohomology-irreducible, it has no

bridges and so operations (3a), (3b) and (3c) would all drop the genus. Thus H is already

irreducible with respect to P and so H = H̃ = G. Thus, to show the existence of Z-emms

for graphs of genus 6, it suffices to produce one for G.

Now Consider the case when H has genus 7. Either H̃ equals one of F11, F12, F13, F14 or

H̃ = G. In the first case we have that H is equal to one of F11, F12, F13, F14 (again since H

was cohomology-irreducible, thus bridgeless). The second case is slightly more complicated.

First notice that H ′ has at most one isolated vertex v, because in the case of applying (3c),

the genus drops by 1. Then H may be obtained from H̃ by doing one of the following three

operations. Notice that (a), (b) and (c) are the inverse operations of (3a), (3b) and (3c)

(defined above) respectively.

(a) Choose two distinct edges e1 and e2 and add an edge from the midpoint of e1 to the

midpoint of e2.

(b) Choose an edge and add a handle to it.

(c) Choose an edge e′ and add an edge f from the midpoint of e′ to the isolated vertex v.

Then add a loop e to v.

e

3(a)

a

e1 e2

Figure 2.2: The procedures (3a) and (a).
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e

f

3(b)

b

Figure 2.3: The procedures (3b) and (b).

e
f

3(c)

c

e′

Figure 2.4: The procedures (3c) and (c).

In the case (c), f is a bridge and so we do not need to consider graphs acquired from H̃ from

operation (c).

A careful but elementary analysis shows that the cases (a) and (b), up to symmetries,

produce ten possible graphs for H. We denote these graphs G1, . . . G10, they appear in figures

2.13-2.22 below. Thus, to show the existence of Z-emms for graphs of genus 7 it suffices to

produce one for F11, F12, F13, F14 and Gi for i ∈ {1, . . . , 10}. Below is the analysis which

produces G1 through G10.

Below we have taken the graph G and created an equivalence relation on the edge set.

Two edges e and e′ are equivalent if there is an automorphism φ of G such that φ(e) = e′.
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[2] [2]

[2][2]

[2] [2]

[2][2]

[2]

[2] [2]

[2]

[1]

[1]

[1]

Figure 2.5: G with edges labeled by equivalence class.

Thus, we can get two non-isomorphic graphs from G by adding a handle. Let G9 the

graph obtained by adding a handle to edge [1] and let G10 be the graph obtained by adding

a handle to edge [2]. The final step will be to list the isomorphism classes of graphs obtained

from G by adding an edge joining the midpoints of two distinct edges. For this we proceed as

follows: We must select an edge, create a vertex at its midpoint and relabel the equivalence

classes of edges of this new graph (we will not label the edges incident to the midpoint).

Selecting an edge in [1] we get G̃[1] and selecting an edge in [2] we get G̃[2]. Now for each

equivalence class [i] of edges in G̃[j] we can obtain a new graph by adding a vertex in the

middle of an edge in class [i] and adding an edge incident to the two midpoint vertices.
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[2] [2]

[3][3]

[2] [2]

[3][3]

[2]

[2] [2]

[2]

[1]

[1]

Figure 2.6: The graph G̃[1]

Since we have 3 equivalence classes of edges in G̃[1], we may obtain 3 graphs from G̃[1].

The graph obtained by choosing [1] we call G1. The graph obtained by choosing [2] we call

G8. Finally, the graph obtained by choosing [3] we call G7. Suppose now that we choose an

edge in the class [2], we get the graph G̃[2] below, where edges have been relabeled according

to their new equivalence classes.

[7]

[6][5]

[3] [3]

[4][4]

[5] [6] [4]

[4]

[1]

[2]

[2]

Figure 2.7: The graph G̃[2].

Since we have 7 equivalence classes of edges, we may obtain 7 graphs from G̃[2]. The

naming of the new graphs is as follows: choosing [1] we get G7, choosing [2] we get G8,

choosing [3] we get G5, choosing [4] we get G6, choosing [5] we get G2, choosing [6] we get

11



G4, and choosing [7] we get G3. Thus, there are a total of 14 genus 7 trivalent bridgeless

graphs: F11, F12, F13, F14 and Gi for i ∈ {1, . . . , 10}.

Now consider the case when H has genus 8. Since H is cohomology-irreducible, the

graphs H and H̃ cannot be isomorphic to E42: otherwise, H would have genus ≥ 10. We

may choose an edge e so that H − e does not embed into P . Since e is not a bridge, we

may construct a trivalent graph Simp(H − e) from H − e by contracting edges which were

incident to e, as in (3a) or (3b). So Simp(H − e) is a trivalent graph of genus 7 which does

not embed into P . Hence by our above argument, Simp(H − e) is isomorphic to one of

F11, F12, F13, F14, Gi for i ∈ {1, . . . , 10}, or a graph G′ obtained from G by choosing an edge

e′, adding an edge f from the midpoint of e′ to an isolated vertex v and then adding a loop

e to v, as in (c).

In the latter case, H is obtained from the graph G by performing operation (c) and then

(a). But, equivalently, this can be accomplished by the operations (a) and then (b). Thus,

to prove 2.1.1 for g = 8, it is sufficient to find Z-emms for the finitely many graphs obtained

from one of the graphs F11–F14, G1–G10 by performing one operation of type (a) or (b).

2.3 Genus 6

In this section, we explain the general method for finding a Z-emm for any graph, and

illustrate it in the case of the trivalent genus 6 graph G.

Let Γ be a directed graph of genus g with edge set E = {e1, . . . , en}. After renaming the

edges, we may insist that the edges {eg+1, . . . , en} induce a spanning tree T of Γ. Then for

each ei with i ∈ {1, . . . , g}, we have a corresponding basis element fi of the homology group

H1(Γ,Z), given by:

fi = ei +
∑
es∈T

bi,ses, bi,s = 0,±1, i ∈ {1, . . . , g},

12



and the coedges e∗1, . . . , e
∗
g form a basis of the cohomology group H1(G,Z) (cf. [3, Lemma

2.3]).

Specifically, fi is given by the unique simple cycle in Γ which uses only the edge ei and

edges of T . If we write the vectors fi as the rows of a g× n matrix then the columns of this

matrix are the coedges e∗i ∈ H1(G,Z) written in the basis {e∗1, . . . , e∗g}. In particular, the

first g columns form an identity matrix.

Let q be a Z-emm for Γ. Since q is a Z-valued quadratic form, we may associate to q an

even integral matrix Mq = (ai,j) such that

q(x1, . . . , xg) = (x1, . . . , xg)
1

2
Mq(x1, . . . , xg)

T .

Note here that ai,j = aj,i is just the coefficient of the term xixj in q(x1, . . . , xg) if i 6= j and

ai,i is just twice the coefficient of the term x2i in q(x1, . . . , xg).

We need to enforce the condition that q(e∗i ) = 1 for i = 1, . . . , n. To ensure that q(e∗i ) = 1

for i = 1, . . . , g we must have ai,i = 2. Now we must ensure that q(e∗i ) = 1 for i = g+1, . . . , n.

This is equivalent to n− g linear equations on ai,j:

1 =

g∑
i=1

c2i +
∑

1≤i<j≤g

cicjai,j for each column (ci).

Further, the condition that q is positive definite implies that each ai,j ∈ {0,±1}. Thus, for

any given graph, we reduced the problem to a finite computation.

We now specialize to graph G. In Figure 2.8 it is shown as a labeled directed graph with

a spanning tree denoted by solid edges.

13



1 14

152

10 5

67

12

13 8

9

3

11

4

Figure 2.8: The Graph G.

Using the spanning tree drawn and the process described above we get a basis for H1(G,Z)

f1 = e1 − e12 − e13 + e14

f2 = e2 + e12 + e13 + e15

f3 = e3 + e8 − e10 − e11 + e13 − e14

f4 = e4 + e7 + e8 − e11 + e13 + e15

f5 = e5 − e8 − e9 + e10

f6 = e6 + e7 + e8 + e9

which we may write in a matrix as

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

f1 1 0 0 0 0 0 0 0 0 0 0 −1 −1 1 0

f2 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1

f3 0 0 1 0 0 0 0 1 0 −1 −1 0 1 −1 0

f4 0 0 0 1 0 0 1 1 0 0 −1 0 1 0 1

f5 0 0 0 0 1 0 0 −1 −1 1 0 0 0 0 0

f6 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0

14



The linear equations become:

(1) 1 = 2 + a4,6

(2) 1 = 4 + a3,4 − a3,5 + a3,6 − a4,5 + a4,6 − a5,6

(3) 1 = 2− a5,6

(4) 1 = 2− a3,5

(5) 1 = 2 + a3,4

(6) 1 = 2− a1,2

(7) 1 = 4− a1,2 − a1,3 − a1,4 + a2,3 + a2,4 + a3,4

(8) 1 = 2− a1,3

(9) 1 = 2 + a2,4

So, equations (1),(3),(4),(5),(6),(8),(9) immediately imply that 1 = a5,6 = a3,5 = a1,2 = a1,3

and −1 = a4,6 = a3,4 = a2,4. Applying this information to (2) and (7) we get 1 = a3,6 − a4,5

and 1 = a2,3 − a1,4 respectively. Let us arbitrarily choose a3,6 = a2,3 = 1 and a4,5 = a1,4 = 0.

Hence, we will get a Z-emm if we can choose the remaining terms of the below matrix in

such a way that it is positive definite.



2 1 1 0 a1,5 a1,6

1 2 1 −1 a2,5 a2,6

1 1 2 −1 1 1

0 −1 −1 2 0 −1

a5,1 a5,2 1 0 2 1

a6,1 a6,2 1 −1 1 2


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One such choice is to set all the unknowns to 0.

2 1 1 0 0 0

1 2 1 −1 0 0

1 1 2 −1 1 1

0 −1 −1 2 0 −1

0 0 1 0 2 1

0 0 1 −1 1 2


Then the quadratic form corresponding to this matrix is:

q(x1, x2, x3, x4, x5, x6) = x21 + x1x2 + x1x3 + x22 + x2x3−

x2x4 + x23 − x3x4 + x3x5 + x3x6+

x24 − x4x6 + x25 + x5x6 + x26

One can easily check by diagonalizing that this quadratic form is indeed positive definite.

Moreover, in an appropriately chosen basis, it is isomorphic to the standard quadratic form

E6.

2.4 Genus 7

We repeat the general procedure of the previous section for the graphs F11–F14 and G1–G10.

Below, we list one explicit Z-emm for each of these graphs.

16



1

2

13

3

4 5

8

9

14

15

6 7

17

16

12

18

10

11

Figure 2.9: The Graph F11.

The basis for F11 is given by:

f1 = e1 + e17 − e16 − e14

f2 = e2 − e15 + e16 − e17

f3 = e3 + e13 − e15 − e14

f4 = e4 − e18 − e16 + e15 − e13 + e12 + e11 − e9

f5 = e5 − e8 − e11 − e12 + e13 − e15 + e16 + e18

f6 = e6 − e10 + e11 − e9

f7 = e7 − e8 − e11 + e10

17



Which gives us the following array:

e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

f1 0 0 0 0 0 0 −1 0 −1 1 0

f2 0 0 0 0 0 0 0 −1 1 −1 0

f3 0 0 0 0 0 1 −1 −1 0 0 0

f4 0 −1 0 1 1 −1 0 1 −1 0 −1

f5 −1 0 0 −1 −1 1 0 −1 1 0 1

f6 0 −1 −1 1 0 0 0 0 0 0 0

f7 −1 0 1 −1 0 0 0 0 0 0 0

which gives equations:

(1) 1 = 2 + a5,7

(2) 1 = 2 + a4,6

(3) 1 = 2− a6,7

(4) 1 = 4− a4,5 + a4,6 − a4,7 − a5,6 + a5,7 − a6,7

(5) 1 = 2− a4,5

(6) 1 = 3− a3,4 + a3,5 − a4,5

(7) 1 = 2 + a1,3

(8) 1 = 4 + a2,3 − a2,4 + a2,5 − a3,4 + a3,5 − a4,5

(9) 1 = 4− a1,2 + a1,4 − a1,5 − a2,4 + a2,5 − a4,5

(10) 1 = 2− a1,2

(11) 1 = 2− a4,5
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The following matrix satisfies these equations and is positive definite:



2 1 −1 0 0 −1 −1

1 2 0 1 0 −1 0

−1 0 2 1 0 0 1

0 1 1 2 1 −1 0

0 0 0 1 2 −1 −1

−1 −1 0 −1 −1 2 1

−1 0 1 0 −1 1 2


And the quadratic form given by this matrix is:

qF11(x1, x2, x3, x4, x5, x6, x7) = x21 + x1x2 − x1x3 − x1x6 − x1x7 + x22+

x2x4 − x2x6 + x23 + x3x4 + x3x7 + x24+

x4x5 − x4x6 + x25 − x5x6 − x5x7+

x26 + x6x7 + x27
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Figure 2.10: The graph F12.
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The basis for F12 is given by:

f1 = e1 − e12 − e13 − e14 − e15 − e16 − e17 − e18

f2 = e2 − e8 − e9 − e10 − e11 − e12 − e13 − e14 − e15

f3 = e3 − e10 − e11 − e12 − e13 − e14 − e15 − e16

f4 = e4 − e14 − e15 − e16 − e17

f5 = e5 − e15 − e16 − e17 − e18

f6 = e6 − e9 − e10 − e11 − e12

f7 = e7 − e8 − e9 − e10

Which gives us the following array:

e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

f1 0 0 0 0 −1 −1 −1 −1 −1 −1 −1

f2 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0

f3 0 0 −1 −1 −1 −1 −1 −1 −1 0 0

f4 0 0 0 0 0 0 −1 −1 −1 −1 0

f5 0 0 0 0 0 0 0 −1 −1 −1 −1

f6 0 −1 −1 −1 −1 0 0 0 0 0 0

f7 −1 −1 −1 0 0 0 0 0 0 0 0
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which gives equations:

(1) 1 = 2 + a2,7

(2) 1 = 3 + a2,6 + a2,7 + a6,7

(3) 1 = 4 + a2,3 + a2,6 + a2,7 + a3,6 + a3,7 + a6,7

(4) 1 = 3 + a2,3 + a2,6 + a3,6

(5) 1 = 4 + a1,2 + a1,3 + a1,6 + a2,3 + a2,6 + a3,6

(6) 1 = 3 + a1,2 + a1,3 + a2,3

(7) 1 = 4 + a1,2 + a1,3 + a1,4 + a2,3 + a2,4 + a3,4

(8) 1 = 5 + a1,2 + a1,3 + a1,4 + a1,5 + a2,3 + a2,4 + a2,5 + a3,4 + a3,5 + a4,5

(9) 1 = 4 + a1,3 + a1,4 + a1,5 + a3,4 + a3,5 + a4,5

(10) 1 = 3 + a1,4 + a1,5 + a4,5

(11) 1 = 2 + a1,5

The following matrix satisfies these equations and is positive definite:



2 0 −1 0 −1 0 0

0 2 −1 −1 1 0 −1

−1 −1 2 0 0 −1 1

0 −1 0 2 −1 0 0

−1 1 0 −1 2 0 0

0 0 −1 0 0 2 −1

0 −1 1 0 0 −1 2


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And the quadratic form given by this matrix is:

qF12(x1, x2, x3, x4, x5, x6, x7) = x21 − x1x3 − x1x5 + x22 − x2x3

−x2x4 + x2x5 − x2x7 + x23 − x3x6 + x3x7+

x24 − x4x5 + x25 + x26 − x6x7 + x27
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Figure 2.11: The Graph F13

The basis for F13 is given by:

f1 = e1 − e9 − e10 − e11 − e12 − e18

f2 = e2 − e10 − e11 − e12 − e13 − e14 − e15 − e18

f3 = e3 − e11 − e13 − e14 − e15

f4 = e4 + e11 + e12 + e13 − e16

f5 = e5 + e11 + e12 + e13 + e15 − e17 + e18

f6 = e6 − e8 − e9 − e10 − e16 − e18

f7 = e7 − e8 − e9 − e10 − e17
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Which gives us the following array:

e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

f1 0 −1 −1 −1 −1 0 0 0 0 0 −1

f2 0 0 −1 −1 −1 −1 −1 −1 0 0 −1

f3 0 0 0 −1 0 −1 −1 −1 0 0 0

f4 0 0 0 1 1 1 0 0 −1 0 0

f5 0 0 0 1 1 1 0 1 0 −1 1

f6 −1 −1 −1 0 0 0 0 0 −1 0 −1

f7 −1 −1 −1 0 0 0 0 0 0 −1 0

which gives equations:

(1) 1 = 2 + a6,7

(2) 1 = 3 + a1,6 + a1,7 + a6,7

(3) 1 = 4 + a1,2 + a1,6 + a1,7 + a2,6 + a2,7 + a6,7

(4) 1 = 5 + a1,2 + a1,3 − a1,4 − a1,5 + a2,3 − a2,4 − a2,5 − a3,4 − a3,5 + a4,5

(5) 1 = 4 + a1,2 − a1,4 − a1,5 − a2,4 − a2,5 + a4,5

(6) 1 = 4 + a2,3 − a2,4 − a2,5 − a3,4 − a3,5 + a4,5

(7) 1 = 2 + a2,3

(8) 1 = 3 + a2,3 − a2,5 − a3,5

(9) 1 = 2 + a4,6

(10) 1 = 2 + a5,7

(11) 1 = 4 + a1,2 − a1,5 + a1,6 − a2,5 + a2,6 − a5,6
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The following matrix satisfies these equations and is positive definite:



2 0 0 0 1 0 −1

0 2 −1 0 1 −1 0

0 −1 2 0 0 0 0

0 0 0 2 −1 −1 1

1 1 0 −1 2 0 −1

0 −1 0 −1 0 2 −1

−1 0 0 1 −1 −1 2


And the quadratic form given by this matrix is:

qF13(x1, x2, x3, x4, x5, x6, x7) = x21 + x1x5 − x1x7 + x22 − x2x3+

x2x5 − x2x6 + x23 + x24 − x4x5−

x4x6 + x4x7 + x25 − x5x7 + x26−

x6x7 + x27
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Figure 2.12: The Graph F14
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The basis for F14 is given by:

f1 = e1 + e9 − e12 − e14 − e17

f2 = e2 + e9 + e10 + e11 − e12 − e14 − e15

f3 = e3 + e8 − e12 − e14 − e17 − e18

f4 = e4 + e9 + e10 − e12 − e13

f5 = e5 + e13 − e14 − e15 − e16

f6 = e6 + e15 + e16 − e17 − e18

f7 = e7 + e8 − e9 − e10 − e11

Which gives us the following array:

e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

f1 0 1 0 0 −1 0 −1 0 0 −1 0

f2 0 1 1 1 −1 0 −1 −1 0 0 0

f3 1 0 0 0 −1 0 −1 0 0 −1 −1

f4 0 1 1 0 −1 −1 0 0 0 0 0

f5 0 0 0 0 0 1 −1 −1 −1 0 0

f6 0 0 0 0 0 0 0 1 1 −1 −1

f7 1 −1 −1 −1 0 0 0 0 0 0 0
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which gives equations:

(1) 1 = 2 + a3,7

(2) 1 = 4 + a1,2 + a1,4 − a1,7 + a2,4 − a2,7 − a4,7

(3) 1 = 3 + a2,4 − a2,7 − a4,7

(4) 1 = 2− a2,7

(5) 1 = 4 + a1,2 + a1,3 + a1,4 + a2,3 + a2,4 + a3,4

(6) 1 = 2− a4,5

(7) 1 = 4 + a1,2 + a1,3 + a1,5 + a2,3 + a2,5 + a3,5

(8) 1 = 3 + a2,5 − a2,6 − a5,6

(9) 1 = 2− a5,6

(10) 1 = 3 + a1,3 + a1,6 + a3,6

(11) 1 = 2 + a3,6

The following matrix satisfies these equations and is positive definite:



2 −1 −1 0 0 0 0

−1 2 0 −1 −1 0 1

−1 0 2 0 0 −1 −1

0 −1 0 2 1 0 0

0 −1 0 1 2 1 −1

0 0 −1 0 1 2 0

0 1 −1 0 −1 0 2


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And the quadratic form given by this matrix is:

qF14(x1, x2, x3, x4, x5, x6, x7) = x21 − x1x2 − x1x3 + x22 − x2x4−

x2x5 + x2x7 + x23 − x3x6 − x3x7+

x24 + x4x5 + x25 + x5x6 − x5x7+

x26 + x27
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Figure 2.13: The graph G1.

The basis for G1 is given by:

f1 = e1 + e12 + e13 + e16 + e18

f2 = e2 + e12 + e15 + e16 + e18

f3 = e3 − e13 − e14 + e15

f4 = e4 + e8 + e9 + e11 + e12 + e13 + e14

f5 = e5 − e8 − e9 + e10

f6 = e6 − e10 − e11 − e17 + e18

f7 = e7 + e9 + e11 + e17 − e18
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Which gives us the following array:

e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

f1 0 0 0 0 1 1 0 0 1 0 1

f2 0 0 0 0 1 0 0 1 1 0 1

f3 0 0 0 0 0 −1 −1 1 0 0 0

f4 1 1 0 1 1 1 1 0 0 0 0

f5 −1 −1 1 0 0 0 0 0 0 0 0

f6 0 0 −1 −1 0 0 0 0 0 −1 1

f7 0 1 0 1 0 0 0 0 0 1 −1

which gives equations:

(1) 1 = 2− a4,5

(2) 1 = 3− a4,5 + a4,7 − a5,7

(3) 1 = 2− a5,6

(4) 1 = 3− a4,6 + a4,7 − a6,7

(5) 1 = 3 + a1,2 + a1,4 + a2,4

(6) 1 = 3− a1,3 + a1,4 − a3,4

(7) 1 = 2− a3,4

(8) 1 = 2 + a2,3

(9) 1 = 2 + a1,2

(10) 1 = 2− a6,7

(11) 1 = 4 + a1,2 + a1,6 − a1,7 + a2,6 − a2,7 − a6,7
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The following matrix satisfies these equations and is positive definite:



2 −1 1 0 1 1 1

−1 2 −1 −1 −1 −1 0

1 −1 2 1 1 1 0

0 −1 1 2 1 0 −1

1 −1 1 1 2 1 0

1 −1 1 0 1 2 1

1 0 0 −1 0 1 2


And the quadratic form given by this matrix is:

qG1(x1, x2, x3, x4, x5, x6, x7) = x21 − x1x2 + x1x3 + x1x5 + x1x6+

x1x7 + x22 − x2x3 − x2x4 − x2x5−

x2x6 + x23 + x3x4 + x3x5 + x3x6+

x24 + x4x5 − x4x7 + x25 + x5x6+

x26 + x6x7 + x27
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Figure 2.14: The graph G2.
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The basis for G2 is given by:

f1 = e1 − e8 + e9

f2 = e2 − e9 − e10 − e11 + e13

f3 = e3 − e8 − e10 − e11 + e14

f4 = e4 + e11 − e12 − e14 − e15 + e17

f5 = e5 + e15 − e17 − e18

f6 = e6 + e16 − e17 − e18

f7 = e7 + e11 − e12 − e13 − e16 + e17

Which gives us the following array:

e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

f1 −1 1 0 0 0 0 0 0 0 0 0

f2 0 −1 −1 −1 0 1 0 0 0 0 0

f3 −1 0 −1 −1 0 0 1 0 0 0 0

f4 0 0 0 1 −1 0 −1 −1 0 1 0

f5 0 0 0 0 0 0 0 1 0 −1 −1

f6 0 0 0 0 0 0 0 0 1 −1 −1

f7 0 0 0 1 −1 −1 0 0 −1 1 0
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which gives equations:

(1) 1 = 2 + a1,3

(2) 1 = 2− a1,2

(3) 1 = 2 + a2,3

(4) 1 = 4 + a2,3 − a2,4 − a2,7 − a3,4 − a3,7 + a4,7

(5) 1 = 2 + a4,7

(6) 1 = 2− a2,7

(7) 1 = 2− a3,4

(8) 1 = 2− a4,5

(9) 1 = 2− a6,7

(10) 1 = 4− a4,5 − a4,6 + a4,7 + a5,6 − a5,7 − a6,7

(11) 1 = 2 + a5,6

The following matrix satisfies these equations and is positive definite:



2 1 −1 0 0 0 0

1 2 −1 −1 0 0 1

−1 −1 2 1 0 0 0

0 −1 1 2 1 −1 −1

0 0 0 1 2 −1 0

0 0 0 −1 −1 2 1

0 1 0 −1 0 1 2



31



And the quadratic form given by this matrix is:

qG2(x1, x2, x3, x4, x5, x6, x7) = x21 + x1x2 − x1x3 + x22 − x2x3−

x2x4 + x2x7 + x23 + x3x4 + x24+

x4x5 − x4x6 − x4x7 + x25 − x5x6+

x26 + x6x7 + x27
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Figure 2.15: The Graph G3

The basis for G3 is given by:

f1 = e1 + e8 + e10 − e11 − e12

f2 = e2 − e11 − e12 + e14

f3 = e3 − e8 + e9

f4 = e4 + e12 − e13 − e14 + e16 − e18

f5 = e5 − e9 − e10 + e12 − e13 − e15 + e16

f6 = e6 + e15 − e16 − e17

f7 = e7 − e16 − e17 + e18

32



Which gives us the following array:

e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

f1 1 0 1 −1 −1 0 0 0 0 0 0

f2 0 0 0 −1 −1 0 1 0 0 0 0

f3 −1 1 0 0 0 0 0 0 0 0 0

f4 0 0 0 0 1 −1 −1 0 1 0 −1

f5 0 −1 −1 0 1 −1 0 −1 1 0 0

f6 0 0 0 0 0 0 0 1 −1 −1 0

f7 0 0 0 0 0 0 0 0 −1 −1 1

which gives equations:

(1) 1 = 2− a1,3

(2) 1 = 2− a3,5

(3) 1 = 2− a1,5

(4) 1 = 2 + a1,2

(5) 1 = 4 + a1,2 − a1,4 − a1,5 − a2,4 − a2,5 + a4,5

(6) 1 = 2 + a4,5

(7) 1 = 2− a2,4

(8) 1 = 2− a5,6

(9) 1 = 4 + a4,5 − a4,6 − a4,7 − a5,6 − a5,7 + a6,7

(10) 1 = 2 + a6,7

(11) 1 = 2− a4,7
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The following matrix satisfies these equations and is positive definite:



2 −1 1 −1 1 0 0

−1 2 0 1 0 0 0

1 0 2 0 1 0 0

−1 1 0 2 −1 −1 1

1 0 1 −1 2 1 0

0 0 0 −1 1 2 −1

0 0 0 1 0 −1 2


And the quadratic form given by this matrix is:

qG3(x1, x2, x3, x4, x5, x6, x7) = x21 − x1x2 + x1x3 − x1x4 + x1x5+

x22 + x2x4 + x23 + x3x5 + x24−

x4x5 − x4x6 + x4x7 + x25 + x5x6+

x26 − x6x7 + x27
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Figure 2.16: The Graph G4
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The basis for G4 is given by:

f1 = e1 + e8 + e9 + e10 + e11

f2 = e2 + e11 + e12 + e13

f3 = e3 + e9 + e10 − e12

f4 = e4 + e10 + e11 + e13 + e14 − e15 − e16

f5 = e5 + e8 + e9 + e15 + e16 + e17

f6 = e6 + e15 + e17 + e18

f7 = e7 − e14 + e15 + e18

Which gives us the following array:

e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

f1 1 1 1 1 0 0 0 0 0 0 0

f2 0 0 0 1 1 1 0 0 0 0 0

f3 0 1 1 0 −1 0 0 0 0 0 0

f4 0 0 1 1 0 1 1 −1 −1 0 0

f5 1 1 0 0 0 0 0 1 1 1 0

f6 0 0 0 0 0 0 0 1 0 1 1

f7 0 0 0 0 0 0 −1 1 0 0 1
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which gives equations:

(1) 1 = 2 + a1,5

(2) 1 = 3 + a1,3 + a1,5 + a3,5

(3) 1 = 3 + a1,3 + a1,4 + a3,4

(4) 1 = 3 + a1,2 + a1,4 + a2,4

(5) 1 = 2− a2,3

(6) 1 = 2 + a2,4

(7) 1 = 2− a4,7

(8) 1 = 4− a4,5 − a4,6 − a4,7 + a5,6 + a5,7 + a6,7

(9) 1 = 2− a4,5

(10) 1 = 2 + a5,6

(11) 1 = 2 + a6,7

The following matrix satisfies these equations and is positive definite:



2 0 0 −1 −1 0 −1

0 2 1 −1 −1 0 0

0 1 2 −1 −1 0 0

−1 −1 −1 2 1 0 1

−1 −1 −1 1 2 −1 1

0 0 0 0 −1 2 −1

−1 0 0 1 1 −1 2


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And the quadratic form given by this matrix is:

qG4(x1, x2, x3, x4, x5, x6, x7) = x21 − x1x4 − x1x5 − x1x7 + x22+

x2x3 − x2x4 − x2x5 + x23 − x3x4−

x3x5 + x24 + x4x5 + x4x7 + x25−

x5x6 + x5x7 + x26 − x6x7 + x27
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Figure 2.17: The Graph G5

The basis for G5 is given by:

f1 = e1 + e8 + e9 + e10 + e11 + e12

f2 = e2 + e11 + e12 + e13 + e14

f3 = e3 + e9 + e10 + e11 + e15 + e16

f4 = e4 + e8 + e9 + e17 + e18

f5 = e5 + e11 + e13 + e14 + e16

f6 = e6 + e9 + e15 + e17 + e18

f7 = e7 − e10 + e14 + e17

37



Which gives us the following array:

e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

f1 1 1 1 1 1 0 0 0 0 0 0

f2 0 0 0 1 1 1 1 0 0 0 0

f3 0 1 1 1 0 0 0 1 1 0 0

f4 1 1 0 0 0 0 0 0 0 1 1

f5 0 0 0 1 0 1 1 0 1 0 0

f6 0 1 0 0 0 0 0 1 0 1 1

f7 0 0 −1 0 0 0 1 0 0 1 0

which gives equations:

(1) 1 = 2 + a1,4

(2) 1 = 4 + a1,3 + a1,4 + a1,6 + a3,4 + a3,6 + a4,6

(3) 1 = 3 + a1,3 − a1,7 − a3,7

(4) 1 = 4 + a1,2 + a1,3 + a1,5 + a2,3 + a2,5 + a3,5

(5) 1 = 2 + a1,2

(6) 1 = 2 + a2,5

(7) 1 = 3 + a2,5 + a2,7 + a5,7

(8) 1 = 2 + a3,6

(9) 1 = 2 + a3,5

(10) 1 = 3 + a4,6 + a4,7 + a6,7

(11) 1 = 2 + a4,6
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The following matrix satisfies these equations and is positive definite:



2 −1 0 −1 0 0 1

−1 2 0 0 −1 0 0

0 0 2 0 −1 −1 1

−1 0 0 2 0 −1 0

0 −1 −1 0 2 1 −1

0 0 −1 −1 1 2 −1

1 0 1 0 −1 −1 2


And the quadratic form given by this matrix is:

qG5(x1, x2, x3, x4, x5, x6, x7) = x21 − x1x2 − x1x4 + x1x7 + x22−

x2x5 + x23 − x3x5 − x3x6 + x3x7+

x24 − x4x6 + x25 + x5x6 − x5x7+

x26 − x6x7 + x27
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Figure 2.18: The Graph G6
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The basis for G6 is given by:

f1 = e1 − e8 − e9 − e12 − e14 − e18

f2 = e2 − e8 − e11 + e13 + e15 + e17

f3 = e3 − e8 + e10 − e12 + e16 − e18

f4 = e4 + e9 + e12 + e13

f5 = e5 + e10 + e11 − e12 − e13

f6 = e6 + e14 + e15 + e17 + e18

f7 = e7 + e16 − e17 − e18

Which gives us the following array:

e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

f1 −1 −1 0 0 −1 0 −1 0 0 0 −1

f2 −1 0 0 −1 0 1 0 1 0 1 0

f3 −1 0 1 0 −1 0 0 0 1 0 −1

f4 0 1 0 0 1 1 0 0 0 0 0

f5 0 0 1 1 −1 −1 0 0 0 0 0

f6 0 0 0 0 0 0 1 1 0 1 1

f7 0 0 0 0 0 0 0 0 1 −1 −1
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which gives equations:

(1) 1 = 3 + a1,2 + a1,3 + a2,3

(2) 1 = 2− a1,4

(3) 1 = 2 + a3,5

(4) 1 = 2− a2,5

(5) 1 = 4 + a1,3 − a1,4 + a1,5 − a3,4 + a3,5 − a4,5

(6) 1 = 3 + a2,4 − a2,5 − a4,5

(7) 1 = 2− a1,6

(8) 1 = 2 + a2,6

(9) 1 = 2 + a3,7

(10) 1 = 3 + a2,6 − a2,7 − a6,7

(11) 1 = 4 + a1,3 − a1,6 + a1,7 − a3,6 + a3,7 − a6,7

The following matrix satisfies these equations and is positive definite:



2 −1 −1 1 0 1 0

−1 2 0 −1 1 −1 0

−1 0 2 0 −1 −1 −1

1 −1 0 2 0 0 −1

0 1 −1 0 2 0 0

1 −1 −1 0 0 2 1

0 0 −1 −1 0 1 2


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And the quadratic form given by this matrix is:

qG6(x1, x2, x3, x4, x5, x6, x7) = x21 − x1x2 − x1x3 + x1x4 + x1x6+

x22 − x2x4 + x2x5 − x2x6 + x23−

x3x5 − x3x6 − x3x7 + x24 − x4x7+

x25 + x26 + x6x7 + x27
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Figure 2.19: The Graph G7

The basis for G7 is given by:

f1 = e1 − e8 + e12 − e15 − e17 + e18

f2 = e2 − e8 + e9 + e12 − e13 − e15 + e16

f3 = e3 − e8 + e9 − e10 + e11 − e15 + e16

f4 = e4 + e10 + e12 + e18

f5 = e5 − e10 + e11 − e12 + e13

f6 = e6 + e14 + e15 + e17

f7 = e7 − e14 − e15 + e16
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Which gives us the following array:

e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

f1 −1 0 0 0 1 0 0 −1 0 −1 1

f2 −1 1 0 0 1 −1 0 −1 1 0 0

f3 −1 1 −1 1 0 0 0 −1 1 0 0

f4 0 0 1 0 1 0 0 0 0 0 1

f5 0 0 −1 1 −1 1 0 0 0 0 0

f6 0 0 0 0 0 0 1 1 0 1 0

f7 0 0 0 0 0 0 −1 −1 1 0 0

which gives equations:

(1) 1 = 3 + a1,2 + a1,3 + a2,3

(2) 1 = 2 + a2,3

(3) 1 = 3− a3,4 + a3,5 − a4,5

(4) 1 = 2 + a3,5

(5) 1 = 4 + a1,2 + a1,4 − a1,5 + a2,4 − a2,5 − a4,5

(6) 1 = 2− a2,5

(7) 1 = 2− a6,7

(8) 1 = 5 + a1,2 + a1,3 − a1,6 + a1,7 + a2,3 − a2,6 + a2,7 − a3,6 + a3,7 − a6,7

(9) 1 = 3 + a2,3 + a2,7 + a3,7

(10) 1 = 2− a1,6

(11) 1 = 2 + a1,4
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The following matrix satisfies these equations and is positive definite:



2 −1 0 −1 −1 1 0

−1 2 −1 0 1 −1 −1

0 −1 2 0 −1 0 0

−1 0 0 2 1 −1 0

−1 1 −1 1 2 −1 0

1 −1 0 −1 −1 2 1

0 −1 0 0 0 1 2


And the quadratic form given by this matrix is:

qG7(x1, x2, x3, x4, x5, x6, x7) = x21 − x1x2 − x1x4 − x1x5 + x1x6+

x22 − x2x3 + x2x5 − x2x6 − x2x7+

x23 − x3x5 + x24 + x4x5 − x4x6+

x25 − x5x6 + x26 + x6x7 + x27
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Figure 2.20: The Graph G8
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The basis for G8 is given by:

f1 = e1 − e8 − e10 − e13 + e14

f2 = e2 − e8 − e10 + e12 − e13

f3 = e3 − e9 + e10 + e13 − e14

f4 = e4 + e9 − e10 − e11 − e15 + e17

f5 = e5 − e11 − e12 + e13 − e16 + e17

f6 = e6 + e16 − e17 − e18

f7 = e7 + e15 − e17 − e18

Which gives us the following array:

e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

f1 −1 0 −1 0 0 −1 1 0 0 0 0

f2 −1 0 −1 0 1 −1 0 0 0 0 0

f3 0 −1 1 0 0 1 −1 0 0 0 0

f4 0 1 −1 −1 0 0 0 −1 0 1 0

f5 0 0 0 −1 −1 1 0 0 −1 1 0

f6 0 0 0 0 0 0 0 0 1 −1 −1

f7 0 0 0 0 0 0 0 1 0 −1 −1
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which gives equations:

(1) 1 = 2 + a1,2

(2) 1 = 2− a3,4

(3) 1 = 4 + a1,2 − a1,3 + a1,4 − a2,3 + a2,4 − a3,4

(4) 1 = 2 + a4,5

(5) 1 = 2− a2,5

(6) 1 = 4 + a1,2 − a1,3 − a1,5 − a2,3 − a2,5 + a3,5

(7) 1 = 2− a1,3

(8) 1 = 2− a4,7

(9) 1 = 2− a5,6

(10) 1 = 4 + a4,5 − a4,6 − a4,7 − a5,6 − a5,7 + a6,7

(11) 1 = 2 + a6,7

The following matrix satisfies these equations and is positive definite:



2 −1 1 0 0 0 0

−1 2 0 0 1 0 0

1 0 2 1 0 0 0

0 0 1 2 −1 −1 1

0 1 0 −1 2 1 0

0 0 0 −1 1 2 −1

0 0 0 1 0 −1 2


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And the quadratic form given by this matrix is:

qG8(x1, x2, x3, x4, x5, x6, x7) = x21 − x1x2 + x1x3 + x22 + x2x5+

x23 + x3x4 + x24 − x4x5 − x4x6+

x4x7 + x25 + x5x6 + x26 − x6x7+

x27
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Figure 2.21: The Graph G9

The basis for G9 is given by:

f1 = e1 + e8 + e9 + e10

f2 = e2 − e8 − e9 + e11

f3 = e3 − e13

f4 = e4 − e9 + e11 − e12 − e13 − e14 − e15 + e16

f5 = e5 + e10 + e11 − e12 − e13 − e14 − e15 − e18

f6 = e6 + e16 + e17 + e18

f7 = e7 + e15 − e16 − e17
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Which gives us the following array:

e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

f1 1 1 1 0 0 0 0 0 0 0 0

f2 −1 −1 0 1 0 0 0 0 0 0 0

f3 0 0 0 0 0 −1 0 0 0 0 0

f4 0 −1 0 1 −1 −1 −1 −1 1 0 0

f5 0 0 1 1 −1 −1 −1 −1 0 0 −1

f6 0 0 0 0 0 0 0 0 1 1 1

f7 0 0 0 0 0 0 0 1 −1 −1 0

which gives equations:

(1) 1 = 2− a1,2

(2) 1 = 3− a1,2 − a1,4 + a2,4

(3) 1 = 2 + a1,5

(4) 1 = 3 + a2,4 + a2,5 + a4,5

(5) 1 = 2 + a4,5

(6) 1 = 3 + a3,4 + a3,5 + a4,5

(7) 1 = 2 + a4,5

(8) 1 = 3 + a4,5 − a4,7 − a5,7

(9) 1 = 3 + a4,6 − a4,7 − a6,7

(10) 1 = 2− a6,7

(11) 1 = 2− a5,6
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The following matrix satisfies these equations and is positive definite:



2 1 0 1 −1 0 0

1 2 1 0 −1 0 0

0 1 2 −1 0 1 0

1 0 −1 2 −1 −1 0

−1 −1 0 −1 2 1 1

0 0 1 −1 1 2 1

0 0 0 0 1 1 2


And the quadratic form given by this matrix is:

qG9(x1, x2, x3, x4, x5, x6, x7) = x21 + x1x2 + x1x4 − x1x5 + x22+

x2x3 − x2x5 + x23 − x3x4 + x3x6+

x24 − x4x5 − x4x6 + x25 + x5x6+

x5x7 + x26 + x6x7 + x27
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Figure 2.22: The Graph G10
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The basis for G10 is given by:

f1 = e1 + e13 + e14 + e15 + e16 + e17

f2 = e2 − e13 − e14 − e15 − e16 + e18

f3 = e3 − e14

f4 = e4 + e8 − e11 − e12 + e16 − e18

f5 = e5 − e9 − e11 − e12 + e16 + e17

f6 = e6 + e9 + e10 + e11

f7 = e7 + e8 − e10 − e11

Which gives us the following array:

e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18

f1 0 0 0 0 0 1 1 1 1 1 0

f2 0 0 0 0 0 −1 −1 −1 −1 0 1

f3 0 0 0 0 0 0 −1 0 0 0 0

f4 1 0 0 −1 −1 0 0 0 1 0 −1

f5 0 −1 0 −1 −1 0 0 0 1 1 0

f6 0 1 1 1 0 0 0 0 0 0 0

f7 1 0 −1 −1 0 0 0 0 0 0 0

50



which gives equations:

(1) 1 = 2 + a4,7

(2) 1 = 2− a5,6

(3) 1 = 2− a6,7

(4) 1 = 4 + a4,5 − a4,6 + a4,7 − a5,6 + a5,7 − a6,7

(5) 1 = 2 + a4,5

(6) 1 = 2− a1,2

(7) 1 = 3− a1,2 − a1,3 + a2,3

(8) 1 = 2− a1,2

(9) 1 = 4− a1,2 + a1,4 + a1,5 − a2,4 − a2,5 + a4,5

(10) 1 = 2 + a1,5

(11) 1 = 2− a2,4

The following matrix satisfies these equations and is positive definite:



2 1 1 1 −1 0 0

1 2 0 1 0 0 0

1 0 2 0 0 0 0

1 1 0 2 −1 0 −1

−1 0 0 −1 2 1 1

0 0 0 0 1 2 1

0 0 0 −1 1 1 2


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And the quadratic form given by this matrix is:

qG10(x1, x2, x3, x4, x5, x6, x7) = x21 + x1x2 + x1x3 + x1x4 − x1x5+

x22 + x2x4 + x23 + x24 − x4x5−

x4x7 + x25 + x5x6 + x5x7 + x26+

x6x7 + x27

This concludes the calculations.

2.5 Genus 8

As we have explained, it is sufficient to find a Z-emm for each of the finitely many graphs ob-

tained from F11–F14 andG1-G10 by applying procedure (a) or (b). This gives 14·
((

18
2

)
+ 18

)
=

2394 graphs.

We have written a Mathematica program for computing the 8 × 13 matrices for these

graphs, and a Fortran program which uses integer arithmetic for finding the Z-emms. We

confirmed that they exist for all of these graphs. The lists of the matrices and the Z-emms

are available at http://www.math.uga.edu/~valery/vigre2010.
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Chapter 3

Singularities and Kollár’s Result on

PPAV’s

The second part of this thesis seeks to extend in a natural way the result of Kollár [18,

Thm.17.13] which states that principally polarized abelian pairs (X,Θ) are log canonical.

We would like to extend this result to degenerations of such pairs. Though there is more

than one compactification of Ag, the moduli space of principally polarized abelian varieties,

in [1] Alexeev provided a modular interpretation for the toroidal compactification of Ag for

the second Voronoi fan. We will show that the pairs in the boundary of this compactification

are in fact semi-log canonical.

To do so, we will first discuss the definition of being log canonical. Next we will review the

proof given by Kollár showing that principally polarized abelian varieties are log canonical.

Finally we will discuss the definition of being semi-log canonical as an extension of log

canonical in the non-normal setting.
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3.1 Log Canonical Pairs

The class of singularities termed “log canonical” is a class that arises in the study of the

minimal model program. Indeed, there are several such classes, all closely related. Intuitively,

if one considers a pair (X,Θ) and a birational morphism f : Y → X, then under the right

conditions one can compare f ∗(KX +Θ) and KY +f−1∗ (Θ). Terminal, canonical, log terminal

and log canonical classes of singularities represent the degrees by which these divisors may

differ.

More precisely we consider the following setup as described in [20, p.50-56]. Let X be

a normal variety and Θ =
∑
aiDi a Q-divisor on X such that KX + Θ is Q-Cartier. Let

f : Y → X be a birational morphism where Y is normal. Since m(KX + Θ) is Cartier for

some m ∈ Z>0, we can compare the two divisors m(KY + f−1∗ (Θ)) and f ∗(m(Kx + Θ)).

The difference will be exceptional and so there exist rational numbers a(Ei, X,Θ) so that

m(a(Ei, X,Θ)) are integers and

m(KY + f−1∗ Θ) = f ∗(m(Kx + Θ)) +
∑

ma(Ei, X,Θ)Ei

for exceptional divisors Ei. Passing to numerical equivalence, we can write

KY + f−1∗ Θ ≡ f ∗(KX + Θ) +
∑

a(Ei, X,Θ)Ei

We are now in a position to make the following important definition.

Definition 3.1.1. The discrepancy of (X,Θ) is defined as

Discrep(X,Θ) = inf
E
{a(E,X,Θ)}
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where the infimum is taken over all exceptional divisors E of all birational morphisms f :

Y → X.

This allows us to define different singularity classes based on the discrepancy of the pair.

Definition 3.1.2. We say the pair (X,Θ) is

terminal > 0

canonical ≥ 0

klt if Discrep(X,Θ) is > −1 and bΘc ≤ 0

plt > −1

log canonical ≥ −1

As stated there may seem to be little hope of actually computing the discrepancy of a

pair since, a priori, we must consider all birational maps to the pair. However, it suffices

to consider a log resolution. A log resolution of (X,Θ) is a proper, birational morphism

f : Y → X satisfying the conditions that Y is smooth, the exceptional locus Ex(f) is a

divisor, and ex(f)∪ f−1(Supp(Θ)) is a simple normal crossing divisor. By Hironaka’s result

in [15], log resolutions always exist over an algebraically closed field of characteristic 0.

We are then able to compute the information needed for our purposes by the following

lemma [19, Corollary 2.13]:

Lemma 3.1.1. Let (X,Θ) be a pair as above and let f : Y → X be a log resolution. Write

KY ∼Q f ∗(KX + Θ)) +
∑

aiEi

where ∼Q denotes Q-linear equivalence. Then (X,Θ) is log canonical if and only if ai ≥ −1

for every i.

We end this section with an example.
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Example 3.1.1. Let X be a smooth surface and let Θ =
∑
Di. If P ∈ X is a point, we might

consider the blowup map f : BLP (X)→ X. Writing Y for BLP (X) and E for the exceptional

divisor of f we have KY = f ∗KX+(codimP X−1)E and f−1∗ (Θ) = f ∗Θ−multP ΘE. Adding

these two equations we get that a(E,X,Θ) = codimP X − 1 −multP Θ = 2 − 1 −multP Θ.

Moreover, if Θ is nodal at P then f is a log resolution of (X,Θ). So we see that in this case

(X,Θ) is log canonical if the singularities of Θ are at worst nodal.

3.2 Kollár’s Result on PPAV’s

In this section we include Kollár’s result which will serve as a model for the main result of

this chapter. The main tool of the proof is the vanishing theorem of Kawamata and Viehweg

from 1982 [17, 25] which we state here.

Theorem 3.2.1. Let X be a smooth projective variety. If L ≡ M + ∆ is a Z-divisor with

M a nef and big Q divisor and (X,∆) klt, then H i(X,KX ⊗ L) = 0 for all i > 0.

The following appears in [18, Thm.17.13] and the presentation of the proof is credited

to Lazarsfeld. We will, in the proof of 4.3.1, try to use a similar strategy: first create an

opportunity to make use of vanishing and then use the group action on X to arrive at a

contradiction.

Theorem 3.2.2. Let (A,Θ) be a principally polarized abelian variety. Then (A,Θ) is log

canonical.

Proof: Let f : A′ → A be a log resolution. Set KA′ =
∑
eiEi, and f ∗Θ =

∑
biEi. Let

c = min{(ei + 1)/bi}. This is what we will later call the log canonical threshold of (A,Θ).

That is, c is the largest number so that (A, cΘ) is log canonical. Thus, we would like to show

that c ≥ 1. Formally we have
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f ∗Θ ≡ KA′ + (1− c)f ∗Θ +
∑

(cbi − ei)Ei (3.1)

Let
∑
bcbi − eicEi = P − N where P and N are effective and share no irreducible

components. If Ej is a component of N , then ej > 0, and so N is exceptional. P is reduced

and non-empty by the definition of c. This allows us to rewrite (3.1) as

f ∗Θ +N − P ≡ KA′ + (1− c)f ∗Θ +
∑
{cbi − ei}Ei

where {a} is the fractional part of a. Set Z = f(P ). Letting Z = f(P ) we get a

commutative diagram:

H0(A′,O(f ∗Θ +N)) H0(P,O(f ∗Θ +N)|P )

H0(A,O(Θ)) H0(Z,O(Θ)|Z)

∼=

r

The left vertical arrow is an isomorphism since N is exceptional and the right vertical arrow is

injective. Assume that c < 1. By Kawamata-Vieweg vanishing, H1(A′,O(f ∗Θ+N−P )) = 0,

which implies that the top horizontal arrow is surjective. Therefore r is surjective.

On the other hand, r is zero since Z ⊂ Θ and the unique section of OA(Θ) vansishes

along Θ. If we can show that h0(Z,OA(Θ)|Z) > 0 then we will arrive at a contradiction.

Let τ : A → A be a general translation. Then Z 6⊂ τ ∗Θ, so h0(Z, τ ∗OA(Θ)|Z) > 0. By

semicontinuity we get that h0(Z,OA(Θ)|Z) > 0 as well. Thus, we arrive at our contradicition

and so c ≥ 1, as desired.

2

In the proof of 4.3.1, we will use the same basic strategy while considering a family of

pairs and using a more general vanishing theorem.

57



3.3 Semi-Log Canonical Pairs

The concept of a pair (X,∆) being semi-log canonical (or slc) comes from generalizing to

the non-normal setting. This can be done either by working with the normalization of the

pair or by working with semiresolutions which somehow preserve the “double locus” of X.

However, some care must be taken in discussing the canonical class on singular varieties.

A nice discussion appears in [13, p.35], which we summarize here. Suppose that X is S2

and all codimension 1 points of X are regular or ordinary nodes. Thus, we have that X is

Gorenstein away from a codimension 2 locus. This allows us to define a dualizing sheaf ω◦X

away from this locus, which we may then extend to all of X by the S2 property. We take

this coherent sheaf as our canonical sheaf with corresponding Weil divisor KX .

We can now give the definition of a semi-log canonical pair from [19, p.193-194].

Definition 3.3.1. Let X be a scheme that is S2 and whose codimension 1 points are ei-

ther regular or ordinary nodes (a so called demi-normal scheme). Let X have normalization

ν : Xν → X and conductors D ⊂ X and Dν ⊂ Xν. Let ∆ be an effective Q-divisor whose

support does not contain any irreducible component of D and ∆ν the divisorial part of ν−1(∆).

The pair (X,∆) is called semi-log canonical if

1. KX + ∆ is Q-Cartier, and

2. One of the following equivalent conditions holds:

• (Xν , Dν + ∆ν) is log canonical

• a(E,X,∆) ≥ −1 for every exceptional divisor E of a birational morphism f :

Y → X such that Y is regular at the generic point of E.
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where a(E,X,∆) is the coefficient appearing in the formula

KY + f−1∗ ∆ ∼Q f
∗(KX + ∆) +

∑
Ei exceptional

a(Ei, X,∆)Ei

In the proof of 4.3.1, we will use the first of the equivalent conditions above as our

characterization of being semi-log canonical. We conclude this section with two examples.

The following are compactified jacobians and should be viewed as motivation for 4.3.1. For

details on computing the compactified jacobian of a stable curve, see [2].

Example 3.3.1. The compactified jacobian of a rational curve C with one node is again C

with Θ a smooth point on C. This is described below in the simple toric picture where we

identify the two endpoints of the polytope. Θ appears as a point in the interior.

Figure 3.1: Compactified jacobian of P1 with node.

Thus the pair (Cν , Dν + Θν) is just a smooth P1 with three points which is log canonical

since the identity map is a log resolution.

Example 3.3.2. The compactified jacobian of a rational curve C with two nodes is given

by a P1 × P1 with two pairs of lines identified. This is described below in the toric picture

where we identify the opposite edges of the polytope. This will again be semi-log canonical

since Θν +Dν is normal crossing.
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Θ

Figure 3.2: Compactified jacobian of P1 with 2 nodes.
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Chapter 4

The Singularities of Degenerate

Abelian Varieties

4.1 Stable Semiabelic Pairs

In [1] Alexeev discusses the moduli of semiabelic pairs. Here we will be concerned with

principally polarized stable semiabelic pairs, objects introduced in the compactification of

abelic pairs. More specifically we will consider the so-called “smoothable” pairs which appear

as limits of one-parameter families of principally polarized abelian varieties. A smoothable

pair (X0,Θ0) is one such that there is a family X → S where S is a smooth curve with

generic fiber a principally polarized abelian variety and special fiber (X0,Θ0). What follows

is a summary of the pertinent definitions and results from [1].

A semiabelian variety is a group variety G which is an extension

1→ T → G→ A→ 0
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of an abelian variety A by a torus T ∼= Gr
m (where Gm is the multiplicative group of the

ground field). A semiabelic variety is a variety P together with an action of a semiabelian

variety G such that:

1. P is normal.

2. The action has only finitely many orbits.

3. The stabilizer of every point is connected, reduced and lies in the toric part T of G.

In the special case that G is abelian, we say that P is an abelic variety.

Just like in the story of curves, one would like to generalize these definitions to make

“stable” versions of these objects. A stable semiabelic variety is a variety P along with an

action of a semiabelian variety G of the same dimension satisfying the same conditions except

condition (1) is weakened to require only seminormality. We say that a reduced scheme P

is seminormal if every proper bijective morphism f : P ′ → P with reduced P ′ inducing

isomorphisms on the residue fields κ(p′) ⊃ κ(p) for each p ∈ P is an isomorphism.

A stable semiabelic variety is polarized if it is projective and comes with an ample in-

vertible sheaf L. The degree of the polarization is h0(L). A stable semiabelic pair (P,Θ)

is a stable projective semiabelic variety P and an effective ample Cartier divisor Θ which

does not contain any G-orbits. P is polarized by L = OP (Θ). We define an abelic pair

analogously as a projective abelic variety (also called an abelian torsor) with an effective

ample Cartier divisor.

In [1] we see that such pairs correspond to certain complexes of lattice polytopes refer-

enced by Λ/Y where Λ ∼= Zg is a lattice, Y ⊂ Λ is a subgroup and Λ is a trivial Λ-torsor.

Analysis of such pairs is categorized by type which is determined by Λ and Y . For this thesis

we will be concerned with the principally polarized case, which corresponds to the case when

|Λ/Y | = 1.
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In [1], Alexeev establishes the following facts concerning the moduli of abelic and semi-

abelic pairs:

Theorem 4.1.1. 1. The moduli stack APg,d of abelic pairs (P,Θ) of degree d is a sep-

arated Artin stack with finite stabilizers and comes with a natural map of relative

dimension d− 1 to the stack Ag,d of polarized abelian varieties [1, Thm.1.2.2].

2. APg,d has a coarse moduli space APg,d which is a separated scheme and comes with a

natural projective map of relative dimension d− 1 to Ag,d [1, Thm.1.2.2].

3. In the principally polarized case (that is, when d = 1), we have APg = Ag and APg =

Ag [1, Thm.1.2.3].

4. The component APg,d of the moduli stack of semiabelic pairs containing APg,d and

pairs of the same numerical type is a proper Artin stack with finite stabilizers [1,

Thm.1.2.16].

5. It has a coarse moduli space AP g,d as a proper algebraic space [1, Thm.1.2.16].

6. In the principally polarized case (when Y = Λ) the toroidal compactification of Ag

for the second Voronoi decomposition is isomorphic to the normalization of the main

irreducible component of AP g,1, the one containing Ag = APg [1, Thm.1.2.17].

In the above paper there are also many facts about principally polarized stable semiabelic

pairs, some of which are implicit in the arguments. Below we summarize and make explicit

the ones that we will use in our analysis.

Theorem 4.1.2. Let (X0,Θ0) be a stable semi-abelic pair that appears as the special fiber

of a flat family π : (X ,Θ) → S where S is a smooth curve and a general fiber of π is a

principally polarized abelian variety.

1. KX0 ∼ 0, where ∼ denotes linear equivalence.

63



2. There is an ε > 0 such that (X0, εΘ0) is semi-log canonical.

3. h0(X0,OX0(Θ0)) = |Λ/Y | = 1.

4. H i(X0,OX0(Θ0)) = 0 for all i > 0 [1, Thm.5.4.1].

These statements require some remarks.

(1) By the work of [22], there is a toric model of (X,X0). That is, we may write (X,X0) =

(Y, Y0)/Zr where Y is toric and Y0 is the toric boundary. Thus, by adjunction KY0 ∼ 0 and

so, since the action is Zr-equivariant, we also have KX0 ∼ 0.

(2) By [1, Thm.1.2.14], X0 is Cohen-Macaulay and hence S2 and so the existence of an

ε > 0 such that (X0, εΘ0) is semi-log canonical amounts to showing that (in the notation of

definition 3.3.1) KX0 +Θ0 is Q-Cartier, (Xν
0 , D

ν) is log canonical and Θν
0 does not contain any

log canonical centers of (Xν
0 , D

ν). KX0 + Θ0 is Q-Cartier since Θ0 is Cartier and KX0 ∼ 0.

(Xν
0 , D

ν) is log canonical because KXν
0

+ Dν ∼ 0 and (Xν
0 , D

ν) is a toric pair. Finally, by

definition, Θ0 does not contain any G-orbits, and the log canonical centers of (Xν
0 , D

ν) are

precisely the closures of the codimension ≥ 1 orbits. This implies in particular that X0

is a demi-normal scheme such that Θ0 does not contain any irreducible component of the

conductor of normalization. By continuity of discrepancies, the pair (X0, εΘ0) is semi-log

canonical for 0 < ε� 1.

(3) Since we work with principally polarized pairs, the condition h0(X,OX(Θ)) = |Λ/Y | =

1 is satisfied by definition.

(4) This vanishing result is the most important property that we will need in our proof

of the main result. A complete proof of this fact is given in [1, Thm.5.4.1].
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4.2 Vanishing

In this part of the thesis we aim to prove that principally polarized stable semiabelic pairs

are semi-log canonical, and it has been mentioned that we will proceed in analogy with the

proof of Theorem 3.2.2. However, the vanishing theorem we will need to apply is due to

Fujino [9, Thm.6.3], which we use only with Q-divisors.

Theorem 4.2.1. Let Y be a smooth variety and let B be a boundary R-divisor such that

SuppB is simple normal crossing. Let f : Y → X be a projective morphism and let L be

a Cartier divisor on Y such that L − (KY + B) is f − semi − ample. Let π : X → S be

a projective morphism. Assume that L − (KX + B) ∼R f ∗H for some π-ample R-Cartier

R-divisor H on X. Then Rpπ∗R
qf∗OY (L) = 0 for every p > 0 and q ≥ 0.

We are now ready to state and prove the main result of the paper.

4.3 Statement and proof of main result

We work now over an algebraically closed field of characteristic zero.

Theorem 4.3.1. Let (X0,Θ0) be a stable semi-abelic pair that is a one-parameter degener-

ation. That is, we have a flat family π : (X ,Θ) → S where S is a smooth curve, a general

fiber of π is a principally polarized abelian variety, and the special fiber of π is (X0,Θ0).

Then (X0,Θ0) is semi-log canonical.

Proof: As we have seen in Theorem 4.1.2, we already have that X0 is demi-normal,

KX0 + Θ0 is Cartier, and Θ0 does not contain any irreducible component of the conductor

of normalization. Thus, by adjunction (X0,Θ0) is semi-log canonical if (X ,Θ + X0) is log

canonical in a neighborhood of X0. So, it would suffice to show that (X ,Θ + (1 − ε)X0) is

log canonical for every 0 < ε� 1.
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Let f : Y → X be a resolution of singularities so that Y is smooth and X̂0 ∪ Θ̂ ∪ E is a

simple normal crossing divisor where X̂0 = f−1∗ (X0), Θ̂ = f−1∗ (Θ), and E is the exceptional

locus of f . Such a resolution is guaranteed by Hironaka [15].

Fix 0 < ε � 1 and put d = 1 − ε. Let c be the log canonical threshold so that

(X , c(Θ + dX0)) is log canonical but (X , c′(Θ + dX0)) is not log canonical for any c′ > c.

Seeking a contradiction, suppose that c < 1 and put cd = d′. This means that we may

write the following equation:

KY + cΘ̂ + d′X̂0 = f ∗(KX + cΘ + d′X0) +D

where D is exceptional. Write D as D = B − A −∆ where A,B,∆ are effective, A,B are

integral and nonzero, b∆c = 0, and A,B have no irreducible components in common.

Now the equation becomes:

KY + cΘ̂ + d′X̂0 = f ∗(KX + cΘ + d′X0) +B − A−∆

Which we can rewrite as:

−f ∗(KX + cΘ + d′X0) = B − A− (KY + cΘ̂ + d′X̂0 + ∆)

Adding f ∗(KX + Θ +KX0) to each side:

f ∗((1− c)Θ + (1− d′)X0) = (f ∗(KX + Θ + X0) +B − A)− (KY + cΘ̂ + d′X̂0 + ∆)

Now we would like to apply Theorem 4.2.1 to the above situation. The conclusion is:

Rpπ∗R
qf∗OY(f ∗(KX + Θ + X0) +B − A) = 0 (4.1)
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for q ≥ 0 and p > 0.

Let I be the ideal given by f∗OY(B − A) ⊂ OX and let Z ⊂ X be the subscheme

determined by I. First let’s see that I is in fact a non-trivial ideal sheaf. Since B and

A are exceptional, f(B) = ZB and f(A) = ZA in X are of codimension ≥ 2. Let s ∈

f∗OY(B−A)(U) for some open set U ⊂ X . So s is a function on f−1(U) which may have poles

of various orders on the different components of B and must have zeros on all components

of A. Since f∗OY = OX , s descends to a unique regular function s′ on X − ZB. Moreover,

since the codimension of ZB in X is at least 2 and X is S2, we may extend s′ uniquely to

a regular function on all of X . Moreover, if we had two functions s1, s2 ∈ f∗OY(B −A)(U),

which agreed away from B, then by continuity they would agree on B. Hence, we see that

f∗OY(B − A) is an ideal of OX .

Consider the short exact sequence:

0→ I → OX → OZ → 0

Tensoring by OX (Θ) we get:

0→ OX (Θ)⊗ I → OX (Θ)→ OZ(Θ)→ 0

Applying π∗, we arrive at the long exact sequence:

0→ π∗(OX (Θ)⊗ I)→ π∗(OX (Θ))
ρ−→ π∗(OZ(Θ))→ R1π∗(OX (Θ)⊗ I)→ . . .

By (4.1), we have R1π∗(OX (KX + Θ + X0) ⊗ I) = 0, and we would like to conclude that

R1π∗(OX (Θ)⊗ I) = 0. Indeed, we may write OX (KX + X0) = π∗L for some line bundle L.
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Using the projection formula we have:

0 = R1π∗(OX (KX + Θ + X0)⊗ I)

= R1π∗(OX (Θ)⊗ I ⊗ π∗L)

= R1π∗(OX (Θ)⊗ I)⊗ L

Since L is a line bundle, R1π∗(OX (Θ) ⊗ I) ⊗ L = 0 implies that R1π∗(OX (Θ) ⊗ I) = 0.

Thus, we have that ρ : π∗(OX (Θ))→ π∗(OZ(Θ)) is surjective.

Let us now consider the sheaf π∗OX (Θ). From Theorem 4.1.2 Part (4), we have that

H i(X0,OX0(Θ)) = 0 for all i > 0. Thus, by the cohomology and base change formula (see

for example [14, III.12.11]) π∗OX (Θ) is locally free of rank 1. Moreover, all sections of

π∗(OX (Θ)) vanish on Z (since Z ⊂ Θ). Thus, ρ is in fact the zero map since it is merely

the restriction to Z. We will reach a contradiction if we can show that π∗(OZ(Θ)) is not the

zero sheaf.

Indeed, if τ is a general translation of X , we will have τ(Θ) 6⊂ Z. Specifically, τ is a

section of a semiabelian scheme G over S. That is, G is a smooth separated group scheme

over S such that every geometric fiber Gp is a semiabelian variety over κ(p). There is a

question as to the existence of such a section, and indeed, such a section may not exist.

However, a section does exist after an extension G×S S ′ → S ′. Taking τ to be such a section

we have τ(Θ) 6⊂ Z as desired. Hence, H0(S, π∗(OZ(τΘ))) 6= 0 and so by semi-continuity

H0(S, π∗(OZ(Θ))) 6= 0 as well. We have thus arrived at a contradiction and the proof is

complete.

2
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[14] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate

Texts in Mathematics, No. 52.

[15] Heisuke Hironaka. Resolution of singularities of an algebraic variety over a field of

characteristic zero. I, II. Ann. of Math. (2) 79 (1964), 109–203; ibid. (2), 79:205–326,

1964.

70



[16] Jun-ichi Igusa. A desingularization problem in the theory of Siegel modular functions.

Math. Ann., 168:228–260, 1967.

[17] Yujiro Kawamata. A generalization of Kodaira-Ramanujam’s vanishing theorem. Math.

Ann., 261(1):43–46, 1982.

[18] János Kollár. Shafarevich maps and automorphic forms. M. B. Porter Lectures. Prince-

ton University Press, Princeton, NJ, 1995.

[19] János Kollár. Singularities of the minimal model program, volume 200 of Cambridge

Tracts in Mathematics. Cambridge University Press, Cambridge, 2013. With a collab-

oration of Sándor Kovács.
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