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This book on team tutoring is the sixth in a planned series of books that examine key topics (e.g., learner 

modeling, instructional strategies, authoring, domain modeling, assessment, impact on learning, team tu-

toring, machine learning for self-improving systems, potential standards, and learning effect evaluation 

methods) in intelligent tutoring system (ITS) design. This book focuses on team tutoring. The discussion 

chapters in this book examine topics through the lens of the Generalized Intelligent Framework for Tutoring 

(GIFT) (Sottilare, Brawner, Goldberg & Holden, 2012; Sottilare, Brawner, Sinatra, & Johnston, 2017). 

GIFT is a modular, service-oriented architecture created to reduce the cost and skill required to author ITSs, 

distribute ITSs, manage instruction within ITSs, and evaluate the effect of ITS technologies on learning, 

performance, retention, transfer of skills, and other instructional outcomes.  

Along with this volume, the first five books in this series, Learner Modeling (ISBN 978-0-9893923-0-3), 

Instructional Management (ISBN 978-0-9893923-2-7), Authoring Tools (ISBN 978-0-9893923-6-5), Do-

main Modeling (978-0-9893923-9-6) and Assessment Methods (ISBN 978-0-9977257-2-8) are freely avail-

able at www.GIFTtutoring.org and on Google Play. 

This introductory chapter provides a description of basic tutoring functions, provides a glimpse of assess-

ment best practices, and examines the motivation for standards in the design, authoring, instruction, and 

evaluation of ITS tools and methods. We subsequently introduce GIFT design principles for individuals 

and teams.  We believe this book can be used as a design tool for team tutoring. Before we discuss aspects 

of tutoring and ITSs, it is important to clarify what we and other stakeholders mean by teams, teamwork, 

team taskwork, and collaborative learning. 

Teams, Teamwork, Team Taskwork, and Collaborative Learning 

According to BusinessDictionary.com (2018), a team is “a group of people with a full set of complementary 

skills required to complete a task, job, or project. Team members (1) operate with a high degree of interde-

pendence, (2) share authority and responsibility for self-management, (3) are accountable for the collective 

performance, and (4) work toward a common goal and shared rewards(s). A team becomes more than just 

a collection of people when a strong sense of mutual commitment creates synergy, thus generating perfor-

mance greater than the sum of the performance of its individual members.” While it is a highly complex 

task to design ITSs to teach individual learners, it is exponentially more difficult to design ITSs to instruct 

teams.   

According Salas, a widely recognized researcher on teams, teamwork is the “coordination, cooperation, and 

communication among individuals to achieve a shared goal” (Salas, 2015, p.5), where teamwork behaviors 

are largely domain-independent.  Teamwork includes all the social skills needed to function as a team and 

may include teambuilding whose goal is to strengthen the coordination, cooperation, communication, 

coaching, conflict management, cohesion, and collective efficacy of the group (Salas, 2015).  Teamwork is 

a necessary prerequisite to satisfactory taskwork performance (Van Berio, 1997). Team taskwork is a subset 

of team training that is focused on developing proficiency in task domains required for a specific aspect of 

any individual team member’s job (Salas, 2015).  Team taskwork is a domain-dependent learning activity 

and may be confused with the concept of teambuilding or teamwork (Van Berio, 1997). 

Collaborative learning (also known as cooperative learning) is “a situation in which two or more people 

learn or attempt to learn something together” (Dillenbourg, 1999, p. 1) where the process of collaborative 

learning reinforces active participation (Van Berio, 1997).  Collaborative learning generally focuses on a 

learning goal and is primarily domain-dependent and, in the modern world, frequently includes computer-

supported collaborative learning (CSCL) activities. Collaborative problem solving has the additional con-

straint that a problem needs to be solved that can be objectively assessed with respect to the quality of the 

solution (Graesser et al., 2017; OECD).  

http://www.gifttutoring.org/
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Teamwork and collaboration have been increasingly recognized as being important 21st century skills in 

the modern world that is increasing in complexity to the point where a single individual cannot complete 

many tasks alone. Instead, a group of people with different roles, skills and perspectives need to pool their 

resources in an interdependent manner (OECD, 2017). Interestingly, these skills have not been systemati-

cally integrated with the curriculum between kindergarten and college (Fiore et al., 2017; OECD, 2017) so 

there is a need to improve teamwork and collaboration in both schools and the workforce (Fiore, Graesser, 

& Greiff, 2018). This is where ITS can come to the rescue.  An ITS can improve teamwork and collabora-

tion in addition to the subject matters under focus. Next, we examine the major components of ITSs. 

Components and Functions of Intelligent Tutoring Systems 

It is generally accepted that an ITS has four major components (Elson-Cook, 1993; Nkambou, Mizoguchi 

& Bourdeau, 2010; Graesser, Hu, & Sottilare, 2018; Psotka & Mutter, 2008; Sleeman & Brown, 1982; 

VanLehn, 2006; Woolf, 2009): the domain model, the student model, the tutoring model, and the user-

interface model. GIFT similarly adopts this four-part distinction, but with slightly different corresponding 

labels (domain module, learner module, pedagogical module, and tutor-user interface) and the addition of 

the sensor module, which can be viewed as an expansion of the user interface. In this volume, we also 

introduce the team model to support assessment of team learning objectives and groups performing collab-

orative tasks. 

(1) The domain model contains the set of skills, knowledge, and strategies/tactics of the topic being 

tutored. It normally contains the ideal expert knowledge and also the bugs, mal-rules, and miscon-

ceptions that students periodically exhibit.  

(2) The learner model consists of the cognitive, affective, motivational, and other psychological states 

that evolve during the course of learning. Since learner performance is primarily tracked in the 

domain model, the learner model is often viewed as an overlay (subset) of the domain model, which 

changes over the course of tutoring. For example, “knowledge tracing” tracks the learner’s progress 

from problem to problem and builds a profile of strengths and weaknesses relative to the domain 

model (Anderson, Corbett, Koedinger & Pelletier, 1995). An ITS may also consider psychological 

states outside of the domain model that need to be considered as parameters to guide tutoring.  

(3) The tutor model (also known as the pedagogical model or the instructional model) takes the do-

main and learner models as input and selects tutoring strategies, steps, and actions on what the tutor 

should do next in the exchange. In mixed-initiative systems, the learners may also take actions, ask 

questions, or request help (Aleven, McClaren, Roll & Koedinger, 2006; Rus & Graesser, 2009), 

but the ITS always needs to be ready to decide “what to do next” at any point and this is determined 

by a tutoring model that captures the researchers’ pedagogical theories.  

(4) The user interface interprets the learner’s contributions through various input media (speech, typ-

ing, clicking) and produces output in different media (text, diagrams, animations, agents). In addi-

tion to the conventional human-computer interface features, some recent systems have incorporated 

natural language interaction (Graesser, 2016; Johnson & Lester, 2016; Nye, Graesser, & Hu, 2014), 

speech recognition (D’Mello, Graesser & King, 2010; Litman, 2013), and the sensing of learner 

emotions (Baker, D’Mello, Rodrigo & Graesser, 2010; D’Mello & Graesser, 2010; Goldberg, Sot-

tilare, Brawner, Holden, 2011).  

(5) The team model, an optional component of an ITS, is the group equivalent of an individual learner 

model.  The team model must be able to track progress toward team task learning objectives for 

training or collaborative learning goals for learner development or problem-solving, but also has 
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the added complexity of monitoring teamwork states that moderate or influence team and individ-

ual learning and performance (Sottilare et al, 2017).  Team models are more complex than individ-

ual learner models since it is not as simple as adding up individual learner performances to find the 

team’s level of performance.    

The designers of a tutor model must make decisions on each of the various major components in order to 

create an enhanced learning experience through well-grounded pedagogical strategies (optimal plans for 

action by the tutor) that are selected based on learner states and traits and that are delivered to the learner 

as instructional tactics (optimal actions by the tutor). Next, tactics are chosen based on the previously se-

lected strategies and instructional context (the conditions of the training at the time of the instructional 

decision). This is part of the learning effect model (Sottilare, 2012; Fletcher & Sottilare, 2013; Sottilare, 

2013; Sottilare, Ragusa, Hoffman & Goldberg, 2013), which has been updated and described in the next 

section. 

Principles of Learning and Instructional Techniques, Strategies, and Tactics 

Instructional techniques, strategies, and tactics play a central role in the design of GIFT. Instructional tech-

niques represent instructional best practices and principles from the literature, many of which have yet to 

be implemented within GIFT at the writing of this volume. Examples of instructional techniques include, 

but are not limited to, error-sensitive feedback, mastery learning, adaptive spacing and repetition, and fad-

ing worked examples. Others are represented in the next section of this introduction. It is anticipated that 

techniques within GIFT will be implemented as software-based agents where the agent will monitor learner 

progress and instructional context to determine if best practices (agent policies) have been adhered to or 

violated. Over time, the agent will learn to enforce agent policies in a manner that optimizes learning and 

performance. 

Some of the best instructional techniques have yet to be implemented in GIFT, but many instructional 

strategies and tactics have been implemented. Instructional strategies (plans for action by the tutor) are 

selected based on changes to the learner’s state (e.g., cognitive, affective, and physical). If a sufficient 

change in any learner’s state occurs, this triggers GIFT to select a generic strategy such as providing feed-

back. The instructional context along with the instructional strategy then triggers the specific selection of 

an instructional tactic (an action to be taken by the tutor). If the strategy is to “provide feedback,” then the 

tactic might be to “provide feedback on the error committed during the presentation of instructional concept 

B in the chat window during the next turn.” Tactics detail what is to be done, why, when, and how in the 

specific domain.  An adaptive, intelligent learning environment needs to select the right instructional strat-

egies at the right time, based on its model of the learner in specific conditions and the learning process in 

general. Such selections should be taken to maximize deep learning and motivation while minimizing train-

ing time and costs.  

Motivations for Intelligent Tutoring System Standards 

Some subject matters are difficult to learn without the scaffolding of a tutor, but unfortunately human tutors 

are not available 24-7 for point-of-need training. ITSs have been designed to fill this gap.  Moreover, ITSs 

have been shown to be as effective as expert human tutors (VanLehn, 2011) in one-to-one tutoring for well-

defined domains (e.g., mathematics or physics) and significantly better than traditional classroom training 

environments and students reading texts for an equivalent amount of time (Graesser, Rus, & Hu, 2017). 

ITSs have demonstrated significant promise, but 50 years of research have been unsuccessful in making 

ITSs ubiquitous in military training or the tool of choice in our educational system. This begs the question: 

“Why?” 
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Part of the answer lies in the fact that the availability and use of ITSs have been constrained by their high 

development costs, their limited reuse, a lack of standards, and their inadequate adaptability to the needs of 

learners. Educational and training technologies like ITSs are primarily investigated and developed in a few 

key environments: industry, academia, and government including military domains. Each of these environ-

ments has its own challenges and design constraints. The application of ITSs to military domains is further 

hampered by the complex and often ill-defined environments in which the US military operates today. ITSs 

are often built as domain-specific, unique, one-of-a-kind, largely domain-dependent solutions focused on a 

single pedagogical strategy (e.g., model tracing or constraint-based approaches) when complex learning 

domains may require novel or hybrid approaches. Therefore, a modular ITS framework and standards are 

needed to enhance reuse, support authoring, optimize instructional strategies, and lower the cost and skillset 

needed for users to adopt ITS solutions for training and education. It was out of this need that the idea for 

GIFT arose.  

GIFT has three primary functions: authoring, instructional management, and evaluation. First, it is a frame-

work for authoring new ITS components, methods, strategies, and whole tutoring systems. Second, GIFT 

is an instructional manager that integrates selected instructional theory, principles, and strategies for use in 

ITSs. Finally, GIFT is an experimental testbed used to evaluate the effectiveness and impact of ITS com-

ponents, tools, and methods. GIFT is based on a combination of learner-centric, instructor-centric, and 

interaction-centric approaches with the goal of improving linkages in the updated adaptive tutoring learning 

effect model (see Figure 1; Sottilare, Burke, Salas, Sinatra, Johnston, & Gilbert, 2017).  

 

Figure 1. Updated learning effect model for individual learners (Sottilare et al., 2017)  

 

A deeper understanding of the learner’s behaviors, traits, and preferences that are collected through perfor-

mance, physiological and behavioral sensors, and surveys will allow for more accurate evaluation of the 

learner’s cognitive and affective states (e.g., engagement level, confusion, frustration). This will result in a 

better and more persistent model of the learner. To enhance the adaptability of the ITS, methods are needed 

to accurately classify learner states (e.g., cognitive, affective, psychomotor, social) and select optimal in-

structional strategies given the learner’s current and predicted states. A similar chain of interactions between 

a team and an ITS can be constructed for teams working together collaboratively for a common purpose 

(see Figure 2, Sottilare, Burke, Salas, Sinatra, Johnston, & Gilbert, 2017). This representation is referred to 

as a learning effect model (LEM). 
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Figure 2. Updated learning effect model for teams (LEM; Sottilare et al., 2017)  

 

A more comprehensive individual learner model or team model will allow an ITS to adapt more appropri-

ately to address the learner’s/team’s needs by changing the instructional strategy (e.g., content, flow, or 

feedback). An instructional strategy that is better aligned to each learner’s/team’s needs is more likely to 

influence their learning gains in a positive way. It is with the goal of optimized learning gains in mind that 

the design principles for GIFT were formulated. That being said, it would also be worthwhile to consider 

other team goals, such as the quality of solutions in collaborative problem solving, the quality of decisions 

in group decision making, and the quality of products in collaborative design.   

This version of the learning effect model has been updated to gain understanding of the effect of optimal 

instructional tactics and instructional contexts (both part of the domain model) on specific desired out-

comes, including knowledge and skill acquisition, performance, retention, and transfer of skills from train-

ing or tutoring environments to operational contexts (e.g., from practice to application). The feedback loops 

in Figure 1 and 2 have been added to identify tactics as either a change in instructional context or interaction 

with the learner. This allows the ITS to adapt to the need of the individual learner or the team. Consequently, 

the ITS improves over time by reinforcing learning mechanisms. 

GIFT Design Principles 

The GIFT methodology for developing a modular, computer-based tutoring framework for training and 

education considered major design goals, anticipated uses, and applications. The design process also con-

sidered enhancing one-to-one (individual) and one-to-many (collective or team) tutoring experiences         

beyond the state of practice for ITSs today. A significant focus of the GIFT design was on maximizing the 

number of domain-independent elements resulting in domain-dependent element occurring only in the do-

main module only. This is a design tradeoff to foster reuse through interoperability and allows ITS decisions 

and actions to be made across any/all domains of instruction. 

One design principle adopted in GIFT is that each module should be capable of gathering information from 

other modules according to the design specification. Designing to this principle resulted in standard mes-

sage sets and message transmission rules (i.e., request-driven, event-driven, or periodic transmissions). For 

instance, the pedagogical module is capable of receiving information from the learner module to develop 
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courses of action for future instructional content to be displayed, manage flow and challenge level, and 

select appropriate feedback. Changes to the learner’s state trigger messages to the pedagogical module, 

which then recommends general courses of action (e.g., ask a question or prompt the learner for more 

information) to the domain module, which provides a domain-specific intervention (e.g., what is the next 

step?).  

Another design principle adopted within GIFT is the separation of content from the executable code (Patil 

& Abraham, 2010). Data and data structures are placed within models and libraries, while software pro-

cesses are programmed into interoperable modules. Efficiency and effectiveness goals (e.g., accelerated 

learning and enhanced retention) were considered to address the time available for military training and the 

renewed emphasis on 24-7 self-regulated learning. An outgrowth of this emphasis on efficiency and effec-

tiveness led Dr. Sottilare to seek external collaboration and guidance. In 2012, ARL with the University of 

Memphis developed expert workshops of senior tutoring system scientists from academia and government 

to influence the GIFT design goals moving forward. Expert workshops have been held each year since 2012 

resulting in volumes in the Design Recommendations for Intelligent Tutoring Systems series the following 

year. The learner modeling expert workshop was completed in September 2012 and Volume 1 followed in 

July 2013. An expert workshop on instructional management was completed in July 2013 and Volume 2 

followed in June 2014. The authoring tools expert workshop was completed in June of 2014 and Volume 

3 was published in June 2015. The domain modeling expert workshop was held in June 2015 and Volume 

4 was published in July 2016. The assessment expert workshop was held in May 2016 and Volume 5 was 

published in June 2017.  The team tutoring expert workshop was held in May 2017 and is published in this 

Volume 6. We recently conducted a workshop on machine learning techniques for adaptive instruction 

(self improving systems).  Future expert workshops are planned for adaptive instructional system (AIS) 

standards, and learning effect evaluation methods. 

Design Goals and Anticipated Uses 

GIFT may be used for a number of purposes, with the primary ones enumerated below: 

1. An architectural framework with modular, interchangeable elements and defined relationships to 

support stand-alone tutoring or guided training if integrated with a training system  

2. A set of specifications to guide ITS development 

3. A set of exemplars or use cases for GIFT to support authoring, reuse, and ease-of-use 

4. A technical platform or testbed for guiding the evaluation, development, and refinement of concrete 

systems 

The use cases have been distilled down into three primary functional areas: authoring, instructional man-

agement, and evaluation function.  Discussed below are the purposes, associated design goals, and antici-

pated uses for each of the GIFT functions. 

GIFT Authoring Function 

The purpose of the GIFT authoring function is to provide technology (tools and methods) to make it afford-

able and easier to build ITSs and ITS components. Toward this end, a set of authoring interfaces with 

backend XML configuration tools continues to be developed to allow for data-driven changes to the    design 

and implementation of GIFT-generated ITSs. The design goals for the GIFT authoring function have been 
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adapted from Murray (1999, 2003) and Sottilare and Gilbert (2011). The GIFT authoring design goals are 

as follow:  

 Decrease the effort (time, cost, and/or other resources) for authoring and analyzing ITSs by auto-

mating authoring processes, developing authoring tools and methods, and developing standards to 

promote reuse. 

 Decrease the skill threshold by tailoring tools for specific disciplines (e.g., instructional designers, 

training developers, and trainers) to author, analyze, and employ ITS technologies. 

 Provide tools to aid designers, authors, trainers, and researchers in organizing their knowledge. 

 Support (structure, recommend, or enforce) good design principles in pedagogy through user            

interfaces and other interactions. 

 Enable rapid prototyping of ITSs to allow for rapid design/evaluation cycles of prototype capabil-

ities. 

 Employ standards to support rapid integration of external training/tutoring environments (e.g., sim-

ulators, serious games, slide presentations, transmedia narratives, and other interactive multime-

dia). 

 Develop/exploit common tools and user interfaces to adapt ITS design through data-driven means. 

 Promote reuse through domain-independent modules and data structures. 

 Leverage open-source solutions to reduce ITS development and sustainment costs. 

 Develop interfaces and gateways to widely-used commercial and academic tools (e.g., games, sen-

sors, toolkits, virtual humans). 

As a user-centric architecture, anticipated uses for GIFT authoring tools are driven largely by the anticipated 

users, which include learners, domain experts, instructional system designers, training and tutoring system 

developers, trainers and teachers, and researchers. In addition to user models and graphical user interfaces 

(GUIs), GIFT authoring tools include domain-specific knowledge configuration tools, instructional strategy 

development tools, and a compiler to generate executable ITSs from GIFT components in a variety of for-

mats (e.g., PC, Android, and iPad).  

Within GIFT, domain-specific knowledge configuration tools permit authoring of new knowledge elements 

or reusing existing (stored) knowledge elements. Domain knowledge elements include learning objectives, 

media, task descriptions, task conditions, standards and measures of success, common misconceptions, 

feedback library, and a question library, which are informed by instructional system design principles that, 

in turn, inform concept maps for lessons and whole courses. The task descriptions, task conditions, stand-

ards and measures of success, and common misconceptions may be informed by an expert or ideal learner 

model derived through a task analysis of the behaviors of a highly skilled user. ARL is investigating tech-

niques to automate this expert model development process to reduce the time and cost of developing ITSs. 

In addition to feedback and questions, supplementary tools are anticipated to author explanations, summar-

ies, examples, analogies, hints, and prompts in support of GIFT’s instructional management function. 
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GIFT Instructional Management Function 

The purpose of the GIFT instructional management function is to integrate pedagogical best practices in 

GIFT-generated ITSs. The modularity of GIFT will also allow GIFT users to extract pedagogical models 

for use in tutoring/training systems that are not GIFT-generated. GIFT users may also integrate pedagogical 

models, instructional strategies, or instructional tactics from other tutoring systems into GIFT. The design 

goals for the GIFT instructional management function are the following: 

 Support ITS instruction for individuals and small teams in local and geographically distributed 

training environments (e.g., mobile training), and in both well-defined and ill-defined learning do-

mains. 

 Provide for comprehensive learner models that incorporate learner states, traits, demographics, and 

historical data (e.g., performance) to inform ITS decisions to adapt training/tutoring.  

 Support low-cost, unobtrusive (passive) methods to sense learner behaviors and physiological 

measures and use these data along with instructional context to inform models to classify (in near 

real time) the learner’s states (e.g., cognitive and affective). 

 Support both macro-adaptive strategies (adaptation based on pre-training learner traits) and        mi-

cro-adaptive instructional strategies and tactics (adaptation based learner states and state changes 

during training). 

 Support the consideration of individual differences where they have empirically been documented 

to be significant influencers of learning outcomes (e.g., knowledge or skill acquisition, retention, 

and performance). 

 Support adaptation (e.g., pace, flow, and challenge level) of the instruction based the domain and 

task classification (e.g., cognitive learning, affective learning, psychomotor learning, and social 

learning). 

 Model appropriate instructional strategies and tactics of expert human tutors to develop a             

comprehensive pedagogical model. 

To support the development of optimized instructional strategies and tactics, GIFT is heavily grounded in 

learning theory, tutoring theory, and motivational theory. Learning theory applied in GIFT includes           

conditions of learning and theory of instruction (Gagne, 1985), component display theory (Merrill, Reiser, 

Ranney & Trafton, 1992), cognitive learning (Anderson & Krathwohl, 2001), affective learning (Krath-

wohl, Bloom & Masia, 1964; Goleman, 1995), psychomotor learning (Simpson, 1972), and social learning 

(Sottilare, Holden, Brawner, & Goldberg, 2011; Soller, 2001). Aligning with our goal to model expert hu-

man tutors, GIFT considers the intelligent, nurturant, Socratic, progressive, indirect, reflective, and   en-

couraging (INSPIRE) model of tutoring success (Lepper, Drake, & O’Donnell-Johnson, 1997) and the tu-

toring process defined by Person, Kreuz, Zwaan, and Graesser (1995) and Graesser (2016) in the develop-

ment of GIFT instructional strategies and tactics.  Recently, GIFT’s instructional management and author-

ing capacity was expanded to include the Interactive, Constructive, Active, and Passive (ICAP) framework 

(Chi & Wylie, 2014) in order to link cognitive engagement to active learning outcomes.  

Human tutoring strategies have been documented by observing tutors with varying levels of expertise. For 

example, Lepper’s INSPIRE model is an acronym that highlights the seven critical characteristics of suc-

cessful tutors. Graesser and Person’s (1994) 5-step tutoring frame is a common pattern of the tutor-learner 
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interchange in which the tutor asks a question, the learner answers the question, the tutor gives short feed-

back on the answer, then the tutor and learner collaboratively improve the quality of (or embellish) the 

answer, and finally, the tutor evaluates whether the learner understands the answer. Cade, Copeland, Person, 

and D’Mello (2008) identified a number of tutoring modes used by expert tutors, which hopefully could be 

integrated with ITS. 

A key next step in the evolution of GIFT will be to transform it from an individual tutoring architecture to 

a team tutoring architecture (Gilbert et al., 2018; Sottilare et al., 2018).  This will expand the variety of 

domains which can be instructed by GIFT-based tutors, but will also increase the complexity of the       au-

thoring task.  To overcome this increase in complexity, we anticipate that GIFT will evolve a number of 

automated authoring tools to reduce the authoring load and skill required to develop ITSs. 

As a learner-centric architecture, anticipated uses for GIFT instructional management capabilities include 

both automated instruction and blended instruction, where human tutors, teachers, and trainers use GIFT to 

support their curriculum objectives. If its design goals are realized, it is anticipated that GIFT will be widely 

used beyond military training contexts as GIFT users expand the number and type of learning  domains and 

resulting ITS generated using GIFT.  

GIFT Evaluation Function 

The GIFT Evaluation Function emphasizes the evaluation of effect on learning, performance, retention and 

transfer. The purpose of the GIFT evaluation function is to allow ITS researchers to experimentally assess 

and evaluate ITS technologies (ITS components, tools, and methods). The design goals for the GIFT eval-

uation function are depicted in Figure 3 and elaborated below: 

 Support the conduct of formative assessments to improve learning.  

 Support summative evaluations to gauge the effect of technologies on learning. 

 Support assessment of ITS processes to understand how learning is progressing throughout the 

tutoring process.  

 Support evaluation of resulting learning versus stated learning objectives. 

 Provide diagnostics to identify areas for improvement within ITS processes. 

 Support the ability to comparatively evaluate ITS technologies against traditional tutoring or class-

room teaching methods. 

 Develop a testbed methodology to support assessments and evaluations (Figure ). 

Figure 3 illustrates an analysis testbed methodology being implemented in GIFT. This methodology was 

derived from Hanks, Pollack, and Cohen (1993). It supports manipulation of the learner model, instructional 

strategies, and domain-specific knowledge within GIFT, and may be used to evaluate variables in the adap-

tive tutoring learning effect model (Sottilare, 2012; Sottilare, Ragusa, Hoffman, & Goldberg, 2013). It 

might also support manipulations of the team modeling.  In developing their testbed methodology, Hanks 

et al. reviewed four testbed implementations (Tileworld, the Michigan Intelligent Coordination Experiment 

[MICE], the Phoenix testbed, and Truckworld) for evaluating the performance of artificially intelligent 

agents. Although agents have changed substantially in complexity during the past 20‒25 years, the methods 

to evaluate their performance have remained markedly similar. 
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Figure 3. GIFT evaluation testbed methodology 

The ARL adaptive training team designed the GIFT analysis testbed based upon Cohen’s assertion (Hanks 

et al., 1993) that testbeds have three critical roles related to the three phases of research. During the explor-

atory phase, agent behaviors need to be observed and classified in broad categories. This can be performed 

in an experimental environment. During the confirmatory phase, the testbed is needed to allow more strict 

characterizations of agent behavior to test specific hypotheses and compare methodologies. Finally, in order 

to generalize results, measurement and replication of conditions must be possible. Similarly, the GIFT eval-

uation methodology in Figure  enables the comparison/contrast of ITS elements and assessment of their 

effect on learning outcomes (e.g., knowledge acquisition, skill acquisition, and retention).  

With a firm understanding of the design of ITSs in general and GIFT in particular, we can now shift our 

attention to the use of this book as a design tools for team ITSs. 

How to Use This Book  

This book is organized into four sections:  

I. Team Modeling 
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II. Team Assessment Methods 

III. Socio-Cultural Applications 

IV. System Design of Team Tutors 

Section I, Team Modeling, explores various aspects of ITSs for teams.  Using GIFT as a basis, this section 

discusses the modeling aspects of teams, including the mission of the team, the interaction of learners within 

the team, and the roles and responsibilities of team members.     

Section II, Team Assessment Methods, highlights the importance of defining measures and methods to ac-

curately assess progress toward learning goals.   

Section III, Socio-Cultural Applications, discusses aspects of team tutoring that are inherently social in 

nature. Whether teams are communicating with each other through typed messages, verbally, or using hand 

signals, communication is vital to team task performance.   

Section IV, System Design of Team Tutors, focuses on the system design aspects for the tutoring of team 

taskwork using ITSs. Team taskwork is composed of domain-dependent measures of success whereas team-

work evaluates attitudes, behaviors, and cognition of team members independent of the task domain.  When 

we discuss system design, we are specifically addressing how ITSs are designed to assess and interact with 

a group of learners working to complete a task.  The type of task, the configuration of the team, and their 

roles and responsibilities vary to present interesting design challenges to ITS authors.    

Chapter authors in each section were carefully selected for participation in this project based on their       ex-

pertise in the field as ITS scientists, developers, and practitioners. Design Recommendations for Intelligent 

Tutoring Systems: Volume 6 – Team Taskwork is intended to be a design resource as well as a community 

research resource. We believe that Volume 6 can serve as an educational guide for developing ITS scientists 

and as a roadmap for ITS research opportunities.  The authors of the chapters contained herein are experts 

in their area and the references provided (their own and those of others) compose a rich web of working 

professionals in the ITS field.   
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CHAPTER 1 – INTRODUCTION TO TEAM MODELING 
Xiangen Hu 

University of Memphis 

 

Core Ideas 

Intelligent Team Tutoring Systems (ITTSs) are a natural extension of traditional Intelligent Tutoring Sys-

tems (ITSs) used to instruct individual learners.  This section examines the essential elements in team mod-

els.  What should an ITTSs know about a team and its members in order for the ITTS to make effective 

instructional decisions? ITTSs are much more complicated than conventional ITS although one can see 

parallel research methodologies between ITSs and ITTSs. A natural and productive starting point for ITTSs 

research is to consider best practices from ITS research and examine opportunities to extend these practices 

to ITTSs.  

 

We began our exploration of the different aspects of ITTSs using the Generalized Intelligent Framework 

for Tutoring (GIFT) as a model.  GIFT has been one of the most comprehensive frameworks for ITS design, 

has a sizeable research community of interest and an extensive history of documented research and devel-

opment during the past decade.  

 

In traditional ITSs and in GIFT-based tutors, we are concerned primarily with the interaction between their 

four common components (learner model, instructional model, domain model, and user interface).  For 

example, when considering learner modeling, how should we characterize (represent) the behaviors and 

progress toward learning objectives for individual learners in ITTSs.  For teams, what mechanisms are 

required to collaborate either synchronously or asynchronously? Each learner in a team may have shifting 

roles and responsibilities in  an ITTS as opposed to static objectives in a traditional ITS with a single indi-

vidual learner. When roles are included in team modeling, we need to extend the competence measures 

such to include “collaborative” aspects (e.g., teamwork), but we also need to consider how the model that 

optimizes team organization and performance.   

 

In addition to the learner’s collaborative function and team organizational structure in ITTS, models need 

address other ITTS specific issues such as workload (distribution of tasks), socio-cultural dynamics, col-

laborative teaching/coaching models, and technological/interface models. The five chapters collected in 

this section demonstrate various aspects of teamwork (e.g., attitudes, behaviors, cognition, dynamics), ex-

plores how teamwork moderates learning, processes for developing shared mental models, and interpreting 

team dynamics.  

 

Teams may take on many forms, but structure (how responsibilities, roles, and work are allocated) is only 

one important aspect of a team model.  Team models include:  

 

 Norms or standards to drive behaviors and expectations within the team 

 Shared goals and objectives 

 Processes to plan projects, share information, and coordinate collaborative work 

 Processes to make decisions and criteria to evaluate decisions 

 Motivators to positively influence team behaviors  
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The chapters in this first section exemplify the extension of traditional ITS models for individual learners 

to ITTSs models for teams and collaborative learning.  In supporting this transition from individual learners 

to teams, we must also consider the impact of this transition on tutoring system components as suggested 

below:   

 

 Domain model for ITTSs should consider knowledge/skill that is only valid/understood when more 

than one learners work together (e.g., collaborative problem solving skills 

 Pedagogical model for ITTSs should consider cases where learners enhance their knowledge and 

skills by simply observing or interacting with other learners 

 Interface model for ITTSs should consider multi-channel/multi-modal interaction with mixed (hu-

man and computers) in a shared learning environment.   

 Learner model for ITTSs should consider how to separate individual learning objectives from 

those of the team  

Individual Chapters 

The Chapter by Kim, Gorman, and Sottilare, “Team learning and retention curves”, proposes to use team 

learning and retention curves as components of a learner model to characterize of team learning. Given that 

teamwork involves multiple members, one research focus is to identify suitable ways to combine individual 

learning curve to form a team learning curve. The authors proposed a Bayesian hierarchical model to ag-

gregate individual learning curve, and introduced several tools to implement these types of modeling. In 

ITTSs, these learning curve-based representation can inform the intelligent agents to provide better feed-

back to maximize the team learning gain.  

 

The Chapter by Dede, Grotzer, Kamarainen, Metcalf, Olney, Rus, Sottilare, and Wang, “Graphical 

supports for collaboration: constructing shared mental models”, describes several graphical supports, such 

as concept maps, 3d cognitive mapping, and self-visualization, which help team members to develop shared 

mental models. In particular, a collaborative construction of these graphical supports by all team members 

has been proven to be very effective for improving team learning. These new approaches extend the domain 

and pedagogy models of ITS, and ITTSs can leverage these findings by creating co-construction scenarios 

and tailoring the intelligent agents’ interaction mechanisms to support these co-construction activities to 

promote team collaboration and learning.  

 

The Chapter by Ruis, Hampton, Goldberg, and Shaffer, “Modeling processes of enculturation in team 

training” introduces network models of teamwork. Epistemic network analysis (ENA) provides good rep-

resentations of the interactions among the team members but not directly encompasses the content infor-

mation contained in the communication among the team members. The authors extended the traditional 

ENA framework by including the analysis of the communication contents and proposed a multilevel net-

work model for teamwork. Such a modeling framework substantiates the domain and pedagogy models in 

collaborative environment and inform ITTS to better support team learning. 

 

The Chapter by Carlin, Rus, and Nye, “Bayesian model of team training and measures”, describes a frame-

work for team training using a Partially Observable Markov Decision Process (POMDP) model, which is a 

good example of pedagogy model in ITTS. In this model, the estimated skill level is compared to the train-

ing objectives specified in the reward function and the difference informs proper selection of training ac-

tions to optimize the paths to achieve the training goal. The model can be directly integrated into the inter-

action mechanism of intelligent agents in ITTS to optimize the agent interaction in collaborative training 

tasks.  
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The Chapter by Carlin, Perry, and Ostrander, “Dynamic task selection for team task training using wear-

able sensors and multi-agent planning models” describes how a combination of the TEAMS modeling 

framework and new information from wearable sensors can help to optimize the task selection for team 

task training. Wearable sensors can provide team interactivity information in a less intrusive way, and the 

information allows more accurate and real-time knowledge of the state of the team interaction, which is an 

example of multimodal channels in the interface model. The authors show, through an example, that incor-

porating information from wearable sensors into the TAEMS, a framework that models complex computa-

tional task environment, will help to optimize the task selection for team training. Such an integration in 

ITTS allows intelligent agents to identify the state of teamwork more accurately and thus better support the 

team learning. 
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CHAPTER 2 ‒ TEAM LEARNING AND RETENTION CURVES 
Jong W. Kim1, Jamie C. Gorman2 & Robert Sottilare1 

U.S. Army Research Laboratory1, Georgia Institute of Technology2 

 
 

Introduction  

Performance change can be visualized by learning and retention curves.  They are useful for the learner 

assessment.  The learner can be assessed during the course of training, rather than at the end of a training 

course, which is called a formative assessment.  The formative assessment approach would be particularly 

useful to see the progress of skill development and to identify when/how to disrupt the learning with tailored 

instructions and feedback in an intelligent tutoring system.   

 

It is noted that two views can be associated with the understanding of team learning and retention curves. 

Measuring and analyzing team cognition can be considered as an aggregate of individual members, or they 

can be treated as an emergent property of interactions across team members (Cooke, Gorman, Duran, My-

ers, & Andrews, 2013). If we simply aggregate individual learning and performance to measure and analyze 

a collective of individuals’ learning, we might leave out important, interaction-based features of team learn-

ing and performance. 

 

People in a team perform both individual and interdependent tasks to achieve a team goal, which is usually 

accomplished through a series of multiple subtasks, each of which has its own history of learning and re-

tention.  Team learning is a complex problem that resembles a multithreaded computer architecture.  An 

improved understanding of team learning and retention—i.e., an understanding from an individual to a 

collective of individuals, from a single task to a collective of decomposed subtasks, and from learning to 

forgetting—should be given consideration.   

 

In this chapter, we start to look at these multi-level issues in team learning curves, and suggest directions 

for the design of adaptive instructional systems.  We chose GIFT (Generalized Intelligent Framework for 

Tutoring) to explain the issues and suggestions related to team learning and retention curves since it pro-

vides a generalized framework for an intelligent tutoring system (Sottilare, Goldberg, Brawner, & Holden, 

2012). 

 

Learning Curves for Visualizing Performance Change 

Learning curves have been used in industry in an attempt to account for the production time or cost (Jaber, 

2016).  In Cognitive Science and Education, learning curves have also played an important role to investi-

gate practice effects in human memory systems (Anderson, Fincham, & Douglass, 1999).  In such cases, 

learning curves follow a type of mathematical form that is generally known as a power function or an 

exponential function (Newell & Rosenbloom, 1981; Rosenbloom & Newell, 1987).  The visualization 

based on the mathematical function exhibits an elegant way to represent the progress of learning.  It helps 

our understanding of human learning.  But, in a practical sense, it is getting harder and more complicated 

to fit this model due to the adaptive feature of the system and the hierarchical complexity of the task—e.g., 

different (or adaptive) contents in repeated practices, the large task sizes, and the complex tasks with mul-

tiple subtasks.   
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The progress—e.g., performance improvement by deliberate practice (Ericsson, Krampe, & Tesch-Römer, 

1993)—can be visualized and summarized as a mathematical form, generally known as a power law of 

learning curve (e.g., Anderson, Fincham, & Douglass, 1999; Newell & Rosenbloom, 1981; Rosenbloom & 

Newell, 1987).  A cognitive architectural process model that usually focuses on an individual learning pro-

cess has provided useful information about how knowledge is acquired and stored in memory, and is re-

trieved to perform a task (Anderson, Boyle, Corbett, & Lewis, 1990).   

 

Similarly, a team is considered as a collective of individuals, and a team also learns and forgets knowledge 

and skills over extended periods of time.  Team learning and retention curves are expected to provide useful 

information about performance improvements/decrements in terms of practice and disuse of skill.  These 

curves can thus be used to make strategic decisions on training interventions—i.e., what, how, and when to 

train.  As shown in Figure 1, the task completion time is a dependent measure in assessment, and it also 

follows a power law of learning representing a speed-up effect (Kim & Ritter, 2015).   

 

There are identified problems in using learning curves.  For example, this learning curve can be obtained 

only if the same task should be repeatedly performed.  It has been noted that team member interaction is 

one promising factor to account for team performance decay and retention rather than individual compe-

tency, arguing team performance is more than the sum of individual team member performance (Cooke, 

Gorman, Duran, Myers, & Andrews, 2013).  We, then, can infer that collective competency of a team would 

not be necessarily accounted for by aggregating all individual competencies.  A model of individual com-

petency is important, but it is definitely necessary to have an advanced understanding from the team per-

spective.  Among various aspects of a team (e.g., team cohesion, coordination, team cognition, and team 

communication, etc.), team cognition plays important roles in team effectiveness, and one form of team 

cognition is team mental model (Klimoski & Mohammed, 1994).  As to team learning, it is also necessary 

to consider the roles in a team task.  It is also difficult to keep experimental teams together long enough to 

measure skill retention over periods of time (Cooke, Gorman, Duran, Myers, & Andrews, 2013).  Thus, a 

simple comparison of learning (retention) curves in a large task and in a team (a collective of individuals) 

seems to be insufficient and challenging.  Also, one of the reported pitfalls of learning curves is that a larger 

domain model or a large student sample size is likely to exhibit a better fit than a smaller one, even if the 

system does not operationally teach the students any better (Martin, Mitrovic, Koedinger, & Mathan, 

2011).  Furthermore, a near-term assessment by comparing learning curves would not be related to the long-

term stability of learning (Schmidt & Bjork, 1992).  

Considerations for Team Learning Curves 

Concerns about Aggregate Data 

Figure 1 shows a learning curve from a dataset which was collected from 30 human participants performing 

a set of spreadsheet task (named the Dismal task) consisting of subtasks including: open a file, save a the 

file, calculate normalization, calculate frequency, calculate length, insert rows, save as a printable format 

(Kim & Ritter, 2015; Paik, Kim, Ritter, & Reitter, 2015).  It is an instruction-following task by human 

participants and an ACT-R model. The learning curve shows a steep decrease at the beginning in the task 

completion time over trials, and a asymptote-like plateau at the later trials, which appears to follow a power 

law of learning. The curve was generated by averaging all data points.   

 

Theoretically, if individuals do the same tasks in a given time frame, then performance data can be averaged 

to represent performance change and learning, which is considered as a summary of the learning experi-

ence.  Usually, tasks are large and complex in real world.  They would be also hierarchically structured.  

That is, tasks can be decomposed to a number of sub-levels (Lee & Anderson, 2001).  Each level of tasks 
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(or subtasks) can have a learning curve under the assumption that the learner performs the same tasks re-

peatedly.  The learning curves by decomposed subtasks can be plotted, showing subtasks would be learned 

differently (Kim & Ritter, 2016).  In this situation, there would be an issue of data aggregation.  Aggrega-

tion of different aspects of learning data would be getting harder and more challenging in terms of task 

complexity.  

 

Figure 1.  ACT-R models of the Dismal task (dashed lines, from fully novice to previously practiced expert), 

along with human aggregate data (X’s and SEM error bars, N=30), and the KLM prediction in solid line 

(taken from Paik, Kim, Ritter, & Reitter, 2015). 

 

Aggregation of the data refers to numerical or non-numerical information that is collected from multiple 

sources and on multiple measures, variables, or individuals, and compiled into a data summary.  In a statis-

tical analysis, the aggregation problem has been noted that information can be lost when the microlevel 

individual data is substituted for the aggregate, macro level data (Clark & Avery, 1976).  A team can be 

decomposed into a group of individual members, and a task performed by the team can be decomposed into 

subtasks, and taskwork (i.e., working on a specific duty of one’s job) and teamwork (i.e., coordination or 

communication by individuals to achieve a mutual goal) (Salas et al., 2015. pp. 5) can be decomposed by 

individuals.  Thus, it is necessary, with regard to “team learning and retention curves”, to consider the 

macro and micro level features of a team level performance.  

Features of Team Learning Curves 
 

Averaging is the most common statistical technique but it can potentially mislead our understanding about 

the learning data.  The representativeness of averaged learning curves has been repeatedly an issue in Psy-

chology (Brown & Heathcote, 2003).  Averaging the learning data to understand an individual learning and 

performance can be distorted because of its nonlinearity and variable features of the parameters.  Regarding 
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the team level, the concern about averaging across and within individuals to understand the team may be 

more complex and challenging.  That is, a team, as a collective of individuals, would have different roles 

and taskwork to do, and coordination and communication among individuals are essential to accomplish a 

shared goal (Salas et al., 2015).  Understanding such features would be useful to guide us to walk through 

the unprecedented territory of team learning and its visualization.  

 

Team knowledge is described as an emergent phenomena resulting from team members’ interaction 

(Klimoski & Mohammed, 1994).  This perspective places a greater emphasis on team processes and allows 

for the possibility that team knowledge is something different than the sum of the team’s individual mem-

ber’s knowledge.  Interactive team communications can be understood by a verbal and textual transfer of 

team knowledge (Gorman, Foltz, Kiekel, Martin, & Cooke, 2003).   

 

Measurement of team knowledge can be observed in a study of the team communication analysis.  Semantic 

content analysis is one example in team communications.  For example, the UAV (unmanned aerial vehicle) 

knowledge for use can be analyzed by using a Latent Semantic Analysis (Gorman, Foltz, Kiekel, Martin, 

& Cooke, 2003).  In the study by Gorman and his associates, the semantic space is decomposed in terms of 

geometric interpretation:  (a) the length vector which is represented by the sum of all the words in a sen-

tence, and (b) the cosine value to specify how two statements (or utterances) are semantically related in the 

semantic space.  One of the metrics used in the study is communication density indicating the average task 

relevance of a team’s communications—the ratio of the length vector to the number of words spoken during 

the mission.  In this context, the learning effect can be derived by observing differences in semantic contents 

by experienced and inexperienced teams—how a novice team learns to communicate, leading to increase 

in communication density.  This notion gives us one aspect of multiple facets of a team learning curve.  

Similar to the understanding of the team communication that can be decomposed to a semantic space, the 

multiple facets of team features is worth being decomposed to a domain for an improved analysis and 

visualization.  As another example, a team success can be predicted by power spectral density analysis that 

decomposes the task-oriented dialogue into the frequency domain in time (Xu & Reitter, 2017).  

 

A Statistical Model for multilevel Learning curves 

 

Different tasks and subtasks at a team level with different roles would be differently learned and retained 

in our memory (i.e., declarative and procedural memory).  A meaningful decomposition can be useful to 

analyze the phenomenon.  Figure 2 shows the varying performance of the decomposed tasks shown in 

Figure 1.  The subtasks have different task completion times and mean/median values both by tasks and by 

the aggregated participants. This understanding would affect the perspectives of adaptive instructional sci-

ences, and training in various professions.  

 

However, there have been rather sparse investigations to address the question of how consistently (or in-

consistently) tasks or subtasks are learned at a team level.  A recent investigation tested the inconsistency 

of the individual-level subtask learning, providing an understanding of how complex tasks can be decom-

posed, and of how a probabilistic model of individual level of subtask learning can be estimated using a 

Bayesian hierarchical modeling approach (Anglim & Wynton, 2015).  The knowledge components in the 

domain and learner model at a team level should support performance assessment with team learning (and 

retention) curves.  A statistical modeling approach of multi-level facets of a task can be useful to compre-

hend the team.  In this section, we introduce a statistical model of learning and performance both by tasks 

(subtasks) and by a team (individuals).   
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Figure 2.  A box plot to describe the distributions of the task completion times, showing minimum, maximum, 

median values. Among the subtasks, S3, S5, S7, and S9 have the median task completion times above 100 s. 

A Statistical Model for Aggregating Learning Curves  

 

A Bayesian hierarchical modeling approach can be applied to investigate performance change by tasks and 

by individuals by teams (as a collective of individuals).  Hierarchical models are interchangeably used with 

mixed models and random effect models, indicating that individual subtasks and individual participants 

have their own learning rates (e.g., amount learned, rate of learning, final performance, and variability 

around expected performance; (Anglim & Wynton, 2015).  The Bayesian hierarchical modeling approach 

is particularly suited to the data analytics of a repeated measures design (Averell & Heathcote, 2011), which 

can investigate learning.  A likelihood-based inference, for small sample sizes, can be generally unreliable 

with variance components that are particularly difficult to estimate.  Bayesian modeling would be beneficial 

if there is not enough data for inferential statistics when we are interested in differences between individual 

participants and items (random effects and random slopes) (Sorensen, Hohenstein, & Vasishth, 2016).  This 

approach can resolve a concern about the number of sample sizes (Lavine, 1999).   

 

The aforementioned Dismal spreadsheet task data was collected in a repeated measures design, and the data 

should be analyzed to identify differences between individual subjects and tasks (random intercepts and 

random slopes), and correlations between variance components (random effects).  Thus, a Bayesian hierar-

chical modeling approach is appropriate for the understanding of the task with its subtasks. Similarly, this 

approach can be applied to a team consisting of a collective of individuals, and the taskwork performed by 
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those individuals. In this approach, the posterior distribution of each parameter of interest is derived, given 

some data and prior knowledge about the distributions of the parameters.  

 

There are a number of tools available that support this type of analysis.  One such tool is R1, a computational 

statistical language, and a probabilistic programming language, Stan2.  Previously, the lme4 package (Bates, 

Mächler, Bolker, & Walker, 2014) in R was used to conduct a linear mixed effects analysis of the relation-

ship between the response variable and the covariate predictors including fixed and random effects (Kim & 

Ritter, 2016).  To utilize the capability of the Monte Carlo Markov Chain (MCMC) sampling, Stan can be 

used with R together (McElreath, 2016).   

 

Based on a simple fixed effect model, one can proceed to implement complex linear mixed effect models 

by adding varying intercepts and slopes.  This model will support an analysis of the correlation between the 

varying intercepts and varying slopes, which is noted as the maximal model (Barr, Levy, Scheepers, & Tily, 

2013).  Example models are shown in Table 1.  These probability models describe how the dependent var-

iable (e.g., the task completion time or other performance measures) can be generated in a team task per-

formance, which allows us to derive the posterior probability distribution of the model parameters from a 

prior distribution and the likelihood function.  The model in Table 1 is summarized that the dependent 

variable by-subtasks and by-individuals (or team members) are varying in terms of practice trials.  Multiple 

measurements from each individual team member and each task (or subtask) can cause correlation between 

errors.  The proposed statistical model can be examined with consideration of varying intercepts and vary-

ing slopes, and the correlation between varying intercepts and slopes. 

 

The estimated parameters in the fixed effects model do not vary from an individual to an individual (i.e., 

team members) and from subtask to subtask (i.e., different tasks by the team).  The dependent variable (i.e., 

the task completion time) is represented by Yij.  The index i represents the i-th row in the data frame (i∈{1, 

…,N}), and the term εij represents the error in the i-th row, and a practice day j (j∈{1,…,J}).  This model 

is a fixed effect model since the parameters of β0, and β1 do not vary from individuals in a team (pID) and 

multi-level tasks (St).  The model is represented as a simple linear model with a predicator (Xj) of practice 

trials and the task completion time (Yij) as the dependent variable.  We assume that the error term (εij) is 

normally distributed with mean zero and unknown standard deviation, σe, and that it is identically distrib-

uted, indicating there is no correlation between errors.   

 
Yij=β0+β1Xj+ εij    Model (1) 

 

It is necessary to check the normality assumption of the data.  The Q-Q plot of residuals shows whether the 

data are normally distributed.  If the data is not normally distributed, a log-transformation of the data would 

be necessary.  To assess the significance of practice trials (day) as a predictor, the t-value of the fixed effects 

can be used.  If the t-value of the slope estimate is large enough, you can estimate that the predictor is 

significant.  Comparisons of the models can be performed and the Bayesian Information Criterion (BIC) 

can be used as a test statistic.  In this manner, a team relevant statistical model can be built to visualize 

performance change in terms of varying tasks and individuals.   

 

Table 1. A summary of the Bayesian hierarchical models for a team. 

                                                           

 
1  https://cran.r-project.org/ 
 
2 http://mc-stan.org/ 
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No. Model lmer model syntax 

1 Yij=β0+β1Xj+ εij  

2 Yij=β0+pID0i+β1Xj+ εij Y~X+(1|participant) 

3 Yij=β0+pID0i+(β1+pID1i)Xj+ εij Y~X+(1+X|participant) 

4 Yij=β0+pID0i+St0i+(β1+pID1i)Xj+ εij Y~X+(participant)+(1|Subtask) 

5 Yij=β0+pID0i+St0i+β1Xj+ εij Y~X+(participant)+(1|subtask) 

6 Yij=β0+St0i+(β1+pID1i)Xj+ εij Y~X+(participant)+(1|subtask) 

 

Discussion and Conclusions 

We explored what to consider regarding team learning and retention curves. We note that data aggregation 

would cause distortion of our understanding toward individual and team learning (Brown & Heathcote, 

2003). Thus, features of team should be considered to better deal with the representativeness of learning 

curves. We introduced a statistical model for team, which would be suitable to incorporate the aforemen-

tioned team features characterized by hierarchical and multi-level tasks with varying roles by a collective 

individuals. The model also supports a Bayesian comparison (Sorensen, Hohenstein, & Vasishth, 2016), 

indicating increase in statistical plausibility of comparing learning and retention curves. Therefore, the pre-

sented statistical model can reduce the data aggregation problem, and help to identify how team learning 

and retention curves would be different from individual ones.   

 

Our exploration can be applied to improve the capability of GIFT (Generalized Intelligent Framework for 

Tutoring). GIFT is a module-based architecture, and its modules (e.g., Domain, Learner, Pedagogical, Gate-

way, and Sensor) are interchangeable and linked together by a message bus (Sottilare, Brawner, Sinatra, & 

Johnston, 2017; Sottilare, Goldberg, Brawner, & Holden, 2012).  GIFT offers an operational mechanism of 

the real time assessment. The learning curves can be derived from the interactive operations of the modules. 

In GIFT, the Domain Knowledge File (DKF) plays an important role in the assessment structure by tracking 

performance of an individual.  

 

Assessment is important to determine an appropriate intervention of training. Visualizing such assessments 

can be useful to quantify the progress, and it reciprocally helps to determine remediation of adaptive learn-

ing. Based on the individual assessment structure, GIFT can be extended to afford multiple simultaneous 

DKFs, called the team DKF (Brawner, Sinatra, & Gilbert, 2018). The team DKF can track a collective of 

individuals and multi-level tasks with varying roles. This would improve the capability of team assessment 

in GIFT. That is, team learning and performance are measured while the team is engaged in a training 

scenario during a lesson. In general, the assessment element contains rules and configurations for the Do-

main module to assess the learner actions. A concept is the lowest level performance node that is reported 

between modules and stored in a database. A concept is assessed by conditions that contains a logic to 

assess the learner’s performance specified in the Domain module.  The concepts and conditions are hierar-

chically organized. The team training framework needs to support variable domains, content areas, multiple 

team configurations, and multiple types of team performance assessments (Brawner, Sinatra, & Gilbert, 

2018).  The GIFT’s modular structure of design alternatives for team has been proposed with an under-

standing of the hierarchical inheritance approach (Brawner, Sinatra, & Gilbert, 2018), and this structural 

taxonomy to a team modeling would generate interactions among the modules.   
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CHAPTER 3 – GRAPHICAL SUPPORTS FOR COLLABORATION: 

CONSTRUCTING SHARED MENTAL MODELS 
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Robert A. Sottilare3, and Minhong Wang4 
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INTRODUCTION 

Graphical images are useful in helping teams develop shared mental models, particularly when digital tools 

enable team members to co-construct these representations. For example, the use of concept maps as exter-

nal representations of knowledge, in a form that can be manipulated and reasoned with, can clarify thinking, 

focus a task, facilitate collaboration, and reduce cognitive load. This chapter describes several types of 

graphical supports—concept maps, 3-dimensional cognitive mapping, and self-visualizations—as ways to 

enable the collaborative construction of shared mental models. 

Concept Mapping as a Representational Structure that Enables Shared Men-

tal Models 

Concept mapping as a representational structure is an effective mechanism for students to express their 

conceptual understanding (Novak, 1990; Rice, Ryan, & Samson, 1998; Rosen & Tager, 2014; Toth, 

Suthers, & Lesgold, 2002). The use of concept maps as external representations of knowledge, in a form 

that can be manipulated and reasoned with, can clarify thinking, focus a task, facilitate collaboration, and 

reduce cognitive load (Cox, 1999; Jonassen, 2003). In particular, computer learning environments for in-

quiry-based science learning have the opportunity to include electronic concept mapping as a knowledge 

construction tool. Students engaging with computer based simulations and virtual worlds may develop a 

deeper understanding about the dynamic systems represented in these environments through engaging in 

concept mapping of the system as a map of causal relationships between its factors. Michael Zeilik’s web-

site (http://archive.wceruw.org/cl1/flag/cat/conmap/conmap1.htm)  

 

EcoXPT is a multi-user virtual environment (MUVE)-based middle school science curriculum that supports 

learning about the causal dynamics of ecosystems through observation, exploration, and experimentation 

in a virtual world (Dede, 2017; Grotzer, 2017). It builds and expands upon earlier research with EcoMUVE 

(Metcalf et al., 2011, Grotzer et al., 2013). EcoXPT supports situated learning – students conduct scientific 

inquiry while immersed in the richly represented ecological setting, interacting with virtual people and 

organisms, collecting and analyzing data. As a culminating activity, student teams engage in construction 

of a concept map as a representation of the components, processes and relationships relevant to the phe-

nomena identified in the ecological scenario. 

 

In prior research with EcoMUVE, students were instructed to draw concept maps on paper. For EcoXPT, 

it was hypothesized that students might be better supported with an integrated computer-based concept map 

tool. In particular, it was considered that providing a structured tool for concept mapping might scaffold 

students in concept map construction to support deeper learning about the causal relationships in the system. 

Additionally, by integrating the tool with the virtual environment, it might support students making more 

connections between data collection, data analysis, and hypothesis constructing activities. 

 

http://archive.wceruw.org/cl1/flag/cat/conmap/conmap1.htm
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The EcoXPT curriculum consists of a two week, inquiry-based unit centered on a virtual pond and the 

surrounding watershed. Students explore the pond, learn about the plants and animals in the ecosystem, and 

travel in time to see changes over the course of a virtual summer. They discover on one day that all of the 

large fish have died, and are given the inquiry task of figuring out why it happened. The system models an 

eutrophication scenario in which fertilizer runoff induces excessive algae growth. Then the algae die off 

and, as bacteria decompose the dead matter, the bacterial population surges. This combination of factors--

coupled with weather conditions of warm temperatures, cloudy days, and low wind--lead one evening to 

dramatically lowered dissolved oxygen in the pond that causes the death of all of the bluegill and large-

mouth bass in the pond, although the minnows, which can survive in relatively low dissolved oxygen con-

ditions, do survive.  

 

EcoXPT includes a range of integrated tools that support students in learning about the pond and its sur-

roundings. Students can make observations, photograph organisms in and around the pond, shrink to view 

microscopic organisms, and travel in time. They collect measurements about the water (e.g., phosphates, 

temperature, dissolved oxygen), weather (e.g., wind speed, cloud cover), and populations of organisms 

(including three species of fish, two types of algae, and bacteria); then the view graphs showing trends in 

the data over time. They use reference tools such as an online field guide and an atom tracker, and gather 

testimony from characters in the world. The pilot version of the curriculum used in this study also included 

a lesson on drawing concept maps to represent the causal relationships in an ecosystem. 

 

Students collaborate in teams to solve the mystery, working together to collect and analyze data in the 

virtual world. As a culminating activity, each team of students constructs and presents to the class a poster 

that represents their hypotheses to explain why the large fish in the pond died. The team posters are required 

to include a concept map, a written summary of their hypothesis, and printouts of the evidence they used to 

support their ideas. 

 

This study piloted a new electronic concept mapping tool that was designed to scaffold students’ concept 

mapping activities. The tool (Figure 1) provided a pre-defined palette of factors designed to represent all of 

the variables that student were able to observe or measure in the virtual world. Students drag factors out of 

the palette to place them as nodes in the concept map, and drag a link from one node to another to create 

connecting arrows representing causal relationships between factors.  
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Figure 1: Photo of concept map being constructed on screen 

In a pilot study, students who used the electronic concept map tool constructed larger and more complex 

concept maps than similar teams doing concept mapping on paper. This finding appears to support the 

proposal that providing external structure for concept mapping can scaffold collaborative activity by teams 

of students. In particular, the increase in number nodes in the electronic concept maps is likely caused by 

the fact that the software tool provided students with a large set of pre-defined nodes to use, potentially 

fostering convergence. 

 

3-Dimensional Cognitive Mapping as a Representational Structure that Ena-

bles Shared Mental Models 

In inquiry-based learning contexts, many students experience difficulties managing the complex inquiry 

process and engaging in fruitful inquiry learning. The inquiry process often involves iterative cycles of 

gathering information through observation or experiments, generating hypotheses, reasoning based on the 

collected information, and drawing conclusions. Many students find it cognitively demanding to integrate 

problem data with subject knowledge and to reason with intricately intertwined data. It is therefore neces-

sary to guide students through the complex inquiry process to help them become accomplished problem-

solvers.  

 

To facilitate complex inquiry without undermining the nature of student-centered learning, indirect instruc-

tions such as prompts, hints, and scripts are used to bring learners’ attention to important issues (e.g., what 

to do next) during the task, or a complex task is decomposed into a set of main actions or key questions. 

Recent research highlights the importance of making cognitive processes visible in complex problem or 

task situations. Related work involves the use of mental models for high-order thinking and in-depth learn-

ing, such as concept maps representing the relationships between concepts, causal maps representing the 
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relationships of cause and effect, and evidence maps linking evidence with claims or hypotheses. In view 

of the need for integrating multiple aspects of cognitive processes in exploring a problem, integrated cog-

nitive maps for example by representing the problem-solving process and the knowledge underlying the 

problem-solving process have shown promising effects (Wang Wu, Kinshuk, Chen, & Spector, 2013; Wu, 

Wang, Grotzer, Liu, & Johnson, 2016). In this section, we introduce a novel three-dimensional cognitive 

mapping (3DCM) approach, which makes complex inquiry visible and accessible to students by allowing 

them to externalize the information on a problem, the subject knowledge underlying the problem, and the 

hypothesizing and reasoning process involved in exploring the problem in a single image for effective 

thinking, action, and reflection (Chen, Wang, Dede, & Grotzer, 2017). As shown in Figure 2, the integrated 

cognitive map consists of three parts: a concept map, a data table, and a reasoning map. The concept map 

represents the subject knowledge underlying the problem in a set of interrelated concepts. The data table 

outlines the problem information in a set of key variables and their changes over time. In the reasoning 

map, each hypothesis is supported (“for”) or rejected (“against”) by evidence from the problem data or 

subject knowledge. To examine the root cause of the problem, the hypothesis is further explained by other 

hypotheses explicating deeper causes of the problem. 

 

 

Figure 2. The Three-dimensional cognitive mapping approach 

Forty-eight students (24 males and 24 females) from one 11th grade high school class participated in the 

study. They were classified into three categories of academic ability according to their pre-test scores: high, 

medium, and low, with each category having 16 students. Students were randomly divided into 16 small 
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groups of 3 (i.e., one high-level, one medium-level, and one low-level student). They explored a fish die-

off problem (why many large fish in a pond ecosystem had suddenly died) by performing causal reasoning 

and construct logical and scientific explanations. To do so, the students interacted with a virtual pond sys-

tem to collect relevant information and observe changes in multiple variables over time. They discussed 

and solved the problem in small groups by evaluating and compiling the collected information, formulating 

and justifying hypotheses, and making conclusions. Students were asked to create a three-dimensional cog-

nitive map to assist their inquiry, and submitted an inquiry report including hypotheses, reasoning, and 

conclusions.  

 

Pre- and post-knowledge tests were administered to assess students’ knowledge of the learning subject. A 

post-test questionnaire was used to measure students’ attitudes toward inquiry learning, anxiety level, and 

confidence level. The results show that the participants displayed a high level of knowledge gain, positive 

attitudes, low anxiety, and medium levels of confidence. The interview records reveal that the 3DCM ap-

proach provided learners with a holistic view of the inquiry task, and guided them in generating hypotheses 

step-by-step and developing evidence-based reasoning based on relevant data and knowledge. Moreover, a 

post-hoc test indicated that the students at a low academic level had acquired significantly more knowledge 

than either the high-level or medium-level students, thus narrowing the academic gap between low-level, 

medium-level, and high-level students. Taken together, these findings show promising effects of the 3DCM 

approach in supporting inquiry learning. 

 

Group Construction of Concept Maps as an Aid to Collaboration 

Group construction of concept maps is highly effective for learning. According to a meta-analysis, concept 

maps have greater learning gains when constructed in groups (d = .96) than when constructed individually 

(d = .82) or studied individually (d = .37) (Nesbit and Adesope, 2006). The advantage for group construction 

over individual construction or study may derive from the fact that group construction implicitly combines 

both of these activities: each learner has both the opportunity to extend the group concept map and the 

opportunity to study what other members have contributed. The kind of support afforded by group con-

struction appears similar to, but distinct from, the kind of scaffolding provided by so-called expert skeleton 

concept maps (Novak and Canas, 2006), which are partially specified concept maps with unlabeled nodes 

and/or edges. Learning gains with skeleton maps appear mixed (Chang, Sun, & Chen, 2001; Wang et al., 

2015) and there is some evidence suggesting that skeleton maps assess a different kind of understanding 

than regularly constructed concept maps (Ruiz-Primo et al., 2001). 

 

Group concept maps conceptually represent the collective individual “mental maps” of the group. Recent 

work has proposed a framework of “concept landscapes” to analyze collections of individual maps on a 

shared topic (Muhling, 2017). Two kinds of aggregation are proposed to create concept landscapes. The 

first is accumulation, a process by which individual maps are related by similarity, shared nodes, or shared 

edges. A landscape of accumulated maps is perhaps more appropriately considered as a high-dimensional 

space, e.g., node-space or edge-space, though a low dimensional landscape could also be formed by trans-

forming the map similarity matrix with a technique like multidimensional scaling. The second concept 

landscape aggregation is called amalgamation. Amalgamation combines individual maps into a single map 

by merging nodes and edges, weighting them by their frequency across maps, and then pruning the com-

bined map using a technique like thresholding, minimal spanning trees, or the Pathfinder algorithm 

(Schvaneveldt, 1990). 

 

Group construction of concept maps appears to follow a process of amalgamation, with the important dif-

ference that the individual maps are not created before combining. Instead, individual maps are amalga-
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mated incrementally. Through the processes of conversation and shared group map editing, individual men-

tal maps become aligned, nodes and edges are drawn, and less important (or contentious) elements pruned. 

When considered as amalgamation, group construction of concept maps need not happen synchronously or 

with a stable group. However, an amalgamation-only view ignores the social context and common ground 

created by synchronous group construction, and these components would need to be replaced in a group 

construction paradigm operating asynchronously. Recent work has investigated asynchronous group con-

struction by using a learning companion intelligent agent in place of a human peer (Olney & Cade, 2015). 

In this work, the learning companion and human student iteratively grow and expand a concept map that is 

based on previous student interactions. The learning companion effectively replaces the larger group of 

students by presenting elements of their maps as its own and providing a social presence for the student to 

engage with. Whether using a learning companion to simulate synchronous group construction is as effec-

tive as true synchronous group construction is an ongoing issue for research. 

 

Self-Visualizations as Graphical Representations of Mental Models 

Self-visualizations, i.e., graphical representations of one’s mental model, have been used in science and 

computer programming education both as instructional tools and for assessing learners’ understanding. For 

instance, generating a graphical representation during problem solving in conceptual Newtonian Physics 

plays a similar role as self-explanations, allowing learners to reflect on their understanding of the target 

concepts as well as enabling the instructor, e.g., a computer-based intelligent tutoring system, to assess 

learner’s understanding and provide hints, for instance, by highlighting elements of the visual representa-

tion. That is, the graphical representation is used by the tutor-tutee team to advance their mission of maximal 

knowledge transfer. We argue that these self-visualizations play a similar role in understanding as self-

explanations do. Furthermore, they could help team members understand each other’s contributions to, for 

instance, the team’s mission which could be maximal learning or developing a high-quality, i.e., bug-free, 

complex software product. The latter case offers a unique opportunity to investigate the role of visualiza-

tions for collaborative work as large software development projects usually involve very large teams com-

prising of hundreds or thousands of members with different time, space, and cultural characteristics. 

 

We present next a brief summary of using graphical representation to externalize one’s mental models in 

science learning and computer programming. Examples of such self-visualizations are free-drawings, 

which allow learners to freely express visually their thinking and understanding, and Control structure dia-

grams (CSD; Hendrix, Cross II, & Maghsoodloo; 2002). We review briefly previous work on self-visuali-

zations next, that is, we focus on visualizations generated by a target individual as opposed to visualizations 

generated by an expert through interviewing the individual. Due to space reasons, we do not present visu-

alizations at higher levels of granularity such as system diagrams highlighting the high-level organization 

of a complex software product. It should be noted that in large software development teams, visualizations 

play an important role for many aspects of this gargantuan collaborative effort including tracking changes 

to code, highlighting one’s role in the overall team, and training newcomers on the current state of the 

project (Ellis, Wahid, Danis, & Kellogg, 2007). 

 

The use of visualizations, i.e., free-body diagrams (see Figure 3), as an instructional strategy for improving 

students’ ability to explain and predict Physics situations has been reported by Mualem and Eylon (2010). 

Mualem and Eylon reported significant learning gains (pretest-posttest) when this strategy was used to 

coach 9th graders on qualitative problem solving. In another study, Larkin and Simon (1987) showed that 

translating a propositional problem description into a visual representation is essential in Physics problem 

solving. Biswas, Leelawong, Schwartz, and Vye (2005) proved the usefulness of using well-structured vis-
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ual representations (concept maps) in a learning-by-teaching environment. Similarly, visualizations of com-

puter program structure and behavior could help with source code comprehension (Hendrix, Cross II, 

Maghsoodloo, 2002). 

 

  

Figure 3. An example of a free-body diagram used in Physics. 

Using visual expressions of one’s situation model can also be useful for assessing the accuracy of such 

models. For instance, Chi and colleagues (1994) analyzed mental models from verbal input and drawings. 

Other research has assessed mental models by asking learners to draw and explain diagrams or visual im-

ages that demonstrate an overall function or system (Butcher, 2006; Gadgil et al., 2012). 

 

Control Structure Diagrams (CSDs; Hendrix, Cross II, & Maghsoodloo; 2002) are graphical representations 

that capture the control structure and modular organization of a computer program. CSDs have the ad-

vantage of acting as a companion to source code because CSDs elements are attached to chunks of source 

code (see Figure 4) as opposed to being a separate representation, which is the case for flowcharts. Hendrix, 

Cross II, and Maghsoodloo (2002) showed that CSDs are more helpful than other visual representations, 

e.g., flowcharts, for source code reading and comprehension. The companionship aspect of CSDs with 

respect to a source code could play a role similar to the use of subgoal labels which have been shown to 

reduce cognitive load and increase performance while students learn programming (Margulieux, Guzdial, 

& Catrambone, 2012). 

 

 

Figure 4. Example of a control structure diagram used in visualizing the organization of computer code. 
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In sum, self-generated graphical representations of mental models can be used both as an instructional 

strategy to help one’s understanding (Hendrix, Cross II, and Maghsoodloo, 2002; Mualem & Eylon, 2010), 

for assessing the quality of mental models (Chi et al., 1994; Butcher, 2006; Gadgil et al., 2012), and for 

expressing a team member’s understanding of a larger task that the team must tackle and which can then 

be used as a starting point to generate a team mental model that encompasses all members’ understanding 

(Ellis, Wahid, Danis, & Kellogg, 2007).  

 

Shared Mental Models for Adaptive Team Training 

Cannon-Bowers and Bowers (2011) reason that the most stressful demands on individuals in work/opera-

tional environments arise from their participation as a member of a team. These performance demands may 

be primarily due to the development of teamwork skills that team members must acquire for the team to 

perform optimally and the emergence of divergent goals within the team, but they may also be due to the 

complex, and dynamic nature of teamwork and the constant need to adapt to emergent teamwork processes 

and phenomena (Kozlowski and Ilgen, 2006). Grand et al. (2016) described team dynamics as the modeling 

of team cognition and shared knowledge of team tasks that underlie team development and thereby affect 

team learning and performance.  To overcome these barriers to learning, the successful team is able to 

understand goals and construct shared mental models of the processes for teamwork and taskwork. 

 

Shared mental models include organized common knowledge about a system (e.g., instructional domain) 

that enables individual team members to understand its basic processes and then form predictions and ex-

pectations about its future states (Rouse & Morris, 1986). If Intelligent Tutoring Systems (ITSs) are to be 

effective tools for adaptive team training, Fletcher & Sottilare (2017) advocate a close-coupling of ITS 

instructional strategies, shared mental models, and teamwork.  Sottilare et al. (2017) reinforce this with 

their findings on the importance of teamwork behaviors, attitudes, and cognition. 

 

In any domain, the successful adaptive team tutor optimizes instruction by adjusting the presentation of 

content (e.g., text, graphics, and active media like serious games) to maintain team member engagement 

and thereby optimize learning opportunities within the team.  Collaborative graphical activities within adap-

tive team instruction support the development of or reinforce shared mental models by providing a mecha-

nism leading to better common understanding of the domain, the team, and their learning.  These activities 

may reduce stress and cognitive workload by synchronizing goals and activities, and thereby increase team 

learning and performance. 

 

Kay, Yacef & Reimann (2007) observed that learners, especially those in leadership roles, found visualiza-

tions useful and that a significant number of learners modified their behaviors based on the visualizations 

provided.  Visualizing shared-knowledge awareness, the perception of shared knowledge learners have 

while working in a collaborative learning context, can also enhance group learning (Collazos, Guerrero, 

Redondo & Bravo, 2011). 

 

The most effective type of media to support the development of shared mental models and improve team 

performance may depend on the type of activity (e.g., team taskwork, collaborative learning, or collabora-

tive problem solving) in which the team is engaged.  During taskwork activities, graphics that provide the 

status of team performance or achievement (e.g., dashboards) can level understanding within the team lead-

ing to better performance.  Widgets within dashboards that represent leaderboards, activity streams, and 

concept maps are common and useful.  During collaborative learning activities, graphics that model con-

cepts or processes (e.g., free body diagrams) can reinforce individual learning or identify shortfalls in 

knowledge, misconceptions or diverging objectives of team members.  In attempting to collaboratively 

solve problems, graphics that visualize data or allow learners to share and vet information are also valuable. 
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Conclusion 

The graphical supports described in this chapter (concept maps, 3-dimensional cognitive mapping, and self-

visualizations) have proven to be effective vehicles for the collaborative construction of mental models. 

Each fulfills the necessary condition of organized common knowledge about a system (e.g., instructional 

domain) that enables individual team members to understand its basic processes and then form predictions 

and expectations about its future states). As advances in technology enable increasingly sophisticated types 

of visual representations, such as virtual and mixed realities (Liu, Dede, Huang, & Richards, 2017), insights 

from the graphical supports described here will aid in designing effective vehicles for collaboration. 

 

In GIFT, the Domain Course file and the Domain Knowledge file are good components in which to imple-

ment graphical/visual representations for shared mental models. Digital tools for creating individual and 

group graphical supports have the advantage of providing a logfile record of the steps involved in producing 

these mental models, so that both instructors and students can review the processes of creation by individ-

uals and synthesis/collaboration by the group. This is not only valuable in producing a shared mental model, 

but also in elucidating strengths and weaknesses of the collaborative actions involved. 
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INTRODUCTION 

Both military and civilian work is increasingly organized around small, dynamic teams rather than large 

bureaucratic frameworks. Such teams combine individuals with highly specific skill sets and extensive 

training to solve complex, non-standard problems, often under extreme pressure. Importantly, these teams 

are not typically composed of interchangeable members but are formed and trained as expert teams to 

function semi-autonomously. To accomplish mission objectives in the face of complex challenges, the 

United States military needs to develop teams that consistently exhibit high levels of taskwork and team-

work skills. Implementing principles of team training and maintaining team efficacy are critical in the 

armed forces, where teams are often widely dispersed and consequences for underperformance can be se-

vere, though many civilian teams—such as hospital trauma teams or flight crews—face similar challenges. 

Establishing and maintaining high levels of team performance in these contexts requires the creation of 

practical and effective team development interventions, including team training, as well as systems for 

ongoing assessment of team function. 

We argue that one critical component of training, monitoring, and maintaining high-functioning teams is 

the ability to model team performance. 

Communication, cognition, coordination, collaboration, and coherence in teams are critical for predicting 

team performance. To improve our ability to enhance and maintain team performance, we need to develop 

a better understanding of these components. Specifically, we need to understand how the components of 

team dynamics influence team performance in complex problem-solving situations (Fiore et al., 2010; 

O’Neil, Chuang, & Baker, 2010; Paris, Salas, & Cannon-Bowers, 2000; Salas, Cooke, & Rosen, 2008). 

However, current tools and methods lack the capacity to assess these components of teamwork, to the dis-

may of stakeholders. This is true in the armed forces, industry, government, and civic organizations, and it 

has motivated national and international assessments of teamwork and collaborative problem solving as a 

21st-century skill. 

In what follows, we outline a program of research on the science of teamwork, based on a theoretical frame-

work for analyzing the decision-making processes and effectiveness of teams. Drawing on our prior work 

developing critical constructs and mechanisms to measure team performance using multilevel network anal-

ysis, we argue that one critical advance in the science of teamwork is using these tools to build predictive 

models that consider teams as complex systems. To model team performance effectively, we need to un-

derstand teams as multilevel networks comprised of three main components: (a) the social network that 

structures team interactions; (b) the conceptual networks that guide the actions of individuals on the team; 

and (c) the communication network by which that action is accomplished. A critical step in creating a sys-

tem to monitor and support team performance, then, is the development of multilevel network analysis 

techniques for assessing teamwork during complex problem solving. 
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HIGH-PERFORMANCE TEAMS IN MILITARY AND CIVILIAN WORK 

Two factors have made analysis of the performance dynamics of small teams critically important to current 

and future U.S. military endeavors. First, the nature of armed conflict has shifted in the last 50 years from 

large-scale machine warfare organized around regiments of conventional forces, in which combat and in-

telligence gathering present relatively standard problems (materiel domain), to small-scale asymmetric war-

fare organized around small teams of special forces, in which counter-insurgency and other elements of 

unconventional combat present non-standard, highly complex problems (human domain). Second, budget 

cuts, the current geopolitical landscape, and changes in military priorities have led to reorganization of 

operations around small, dynamic teams engaged in counter-terrorism, cyberwarfare, drone operations, for-

eign internal defense, peacekeeping, and humanitarian aid (Knoke, 2013; Odierno, Amos, & McRaven, 

2013; Ressler, 2006; Stewart, 2013; Thomas & Dougherty, 2013; Tucker & Lamb, 2007; Turnley, 2011). 

Today’s small military teams, such as four-member Navy Special Warfare squads or twelve-member Army 

Operational Detatchment-A teams (Feickert, 2010; McRaven, 1996), combine individuals with highly spe-

cific skill sets and extensive training to solve complex, non-standard problems under extreme pressure. 

Importantly, teams such as these are not composed of interchangeable soldiers embedded in rigid bureau-

cratic frameworks—as in the squads of conventional military organization. Rather, these teams are formed 

and trained as expert teams to function semi-autonomously (Thomas & Dougherty, 2013). 

Of course, this approach is not limited to military organizations. Civilian work, too, is increasingly struc-

tured around small, high-performance teams (Buchholz, Roth, & Hess, 1987; Katzenbach, 1993; Lehman 

& DuFrene, 2010). Hospital trauma teams, emergency response teams, flight crews, design teams, and re-

search teams, among others, are core organizational units in many contexts. While civilian teams may not 

face the same pressures as military teams, performance is often equally dependent on the extent to which 

the members function as a team. 

TEAMS AS MULTILEVEL NETWORKS 

A central challenge in understanding team performance is to integrate understanding of how a team collab-

orates with information about what they are collaborating on. For example, high-functioning teams “com-

municate clearly”, but in order to assess whether a team is performing well, we need to know more than 

just that they are communicating well. We also need to know that they are communicating effectively about 

particular aspects of the specific problem they are working on, and that their approach to the problem is 

appropriate for the specific circumstances in which they are working. 

That is, to measure team performance, we need a technique that can measure critical aspects of team per-

formance, including those articulated in the PISA 2015 Collaborative Problem Solving Framework (Greiff, 

2012; Organization for Economic Co-operation and Development, 2013) and various frameworks of 21st-

century skills (Griffin, 2012; Koenig, 2011; Kozma, 2009; Trilling & Fadel, 2012). These aspects include 

(a) how well a team collaborates in terms of social and cognitive alignment; (b) how well a team functions 

in a problem-solving context, including alignment with organizational factors and team outcomes; (c) how 

well each individual contributes to creating cognitive, social, and organizational alignment and team out-

comes; and (d) the relationships among and integration of these factors. 

Put another way, we need to understand, simultaneously, the social network of the team, the conceptual 

networks that guide the actions of the individuals on the team, and the communication network by which 

those actions are accomplished. Thus, we argue that a critical step in creating a system to monitor and 

support team performance is the development of network analysis techniques for assessing teamwork dur-

ing complex problem solving. Specifically, we suggest that the science of teamwork needs research into 
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methods for constructing multilevel network models of high-volume discourse data (Frank, 1998, 2011; 

Penuel, Riel, Krause, & Frank, 2009; Wang, Robins, Pattison, & Lazega, 2013). By “discourse”, we refer 

to spoken interactions, but also more broadly to any actions or interactions of team members and others in 

the problem-solving context (Gee, 1999). Our goal is to develop network analysis techniques that account 

simultaneously for the cognitive, social, and communications networks that comprise team activity and 

within which a team functions. 

NETWORK MODELS OF TEAMWORK 

Our approach is to start with epistemic network analysis (ENA), a technique that we have developed to 

analyze records of individual and team problem solving (Shaffer, 2017; Shaffer, Collier, & Ruis, 2016; 

Shaffer & Ruis, 2017). A fundamental claim in this work is that it is essential to consider the semantic and 

conceptual content of what gets said during social interactions in addition to tracing the patterns of who 

talks to whom in a social network. Social network models devoid of content are doomed to fail because 

team interactions are never “content neutral” (Maroulis & Gomez, 2008). It is impossible to evaluate the 

quality of team interactions by examining who is talking to whom without knowing what they are talking 

about. This work is thus unique in combining deep analyses of both content and social network processes. 

Specifically, ENA models team activity by identifying categories of action, communication, cognition, and 

other relevant features and characterizing them with appropriate coding schemes into smaller sets of do-

main-relevant nodes. The weights of the connections among network nodes (i.e., the association structure 

of key elements in the domain) are then computed and visualized. Critically, ENA models team actions and 

interactions in such a way that it is possible to extract information about each team member’s contributions 

to team performance. ENA uses statistical and visualization techniques to enable comparison of the salient 

properties of different networks, including networks generated by different teams or by teams at different 

points in time, teams in different spatial locations, or teams engaged in different activities. These salient 

properties are modeled not just in terms of the general structure of the networks, as is often revealed by 

other network analysis techniques (changes in density or betweenness centrality, for example), but ENA 

also extracts properties relevant to the actual content of the network. 

In other words, ENA can analyze what teams are doing, how they are thinking about what they are doing, 

what role individuals are playing in team performance, and how teams compare to one another in the context 

of real problem solving. Using ENA, we have been able to identify critical patterns of interaction in expert 

and novice teams, as well as successful and unsuccessful teams and individuals (Andrist, Collier, Gleicher, 

Mutlu, & Shaffer, 2015; Arastoopour, Shaffer, Swiecki, Ruis, & Chesler, 2016; Chesler et al., 2015; 

Quardokus Fisher, Hirshfield, Siebert-Evenstone, Arastoopour, & Koretsky, 2016; Shaffer, 2017; Sullivan 

et al., in press). 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

A critical next step in developing a science of teamwork is to extend ENA from modeling team interactions 

in a single modality (communication among team members) to account for the different layers of activity 

that influence a team’s work. Factors we believe can and should be modeled include: (a) cognitive and 

psychological factors of team members and of the problem being solved; (b) modes of communication, 

including synchronous and asynchronous interactions; (c) the organization and structure of the team, as 

well as the influence of role and hierarchy within the team; (d) social relationships and interactions among 

team members; and (e) organizational and other external influences on the team’s activities. 
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To accomplish this, we hypothesize that we will need to make three significant advances in the network 

science of teams. First, we will need to extend our existing natural language processing coding algorithms 

for text dialog. That is, we will need to develop machine learning and other techniques to quickly and 

reliably develop, calibrate, and implement coding schemes for a wide array of discourse data, including 

both text and spoken dialogue. Building on existing computational linguistics technologies, such as Coh-

Metrix (Graesser et al., 2014; Graesser, McNamara, & Kulikowich, 2011) and LIWC (Pennebaker, Booth, 

& Francis, 2007), we will augment the existing natural language processing capabilities of ENA to develop 

a version of the tool that can code diverse data streams for multilevel analyses. 

Second, we will need to examine how we can most appropriately model the social, cognitive, and commu-

nicative processes by which connections in those networks are constructed. That is, we will need to develop 

a more robust scientific understanding of how to identify and model the links between ideas and between 

people that individuals make during team problem solving (Dillenbourg, 1999). 

Third, we will need to develop multilevel ENA (mENA) network models. We conceptualize these mENA 

models as the network science analog of hierarchical linear modeling, where the effects of each layer of the 

model are analyzed, but critically, those analyses account for the interactions between the different layers 

of the model. For example, prior work has looked at integrating hierarchical linear modeling and social 

network analysis to examine how social factors influence students’ school achievement (Frank, 1998). Sim-

ilarly, mENA would be able to model the network of cognitive relations for each member of the team, but 

also account for the nesting of these individual cognitive models in the team setting. mENA would also be 

able to model the impact of individuals’ cognitive and affective states on social interactions and relations 

among team members. 

As part of this work, we will also explore ways to integrate mENA into systems for team training and 

development, such as training modules developed with GIFT, the Generalized Intelligent Framework for 

Tutoring (Sottilare, Brawner, Goldberg, & Holden, 2012). For example, mENA could be used to model 

expert teamwork and behavior based on observations gathered across an array of high-performing teams. 

In these instances, aggregating relevant mENA features across problem-solving scenarios can produce rich 

network models that will organize the actions, communications, and contextualized decision points that 

need to be explicitly defined within GIFT’s domain module. Designating relationships between infor-

mation, communication, and action across roles within a team provides rich inputs for structuring and con-

figuring an associated Domain Knowledge File that manages assessment and pedagogical requests during 

a GIFT-managed scenario event. Through these techniques, one can determine whether high-performing 

teams execute tasks in similar ways (i.e., they have similar mENA networks), which could warrant more 

general claims about team performance, or whether there are unique differences across different teams or 

different teamwork scenarios. The same techniques can be applied to novice and low-performing teams to 

identify common challenges. 

Following the development of an mENA expert model, mENA could be used to assess specific team activ-

ities in comparison with the expert model. This will enable functional evaluations of teams that are in train-

ing against representations of ideal behavior; as discussed above, mENA is particularly well suited to make 

such comparisons, both statistically and visually. Differences in mENA models that reflect critical cogni-

tive, communicative, or enactive behaviors could thus assist in establishing granular assessment methods 

that can inform coaching decisions. With respect to GIFT, this involves making strategy selections that 

associate with directed feedback delivered in real-time, scenario adaptations that focus on adjustments in 

difficulty and complexity, and post-event scenario selections to target specified skill sets that require addi-

tional training or practice. 
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Ultimately, our goal is to produce a system for training and maintaining high-performance teams that (a) en-

ables easy creation of training modules that (b) provide teams with realistic simulations of problem-solving 

scenarios and (c) generate mENA models that give team members and coaches actionable feedback. 
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CHAPTER 5 – BAYESIAN MODEL OF TEAM TRAINING AND 

MEASURES 
Alan Carlin1, Vasile Rus2, Ben Nye3 

Aptima, Inc.1, University of Memphis2, University of Southern California Institute for Creative Technologies3 

Introduction 

A large amount of research has been conducted recently on adaptive training and personalized learning, 

and from the modeling perspective, conferences such as AIED (Artificial Intelligence in Education), EDM 

(International Conference on Educational Data Mining), and LAK (Learning Analytics & Knowledge Con-

ference), have driven advances in the state-of-the-art. However, extension of research models from indi-

vidual training to team training presents a new set of challenges. Different team members may have differ-

ent training requirements, and in some cases team members may have different training needs; a training 

exercise that is best for one team member may either be boring to another team member, or too advanced. 

Furthermore, individual training measures may apply to different team members, to different extents. In 

this paper we address the following questions: 1) How can one select a training exercise that best trains all 

of the individual team members?; 2) How can the team training measures be related back to individual 

assessments, and thus to selection of future team training exercises? 

We propose a generative model to reason about instructor decisions in the adaptive team training process. 

The model includes: 1) A representation of individual and team training objectives, 2) A representation of 

the Knowledges, Skills, and Experiences (KSE’s) required to fulfill the training objectives, 3) A represen-

tation of individual and team exercises that a human or computer-based instructor can assign to team mem-

ber(s), 4) For each exercise, a representation of which KSE’s are trained by the exercise, and 5) For each 

exercise, a representation of its outcome measures and how each measure relates to KSE’s.  

The model can be used to produce optimal adaptive sequences of individual and team exercise selec-

tion.  Furthermore, it can be parameterized based on performance data obtained from a Learning Records 

Store (LRS) or a Learning Management System (LMS). In this paper, we formalize the model, and we also 

describe how it can be integrated into frameworks such as the Generalized Intelligent Framework for Tu-

toring (GIFT). 

Individual Training Models  

The approach described in this paper formalizes the team training process as a Partially Observable Markov 

Decision Process (POMDP; Smallwood and Sondik, 1973). A POMDP is related to the more widely used 

and simpler Hidden Markov Model (HMM), such as that used in Bayesian Knowledge Tracing (BKT; 

Anderson 1995). The team training variant we describe in this chapter (POMDP-TT) combines Bayesian 

Knowledge Tracing, Item Response Theory, and previous individual-trainee versions of a POMDP model. 

 

Bayesian Knowledge Tracing 

A Hidden Markov Model contains States, Transitions, and Observations. In the BKT formulation individual 

components of knowledge are tracked as either learned or unlearned, and a variable called state, which we 

designate 𝑆𝑛, where 𝑛 identifies the skill being learned. Table 1 summarizes typical elements of BKT, with 
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a renaming/updating of variables and descriptions in Table 1 to conform to the notation in the rest of this 

chapter. 

Table 1:  Bayesian Knowledge Tracing Definitions  

𝑝(𝑆𝑖) The probability that KSE i is in the learned state 

prior to the first opportunity to apply it 

𝑝(𝑇) The probability a KSE will make a transition from 

the unlearned to the learned state  

𝑝(𝐺) The probability a student will guess correctly if a 

KSE is in the unlearned state 

𝑝(𝑆𝑙𝑖𝑝) The probability the student will make a mistake if 

the KSE is in a learned state 

 

The probability 𝑝(𝑇) can be used to form a probability transition table.  For example a value of 𝑝(𝑇) 

generates the table below, where the probability of transitioning from an unlearned to a learned state is 70% 

if the student is presented with an item that uses the KSE. In the table there is zero probability of skill decay, 

that the skill is unlearned once learned. 

Table 2: Transition Table in Hidden Markov Model for Bayesian Knowledge Tracing 

 Unlearned Learned 

Unlearned .3 .7 

Learned 0 1 

 

The probability 𝑝(𝐺) and 𝑝(𝑆𝑙𝑖𝑝) represent the probability of guessing the item correct if the skill is un-

learned (i.e. a “lucky guess”) and making a mistake despite the skill being learned, respectively. Together 

they compose the observation table of the Hidden Markov Model. Table 3 shows an example of the obser-

vation table for the case where 𝑃(𝐺) =  .1 and 𝑃(𝑆𝑙𝑖𝑝) = .2 

Table 3:  Observation Table in Hidden Markov Model for Bayesian Knowledge Tracing 

 Correct Incorrect 

Unlearned .1 .9 

Learned .8 .2 

 

In the above formulation, there is a separate model for each skill that contains its own 𝑝(𝑇), 𝑝(𝐺), and 

𝑝(𝑆𝑙𝑖𝑝). Typical applications of a BKT approach are to (1) Learn these model parameters, given data, and 
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(2) assess individual student progress, given the model parameters and that individual student’s training 

history. 

Item Response Theory 

 

Whereas Bayesian Knowledge Tracing focuses on the evolution of a skill over time, Item Response Theory 

(IRT) is a family of models that focuses on item performance (Lord, 1980), in that skill level can be related 

to task difficulty, each can support many or continuous skill levels, and the values in the table can be de-

termined from data if applicable. A simple variant models item performance as: 

𝒑(𝒄𝒐𝒓𝒓𝒆𝒄𝒕) ∝  𝒄𝒊 +  
𝟏 − 𝒄𝒊

𝟏 + 𝒆−𝒂𝒊 (𝒔𝒊−𝒅𝒊)
 

Where 𝒔𝒊 is a parameter representing trainee ability, 𝒅𝒊 is a number representing item difficulty, 

𝒂𝒊is a discrimination parameter, and 𝒄𝒊represents chance. With IRT, these parameters can be 

learned for multiple trainees performing on multiple items. By adding more variables to the IRT 

model the shape of the Item Characteristic Curve (ICC) can be varied. Typical IRT parameters are 

item difficulty, item discrimination parameter (governing how rapidly an increase/decrease in stu-

dent skill level results in a change of the probability of correctness), and probability of getting 

items correct by guessing. The IRT model can also be extended to a Partial Credit Model (PCM) 

that generates ICC’s for gradations of correctness of response, and it can also be extended to ac-

count for multiple different skills.  

POMDP 

A POMDP (Partially Observable Markov Decision Process) represents an extension from an HMM in that 

it is a Decision Process. In Levchuk et al., the authors introduced multiple training actions that were each 

able to train team skill (Levchuk, 2007, 2012). Each training action is associated with a different 𝑝(𝑇). The 

team was modeled as being in a high-skill, medium-skill, or low-skill state. The high-skill state was asso-

ciated with a reward. Unlike the BKT approach above, in this work the model parameters were supplied by 

Subject Matter Experts. The problem addressed by the POMDP was action selection, to select the action 

that maximizes reward over time. Formally, the components of a POMDP model are: 

● 𝑆: a finite set of states 

● 𝐴: a finite set of control actions 

● 𝑍: a finite set of observations 

● 𝜏(𝑆 × 𝐴 × 𝑆): a state transition function 

● 𝑂(𝑍 × 𝑆 × 𝐴): an observation function for each action. 

● 𝑅(𝑆 × 𝐴): a reward function for each state and action. 

o γ: A discount factor over future time steps.  

● 𝑏0(𝑆): An initial distribution that assigns a probability to each state, referred to as a belief state, at 

time zero 

● 𝛾: A discount factor over future time steps. 

 As in an HMM, a POMDP updates its assessment of student belief state after each action. 

𝑃𝑟 (𝑠1| 𝑠0, 𝑎0)  ∝  𝑃𝑟 (𝑠0) 𝜏(𝑠0, 𝑎0, 𝑠1 ) 
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Time unfolds over a series of discrete time steps, 𝑡 = 1,2, . . ∞.  𝑠𝑡 and 𝑎𝑡 represent the trainee state and 

training action taken at time step 𝑡.  As opposed to an HMM, in which only one action is considered per 

model, a single POMDP model allows for explicit comparison between actions within the same model. 

Thus, a POMDP model can be used for the problem of apples-to-apples comparisons for action selection. 

This involves assigning each action a value for the current belief state, and selecting the action with the 

highest value. Value differs from Reward in that the reward function 𝑅 is by definition for a single step, 

and the value function (usually denoted 𝑉, 𝑉(𝑠) or (𝑠, 𝑎) ) is defined for multiple steps: 

𝑉 =  ∑

∞  

𝑡=0

𝑅(𝑠𝑡 , 𝑎𝑡)𝛾𝑡   

The value of a belief state can be computed as an expectation over its component states. 

𝑉(𝑏, 𝑎) = ∑

𝑠

𝑏(𝑠)𝑉(𝑠, 𝑎) 

Where 𝑏(𝑠) is a function that maps a state 𝑠 to a probability.  

The value of an action for a state is initialized to be the direct reward. 

𝑉(𝑠, 𝑎): = 𝑅(𝑠, 𝑎) and 𝑉(𝑠) =  𝑚𝑎𝑥𝑎 (𝑉(𝑠, 𝑎))  

But the above yields only the immediate reward. Reward over more than one time step can be recomputed 

using a Bellman backup. 

𝑉(𝑏, 𝑎) =  ∑

𝑠′

∑

𝑠

𝑏(𝑠)𝜏(𝑠, 𝑎, 𝑠′)𝑂(𝑜|𝑎, 𝑠′))𝑉(𝑠′, 𝜋{𝑏,𝑎,𝑜}) 

Where 𝜋{𝑏,𝑎,𝑜} is the action selected after taking action a and receiving observation o. That is, the value of 

a belief state is decomposed into the product of the probability of each state, the probability of transitioning 

from that state to a new state s’, the probability of making an observation from that new state, and the value 

of continuing the adaptive policy from that new state, given the observation.  

A variety of POMDP and MDP representations for training have been constructed (Brunskill, 2012; Fol-

som-Kovarik, 2012; Rowe, 2015). In this chapter, we build upon modern factored single-trainee models to 

build a model to reason about team training (Carlin, 2016). We term the resulting model, POMDP-for-

Team Training (POMDP-TT). 

POMDP-for-Team Training (POMDP-TT) 

In this section we define a POMDP-for-Team-Training model (POMDP-TT) based on a theory of deliberate 

practice (Ericsson, 1993). Figure 1 shows the construct. At its core, a POMDP-TT contains a standard 

POMDP model from the literature, that is a tuple < 𝑆, 𝐴, 𝜏, 𝜔, 𝑂, 𝑅, 𝛾 >. Supporting information about the 

training domain is used to construct the parameters within this tuple. This includes information about the 

domain (Team Roles), and information about available training content. 
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Figure 1:  POMDP-TT. At the core is a POMDP model, surrounding information about team training is used 

to define the POMDP parameters. 

POMDP-TT parameters 

Information about the POMDP-TT parameters can be obtained by eliciting the information from 

subject matter experts via a user interface, or alternatively by data mining a Learning Management 

System for information. Regardless, information elicited should include: 

Team Roles: 

Information about the positions in the team being trained. Information about the team roles includes 

the KSE’s (Knowledges, Skills, and Experiences) relevant to each role, and the Training Objec-

tives for the role. 

KSE’s be elicited from instructors directly via a Scenario Authoring Tool (SAT), or in some do-

mains such as in military domains, there is an already-existing list of training standards. Another 

method of eliciting KSE’s is by correlating item performance, such as data mining a Learning Man-

agement System using Principal Component Analysis (Carlin, 2013).  

Training Objectives are derived from the KSE’s. It is not always the case that the KSE’s represent 

all the training objectives, for instance, some training domains have a complete listing of KSE’s for 

a position, but at initial levels of qualification many of the KSE’s may not be relevant, or the KSE’s 

may not need to be trained to an expert level of competence. Therefore Training Objectives contain 

the list of relevant KSE’s for the position being trained, as well as the level of desired performance. 
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The training planner then needs to only optimize training for the selected skills at the desired level 

of performance, and no further. 

Training Content  

Training Content includes information about the training exercises. This includes a list of the exer-

cise names and personnel, which is extracted in a SAT when the exercises are created, or else can 

be extracted from records in the LMS. Exercises are also tagged for Applicability and Difficulty of 

each skill. Typically, applicability is specified by tagging the exercise for the KSE’s trained. Some-

times, a KSE is featured prominently in the exercise whereas other times, a KSE plays a supporting 

role. Applicability is a specification of which is the case. In some domains, applicability is speci-

fied on a scale (e.g. 1-5), and in others, KSE’s are specified as either “primary” or “secondary”. 

Difficulty is the 𝒅𝒊 skill in Item Response Theory (see above section).  

Applicabilities and difficulties can either be extracted by a SAT, or alternatively a Machine Learn-

ing Algorithm such as Markov Chain Monte Carlo can be applied to LMS data to learn these pa-

rameters (Carlin, 2016). 

(Inner) POMDP parameters 

The POMDP-TT parameters, which correspond to the training domain, can be translated into stand-

ard POMDP parameters. Below we specify the construction. 

States 

The state space 𝑆 continues to be a set of possible team states. However, POMDP-TT describes this set 

using a factored representation. 𝑆 is factored into individual components, so that 𝑆 = 𝛱(𝑆𝑘). Each 𝑆𝑘 rep-

resents a team member’s state in a single Knowledge, Skill, or Experience (KSE). For each 𝑠𝑘 ∈ 𝑆𝑘, 𝑠𝑘 ∈
(0, |𝑚𝑎𝑥| ), where 𝑠𝑘 represents trainee skill level on that KSE, and max represents the maximum possible 

skill level. Thus, by the above description member 𝑠 ∈ 𝑆 can be described by a vector < 𝑠1, 𝑠2, . . 𝑠𝑘 > 

Team Members: Under this model, it is possible for many KSE’s to apply to a single team member, and/or 

for many team members to apply to the same team KSE. To specify this relationship more clearly, we can 

optionally specify:  

● The set of team members 𝐼 = {𝐼1, 𝐼2, . . 𝐼{|𝑡𝑒𝑎𝑚|}}  

● A mapping function 𝛬(𝑆𝑖) → 𝑈, 𝑈 ⊂ 𝐼 that maps KSE 𝑆𝑖 to the team members that 𝑆𝑖ap-

plies to. 

● A related mapping function 𝛬(𝐼𝑖) that identifies the KSE’s related to team member i.  

Actions 

The set of Actions 𝐴 continues to be a set, where each 𝑎 ∈ 𝐴 represents training content. Each member 𝑎 ∈
𝐴 is described as a tuple (< 𝑑1, . . 𝑑𝑘 >, < 𝑎𝑝𝑝1, . . 𝑎𝑝𝑝𝑘 >) where 𝑑𝑖 and 𝑎𝑝𝑝𝑖 represent the difficulty and 

applicability of training content 𝑎 with respect to KSE 𝑖. 

Rewards 

A reward for each state R(s) is defined by designating a subset of the KSE’s as training objectives, and a 

function 𝑓 that maps progress on the training objectives to a value. Thus, 𝑅(𝑠) is defined as 𝑓(𝑠1. . . 𝑠𝑘) 
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where each 𝑠𝑖  is the student state with respect to a training objective. Note that by this construction, the 

training objectives may include training an individual team member on multiple skills. Furthermore, re-

wards allow training objectives to be configurable; reward can be specified for state components at an 

intermediate level (e.g., 𝑅(< 3,3,3 >) = 𝑅(< 5,5,5 >)), or some state components can be ignored in the 

reward function (e.g., 𝑅(< 5,0,5 >)  = 𝑅(< 5,5,5 >)), to specify the true training objectives. 

Transition Function 

Define an individual transition function for each 𝑆𝑖 using the applicability and difficulty, and the concept 

of the Zone of Proximal Development (ZPD; Vygotsky 1978). The transition probability between state s 

and state s’ given action a is based on the following principles: 

● The transition probability is proportional to applicability 𝑎𝑝𝑝𝑖. 

● The transition probability is inversely proportional to the difference in skill level between s and s’. 

(i.e., smaller jumps in skill are more probable than large jumps). 

● The transition probability is inversely proportional to the difference in difficulty level of the item 

and the current student skill level. (enforces ZPD). 

An equation that summarizes these three principles is below, where 𝑠𝑖
′ > 𝑠𝑖 , 𝑑 and 𝑠𝑖 are always positive, 

𝜖 is a positive constant close to zero, and 𝑤1and 𝑤2 are model parameters. (In deployed applications, these 

have been set to 𝑤1 = 2 and 𝑤2 = 𝑠{𝑚𝑎𝑥}, the maximum possible skill level.) 

 

𝜏(𝑎 =< 𝑑𝑖 , 𝑎𝑝𝑝𝑖 >) ∝  𝑒
−(𝑤1)(|𝑑−𝑠𝑖|+1)(𝑠𝑖

′−𝑠𝑖+1)

(𝑤2)(𝑎𝑝𝑝𝑖)+ 𝜖  

Observations 

The set of observations 𝜔 refers to the set of measures that are obtained during (or collected after) each 

training exercise. In Figure 1, 𝜔 = {𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡}, but this can be extended into further gradations 

to account for partial credit, e.g. {𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑠𝑜𝑚𝑒𝑤ℎ𝑎𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑚𝑜𝑠𝑡𝑙𝑦 𝑐𝑜𝑟𝑟𝑒𝑐𝑡, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡}.  

Observation Function 

In POMDP-TT, observation probabilities are governed by similar principles to Item Response Theory (IRT; 

Lord 1980). However to account for multiple skills having different applicabilities, we vectorize a 2-pa-

rameter model. 

𝑝(𝑐𝑜𝑟𝑟𝑒𝑐𝑡) =  
1

1 + 𝑒
∑𝑘 𝑎𝑝𝑝𝑖

𝑡(𝑑𝑖
𝑡− 𝜃𝑗

𝑡)
 

 

This model is easily extended to include further parameters, or into a Partial Credit Model (Masters, 1982). 
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Application 

When student performance is known (e.g. when 𝑝(𝑐𝑜𝑟𝑟𝑒𝑐𝑡) is known to be 0 or 1), and furthermore when 

item difficulty is known, the observation and transition functions can be used to derive a probability distri-

bution for student skill level 𝜃. This distribution is compared to the training objectives specified in the 

reward function, which in turn can specify skills and skill levels for each task that correspond to “training 

goals”. Different training exercises (Actions) will lead to different paths to the goal, and a POMDP solver 

can optimize the path to the goal, by selecting the optimal action for the determined probability distribution 

(belief state) of the individual student. 

Conclusions and Recommendations for FUTURE research 

In this paper we have described a framework for team training using a POMDP model.  The framework 

includes cataloguing the skills involved in the domain, the training objectives, the training exercises avail-

able, the expected effect of each exercise on team skill levels, the set of possible measures, and the relation 

of these measures to trainee skill level. The approach uses principles from Bayesian Knowledge Tracing, 

Item Response theory, and Markov Processes, but vectorizes each of these models so that multiple team 

members are considered in the model, not just a single trainee. 

These constructs imply several paths for future research. One avenue is the construction of a standard to 

communicate the above information, by extending GIFT’s Domain Knowledge File (DKF) or through sim-

ilar constructs. A standard such as xml or json could support specification of exercises and the applicability 

and difficulty of each exercise with respect to team skills. A second avenue is introducing optimization 

constraints into the model and to exercise selection based on real-world considerations, for example only a 

subset of the team members may be available on a given day, or only certain exercises may be available at 

certain times. If implemented, these extensions could be used to support GIFT in measuring, assessing, and 

recommending team training. 
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CHAPTER 6 – DYNAMIC TASK SELECTION FOR TEAM TASK 

TRAINING USING WEARABLE SENSORS AND MULTI-AGENT 

PLANNING MODELS  
Alan S. Carlin1, Samantha K. B. Perry1, Alec G. Ostrander2 

Aptima, Inc.1, Iowa State University2  

Introduction 

In this paper we discuss how information from wearable sensors can be used to represent, measure, improve, 

and train team task performance in real-time. To accomplish this, we combine elements from frameworks 

in separate literatures, which in turn involves combining models of tasks with models of data. 

 

Regarding task models, the AI-planning literature is focused on choices made by a decision-maker (human 

or automated). As such, the models in this literature have focused on representing the tasks themselves, and 

the near-term and long-term ramifications of each decision. Task models produced in this literature include 

the TAEMS model (Decker, 1995; Horling, Lesser, Vincent, Wagner, Raja, Zhang, et al., 1999), the DEC-

POMDP model (Bernstein, Zilberstein & Immerman, 2000), distributed constraint optimization models 

(DCOP), and many others. In this chapter, we focus on examples that are loosely based on the TAEMS 

model, in which tasks are decomposed into a hierarchy of subtasks. The agent executing the tasks can use 

this information to choose which task to perform at any given time. In practice, one issue with the use of 

TAEMS is the level of effort involved in building the task structure, which involves specifying each of the 

subtasks in the model as well as their relations to each other. The more fine-grained the subtasks, the more 

information team executing the tasks has to plan out future tasks. On the other hand, a coarse granularity 

of subtasks results in fewer decision-points for the team, defeating the purpose of the representation. In this 

chapter, we will describe how to mitigate this effect by using during-task data and machine learning to 

improve agent reasoning mid-task. 

 

Specifically, we use unobtrusive sensors data acquired during the task. Organizational analysts are increas-

ingly turning to wearable sensors to understand and assess performance on a task. One reason is the nearly 

continuous data these sensors can capture. Another is the opportunity to capture interesting phenomena 

without interrupting the individual performing the task. To that end, multiple literatures in a variety of fields 

have focused on topics varying from how to generate better hardware to collect the data, to how to process 

the raw data from this hardware into meaningful measures, to how to assemble these measures together in 

a human-readable format. In training applications, these data have been found to inform real-time perfor-

mance feedback through visualizations of the face to face communication pattern of the team members 

(e.g., the Command Operations Dashboard; DeCostanza, Orvis, Perry, & Brown, 2017) as well as real-time 

cognitive workload assessments through the analysis of wireless EEG data (e.g., Durkee, Pappada, Ortiz, 

Feeney, & Galster, 2015).  

 

In this chapter, we examine how wearable sensors can be used to improve team task performance during 

execution of tasks that require online planning. First, we review the TAEMS planning model with an eye 

toward its strengths and limitations3. In the following section, we review the capabilities of a few types of 

wearable sensors. After introducing the relevant frameworks, we then propose a mechanism by which 

                                                           

 
3 Our use of TAEMS in this chapter is loosely based. We maintain the core concepts involved in the framework, as 

reviewed in this chapter, but the examples may not be conformant to a release of exact specifications. 
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nearly continuous measurements from these unobtrusive wearable sensors can be used to assess task pro-

gress, which can, in turn, be used to re-plan future tasks. 

 

The capabilities described in this chapter have relevance both operationally and in training. Operationally, 

better real-time predictions of task performance can lead to higher quality performance. In training, better assess-

ments have benefits for both the trainee and trainer. For the trainee, real-time, individualized feedback on 

task performance can lead to better in-task decisions. The trainer can use this same information to provide 

expert feedback and guidance, and potentially make adjustments to the task as needed. 

Multi-Agent Planning Models 

In this section, we review a TAEMS-based (Task Analysis, Environment Modeling, and Simulation) frame-

work as it pertains to modeling and planning team taskwork. 

TAEMS 

TAEMS “is a framework with which to model complex computational task environments that is compatible 

with both formal agent-centered approaches and experimental approaches” (Decker, 1995). Notably, an 

extension of TAEMS, called C-TAEMS was the framework used in the DARPA Coordinators program 

where human teams were instrumented with AI agents to participate in a mock disaster rescue study (Bar-

bulescu, Rubinstein, Smith, & Zimmerman, 2010). We note three critical properties of the framework be-

low, using an example from the medical domain (see Figure 1). 

 

 

Figure 1. Example of Task Hierarchy from the Medical Domain 

Tasks: Tasks have properties associated with them, including a distribution on the duration asso-

ciated with task performance and a quality of how successfully a completed task has been performed. 

 

Hierarchy: Tasks are decomposable into sub-tasks. Figure 1 below shows a task that is decom-

posed into three critical components of an operation: Prepare the Patient, Prepare the Operating Room, and 

Surgery subtasks. Parent nodes in the hierarchy are linked to their child-tasks through Quality Accumula-

tion Functions (QAFs). In the figure, the quality of the Prepare Patient Task is the lesser (“Min”) of the 
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qualities achieved for the Consent and Confirm Procedure and Pre-Op Evaluation and Anesthesia subtasks 

(a “Min” QAF). That is, failing at any of the subtasks causes failure in the parent task since performance 

on the preparation task is driven by the worst performance among its subtasks. The quality of the Surgery 

subtask is the sum of the Surgical Procedure and the Refresh Supplies subtasks. And the Surgical Procedure 

can be performed via two methods, so only “One of” the subtasks will achieve quality. 

 

Task Relationships: Tasks can have Non-Local Effects (NLE’s) on each other, where completion 

of one task affects the distributions of quality and duration of another task. The Consent and Confirm Pro-

cedure task must precede the Pre-Op Evaluation and Anesthesia subtask less the patient be put under anes-

thesia prior to their final consent to the procedure, so we could draw an Enables relationship between these 

tasks (see Figure 1). Other types of NLE’s include Facilitates, Disables, and Hinders. 

 

Using this framework, it is possible then to define problems to maximize the quality of a root-level task in 

the hierarchy, within a duration. We will assume the presence of one or more agents, each of whom is 

capable of executing one or more of the subtasks at a time at the lowest level of the tree. At any given point 

in time, the agent must decide which task to continue along, or whether to assign itself a new task. 

 

From a representation standpoint, the more detailed the subtasks are, the more complex the model and the 

more potential decision points there are for the agents to determine the best course of action; conversely, if 

the subtasks are too simplistic in nature, then there may be too few decision opportunities, defeating the 

purpose of the model. In practice, however, the generation of elaborate task models is onerous and can 

potentially discourage adaptation. Before delving into striking an appropriate balance, we first discuss ways 

in which tasks can be captured to the appropriate level of detail and data granularity. Wearable sensors are 

an excellent example of that. 

Wearable Sensors 

Wearable sensors have become a popular avenue for measuring individual and team psychology phenom-

ena through a variety of different sources. While the sensors themselves are variable and have different 

capabilities, it is the quality, and in some cases quantity, of the signals that tend to be of greatest importance 

when considering their ability to capture constructs. The next sections will delve into two categories of sensors 

– those that focus on capturing interpersonal interactions, and those that measure an individual’s physiological state. 

 

Most typically used in team training tasks are sociometric sensors, often referred to as “badges”. These are 

designed to capture the social interaction patterns of individuals in teams. While several different badges 

have been developed over the years (e.g., Michigan State University’s - see Baard, Kozlowski, DeShon, 

Biswas, Braun, Rench, et al., 2012; Sociometric Solutions Inc.’s (SSI) - see Kim, McFee, Olguin, Waber 

& Pentland, 2012), they share some common elements. A sociometric badge is an electronic device, typi-

cally worn around a user’s neck like a name tag that is used to gather data about interactions between 

members of a group. They are designed to be relatively small and inexpensive enough to be deployed at up 

to an organizational scale. The badges are equipped with a variety of sensors. All have some sort of inter-

action capturing signal (e.g., infrared, Bluetooth and or RFID) and an accelerometer to capture motion. 

Some also have a microphone to capture frequency and amplitude of sounds. Although each signal by itself 

has limited utility, through multimodal analysis methods, researchers have been able to uncover emergent 

features that give numerous insights into the way members of a team interact. For example, a time series of 

the volume data assesses how often and for how long an individual speaks. From the audio frequency, one 

can also estimate the speed and energy with which the user speaks (Lederman, Calacci, MacMullen, Fehder, 

Murray, & Pentland, 2016). By examining the audio from multiple users in tandem, prior work has obtained 

a high-level picture of the conversation through metrics such as how much turn-taking was done in the 

course of a conversation (Kim et al., 2012). Other work has analyzed badge accelerometer data to assess 
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movements such as gestures and changes in posture, while the infrared sensor and the relative signal 

strength can paint a picture of how the group is physically distributed (Baard et al., 2012; DeCostanza et 

al., 2017; Kim et al., 2012). Recent work has used face to face and proximity signals to capture the social 

networks and boundary spanning behaviors of a multi-team system (Brown, Perry, Braun, McCormack, 

Orvis & DeCostanza, 2017) and even applied this information to real-time training feedback during live 

Army exercises through their innovative Command Operations Dashboard (DeCostanza et al., 2017). 

 

Physiological sensors are another prevalent type of relatively unobtrusive measurement device. Although 

not a comprehensive list, some of the most common signals captured are: electroencephalography (EEG), 

electrocardiography (ECG), heart rate variability (HRV), respiratory sinus arrhythmia (RSA), photople-

thysmography (PPG), electromyography (EMG), galvanic skin response (GSR), and eye-tracking systems. 

These systems have seen advances not only in the research but also in their transportability and unobtru-

siveness. For example, EEG devices have burgeoning capabilities such as dry-electrode configurations, 

longer battery life, wireless data transfer, reduced weight and increased aesthetics. Research advances have 

continued with reference to understanding the individual; however, some researchers have extended the work to cap-

ture team states from an aggregation of the physiological states of individuals. For instance, Baard (Perry) and 

colleagues used HRV to understand the cognitive state and subsequent performance of teams (Baard et al., 

2012) while others have used HRV and RSA to measure the performance of a team in a high-stress task 

(Elkins, Muth, Hoover, Walker, Carpenter & Switzer, 2009). Further research has also taken these physio-

logical measures and applied it to real-time feedback during training simulations. Durkee and colleagues 

have developed cognitive workload measure using wireless EEG sensors and their functional state estima-

tion engine (FuSE2) to provide the team with a real-time assessment of the relative workload of the indi-

viduals in the team during a task, allowing the team an opportunity to correct instances of excessively high 

workload across appropriate team members (Durkee et al., 2015). 

 

The next section will tie the TAEMS model with the wearable sensor data output to discuss how to use 

sensor data to predict the outcome of tasks in the model, and in turn how to use the predicted outcome to 

make decisions about whether to continue tasks or select new ones. 

Blending Task Model and Wearable Sensors 

In this section, we bring together the TAEMS model with wearable sensor information in the description 

of a two-step process for updating task planning during execution. The steps involved are: 

1.   Predict quality and duration distributions based on sensor data. 

2.   Update task selection or training needs based on the existing quality and duration distributions. 

Step 1:  Quality and Duration Distributions 

The step of predicting quality and duration distributions can be cast as a supervised learning problem over 

wearable sensor data. To do so, one can gather a data set labeled by task. One can format this data into a 

matrix of relevant information, as shown below in Table 1. 

 

A supervised learning algorithm4 can learn the rule by which Output Quality and Duration labels are pre-

dicted, and the feature values can be extracted from sensors. That is, the algorithm would take all available 

                                                           

 
4 Many supervised learning algorithms are suited to operate on data formatted in the format of Table 1. Examples of 

suitable algorithms are regression (with data manipulation to turn the nominal variables into ordinal), decision trees, 

support vector machines, or deep learning networks.  
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data from the wearable sensors, populate the table, and complete the table with the expected quality and 

duration metrics when those are measured. This prediction can be used by the instructor when deciding 

whether to provide hints or other instruction. 

 

The columns of Table 1 contain processed sen-

sor data. One area of interest during training is 

determining whether an individual in a team is 

being overtasked and whether the other individ-

uals should work to mitigate that issue through 

backup behaviors.  Through measuring the cog-

nitive activity level of each individual (the sen-

sor being the wireless EEG), an algorithm can 

determine the relative cognitive state of each in-

dividual on the team. As seen in Figure 2, net-

works not only present a visual means for inves-

tigating the team interaction patterns given that 

each dot – or node – is an entity (e.g., individ-

ual) and line is the relationship between those 

individuals (e.g., pieces of information trans-

mitted), but it can also provide meaningful ana-

lytics. For example, network centrality, as de-

picted by the highlighted individual in the center 

of the network, indicates that this individual 

plays a critical role in the phenomenon dis-

played in this team. Therefore, Figure 2 may show the most central individual as a hub of information if 

the lines indicate the number of pieces of information communicated. Through capturing the network cen-

trality metric (Freeman, 1979) of interaction patterns (the sensor being the Bluetooth or infrared features of 

a badge), one can understand whether the individual is engaged in the task with others, or off in an entirely 

different part of the workspace. Through combining the metrics of cognitive workload with interaction 

patterns, the system can determine whether a particular individual is being overworked during a task or 

during a point in time and which individuals may be best able to assist that person based on location and 

task familiarity. 

 

This can be seen in Table 1 through understanding the cognitive workload (via EEG data) and network 

centrality (via interaction patterns interpreted from badges data) of the surgeon during the task. In the first 

row the surgeon may have been inexperienced or thought that the task was extremely easy, so he took his 

time and worked with relatively few other individuals. The output may be acceptable, but given the length 

of time the surgeon took to do the task, he and his team need additional training. In contrast, the surgeon 

who had very high workload and did not have a high network centrality suggests that this individual needed 

assistance. For example, a rule could pre-process by changing the categorical variables into numbers, and 

then learn a function:  e.g.  
 

𝑂𝑢𝑡𝑝𝑢𝑡  𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑓(𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑, 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦) 

 

The rule that is learned from the data can be used to predict the outcomes of future procedures. The last 

row of the column shows a hypothetical new surgical procedure, and the machine learning rule learned 

from the rest of the table would be used to predict the entries listed as “To be predicted”. 
  

Figure 2. A Network Diagram Highlighting Centrality 
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Table 1. Example of Step 1 Data 

Task Time since 

task start 

Surgeon 

Cognitive 

Workload 

(EEG) 

Surgeon 

Network 

Centrality 

(Badges) 

Output 

Quality of 

Surgery  
(min 0: max 100) 

Output Du-

ration of 

Surgery 

 

Team 

Needs More 

Training 

Surgical 

procedure 

15 min Low Low 70 Too long Yes 

Surgical 

procedure 

10 min 

 

High Low 80 Too long Yes 

Surgical 

procedure 

5 min Moderate High 100 Excellent No 

Surgical 

procedure 

10 min Moderate Moderate 70 Acceptable No 

Surgical 

procedure 

2 min High Low To-be  

predicted 

To-be  

predicted 

To-be  

predicted 

Step 2: Update task selection 

The predictions in the previous section will result in an updated estimate of duration and quality for that 

task and potentially other tasks. These revisions will, in turn, be used to task or re-task trainees. For exam-

ple, the data captured in the final row of Table 1 suggests that without intervention, the team will likely 

continue to let the surgeon be overloaded. Therefore, the system can recommend that another team member, 

such as a nurse, temporarily switch from the resupplying during the surgery task to assist in the surgical 

procedure. 

 

To support this, the tutor should maintain a table of expected values for completing each unfinished task in 

the hierarchy. For tasks in the leaf nodes of Figure 1, this involves a direct computation of the expected 

quality of completing each task. The changed value would propagate up the hierarchy; changes in the dis-

tribution of child nodes trigger a re-computation of the value of the parent nodes. The trainee selects the 

task with the largest impact on the root node. Although this example strategy has the property of being 

myopic (it only considers the next action and does not plan ahead), it can be expanded to a non-myopic 

strategy by using a Markov Decision Process to compute the values. 

 

For an example, reference Table 2 below. The additional breakdown of the operation procedure into its 

component elements shows that the respective qualities of the components (e.g. the preparation of the pa-

tient, the preparation of the room, and the surgery itself) have an impact on the overall operation. If the 

patient has not consented and the procedure is not confirmed, then there would be a negative impact on the 

tasks of preparing the patient and preparing the room. Additionally, refreshing the supplies is dependent on 

the room state at the beginning of the surgery as well as the quality of the surgery (i.e., if there is consider-

able blood loss or an unexpected change, more supplies would be needed). Specifically, it would be unwise 

to skip the Consent and Confirm Procedure task, because of the diminished quality it propagates to the 

Prepare the Patient and Prepare the Operating Room tasks, which in turn propagates to the Performing an 

Operation task. 
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Table 2. Example of computation of expected quality contribution with and without the Consent and Confirm 

Procedure subtask 

Task Expected  

Quality  

Contribution 

with Consent 

and Confirm  

procedure 

Expected  

Quality 

without 

Consent and 

Confirm  

Procedure 

Comment 

Performing an  

Operation 

95 0 Min of Prepare the Patient and Surgery 

Prepare the  

Patient 

95 0 Assigned lesser value of Consent and Confirm and 

Pre-Op Evaluation 

Consent and  

Confirm  

Procedure 

100 0  

Pre-Op  

Evaluation and 

Anesthesia 

95 95 Suppose by hypothesis for this example that these 

preparations are not affected by Consent and  

Confirm 

Prepare the  

Operating Room 

100 0 Enabled by Consent and Confirm Procedure  

(Enables link not shown in Figure) 

Surgery 95 10 Sum of Surgical Procedure and Refresh Supplies 

Surgical Proce-

dure 

95 0 Without Consent and Confirm, inherits 0 quality 

from either method. With Consent and Confirm, 

Method 1 will be selected and quality achieved 

will be 85.  

Refresh the  

Supplies 

10 10 Proceeds with or without Consent and Confirm 

Method 1 Surgery 85 0 Consent and Confirm enables Method 1.   

Cannot proceed without it. 

Method 2 Surgery 80 0 Consent and Confirm enables Method 2.   

Cannot proceed without it. 
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Conclusions and Recommendations for future research 

With the growth of research on and applications for wearable sensor data, the mechanisms available to 

researchers with interest in pursuing complex analytical solutions to difficult and dynamic problems is ever 

expanding. Advances in both sociometric and physiological sensors have benefitted both individual and 

team level initiatives, and some have had success providing real-time training feedback (see DeCostanza et 

al., 2017 and Durkee et al., 2015 for examples); however, there has not been a link between these measure-

ment strategies and the AI literature.  

 

This AI-planning perspective on the issue of training recommendations provides scientists and engineers 

with a common communication platform. In this paper we discussed how information from wearable sen-

sors can be used to represent, measure, improve, and train team task performance in real-time. The TAEMS 

model provides particular insight through its ability to use task structures to provide agent logic for the 

determination of which tasks should be pursued next.  

 

This chapter covered, with a broad brush, the applications of wearable sensor data in the TAEMS models 

using one example of a complex task from the medical field. Future research in this vein would benefit 

from a more detailed analysis of the TAEMS framework with regard to the details of complex and dynamic 

tasks to determine how task sequencing and interdependence would play a role in the model development. 

Additionally, as researchers continue to pursue team and multi-team systems work, future studies on the 

TAEMS model may benefit from an examination on how feedback can be effectively given to individuals 

within a multi-team system within the context of the complex task planning model and whether there are 

any limitations associated with the size of the model or the task distribution of the individuals in the team. 

 

The inclusion of a task model would levy some requirements on any tutoring framework. For example, to 

implement these ideas, the Generalized Intelligent Framework for Tutoring (GIFT) would need to represent 

the tasks being assigned, including their duration, quality, and relation to each other. Depending on the 

application, the system could need to be capable of tracking which tasks have been completed, which tasks 

are outstanding, which tasks have been assigned to whom, and how the completion rolls up into overall 

quality. Furthermore, to implement the ideas proposed in this chapter regarding associating sensor data to 

task quality, the distributed data would need to be collected and timestamped appropriately. 

 

The capabilities described in this chapter have relevance both operationally and in training. Operationally, 

performance can be enhanced by better predictions of what tasks individuals should be performing, even 

though recommending an individual switch tasks mid-way through in such cases where one teammate is 

overloaded and unable to maintain their workload on a critical task, for instance. In training, not only do 

enhanced measurements provide more reliability in the assessments, but the enhanced assessments from 

the proposed models will provide both the trainer and trainee with valuable and timely feedback that will 

facilitate the growth of knowledge and skills, resulting in enhanced operational performance.   
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SECTION II - TEAM ASSESSMENT METHODS 
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CHAPTER 7 – ASSESSMENT IN TEAM TUTORING  
Arthur C. Graesser 

University of Memphis 

 

Core Ideas 

The chapters in this section focus on the assessments of teams and individual team members. Team science 

has identified characteristics of well-functioning teams in different contexts that range from coordinated 

psychomotor tasks to the design of sophisticated digital artifacts.  The members of a team ideally are aware 

of the goals they attempting to accomplish, have a shared vision of how to accomplish the goals, have an 

understanding of the team organization and each of the members’ roles, have frequent updates on who does 

what and when, and have reliable communication among team members.  A team ideally can adjust when 

confronted with obstacles to goals and conflicts that invariably occur, and can dynamically replan the 

agenda and roles when necessary.  However, most teams are not ideal.  Sometimes individual team members 

do not deliver on their assigned tasks, as in the case of social loafers, incompetent team members, or sabo-

teurs.  There can be serious repercussions from breakdowns in team performance that can be attributed to 

a dysfunctional team member or the team as a whole. Assessments of team and individual performance are 

therefore necessary. 

Summative, formative, and stealth assessment are often contrasted in the assessment literature. Summative 

assessment is a score (or set of scores) collected at some point in time for the purpose of measuring the 

overall performance or capability of an individual or team.  A summative assessment may have practical 

consequences, such as personnel selection, job classification, certification, graduation, or promotion.   

Formative assessment is a score collected during learning or executing a task that is used as feedback to the 

learner or instructor.  The feedback is designed to help the individual improve learning and performance 

during the learning process. Formative feedback is particularly important in intelligent tutoring systems, 

including the Generalized Intelligent Framework for Tutoring (GIFT), to improve the performance of teams 

or individual team members. The feedback can be directed to the team as a whole, to individual team mem-

bers, or to subgroups.  Stealth assessment also includes scores collected during learning or task execution, 

but explicit feedback on performance is not directly given to teams or individuals.  Instead, the assessment 

guides the dynamic selection of pedagogical activities by the digital tutor without the team or individual 

being aware of the assessment. Stealth assessment is also part of the GIFT architecture.   

The chapters in this section collect assessments throughout team activities by a fine-grained analysis of log 

files that record the stream of actions, events, processes, timing, self-reports, and sometimes physiological, 

neurophysiological, and emotional responses via sensing modules.  The data may consist of open-ended 

behavior, such as verbal reports, answers to questions in natural language, conversational chat, collabora-

tive interaction, and actions during problem solving. The raw data and derived measures are stored in a 

learning record store that continuously updates the learner model. The pedagogical module makes use of 

these data and adaptively computes appropriate pedagogical goals and tactics to improve learning and per-

formance.  These mechanisms follow the architecture of GIFT, but there is one important layer of additional 

complexity: The intelligent tutoring system needs to monitor, regulate, and provide feedback to the team, 

and sometimes subgroups, in addition to individuals.      
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Individual Chapters 

The chapter by Stevens, Gorman, Zachary, Johnston, Dorneich, and Foltz, “How is the Team doing, and 

why?” describes a number of projects that collect multiple, semi-independent, decision-making components 

that contribute to system dynamics and that cover macro to micro time scales.  One project measures team 

neurodynamics whereas others measure team communication and responses to feedback in an intervention.  

The sensory and communication data are rich so there needs to be ways to abstract, compress, and transform 

the data, sometimes by taking advantage of the natural redundancy in biological signals or communication 

patterns. The assessments need to be computed quickly on-line so that feedback can be given to team mem-

bers in a timely manner.   

The chapter by Sinatra, Kim, Johnston, and Sottilare, “Assessment of Team Performance in Psychomotor 

Domains” describes the processes, challenges, and potential solutions to assessing team performance in real 

time for psychomotor tasks. The authors specifically describe a military room clearing task, and discuss 

how it could be assessed in an intelligent tutoring system.  Assessments required for team psychomotor 

tasks involve analyzing physical movement and physiological responses in order to compute the alignment 

of such data with a model of expert individual and team behavior.  It is important to determine the unique 

sensors and technologies that need to be implemented in order to engage in assessments of both individual 

and team accomplishments in a psychomotor task.   

The chapter by Goldberg, Nye, Lane, and Guadagnoli, “Team Assessment and Pedagogy as Informed by 

Sports Coaching and Assessment” also focuses on the psychomotor domain, with a focus on sports (football 

and baseball).  They review the pedagogical insights about sports coaching and assessment from three 

sources: published reports on sports training, first-hand accounts of team training, and a review of measures 

of team performance.  Feedback is central to a coach’s activity so the chapter identifies the different fea-

tures, timing, and recipients of feedback. There are different roles of team members so team sports require 

coordinated interdependent activities and communication. The authors propose that a pedagogy for teams 

should be grounded in a situated understanding model.    

The chapter by Zachary, Goldberg, and Hampton, “The Role of Context in Team Performance and Team 

Training” examines a theory of context understanding and considers how context contributes to team per-

formance and assessment.  Context is defined as a “cognitive process that is representation-centric, con-

structive, pervasive, and strongly interconnected with domain expertise.”  Moreover, they argue that context 

can be framed and modeled as an explicit computational process to be carried out by computational devices, 

which would be essential for GIFT. Stories/narrative, situated awareness, perceptual features, and links to 

expertise are among the important considerations for team training in military domains, such as dismounted 

infantry and naval fleet air defense. 

The chapter by Hu, Dowell, Cai, Graesser, Shi, Cockroft, and Shorter, “Constructing Individual Conver-

sation Characteristics Curves (ICCC) for Interactive Intelligent Tutoring Environments (IITE)” proposes a 

computational model that assesses conversational interactions among agents (humans or computer avatars) 

in intelligent tutoring environments. The model builds on group communication analysis, a methodology 

for quantifying the discourse dynamics and sequential interactions between agents in multi-party interac-

tions.  The model automatically analyzes emergent roles of team members based on each member’s inter-

action profile (individual communication characteristic curves, based on semantic analysis and similarity).  

The profile has measures of each team member’s participation, responsivity, internal cohesion, social im-

pact, newness of information in the conversation, and semantic density.   
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CHAPTER 8 – HOW IS THIS TEAM DOING, AND WHY?  
 Ron Stevens1, Jamie Gorman2, Wayne Zachary3, Joan Johnston4, Michael Dorneich5 & Peter Foltz6, 7  

The Learning Chameleon, Inc.1, Georgia Institute of Technology2, Starship Health Technologies, LLC3, U.S. Army 

Research Laboratory4, Iowa State University5, University of Colorado-Bolder6, Pearson Education7 

Introduction 

Team and unit effectiveness is the primary goal of many military, healthcare and organizational training 

programs.   Numerous military training studies have produced detailed guidance on the importance of team-

work behaviors in performing complex, tactical combat tasks (Salas, Benishek, Coultas, et al., 2015).  Meta-

analyses and other literature reviews indicate a common core of teamwork behaviors that are agnostic to 

the type of combat tasks being performed (Salas et al., 2015). They include exchanging relevant combat-

related information, using proper communication protocols, taking the initiative to provide information 

without being asked, providing situation updates, and correcting team mate errors.   

Training research to improve these common teamwork behaviors has demonstrated that following a training 

exercise providing actionable feedback to teams about their behaviors reduces tactical errors (Salas, Diaz-

Grandos, Klein, et al., 2008). For example, Smith-Jentsch, Cannon-Bowers, Tannenbaum & Salas  (2008) 

demonstrated that Simulation-Based Team Training (SBTT) using After Action Review (AAR) protocols 

for team self-correction resulted in improving the quality and quantity of information passed among team 

members.      

Much of this research has had to rely on subjective evaluations of voice communications, but there are 

considerable logistical problems (i.e., it is labor intensive and time consuming) for implementing in opera-

tional environments.  Similar logistical arguments have limited extensive team performance assessment and 

AARs where best practice currently recommends spending two to three times longer debriefing compared 

to the actual time spent in the simulated scenario.  A final problem is that the benefits of the enhanced 

AARs take time to accrue, and this time required is seen as an added burden for already heavily burdened 

training pipeline.   

In response there have been increased calls for research to solve the logistical problem of implementing 

improved SBTT through the development of adaptive tutors (Gilbert, Slavina, Sinatra, et al., 2018; U.S. 

Army Human Dimension strategy). The tremendous advantage of adaptive tutors is they enable tailoring 

training to specific learning needs, enable assessing learning and performance in minutes vs. hours, can 

provide real-time scaffolding rather than waiting for post-scenario feedback, and over time, can be imple-

mented iteratively to mitigate skill decay. However due to the costs and time required, team training re-

search has been somewhat limited in the study of how teams change and develop over time, and how various 

interventions may be needed to accelerate development.  

‘How is this team doing?’ is the most dynamic of the triad of questions ‘How did this team do?’ ‘How is 

this team doing? and, ‘How will this team do?’ which are each key elements for understanding how teams 

develop over time and how their learning can be supported through feedback, scaffolding and prediction.  

Answering these questions require dynamic assessments with a past to draw inferences from and a future 

to extrapolate to. The measures generated for answering these questions should be objective, quantitative, 

able to be compared across team members and teams, and applicable to a variety of tasks.  For incorporation 

into an Intelligent Tutoring System (ITS), they would need to be generated in near real-time to support 

scaffolding while also being able to be accumulated into aggregated team and team member values for 

feedback across sessions.   
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We are still a way from these capabilities, but as illustrated in this chapter pathways forward are becoming 

visible that leverage increased sensor and analytic capabilities and point to realistic sequences of tool de-

velopment.   Such tools will support empirical quantitative comparisons across teams, tasks and experience 

and help uncover the cognitive interactions between team members with the evolving context. This will 

enable cognitively-informed task designs and accelerate the rates of team and team-member learning by 

focusing on the cognitively-relevant properties of performance.     

Even with refined models of each team member and the team, the tools will still be limited by larger issues 

like team process and outcome.   It is possible for each individual action of each individual of a team to be 

correct and for the team to coordinate according to standard policies and procedures, and still arrive at an 

unsatisfactory outcome.  Such was the case with the USS Vincennes, which shot down a civilian airliner in 

the Persian Gulf in 1988 (see Cannon-Bowers and Salas, 1998).  If all the processes were correct yet the 

outcome was very bad, what should the assessment be – was the team doing well or terribly?  Conversely, 

a single action by a single individual in a team can lead to a very negative state for the mission.  But if 

everyone else was doing well, and if the team adapted to the negative situation and resolved it, was the team 

doing well or poorly?   

This chapter draws on the experiences of researchers with a diversity of experimental, and experiential 

understandings of teams.  Our goal is to identify paths that might help shape our current thinking about 

teaming in ways that will enable more rapid and directed incorporation of feedback and scaffolding into 

team training activities, and eventually into ITS architectures.      

A theme that runs through the projects described is how to extract information from multi semi-independent 

decision-making components who are all contributing to system dynamics and do so in ways that capture 

the variables that the system uses to tune itself across macro to micro scales.  Ways are needed to reduce 

the dimensionality of the data by abstracting, compressing, transforming and taking advantage of the natural 

redundancy in biological signals. Specific representations or models need to be constructed to re-create or 

predict aspects of a (or multiple) teamwork tasks.   The number of variables involved are difficult to imagine 

across the timescales of teamwork, and many of the variables coordinate locally and their primary activities 

are only weakly connected with to behaviorally-relevant functions.   

Expert decision makers universally develop mental models of the external context and use them for relevant 

decision and action planning (Zachary, Rosoff, Read & Miller, 2013).  This requires the assessment of 

abstract process or outcome measures in current mission context (and path by which it got there) and also 

the abstraction of the unit of behavior that must be observed and measured. This behavioral abstraction 

need increases the time scale of observation and assessment.  For example, the Advanced Embedded Train-

ing Systems (AETS) was originally designed to capture individual keystrokes, eye movements, and word-

by-word speech of each operator (Zachary, Canon-Bowers, Bilazarian, et al.,, 1999).  It turned out, how-

ever, that these units needed to be aggregated into larger units, called High Level Actions (HLAs), that 

represented both an abstracted intention with a specific intended action in the mission space, in order to 

assess either abstracted process or abstracted outcome measures.   

Such abstractions are currently derived by cognitive task analysis of domain experts, who generally agree 

on the how they talk about the problems space in functional terms. These are then built up (or more accu-

rately decomposed down to) the various combinations of keystrokes, word and eye-movement when needed 

to get to an identifiable HLA, In other words, it is important therefore that the most strategic variables for 

the changing contexts are captured.   

The following sections describe different ways that investigators have used compression, abstraction and 

transformation to move the evaluation of teamwork towards more granular models, and perhaps towards 

ones that will be more compatible with the real-time notion of scaffolding in an ITS. 
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Example 1.  Team Neurodynamics 

People rapidly develop organizations in a group setting, and these structures can be extracted through in-

teraction networks using speech flow and interaction technologies (Gorman Dunbar, Grimm & Gipson, 

2017; Fishbach, Gloor, Lassenius, Olguin, et al., 2009).  Once established, these inter-personnel relation-

ships tend to be stable (Flack, 2012) until the relationships are perturbed by external events or internal 

conflicts.   They must then reorganize their thinking, roles and/or configurations into corrective structures 

more appropriate for the situation.  The neurodynamic properties of these reorganizations are poorly under-

stood.  For instance how do different organizational states relate to the established stability of well-per-

forming teams?  What are the likely changes to the neurodynamics of the team, and each team member, 

that might occur following unexpected disturbances?    

Neurodynamic organization is the tendency of team members to enter into prolonged (minutes) metastable 

neurodynamic relationships as they encounter and resolve disturbances to their rhythms. Neurodynamic 

organization is often determined by using electroencephalographic (EEG) signals. EEG is the recording of 

electrical activity of the brain at different regions along the scalp. The rhythmic patterns in the electrical 

oscillations from different brain regions contain signals representing complex facets of brain activity.     

When modeling the neurodynamics of teams, the goal is to develop representation(s) that use EEG ampli-

tudes (in µ-volts) of the team members as inputs and then export higher level representations of team or-

ganization. In order to contribute to an effective theory of teamwork the representation developed by any 

combination of abstraction, compression and transformation must not only link to the microscopic, but also 

help explain the macroscopic.  Coarse-grained descriptions are ones where some of the system fine details 

have been smoothed over, and some of the information we had about the system is lost (Flack, 2012).  The 

description however remains true to the underlying systems. 

Ideally such representations could bridge across the micro, meso, and macro levels of team dynamics (Fiore, 

Smith- Jentsch, Salas, et al., 2010) in that the EEG amplitudes could be used in a downward manner to 

understand the theoretical basis for the micro-dynamics of social neuromarkers while the organizational 

units could be used in an upscale manner to link to behavioral markers that contribute to team learning 

(Sottilare, Burke, Salas, et al, 2017).  In this way a composite physical-information hierarchy was con-

structed that spans Marr’s hierarchy of analysis with function and computation at the highest level, algo-

rithms in the middle level, and biophysical substrate at the lower level (Marr, 1982). 

During teamwork the rapid EEG oscillations that emerged on the scalp are transformed into symbolic data 

streams which provide historical details at a second-by-second resolution of how the team neurodynami-

cally perceived the evolving task and how they adjusted their dynamics to compensate for, and anticipate 

new challenges.  The first modeling step separated the EEG amplitudes of each team member each second 

into high, medium and low ranges.  This resulted in a 500-fold data compression from the raw EEG signals 

that still maintained important functional characteristics (i.e. active processing vs inhibition of alpha 

waves), averaged over larger time scales.  For ease of visualization, these high, medium and low amplitude 

categories were assigned the values 3, 1 and -1.  Within limits, and depending on the questions being asked, 

these values could be used either numerically as indications of EEG power or symbolically as any other 

symbol collection.  This results in a three-element vector. When histograms of these vectors were symbol-

ically combined for the three team members, they created a three-histogram symbol representing the neu-

rodynamic state of the team at that second.   The values of the three histograms in Figure  1A indicate that 

at this second, team member 1 had below average EEG power levels, team member 2 had above average 

and team member 3 had average EEG power levels; so the vector for this neurodynamic symbol (NS) was 

-1, 3, 1.  The possible combinations of three persons with three EEG amplitudes created a twenty-seven 
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symbol neurodynamic state space (NSS) that encompassed all of the possible team member-power combi-

nations for the performance (Stevens et al, 2012).  While developing the NSS, a topology was generated 

such that the symbols in the upper left corner (1-5, 10-14) represented times when most team members had 

low to average levels of EEG power, while the symbols on the right side and bottom row, numbers (9,18,24-

27) represented times when most team members had above average power levels.  Each NS in the symbolic 

state space therefore situates the EEG power levels of each team member in the context of the levels of the 

other team members and the context of the task.  This assembly of the power levels of three persons into a 

single symbol further reduced the dimensionality by a factor of three.   

 

Figure 1.  Neurodynamics of a healthcare team and their instructor.  A)  Composition of a Neurodynamic 

Symbol and a Neurodynamic Symbol Space.  B) The segments highlight important sequences of events during 

a three-person training segment.  C)  The symbols (Y-axis) in the neurodynamic data stream of the team were 

sequentially plotted each second (X-axis).  A quantitative profile of the variability in the symbol distribution 

over a time segment was obtained by calculating the entropy over a 60s moving window that was updated 

each second.  The entropy represents the bits of information in the 1-40 Hz frequency bands of the P7 channel 

which had the lowest entropy during the training session. D)  A similar entropy profile of the instructor ob-

serving the training. 

The next processing step switched from dimension reduction to visualization where the structures in these 

symbolic data streams were revealed by sequentially plotting each symbol as it appeared in the sequence 

allowing changes in symbol expression to be linked with task events (Fig. 1B).  An example of these dy-

namics are shown in Fig. 1C for a three-person healthcare team treating a simulated patient with a suspected 

drug-overdose.  

In all teams studied the temporal distribution of symbols in the data streams has been non-uniform, with a 

limited subset of symbols being expressed for a minute or more, only to be replaced by another symbol 

subset when the task demands changed.  These symbol concentrations produced local variations in the 

randomness, or entropy, of the neurodynamic data streams.  Entropy is the average surprise of outcomes 
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sampled from a probability distribution or density.  A density with low entropy means that, on average, the 

outcome is relatively predictable, while a system with higher entropy would be less predictable.  Entropy 

is therefore a measure of uncertainty.   In this way a quantitative and dynamic profile was constructed which 

can be reported with a 1s granularity for real time modeling, or aggregated over a performance for compar-

isons across teams (Stevens & Galloway, 2017). 

As performances with submarine navigation teams were accumulated a trend emerged whereby more junior 

officer teams showed lower entropy levels than did experienced submarine crews. This resulted from more 

frequent entropy fluctuations of greater magnitude and duration (see Figure 2). A follow-up study compared 

the team ratings, conducted by third-party instructors, with levels of neurodynamic entropy during the sim-

ulation training (Stevens, Galloway, Lamb, Steed, Lamb, 2017).  A positive correlation was seen such that 

the higher the team entropy levels, the higher the ratings, i.e. the less neurodynamically organized the team, 

the better they performed.  This neurodynamic organization-performance relationship provides an oppor-

tunity for delivering both feedback to the team (i.e. aggregated entropy levels for the performance) and 

scaffolding to the team (via when they have entered a persistent period of neurodynamic organization). 

 

 
 

Figure 2.  Sample neurodynamic entropy profiles for (A) an experienced and (B) a novice submarine naviga-

tion team.   

The symbolic neurodynamic modeling described for three-person teams can also be applied to each team 

member within a team by using the -1, 1, and 3 values symbolically and then calculating the temporal 

entropy changes.  The maximum entropy for three-symbol systems becomes 1.58 bits as opposed to 4.76 

bits for three-person teams.  This allows direct quantitative comparisons of the individual neurodyanmic 

organization of each person as well as the team as a whole.   

Entropy, as measured by the changing distribution of symbols, is a measure of the organization and infor-

mation in a system, but during teamwork, the entropy changes are over a large background of ‘noise’.   To 

better analyze and visually represent the dynamics, the experimental entropy was subtracted from the max-

imum entropy (4.76 bits for twenty-seven symbols), which resulted in neurodynamic organization becom-

ing a positive value.  With the individual and team information both calculated in bits of information, quan-

titative comparisons became possible between team members as well as their individual contributions to 

the team. (Stevens & Galloway, 2017; Stevens, Galloway & Willemsen-Dunlap, 2017).   This is the first 

time such quantitative comparisons have been able to be made between team members and the team during 

complex, natural team training.   
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A comparison of the neurodynamics of a healthcare team and of the three team members is shown in Fig. 

3.  One finding that was consistent across submarine navigation, healthcare and high school problem solv-

ing teams is that the team neurodynamic organization/information is similar, but not equal to the sum of the 

individual information.  The difference lies in the information that is not unique to an individual, but is 

shared by one or more other teammates (Fig. 3C) (Stevens & Galloway, 2017; Stevens, Galloway & Wil-

lemsen-Dunlap, 2017).  The dynamics of each of the individuals is often quite different from one another, 

which is consistent with the idea that they each are acting semi-autonomously as they perform their required 

task work.  To the extent that increased neurodynamic organization of individuals occurs during periods of 

uncertainty, stress and other measures of increased attention (Stevens, Galloway, Willemsen-Dunlap and 

Halpin, 2017), the individual neurodynamics may provide places to insert scaffolding or feedback triggers. 

 

Figure 3.  Quantitative comparison of team (A) and the individual (B) information of a three-person 

healthcare team. C.  Sum of the shared information among the three team members.   

 

 

Example 2. The On-line and Long-Memory Measures of Communication  

To differing degrees, teams plan, think, decide, and act. Action-based teams coordinate across real-time 

perception-action links whereas decision-making teams coordinate across more cognitive, planning links 
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(DeChurch & Mesmer-Magnus, 2010). Many military, industry, and medical teams employ a combination 

of action-based and decision-making coordination. In this context, team cognition is the cognition that hap-

pens while team members are coordinating and interacting (Cooke, Gorman, Myers, & Duran, 2013). In 

this section, we focus on the fundamental medium of team cognition, namely team communication (Cooke, 

Gorman, & Kiekel, 2008). Specifically, we focus on two aspects of team cognition from this viewpoint: (a) 

On-line team cognition as measured through the real-time communication response of a team to events in 

the team environments and (b) Long-memory in team cognition as measured through the coherence of team 

communication on timescales beyond the capacity limits of individual human memory. For both of these 

aspects, we suggest potential links to assessment and remediation for team ITS.  

On-line team cognition is based on the idea that “intelligent” teams can generate an effective response to 

environmental change in real time. A team with good on-line team cognition can communicate to assess 

the current situation and produce a flexible and adaptive response to the changing environment. This often 

requires a generative response that is perhaps similar to, but not identical with, responses used in the past. 

Put differently, a team with good online team cognition can have consistent behavior in similar (routine) 

situations but is good at changing its actions rapidly and appropriately as the situation requires (i.e., in 

novel, non-routine situations). From this perspective, on-line team cognition can be assessed and remedi-

ated through real-time team communication analysis (Gorman, Hessler, Amazeen, et al., 2012; Grimm, 

Gorman, Stevens et al., 2017). In this way, on-line team cognition occurs in the Cognitive band within 

Newell’s timescales of human actions (Newell, 1990).   

 



 

 

84 

Figure 4. (a) Communication determinism (%DET) and root mean square error (RMSE) from the prediction 

model; (b) RMSE relative to a 99% confidence interval (green line) indicates a significant shift in communi-

cation (drop in %DET) in response to a fire in the OR (reprinted with permission from Gorman, Dunbar, 

Grimm, & Gipson, 2017).  

  

Real-time communication analysis need not actually be performed as the team task unfolds, though it can 

be with the benefit of detecting changes and/or anomalies in team cognition in real time (Gorman et al., 

2012). However, the essential feature of real-time, on-line team cognition is that we are measuring changes 

in team communication at sampling rate that is approximately the same as the characteristic timescale of 

team activity. Figure 4 shows a realtime analysis of team cognition in a simulated medical task (Stevens, 

Galloway, Gorman et al, 2016) sampled at 1 Hz, highlighting a significant environmental event (e.g., fire 

outbreak in the operating room), as measured by the predictability of their communication pattern over time 

(higher %DET corresponds to more predictable pattern). The graph of RMSE shows how quickly and adap-

tively the team responded to the event. The spike in RMSE corresponding to the fire indicates good on-line 

team cognition, whereas the spike just after the fire indicates a quick return to predictability. For team ITS, 

assessment of team communication at this timescale of analysis might provide guidance on the quality of 

on-line team cognition versus the need to remediate through interactive exercises aimed at quickly respond-

ing to and recovering from unexpected environmental events.  
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On relatively long timescales (days, weeks, months, years), team communication exhibits long-memory 

(Beran, 1994). In team cognition, long-memory is a systems-level memory that is not stored inside any 

individual team member that nevertheless informs team members’ ongoing interpretations and productions 

of communication behavior. Rather than manifesting in the individual, long-memory manifests in the his-

tory of communication interactions in a particular team task. An example is the use of navigation language 

in the submarine navigation task (Gorman, Dunbar, Martin et al., 2016). Navigation language is not con-

tained in any one individual, but is distributed across team members as they simultaneously absorb the 

existing language and imbue it with their own idiosyncratic properties unique to their team. In turn, subse-

quent crews will inculcate their language and evolve it for their own use. In this way, submarine navigation 

language has its own long memory separate from any individual. Moreover, unlike common mechanisms 

of human memory, long-memory structures communication patterns among existing and new team mem-

bers’ communication beyond the spans of human memory constraints.  

Studies have demonstrated how long-memory develops in teams (see Gorman et al., 2017 for a review). In 

one study, Latent Semantic Analysis cosine (i.e, coherence or knowledge relatedness; Landauer, Foltz, & 

Laham, 1998) diminishes as the timescale (distance between utterances) was increased for different medical 

teams (these teams were described in a study by Stevens et al., 2016). The novice medical team had a 

shorter timescale of coherence (their communication had a “shorter memory” over about 15 utterances); by 

contrast, the experienced team had a longer timescale of coherence (their conversation had a “longer 

memory” over about 31 utterances). This between-team cross section demonstrates how long memory de-

velops with experience. In another study by Gorman (2005), the LSA cosine method was used to show 

long-memory develops within uninhabited air vehicle (UAV) teams. Specifically, long-memory in UAV 

team communication increased over a series of missions. 

Assessment Triggers: How do you know it is time to intervene?  

Assuming that meaningful abstractions compressions and representations can be developed using compa-

rable quantitative measurement scales, the next question is how to use them.  Intelligent team tutoring 

systems (ITTS) must assess the current state of the team in real-time to best support learning. An ITTS, 

however, needs to decide when and where to intervene. Traditional ITS provide one-to-one feedback to 

enable learning by modifying instructional content, timing, and teaching strategies (Wenger, 1987; Murray, 

2003; Koedinger & Tanner, 2013; Gilbert, Blessing, & Guo, 2015). Strategies include changing task diffi-

culty (Harley, Lajoie, Frasson, & Hall, 2015), adjusting timing and difficulty of assessments (Arroyo, 

Woolf, Burelson et al., 2014), or providing additional examples and hints (Chaffar, Derbali, & Frasson, 

2009; Woolf, Burleson, Arroyo et al, 2009).  

In the domain of adaptive automation, assessments made in real-time have been referred to as triggering 

mechanisms, and form the basis of the assessment-intervention loop (Feigh, Dorneich, & Hayes, 2012). For 

instance, in traditional ITSs, feedback to the user has been triggered by conditions such as task performances 

or actions that indicate a learner misconception.  Triggers are based on information that can be sensed, 

observed, or modeled to develop an understanding of context. The ability to answer the question, “How is 

the team doing?” remains limited because of the difficulty in assessing context; for example, assessment 

methods have often relied on static task models and user performance to gauge learner state indirectly. If 

an ITTS decides to intervene in the learning process, it will need triggers to identify when to engage an 

intervention, how long an intervention should persist, and when to disengage the intervention.  

The field of adaptive automation provides a taxonomy (Feigh et al., 2012) that can be modified to classify 

ITTS assessment triggers into six broad categories: learner, system, environment, task, spatiotemporal, and 

contextual.  
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Learner-based triggers 

ITS interventions can be triggered by the learner directly or by a system assessment of the learner state. 

Learner-based triggers can consist of both active and passive assessments. The system could simply ask the 

learner for their current state. The “current state” of the learner could be the state of the team and individual 

knowledge, skill, emotions, or physical state. More typically, traditional ITSs employ a range of assessment 

techniques to measure the current state of the learner. This could be through performance on the task, look-

ing for the presence of absence of expected behaviors, or other observable demonstrations of understanding. 

System-based triggers 

Current or predicted states of the system can be used to trigger interventions. System-state triggers can 

consist of a system model that can include its structure, modes, internal states, anticipated future states, and 

range of potential actions (Feigh et al., 2012). For instance, a teaching progression may be in one of several 

modes (training, practice, test). Each mode may correspond to a set of specific system behaviors (Johnson, 

1990). 

Environment-based triggers 

States of the environment or events external to the learner and the system can be used to trigger interven-

tions. Environment-based triggers represent the relevant aspects of the world outside the immediate system 

and operator. In a team tutor-based training, this might include ambient conditions (e.g. light level) or ex-

ternal events that occur in the environment. 

Task- and goal-based triggers 

A learning session is typically composed of a coherent set of goals and sub-goals and accomplished by a 

set of tasks. Triggers can be based on task state or goal state. Goal-based triggers could be assessed by 

comparing current actions to expected actions based on a knowledge of the learning goals of the training. 

Learning may take place in phases, where one phase builds upon the previous one, forming a plan that can 

be used as the baseline for an assessment of progress through the training. Task state is the initialization, 

progress, and completion of tasks. 

Spatiotemporal triggers 

Both time and location can be used as adaptation triggers. Time-based triggers in ITS may be as straight-

forward as completion of the task in the allotted time. Location triggers can use absolute or relative locations 

to trigger interventions.  

Contextual triggers 

Patterns of information involving objects, concepts, and relationships across space and time can represent 

context-cues that can trigger ITTS interventions. Contextual triggers in an ITTS indicate places in the evo-

lution of problem where multiple dimensions of past and present information are combined to form a con-

text cue to which one or more team members should detect and respond.  Contextual triggers identify op-

portunities to assess whether an important context pattern has been detected (based on recognitional learn-

ing) and translated into appropriate action (based on decision learning). 
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Example 3. Feedback-generated enhancement of team knowledge  

The final example approaches the question ‘How is this team doing?” starting with the assumption that an 

intervention has been developed that is delivered by a triggering process.  An important question is how 

long instructors need to wait to determine if the intervention is having an effect?  

Grand, Braun, Kuljamin, Kozolowski & Chao (2016) recently reported results from their study of the dy-

namic team cognition processes that take place within and between individuals to generate and sustain team 

knowledge.  The study collected behaviors that related to learning the team task and sharing information 

about it, and examined the emergence of team knowledge outcomes. An experiment was conducted with 

263 3-person teams in which they participated in a computer simulation of a naval task for crisis relief. 

Each team participated in a 2 hour session that included task training familiarization and then twelve 8-

minute trials of task performance. The task had team members post their communications on an electronic 

information board they shared with other team members. While team members had some knowledge over-

lap, no team member could complete the task without sharing information with the others.  Experimental 

condition teams were given 10 different types of automated visual prompts (contextualized guidance) that 

were triggered by behavioral errors or inefficiencies detected by the simulator. The display prompts were 

started at the third trial and provided feedback and recommendations to individual members for improving 

their performance (e.g., feedback on an incorrect post was triggered when a member posted information to 

the shared board that did not exist). Display prompts were stopped at trial 10. A log file containing every 

task relevant behavior performed by each individual was recorded for all trials.   Team knowledge emer-

gence was determined from behaviors that were automatically categorized and timestamped, making it 

possible to track when, what and how knowledge was being acquired and distributed during each trial.  

Results showed that the experimental teams were more efficient at generating collectively held knowledge 

compared to control condition teams. A large portion of knowledge in the control condition teams was not 

shared because of inefficient communication processes that prevented information from reaching all three 

members.   To explain this, Grand et al. found that experimental condition teams achieved total team 

knowledge coverage earlier than the control condition team. The control condition information exchanges 

flattened out at about the halfway point in the trials, whereas the experimental condition information ex-

changes continued to increase. However, it wasn’t until the 9th trial that the experimental condition’s infor-

mation exchanges were significantly greater in number than the control condition exchanges. Grand et al 

concluded that when teams need to rapidly build knowledge, even a single member who cannot keep up 

with the team can slow the dissemination and accumulation of collectively held knowledge. Grand et al 

recommended that for teams with a commonly shared goal and whose members are specialized, every effort 

should be made to promote knowledge sharing by all individuals as early and often as possible.   

These results have positive implications for team tutor development. First, as long as information exchange 

processes for accomplishing the team task are the target, scaffolding can target individual team members 

with feedback during the task. Second, since improved performance in the Grand et al study was achieved 

within 9 trials (about 72 minutes), training simulation scenarios could potentially be segmented in such a 

way to achieve learning objectives much more quickly using a scaffolding approach than the typical 4 to 6 

hour approach using post scenario AARs. 

Conclusions and Recommendations for FUTURE research 

As illustrated in this chapter there are many challenges to developing practical implementations to answer 

the question posed in this chapter.  These challenges arise from the need to accurately perceive the team’s 

cognitive state and to project forward to what the team will need given the evolving context of the task.  

Our ability to provide rapid and effective feedback during team training therefore depends on how well 
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we can make sense of the parallel and complex information streams that are increasingly being generated 

about the team, team members and the environment.  Another challenge is the lack of practical examples 

showing what the interactions would be between commonly described team behaviors and the underlying 

microdynamics of cognition.  This last section describes first efforts at developing such practical models 

by providing evidence for neurodynamic and speech entrainment during simulation debriefings (Stevens, 

Willemsen-Dunlap, Gorman, et al., 2018).   

 

Neural and Speech Entrainment during After Action Reviews 

 

The scenario part of simulation training has received the most attention as it is here the planning and ac-

tion phases of experiential learning occur.  There have been fewer studies examining team dynamics dur-

ing the debriefing.  It is in this training segment that team members are supported by facilitators in devel-

oping a reflective understanding of their own and the team’s performance (Fanning & Gaba, 2007; 

Husebo, Dieckman, Rystedt,et al., 2013).  

 

There is general agreement that some form of structure is needed during the debriefing process, but aside 

for general guidance for sequencing topics (Sawyer, & Deering, 2013; Cheng, Morse, Rudolph, Arab, 

Runnacles & Eppich, 2016) there have been few examples of what that structure looks like from the be-

havioral, communication and neural perspectives. There is a sense in the research community that more 

dynamic models and theories of debriefing are needed (Fanning & Gaba, 2007; Bowe, Johnson & Puscas, 

2017).  As described earlier, neurodynamic and communication models might help bridge this gap by 

showing how information is passed across systems and temporal scales.   

 

As described previously (Stevens & Galloway, 2017; Stevens, Galloway & Willemsen Dunlap, 2017), the 

neurodynamic organizations of teams can be decomposed into the neurodynamic organizations of each 

team members plus the information that is shared among team members.  This allows comparisons to be 

made between the different topic discussions (macro-scale dynamics) speech determinism (meso-scale 

dynamics) and individual and team neurodynamic organizations (micro-scale dynamics) during the de-

briefing. 

 

In the example shown in Fig.5B there were five major discussion topics during the debriefing: 1) Why 

was the patient experiencing seizure? 2) The possibility of obstructions during intubation; 3) Relating sto-

ries of the use of anesthesia in the operating room; 4) Team situation awareness; and, 5) Fidelity of the 

simulation / room setting.  Within each of these segments there was increased %DET suggesting coher-

ence between speech dynamics and the structure of event discussions.  There were also periods of ele-

vated team neurodynamic organization within each segment resulting in a positive correlation between 

%DET and team NO (r = .48, p < .005) (Fig. 5C).  The positive correlation indicates that team neurody-

namic organization was greatest when few team members were speaking.  
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Figure 5.  Multi-modal dynamics of a team debriefing event.  A) This plots the second-by-second speech of 

each member of the team.  B) This shows the % determinism of the speech. C) The five main discussion topics 

are shown along with the profile of the team neurodynamics.  D) The individual neurodynamics of the Anes-

thesiologist (AN), Circulating Nurse (CN), and Scrub Nurse (SN) are plotted in red, blue and green respec-

tively.  The correlations of the individual and team neurodynamic data streams with the % DET are shown to 

the right.  

 

Each team member showed different levels of neurodynamic organization during the discussion topics 

(Fig. 5D). For instance the Anesthesiologist (AN) showed little NO except during the Situation Aware-

ness discussion (~2400s) while the Circulating Nurse (CN) and the Scrub Nurse (SN) had earlier periods 

of NO as well as at this time.  The neurodynamic organization of each of the team members (Fig. 5D) 

were moderately correlated with %DET. 

 

These data illustrate how representations like neurodynamic and communication organization can be flex-

ibly used to visualize the structures during debriefing and develop a better understanding of what different 

information means in the context of teamwork.  The quantitative nature of these organization-information 

analyses will allow direct comparisons between teams and different debriefing protocols; i.e. self-debrief, 

facilitated, video review, co-debriefing, etc. which will provide guidance for how debriefings can best be 

included in the GIFT environment.   

 

It is tempting to speculate that in five years or so adaptive agents integrated into the GIFT platform will be 

periodically asking the question ‘How is this team doing?’ and synthesizing answers using libraries con-

taining the temporal dynamics of neural, physiological, speech characteristics of teams, team members and 

contextual cues based on examples like the one shown in Fig. 5. 

 

The development pathway toward these agents will most likely begin using only dynamical changes in 

measures like %DET that might be associated with the emergence of leadership (Gorman et al, 2017), or 

neurodynamic entropy decreases associated with team stress and uncertainty (Stevens & Galloway, 2015; 
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2017).  The usefulness of the dynamics is illustrated in Fig. 6 which annotates the team neurodynamic 

entropy profile shown in Fig. 1. The three major structures for assessment are the Magnitude (Fig. 6A), 

Duration (Fig. 6B) and Frequency (Fig. 6C) of the decreases in entropy.  The fewer, shorter and smaller 

entropy decreases there are during simulation training the better the team performance (Stevens, Galloway, 

Lamb, Steed, Lamb, 2017; Stevens & Galloway, 2017).  The idea is that experienced teams dwell less on 

details of team taskwork, and communicate situation understanding more rapidly than less efficient teams.   

 

Figure 6.  Dynamical features of neurodynamic entropy fluctuations (Stevens & Galloway, 2015). 

 

An interesting feature of neurodynamic entropy decreases is that their magnitude is often proportional to 

the duration of the decrease suggesting it may be possible to predict how long the team will remain in a 

highly organized state from the magnitude of the entropy decrease.  While this figure illustrates dynamical 

metrics for team neurodynamic organizations, it would equally apply to the %DET dynamics or heart rate 

variability, or most other data stream dynamics that have an information-organization basis. 

  

Setting assessment triggers to different change magnitudes, durations and frequencies would be one path-

way for insertion of team dynamics into the GIFT environment.  More advanced triggers are also possible 

and would likely be based around the structural bases responsible for the dynamical traces, whether they be 

the dynamics resulting from structures associated with EEG frequency / sensor combinations, or enhanced 

%DET measures based on semantic subsets of words.  Here the involvement of phenomena like entrainment 

will be an important supporting component as entrainments represent repeating and persistent structures 

with possible memory components.  These structures within the neurodynamic and communication data 

streams may be useful therefore for longer-term prediction of team function.   
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Introduction 

Implementing team tutoring functionality in a domain-independent intelligent tutoring system framework 

is a difficult challenge. There needs to be considerations that go into keeping the authoring tools and fea-

tures that are available as flexible as possible because they will be used in many different domains or topic 

areas. Some domains may have more traditional computer based instruction. However, there are many oth-

ers that require physical motions or manipulation of objects. Therefore, there needs to be planning to have 

sensors and mechanisms for measuring the actions that are taken by an individual in a psychomotor task in 

order to be able to tutor them. However, input and measurements are not the only considerations, there also 

has to be a plan in place about how information will be provided to the individual (e.g., through a mobile 

device, through audio, through a computer present in the room with them). While some of the details and 

considerations of an individual psychomotor task has been previously discussed (Kim, Sottilare, Goodwin 

& Hu, 2017), the current chapter goes one step further into the area of team psychomotor tutoring. Every 

challenge that existed with individual psychomotor tutoring not only still exists in the team version, but 

there are now many more. There are many types of teams, skills, roles, and configurations that need to be 

taken into account. The division of teamwork and taskwork needs to be thought through, and assessment 

and feedback now is at two levels: the individual and the team. Additionally, team feedback is more than 

just adding together individual feedback. The approach to grading team performance is going to be highly 

dependent on the characteristics of the domain, and the configurations of the teams. Further, there are tech-

nological challenges that involve not only having multiple computers communicate with each other to 

gauge what the team is doing, but also dealing with the coordination of team sensors and the real-time 

processing of data from multiple learners at the same time.  

The current chapter discusses the challenges and goals associated with developing psychomotor tutors for 

teams. The discussion is framed in terms of the development of the flexible domain-independent intelligent 

tutoring system framework, the Generalized Intelligent Framework for Tutoring (GIFT). GIFT has been 

used to create tutors in individual psychomotor domains such as marksmanship (Goldberg & Amburn, 

2015; Goldberg, Amburn, Ragusa & Chen, 2017) and golfing (Kim, Dancy, Goldberg & Sottilare, 2017). 

Further, team tutoring has been demonstrated in GIFT in a computer-based game task (Bonner et al., 2016; 

Gilbert et al., 2017). Many considerations go into the design process to ensure that GIFT can support not 

only team tutoring, but team tutoring in different domains, configurations, and types of tasks (e.g., com-

puter-based, psychomotor). In this chapter we discuss the measures needed to assess performance in team 

tasks, methods associated with psychomotor team assessment, and ideas that should be taken into consid-

eration as team tutoring elements continue to be incorporated into GIFT. In order to highlight the complex-

ity that is involved in individual domains, we discuss the psychomotor task of room clearing and the re-

quirements of a tutor for this domain.  

Team Tutoring in GIFT 

GIFT is a domain-independent framework for creating intelligent tutoring systems (Sottilare, Brawner, Si-

natra & Johnston, 2017).  It includes tools that allow individuals without a background in computer science 

to create adaptive tutoring courses. A subject matter expert (SME) can bring his or her own existing in-

structional materials and develop tutors and assessments. Traditional intelligent tutoring systems have a 
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learner module, pedagogical module, domain module, and tutor-user interface (Sottilare, Graesser, Hu & 

Holden, 2013). Traditionally, information about the learner and his or her performance is in the learner 

model and module. The pedagogical model and module stores strategies that can be implemented based on 

performance. The domain model and module stores information that is specific to the domain that is being 

instructed, whereas the tutor-user interface allows the learner to interact with the system. GIFT contains 

these components, but it additionally has a sensor module and a gateway module. The sensor module allows 

for sensor data to be processed and to influence the performance of the learner in the system. The gateway 

module allows the GIFT software to communicate with external programs or simulations, such as Virtual 

Battlespace 3 or PowerPoint. Since GIFT is domain independent, the only domain dependent content that 

exists is within the domain module. This allows for reuse of the other modules and configurations.  

In the current state, GIFT is configured to create tutors for individual learners. One of the ultimate goals of 

GIFT is to be able to author and provide team tutoring. Initial theoretical work has been completed to move 

GIFT toward this goal (Sottilare, Burke, Salas, Sinatra, Johnston & Gilbert, 2017). Team tutoring scenarios 

have initially been implemented in GIFT (Gilbert et al., 2017), and work continues to be completed in order 

to further expand the team functionality (McCormack, Kilcullen, Sinatra, Brown, & Beaubien, in press), 

and ultimately the GIFT architecture. While computer-based team tutoring is a goal in the evolution of 

GIFT, it is also important to be able to provide a tutor for psychomotor tasks that require movement in a 

real world environment. 

Psychomotor Domain: Room Clearing Task 

A team’s execution of coordinated movement is critical to completing complex tasks in such high perform-

ing environments as military missions, team sports, commercial aviation, and medical care.  Individual 

psychomotor skills are critical to performing these coordinated moves, but excellent individual performance 

may not mitigate the poor performance of an entire team. Conversely, an entire team can perform very well 

even with a couple of low performers. This is because successful team performance is contingent on team 

members having a shared understanding of the team task. Team members should understand their roles in 

performing the task, how individual poor performance affects the entire team’s performance, and how good 

team coordination can compensate for an individual team member’s poor performance (Salas, Benishek, 

Coultas, et al., 2015).  

A guiding principle of effective team training is to ensure individual skills are developed first, then train 

and develop team task work skills before developing teamwork skills (Salas et al., 2015). Team members 

need to understand and know how to perform expected task-based behaviors before they can understand 

how teamwork skills are critical to performing the task.    

Conducting effective team training involves planning, training development and implementation, and sce-

nario adaptation. The planning phase first involves identifying skills requirements using an organization’s 

bona fide mission task list. Team skills requirements are used to identify learning requirements, training 

objectives, and simulation training strategies and technologies.  

The next step involves conducting an Event Based Approach to Training (EBAT) (Salas et al., 2015). The 

EBAT method develops simulation scenarios with critical events that focus on developing the identified 

skills in the learning objectives. The approach is to first create a scenario set to develop single team skill 

areas. The next step is establishing team skill proficiency levels and using this information to create assess-

ment tools, such as a behavioral checklists, for the team process behaviors (physical actions and communi-

cations) that represent the skills that are expected to occur during the pre-identified critical scenario events.  
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During the training phase, observers/instructors assess the team’s performance on the skills throughout the 

simulation scenario. Then this information is processed and used during the after action review (AAR). The 

AAR is conducted with a form of tutorial dialog called “team self-correction” in which instructors facilitate 

members in discussing the impact of their process behaviors (actions) on mission success.  

During the adaptation phase, team outcome measures are developed and used to set goals for the next train-

ing session. Teams may be required to repeat the same scenario if they do not meet the minimal proficiency 

requirements. When teams meet the minimum proficiency, then scenarios are modified to train new skill 

areas, or are made more complex to focus on skills integration. Training scenarios are strategically designed 

to enable teams to systematically build capacity to simultaneously execute the skills together. This can 

involve gradually increasing typical scenario task stressors (e.g., workload and time pressure), which pro-

vides the opportunity for teams to learn how to effectively employ their complete skillset. The AAR is then 

used to review and improve on integrating the multiple skill areas.  

In this chapter we employ a use case analysis to illustrate how to identify psychomotor skills requirements 

at the team level and recommend team performance assessments. We then discuss the implications of these 

methods to provide recommendations on how the GIFT environment can support adaptive team training.  

Military tasks involve performing specific Tactics, Techniques and Procedures (TTPs) through physical 

maneuvers and communications that enable effective tactics execution. They are comprised of four main 

competency areas: tactical maneuver, decision making, teamwork, and resilience. A good example of a 

common military task that relies heavily on team member psychomotor skills is “room clearing” (U.S. 

Department of the Army, 10 June 2011, Army Tactics, Techniques and Procedures – ATTP 3-06.11). It 

involves seizing control of a room and its inhabitants (both hostile and other) by rapidly and methodically 

eliminating the enemy, dominating the room, and controlling the situation. The five task segments are: 1) 

Prepare to Enter, 2) Enter the Room, 3) Clear the Room, 4) Secure the Room, and 5) Completion. The 

ATTP 3-06.11 indicates that for the mission to be effective, teams must effectively perform coordinated 

maneuvers and team communications in order to enable rapid identification and engagement of threats 

according to the rules of engagement, and to provide a safe haven for other non-threat personnel.  

To illustrate, we focus on the “Clear the Room” task segment which involves a dismounted squad’s fire 

team entering a room quickly and moving immediately to a point of domination (POD). While individual 

performance is critical to completing this task, task success – room domination – can only be achieved by 

the team.  It is a continuous, coordinated, and efficient movement of all four members; they do not stop 

until reaching their respective POD. The two types of room clearing techniques are the “opposing corner” 

technique (used when Soldiers are experienced and the team has worked together) and the “strong wall 

technique” (used when Soldiers are inexperienced, integrating new team members, or when working with 

developing foreign forces) (see Figure 1, steps 1 through 8).   

For this illustration, we elaborate on the “strong wall technique.” Figure 1, steps 1 through 8, shows the 

action sequence with arrows. One at a time, each Soldier enters the room and then turns, moves and scans 

their weapon in their designated sector, and moves to their respective POD with their back against the wall 

through which they had entered, and continuing to scan their sector.  
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Figure 1. Eight Steps Illustrating the Strong Wall Technique for Room Clearing. 

 

 

Step 1: Soldier 1 enters the room. 

Step 2: Soldier 1 turns to the right, scanning her sector, while Soldier 2 enters the room. 

Step 3: Soldier 1 moves to her POD in the lower right corner of the room, Soldier 2 has turned to the left 

and scans his sector, and Soldier 3 has entered the room.  

Step 4: Soldier 1 has moved to her POD location and continues to scan her sector, Soldier 2 has moved 

toward his POD, Soldier 3 has turned right and is scanning his sector, and Soldier 4 has entered the room. 
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Step 5: Soldier 1 is established at the POD with her back to the wall and continues scanning. Soldier 2 has 

reached his POD location, Soldier 3 has moved toward the POD location and Soldier 4 has moved toward 

his POD location.  

Step 6: Soldier 2 is established at his POD location. Soldier 3 has almost reached completion. Soldier 4 has 

reached his POD location and continues scanning. 

Step 7: All Soldiers are positioned at their PODs as they continue to scan their sectors.  

Step 8: The Soldiers have completed the Strong Wall configuration and continue scanning their sectors. 

The development of a scoring rubric for a team task is essential, and needs to consider both the individual 

performance, and the performance of the team. The actions taken to enter the room by different Soldiers 

can be scored to assess performance. Table 1 is an example scoring sheet that summarizes these actions as 

good team performance in room clearing, for the four Soldiers (each row represents a different soldier) and 

for the different parts of the task (each column is a different step in the task). Soldier scores are in the far 

right column whereas Squad scores for each move in steps 1 through 8 are listed along the bottom row. 

While Table 1 portrays the ideal expert team performance for execution of room clearing, Table 2 illustrates 

poor execution and performance.  The green fill in Tables 1 and 2 indicates that the Soldiers and Squads 

completed their actions correctly. However, in Table 2 the percentage of correct turns quickly degrades 

showing how poor Soldier performance (shown in yellow) at the beginning of the task can quickly propa-

gate through the entire squad.  

Table 1: Good Team Performance 

Soldier 1 2 3 4 5 6 7 8 Soldier 

Scores 

1 Enters Turns Moves Moves/ 

Scans 

POD POD POD POD/ 

Scans 

100 

2  Enters Turns Moves Moves/ 

Scans 

POD POD POD/ 

Scans 

100 

3   Enters Turns Moves Moves/ 

Scans 

POD POD/ 

Scans 

100 

4    Enters Turns Moves Moves/Scans POD/ 

Scans 

100 

Squad 

Scores 

100 100 100 100 100 100 100 100  

 

Table 2: Poor Team Performance 

Soldier 1 2 3 4 5 6 7 8 Soldier 

Scores 

1 Enters Turns Moves Moves/ 

Scans 

POD POD POD POD/ 

Scans 

60 

2  Enters Moves Moves Moves 

 

Turns Moves Stops 20 

3   Enters Moves Turns Moves 

 

Moves Stops 20 

4    Enters Turns Moves Moves/Scans POD/ 

Scans 

20 

Squad 

Scores 

100 100 66 25 0 0 0 0  
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Developing a scoring rubric such as the ones in Tables 1 and 2 requires a full understanding of the task, and 

will require training individuals who will observe the behavior of the team and grade them in real time.  

Quantifying these actions and getting multiple observers to agree on ratings is difficult, but eventually they 

are able to learn and understand the task. When using computer-based training there are additional chal-

lenges. While a human observer can automatically see what is going on and make judgements, in a computer 

there needs to be sensors that tell the system what the team members are doing. These sensors need to be 

carefully selected to ensure that the information that is needed to assess performance is being collected. 

Assessment rules need to be written for each of the actions that need to be taken, and real-time processing 

needs to occur by the system to determine if the team members are performing as expected. In addition to 

writing the rules for the individuals and the teams, sensors often output large amounts of data that need to 

be processed in real-time. There are also additional technological challenges that relate to ensuring that the 

data between team members is synchronized and can be assessed at the same time.  

Initial Measures and Sensors Required to Assess a Room Clearing Task  

In order for an intelligent tutor to assess performance during a room clearing scenario, there will need to be 

a mechanism for tracking the physical location and movements of the team members, and to see the result 

of their actions. A cellular phone that includes GPS and an accelerometer may be useful as not only a sensor 

input to the system, but also as a way to provide individualized feedback to the team based on their behav-

iors. If there is a message that needs to go out to the team member it can be received on their specific phone. 

Further, even if performance is only being tracked on the overall level, an AAR can be provided through 

this means. In order to assess performance in the specific task of room clearing, it will be necessary to know 

the location and orientation of each team member, and the actions that he or she are taking. If the training 

was occurring in a computer based simulation this information would be captured through actions on a 

mouse or key pushes. In a live psychomotor situation, this information will need to occur through sensor 

inputs, and the use of a glasses based eye tracker may be advantageous. If a sensor could additionally be 

placed on the glasses to determine which way the individuals’ gaze is aimed, it will also provide information 

that can be used for assessment. The communications that the team members engage in during the session 

can be used for assessment, and the recording/process of it can be facilitated by having the team members 

wear headsets. This will allow for the information to be recorded and either processed for content in real 

time using natural language processing, or after the fact. After all of the sensors, tools, and assessment 

methods are determined for a tutor, work will need to be completed to make sure that the intelligent tutoring 

system is able to process the data appropriately and provide relevant feedback and assessments. In general, 

there are a number of different types of team performance assessments that can occur during a tutoring 

session. The next section provides initial thoughts about methods for assessing team performance in a psy-

chomotor tutor. 

Methods for Assessing Team Task Performance in Psychomotor Domains  

Methods of team performance assessment can be generally viewed as qualitative/quantitative, natural/sim-

ulated, and summative/formative. Such methods could include using behavioral markers, self-assessment, 

an event-based (or a scenario-based) assessment, or observations by an expert. An expert instructor would 

observe a team engaging in taskwork, and make qualitative notes or likert-type ratings on a score card like 

the one in Tables 1 and 2. A scenario-based assessment would occur in a natural environment, which is an 

actual real place, such as conducting the room clearing training in an actual building with multiple rooms.  

This mockup training can be also executed in a simulated environment, which either replicates a real setting 

or an approximation of one. This methodology can be viewed from the perspectives of a summative and 

formative assessment. In a summative assessment, team performance is measured after the team finishes a 
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particular unit of the training course. In a formative assessment, performance is measured while the trainees 

are being instructed and their skill development progress is being evaluated. 

In the case of room clearing, it could occur in a natural environment, such as a real room, and require that 

the learners engaging in the training are instrumented with different sensors. Sensors can include accel-

erometers and GPS, such that information about the movements of the learners can be tracked. The behav-

iors and performance of the individuals can be tracked, and then used to determine if performance changes 

over time for the team members. Additionally, the score cards in Tables 1 and 2 would need to be opera-

tionalized within the tutoring system, such that performance could be assessed. 

An overarching goal in team performance assessment is to evaluate performance change by team members. 

Performance change, in general, can be assessed by comparing scores from the pre- and post-test in a sum-

mative or formative assessment. For instance, in the domain model, all the content and information needed 

for the tutor can be defined, and the learner model can include measures of the relevant learner character-

istics for the specific domain. If the number of knowledge components in the domain model is considerably 

large, measuring performance by assessment from each knowledge component (and from each team mem-

ber) would be a challenge because it may not be feasible to isolate the effect of each knowledge component 

(Martin, Mitrovic, Koedinger, Mathan, 2011).   

An alternative way is to assess performance change in a time series manner; a learning curve can be used 

to assess performance.  In Industry, the observed performance change in productivity has been treated as a 

consequence of growing storage of knowledge, and it is referred to as a learning curve. In Psychology, there 

has been a considerable amount of research on investigating learning and retention to identify empirical 

regularities in behavior and to test a theory with that empirical data  (Anderson, Fincham, & Douglass, 

1999; Card, English & Burr, 1978; Heathcote, Brown & Mewhort, 2000; Newell & Rosenbloom, 1981; 

Seibel, 1963;).  The learning curve can be mathematically expressed as in equation 1:  

𝑦 = 𝑎𝑥−𝑏    (1) 

In the mathematical form of equations 1 and 2, 𝑎 indiciates a constant for the range of learning, and 𝑏 

indicates the rates of learning (ranging from 0 to 1). If it is closer to 1, it means the learning is fast or very 

adaptive.  The term, 𝑥, refers to the number of practice trials. It is a log linear model. It can be considered 

as the most common and simplest mathematical formula. This equation can be estimated using the ordinary 

least squares method, whereas the logarithmic transformation of the equation allows regression analysis 

using the least-squares criterion as seen in equation 2:  

ln(𝑦) = ln(𝑎) − 𝑏𝑙𝑛(𝑥) + 𝑒  (2) 

It would be worthwhile applying this assessment approach (e.g., the learning curve) for individual assess-

ment to an assessment approach for team members.   The time to complete a task, the amount of errors 

during the performance, and the number of times that the learner uses hints while answering a question can 

all be the parameters for the equation. Using such parameters, we can plot performance change over the 

practice trials (by seconds, minutes, days, or months).  

In the room clearing example, a team is comprised of a number of individuals.  Each individual team mem-

ber has a different role to take during a sequence of training scenarios.  A correct and precise assessment 

for the team psychomotor performance necessitates an understanding of physical states, physiological 

states, and cognitive states.  These factors would pose significant challenges in collecting behavioral data, 

assessing the alignment of those behaviors with a model of expert/individual and team behavior, and visu-

alizing performance change for improved learning analytics.  Ultimately, the goal is to assess the rate of 

progress toward the learning and performance objectives from the team perspective.   
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Performance Assessment Methods from an Individual to a Team 

In a precision-required psychomotor task (e.g., rifle marksmanship), a breath control skill (e.g., slow breath-

ing) can be considered as an assessment measure of performance.  Other precision-required psychomotor 

tasks include golf putting, dart throwing, free throw, and archery.  It has been reported that breath control 

skill training would lessen adverse effects caused by stress (Bouchard et al., 2012).  A biosensor (such as 

BioHarnessTM) can be used to measure the differential size of the expansion and contraction of the thoracic 

cavity, and to assess a specific breath control technique during the task (Goldberg et al., 2017).  A physio-

cognitive model in ACT-R/Φ  has been proposed to provide a theoretical account of the relationship among 

physical, physiological, and cognitive factors, and to predict performance.  The assumption is that a breath 

control skill (e.g., slow breathing) can delink memory from physiological arousal and affect physical and 

cognitive processes in the stages of learning (Kim, Dancy, & Sottilare, in press; Dancy & Kim, in press).  

For the room clearing example, a BioHarnessTM can provide information about whether the team members 

are using the appropriate technique to maximize their performance during the task.  Also, several in-built 

smartphone sensors are useful to measure motions (e.g., acceleration by x, y, z axes).  Other sensors (e.g., 

barometer, gyroscope, GPS) can be also used to evaluate performance (e.g., move, walk, crawl).  Static and 

dynamic acceleration values can be used to classify and cluster animal behaviors, i.e., walking, sitting, 

preying, resting, and so on (Fehlmann et al., 2017).  The output from all of these sensors needs to be syn-

chronized into a timestamped data set for an improved learning analytics and adaptive instructions (e.g., 

Ocumpaugh et al., 2015). 

It is now necessary to consider assessment for a squad so there are multiple users with multiple sensors. 

The individual performance assessment can be applied to an assessment of team performance in the afore-

mentioned room clearing case.  When a dismounted squad team enters a room quickly, moves to a point of 

domination (PoD), and performs a given mission, the team’s physiological states (i.e., heart rate and res-

piratory rate) would affect the cognitive and physical performance.   

Team tactical breathing can be taught in a GIFT course and performance can be assessed by sensor integra-

tion. The team members can be equipped with a BioHarnessTM as a respiratory measure and other sensors 

as a cognitive or physical measure. Tactical breathing is useful to improve precision and accuracy in a 

psychomotor task (e.g., rifle marksmanship).  These measures are useful to determine the state of the indi-

vidual learners and of the team members.  It is important to understand how team members develop psy-

chomotor skills from a novice to an expert. An unobtrusive assessment is important to assess the rate of 

progress toward the learning goal and the development of psychomotor skills. It is also necessary to under-

stand how individual accomplishments can support team objectives.  The Domain Module in GIFT has a 

configuration that is called Domain Knowledge File (DKF).  For assessment of a team, the GIFT architec-

ture can allow multiple DKFs simultaneously to assess the team performance (for more information, see 

the chapter by Brawner, Sinatra, & Gilbert, in press).   

Challenges in Applying Methods to Assess Team Task Performance in Psychomotor 

Domains 

Providing a construct of team performance measurement is essential to better understand a team.  It would 

be a challenge since assessment can be context specific (e.g., a resuscitation task by a medical team in an 

emergency room), and therefore, the basic elements for assessment including team communication, collab-

oration within a team, roles & responsibilities, team conflicts management, would be necessary for such 

construct (Marriage & Kinnear, 2016). It is important to consider how measures and methods can be ad-

ministered effectively, and to provide a rationale for the instantiation of training principles in adaptive 

training systems.   
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One way to handle the varying domains and tasks is to create a formal generalized model which is a theory-

based assumption and hypothesis describing team performance.  The models should be precisely developed 

and altered to the dynamic demands of a given task and situation (Pew & Mavor, 1998). Thus, the method-

ology for the team performance assessment should include: (a) the model that can computationally and 

predictably describe the rich spectrum of team learning and performance, and (b) the empirical data that is 

collected from the field and laboratory, and (c) the training application (e.g., an adaptive instructional sys-

tem) to which researchers apply scientific theories for further test and evaluation.  A more collective com-

putational model that can represent team performance and teamwork is worth exploring, which can advance 

the tools for assessment.  

Current State of Team Tutoring in GIFT and Conderations for Tutoring 

Teams in Psychomotor Domains 

In the current version of GIFT, team tutoring has been demonstrated from a technological perspective by 

creating a tutor that involves two teammates simultaneously engaging with a surveillance task (Gilbert et 

al., 2017). The surveillance tutor was further scaled up to include a total of three team members, with the 

third member performing a different role than the other two. Current work is being conducted in GIFT to 

expand the size of the team that is being tutored, and creating a more indepth task that elicits team perfor-

mance measures (McCormack et al., in press).  While the foundation for team tutoring has begun to be 

implemented in GIFT, all of the attempts to date have been in computer-based simulated environments. In 

GIFT, psychomotor tutoring has been demonstrated at the individual level for the domain of marksmanship 

(Goldberg et al., 2017). However, team psychomotor tasks have not yet been achieved. Establishing ways 

to assess team state and team performance have initially been used through leveraging the same tools that 

exist for individual performance and combining all of the actions of the teammates for a single assessment 

that is the “team”. However, this may not ultimately be the ideal approach to measuring team performance 

or providing feedback based on it. As GIFT continues to develop, and team models become implemented 

in GIFT it is important to consider how inputs such as sensor and team communications will be dealt with 

in real time. For many psychomotor tasks being able to understand what the team member is physically 

doing and how he or she is oriented will be very important. Additionally, the content and frequency of team 

communication will be vital in a natural environment.  

With regard to individual tutoring of a psychomotor task, it has been acknowledged that the tutoring capa-

bility should address the needs beyond the desktop environment.  Similarly, with regard to team tutoring 

for a psychomotor task, it is necessary to consider the process of learning from the perspective of assess-

ment. The fundamental areas of GIFT for team tutoring would include: (a) a capability to author instruc-

tional contents for the team, (b) a capability to evaluate the team performance, and (c) a capability to ad-

minister team learning analytics for adaptive instructions and feedback. At the same time, if we have a 

formal model of a team (e.g., team communication) that directly interacts with GIFT, it will provide oppor-

tunities to assess team performance by testing theories against team performance data. 

Conclusions  

In order to conduct team tutoring of a psychomotor domain there are a number of challenges. First, an 

intelligent tutoring system framework such as GIFT must be able to support assessments from multiple 

individuals simultaneously. Additionally, there will need to be a way to process and retrieve vital infor-

mation that is happening in the real world environment, and a way to provide information back to the 

learner. Ideally, all of this will happen in real time. As demonstrated in this chapter, a team task such as 

room clearing, while fairly straightforward, results in a need to know the location and movements of each 

individual on the team and to assess if they are all providing the necessary steps for the task at hand. A 
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different psychomotor task will likely have different requirements, and result in different inputs and assess-

ments. Overall, as GIFT continues to develop in order to support both teams and psychomotor tasks, the 

authoring tools will need to remain flexible, and allow for course authors to implement various measures 

of evaluation and feedback to both individuals and entire teams. 
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Introduction 

Sports psychology and team training literature offers a wealth of examples on the development of expert 

teams, where individual high-performing players are trained to succeed as a group. Compared to many 

problems where expert teams operate, sports very often have the advantage of clear criteria for success and 

an increasing amount of data collection on both team and individual performance. As such, effective train-

ing techniques for sports teams may offer insights that inform general team training pedagogy, particularly 

for psychomotor domains such as military operations. Our investigation into this area is exploratory. Here, 

we examine a few well-documented cases of how assessment and feedback are utilized in the context of 

sports team training. Given this focus, our work cannot be considered representative of training in any 

specific sport. However, by comparing between sports, we hope to identify certain qualitative differences 

in the types of training that are effective for different psychomotor domains that incorporate elements of 

team dynamics. 

Training differs substantially between sports, not just in terms of the physical tasks but also in terms of the 

coordinated team activities that occur. For example, while only some baseball fielding events involve de-

pendencies between players (e.g., double plays), nearly all plays in football require multi-faceted coordina-

tion (e.g., blocking by the offensive line to support a running or passing play, with specific routes run by 

receivers, etc.). These issues will be considered in the context of three sports: baseball, basketball, and 

football.  These sports differ in terms of key game characteristics such as simultaneous coordination, micro-

games within the sport (e.g., at bats, tip-offs), and team roles (Elverdam & Aarseth, 2007; Mueller, Gibbs, 

& Vetere, 2008; Ward, Farrow, Harris, Williams, Eccles, & Ericsson, 2008). 

In this chapter, we consider pedagogical insights offered by three different sources of information from 

sports coaching and assessment: published reports of sports training, first-hand accounts of team training, 

and a review of assessment approaches for measuring team performance. These issues are considered in the 

context of an integrated taxonomy of feedback that considers when feedback was given, who it was given 

to (e.g., individual vs. team), the type of feedback (e.g., positive vs. negative), and the specificity of feed-

back (e.g., detailed issues vs. brief note). The goal of this work is to consider how these patterns might 

generalize to a wider range of learning tasks, to improve both learning and assessment of team performance.  

We are particularly interested in how coaches communicate feedback that is directly aligned with training 

activities (i.e., information conveyed during training, or after training but based on those events). This focus 

is not because we believe that this is the most important role of a coach: there are many types of coaches 

with different specialties and there are many roles that feedback can play in different contexts, such as 

during reflection, mentoring, off-the-field, and more. However, this exploration is focused on how insights 

from team coaching relate to what is known about feedback in educational settings, and how it might enrich 

the automated delivery of feedback through intelligent tutoring systems (ITS) or other learning technolo-

gies..We are focused on this subset of coaching feedback and activities.  
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Decades of research has focused on the delivery and effects of feedback on performance (Kluger & Denisi, 

1996), learning (Shute, 2008), academic emotions (Pekrun, Cusack, Murayama, Elliot & Thomas, 2014), 

self-regulation (Baumeister, et al., 2006), and more. In the subset of this literature that investigatedfeedback 

delivered in ITS platforms, multiple publications have been produced that systematically breakdown what 

effective expert tutors do from an instructional strategy standpoint, so as to enable an automated system to 

enact those interaction types (Durlach & Spain, 2012; Shute, 2008). Similarly, it is believed that team-based 

applications should be based on what strategies and tactics effective coaches apply, along with identifying 

the conditions and variables that dictate what strategy to apply for what individual team-member, and when. 

While this chapter only scratches the surface of this research challenge, we aim to establish a theoretically 

derived taxonomy to guide future studies that aim to code expert coaching practices through observational 

methods. 

Roles for team training: types of teams 

Fundamentally, one question for all team training research is what constitutes a team, such as how to dis-

tinguish between a "team of experts" versus an "expert team" (Salas, Cannon-Bowers, & Johnston, 1997). 

For example, Olympic teams for sports such as boxing or downhill skiing often train together but do not 

necessarily compete simultaneously or in coordination with each other. Even when such teams compete in 

the same event (e.g., relay races), some teams are closer to a "team of experts" rather than an "expert team." 

This distinction has often been raised with examples such as the United States Olympics men's basketball 

team. Historically, these squads have been viewed as including elite players but having minimal practice as 

a team, and which has been cited as one cause for their losses in the 2004 Summer Olympics (Leopold & 

Teitelbaum, 2016). With that said, the United States squad won prior Olympics competitions despite limited 

practice together.  

This raises the issue that while an expert team provides a competitive edge, the advantage for well-practiced 

coordination likely depends greatly on the task or sport. For example, new members of a professional foot-

ball team coordinate based on extensive playbooks that can take weeks to learn. On the converse, baseball 

players are often traded and start on their new team the next day. Even within a sport, team training can 

vary: pitchers and catchers report a week or more earlier to baseball spring training than position players 

(for 6+ weeks rather than 5 weeks). Despite the variance across these examples, a desired end-state is op-

erationally defining what characteristics and behaviors are congruent with “expert teams”, based on context, 

and then defining what coaching tactics can be applied to accelerate the acquisition of those defined attrib-

utes. While there are recent contributions to the literature that define the framework and behavioral markers 

that make up a good team (Sottilare et al., 2017), there is little written on how to use those measures to 

drive pedagogical decisions at the team level. 

Accordingly, at the professional or higher amateur level, coaches and managers serve a key role for building 

an expert team. Part of their contributions are certainly to assemble the initial team of experts (e.g., recruit-

ing players). However, on an ongoing basis coaches must set the tone for the team culture, the systems and 

strategies that the team trains to master, and deliver the feedback to improve how the team executes these 

strategies (Lyle, 2002; Ericsson, 2003).  This touches multiple areas of how coaches support athletes: 

1) Training: Communicating knowledge to the team to help build skills and develop expertise through 

deliberate practice methods (Ericsson, 2003) 

2) Motivation: Reinforcement and punishments that encourage improvement and “buy-in” 

3) Culture: Establishing the team's motivation, goals, and self-regulated strategies for training and 

enforcing norms (e.g., how a team supports and polices itself) 
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4) Leadership Structure: How a coach determines and trains leaders within a team  

As noted earlier, this coaching behavior occurs in many contexts- not just during practice, but also in the 

locker room, at team dinners, when meeting the families of athletes, and in other venues (Lane, 2004). From 

the standpoint of this research, we are focused on the types of interventions that coaches perform during or 

adjacent to training opportunities (e.g., post-game, reviewing video tape, etc.), since these are likely to be 

the ones that produce the most direct learning impact.  This is because coaches can ground their statements 

in specific practice or game plays that have occurred, as well as direct players to apply the feedback imme-

diately (e.g., retry a task).  

Coding Feedback in Coaching in Team Sports 

To consider how and when coaches intervene during or after practice and training, we must first identify 

the features that distinguish between different types of feedback. For this purpose, we outline a potential 

typology for coding the types of messages that coaches may deliver to players. This outline of feedback 

messages is based on speech act coding, which considers the functional purpose of dialog as actions (e.g., 

"Great job" could be coded as "positive feedback").  This approach has a long history in research on human 

tutoring and instructional systems, with a variety of taxonomies for speech acts (Cade, Copeland, Person, 

& D’Mello, 2008; Samei, Rus, Nye, & Morrison, 2014). These taxonomies distinguish between qualita-

tively different categories (e.g., questions vs. answers) and also between different subtypes (e.g., positive 

vs. negative feedback).  

Many of these taxonomies assume a two-person conversation, however, and also fail to consider factors 

that may be relevant to the context where feedback is delivered (e.g., the difference between yelling from 

across a field versus taking someone aside to talk quietly).  Table 1 notes features that we think are partic-

ularly important for feedback in team sports. In this description, we assume that a team task with multiple 

players is occurring, such as a training exercise, scrimmage, or game. While these represent only one pos-

sible set of facets, we believe that they capture some important differences in feedback that may be relevant 

to different coaching styles.  For example, managers are often dichotomized into player-friendly managers 

versus more authoritarian archetypes, which imply quite different feedback (Boswell, 1984). The types of 

feedback that coaches use are also almost certainly affected by the composition of players and the context 

of the team (e.g., part of the season, recent performance/streaks). 
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Table 1: Features to Code Types of Feedback 

Feature Description Options 

When Given The timing of feedback in relation to the 

ongoing task actions. 

- Immediate (talk over task) 

- Abort (stop task) 

- After-action (after task finishes) 

Direct Targets Who is the primary target of the feedback? - Individual 

- Subgroup of participants 

- Task participants 

- Full team 

Secondary Ob-

servers 

Who else receives the feedback? This may 

impact peer influence or vicarious learning 

(e.g., from others' mistakes) 

- Individual 

- Subgroup of participants 

- Task participants 

- Full team 

Valence What is the overall directed tone of the 

feedback? e.g., feedback used to reinforce 

effective behavior (positive), correct or 

punish incorrect behavior (negative), or 

does not directly advocate correctness 

- Positive 

- Negative 

- Neutral 

Stress/ 

Emphasis 

The level of emphasis for the feedback, 

from calming to direct to aggressive 

- Calming 

- Direct 

- Aggressive 

Information The type of task-relevant or learner-rele-

vant information shared (if any). Classifies 

if the feedback: (1) directs attention to spe-

cific elements that affected the outcome, 

(2) explains a pattern, (3) explains the 

whole outcome/status, etc. There are likely 

to be many other information types that 

might be relevant 

- Cue ("Watch your footwork") 

- Command ("Now 10 throws") 

- Explanation ("That's because..") 

- Outcome ("Sloppy play") 

- General ("Winners don't quit") 

- Process ("Listen harder") 

- Progress ("Three more left") 

- Motivation ("You'll get this.") 

(others) 

Post-Feedback 

Task Command 

Common activity types applied by coaches 

following a feedback intervention. 

- Continues (task not interrupted) 

- Resume (go where team left off) 

- Repeat (start activity from the be-

ginning…"start from the top.") 

- Interject (start new activity based on 

feedback or assessment) 

- End (complete activity and move 

into next training exercise) 
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Training Feedback: Examples from Different Sports 

To examine how feedback is used for team training across different sports, we consider the differences 

between three common sports in the United States: baseball, football, and basketball.  Table 2 outlines some 

of the similarities and differences between the team coordination required for each sport. These include the 

team size, the typical number of players substantially involved in a play, and the typical pacing of tasks in 

the sport (e.g., mostly discrete versus relatively continuous play). While some numbers shift for different 

leagues (e.g., college versus professional), the order of magnitudes remain the same. Pacing issues might 

substantially impact how and when feedback can be delivered during practice. An example of a game task 

with high coordination is also noted, and contrasted against one with relatively little coordination.  

Table 2: Comparison between Sports Team Coordination Tasks 

 Baseball Football Basketball 

Games/Season 162 16 82 

# of Players 9 roles (25 active) 11 roles (45 active) 5 roles (13 active) 

# of Players in a 

Typical Play 

4 (Pitcher, catcher, 

two fielders) 

11 (all) 5 (all) 

Role Switching 

Points 

Offense/Defense 

switch every half in-

ning (e.g., after 3 

outs) 

Offense/Defense switch at 

change of possession (e.g., 

following score, punt, 

turnover) 

Shifts in offense/defense 

roles following possession 

change (e.g., following 

score, rebound, turnover) 

Pacing Discrete plays, with 

coordinated fielding 

Discrete plays, with multi-

ple coordinated activities 

Mostly continuous play, 

broken up by scoring, out 

of bounds, etc. 

Example of High 

Coordination 

Infield double-plays 

(infrequent) 

Offensive line blocking 

(frequent) 

Pick and roll (frequent) 

Example of Low 

Coordination 

Hitting with bases 

empty (frequent) 

Punting (infrequent) Free throws (frequent) 

Baseball: Discrete Plays with Well-Defined Individual Contributions 

Of the sports considered in this exploration, baseball contains the strongest individual contributions. Even 

during fielding, plays are coded with the fielders who touch the ball and players who do not touch the ball. 

Others involved typically only need to coordinate in real time by ensuring proper backup behavior (e.g., 

the pitcher covering a base when its fielder needs to pursue the ball). While teams may coordinate on field-

ing patterns (e.g., shifting to the right or to the left), the optimal positions for these plays tend to be relatively 

deterministic. Within baseball, the two highest-coordination activities tend to be pitchers and catchers (se-

lecting, throwing, and catching pitches) and double-plays (e.g., which tend to require rapid throws from the 

shortstop to the second baseman, then a second throw to the first baseman). While at bats are common, 

double plays are infrequent.  On the converse, batting is mostly individual. 
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Baseball training is structured around a manager (head coach), with assistant coaches that include the bench 

coach (second in command), batting coach (offensive expert), pitching coach (defensive expert), bullpen 

coach (works with secondary pitchers for a game), and a pair of on-field coaches at first and third base to 

help call plays. The on-field and bench coaches are often responsible for training on fielding. Above all of 

these is the general manager, who does not directly manage the players but who may set guidelines for the 

manager's decisions. In recent years, this has increasingly involved guidance based on statistical data 

(Thorn, Palmer, & Reuther, 2015). A number of studies have examined the characteristics of baseball man-

agers (e.g., James, 2014). Boswell (1984) categorized managers into four archetypes: 

1) Little Napoleons: Authoritarian and intense/stressful styles that emphasize competition; 

2) Uncle Robbies: Player-friendly, often humorous leaders who lead with wisdom; 

3) Peerless Leaders: Disciplined and dignified styles who lead by embodying this character; 

4) Tall Tacticians: Intellectual, clever leadership based on trust in their judgement; 

Koppett (2000) reinforced this work with a study of the "family trees" of manager lineage, which traced 

three managers who served as archetypes for Boswell (the Little Napoleons, Peerless Leaders, and Tall 

Tacticians). As such, these different managerial styles appear to be not just by chance but also by training 

and recruitment. In terms of in-game management, there has also been some discussion that traits from 

Uncle Robbies may be increasingly common among baseball managers (Diamond, 2016). This is poten-

tially due to both the increase in player salaries, which could make authoritarian approaches unfavorable 

for recruitment and retainment. It may also be due to the increasing influence of stats-based guidance from 

general managers, which makes managers the lynchpin for building buy-in so that players support front 

office decisions (as opposed to only justifying their own coaching decisions). This shift may also be due to 

increasing initiative by baseball players, who are more active in self-regulating their training than in prior 

decades. As such, due to shifting power dynamics, earlier stages of baseball might offer better models for 

feedback on psychomotor tasks, while major league baseball might be a better model for studying how 

managers build and maintain team cohesion among experts across a long season with continuous games 

and travel. These distinctions are important, as GIFT supports multiple pedagogical models that enact var-

iations in coaching methodologies. As such, coaching styles can be configured and called upon at run-time 

based on team characteristics that dictate the most appropriate coaching strategy. 

Given that this exploration is primarily focused on team learning, we looked further into the coaching prac-

tices at the college baseball level.  A review was made of publicly posted videos about college coaching 

practices.  Franco (2018) explains a division 1 schedule where players were responsible for three types of 

training to prepare for their season: weights training (5h/week), conditioning (3h/week), individual instruc-

tion with a coach (3h/week), and about 4 game-length practices each week (12-14h/week). Some notable 

themes of baseball coaching include center around deliberate realistic practice (Ericsson, 2003), such as 

"perfect practice makes perfect" and "practice like you play" (e.g., moving away from massed drills). The 

majority of practice consists of either of individual tasks (batting practice, pitcher-catcher bullpen sessions), 

simulated at-bats (tee-ball drills, fungo bat fielding), or practice games. After-action practice includes ver-

bal feedback and videotape reviews, which might be used to demonstrate models of good performance, 

discuss an individual player's performance, or discuss team performance. 

Individual mechanics (e.g., batting stance, throwing shoulder) appear to be a primary focus for baseball 

training, even in the context of pair exercises (throwing practice) or games. Coordination is achieved by 

players independently recognizing the same game state, then following well-practiced procedures that as-

sume their teammates will be in position (e.g., beginning a throw to first base before the first baseman is 

set up yet). The secondary focus appears to be conditioning exercises. Notably, in reviewing certain tapes, 
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the primary feedback for conditioning (e.g., endurance) exercises is primarily supportive or progress feed-

back from other players. Finally, team coordination feedback appears to be the tertiary focus (e.g., adjusting 

fielding positions relative to others). Coordination is primarily practiced through repeating scenarios (e.g., 

fielding balls hit to a certain area). To help illustrate this balance, a brief "hot mic" video of the assistant 

coach for Oregon State was coded using the features from Table 1 (OSU Beaver Athletics, 2011). Across 

a 2 minutes of edited drill footage, the most common speech acts are noted in Table 3.  

Table 3: Coding Speech Acts for Two Minutes of a College Baseball Fielding Practice 

Count Feedback Type Feedback Example 

6 Positive-Outcome "good" 

4 Neutral-Explanation "shorter arm circle out of here it's here" 

4 Neutral-Command "defense let's go one and around five to forty five" 

3 Positive-Specific "ground up very nice" 

2 Negative-Specific "a little lower long and lower long and lower" 

2 Neutral-Cue  "light on feet" 

1 Positive-Motivation "you make that play you're our guy" 

1 Neutral-Specific "this way so our knees a little more" 

1 Negative-General "it still needs a little more work" 

 

At least in this clip, the coach provides feedback nearly continuously (24 statements in 2 minutes), as the 

mechanics unfold, and supports retries to practice issues that he identifies. While multiple players are in-

volved, they each are the primary focus of coaching feedback at different times. In one example, a player 

is taken aside for a longer explanation of his specific areas to address. However, in later portions of the tape 

the coach stops active practice and provides a demonstration and strategic feedback to the current practice 

squad (e.g., directly addresses the group). While this is only one example, it shows a potential process for 

examining how coaches work with players under different practice conditions, as well as how and when 

they provide their feedback. The frequency of feedback and its delivery patterns (throughout practice or 

across practice sessions during the season) might also provide valuable input in terms of how coaches re-

spond to success or failure of the team as a whole, such as by the intensity or attention of feedback given 

(e.g., showing that they care about the success of the team, either through more frequent, more positive, or 

even more negative feedback). This level of analysis can form the basis of feedback and coaching patterns 

that could be implemented in a pedagogical model for a system such as GIFT, such as for tasks which 

resemble baseball activities (e.g., strong individual contributions, well-defined team interactions). 

Football: Discrete Plays, but Highly Interdependent Contributions 

The sport of football is an example of team dynamics that requires the coordination of multiple explicit 

roles to execute a single discrete play/action at a time. For each designated play, both on the offensive and 

defensive side of the ball, each individual player is assigned a specific role with conditions and standards 
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that determine their behavior during execution. The nuance here is the interdependency across each role 

during play execution, and how a shared situational understanding across all interacting parts is required to 

optimize objective outcomes.  

From a pragmatic stance, this requires: (1) knowing what specific role you are responsible for and how to 

execute those functions consistently, (2) knowing how your role fits within the conceptual context of the 

team across all potential scenarios, and (3) knowing how to adapt your role and communicate those changes 

based on tactics and behaviors observed within the operational environment (Baker & Côté, 2003). These 

categorical distinctions of situational understanding are important as they can be used to define training 

approaches that target the Knowledge, Skills, and Abilities (KSAs) associated for each designated role and 

at each designated phase (see Table 4). With this framework in place, targeted skill objectives can be de-

constructed to identify specific components that drive the selection of practice activity types. In this in-

stance, one can apply a mastery learning paradigm as it adheres to team situational contexts (i.e., an indi-

vidual cannot integrate within a team until that individual can consistently perform an assigned role at a 

high level and understand how that role serves the team as a whole). Training programs should begin to 

target each KSA and apply pedagogical techniques that promote acquisition and retention. For this purpose, 

the team feedback taxonomy presented above (see Table 1) can be applied to configure feedback and coach-

ing features as they adhere to who and what is being trained within each phase of the Team Situational 

Understanding taxonomy. Similarly, speech act analytic techniques, like the one described above, can be 

applied to generate initial feedback policies that associate with coach-athlete dynamics at both the individ-

ual and team collective level.   

In the domain of football, the type of KSAs trained within each phase will dictate the feedback and moti-

vation approach applied at both the individual and team-context level. Similarly to baseball. Coaches are 

designated across distinct levels of team composition (e.g., head coach, offensive/defensive coordinators, 

position coaches, and conditioning coaches) and serve a distinct purpose during training, practice and game 

execution. Accordingly, each coach applies variations in training strategy based on the situational under-

standing phase they are responsible, as each phase is directed towards disparate, but complementary skill 

sets.  

Just as a member of the team must maintain situational understanding appropriate to their role and assign-

ment, a coach must also apply situational leadership, where they adapt styles based on environmental indi-

cators and individual differences (Hersey & Blanchard, 1969). This nuance can also be seen above in the 

baseball example, where the coach varies their coaching technique based on the goal of the interaction and 

their desired audience. When directing subordinates, coaches often exhibit both relationship and task di-

mensions as a means to influence future task execution, with most common leadership styles being a mix 

between Autocratic, Democratic, Positive Feedback, Social Support, and Training and Instruction leader-

ship philosophies (Turman, 2001). From an ITS standpoint, pedagogical approaches can be designed for 

each phase that adhere to different coaching philosophies and style; however, it is important to note that 

these pedagogical determinations are bound by the assessments captured within each specific activity or 

exercise. In the space of interdependent team interaction, a major focus is on scenario-based interventions 

that challenge skill application at both the individual and collective level, with situational understanding 

serving as a guiding framework to ground all training functions. For this purpose, ITS applications designed 

to train and build relevant team-oriented skill sets are recommended to adhere to structured pedagogical 

formalizations that associate with phases like the ones described above. To support a domain-agnostic rep-

resentation, the framework must also extend across variations in team composition and role interdependen-

cies, as many team contexts operate outside of discrete events, where play is much more continuous and 

dynamic. 
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Table 4. Situational Understanding Framework Applied for Team Skill Training 

Training Situational 

Understanding 

(Phase) 

Training Strategy Example Assessment and Feed-

back Factors 

Know and execute 

assigned role (1) 

Individual: Focused inter-

ventions that target funda-

mental application of skill. 

Deliberate Practice (Erics-

son, 2003) 

 

Team: Working in sub-

teams for practice and peer-

learning opportunities 

Individual: Wide Re-

ceiver executing catch-

ing drills across multi-

ple flight trajectories 

and speeds. 

 

Team: Wide Receiver 

executing catching 

drills with cornerback 

providing coverage. 

Individual:  

- Technique and Execu-

tion 

- Mechanics 

- Reinforcement 

 

Team: 

- Challenge and Moti-

vation 

- Competition 

Know how an as-

signed role fits 

within the context 

of the team (2) 

Individual: Understand role 

for each individual play, 

with ability to recall all de-

cision points 

 

 

Team: Drill-repeat exercises 

to promote deep understand-

ing and consistent applica-

tion 

Individual: Wide Re-

ceiver studies playbook 

and knows all routes 

and blocking assign-

ments. 

 

Team: Offense-only 

drills with wide-re-

ceiver applying proper 

technique based on 

given play calls.  

Individual: 

- Declarative & 

Procedural knowledge 

about context of plays 

 

 

Team:  

- Role Interdependency 

- Shared Mental Mod-

els 

- Trust 

Know how to ob-

serve, communi-

cate, & adapt (3) 

Individual: Study film and 

prior use cases/examples. 

 

 

 

 

 

 

Team: Subject team to varia-

tions in context that require 

role execution. Scenario-

based practice events de-

signed to challenge commu-

nication and adaptation 

across team-members and 

roles. 

Individual: Case-based 

exercises that test abil-

ity to predict play out-

comes based on pre-

play observations. 

 

 

 

Team: Multiple scenar-

ios that require commu-

nication between wide 

receiver and quarter-

back (e.g., identify sin-

gle coverage and com-

municate a play audible 

to exploit recognized 

weakness) 

Individual: 

- Conceptual Under-

standing of Opponent 

Behaviors 

- Counter-measure tac-

tics based on opponent 

observations. 

 

Team: 

- Communication 

- Context Analysis 

- Coordination 

- Leadership 
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Basketball: Continuous Play with a Mix of Individual and Team Contributions 

Basketball is another excellent domain to guide pedagogical considerations for Team ITS development as 

it introduces new elements not captured in the examples provided above. In this arena, basketball teams are 

composed of highly interdependent positional players with roles that are more loosely defined; meaning 

that roles are transferable at any moment. They are transferable in the sense that each teammate has both 

offensive and defensive responsibilities, as well as transferable in the sense that each teammate might 

switch roles within a given play to assist in meeting team objectives (e.g., a forward taking over defensive 

responsibilities on an opposing guard due to a screen). Three common characteristics of this type of team 

interaction is high task interdependence (Landi, 2001), high interaction, and uncertainty, which is due to 

the consequence of interacting team members and an evolving context (Wall, Cordery & Clegg, 2002; 

Ramos-Villagrasa, Navarro & Garcia-Izquierdo, 2012). In these instances, game flow is much more con-

tinuous, where team dynamics are highly reactive and often spontaneous. These dynamic characteristics 

are seen in many other relevant team compositions, including hockey, rugby, and even in military teams.  

Due to these continual shifts in task context, team situational understanding is critical to success, with 

communication playing a pivotal role in collaborative coordination and cohesion. To address this shifting 

context, coaches are responsible for designing practice activities that build and strengthen foundational 

team behaviors, with direct abstraction from the phases defined in Table 4. This involves individual ability 

drills to build functional skills (e.g.,, dribbling, shooting, passing, etc.); team-/collective-drills to build flow, 

cohesion, and coordination (e.g., fast-break drills, play rehearsal, scenario-based walk-through); and scrim-

mage drills that recreate game situations for dedicated practice under the operational context. Formative 

assessment and directive feedback are applied across all activity and drill types, with task context (i.e., 

practice activity objectives and the interacting parts) and coaching philosophy (as based on configurations 

across Table 1) being the determining factors that drive pedagogical interventions.      

In the domain of continuous play environments with shifting contexts, an additional element of situational 

understanding that plays a critical factor in practice and coaching design is team familiarity (i.e., shared 

mental models; Fletcher & Sottilare, 2017; DeChurch & Mesmer-Magnus, 2010). In this instance, famili-

arity relates to all parts that constitute a team and the environment for which they operate in. Each serving 

member of a team must be aware of the strengths and weaknesses not only of their contributions to the team 

objectives, but across all potential interacting parts, including opposing elements. Knowing what each in-

teracting individual provides to the task environment enables effective decision making for the purpose of 

exploiting specific strengths and weaknesses for the good of the team (e.g., calling plays to exploit situa-

tional weakness, such as taking advantage of an undersized defender). In these scenarios shared mental 

understanding is critical, where decision cycle times are reduced and automated based on shared under-

standing of task interdependencies and location and role of each interacting element. It is through initial 

well-designed practice activities that familiarization is acquired, with advanced application leading to indi-

vidualized and often creative communication techniques (i.e., using gestures and subtle signals to com-

municate intent and coordination). In these instances, while the coach emphasizes the importance of team-

ing behaviors, it is often up to the interacting team-members themselves to devise a specific solution to the 

coaches defined objective. 

The activities and deliberate practice techniques will vary across domain, with the defined team character-

istics providing guiding principles to start from. For basketball, the activities will vary from football, as the 

defined characteristics of that team require it. In these instances, scenario-based team exercises will be 

created that target specific skill sets. In addition, the specific coaching practices seen across collegiate bas-

ketball programs may be of extra relevance for the design of a team pedagogical philosophy for military 

relevant contexts, as the turn-over for NCAA teams is high, where athletes are eligible for the pros after 
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one year of post high school activity. In these instances, it may be relevant to code specific strategies exe-

cuted by collegiate basketball coaches that address new additions to an already existing team structure. 

Accelerating cohesion in these instances is critical to team success. 

Challenge point framework 

When establishing coaching strategies that target accelerated team development, it is also important to con-

sider how GIFT and ITS can manage challenge in a generalized capacity that applies across domains. The 

Challenge Point Framework is an approach to model these interactions, which is based on the relationship 

between task difficulty and the learner’s ability.  Tasks can become more difficulty, for example, with 

greater accuracy requirements, more pressure on success, or more to the point of this chapter, a decrease in 

the feedback presented.   

Figure 1 shows the relationship between task difficulty and immediate (practice) performance and learning. 

Immediate performance (e.g., during practicing) is the solid orange line. As task difficulty increases, per-

formance decreases. The dotted, green line represents long-term learning. As task difficulty increases, learn-

ing also increases, up to a point. That point is known as the optimal challenge point (OCP) and designates 

the point where the individual is being optimally challenged for long-term learning. You will notice that at 

the OCP, practice performance is compromised. In other words, OCP creates short-term struggle for long-

term gain. As shown in the graph, the level of difficulty at which learning is optimized is not the same level 

of difficulty that promotes the best immediate performance.  

 

Figure 1. A graphical representation of the optimal challenge point (OCP). Image adapted from Guadagnoli 

and Lee (2004). 

As the learner progresses so does the OCP. Figure 1 models performance/learning for a relatively experi-

enced learner. Figure 2 models performance/learning for both an experiences learner (OCP 1) and a novice 

learner (OCP 2).  
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Figure 2. A representation of optimal challenge point for relatively novice (OCP 2) and relatively more expe-

rienced learners (OCP 1). Image adapted from Guadagnoli and Lee (2004). 

As you see, the same basic relationship between task difficulty, immediate performance, and learning is 

maintained, but the optimal challenge point (OCP) is at a lower difficulty level for the novice learner than 

for the experienced learner. As a result, knowing how to increase and decrease challenge for the individual 

is a key component to optimized learning. As mentioned, feedback is one way to change the level of chal-

lenge.  Decreases feedback provides less guidance and therefore requires the individual to rely on intrinsic 

feedback mechanisms.  This increases the task difficulty for the individuals, and for more experienced 

individuals decreased feedback degrades immediate performance but enhances long-term learning. 

Based on our understanding of the Challenge Point Framework, it would be much more effective for the 

coach to deliver less frequent feedback to this level of skilled performers.   This would likely yield more 

struggle during practice but greater performance in the game (as a result of greater learning in practice). 

Conclusions and Potential Opportunities 

In the design of team-based ITSs, sound pedagogical practice is critical. In this chapter, we argue for the 

use of sports psychology and sports coaching lessons-learned to guide the design of a generalizable peda-

gogical model for use in the Generalized Intelligent Framework for Tutoring (GIFT; Sottilare, Brawner, 

Goldberg & Holden, 2012). In its initial implementation, a major requirement is first establishing instruc-

tional strategy functions that adhere to the taxonomy presented in Table 1. This involves establishing vari-

ables with configurable enumerations in GIFT’s team pedagogical model that will inform a set of produc-

tion rules or agent policies used at run-time. This requires identifying all team-level strategies (i.e., a GIFT 

strategy requires domain-generalizability) and establishing tactic level representations and their associated 

dependencies (i.e., how feedback is presented and how adaptations are managed). 

With a set of supported pedagogical functions that can be enacted by GIFT, the next requirement is gener-

ating a set of policies and/or rule sets that are used at runtime. An overarching objective is to establish 

empirically informed policies that determine how best to coach a team based on the composition of that 

team (i.e., team structure, roles, and interdependencies), the personalities that make up that team (i.e., indi-

vidual differences), and the domain for which they execute as a team (i.e., context to guide strategy config-

urations). Before a coaching philosophy can be applied, as defined through dedicated policies, there are 

certain tenets that drive the design of team training events when a specific domain is specified. As seen in 

the Situation Understanding Model defined in Table 4, a major component of team effectiveness is applying 

deliberate practice techniques that target specific skill sets and objectives at both the individual and team 

context. This highlights a need for pedagogical consideration at two levels of interaction: (1) what each 

individual role of a team experiences before, during, and after a specified exercise (e.g., macro-adaptation), 
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and (2) what assessment and feedback is applied at each managed interaction before, during, and after a 

specified exercise (micro-adaptation). The goal is to establish generalized rules based on the feedback tax-

onomy in Table 1, where configurations can be parameterized based on loggable performance and behav-

ioral data sources. As an example, pedagogical model policies will have to differentiate and resolve con-

flicts across feedback and drill-repeat strategy types (e.g., when to yell feedback vs. when to interrupt an 

event and instruct the team to start from the beginning). 

In a traditional ITS, these policies are derived from interactions observed across expert tutors, where their 

actions and strategies were coded for strategy analyses to determine what common practices effective tutors 

consistently utilized. The resulting pedagogical ‘best-practices’ are then translated and programmed as al-

gorithms that serve as the pedagogical logic that guides feedback delivery and adaptation practices. In the 

case of team-based ITSs, similar methods are recommended. An approach is to design an observational 

study that incorporates multiple coaches across multiple disciplines for the purpose of deriving effective 

strategies applied across the team context in multiple instances. This would require establishing coding 

schemas that adhere to the taxonomy elements in Table 1, where representations are required that link 

observable performance/behavior indices and their association with coaching related tactics. These assess-

ment indices to coaching tactic relationships can be configured across distinct coaching philosophies (e.g., 

Autocratic, Democratic, Positive Feedback, Social Support, and Training and Instruction), where a training 

developer can customize the coach type that drives feedback and strategy interventions.  

At a fundamental level, when compared to one-on-one tutoring strategies, the strategies and tactics used by 

team coaches are only anecdotally understood: while coaches’ small decisions in a game are picked apart 

by sportscaster talking heads for days, how much time is spent rigorously analyzing the content and patterns 

of how they interact with their players on a day-to-day basis? From a research standpoint, there could be 

great value in extensive data collection across a number of expert coaches with the goal of building gener-

alizable policy sets for feedback and motivational interventions for a team. However, this would require a 

major study with deep data collection. An alternative approach that can be applied in the near-term would 

be to build pedagogical coaching models that are based on specific individuals and/or philosophies that are 

well documented in the literature (i.e., building models from documented theory, rather than training from 

data). An example would be explicitly studying one well-represented expert coach (e.g., Duke Basketball 

coach Mike Krzyzewski) and building policy sets on that individual as represented through books, inter-

views, video observations, and peer assessments. The results of this approach would probably be too coarse-

grained to infer the specific tactical philosophy of that coach regarding their expertise within a domain (e.g., 

how they provide feedback). Instead, the goal is to extract coaching strategies and methods that focus on 

managing team behavior and development. Based on these insights, GIFT could build a set of alternate 

“coaching” pedagogical models based on team training experts. These models could then be analyzed and 

compared for different kinds of teams and learners, using data from these studies to improve our under-

standing of how virtual coaches can improve team training. 
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CHAPTER 11 – THE ROLE OF CONTEXT IN TEAM PERFORMANCE 

AND TEAM TRAINING 
 

Wayne W. Zachary 1, Benjamin Goldberg 2, Andrew J. Hampton 3 

Starship Health Technologies, LLC 1, Army Research Laboratory 2, University of Memphis 3 

Introduction 

Context is a construct through which humans integrate information on the social, physical, and experiential 

environment and represent it in a way that renders it relevant to current cognitive and behavioral challenges. 

Context representation and understanding are inextricably bound to expertise in the tasks and domains that 

make up those cognitive and behavioral challenges. When people engage in activities that require coordi-

nation, collaboration, and cooperation (i.e., teamwork), the team itself becomes part of the context. In an 

expert team1, the team members have knowledge about the boundaries of each other’s knowledge, experi-

ence, and/or skills that becomes part of each team member’s context understanding, representation, and 

reasoning. This knowledge about the team allows each team member to interpret the actions of teammates 

and to act adaptively, through processes such as error identification, anticipation of needs for support, or as 

a basis for inferring teammate’s intentions.   

In this chapter, we examine the theory of context understanding as well as several examples of teamwork, 

and use these to consider how context contributes to team performance, and how it can be used in team 

assessment.  We begin by defining context in terms of individual cognition, and proceed to discuss how 

context as a cognitive construct underlies cooperation and teamwork how affects teamwork performance. 

This analysis highlights how explicit representations of context information can (and arguably, must) be 

used in intelligent automated team training and tutoring, especially as could be done using an extended 

Generalized Intelligent Framework for Tutoring or GIFT (Sottilare, Brawner, Sinatra, & Johnston, 2017). 

What Do We Mean by Context?   

Consistent with the prior work of Zachary and collegues (particularly Zachary et al. 2013), we define con-

text as a cognitive process that is representation-centric, constructive, pervasive, and strongly intercon-

nected with domain expertise. This definition can be unpacked in several stages. At the most fundamental 

level, when we say context is a cognitive construct we mean that it concerns the representation and pro-

cessing of symbolic information in a natural or computational system. With regard to human beings, context 

is internal to the human mind and cannot be directly observed or studied. Rather, it can only be studied 

indirectly, in terms of, for example, verbal accounts of a person’s understanding of momentary context , or 

through examining accounts of how a person reports using context to reason and make decisions in a dy-

namic situation. These two examples are chosen to illuminate the representation-centric and constructive 

process aspects of context. This part of the definition also points out that, as an internal cognitive construct, 

context is distinct from the philosophical notion of empirical Ground Truth (GT).  Some ways in which 

context and GT may differ are further considered below   

In verbal accounts (both experimental and naturalistic), people commonly refer to context as a definitive 

‘thing’, referring to is as ‘the’ context (not as ‘a’ context) which implicitly exists in the present, and which 

refers to the person’s understanding of the external situation in the physical and social environment. Yet 

                                                           

 
1 Which is not the same as a team of experts, as discussed below.   
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people also readily agree that context changes over time and is thus dynamic. This leads to the view ex-

pressed here that the ‘thing’ to which people refer as context is an internal representation that captures and 

integrates multiple aspects of the external (and internal) environment that are salient to the person at that 

moment.   The representation is also constantly undergoing revision to reflect changing information in the 

environment, and changing cognitive states in the person as well.  The dyanmic nature of this context rep-

resentation suggests that context is a constructive process with one or many distinct lower level functions 

involved in building, maintaining, and (when necessary) deconstructing pieces of the context representa-

tion.  However, what people are conscious of is current content of this representation, making context rep-

resentation-centric.   

The fact that people are able to talk about context also indicates that it is (at least to some degree) metacog-

nitively accessible to introspection, although it appears that this introspectability extends only to the con-

tents of the momentary representation, giving rise to momentary context awareness.  This metacognitive 

accessabiltiy does not appear to extend to the dynamics of the process or to prior states of the representation. 

Thus, people are consciously aware of the current contents of the representation but not of the underlying 

processes that maintain it.  

The context process is also pervasive, in that people always have some degree of context awareness. Con-

text is not something that is relevant only to work, or to play, or to any other broad differentiator. Rather, it 

is omni-present, and people feel that they are always “in” some contex.   At the same time, though, the 

degree of context awarness and the depth of context understanding varies a great deal across persons and 

even across domains. In particular, individuals with a great degree of knowledge about a domain usually 

have an awarness of context features that are particulalry salient in that domain, in the sense that those 

features can help define and restrict the range of appropriate decisions, planning, and actions in the domain. 

Chess masters, for example, represent abstract elements of context in a (mid-game) chess board that novices 

cannot and can use those abstractions to identify opportunities for application of a tactic many moves in 

advance.  Similarly, air traffic controllers represent context of an air space with constructs that identify 

potential future conflicts while novices cannot, even though in both examples the novices and experts have 

access to the same GT stimuli.  

The aspect suggests two key ways in which context, as understood by a person, can differ from GT.  First, 

the propositions within a context representation that are verifiable empirically can be inaccurate with regard 

to GT (for whatever reason).  An aircraft is empirically be flying at 5000 feet and on a heading of due north, 

but can be represented in the context understanding as at 10000 feet and heading north by north west.  

Second, and in contrast, there are abstracted and inferred components of a context understanding that are 

not part of the simple empirical GT, and that add insight that is present in the empirical GT   The foreseen 

opportunity by the chess master is an example of this.      

Extending this insight into the role of expertise in context understanding has been the work on recognition-

primed decision making (RPD; e.g., Klein, 1993, 2008).  This body of research points out that a critical 

feature of domain expertise is the ability to recognize specific features, or patterns of features, of a problem 

instance (i.e., those elements of context) and directly derive a decision/action from them. Put differently, 

RPD suggests that experts are aware of different and more pragmatically useful elements of context, but 

only as it applies to their domain of expertise. To the degree that rich representation of problem instances 

is part of context, we thus argue that context awareness is intertwined with development of domain exper-

tise.  

This last aspect of the definition of context has direct implications for individual and team training. It sug-

gests that increasing domain expertise in individuals— training— must necessarily involve developing an 

enhanced ability to perceive, understand, and reason about context. This has long been demonstrated in 

research into the development of individual cognitive skills.  In a summative reviews, VanLehn (1996) and 
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Zachary and Ryder (1997) argue that increases in a skill involve changes in the way the problem and envi-

ronment are internally represented.  This mechanism for this is reducing the procedural knowledge needed 

by, in essence, trading it off for more useful representation of the problem space, developed through expe-

rience in that problem space.  We argue here that context representation therefore constitutes a critical 

enabling foundation for expertise, and that domain expertise cannot be trained without consideration of 

context, including team context. But what are the key contextual variables in team-based skills, and is con-

text perception, understanding and reasoning fundamentally different under these conditions?    

Context in Team Performance and Team Training 

Research first began to indicate the importance of context in teamwork and collaboration in the late 1980s. 

Suchman (1987, 1990) worked from the perspective of understanding how machines and people could col-

laborate to solve everyday problems (specifically, copying documents). She demonstrated that the problems 

and frustrations that people experienced in interacting with an artificially intelligent machine arose from 

the fact that the people shared an implicit understanding of the current task context and tacitly used that 

understanding in their linguistic interactions (i.e., dialogs), while the smart copier with which they were 

working had a wildly different representation of the task and task context.  

At the same time, researchers in team performance (particulalry Salas, Canon-Bowers, Fiore, and their 

colleagues) were developing data showing that effective team performance required  “team members [to] 

hold common or overlapping cognitive representation of task requirements, procedures, and role responsi-

bilities” (Cannon-bowers, Salas, & Converse, 1993, p. 22; see also Fiore, Wiltshire, Oglesby, O’Keefe & 

Salas, 2014). The early work into the role of context in teamwork provided two foundational insights. The 

first was that the task and role relationships among the people that comprise the cooperating team became 

part of the context representation for people working in those settings. The second insight, which impu-

dently echoed the work of Suchman, was that the context understanding, including these team/collaboration 

aspects, had to be shared across team members for the intra-team communication and coordination to be 

effective. The following two examples demonstrate these two aspects of context and team processes.  

1. Dismounted infantry. The location of individual service members in relation to terrain features forms a 

core element of operational context. It is of key importance to operational tasks such as organizing rendez-

vous. The Air Force Research Laboratory conducted a study examining the ability of dyads to rendezvous 

in unfamiliar environments (Hampton, Shalin, Robinson, Simpson, Finomore, Cowgill, Moore, Rapoch, & 

Gilkej, 2012). The simulation-based experiment tested the change in strategy and performance in standard 

two-way communication versus “spatialized audio” (wherein participants heard their partner’s voice as if 

it came from that partner’s relative physical bearing). This had the effect of shifting the more abstract task 

analysis levels of comprehension and projection to a relatively simple perceptual task. Participants no 

longer had to speculate on a partner’s location and movement, adjusting narrative explanations for proce-

dural communications (e.g., matching relayed descriptions of road layouts to supposed map quadrants). 

Likewise, descriptions of local terrain and compass bearing gave way to any discussion at all that would 

present a steady perceptual signal (including plans for the weekend, classroom assignments, and favorite 

video games). Unsurprisingly, these shifts in strategy coincided with significantly improved rendezvous 

times. A separate manipulation of the presence of distinct landmarks (a common navigational strategy) 

showed little impact in performance metric for the standard audio condition, though they factored promi-

nently into participant discussion. However, in the spatialized audio condition, participants paid little atten-

tion to them at all, except as confirmation. At one point, a participant explicitly stated that a landmark did 

not matter with the auditory channel conveying position. The context of the task, in this case the position 

of the partner–target, was made immediately clear via perceptual channels.  
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2. Naval Fleet Air Defense. A US Naval destroyer focuses on the problem of command and control of 

multiple assets to provide continuous defense of own-ship and the whole surface combatant group from 

hostile attack form the air. For the critical dimension of airborne threats the function is termed Naval Fleet 

Air Defense C2. The Air Defense team in the combat-information center (CIC) aboard a destroyer can vary 

in size from six to eight members (with potentially more outside the CIC) (see Zachary et al, 1998 for a 

cognitive task analysis of this team). . The roles in the Air Defense team vary to some degree according to 

the mission and organizational decisions by the ship commander. The broad aid defense function is to de-

tect, identify, monitor, and if necessary engage air vehicles that could pose a threat to own-ship and/or 

defended assets, particularly an aircraft carrier. The problem is particularly fast paced and complex in air-

spaces that involve combination of civilian air traffic and military air traffic that can be a mix of own, allied, 

neutral, and hostile. The extended air defense team includes airborne assets (electronics aircraft, patrol 

aircraft and fighter aircraft) for which CIC-based team provides control and situational information. Un-

derstanding the current mission context is key to both individual and team performance of the Air Defense 

team. Decisions and actions by all members of the Air defense team, including its commander (the on-duty 

Tactical Action Officer), depend on each member understanding enough of the context to choose her or his 

own actions for that context, and the overall strategy taken by the commander depends on that individual 

having the best and most accurate understanding of the mission context.  

The two insights discussed above had immediate and lasting impact on team training, which was framed 

by the seminal study of team decision-making on Tactical Decision-Making Under Stress (TADMUS). The 

seven year study, reported in Cannon-Bowers and Salas (1998), initially was “conceived as a response to 

an incident involving the USS Vincennes, a warship that mistakenly shot down an Iranian airbus” (Cannon-

Bowers & Salas, 1998, xxi). It was revolutionary, as the research was conducted in a naturalistic setting, 

and not in a laboratory. The TADMUS researchers studied how tactical decision-making teams on Naval 

warship actually worked and made decisions, and how those teams were trained. This naturalistic approach 

pointed out that while real-world teams may initially train together (as in pre-commission training for a new 

warship), in actual operation there is a constant rotation of new members into (and existing members out-

of) these teams. As a result there may almost never be a situation where each team-member was truly expert 

in his/her task. Yet, the analyses showed that an “expert team” (i.e., a team that performed as a unit at a 

high level) was usually able to perform at a high level because it was able to adapt to the differing skill 

levels of its individual members.  

The results indicated that portions of the context understanding that related to team roles and responsibili-

ties, and to how those role and responsibilities were being carried out in the current problem instance, were 

central to team performance. It also helped explain an often-observed phenomenon, in which “a team of 

experts is not an expert team” (Salas, Canon-Bowers, & Johnston, 1998). From the perspective of team 

training, it pointed out the importance of understanding what was in these (domain-specific) shared models 

of team performance and how individual trainees and teams could most effectively learn them and apply 

them. In general, various researchers found that these context models of expert teams involved: 

• An ability to form expectations and projections about the behavior of other team members,  

• A motivation to proactively support less expert team members in achieving those expectations, and 

in reacting correctively when those expectations were not met; and 

• A set of structured communications skills that served to activate those abilities and motivations 

across the team. 

From a technology perspective, these results led to development of team training systems that involved 

practice in teamwork tasks (often including elements of computer simulation), and active guidance and 

feedback in developing the specific abilities, motivations, and communication skills listed above. A detailed 
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review of that literature is beyond the scope of this chapter, but see Freeman and Zachary (2018) for a more 

detailed review of how team training research evolved forward from the TADMUS program.  

The training of such abilities, motivations and skills, however, created new and interesting training prob-

lems, particularly regarding assessment and diagnosis. This is because they are based on the unobservable 

construct of shared context understanding. While behaviors such as compensatory correction of teammate 

errors or issuing proactive communications to prevent teammate errors can be observed, their absence is 

not. Moreover, simply observing a communication behavior provides insufficient information to diagnose 

either the correctness of its timing or correctness of its content.  Those key aspects of diagnosis require an 

an understanding of the underlying context. 

This last aspect of determining whether the context understanding is appropriately shared across the team 

and whether it is correct with response to the underlying environment is particularly difficult. An interesting 

example of this can be taken from the incident (mentioned above) in which the USS Vincennes shot down 

an Iranian airliner mistakenly thinking that it was disguised military aircraft preparing to attack the ship2. 

While the team in the ship’s Combat Information Center that had the responsibility for air defense had very 

good information on air situation, the specific sequence of events that were observed were highly anoma-

lous and did not fit previously-observed or trained examples. The tactical lead and team worked to explore 

narratives that could explain all the observed data and that could be used to form a decision strategy. The 

team became focused on only one specific narrative, in which the airliner was part of a deception masking 

an attack-the-ship intention. The then-current high level of military and geo-political tensions in the Persian 

Gulf provided elements of context for this narrative interpretation.  Other recent events in military history, 

such as the sinking of the HMS Sheffield only six years earlier by a single air-surface missile strike, were 

also part of the shared context understanding that support this interpretation. This focus on that single nar-

rative interpretation ultimately led the decision to attack the aircraft before it could reach position from 

which it could launch an air-surface missile. In this example, the context understanding was appropriately 

shared and appropriately acted-on—it just turned out to be an inaccurate interpretation of the GT situation.  

This points to a deeper issue with shared context and distributed action, that of indeterminism (Freeman & 

Zachary, 2018). Even when a team has a highly overlapping understanding of the current context, any 

individual team member can take an action that can change the trajectory of the problem evolution for the 

team (and potentially for its adversary). From that point forward, the actions and decisions of the team and 

of each member can only be assessed in the light of that changed problem context as it was understood by 

the team.  

The 1977 nuclear reactor accident at Three Mile Island (Cummings, 1980; Rouse et al., 1992) is an example 

of this. One operator missed a warning light and interpreted the reactor core state as the opposite of what it 

was. Acting accordingly, based on this perceived context, lead to a cascading set of team actions that were 

correct given that initial interpretation error and the direct action based on it. This issue is equally present 

when, as in the Vincennes case, the team has arrived at a context representation that is plausible but in the 

end factually divergent from the GT situation. Thus, the assessment of overall team and individual team-

member actions and decisions can be indeterminate with regard to the GT of the situation, and can only be 

fully evaluated in terms of their (shared) context understanding. Moreover, these situations create meta-

problems of requiring actions and communications to repair the correct understanding of the context, which 

are crucial to team resilience. However, detecting the existence of such meta-problems as well as assessing 

and training for them, cannot be undertaken without an explicit model of the context understanding of the 
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team as well as a model of what an accurate context representation would be, given the conditions of the 

operational environment and the domain expertise of the team.  

Managing the Role of Context in Team Training 

In many modern team training systems or exercises, trainees interact through simulated work environments. 

During these interactions, teammates communicate with each other using verbal and computer-mediated 

methods such as email and text messages. While the trainees develop their individual and team-shared 

context understanding, human instructors typically function as observers and build their own representation 

of the team-shared context understanding. These instructors then provide assessments and feedback to the 

team through the lens of their own internal context representation. This process (which is also used in live 

training exercises) works, because the instructors/observers apply their domain knowledge and human con-

text-processing ability, often combined with ground-truth situational data, to create a gold-standard context 

understanding that can be used to assess and instruct the learners. However, in building fully-automated 

team training tutors using future extensions of GIFT, this function will have to be automated itself. Is this 

possible?    

Can We Build Context-Awareness into Team Trainers? 

Our definition of context raises the question of whether context can be framed and modeled as an explicit 

computational process to be carried out by computational devices. This would be of fundamental im-

portance for automatically generating both team-level and individual context awarness into Intelligent 

Team Training Systems (ITTS) developed from extensions of the current GIFT (Gilbert et al., 2017). The 

computational representation of context and the development of computable models of context is current 

research interest in computer science in artificial intelligence (Lawless & Mittu, 2017; Lawless et al., 2018). 

Zachary and colleagues (Zachary, Rosoff, Miller, & Read, 2013; Zachary et al., 2015) have developed a 

cognitive computational theory of context understanding and awareness called the Narratively-Integrated 

Multi-level (NIM) context framework that has also been successfully used to generate computer-models of 

context awareness (Zachary et al 2017; Zachary & Carpenter, in press). This computational context theory 

is outlined below as a potential way forward for context-inclusion in ITTS. 

NIM combines cognitive theories of situational awareness and narrative reasoning while providing links to 

decision-making and planning via theories of RPD and of cognitive skills as discussed above. NIM defines 

a general structure for context as a computational process that includes three fundamental aspects: 

 a declarative representation of momentary context awareness; 

 a set of constructive knowledge sources that constantly build, abstract, modify, and deconstruct 

the declarative representation as on-going maintenance of the context awareness; and 

 a set of translation knowledge sources that link patterns of information in the declarative con-

text representation to decisions and actions that are stimulated by or must be adapted to the 

momentary context.  

Research on the structure of mental models across domains also found that there is a consistent structure to 

(expert) mental models. Under the rubric of situation awarness, Endsley and colleagues (Endsley 1995, 

Endsley & Garland, 2000) identified three increasingly abstract levels that, across domains, were used by 

experts to provide context information.  These are:  
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1) Perception, in which the person perceives the status, attributes, and dynamics of relevant ele-

ments in the situation and their current states,  

2) Comprehension, in which the person understands how the perceived elements can impact his/her 

situational goals;  

3) Projection, in which the person estimates the future potential actions of elements in the environ-

ment in near-time, and 

4) Expectations, in which the person posits specific future events3 involving objects or relationship 

in the situation that would or could be diagnostic for specific courses of action of decisions. 

Inability to deal with situations involving adversarial interactions constitutes a key limitation of Endsley’s 

situational awareness framework. Other research, however, focused on the high-level narrative or story-

based representations that people use to structure, reason about, and plan for sequences of interactions (e.g., 

Bruner, 1991; Mataes & Sanger, 1999). Integration of these two approaches was hampered in large part 

because of the significant differences in their formal and computational foundations, until the NIM frame-

work resolved the conflict by adding an additional level of abstraction above the three situational levels. 

This higher level of context links situations to story-oriented representation of context, via representational 

levels for:  

5) Action Units, in which the person identifies specific sets of events, that can be viewed as in-

stances of an elementary unit of some general;  

6) Story Units, in which the person anticipates or recognizes representing specific sets of actions 

units that can be treated as instances of a building block of a general narrative. Called Story 

Units (see Miller et al., 2006) these are building blocks of narratives that the person is aware 

could be unfolding in the current situation; and 

7) Plausible Narratives, in which the person identifies and tracks a general narrative against the set 

of Action and Story units that are expected and/or recognized.  In some cases, people are able to 

identify and track multiple alterative plausible narratives, though is appears generally difficult 

for people to do this.  On the other hand, identifying multiple alternative narratives is often an 

explicit goal of individuals or teams in certain domains, such as intelligence analysis, criminal 

investigation, or market analysis.    

These higher levels of the declarative representation create distinct levels of understanding of the interaction 

involving human motivations and intentions that give meaning to the situational information in the lower 

levels. The general features of our NIM working context theory are pictured in Figure 1 below.  

                                                           

 
3 An Event is a concept that interconnects specific agents or objects, relationships to other agents or objects, and spe-

cific temporal-spatial information.  Its cognitive foundations are discussed in Barwise and Perry, 1983; Zacks et al. 

2007; Radvansky and Zacks 2011). 
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Figure 1. Context as cognitive computational process 

Recommendations for GIFT 

When considering an ITTS, context will play a critical role in managing the assessment space of a given 

scenario based on all of the interacting team-parts. The assessments will be used to infer skill and compe-

tency, and will ultimately be used to drive pedagogical decisions that aim at improving task performance 

and team behaviors. When considering the implementation of context oriented assessments within GIFT, 

there are multiple perspectives that must be addressed. In its current state, GIFT’s assessment logic for 

practice-based activities is configured within a Domain Knowledge File (DKF). It is within the DKF where 

a developer establishes a set of tasks that have context dependent conditions that drives real-time perfor-

mance tracking for managing the selection of instructional strategies. For each represented task in the DKF, 

there is a start- and end-trigger that determine when certain conditions are active and dormant based on the 

environmental conditions in relation to the scenario GT and direct behaviors observed by the trainee. In 

GIFT’s current state, the DKF authoring schemas are relatively stable for individualized tasks, though this 

process can be quite complex. Introducing team elements can increase the complexity of this task substan-

tially, though redundancies in the context representation across team role could be exploited to manage this 

complexity.  .  

From an architectural standpoint, GIFT needs to support multiple users interacting within a single domain 

space, where models are configured to track relevant states across both individual and team-oriented objec-

tive. Previous projects exploring this challenge have applied a hierarchical representation of DKFs (e.g., 

Gilbert et al., 2017). In this case, each individual team member has a DKF specifying their individual tasks 

within the scenario as a whole. Above that is a team-based DKF that tracks states relevant at the composite 

level for each specified group (e.g., team communication, cohesion, etc.). The performance and behavior 

tracked at the individual level is used at the team level to monitor team objectives across a number of 
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competing objectives. The current issue with this approach is that each DKF operates independently and 

there is not a bi-directional component in terms of performance state reporting. In this instance, the perfor-

mance state of an individual, as measured through their DKF, can influence assessments at the team-level, 

but that activity cannot re-orient the context of another team-member. It is in this fashion that GIFT’s ar-

chitecture must be modified to support context modeling in a bi-directional capacity that allows the context 

of individual tasks to be directly influenced by actions taken by another team-member. Naturally, these 

construct representations need to be added within GIFT’s domain module where context models are applied 

across all trainee and team formalizations.  

A rudimentary form of context model can be represented in GIFT’s current state through well-established 

start- and end-trigger specifications for each task and objective being tracked. However this is far from 

ideal and probably far from the minimal required to address in the discussions above of the specific case 

examples.    What is missing are context relevant constructs at the individual level that are used to infer 

team states, and mechanisms to capture and propagate persistent or transitory interdependencies between 

and among teammates. For example, the effects of one teammate’s actions on a problem space may directly 

impact the context of another teammates objectives, with a communication requirement to dictate that 

change. In this instance, one teammate must perform specific duties and communicate critical information 

across team channels so the outcomes of tasks at one level can be accounted for at another level. For this 

purpose, GIFT needs to track successful communication practices across team members, which is a relevant 

team construct that needs to be represented in GIFT. However as noted earlier, determining whether the 

content of a communications is correct and situationally appropriate, or whether a needed communication 

did not occur, requires information only in the individual and team context representations. As a result, all 

the prior communications become (at least potentially) context for the assessment of the present and future 

communication. Importantly, these distinctions imply architectural relationships with the problem/mission 

simulation model. The context models must capture specific kinds of data to build and track the individual-

role and team context representations. This process of context modeling could plausibly be implemented 

using a NIM context model framework.  

With the architectural components in place, the next perspective that must be addressed is the authoring 

workflows to establish this context oriented construct as it relates to specific scenarios and embedded as-

sessments. The content required to construct the context model must be established in a way that is flexible 

and agnostic to the domain or task within which it is being applied. An author needs to establish individual 

and team context representations in addition to individual procedural knowledge. An important aspect that 

must be addressed in establishing dependent and interdependent relationships as it pertains across each 

individual team member and their associated task responsibilities and objectives. This also requires estab-

lishing interaction models that dictate how context is shared and updated across all individual members of 

a team. This in essence establishes context update triggers that are used to modify context oriented content 

across all interdependent teammates. 

With context established within domain level assessments, pedagogical considerations must be addressed 

next. With new assessment methods in place, new pedagogical approaches and scaffolding models must be 

explored that examine the incorporation of context relevant data and indeterminacy. This requires embed-

ding scenario relevant information in feedback scripts through automated mechanisms. A potential ap-

proach is designing feedback templates that can incorporate data inputs as they are derived from a training 

environment in real-time. This enables contextualized feedback as it relates to the specific interacting ele-

ments within the environment, where captured data within log files can be parsed for specific variable 

information that relates to the assessment that triggered the remediation materials. In addition, team-level 

pedagogy should include context relevant information as it pertains to other members of the team who are 

dependent upon or impacted by that individual’s interactions. Building out instructional strategies that ad-

dress second- and third-order effects with context specific data will assist individuals in developing shared 

mental models that associate their role within a larger team context. 
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Conclusions 

The construct of context representation is a critical component when considering the design of an ITTS 

capability. Computationally representing the interacting variables that constitute context is required to en-

sure assessment practices are appropriately linked across team members and account for dynamic changes 

in the interacting operational environment. In addition, research shows context representation improves 

with domain expertise, where establishing accurate representations of context should be a training objective 

that incorporates specific pedagogical interventions that target the identified skill sets. With a computational 

representation of context, assessment techniques can be investigated that target points of indeterminism, 

where an individual’s perceived context does not match ground truth, where specific impasses or miscon-

ceptions in understanding can be better recognized. By incorporating a context layer in an ITTS’s domain 

model, assessments and pedagogical interventions can be better managed based on dynamic changes in the 

task environment.  
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CHAPTER 12 – CONSTRUCTING INDIVIDUAL CONVERSATION 

CHARACTERISTICS CURVES (ICCC) FOR INTERACTIVE 

INTELLIGENT TUTORING ENVIRONMENTS (IITE) 
Xiangen Hu1,2, Nia Dowell3, Zhiqiang Cai1, Arthur C. Graesser1, Genghu Shi1, Jody L. Cockroft1,  

& Paul Shorter4 

The University of Memphis1, Central China Normal University2, University of Michigan3,  

U.S. Army Research Laboratory4 

Introduction 

Most of existing intelligent tutoring systems (ITS) applications involve one or at most two interactive con-

versational avatars (CAs) and one student (Graesser et al., 2012; Hu, Morrison, & Cai, 2013). It is reason-

able to consider a case where using multiple (two or more) avatars and multiple human learners are co-

present in the same interactive intelligent tutoring environment (IITE). This chapter explores a computa-

tional model that assesses the quality of contributions of avatars and the verbal behavior of human learners 

during a sequence of turns in natural language interactions, where a “turn” in a conversation is the time one of 

the participants contribute. The total number of turns is the total number of contributions. This approach is a further 

development of an earlier chapter (Hu, Morrison, & CAI, 2013) in volume I of this series.  

The collaborative exchanges we consider in this chapter follow some specific assumptions in the application 

scenarios, as specified below.  However, we consider more general situations in the discussion section at 

the end. We consider a special IITE4 where conversations between avatars and human learners are focused 

on a theme topic, with the following assumptions: 

A1: Avatars and human learners are aware (have memories) of recent contributions of other avatars and 

human learners. 

A2: Avatars and human learners are equal. For avatars, they are either independently controlled by ITS 

engines or collectively controlled by a single ITS engine. Here ITS engine refers to something similar to 

the AutoTutor Conversation Engine (ACE, Nye, Graesser, & Hu, 2014).  

A3: Contributions from each of the conversation participants (human or avatar) are in the form of natural 

language (NL) and in written form with a sequential order of the contributions. Time intervals between 

conversations are not considered in the current model.  

A4: There are no simultaneous contributions from two or more participants.  

A5: There is a semantic encoding method that is capable of computing the semantic similarity between any 

collections of NL contributions. Such semantic similarity measure can be used to create a semantic classifier 

that can group contributions into semantically equivalent groups. 

                                                           

 
4 Although IILE can be more general, in this paper, we specifically consider learning environments where conver-

sations between avatars and human learners are focused on a theme topic 

https://paperpile.com/c/Yovp0A/somj+HIz3/?noauthor=0,0
https://paperpile.com/c/Yovp0A/HIz3
https://paperpile.com/c/Yovp0A/HIz3
https://paperpile.com/c/Yovp0A/HIz3
https://paperpile.com/c/Yovp0A/XjE1f
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Relevant research questions 

There is a growing literature that investigates learning and performance processes  in groups, as in the case 

of collaborative learning, collaborative problem solving, and collaborative work (Fiore et al., 2010; 

Graesser et al., 2018; Salas, Cooke, & Rosen, 2008; Shaffer, 2017; Stahl, Roschmann, & Suthers, 2006; 

Stahl & Rosé, 2013; Suthers, Dwyer, Medina, & Satrap, 2010). This literature emphasizes sociocognitive 

group processes, such as coordination, common ground, elaboration, regulation and integration of ideas. In 

this chapter, we apply these well-developed theoretical lenses in the context of the special IITEs to explore 

a computational model that characterizes avatars and human learner’s behavior. 

Our approach builds on Group Communication Analysis (GCA), a methodology for quantifying and char-

acterizing the discourse dynamics between learners in online multi-party interactions (Dowell, 2017; Dow-

ell, Nixon, & Graesser, 2018 under-review). GCA applies automated computational linguistic analysis to 

the sequential interactions of participants in online group communication. GCA both captures the structure 

of the group discussion and quantifies the complex semantic cohesion relationships between learners’ con-

tributions over time, revealing intra- and interpersonal processes in group communication. In doing so, this 

methodology goes beyond previous models for automated group communication, which often rely on 

counting the number of utterances exchanged between learners.  

The GCA framework incorporates definitions and theoretical constructs that are based on research and best 

practices from several areas where sociocognitive processes, group interaction, and collaborative skills have 

been assessed. These include areas such as computer-supported collaborative learning (CSCL), computer-

supported cooperative work (CSCW), teams, organizational psychology, assessment in work contexts and 

the PISA 2015 collaborative problem-solving framework. Despite differences in orientation between the 

disciplines where these frameworks have originated, the conversational behaviors that have been identified 

as valuable are quite similar, and the GCA provides six learning-relevant interaction measures (summarized 

in Table 1), which are briefly reviewed below (Dowell et al., 2018). 

Posting a message on the forums is often operationalized by researchers and instructors as participation 

(Hrastinski, 2008) and considered a requirement for any online learning group interaction. It signifies a 

willingness and readiness of learners to externalize and share information and thoughts (Hesse, Care, Buder, 

Sassenberg, & Griffin, 2015). Participation, has been shown to have a beneficial influence on various learn-

ing outcomes, including retention rates, learner satisfaction, and social capital (Hrastinski, 2008). GCA 

approaches participation as a necessary, but not sufficient component for characterizing the interactions 

between MOOC learners. 

Internal cohesion is a sociocognitive measure that can serve as a proxy for individual self-monitoring and 

reflection processes during peer interactions. That is, successful collaboration requires that each individual 

monitor and reflect on their own knowledge and contributions to the group (Barron, 2000; OECD, 2013); 

a behavior explained within self-regulation theory (Chan, 2012; Malmberg, Järvelä, & Järvenoja, 2017; 

Zimmerman, 2001). Consequently, during peer-learning individuals need to appropriately build on and in-

tegrate their own views with those of the group (Kreijns, Kirschner, & Jochems, 2003). Given that a par-

ticipant’s current and previous contributions should be, to some extent, semantically related to each other, 

a measure of internal cohesion can indicate the extent to which they have monitored and reflected on their 

previous discourse (i.e. self-regulation). Overly high levels of internal cohesion might suggest that a par-

ticipant is not evolving their thoughts, but rather reiterating the same static view. Conversely, low levels of 

internal cohesion might indicate that a participant has no consistent perspective to offer the conversation, 

and is echoing the views of others, or is only engaging at a surface level within discussion thread topics. 

https://paperpile.com/c/Yovp0A/qgJZb+q3piD+NDzpY+wg1tI+6RG47+GYR24+W9kDr
https://paperpile.com/c/Yovp0A/qgJZb+q3piD+NDzpY+wg1tI+6RG47+GYR24+W9kDr
https://paperpile.com/c/Yovp0A/qgJZb+q3piD+NDzpY+wg1tI+6RG47+GYR24+W9kDr
https://paperpile.com/c/Yovp0A/DW2AJ+HPbtv/?suffix=under-review,
https://paperpile.com/c/Yovp0A/DW2AJ+HPbtv/?suffix=under-review,
https://paperpile.com/c/Yovp0A/DW2AJ
https://paperpile.com/c/Yovp0A/oNb2M
https://paperpile.com/c/Yovp0A/q1CJj
https://paperpile.com/c/Yovp0A/q1CJj
https://paperpile.com/c/Yovp0A/oNb2M
https://paperpile.com/c/Yovp0A/iAKE4+6w7WF
https://paperpile.com/c/Yovp0A/MRwY1+5mzS9+NmGh5
https://paperpile.com/c/Yovp0A/MRwY1+5mzS9+NmGh5
https://paperpile.com/c/Yovp0A/ZndmN
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Learners must also monitor and build on the perspectives of their collaborative partners to achieve and 

maintain a shared understanding of the task and its solutions (Dillenbourg & Traum, 2006; Graesser, Dow-

ell, & Clewley, 2017; Hmelo-Silver & Barrows, 2008; Stahl & Rosé, 2013). In the CSCL literature this 

shared understanding has been referred to as knowledge convergence, or common ground (Clark & Bren-

nan, 1991; Roschelle & Teasley, 1995). It is achieved through communication and interaction, such as 

building a shared representation of the meaning of the goal, coordinating efforts, and viewpoints of group 

members, and mutual monitoring of progress towards the solution. Responsivity is a sociocognitive GCA 

measure, which captures monitoring and regulatory processes externalized during communication with 

peers. This measure reflects the extent to which an individual monitors and incorporates the information 

provided by the peers in their new contributions. The measure is implemented by examining the semantic 

relatedness between the individual’s current contribution and the previous contributions of their collabora-

tive partners. For example, if an individual’s contributions are, on average, only minimally related to those 

of their peers, it would the individual exhibits low responsivity. 

The GCA’s social impact measure captures the extent to which a learners’ contributions are seen as mean-

ingful, or worthy of further discussion (i.e. uptake), by their peers. Social impact is measured through the 

analysis of the semantic relatedness between the learner’s current contribution and those that follow from 

their collaborative partners. Individual messages that are more semantically related to the subsequent con-

tributions indicate a high social impact of their authors on the unfolding group discourse.  

Peer interactions provide the opportunity to expand the pool of available information, thereby enabling 

groups to reach higher quality solutions than could be reached by any one individual. However, despite the 

intuitive importance of (new) information sharing, a consistent finding from research is that groups pre-

dominantly discuss information that has been already shared (known to all participants) at the expense of 

information that has not been shared (known to a single member) (see Mesmer-Magnus & Dechurch, 2009 

for a review). The distinction between given (old) information versus new information in discourse is a 

foundational distinction in theories of discourse processing (Price, 1981). Given information includes 

words, concepts, and ideas that have already been disclosed in the discourse; new information involves 

words, concepts and ideas that have not yet been mentioned, and builds on the given information or launches 

a new thread of ideas. The GCA captures the extent to which learners provide new information, compared 

to referring to previously shared information, with a measure called newness. 

The team performance literature also advocates for concise communication between group members (Gor-

man, Cooke, & Kiekel, 2004). An example of this can be seen in formal teams, like military units, which 

typically adopt conventionalized terminology and standardized patterns of communication. It is suggested 

that this concise communication is possible when there is more common ground within the team and the 

presence of shared mental models of the task and team interaction (Klein, Feltovich, Bradshaw, & Woods, 

2005). The GCA’s communication density measure was first introduced by Gorman et al.(2003) in team 

communication analysis to measure the extent to which a team conveys information in a concise manner. 

Specifically, the rate of meaningful discourse is defined by the ratio of semantic content to number of words 

used to convey that content. 

Using this approach, we would be able to tackle topics and questions to improve collaborative IITE, in-

cluding: 

1. Characterize and quantify participants’ sociocognitive processes in IITEs. 

2. Discover learner profiles or roles based on regularities in their communication patterns. 

3. Understand how the individual sociocognitive measures and roles influence learning in IITEs. 

4. Conduct fine-grain, real-time temporal analysis and assess the degree to which learners are occu-

pying more or less productive roles. 

5. Understand how role diversity and composition influence learner performance.  

https://paperpile.com/c/Yovp0A/wq1wg+nZCAk+NDzpY+oxT3U
https://paperpile.com/c/Yovp0A/wq1wg+nZCAk+NDzpY+oxT3U
https://paperpile.com/c/Yovp0A/82Lif+AGiQS
https://paperpile.com/c/Yovp0A/82Lif+AGiQS
https://paperpile.com/c/Yovp0A/QKL7Y/?prefix=see&suffix=for%20a%20review
https://paperpile.com/c/Yovp0A/QKL7Y/?prefix=see&suffix=for%20a%20review
https://paperpile.com/c/Yovp0A/VTovC
https://paperpile.com/c/Yovp0A/ew2ad
https://paperpile.com/c/Yovp0A/ew2ad
https://paperpile.com/c/Yovp0A/ADRWy
https://paperpile.com/c/Yovp0A/ADRWy
https://paperpile.com/c/Yovp0A/Ga66L/?noauthor=1
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6. Create optimal group compositions in IITEs using multiple avatars and human learners.  

Data Structure under Consideration 

There are two ways that the sequential interactions of participant’s data can be organized. One fits the 

traditional method such that the data is organized in the form of tables or a matrix. In this case, the data are 

a collection of Lent of turn-based NL contributions from each of the N participants, n=1, ..., N are the index 

of the participants, and t=1, ...,T are the index of the total turn-based NL contributions of the participants. 

Assumption A4 where no simultaneous contributions from two or more participants indicates that only one 

none empty Lent for any given t. The data under consideration will be equivalent to a matrix of N x T, where 

elements are either a turn-based NL contribution or empty. N is the number of participants, and T is the 

number of conversation turns. In a two-dimensional data matrix5, we do not have information for the “tar-

get” of the speech.  

In order to capture all the interactions in the space, we start by use xAPI statements (ADL, 

http://adlnet.github.io/) To capture all details of the sequential interactions of participants’ data, including 

time of the contribution and the target of the speech, we use xAPI statements with four key components: 

“actor”, “verb”, “object”, and “target” with a timestamp of the natural order of the contribution of the par-

ticipants. Specifically, these four components are included in the basic information of an xAPI statement: 

● actor is a unique identifier for the participant (avatars or humans).  

● verb is a collection of speech act classifiers such as “answered”, “asked”, etc. They are a small 

subset of xAPI vocabulary (http://xapi.vocab.pub/verbs/index.html).  

● object would be the contribution of the actor, in natural language, and 

● target of the contribution, which is a subset of all participating avatars and human. 

 

In xAPI statements, a four-dimensional array can be extracted, where the first dimension (actor) has possi-

ble of N values (N learners or avatars), the second dimension (verb) has one of K possible values6(i.e., a 

speech act), the third dimension would be the contribution of the actor in NL, and the fourth dimension is 

target.  It may have up to 2N possible values7; the fifth dimension would be the timestamp. Consider that 

there are only a finite number of contributions considered in a given IITE, we assume the fifth variable is 

discrete and is used only for the index of contribution order.  An example of an xAPI statement is attached 

in the appendix. 

Individual Conversation Characteristic Curve (ICCC) 

We introduce Individual Conversation Characteristic Curve (ICCC) as mathematical model for each of the 

participants in an IITE. It can be used to compute each of the GCA measures at any given turn. ICCC for 

any of the participants is a sequence of T six-dimensional real valued vectors, where the six dimensions 

correspond to the six GCA measures.  To help the rest of the discussions, we introduce the following nota-

tions: For each of the xAPI statement, St, there are the following critical elements:  

● pt ∈{p1,...pN}, participant who made contribution at time t, 

● vt: speech act of pt , 

● lt: the NL language contribution made pt , 

                                                           

 
5 call it matrix, but entries are not numerical values. They are NL contributions. 
6 This would be the list of verbs included in the xAPI vocabulary. 
7 Consider the possible case that user self elaborates so the object would the “self”. 

http://adlnet.github.io/
http://adlnet.github.io/
http://adlnet.github.io/
http://adlnet.github.io/
http://xapi.vocab.pub/verbs/index.html
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● gt ⊆ {p1,...pN}, subset of participants that are target of pt contribution, 

● t: the timestamp of pt contribution. 

Additional values from xAPI statements at or before time t: 

● Cumulative contribution for pn is Lent =∪{li |pn=pi, i=1,...,t}.  

● Cumulative target of pn is Gn,t = ∪{gi |pn=pi, i=1,...,t}. 

● Cumulative contributions for any participant are Ut =∪{Ln,t |n=1,...,N}.  

 

For any t, the tth vectors is computed from a tth xAPI statement in the learning record store (LRS) and vectors 

are computed from earlier turns. Each of the six GCA dimensions A (Participation), B (Responsivity), C 

(Internal Cohesion), D (Social Impact), E (Newness), and F (Communication Density), all are computed 

numerically and indexed by the contribution order, t. Assume a given IITE involves N participants, 

p={p1,...pN}, each time t, one (and only one) of participants contribute Lt  addressing to a subset Tt of par-

ticipants. 

Constructing ICCC 

With the notations introduced above, we outline algorithms for computing ICCC from xAPI statements. 

We consider participant pn (n=1,...,N). Let (An,t, Bn,t, Cn,t, Dn,t, En,t, Fn,t) be the tth vector of ICCC for pn. With 

(pt , vt, lt, gt, t) in each of the LRS statements and derived values  Lent  and Gn,t at or before time t, values of 

(An,t, Bn,t, Cn,t, Dn,t, En,t, Fn,t) can be constrained, in the following qualitative fashion. Consider any partici-

pant pn at time t: 
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Table 1: GCA Measures and Computations 

Measure Description Computation 

Participa-

tion 

Mean participation of any partici-

pant above or below what you 

would expect from equal partici-

pation in a group of the size of 

theirs 

An,t increase in two cases: 

● if pn is the participant at pt, namely,  An,t≥An,(t-1), if 

pt=pn.  
● if pn is one of the target of other participant, namely 

An,t≥An,(t-1)  if pn∈gt and pt≠pn 
In addition An,t may also be a function of semantic density 

of  lt. which is also used for other GCA measures. 

Overall 

Respon-

sivity 

Measure of how responsive a 

participant’s contributions are to 

all other group members’ recent 

contributions  

 Bn,t is a function of two cases, if pn is the participant at pt, 

● the semantic overlap between lt and U(t-1), namely, 

Bn,t , is a monotonic function of semantic similarity 

between U(t-1)  and lt,  

●  gt is non-empty.  namely, Bn,t≥Bn,(t-1)  if pt=pn and 

gt ≠ 𝜙. 

Internal 

Cohesion 

How semantically similar a par-

ticipant’s contributions are with 

their own recent contributions  

Cn,t is a monotonic function of semantic similarity between 

Ln,(t-1)  and lt if pn∈gt.  Namely, Cn,t=f(S(Ln,(t-1), lt)), if  pn∈gt,  

where S is the semantic similarity measure between Ln,(t-1) 

and  lt, and f is a monotonic function. 

Social 

Impact 

Measure of how contributions in-

itiated by the corresponding par-

ticipant have triggered follow-up 

responses  

Dn,t  is related to three factors:   

● Dn,t is a monotonic function of  S(Ln,(t-1), lt) when 

pt≠pn 
● Dn,t increases if pt≠pn  and pn ∈gt. 
● Dn,t increases if Gn,(t-1) ⊂Gn,t . 

Newness 

The amount of new information a 

participant provides, on average 

 

En,t  is a monotonic decreasing function of S(Ln,(t-1), lt) if 

pt=pn. 

Commu-

nication 

Density 

The amount of semantically 

meaningful information 
Fn,t is  a value is computed as a function of semantic density 

of lt. 

To compute all GCA measures for a participant, An,t and Bn,t depend on the frequency of contributions and 

frequency of being targeted in other participant’s contributions. All six measures either partly or entirely 

depend on content of the contributions. For example, the values S(U(t-1), lt), S(Ln,(t-1), lt) used for for Bn,t Cn,t 

Dn,t En,t are the semantic similarity between Ln,(t-1) and lt. Semantic density contributes to the computation of 

An,t and Fn,t. While frequency of contribution and frequency of being targeted in other’s contributions re-

quires no further clarification, we observe that semantic analytic methods are essential for the computation 

of ICCC. We will use the next section to focus on semantic analysis. 

Semantic Representation and Analysis (SRA) 

The task of semantic analysis for computing ICCC vectors in this chapter is simple.  One needs to be able 

to represent Cumulative contribution for pn, namely, Ln,(t-1) and  pt’s current contribution lt and compute 

their semantic similarity. This task requires (1) semantic encoding of a collection of sentences in each turn 

and (2) numerically computing the similarity between any two sets of sentences. There are a number of 

methods in computational linguistics (Riordan & Jones, 2011), especially corpus linguistics developed for 

the above task. For example, the well-known Latent Semantic Analysis (LSA, Deerwester, Dumais, Furnas, 

Landauer, & Harshman, 1990; Landauer, Foltz, & Laham, 1998) represent semantics of words, sentences, 

and documents in the form of numerical vectors and semantic similarity between any two items (word, 

https://paperpile.com/c/Yovp0A/RVNcN
https://paperpile.com/c/Yovp0A/7lHZf+Bdf6O
https://paperpile.com/c/Yovp0A/7lHZf+Bdf6O
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sentence, or document) are computed as the cosine of the corresponding vectors of the two items. Similarly, 

High dimensional Analogue of Language (HAL, Burgess & Lund, 1995), Latent Dirichlet Allocation (LDA, 

Blei, Ng, & Jordan, 2002; Steyvers & Griffiths, 2007; Steyvers, Smyth, Rosen-Zvi, & Griffiths, 2004) 

achieves a similar goal but is based on a different algorithm for extracting semantic representation vectors 

and different computational algorithms for computing semantic similarity. Instead of using specific seman-

tic encoding method in computing ICCC vectors, we chose to consider a generic semantic analytic frame-

work that are applicable to most of the existing approaches. This framework is called Semantic Represen-

tation and Analysis (SRA, Hu et al., 2014). SRA is based on three basic assumptions that are critical to 

existing vector-based semantic encoding methods such as LSA, HAL, and LDA. The three assumptions 

are: 

1. Hierarchical: Semantics of different levels of a language entity may be represented differently. 

2. Algebraic: The semantics of any level of language entities must be capable of being represented 

numerically or algebraically. 

3. Computational: (The semantic representations of a higher-level language entity are computed as a 

function of semantic representations for its lower-level language entities. At the lowest level of 

language entities, a numerical semantic comparison measure must exist between any two items 

(e.g., words). 

The above three assumptions, especially the third assumption, make it possible to introduce the concept of 

Induced Semantic Structure (ISS) at the lowest level of the semantic space. Intuitively, ISS can be under-

stood as the nearest neighbor (NeNe) that researchers uses to judge appropriateness of a semantic space. 

Given a semantic space, ISS is an L x L matrix where W is the number of tokens8 in a given language. The 

element (i,j) in such a matrix will be the semantic similarity between token i and token j. The numerical 

values for each of the elements (i,j) serves several roles in addition to being elements in a Matrix. They are 

used to derive the NeNe for each of the tokens. Given any row i, the values are semantic similarities between 

token i and all other tokens. It is straightforward to create order of the numerical values of the semantic 

similarity to obtain NeNe of token i with respect to other tokens. Since the numerical values of semantic 

similarity are only used to derive the ordering in NeNe (See Table 2 as an example of NeNe). NeNe no 

longer explicitly contains detailed semantic processing details, such as vector representation and semantic 

similarity computations. With this special property, one can ask the following intuitive questions about 

similarity of any two tokens: what is the overlap between the top N NeNe of token i and j? How does the 

overlap vary when one changes the value of N? These intuitions helped Hu et al. (Hu et al., 2014) introduce 

alternative semantic similarity measurements within the SRA framework. We propose to use those 

measures of semantic similarity in computing ICCC, in particular, the combinatorial semantic similarity 

between two tokens (Landauer, Foltz, & Laham, 1998) 

 

 

 

 

 

 

 

 

 

 

 

                                                           

 
8 Also the smallest language entities in a given language. In the case of English, a typical token is a word, but could 

also be meaningful symbols. 

https://paperpile.com/c/Yovp0A/bvZuB
https://paperpile.com/c/Yovp0A/fikI7+9lvqD+VMnDr
https://paperpile.com/c/Yovp0A/xafMW
https://paperpile.com/c/Yovp0A/xafMW
https://paperpile.com/c/Yovp0A/7lHZf
https://paperpile.com/c/Yovp0A/7lHZf
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Table 2: NeNe for “life” from LSA Spaces Generated from TASA Corpus for Three Grades. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Combinatorial Semantic Similarity  

Combinatorial semantic similarity (CSS) is one of three similarity measures introduced in SRA framework 

(Hu et al., 2014). CSS between any two tokens are computed in the following steps: 

● Obtain NeNe from each of the tokens. It is possible that the NeNe are derived from two completely 

different semantic encoding algorithms.   

● Choose a large integer N (can be any positive integer).  Denote C1={x| x is in the top N NeNe of 

Token 1}, C2={x| x is in the top N NeNe of Token 2}.  

The Combinatorial semantic similarity with top-NeNe is computed as simple set operation of C1 and C2: 

and is computed as the number of tokens in the join of C1 and C2 divided by the number of tokens in the 

union of C1 and C2.  

CSS can be used to compute S(Ln,(t-1), lt)  for a participant’s Internal Cohesion and Social Impact at time t. 

With the SRA framework within the ISS, for any collection of tokens (such as a sentence), additional 

measures can be obtained. For example, Figure 1 shows NeNe of a sentence “Force is a key concept in 

Newtonian physics”. Not only does it list the NeNe, but it also has the term weights of the all the associated 

tokens. The values can be used to measure Communication Density. A simple measure would be to use the 

following algorithm: If lt contains K tokens, then the sum of the top c*K  NeNe term weights would be used 

to compute of Fn,t, namely, Fn,t is monotonically related to the term weight of top c*K NeNe, where c can 

be an integer greater than 1. 
  

https://paperpile.com/c/Yovp0A/xafMW
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Figure 1. Demonstration of SRA. The NeNe of a Sentence. The Third Column Lists the Term Weight of the 

Associated Tokens. 

Conclusions  

In this chapter, we considered basic data structure from an IITE where multiple participants contribute in a 

group discussion. We propose to use xAPI statements to capture the dynamic nature of the interaction and 

provide basic algorithms for computing individual GCA measurements for each of the participants as func-

tion of the contribution order (time). The change of GCA values from time to time characterize each indi-

vidual’s interaction with the team. Previous studies use GCA for group as post-hoc evaluation of the team 

and individuals. With the ICCC proposed in this Chapter, we are able to evaluate team and individuals in 

real time. With real time evaluation, it is possible to monitor and regulate IITE to maximize the effective-

ness of group discussion in learning/training. For computational purposes, we have also recommended a 

general semantic analytical framework for computing semantic similarity between the contributions of the 

participants.  

Earlier of this chapter, we have outlined six relevant research topics and questions for this work. To tackle 

these topics and questions we would suggest using the proposed GCA-based ICCC approach to characterize 

and quantify learners sociocognitive processes in real-time. Such information can then be fed back into the 
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IITE and provide support in cultivating learners with self-regulatory and collaborative skills. This feedback 

could be presented as the individual GCA measures or temporal cluster analysis of the GCA based ICCCs 

could be used to depict a more holistic learner engagement profiles. Both of these feedback options would 

allow learners to assess the degree to which they are occupy more or less productive roles within the con-

versation, and adjust their contributions accordingly. Further, real-time ICCC information can be used to 

create optimal group compositions and participant diversity, by altering the CA’s sociocognitive interaction 

approach through the GCA measures. 

Recommendations for Future Research 

Below we have provided a list of research and development questions for the future, especially for GIFT-

like framework for team learning environments. 

1. With ICCC, namely, GCA measurement for each individual immediately after his/her/its contribu-

tion, we may be able to ask theoretical questions that the previous application of GCA (mostly post-

hoc) could not. For example, how likely is an individual (human) sensitive to the change of their 

GCA measurements during group interaction? How effective are the GCA-based feedback contri-

butions? How can we maximize team learning with balanced GCA distributions for each individual 

participant? 

2. In this Chapter, we outline our algorithms in qualitative fashion. What are the best computational 

formulae that are consistent with the qualitative constraints? 

3. We have used SRA as generic framework for semantic similarity computation. In real applications, 

we need to either use one such as LSA or a combination of several computations. How can we 

select the best semantic engine to perform the semantic similarity computation? 

4. We have proposed to use xAPI statements to capture the dynamic group interaction in team-based 

learning environments. However, in the existing xAPI vocabulary, there are only limited verbs that 

are not covering variety of speech acts in group discussions. Should we consider a standard set of 

vocabularies for xAPI statements for group learning/training?  

5. In this chapter, we generically consider that members of IITE are participants in the conversation 

(human or avatar). In the case of intelligent tutoring systems (ITS), it is conceivable that some of 

the participants may not be a machine rather than a human. The question is how to maximize the 

role of ITS participants when they are blended with a group of human learners? 
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Appendix 

xAPI statements for actor, verb, object, context for generating ICCC.  

“actor”: { 

 "mbox": "mailto:JohnDoe@emailaccount.com", 

       "objectType": "Agent", 

      "name": "John Doe” 

}, 

“verb”: { 

“id”: “http://adlnet.gov/expapi/verbs/answered”, 

“display”: { 

“en-US”: “answered” 

} 

}, 

“object”: { 

“objectType”: “Activity”, 

“id”: “http://www.example.com/activities/discussion”, 

“definition”: { 

"extensions":{ 

"http://www.example.com/discussion": { 

"timeTaken": 675, 

"timeStart": "2018-01-16T16:18:57.581Z", 

"contribution": "Making very good sense!" 

} 

"http://www.example.com/answerto": { 

"member1": { 

"mbox": "mailto:team_member1@emailaccount.com", 

"objectType": "Agent", 

"name": "Team Member 1” 

} 

} 

"http://www.example.com/target": { 

"member1": { 

"mbox": "mailto:team_member1@emailaccount.com", 

"objectType": "Agent", 

"name": "Team Member 1” 

}, 

"member2": { 

"mbox": "mailto:team_member2@emailaccount.com", 

"objectType": "Agent", 

"name": "Team Member 2” 

} 

} 

 

} 

}, 

} 
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CHAPTER 13 ‒ SOCIO-CULTURAL APPLICATIONS 

 
Anne M. Sinatra 

US Army Research Laboratory 

Core Ideas 

The chapters in this section focus on the socio-cultural aspects of team tutoring in intelligent tutoring sys-

tems (ITSs). Team interactions are inherently social in nature. Whether teams are communicating with each 

other through typed messages, verbally, or using hand signals, communication itself is vital to being able 

to perform a team task. The amount, type of, and focus of team communications may differ based on the 

domain or tasks that are being engaged in. However, it is important for any ITS for teams to have approaches 

to deal with team communications and to account for the subtleties of social interactions that occur between 

teammates.  

While team communication is particularly difficult to deal with in real-time for ITSs, it is important to put 

considerations into place about how a team may communicate and interact with each other. Even if an ITS 

cannot semantically process the meaning of typed communication between teammates in real-time, the 

communication may be vital for them to complete their team task. Therefore, it may be important to allow 

communication to happen and for socio-cultural interactions to occur, even if it cannot be used for real-

time assessment, but instead to facilitate the task performance. As demonstrated in the chapters within this 

section, an understanding of the social interactions that occur between teammates and the change in dy-

namics when approaching a novel task can be important to assess even after the fact, and can lead to im-

provements in the way that researchers and educators structure their ITSs for teams. Since the Generalized 

Intelligent Framework for Tutoring (GIFT) is a domain-independent framework, the approaches that are 

put in place for authoring team tutors should account for and allow for varying socio-cultural interactions, 

including those discussed in the chapters in this section. Namely, the types of teammates should be flexible 

(e.g., all human, mix of human and computer-based), the types of communication should be flexible, con-

sideration should be given to how to semantically process communication, and there should be an under-

standing that team tasks may change dynamically such that the people within the team may shift tasks/re-

sponsibilities as needed. 

The chapters in this section collect a number of different issues and considerations that are important to the 

socio-cultural aspects of team tutoring. As demonstrated in the chapters in this section, while a team will 

need to communicate with each other, the composition of the types of team members may differ greatly. 

There may be teams that are comprised of humans, or a mix of human and computer-based teammates.  

Some of the issues that arise with a mix of types of teammates are the feelings that the human teammates 

have toward non-human teammates. This issue has been captured in the following chapters through the 

discussions of sentiment towards non-human teammates and through the use of trialogues. Additionally, 

based on the task that the team is engaging with, the team itself, or the demands of the task may change 

abruptly, and the team will be required to adapt accordingly in dynamic situations. Further, as social inter-

actions in a computer-based team tutoring situation are mainly based on verbal and typed communication, 

it is important to have approaches to interpret and assess this information in real-time as well as near-real 

time. All of the chapters in this section approach different aspects of team socio-cultural interactions, while 

providing suggestions and improvements on how the issues can be dealt with in an ITS for teams. 
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Individual Chapters 

The chapter by Hao, Zapata-Rivera, Graesser, Cai, Hu and Goldberg, “Towards an Intelligent Tutor for 

Teamwork: Responding to Human Sentiments” describes a collaborative problem solving activity be-

tween two individuals who work together in a simulation task and interact with virtual agents. For their 

research, they collected data from a large number of teams using Amazon Mechanical Turk and examined 

the conversations that occurred between the team members. The sentiment associated with the conversa-

tions were coded. Several causes of negative sentiment were determined, and the authors provide sugges-

tions on how to reduce negative sentiments toward virtual agents in future ITSs. The authors point out 

that team tutoring provides an opportunity for researchers to collect conversational information to deter-

mine what the individuals think of the agents that they are interacting with, and that this information can 

be leveraged to improve implementations of agents in tutors. 

 

The chapter by Gorman, D’Mello, Stevens, and Burke, “Characteristics and Mechanisms of Team Effec-

tiveness in Dynamic Environments” discusses the common team dynamics that are present in diverse dy-

namic environments. There is special emphasis put on the fact that real-world task environments can fre-

quently change and that novel situations may be encountered. The authors provide a description of effec-

tive team strategies, and how a team may adjust their communication and behaviors based on novel 

events that occur, as well as changes that may occur in team membership. Further, the characteristics of 

effective teams in dynamic environments are discussed.  

 

The chapter by Cai, Hampton, Graesser, Hu, Cockroft, Shaffer, and Dorneich, “Roles of Talking 

Agents in Online Collaborative Learning Environments” discusses the benefits of including conversa-

tional agents within collaborative learning environments. The authors provide examples and summaries of 

different types of environments and talking agents that have been created and used with ITSs through the 

years. The benefits of using these agents in ITSs are discussed, and recommendations are provided on 

how they could be implemented in GIFT.  

 

The chapter by Foltz, “Automating the Assessment of Team Collaboration through Communication Anal-

ysis” discusses approaches that have been used for analyzing team communication that happens during 

team tasks. A communication analysis pipeline is described, and the process of speech recognition and 

content modeling is explained. The book chapter describes the different domains that the approaches have 

been used in, and how it can be leveraged to predict performance. The chapter discusses the benefits of 

having near-real time analysis and modeling of communication in teams.  
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CHAPTER 14 – TOWARDS AN INTELLIGENT TUTOR FOR 

TEAMWORK:   RESPONDING TO HUMAN SENTIMENTS 
Jiangang Hao1, Diego Zapata-Rivera1, Arthur C. Graesser2, Zhiqiang Cai2, Xiangen Hu2, &  

Benjamin Goldberg3  

Educational Testing Service1, University of Memphis2, U.S. Army Research Laboratory3 

Introduction 

An intelligent agent can play a significant role in interactive learning, assessment, and teamwork (Bay-

lor, 2011; Johnson, Phillips, & Chase, 2009; Chou, Chan, & Lin, 2003; Johnson & Lester, 2016; Kumar, 

Ai, Beuth, & Rosé, 2010; Moreno, Mayer, Spires & Lester., 2001; Schroeder, Adesope, & Gilbert, 

2013). Like Barrón-Estrade, Zatarain-Cabada, Oramas-Bustillos and González-Hernández (2017) and 

Louwerse, Graesser, Lu, and Mitchell(2005), we believe that a good intelligent agent system should not 

only provide reasonable content responses to humans but also appropriately react to human opinions 

(e.g., sentiments, attitudes) about the virtual agent’s responses. Therefore, we think that measuring and 

using human opinions, particularly negative ones, about the virtual agent’s responses in real time can 

play an important role in developing a better responding mechanism. 

 

It is challenging to obtain human opinions about the virtual agents in real time for the intelligent tutor-

ing system (ITS) with a single human participant. Post-task surveys are generally used to evaluate how 

satisfied humans are with the virtual agents at the end of the task. Think-aloud protocols are used to 

probe how humans interact with the virtual agent in real time. However, the post-task survey approach 

cannot capture real-time opinions of humans toward the virtual agents, whereas the concurrent think-

aloud approach is often too intrusive and may get in the way of eliciting the real opinions from the hu-

man participants. As such, there is not much opportunity to capture the evidence of human opinions 

against the virtual agent in real time. 

 

However, when we extend the ITS to support multiple human participants, e.g., team work, it be-

comes possible to capture human participants’ opinions towards the virtual agents in real time be-

cause these opinions may be embedded in the communications among the human participants. Un-

derstanding what causes negative sentiments and what causes positive sentiments against the virtual 

agents allows researchers to improve their design of how the virtual agents should interact with the 

team members. 
 
In this chapter, we show how we measured human opinions about a virtual agent’s responses in real 

time and explored the possible causes within a problem-solving task. We then identified agent-created 

situations that are likely to induce negative sentiments and developed a virtual agent responding mecha-

nism in order to achieve a better ITS for teamwork. In our collaborative problem-solving task, two hu-

mans collaborate via text chat to work on a simulation task about volcano science, in which they inter-

act with two conversational virtual agents (Hao, Liu, von Davier & Kyllonen, 2015; Liu, Hao, von Da-

vier, Kyllonen, & Zapata-Rivera, 2015). We chose this task as an illustration of our exploratory work 

because the human-human conversations contain rich information that can be mined regarding their sen-

timents toward the virtual agents.   

METHODS 

Simulation Task  
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The simulation task used in this study is part of the ETS Collaborative Science Assessment Prototype 

(ECSAP, Hao, Liu, von Davier, & Kyllonen, 2017b) and has been modified from a single-user simula-

tion, the Volcano Trialogue. The Volcano Trialogue simulation was implemented using authoring tools 

such as conversation-space diagrams (Zapata-Rivera, Jackson, & Katz, 2015) and a version of the Au-

toTutor Script Authoring Tool (Cai, Graesser, & Hu, 2015) that focuses on assessment, called ASATA. 

In the Volcano Trialogue simulation, a human participant interacts with two virtual agents (see 

Graesser, Li, & Forsyth, 2014), one as a peer student (Art) and another as a professor (Dr. Garcia), to 

complete a task on volcano science (Zapata-Rivera et al., 2014). In the collaborative version of the sim-

ulation, Tetralogue (Hao et al., 2015; Liu et al., 2015), there is one additional human participant being 

added to the task. The two human participants collaborate (via text-mediated chats) with each other to 

interact with the two virtual agents to complete the volcano science task. We show a screenshot of the 

Tetralogue simulation in Figure 1. 

 

 
Figure 1. Tetralogue Simulation 

All of the turn-by-turn conversations and timestamped responses to the questions were recorded in a 

carefully designed log file (Hao, Smith, Mislevy, von Davier & Bauer, 2016). The conversations were 

used to measure collaborative problem solving (CPS) skills (Liu et al., 2015), while the responses to the 

in-simulation science items were used to measure science inquiry skills. Among the conversational 

turns between the human participants, there are many that express their opinions towards the virtual 

agents. These opinion-bearing communication acts provide an opportunity for us to understand what 

opinions human display under what circumstance. The general procedure to leverage this is straightfor-

ward. We first develop an automated sentiment detector that can detect the sentiments among the hu-

man conversations related to the virtual agents. Then we identify the situations that cause negative sen-

timents towards the virtual agents. Based on this, we can develop a responding mechanism that specifies 

how the virtual agent should react to particular situations in order to maintain an appropriate environ-

ment for productive collaboration. 

 

 

Data Collection and Annotation 

 

We collected data from 483 dyadic teams recruited from Amazon Mechanical Turk. Among them, we 

found that 227 teams explicitly mentioned the names of the virtual agents (Art or Dr. Garcia) in their 

conversations. A statement can be also classified into either a factual or opinion statement. For opinion 
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statements, there are two key components, the target and sentiment (Liu, 2012). Since our interest is in 

the human opinion toward the virtual agents, the proxies of the opinion targets of interest should be the 

names of the virtual agents. Sentiment is defined as the underlying feeling, attitude, evaluation, or emo-

tion associated with an opinion. It is represented as a triple (y, o, i), where y is the type of the sentiment, 

o is the orientation of the sentiment and i is the intensity of the sentiment (Liu, 2012). The orientation 

and intensity of sentiment can theoretically be on different scales. In our work, we consider the simple 

scale such as positive (+1), negative (-1) and neutral (0). 

 

 
Figure 2. The left panel shows the overall distribution of the sentiment per each turn of conversations. The 

negative (-1), neutral (0) and positive (1) sentiments are denoted in different colors. The right panel shows the 

distribution of the total sentiment observations of each team.  

 

Two human coders assigned sentiments to a total of 428 turns of conversations that contain the virtual 

agent’s names, and achieved an agreement of 0.83 when we computed Cohen’s unweighted Kappa. 

Each team could have several turns of conversations and each of them has an assigned sentiment, so we 

computed a team sentiment score as the sum of the sentiments of each turn of the conversations in a 

given team. In Figure 2, the left panel shows the distribution of the sentiment scores from all conversa-

tions of all teams. The right panel shows the distribution of team sentiment scores.  It is apparent that 

the majority of the teams show a neutral team sentiment (0) but there are more teams showing negative 

(-1) than positive (+1) sentiments. To give readers a sense about these sentiment-bearing conversations, 

we listed some typical conversations from three teams in the Table 1. 
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Table 1. Some typical conversations belong to different sentiment categories. We highlighted the virtual 

agents’ names in red color. The A and B denote the two team members.  

 

Team ID Conversations Sentiment 

tetralogue1485_tetralogue1403 

A: mine i don't know what this Art guy is looking at.        negative 

B: and Art is creepy.  negative 

A: Because Art is a thief and a fool.                       negative 

A: yes so this Art guy obviously slept through his degree.  negative 

A: ok let's say yes but if Art tricks us I swear....       negative 

tetralogue2032_tetralogue1358 

A: Yes Art, you are smarter than me.  positive 

A: Maybe we can respond by asking Art about the rest of the dates?    neutral 

B: oh Art!  neutral 

A: Yes, Art.  positive 

A: This is all Art.  neutral 

A: I don't agree with Art.   neutral 

tetralogue1507_tetralogue1457 

A: Hello Dr. Garcia.  neutral 

B: oops, Art's notes says his notes are for seismometers 1,2,3. 

Whereas mine only indicates seismometer 1.  

neutral 

B: I would keep keep Art's note.  neutral 

B: I agree with Art.  neutral 

A: let's agree with Art. neutral 

 

Potential Causes of the Negative Sentiments 

The team sentiment that we defined in the previous paragraph provides a convenient way for us to iden-

tify those teams that show strong negative sentiments. This will further allow us to examine the corre-

sponding behaviors and responses of the virtual agents in those teams, based on which we can identify 

and classify the potential causes of the negative sentiments. In Table 2, we listed the major causes of 

some typical negative sentiments from teams in which team sentiments were -2 or lower (18 teams out 

of 66). The main causes for negative statements were multifaceted. The first could be attributed to using 

text from the user’s note on Art’s note (19%). The version of the system for this study used text from 

one of the user’s notes to create a note for Art that used a different number of seismometers; this gave 

the user an opportunity to compare the quality of two similar notes.  However, some users did not like 

seeing similar text in Art’s note. A second main cause could be attributed to lacking trust in the virtual 

agents’ capabilities (human vs. machine) (24%); some users did not trust the virtual agent’s capabilities 

to “do” the assigned work because they were merely virtual agents. A third cause is attributed to the vir-

tual agents’ appearance (17%); although virtual agents for this version of the system were adult charac-

ters (see Figure 1), some users did not like the appearance of the virtual agents. A fourth was a combi-

nation of causes a-c (12%). A fifth was attributed to default responses to “Other” statements (6%); when 

the system does not know how to respond to a particular statement, the statement is classified as 

“Other”; some users did not like the default response to “Other” statements. 
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Table 2. Distribution of major causes of negative sentiments for teams with total negative statements of -2 or 

less. 

 

Cause Count Proportion 

Using user text on Art's note 19 41% 

Lack of trust in virtual agents’ capabilities (Human vs. Ma-

chine) 

11 24% 

Virtual agents’ appearance 8 17% 

Combination of 2 or 3 of the above 6 12% 

Default response to 'Other' 2 6% 

 

A similar distribution was observed for teams whose total negative sentiments was -1 (48 teams out of 

66; see Table 3). The main causes for negative statements were (a) using text from the user’s note on 

Art’s note (19%), (b) statements demonstrating lack of trust in virtual agents’ capabilities (44%), and 

(c) virtual agents’ appearance (17%). 

 

 
Table 3. Distribution of major causes of negative sentiments for teams with total negative statements of -1. 

 

Cause Count Proportion 

Using user text on Art's note 9 19% 

Lack of trust in virtual agents’ capabilities (Human vs. Ma-

chine) 

21 44% 

Virtual agents’ appearance 8 17% 

Default response to 'Other' 4 8% 

Other cases 3 6% 

Technical issue 3 6% 

 

 

 

Response Mechanism 

 

In most ITS for individual learners, the virtual agent’s response mechanism primarily focuses on 

providing useful content information to the human participants. However, when we extend the ITS to 

teamwork, we will have the additional opportunity to detect human participants’ sentiments towards the 

virtual agents.  Based on this information, we should expand the traditional virtual agent response 

mechanism by including appropriate responses to mitigate the negative sentiments. In general, partici-

pants should be informed about the capabilities of the system in order to avoid unreasonable expecta-

tions at the beginning of the task. Then, in the process, the ITS should implement a detector to identify 

negative sentiments and a classifier to classify the detected negative sentiments. Based on the classifica-

tion, some scripts can be designed to mitigate the escalation of these situations. In Table 2 and 3, we 

listed some causes of the negative sentiments. However, some of the causes, such as the “Using user 

text on Art's note” are task specific and can be fixed by revising the task design. But some causes, such 

as “Lack of trust in virtual agents’ capabilities” could be pretty generic across a wide range of tasks and 

cannot be easily removed by redesigning the task. In Table 4, we listed some sample responses from the 

virtual agent after detecting certain categories of causes of negative sentiments that are generic across 

different tasks. 
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Table 4. Sample responses from the virtual agent after detecting a negative sentiment category 

Cause Sample responses to mitigate the negative sentiments 

Lack of trust in virtual 

agents’ capabilities (Hu-

man vs. Machine) 

Virtual agent: Although I am a virtual character, I have been pro-

grammed by experts to help you through this task. 

 

Virtual agent: I have been helping many students on this topic for a long 

time. 

 

Virtual agent: I may have misunderstood what you said, could you 

please provide more information about it? 

 

Virtual agents’ appear-

ance 

Virtual agent: Don’t judge a book by its cover. 

 

Virtual agent: My appearance may have surprised you but I am perfectly 

capable of helping you. 

 

Virtual agent: Moving on to important matters... 

 

 

Discussion 

Sentiment analysis can provide useful information on how users perceive the virtual agents. This infor-

mation can be used to improve the appearance of virtual agents as well as their interactions with users. 

Such information has already guided us to change the task design of our simulation-based tasks and 

these changes have contributed to a positive user experience. For example, regarding the users’ percep-

tions of virtual agents, we are exploring how the virtual peer’s prior knowledge on the topic of the sim-

ulation (High vs. Low) and type of question (Compare alternatives vs. Agree/disagree with the peer’s 

conclusion) influence the quality of evidence collected (Sparks, Andrews, Zapata-Rivera, Lehman, & 

James, 2016) and the types of emotions users experience in these types of assessment systems (Lehman 

& Zapata-Rivera, 2017). 

 

The current study described a general scheme to leverage the sentiment information from an ITS for 

teamwork and identified two important types of potential causes for negative sentiments based on our 

Tetralogue simulation.  These two types of causes correspond to the situations where humans made 

comments questioning the capabilities of the virtual agents (human vs. machine) and the situations 

where humans overreacted to the appearance of the virtual agents. More research on how to properly 

react to these situations will be important for improving the user experience of ITSs for teamwork. 

Moreover, these teamwork-centered improvements using agents need to be incorporated in an ITS 

framework such as the Generalized Intelligent Framework for Tutoring (GIFT, Sottilare, Brawner, 

Goldberg, & Holden, 2012). 

Conclusions and Recommendations for Future Research 

In this chapter, we illustrated how human opinions about a virtual agent’s responses can be measured in 

a teamwork task and used to improve the responding mechanism of ITS for teamwork. Incorporating a 

teamwork-centered layer to the GIFT architecture could provide an opportunity to make adjustments 

based on data captured in real time. Because GIFT routinely incorporates production rules to respond to 

a variety of learner knowledge states and history of activities in the learning record store, it is feasible 

that this teamwork-centered component could therefore be readily migrated into GIFT. Nonetheless, it 
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does introduce a possible complication, namely tracking multiple team members and learners instead of 

one at a time. 

 

 
Figure 3. Intelligent Facilitator for teamwork based on the EPCAL platform.  

Generally speaking, developing an ITS for teamwork is much more challenging than developing an ITS 

for individual learners because the system will need to respond to each team member individually as 

well as the interactions among the team members. However, if we reduce the role of the virtual agent 

from a tutor to a facilitator, e.g., an intelligent facilitator (Hao, Chen, Flor, Liu, & von Davier, 2017a; 

Hao et al., 2017c), the system becomes more feasible. Based on a comprehensive literature review of 

facilitation mechanism of teamwork (Hebert & Zapata-Rivera, 2018), we are implementing an intelli-

gent facilitation system (IFS) based on the ETS Platform for Collaborative Assessment and Learning 

(EPCAL, Hao et al., 2017c). The EPCAL platform features a modularized design with full capability to 

manage team formation, task progress, and receive external feedback. Figure 3 shows a screenshot of 

the user interface of EPCAL. Empirical data will help us to understand the actual challenge of interact-

ing with teams and pave the road toward an IFS for teamwork.  
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CHAPTER 15 – CHARACTERISTICS AND MECHANISMS OF TEAM 

EFFECTIVENESS IN DYNAMIC ENVIRONMENTS  
Jamie C. Gorman1, Sidney K. D’Mello2, Ronald H. Stevens3,4 & C. Shawn Burke5 

Georgia Institute of Technology1, University of Colorado-Boulder2, University of California-Los Angeles3, The 

Learning Chameleon, Inc.4, University of Central Florida5 

Introduction 

How teams achieve and maintain effectiveness in uncertain and unpredictable environments is a central 

issue in team research. Real-world task environments are dynamic, such that even a highly trained team can 

encounter novel situations for which they have not been trained. Nevertheless, effective teams should be 

able to match their dynamics to those of the task environment. Following Thelen (2000), we identify four 

characteristics of effective team dynamics that are expressed through team variations and adaptations as a 

team functions in a dynamic environment. Next, we explore the underpinnings of effective team dynamics 

in terms of basic mechanisms and processes, including: (1) distributed cognition and multisensory percep-

tion, (2) team neurodynamics, (3) interpersonal processes and team coordination dynamics, and (4) team 

member knowledge, skills, and attitudes. Implications for assessment and training using team intelligent 

tutoring systems (team ITSs; Sottilare et al., 2017) are considered. 

 

Teams as Dynamic Entities 

 
Teams, defined as two or more people who work interdependently toward a common goal (Salas, Dickin-

son, Converse, & Tannenbaum, 1992), can be viewed as inherently dynamic entities. For example, a bas-

ketball team has an identity that is preserved under changes in team membership, changes in team roles, 

changes in team leadership, and is (ideally) robust to changes in rules, styles of play, and other changing 

conditions of its surrounding environment. Viewed as dynamical entities, there are different variations and 

adaptations that allow a team to remain effective (Gorman, Grimm, & Dunbar, in press). These include 

processes such as leadership emergence, team member turnover, and dynamic role restructuring. Although 

these processes, for example, leadership emergence, have typically been studied in terms of individual traits 

and abilities (e.g., cognitive ability and personality traits; Kickul & Neuman, 2000; Luria & Berson, 2013), 

we suggest that they should be viewed dynamically, as a real-time response to the changing demands put 

on a team by its surrounding environment. That is, in a teleological sense, a team has a function or goal that 

can only be reached through real-time variations and adaptations such as those already mentioned. In this 

light, what is team effectiveness, and how should it be trained? What are the underlying mechanisms and 

processes that allow teams to maintain their effectiveness in dynamic, uncertain environments? 

 

Characteristics of Effective Teams 

 
Assuming teams are dynamic entities, what are the general characteristics of effective teams? We extend 

Thelen’s (2000) propositions for what it means to be skilled to the context of maintaining team effectiveness 

(Gorman et al., in press): 

 

Four General Characteristics of Team Effectiveness in Dynamic Environments: 

 

1. Effective teams are adept at assessing the current situation and noticing the relevant stimuli in the 

physical and social environment for accomplishing the shared goal. 
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2. Effective teams are adept at behaving in similar, but not identical ways, in choosing an action that 

fits the current situation. This requires a flexible and generative response to the changing environ-

ment, perhaps similar to, but not identical with, responses used in the past. 

 

3. Effective teams have consistent behavior in similar (routine) situations but are good at changing 

their actions rapidly and appropriately as the situation requires (i.e., in novel, non-routine situa-

tions). 

 

4. Effective teams have a repertoire of adaptations (the sources of variation and adaptation mentioned 

earlier) through which Characteristics 1-3 are expressed. 

 

These characteristics suggest that for sources of team variation and adaptation to be successful, they must 

account for changing task demands. In the following sections, we highlight several sources of variation and 

adaptation through which teams coordinate their behaviors to achieve their common goals. These can also 

be thought of as processes or mechanisms that are critical to our understanding of how to train and assess 

team effectiveness in dynamic environments using team ITSs. 

 

Processes and Mechanisms through which Teams Maintain Effectiveness 

The distinction between process and mechanism can be debated. In this chapter, we distinguish between 

dynamic processes through which teams vary their behaviors and the underlying mechanisms that cause 

those processes. For example, the process through which different teams evolve different customary ways 

of referring to the same task-relevant concepts—lexical entrainment (Brennan, 1996)—can be associated 

with a mechanism (long-memory; Gorman, Dunbar, Grimm, & Gipson, 2017). We argue this distinction is 

important because, in many cases, mechanisms must be trained and their resulting processes must be as-

sessed. 

 

(1) Distributed Cognition and Multisensory Perception 

Distributed cognition pertains to cognition that extends beyond the individual to collections of interacting 

individuals and their environment. For example, in the classic case of flight navigation (Hutchins, 1995), 

the pilot and co-pilot share a mental representation constructed from the instrument panels and visual cues 

in their immediate environments. They also coordinate actions, which are reflected in changes in the envi-

ronment itself, leading to an updated shared mental representation, and so on. Thus, the pilot, co-pilot, and 

the environment form a distributed system, which compensates for the limitations of the individual compo-

nents (Giere & Moffatt, 2003). Distributed cognition is distinct from traditional cognition in that the unit 

of analysis is a system not an individual. It is also different from collective cognition by virtue of its inherent 

inclusion of the environment as part of the distributed system (Giere, 2007). 

 

Distributed cognition is multifaceted and multisensory in complex environments. It extends beyond cold 

cognition into the realm of emotion. Considerable research has indicated that emotions play a critical role 

in modulating cognitive processes within an individual (Clore & Huntsinger, 2007). Similar effects are 

expected to occur across interacting individuals, the most well-known example being mood contagion 

(Barsade, 2002). Distributed cognition is also fundamentally social in nature, implicating multimodal inter-

personal coordination processes, such as linguistic coordination (Fusaroli & Tylén, 2012), mood contagion 

(Barsade, 2002), joint attention (Richardson, Dale, & Kirkham, 2007), and physiological synchronization 

(Konvalinka et al., 2011). 

 

Thus, distributed cognition is an umbrella term for socio-cognitive-affective processes that are multimodal, 

interact over multiple spatial and temporal scales, and are embedded in a constantly-changing environment. 
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How can interacting individuals cope with this level of complexity? By working as a team, of course. Spe-

cifically, by self-organizing into interpersonal synergies (Dale, Fusaroli, Duran, & Richardson, 2013; 

Fusaroli, Rączaszek-Leonardi, & Tylén, 2014), interacting individuals can function as a single unit, reduc-

ing the number of degrees of freedom (dimensional compression) and allowing individual components to 

react to changes in others (reciprocal compensation) (Riley, Richardson, Shockley, & Ramenzoni, 2011). 

Hence, dimensional compression and reciprocal compensation can be thought of as mechanisms of change 

through which individuals gel into a cohesive, effective team. 

 
(2) Team Neurodynamics 

Before teams physically organize themselves, they mentally organize themselves by matching within and 

across-brain efforts to task and inter-personnel demands. Effective teams balance these momentary rela-

tionships until the environment becomes uncertain, when they must reorganize their thinking, roles, and 

configurations into more appropriate corrective structures. The neurodynamic processes associated with 

these re-organizations are poorly understood. 

 

One approach for understanding the neurodynamic organizations that occur during team uncertainty begins 

with capturing and modeling the electroencephalographic (EEG) signals of team members during required 

training (Stevens, Galloway, Wang, Berka et al, 2012; Stevens, Gorman, Amazeen, Likens & Galloway, 

2013). EEG is the recording of electrical activity of the brain at different regions along the scalp. The 

rhythmic patterns in the electrical oscillations from different brain regions contain signals representing 

complex facets of brain activity that can be modeled at both the individual and team level by constructing 

symbolic temporal and spatial neurodynamic histories of team performance (Stevens & Galloway, 2017). 

 

These models have shown the tendency of team members to enter into prolonged (up to minutes) metastable 

neurodynamic relationships with each other as they encounter and resolve disturbances to their rhythms. 

As data from submarine navigation and healthcare teams have accumulated, a trend has emerged showing 

that less experienced teams have larger and more persistent neurodynamic organizations than more experi-

enced teams (Stevens, Galloway, Lamb, Steed & Lamb, 2017). 

 

In other words, when seeking new or different ways to balance the demands of the changing environment, 

teams adopt a more organized configuration, neurodynamically speaking, but when these challenges and 

uncertainties are resolved, teams, and especially efficient teams, return to a less structured neurodynamic 

organization. The length of these neurodynamic fluctuations can be seconds or much longer depending on 

the nature of the uncertainty, the experience of the team, and the amount of new information that has to be 

acquired, synthesized, and exchanged before the team can return to an efficient operating mode. 

 

More recently, research has shown that the neurodynamic organizational modeling can be extended to in-

dividual team members, which enables direct quantitative comparison of the organizational contributions 

of each team member to the overall team neurodynamic organization (Stevens & Galloway, 2017). To the 

extent that increased neurodynamic organization of individuals occurs during periods of uncertainty, stress, 

and moments of increased attention (Stevens, Galloway, Halpin, & Willemsen-Dunlap, 2016), the individ-

ual neurodynamics may identify opportunities to insert scaffolding or feedback triggers for individual team 

members, or the team as a whole. 

 

 

(3) Interpersonal Processes and Team Coordination Dynamics 

Compelling team members to interact in novel ways (rather than in a rote, fixed manner) exercises the 

interpersonal coordination processes teams need in order to maintain effectiveness in dynamic environ-
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ments (Gorman, 2014). This idea has been demonstrated by mixing team member affiliations while main-

taining team member roles (Gorman, Amazeen, & Cooke, 2010) and through “perturbation training”, which 

forces teams to organize new solutions to coordination problems (Gorman, Cooke, & Amazeen, 2010). 

These intervention and training approaches are based on the principle that team effectiveness happens dur-

ing the process of team interaction and is not inherent in static properties or traits of team members. In 

terms of assessment, the flexibility and stability of team interaction (e.g., communication) patterns provide 

measures that are correlated with the characteristics of team effectiveness described earlier. For instance, 

more flexible team coordination dynamics are correlated with overcoming more team situation awareness 

“roadblocks”, which are novel events that interfere with achieving a shared goal unless properly acted upon 

(Gorman et al., 2010a). Team mixing and perturbation training are two mechanisms that lead to flexible 

team coordination dynamics. 

 

Long-term memory is a component of peoples’ information processing architecture, in which knowledge 

persists on longer timescales than the information currently being processed in short-term, or working, 

memory. Parallel to these memory concepts, long-memory (Beran, 1994) is a mechanism through which 

teams hold persistent communication and coordination patterns on longer timescales than the information 

currently being processed by the team (Gorman et al., 2017). The significance of long-memory is that it 

provides a mechanism through which team variations and adaptations are consolidated into the history of a 

team. In this way, more permanent features of team interaction are conserved as new team members come 

and go, team member roles change, and environmental conditions change, all the while informing the on-

going coordination processes of this dynamic entity known as a team. Long-memory effects can be ob-

served as the presence of power-law scaling of team communication, and other interaction patterns, wherein 

correlations between communication or interaction events persist over relatively long timescales of task 

performance (e.g., days; Gorman, 2005; or hours; Gorman et al., 2017). 

 
(4) Knowledge, Skills, and Attitudes 

In addition to the above lines of work, much work has been conducted to uncover the knowledge, skills, 

and attitudes that facilitate team interaction processes. In doing so, research has noted the dynamic, cyclical 

nature of team interaction and argued that in working towards a goal/objective, teams progress through a 

series of performance episodes (i.e., temporal cycles of goal-directed activity, see Marks, Mathieu, & Zac-

caro, 2001). Within these performance episodes, team members oscillate between action phases (i.e., peri-

ods of time when members are directly engaged in behaviors that support task accomplishment) and tran-

sition phases (i.e., periods of time when teams focus on planning/evaluation activities to guide goal accom-

plishment, Marks et al., 2001). In terms of the behaviors that comprise each of these phases, meta-analytic 

evidence has shown monitoring progress towards goals, systems monitoring, team monitoring/backup be-

havior, and coordination as being important within action phases (LePine, Piccolo, Jackson, Mathieu, & 

Saul, 2008). In contrast, behaviors such as mission analysis and planning, goal specification, and strategy 

formulation have been found to occur during transition phases and are related to effective team performance 

(LePine et al., 2008). 

 

Complementing the above work, is work by Salas, Shuffler, Thayer, Bedwell, and Lazzara (2015) who 

developed a heuristic that can be utilized to understand the factors that should be considered when selecting, 

developing, and maintaining teams. This heuristic describes six core processes and states that serve to fa-

cilitate teamwork. In line with the work mentioned above, Salas et al. note the importance of behaviors such 

as coordination and communication. In addition to this, they highlight coaching as being a fundamental 

team process. In this vein, coaching refers to the “enactment of leadership behaviors to establish goals and 

set direction that leads to the successful accomplishment of these goals” (Salas et al., 2015, p. 603). The 

importance of team leadership has also been supported through meta-analytic work (e.g., Burke, Stagl, 

Klein, Goodwin, Salas, & Halpin, 2006; D’Innocenzo, Mathieu, & Kukenberger, 2016; Wang, Waldman, 
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& Zhang, 2013). The developed heuristic also highlights the importance of emergent states (e.g., coopera-

tion, conflict, cognition). Emergent states have been defined as, “properties of the team that are typically 

dynamic in nature and vary as a function of team context, inputs, processes, and outcomes” (Marks et al., 

2001, p. 357). Emergent states are primarily cognitive and attitudinal in nature. Cognitive states that have 

been supported as being important to team effectiveness include shared mental models and transactive 

memory systems. The specific elements of shared cognition which have been shown to be important include 

knowledge of member roles and responsibilities, team mission objectives and norms, and who has what 

knowledge, skills, and abilities on the team (Salas et al., 2015; DeChurch & Mesmer-Magnus, 2010; Lewis, 

2004). Shared cognition has often been argued to be a primary coordination mechanism, especially with 

respect to implicit coordination within teams. 

 

In addition to shared cognition, empirical work has also shown several attitudinal states to be important for 

team effectiveness (e.g., collective efficacy, trust, cohesion, psychological safety). Collective efficacy, or 

belief in the team’s ability to accomplish a given task, has been shown to be related to team effort, increased 

team performance, and team satisfaction (Stajkovic, Lee, & Nyberg, 2009; Gully, Incalcaterra,  Joshi, & 

Beaubien, 2002). Trust has been found to be related to information sharing in teams and increased team 

performance (DeJong, Dirks, & Gillespie, 2016; Lee, Gillespie, Mann, & Wearing, 2010). Related to trust, 

psychological safety (i.e., “shared belief that the team is safe for interpersonal risk taking”, Edmondson, 

1999, p. 354) has been shown to facilitate team performance through its facilitation of learning behaviors 

(Edmondson, 1999). Finally, several meta-analytic efforts have shown the relationship between cohesion 

(i.e., attraction/bonding to the group) and team performance (e.g., Mathieu, Kukenberger, D’Innocenzo, & 

Reilly, 2015; Beal, Cohen, Burke, & McLendon, 2003). While the above states do not reflect all the attitu-

dinal states that have been shown to be related to team effectiveness, they reflect many of those most com-

monly examined. Attitudinal states have been argued to be the “motivational drivers of teamwork” (see 

Salas et al., 2015, p. 603). 

Conclusions and Recommendations for FUTURE research 

We have offered a view of teams as dynamic entities, or systems, along with several defining characteristics 

of effective teams from this perspective. Distinguishing between mechanism and process allows one to 

focus on what needs to be trained and what needs to be assessed in order to enhance team effectiveness in 

dynamic environments. But how do mechanisms and processes at the dynamic team level, and their training 

and assessments, fit with team ITSs and the Generalized Intelligent Framework for Tutoring (GIFT)? 

Distributed cognition and team coordination dynamics suggest novel mechanisms for enhancing team ef-

fectiveness (e.g., compression/reciprocal compensation; perturbation training) that could feasibly be intro-

duced in a team ITS environment. However, the specifics of how to introduce them into team ITS and, 

moreover, how to assess their effects is an underdeveloped area of research. In the case of team neurody-

namics, individual contributions of team members to team dynamics and scaffolding and feedback based 

on this information presents a similar challenge. Even in the case of knowledge, skills, and attitudes, where 

much more is known about training team effectiveness, the assessments that go along with the implied team 

dynamics (e.g., temporal cycles of goal-directed activity) are underdeveloped. Thus, we think that research 

aimed at understanding how to implement training of dynamic team mechanisms and better assessment of 

dynamic team processes are critical areas for future research on team ITSs. 

GIFT seems ideal for training mechanisms and behaviors at the individual level. However, to implement 

some of the training, assessments, mechanisms, and processes described in this chapter might require revi-

sions of GIFT or development of new GIFT modules. In particular, the assessment of socio-cognitive-

affective processes in distributed cognition, individual contribution to team neurodynamics, and the flexi-

bility of team coordination dynamics might require a real-time analysis engine in order to understand the 
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effects of training interventions on these processes. Moreover, as described in the team neurodynamics 

section, real-time assessments at times of stress or uncertainty would provide the opportunity to introduce 

timely perturbations or feedback tailored to a team’s ongoing performance and development. Hence, an-

other area for future research and development is real-time analysis methods that would allow for training 

interventions and assessments at the dynamic team level. 

In the section on knowledge, skills, and attitudes, we noted recent research showing the importance of 

coaching for enhancing team effectiveness. We suggest that the role of coach might be an appropriate met-

aphor for team ITSs for training effective teams. As a coach, we might imagine team ITSs guiding team 

members through training scenarios, where the ITS operationalizes the mechanisms described in this chap-

ter, inserts them into the scenario in real time, assesses the team, and provides feedback/guidance based on 

this information. If the team does not respond effectively to a scenario through appropriate team variation 

and adaptation, then remediation could include feedback on how the team members interacted or guidance 

on understanding how to change their team dynamics. To realize this vision, however, we need to better 

understand how teams as dynamic entities can be incorporated into the team ITS framework. 
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Introduction 

Collaborative learning is a process that involves a group of people working together on a shared learning 

goal. Traditional classroom collaborative learning requires learners to be at the same location. With internet 

support, team members can now collaborate online. Many online tutoring systems have been developed to 

allow learners to participate in group collaborations from distant locations. Collaborators bring different 

ideas and experiences to the group, working online to construct answers to questions and solutions to prob-

lems. Talking is an important feature in collaboration. As Golub (1988) pointed out, it is in the talking that 

much of the learning occurs. Online collaborative learning environments can easily provide utilities for 

collaborators to talk through chat or messaging interfaces. 

Group members in online collaborative learning environments are not necessarily all human. Instead, some 

can be intelligent computer agents. An intelligent computer agent is a software robot that performs tasks a 

human user may do on computers. Such agents have “brains” that can find answers to questions or solutions 

to problems. In addition, they could talk through avatars that can deliver speeches, gesture, and convey 

emotions. Such talking agents may play different roles, such as a tutor who helps an online student learn 

specific concepts, a peer student who provides alternative perspectives, a teacher who guides a team through 

a complete learning path, a facilitator who maintains healthy social interaction among team members, etc. 

The role a talking agent plays is usually specified by the types of tasks the agent takes, the manner in which 

the agent perform the tasks, and the protocols that determine how the agent interacts with other collabora-

tors. In this chapter, we present a subset of talking agents we have created in the last decade in intelligent 

tutoring systems. We describe their roles, how they are specified, and how they are authored. We conclude 

with suggestions about standardization and integration of role-based talking agents in the Generalized In-

telligent Framework for Tutoring (GIFT). 

Talking Agents in Intelligent Tutoring Systems  

Single Tutor Agent in the Early AutoTutor Systems 

The first AutoTutor system was developed in the late 1990s (Graesser, Wiemer-Hastings, Wiemer-

Hastings, & Kreuz, 1999). The system was designed to help learners taking an introductory course in com-

puter literacy. It presents a set of problems on the fundamentals of computer hardware, operating systems, 

and the Internet. A single tutor agent and a human learner collaboratively construct solutions to each prob-

lem. Based on the discovery that tutoring by normal, untrained tutors proves (Person, Graesser, Kreuz, & 

Pomeroy, 2003), the agent was designed to simulate a normal unskilled human tutor who knows the learning 

content but does not have pedagogical skills in tutoring. That is, the tutor agent simulates a domain expert 

with appropriate domain knowledge. 
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The tutor agent presents as an avatar with a low quality voice and some simple hand gestures, limited by 

the speech synthesis technology at that time. The interaction between the agent and a human learner is 

through a so called “expectation–misconception tailored” (EMT) conversation (Graesser, 2016).  An EMT 

conversation is started by the tutor agent initially posing a main question about a problem that the human 

learner tries to answer. The tutor agent evaluates the learner’s answer and gives appropriate feedback (pos-

itive, neutral, negative, etc.). If the answer does not cover all parts (expectations) of the ideal answer to the 

main question, the computer agent selects an expectation and asks a hint/prompt question. Then the learner 

answers, the tutor evaluates, the tutor gives feedback and the tutor selects the next expectation to work on. 

This process repeats until either all expectations are covered or all prepared questions are exhausted. During 

the course of the iteration, if a misconception is identified, the computer agent corrects the misconception 

and the process continues. Examples of such conversations can be found in published articles, for example, 

Graesser (2016), and Graesser et al. (1999, 2005). 

The responsibilities of this type of agent includes: 1) presenting a problem; 2) evaluating human learners’ 

answers; 3) giving immediate feedback; 4) selecting expectations and asking hint/prompt questions; 5) 

identifying and correcting misconceptions; and 6) presenting the final solution to the problem. In order to 

do all these tasks, the agent needs a “brain” that stores the problem, the solution, expectations, misconcep-

tions, hint/prompt questions, answers, and feedback speeches. Moreover, its brain needs to be intelligent 

enough that it can evaluate a learner’s language and make decisions on what expectation/misconception to 

work on and what hint/prompt to ask the learner. The intelligent brain of this agent is equipped with a 

semantic engine that can classify speech acts and is capable of matching stored answers. The semantic 

engine uses latent semantic analysis (Landauer, McNamara, Dennis, & Kintsch, 2007) and regular expres-

sions for flexibility and inclusivity, though specifics of their implementation lies beyond the scope of this 

chapter. In short, this agent “understands” natural language input and knows how to select expectations, 

misconceptions and questions. 

The single agent AutoTutor is relatively easy to construct because of the simplicity of the conversation 

rules. The process of authoring one problem can be briefly described as follows: 

1) Describe the problem and ask a main question; 

2) Prepare an ideal answer to the main question; 

3) Split the ideal answer into multiple expectations; 

4) For each expectation, prepare a set of hint/prompt question-answer pairs. 

5) Prepare a list of possible misconceptions and correct responses. 

 
Due to the simplicity of authoring, this type of agent can be easily created for tutoring in other domains. In 

fact, the second AutoTutor system focuses on Newtonian physics and features improvements to the agent’s 

avatar and speech engine. The development of such single talking agent AutoTutor systems form the es-

sential conversation patterns for AutoTutor systems. Of course, a learning system may have multiple agents, 

where each agent plays a meaningful role. In the next example, we present a system with four talking agents: 

a domain tutor agent and three self-regulated learning strategy agents. 

Multiple Talking Agents in MetaTutor 

MetaTutor utilizes multiple talking agents (Azevedo et al., 2009, 2012) in an effective environment for 

learning human body systems. This system differs from earlier AutoTutor systems in that, in addition to 
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giving feedback to content learning, the multiple talking agents prompt learners to employ self-regulated 

learning strategies and give feedback to the learner on the outcome of the strategy. In MetaTutor, there are 

four talking agents. Gavin, the main agent, provides guidance in navigating content and gives feedback. 

Three additional satellite agents, Pam, Mary and Sam, provide assistance on different self-regulated learn-

ing skills in three learning phases, including planning, monitoring, and applying learning strategies 

(Graesser & McNamara, 2010). The planning phase requires skills such as setting up a major learning goal 

and some subgoals. The metacognitive monitoring demands judgments of learning, feeling of knowing, 

content evaluation, adequacy of a strategy, and progress toward goals. The learning strategies include 

searching for relevant information, taking notes, drawing tables or diagrams, re-reading, elaborating the 

material, making inferences, and coordinating information sources. 

The learning materials in MetaTutor are presented in 41 pages of text and static diagrams on the human 

circulatory system. A learner starts by setting up an overarching learning goal and some sub-goals guided 

by Pam. Gavin then guides the learner to navigate the content and scaffolds content learning. A skill panel 

on the interface allows a learner to instantiate interaction with an agent. For example, a learner may click a 

button to indicate that he/she wants to take a note. The learning strategy agent, Sam, will then interact with 

the learner so that the learner applies this strategy effectively (taking a good note, in this case). Azevedo et 

al. (2012) showed that providing prompts and feedback to self-regulated learning skills produces significant 

learning gains.   

The responsibilities of Gavin are guiding navigation and leading EMT conversations. The other three 

agents’ responsibilities include: 1) prompting the use of a specific set of self-regulated learning strategies; 

2) evaluating the outcomes of the use of suggested strategy; and 3) giving immediate feedback. 

The authoring tasks in building pedagogical agents (Pam, Mary, and Sam) are different from building do-

main expert agents. To suggest an appropriate strategy to a learner at a specific moment of the learning 

process implies that the agent knows how to map learning states to strategies. Therefore, a learning state to 

learning strategy mapping needs to be stored in the agents’ brain. The agents need to be capable of evalu-

ating the outcomes of strategy use. Endowing the agents with this capability is challenging technically. For 

example, when a learner uses the strategy “drawing a diagram”, evaluating the diagram involves image 

processing utilities to determine quality. Similarly, evaluating the “taking notes” strategy requires natural 

language processing utilities. 

Interactions in MetaTutor are dialogs between one talking agent and one human learner. Although there are 

four talking agents in this system, they never appear at the same time. There are no interactions between 

agents and they do not appear to coordinate with one another. This type of agent can usually be built inde-

pendently. The learning state and user actions (e.g., click a button) trigger the presence and absence of each 

agent. Once present, an agent performs its responsibilities independent of other agents. 

Of course, talking agents could interact with each other. The question is, what benefits can be obtained 

from interactions between talking agents? In the next example, we present a system, Operation ARA, with 

interactions involving three parties: a tutor agent, a peer student agent and a human learner. 

Trialogues in Operation ARA 

Operation ARA (Acquiring Research Acumen) is a later AutoTutor system with five talking agents. This 

system helps learners with critical thinking and scientific reasoning (Halpern et al., 2012; Millis et al., 

2011). It covers 21 scientific concepts, such as “theories and hypotheses”, “science and pseudoscience”, 

“operational definitions”, “control groups”, “sample size”, etc. Examples used in the system were taken 

from different science domains, including psychology, sociology, biology and chemistry. The system con-
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tains five major components: 1) an intriguing story presented across the whole learning process; 2) an in-

teractive eBook that explains the basic concepts and principles of scientific thinking; 3) a set of tutoring 

conversations that helps learners understand the eBook chapters; 4) a Jeopardy!-like game to identify flaws 

in different cases; and 5) an interrogation game for learners to identify flawed cases by asking questions. 

The five talking agents used in Operation ARA were: Dr. Quinn, Scott, Glass, Tracy, and Broth. Dr. Quinn 

is a tutor agent who presents all the time, just like a teacher in a classroom, and participates in all activities. 

Glass and Tracy are peer student agents. Glass participates in conversations for reading comprehension, 

whereas Tracy participates in competition against a human learner in identifying flaws in case studies. 

Broth is a storyteller who helps advance the storyline, of whom we will not say much. Scott, is an interro-

gator in the interrogation game. 

Operation ARA uses AutoTutor trialogues to interact with human learners (Cai et al., 2011; So, Zapata-

Rivera, Cho, Luce, & Battistiui, 2015). An AutoTutor trialogue is usually a conversation among a tutor 

agent, a peer student agent, and a human learner. The tutor agent presents problems, asks questions, gives 

hints, makes judgements on students’ answers, and gives immediate feedback. The peer student collaborates 

with the human learner to construct a solution to the presented problem. Several pedagogical modes were 

used adaptively, based on the human learner’s performance. For the low performance learner, the system 

employs a vicarious mode in which the interaction is mostly among the tutor agent and the peer student 

agent. The human learner is occasionally asked simple questions to make sure he or she is engaged in 

learning. A tutoring mode trialogue suits medium performance learners. In this mode, the conversation is 

mostly between the tutor agent and the human learner. The peer student in this mode plays a role of a 

sidekick, giving feedback to the human learner. When the human learner’s knowledge is high enough, a 

teachable agent (Leelawong et al., 2003) mode deploys, in which the human learner is asked to help the 

peer student agent to construct a solution to a problem. This mode gives the human a chance to learn by 

teaching. In addition to these three modes, another mode, called competition, pits the peer student against 

the human learner in a competition to answer a main question or hint/prompt questions. Wallace et al. 

(2009) demonstrated that this mode promotes high learning engagement. 

The responsibilities of Dr. Quinn in Operation ARA are similar to the tutor agent Gavin in MetaTutor. She 

has the knowledge about critical thinking and scientific reasoning. She is responsible for asking questions, 

evaluating answers, giving immediate feedback, and presenting the final answer. 

Glass participates in three modes of trialogues: vicarious learning, tutoring, and teachable agent. Simulating 

a peer student, Glass’s responsibilities include: 1) answering Dr. Quinn’s questions (answers could be good, 

partial or bad); 2) asking human learner questions (teachable agent mode); and 3) giving feedback to human 

learner. 

Tracy participates in competition mode trialogues, appearing as a peer student. Her programming contains 

a list of flaws in each of a set of cases. When Dr. Quinn presents a case, Tracy competes against the human 

learner in identifying flaws in the case. Tracy’s responsibility is simple: when it is her turn, she selects a 

true or false item from the flaw list. If Tracy’s score is lower than the learner’s, she selects a true item. If 

her score is higher than the learner’s she selects a false item.  

Scott participates as an expert interrogator in an interrogation game. In the game, a suspect (hidden agent) 

presents a case, Scott tries to determine whether or not there is a flaw by asking the suspect questions. Scott 

has a repository of both good and bad questions, but lets the human learner help him construct questions 

first. Once a human learner provides a question, Scott matches it to a stored question (good or bad) and 

presents it to the suspect. Good questions reveal the flaw (if any) more quickly, resulting in higher credits. 

Scott has only one responsibility: presenting a stored question that best matches the human’s. Note that 

Scott needs the capability of performing semantic matching. 
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Talking agents in Operation ARA form different types of trialogues associated with adaptive pedagogical 

strategies. This would not be possible without the addition of peer student agents. Although agents in Op-

eration ARA trialogues have different identities and responsibilities, they do not function independently. In 

each trialogue, two agents are more like one mind with two heads. It evaluates the human’s input and makes 

decisions on what to say and who to say it to (the tutor agent or the peer student agent). Building independ-

ent agents that can participate in trialogues with different roles would be more challenging, because each 

agent needs to be able to understand the other two parties. The interaction protocol will be more complex 

and less constrained. 

One thing that is common in all of the above systems is that talking agents respond to the human learner’s 

language input. However, in more complex learning environments, human learners may be allowed to do 

in addition to talk. Human learners’ actions, resulting in the form of “world events” may trigger responses 

from talking agents. The following examples show how agents can handle this situation. 

Talking Agents Sensitive to World Events in CSAL AutoTutor 

CSAL (Center for Study of Adult Literacy) AutoTutor was developed to help adult learners improve their 

reading comprehension skills (Graesser et al., 2017; Lippert, Walker, Davis, & Clewley, 2017). CSAL 

AutoTutor has 35 lessons focusing on different comprehension strategies. While these lessons allow natural 

language input, just as the above systems, the target learners have relatively low writing ability and limited 

knowledge in computer use. To complement natural language interaction, most lessons allow learners to 

interact with talking agents through interactive pages, including clicking on buttons, selecting items, drag-

ging and dropping objects, highlighting texts, filling in blanks, etc. There are two talking agents: a tutor 

agent, Christina, and a peer student agent, Jordan. Similar to Operation ARA, Christina, Jordan, and a hu-

man learner collaborate through trialogue conversations to construct solutions to problems. 

Christina’s responsibilities include: 1) presenting a problem; 2) asking a question; 3) judging actions and 

natural language inputs from the human learner; and 4) providing feedback and correct answers. Jordan’s 

responsibilities include: 1) acting on the media pages; 2) talking about the actions; 3) responding to actions 

from human learners as a peer student at a level similar to the human learner.  

Similar to trialogue agents in Operation ARA, Christina and Jordan function as “one mind, two heads”. The 

difference is that they must also respond to users’ actions which results in more complicated conversation 

rules (Cai, Graesser, & Hu, 2015).   

All examples above assume that one single human learner collaborates with one or more talking agents. 

Our last example is a system developed for team learning. 

Group Mentoring in AutoMentor 

AutoMentor simulates human mentoring for teamwork on a land science epistemic simulation (Shaffer, 

2006; Shaffer et al., 2009). Teams of learners (four per team) collaborate on planning land use, considering 

various constraints, such as water, housing, waste, pollution, and so on. Learners interact with team mem-

bers and human mentors through online chats, which provide rich information about the quality of the 

teamwork, as well as the emerging roles and personalities of team members (Dowell, Nixon, & Graesser, 

2018). AutoMentor is a computer agent residing between learners and human mentors. AutoMentor evalu-

ates learners’ individual work and team work and suggests feedback to human mentors. Human mentors 

select and modify AutoMentor’s suggestions and deliver them to learners. AutoMentor learns from the 

human mentors’ selections and modifications to make better suggestions. 
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AutoMentor is more of a “hidden” agent because no avatar appears in the system. AutoMentor’s full re-

sponsibilities (not yet fully implemented) include: 1) evaluating design quality in simulated environment; 

2) grading individual notes and messages; 3) participating in and monitoring team chats; and 4) guiding 

teamwork. When a mentor agent participates in a team chat, the conversation rules needed for the agent 

differ greatly from agents in AutoTutor EMT conversations. For example, because it is a team chat, the 

mentor agent needs to select complex conversational actions like when to take a turn and whom to address. 

So far we have talked about agents that could analyze and respond to learners’ actions and natural language 

input. Agents can be aware of learners’ emotional states. We present such agents in the next example. 

Affect-Aware Talking Agents that Adapt Interaction Style 

If an intelligent tutoring system features methods for detecting a variety of user emotions, it can vary the 

style in which it delivers feedback to users accordingly. For example, MetaTutor changed the level of en-

couragement based on an estimate of the learner’s negative emotions (Azevedo et al., 2009; VanLehn et 

al., 2014). Yang and Dorneich (2016; in review) developed a prototype mathematics intelligent tutoring 

system that dynamically adapts the interaction style between a talking agent and the learner. The talking 

agent provides feedback delivered in distinct etiquette strategies when the learner struggles solving college-

level mathematics problems. Etiquette strategies in human-human communication influence participants’ 

sense of comfort in social contexts (Brown & Levinson, 1978; Mills, 2003)—influence that human tutors 

have employed for pedagogical benefit (Person, Kreuz, Zwaan, & Graesser, 1995). The intelligent tutoring 

system varies etiquette strategy according to the current emotional and performance state of the learner. 

Specifically, after each math problem, the system measures the learner’s performance, and the learner pro-

vides feedback on his or her level of motivation, confidence, and satisfaction. These variables, as well as 

the learner’s frustration level, determine the agent’s etiquette strategy for the next math problem from 

among the following possibilities: bald, positive politeness, negative politeness, and off-record (Yang & 

Dorneich, 2016).   

With a bald strategy, the agent displays no consideration for the level of imposition on the learner. Positive 

politeness minimizes the level of imposition on the learner by the agent, expressing statements of friend-

ship, solidarity, and compliments. Negative politeness, on the other hand, recognizes an imposition while 

remaining respectful. Finally, the off-record strategy attempts to communicate indirectly, requiring the 

learner to infer the true intention of the agent.  

During a math problem, each one of the six steps of the problem-solving process (as defined by Gordon, 

2008) prompts system feedback. For each step, one to three feedback utterances is possible, with at least 

one proactive (e.g., “Define the variables.”) and at least one reactive (e.g., “It’s not the appropriate for-

mula.”) utterance.  The content of the feedback does not change for a specific problem, but the etiquette 

strategy in which the feedback arrives does. Thus, four versions of each feedback statement of the talking 

agent are available, one for each etiquette strategy.  

Triggers for the strategies depend on the four steps identified by Keller (2009) for encouraging and sustain-

ing students’ motivation in the learning processes: attention, relevance, confidence, and satisfaction 

(ARCS). Varying feedback etiquette strategy has the potential to improve not only performance, but also 

motivation, confidence, and satisfaction, even identifying and targeting the factor among these most in need 

of improvement (Yang & Dorneich, in review). The ability of a talking agent to adapt its interaction style 

can be used in conjunction with the more traditional tutoring system adaptations of task difficulty or learn-

ing content to create tutors that support both the cognitive and affective needs of learners. 
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Conclusions and Recommendations for Future research 

Intelligent computer agents play different roles. An expert agent has domain knowledge that allows moni-

toring of a learner’s knowledge state, providing the best learning path, explaining concepts, and correcting 

misconceptions. In other words, a domain expert agent needs a built-in domain knowledge space (Doignon 

& Falmagne, 2015) and an understanding of a learner’s cognitive state. A learning strategy agent needs 

knowledge of learning strategies to suggest at different phases in the learning process. A tutor agent in an 

intelligent tutoring system could be a combination of a domain expert agent and a learning strategy agent. 

That is, at any moment in a learning process, an ideal tutor agent knows the best content and the best way 

for a learner to learn. A more complex team mentor agent needs the capability of evaluating group interac-

tions and guiding healthy and productive team interactions, in addition to domain knowledge and pedagog-

ical strategies. 

Peer student agents present potentially the most complex instantiation of all. In order to simulate students 

with different cognitive states, metacognitive states, and personalities, a peer student agent needs an inte-

grated brain of a domain expert agent, pedagogical strategy agent, and a social cognitive agent. A peer 

student agent is one that knows everything but pretends that it only knows something. The peer student 

agent may give wrong or partial answers to questions, bad solutions to problems. When a peer student agent 

participates in a conversation, it often uses language different from a tutor agent. For example, when giving 

positive feedback to a learner’s good answer, a tutor may say: “That is correct!” while a peer student agent 

may say: “That is what I thought!” Peer student agents may simulate learning from human responses. One 

peer student agent may “remember” many learners’ responses and strategically use the learned responses 

in future conversations. 

Online collaborative learning environments make it possible for learners to interact with other learners, as 

well as teachers, mentors, and experts from distant locations. The use of intelligent virtual agents in online 

learning environments has many advantages. For example, it makes the collaborative learning available all 

the times, bypassing the need to coordinate schedules by providing an omnipresent virtual agent. A team 

with virtual agents may be adaptively formed according to the learner’s personality and performance on 

target tasks. Peer student agents can be configured with knowledge and skills that optimally compensate 

for the learners. Effective pedagogical strategies may be more easily and consistently implemented with 

the help of virtual agents. For example, vicarious learning needs a medium knowledge peer student to in-

teract with a tutor; learning in teachable agent mode needs a peer student with low knowledge. With virtual 

agents, selecting these tailored team members presents no problem. 

The Generalized Intelligent Framework for Tutoring (GIFT) is capable of integrating different types of 

learning resources to create engaging and effective collaborative learning environments. GIFT emphasizes 

one-to-one and one-to-many tutoring. We recommend that many (agents)-to-one (learner) and many 

(agents)-to-many (learners) tutoring should be considered in GIFT. Currently AutoTutor is the only module 

that has deep conversation agents. Conversational agents should be considered as a “universal interface” 

for all tutoring modules. This implies three challenges. The first challenge is the natural language pro-

cessing. While speech recognition technologies have made great improvements in recent years, understand-

ing the meaning of the learner’s language input (usually ungrammatical) is still difficult. GIFT should pro-

mote further research and development in this direction. The second challenge is the authoring tool of con-

versational agents. Authoring conversational agents is always difficult and expensive. Standardized author-

ing tool for conversational agents could be a way to go. GIFT should put more effort in this direction. The 

last challenge is automatic conversation script generation. Currently agent speeches are authored by human 

experts. Developing agents that can learn from human learners may lead to better performance and lower 

development costs.  
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Conversational agents play important roles in online collaborative learning environments. We are 

expecting GIFT to provide improved ways of integrating conversational agents into learning mod-

ules.  
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CHAPTER 17 – AUTOMATING THE ASSESSMENT OF TEAM 

COLLABORATION THROUGH COMMUNICATION ANALYSIS  
Peter W. Foltz  

Pearson and University of Colorado, Boulder 

Introduction 

Regular monitoring of teams of decision-makers in complex collaborative environments requires effective 

and efficient tracking.  Current methods of assessing team and group performance often must rely on tem-

porally delayed outcomes or global metrics that are insufficiently detailed to detect the cause of fail-

ures. For example, human monitoring of teams typically occurs after the fact, or requires large invest-

ments of manpower from supervisors or trainers. A largely untapped source of timely and diagnostic in-

formation lies in ongoing communications among team members. Communications can reflect cognitive 

and task states, knowledge, situation awareness, stress, vigilance,  and who is communicating. With ap-

propriate analyses, the communication data can be tied back to both the team's and each individual’s abili-

ties and knowledge.   

 

Automated analysis of communication offers the possibility of real-time diagnosis and warning along 

with assessment of team and user states and abilities.  This chapter describes a series of studies in which 

we apply speech recognition, speech analysis, and statistical natural language-based techniques to analyze 

the communications of teams in training and operational environments.  While the method has been tested 

across a broad range of domains and tasks, the chapter provides details on performance in one domain 

(convoy operations).   The techniques are able to provide accurate predictions of the overall team perfor-

mance, make reliable judgments of the type of statements each team member is making, and predict team 

performance problems based on the language and patterns of communication among team members.   

Such performance problems include loss of situation awareness, knowledge gaps, workload, and critical 

incidents.   

 

Overall, the application of the approach demonstrates that the methods can have broad use for varied 

teams in different types of collaborative situations. The chapter concludes with implications for applying 

the approach within small and large-scale training situations, considerations for the level of effort for cus-

tomized development for different training situations, and types of feedback for individuals and trainers.   

Communication in Teams 

Communications in Teams 

Teams performing collaborative tasks provide a rich source of information about their performance through 

their verbal communication.  The communication can provide information both about the structure of their 

social network and the content and quality of information flowing through the network.  This information 

reflects team member roles, connectedness, as well as how they are performing their tasks.  Additionally 

the content and manner of the communication provides information about the team’s cognitive states, 

knowledge, errors, information sharing, coordination, leadership, stress, workload, intent, and situational 

status.  Thus, communication provides a window into team cognition. 

Studies of team communication have shown that the content and pattern are predictive of performance (e.g., 

Contractor & Grant, 1996; Cooke, Duchon, Gorman, Keyton & Miller,2012).   Such studies have analyzed 
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categories of communication being passed, frequencies of counts of communications, units of meaning, 

and patterns of discourse among team members.  For example, Achille, Schulze and Schmidt-Nielsen 

(1995) found that the use of military terms, acknowledgments, and identification statements increased with 

experience.  Similarly, Jentsch, Sellin-Wolters, Bowers and Salas (1995) found that teams that were able 

to identify typical flight problems faster made more leadership statements and more observations about the 

environment.   However, many of these studies relied on hand-coding of the data and/or laborious post-hoc 

analyses.      

Language as Data 

With the advent of digital systems for capturing and interpreting spoken audio, communication can be 

treated as a formal type of data about teams and can be analyzed to reveal information about team perfor-

mance.   Automated transcription through speech recognition, along with machine learning, language pro-

cessing, speech analysis and probabilistic modeling can be applied to distill and understand critical features 

in teams.  For instance, computational linguistic methods are used to break down individual words and 

phrases from communication streams in order to characterize the types of communication or the quality of 

a team member’s knowledge. Patterns of communication can be analyzed through Markov models or prob-

abilistic chains to determine where and how communication flows and whether the patterns of interaction 

are expected given the nature of the task. These methods have been shown to be able to predict overall team 

performance (e.g. Gorman, Foltz, Kiekel, Martin & Cooke, 2003), detect patterns of communication and 

locations of communication breakdown (Kiekel, Gorman & Cooke, 2004; Gorman, Martin, Dunbar, Ste-

vens & Galloway, 2015), categorize types of communications and how those types relate to team tasks 

(Foltz & Martin, 2008). 

The Communication Analysis Pipeline 

In the present work, we have developed a generalized framework, or pipeline for analysis of communication 

data. A major goal of the work has been to apply the same framework across varied types of data. The 

communication analysis pipeline is designed to take communication data as input, format it into usable 

means (e.g., transcribing spoken text to data), convert it into sets of language features, and then apply those 

features in machine learning-based modeling to generate predictions about the performance of the team. 

This communication analysis pipeline is shown in Figure 1.  We outline the key steps used in the pipeline 

and then illustrate its use across a range of domains and studies. 

Due to the complexity of teams, modeling often must account for individual knowledge, team knowledge, 

team skills, team dynamics, and interactions with tasks as well as team members. One of the simplifying 

assumptions in the communication analysis pipeline is that the goal is not to build complete and specific 

domain models for each domain.  Instead, the process relies on using information about team performance, 

such as ratings of performance by experts, objective measures of success, and indicators of troubles and 

success on individual tasks.   The process then uses computational language methods to break the commu-

nication into raw features about communication and then applies machine learning to learn to associate 

those features to the information about team performance.   Thus, it “learns” what features in language are 

indicative of different kinds of performance.  This learned model can then be used to predict performance 

on new teams or the same team in subsequent tasks.  In a sense, the process learns to model what humans 

do when they listen to teams to distill useful characterizations about the domain and situation.   
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Figure 2. The Communication Analysis Pipeline. 

Speech processing 

Since communication is typically spoken, automatic speech recognition (ASR) systems can be applied for 

converting speech to text for input into processing stream.  Speech recognition can be imperfect, most no-

ticeably in noisy environments (e.g.,  Schmidt-Nielsen et al., 2001). However, even with errors in tran-

scription, modeling can often still perform very well at predicting performance.  For example, even with 

typical ASR systems degrading word recognition by 40%, the modeling prediction performance degraded 

less than 10% (See Foltz, Laham & Derr, 2003).  This is because verbal interactions in such situations are 

highly constrained by the actions currently being taken and by the current execution status of the mission 

plans. Since verbal interactions are largely routinized, the difficulties of both automatic speech recogni-

tion and machine learning-based modeling understanding are greatly reduced.  Moreover, because these 

techniques derive meaning from whole utterances, not from individual words, it tends to be more immune 

to high word level error rates typically found in speech recognition systems.   Along with performing 

ASR, speech data can be analyzed for signal properties to detect voice stress.  For example, Foltz, Rosen-

stein, LaVoie, Oberbreckling, Chatham and Psotka (2008) analyzed the speech power, pitch, change over 

time, rate, duration and frequency component to build an excitement detection algorithm.  They found 

that the algorithm was accurate over 80% of the time and could predict significant variance related to rat-

ings that Subject Matter Experts (SMEs) made about teams when they encountered critical events. 

Content modeling 

Within the analysis of content and language patterns features and modeling, a range of techniques have 

been applied.  One notable technique has been to use Latent Semantic Analysis (LSA) (Landauer, Foltz, & 

Laham, 1998) to analyze and interpret the content of what is being said during communication.  Since the 

technique analyzes meaning rather than the direct words used, it is able to account for variability that may  

reflect how different people express similar events or situations in team situations.  The details of the ap-

proach are beyond the scope of this chapter, but the methods applied to team analyses are described in detail 
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elsewhere (Foltz, Martin, Abdelali, Rosenstein & Oberbreckling, 2006; Gorman et al.,2003; Kiekel, Cooke, 

Foltz, Gorman & Martin, 2002).   

Domains Analyzed 

The approach discussed in this chapter has been applied across a wide range of studies in varied domains, 

with different types of tasks and different types of communication.  Table 1 describes these domains and 

provides pointers to relevant work.    

Table 1.  Domains analyzed.   

Domain/Task Nature of communication data  Representative publications  

AFRL MESA DMT F-16 simula-

tors  

229 engagements of 4 Ships + 

AWACS 

Foltz, Oberbreckling & Laham (2012) 

NAVY TADMUS Command and 

Control  

~80 hand transcribed Command 

and Control missions 

Foltz, LaVoie, Oberbreckling and 

Rosenstein (2008) 

UAV simulated missions   ~300 Hand and ASR Transcribed 

missions 

Kiekel et al., (2002) Gorman et al. 

(2003),  Foltz et al. (2006) 

ARL Intelligence decision making 

during STTR missions  

480 hand transcribed missions Foltz, Lee, Bond  & Martin (2009) 

Convoys in Ambush! virtual envi-

ronment and National Training 

Center live STX training     

--100s of hours of missions with 

team size ranging from 10 to 50. 

ASR and hand transcribed  

Foltz, Rosenstein et al., (2008), 

Lavoie et al. (2008) 

Navy Non Combatant Extraction 

Operation (NEO)  

32 Face to Face and Asynchro-

nous hand transcribed missions 

Foltz, Lavoie, Oberbreckling & 

Rosenstein (2008) 

Army/Air Force Officers in chat 

room-based planning exercises 

1000s of chat interactions Lavoie et al. (2010) 

NPS command and control plan-

ning task  

100s of Predictions of Situation 

Awareness (ONR) 

Bolstad et al. (2010) 

US/Singapore planning operation 

to evaluate systems interoperability  

One multi-day mission Pierce et al. (2006) 

Communications in Convoy Training 

As a more specific example, Foltz et al., 2009 developed a system to predict team performance and detect 

critical events in convoy operations.  The data collected included teams of up to 50 soldiers using the Am-

bush! virtual convoy training (Diller, Roberts & Willmuth, 2005) and teams of up to 40 participating in live 

convoys performing STX training at the National Training Center.  In all cases, company-sized elements 

conducted mounted tactical road march along specified routes and encountered various events including a 

civil disturbance, RPG attack, IEDs, a near ambush, negotiation with Iraqi police and complex attacks (IED 

and ambush).  

All audio data from the team members was recorded and ASR transcribed, logs of events that occurred 

through the training were collected and results from the After Action Reviews (AARs) were recorded.  A 

team of domain experts listened to all the recordings and rated teams on performance as well as marking 

and rating particular critical events.   Teams were rated by the SMEs on a 5 point scale for measures in-

cluding: Battle drills, Command & control, Situation understanding, Adherence to Standard Operating Pro-

cedures (SOPs), and overall team performance.  SMEs correlated with each other with an r = 0.34 to 0.59 

for individual events and an r = 0.76 to 0.85 averaged across events. 
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Critical incident detection model 

A computational model to detect when teams were having critical incidents was built.  The method used a 

moving window time series analysis that generated semantic, statistical, and syntactic properties of seg-

ments of communication.  The model analyzed a 1 minute window of communication and then moved 

ahead by 10 seconds.   Classification algorithms compared segments to discourse properties of the com-

munication from critical incidents identified by SMEs to predict if an event was happening.  The results 

showed that the model could correctly classify 84% of the events and detect more than half of the critical 

events (See Foltz, Rosenstein et al., 2008; Lavoie et al., 2008).   

Predicting Performance 

Performance predictions were generated for each rating metric (e.g., situation understanding, command and 

control, etc.) for each team, both for overall missions as well as for each critical event during the mission.  

In each case, the system used a machine learning-based approach in which the system was trained on a 

subset of team mission data in which it learned to associate communication variables with SME ratings.  

Then the performance predictions were generated for held-out sets of team missions. The results showed 

that the system could correlate with SME ratings for individual events with correlations ranging from 0.37 

to 0.43 (within the range of human rating agreement).  For predicting overall team performance on a mis-

sion, the model correlated with SMEs ranging from 0.71 to 0.83.  These results indicate that the approach 

both accounts for a large amount of the variance of team performance as well as corresponds closely to the 

intuitions of SMEs.  

Conclusions and Recommendations for Future Research 

Communication is a natural part of the team process and provides one of the best windows into team cog-

nition. Applying automated methods to analyzing the streams allows near-realtime analysis and modeling 

of real, complex tasks.  The communication analysis pipeline breaks spoken as well as written communi-

cation into features, then models and predicts objective and subjective metrics of performance.   A distinct 

advantage of the approach is that the models can be automatically derived, not requiring large efforts in up-

front tasks analyses. Overall, the use of the approach allows analysis of teams while they perform in natural 

environments without intrusive data collection methods. 

As an application, the approach allows the development of tools that can be integrated into systems to 

monitor teams and provide timely feedback.  It can detect teams and individuals who are performing poorly. 

Thus, it can be used to provide AARs or determine when retraining is necessary. It can further detect critical 

events that may significantly change the course of a mission.  This allows supervisors to monitor multiple 

teams and know which teams need the most attention as well as to be able to quickly locate parts of team 

records which may be most useful for feedback.  Finally, the approach has the potential for contributing to 

an adaptable training system, which can monitor team performance and, in realtime, change the simulation 

in order to best train individuals and teams.   
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CHAPTER 18 – SYSTEM DESIGN FOR INTELLIGENT TUTORING OF 

TEAM TASKWORK 
Robert A. Sottilare 

US Army Research Laboratory 

Core Ideas 

The chapters in this section focus on the system design aspects for the tutoring of team taskwork using 

intelligent tutoring systems (ITSs). When we discuss system design, we are specifically addressing how 

ITSs are designed to assess and interact with learners.  Since much more effort has been focused on ITSs 

to support individual learning rather than teams, we are also attempting to address two question:  

 What should be fundamentally different about ITSs for teams from their individual learner ITS 

counterparts?   

 What does the ITS need to know about the team to make effective decisions about feedback, support, 

and guidance for the team? 

 

During team instruction, team members interact with each other as well as with the tutor.  Based on this 

interaction, we can separate team attitudes, behaviors, and cognition into those related to team taskwork 

and teamwork.  Team taskwork is fundamentally task dependent and tied to the goals, measures, and as-

sessments of learning and performance of the task under instruction.  Teamwork is fundamentally task 

independent in that it is tied to the inner workings of the team: communication, collaboration, conflict 

management, cognition, coaching, coordination, and the conditions under which the team works together.  

In this section of the Design Recommendations for Intellligent Tutoring Systems – Volume 6, we will discuss 

how both team taskwork and teamwork influence ITS design, but will focus more heavily on team taskwork. 

In general, the system design process accounts for the definition of the architecture (framework), compo-

nents (hardware and software), interfaces, and data distribution mechanisms for a system to satisfy a set of 

specified requirements.  In our case, ITSs are adaptive instructional systems and the requirements might be 

distilled down to: a computer-based system that guides the learning experiences of teams by tailoring in-

struction and recommendations based on team goals, team roles, team and individual learning needs, and 

individual preferences in the context of domain learning objectives.   

It might also be noted that the structure of teams and the nature of team tasks could and probably should 

influence the design of a team ITS.  There are many types of team configurations, but most are variations 

on a set of themes: 

 Single leader or authority  

 Multiple leader 

 Collaborative or non-hierarchical  

 

Teams by their nature as a system require energy to maintain their focus and accomplish their missions.  

Since team structures involve a division of labor, there are processes required to coordinate the various 

roles within the team and communicate goals and progress toward those goals.  Authority within the team, 

planning and reporting mechanisms, rules and policies should all be well understood by its members, and 

may also influence system design.   
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Teams may be focused on tasks in which the mission varies so there are consequences on our systems 

approach to adaptive instruction: 

 Work or process teams.  Individuals working together to accomplish a task or complete a process 

 Collaborative teams – individuals working together to solve a problem 

 Review teams – individuals working together to insure a standard level of quality in a product or 

process 

 Distributed or virtual teams – geographically separated individuals working together in a shared 

digital environment to accomplish a goal 

 Adhoc teams – individuals rapidly assembled to perform a short-term task 

 

The individuals working on a team may also take on a variety of roles and responsibilities, which also affect 

interaction design between the tutor and team members: 

 Task related roles – cost/schedule/performance/risk manager, reporter, information or opinion 

giver/seeker, clarifier, summarizer 

 Social or maintenance roles – motivator, gatekeeper, harmonizer, issue tracker 

 Dysfunctional roles – dominator, aggressor, sabbeteur  

The importance of the role of leadership within a team cannot be overstated.  The patterns of behavior used 

to influence the behaviors of others on the team run the gamut across task related, social, and maintenance 

roles.  At their simplest, leadership can be divided into directive and supportive behaviors. Directive lead-

ership behaviors (e.g., guidance, control, supervision) are used in setting goals, organizing work, communi-

cating priorities, setting timelines, clarifying roles, and modeling tasks.  Supportive leadership behaviors 

(e.g., listening, praising, and facilitating) are used in coaxing input from team members, encouraging the 

team, sharing experiences, easing team member problem solving, and suggesting solutions. 

 

Leadership plays a large role in ITSs for teams.  The tutor may take on a leadership role in guiding, facili-

tating, and recommending new goals to the team.  The system design of the team ITS is influenced by the 

team’s need to see the ITS as an credible and effective leader to encourage engagement and learning.  Both 

the competence and commitment of the tutor may be weighed by the team members.  The competence 

element of leadership may be assessed via demonstrations of the tutor’s task knowledge, task skill, experi-

ence in the domain, and ability to transfer knowledge and skill to other domains.  The commitment element 

of leadership is weighed in the team member’s perception of the tutor’s motivation to help them learn and 

the confidence with which the tutor facilitates the learning experience.  

  

The chapters in this section cover topics related to team tutoring including authoring, review of a prototype 

system design for teams, a model of dynamic team formation and taskwork, and experimentation tools to 

evaluate team tutoring designs.  

Individual Chapters 

The chapter by Burke, Sottilare, and Gilbert, “Leveraging Team Taxonomic Efforts for Authoring” asserts 

that all teams are not created equal and provides a detailed evaluation of these differences, and their influ-

ence on the design of effective authoring systems.  Their review of the literature highlights the taxonomic 

structure of teams and how this work might be used to facilitate the development of an authoring system 

designed around the key features common to all teams.    

The chapter by Brawner, Sinatra, and Gilbert, “Lessons Learned Creating a Team Tutoring Architecture: 
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Design Reconsiderations” discusses a prototype team ITS developed using the Generalized Intelligent 

Framework for Tutoring (GIFT) as an adaptive instructional driver for a commercial game, Virtual Battle 

Space.  The prototype team ITS was developed to tutor a small team on the task of surveillance and was 

created in part to unify disparate research into a tangible model of team tutoring design principles. This 

chapter reports on the experience of constructing a team ITS using GIFT, and discusses the challenges and 

limitations of using an ITS architecture originally designed to tutor tasks for individual learners. 

The chapter by Huang, Folsom-Kovarik, Hu, Du, and Yang, “Team Taskwork for Knowledge Building 

in Cyberlearning” discusses knowledge building in developing teams via digital technologies (cyberlearn-

ing).  The authors draw heavily from the computer-supported collaborative learning literature to consider 

three modes of learning: individual, collaborative, and collective.  Based on an analysis of social learning, 

knowledge building and taskwork, the authors propose a structural model for dynamic team formation 

and taskwork based on the literature. The proposed model will enable evaluation of the process and effect 

of knowledge building and team taskwork by considering each individual’s contribution to the team.                                                              

 

Finally, the chapter by Boyce, Sinatra, Gilbert, and Sottilare, “Developing the GIFT Event Report Tool to 

Support Experimentation for Teams” describes the growing need for an experimental mechanism to collect 

and analyze interaction data with team tutors as they evolve.  The mechanism for collecting team-based 

data uses the GIFT event report tool (ERT) as a starting point for structuring, exporting, and analyzing data 

and reports.  
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CHAPTER 19 – LEVERAGING TEAM TAXONOMIC EFFORTS FOR 

AUTHORING 
C. Shawn Burke1, Robert Sottilare2, and Stephen Gilbert3 

University of Central Florida1, US Army Research Laboratory2, and Iowa State University3 

Introduction 

The use of teams has become ubiquitous within organizations of all types.  However, organizations often 

falter in the design and implementation of teams as there is often an assumption that a team of experts will 

automatically culminate in an expert team capable of collaborating and coordinating their actions in an 

interdependent manner.  Unfortunately, practical examples abound to indicate this is simply not true.  Re-

search on team training has a long history, but most recently there has been an increased focus on building 

intelligent tutoring systems for teams whereby instructor burden could be lessened.  Building upon prior 

research, ITSs are only as good as the science upon which their development lies (Salas & Burke, 2002).  To 

be useful, systems need to be systematically developed based on the science of learning and teams, yet also 

remain flexible to handle the complexity inherent in teams.   

 

Research has suggested that not all teams are created equal and while a general set of team competencies 

can be identified, task/team specific competencies also exist (Cannon-Bowers, Tannenbaum, Salas, & 

Volpe, 1995).  Thereby, one is faced with the question of how to build a system that can not only provide 

instruction with relation to transportable competencies, but guide those charged with authoring to additional 

competencies which are more task/team specific.  A first step in this process is to understand the ways in 

which teams differ, which can then be used to develop a set of systematic questions to guide scenario 

development/selection. In this vein, the current chapter will highlight taxonomic work on teams (e.g., 

Sundstrom et al., 1990; Wildman et al., 2012).  It will then utilize that work to illustrate how such taxonomic 

efforts can facilitate the development of an efficacious authoring system designed around core features 

common to all teams, yet diagnostic in its guidance.  Finally, the chapter will conclude with a description 

of challenges and key decisions to be made along the way.  

Understanding Teams 

Teams have been defined as a set of two or more individuals working collaboratively and interdependently 

toward a common valued goal (Salas et al., 1992).  There are a number of important components within the 

definition of teams which can provide some initial insight that can assist in the development of a front-end 

architecture for team ITSs that can be used to guide practitioners in their choice of the competencies to be 

trained (and correspondingly, training content or scenarios to be used).  Perhaps the first question is the 

degree of teamness that is actually present in the collective entity whose members are to be trained.  Deter-

mining whether the collective is really a team is the first step in understanding whether or not a team ITS 

is truly needed, as well as those competencies that might need to be targeted.  

To determine the degree of ‘teamness’, one can look to team definitions to extract core features.  One such 

core feature, revolves around a question as to whether the targeted collective is comprised of two or more 

individuals who are working towards a common shared goal?  A second, and perhaps more complex feature, 

is the degree to which members must rely on one another to complete their tasks.  This feature has been 

argued to be one factor driving the particular competencies that are important to train as well as serving as 

a distinguishing feature between groups and teams. Seminal work in this area conducted by Saavedra, Ear-

ley, and Van Dyne (1993), delineated four types of task interdependence which vary in the degree to which 
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team members are coupled with one another: pooled, sequential, reciprocal, and team.  Pooled interdepend-

ence refers to tasks in which members all make a contribution to the group output, but there does not need 

to be direct interaction amongst members.  In this type of interdependence, Saavedra et al. (1993) argue 

that each member typically has the ability to complete the whole task (i.e., performance is the sum of the 

individual performances).  Moving up a level, sequential interdependence represents a one-way work flow 

whereby one member must complete an action prior to another member being able to act.  The typical 

example provided for this type of interdependence would be an assembly line whereby members must rely 

on one another to complete the task, but coordination is dyadic in nature.  In this case, members perform 

different aspects of the task (i.e., no one person can perform the whole task), but in a prescribed order. 

Greater coordination amongst members is needed in the third type of interdependence, reciprocal.  Recip-

rocal interdependence has been descsribed as, “…temporally lagged, two way interactions”, whereby “Per-

son A’s output becomes Person B’s input and vice versa” (Saavedra et al., 1993, p. 63).  It is dyadic coor-

dination whereby members perform different portions of the task (similar to sequential interdependence), 

but do so in a flexible manner (i.e., bi-directional workflow).  Finally, under team interdependence the task 

requires the greatest degree of coordination and tight coupling of team members in order to accomplish the 

task.  Specifically, Saavedra et al. (1993) argue that this type of task interdependence requires members to, 

“…jointly diagnose, problem solve, and collaborate to complete a task” (p. 63) and in its truest form mem-

bers have the freedom to design their own jobs.  

The above work could be used by those designing the architecture to assist in first determining whether or 

not the targeted collective is truly a team versus a more loosely coupled group.  In combination with this 

initial set of questions, is a subsequent set of questions which begin to provide insight on a baseline set of 

competencies to be trained.  For this later set, we turn to the literature on the science of teams.   

Establishing a Baseline 

Early literature on teams argued that in order to effectively train teams, two tracks of skills must be mas-

tered: taskwork skills and teamwork skills (Morgan, Salas, & Glickman, 1993).  Traditionally, taskwork 

skills have represented the bulk of the focus within intelligent tutoring systems and other training-related 

interventions.  However, in building intelligent tutoring systems for teams, those responsible for building 

the architecture underlying the system must move beyond taskwork skills to include teamwork skills.  

Building intelligent tutoring systems for teams represents a complex endeavor with a number of challenges, 

not the least of which is to build tools on the front end of the architecture which will facilitate the proper 

selection of training scenarios (and their corresponding metrics), such that the most efficacious set of train-

ing experiences can be provided based on the particular needs of the trainee.  

An early consideration in moving towards this goal is the nature of the team to be trained.  There has been 

much work conducted on the science of teams over the past thirty years which can help in this vein.  For 

example, in delineating the competencies that are needed by organizational teams, researchers have argued 

that team competencies vary along two dimensions: task and team (Cannon-Bowers, Tannenbaum, Salas, 

& Volpe, 1995).  The task dimension represents that competencies can be task-generic or specific. Task- 

generic competencies are ones that should facilitate performance regardless of the specific task engaged.  

Task-specific competencies, in contrast, are driven by the particular task in question and therefore must be 

trained with that task as a baseline. With regard to the team dimension, team-specific competencies are 

those that are important based on the specific composition of the team.  In contrast, team-generic compe-

tencies are those that would influence performance regardless of the specific team members involved. These 

later competencies are transportable across teams and should serve members well, irrespective of the par-

ticular team members who comprise the team.   
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The above work not only serves to highlight a subset of broad considerations that should be considered by 

those responsible for developing the content within an intelligent tutoring system for teams, but combining 

the task and team dimensions produces a 2 x 2 matrix.  The 2 x 2 matrix highlights four broad types of team 

competencies: context driven (i.e., task and team specific), task contingent (i.e., task specific, team generic), 

team contingent (i.e., team specific, task generic), and transportable (i.e., team and task generic)(Cannon-

Bowers et al., 1995).  Examples of context driven team competencies include: (1) knowledge - task-specific 

teammate characteristics, team-specific role responsibilities, cue-strategy associations, (2) skills - mission 

analysis, compensatory behavior, and (3) attitudes - collective efficacy, shared vision.  Examples of task 

contingent competencies include: (1) knowledge - task specific role responsibilities, task sequencing, team-

role interaction patterns,  (2) skills - mission analysis, compensatory behavior, information exchange, (3) 

and attitudes - task-specific teamwork attitudes.  Examples of team contingent competencies include: (1) 

knowledge - teammate characteristics, relationship to larger organization, (2) skills - conflict resolution, 

motivation of others, compensatory behavior, and (3) attitudes - team cohesion, mutual trust.  Finally, ex-

amples of transportable competencies include: (1) knowledge of teamwork skills, (2) skills - morale build-

ing, conflict resolution, information exchange, and (3) attitudes - collective orientation, belief in importance 

of teamwork. The above knowledges, skills, and attitudes are but a sample of those delieneated, those in-

terested in the complete list are referred to Cannon-Bowers et al. (1995) or later work by Salas, Rosen, 

Burke, and Goodwin (2009).  For a practitioner-oriented version of core processes and states which facili-

tate team performance the reader is referred to Salas, Shuffler, Thayer, Bedwell, and Lazarra (2015). 

This work, in turn, can be leveraged for the building of an architecture to guide the user in identifying the 

most efficacious scenario set based on the competencies which need to be trained.  For example, based on 

the above work, several questions which begin to describe the nature of the team within which the trainees 

will be embedded could be imagined:  

 Do you expect to be working within the same team across tasks or different 

teams? 

 Do you expect to be working on the same type of tasks or different tasks? 

 

These questions begin to highlight the types of competencies that need to ultimately be trained.  Therefore, 

they could then be used to link practitioners to sets of scenarios which target said competencies.  In essence, 

not leaving scenario content to chance but using the science of teams to drive a diagnosis of front-end needs, 

which have a priori been tied to specific content within the program.  However, in many cases there may 

be time and/or resource constraints so one could imagine a third-tier of questions that serves to delineate 

for the most efficacious set of competencies out of this larger set to begin targeting.  This is where the team 

taxonomic efforts that have been conducted over the years become instrumental.  Specifically, in providing 

a set of defining task, team, and contextual features that have been argued to drive a need for different types 

of interaction and corresponding competencies.  Next, a few of the more prominent taxonomic efforts will 

be highlighted along with how they might be used to inform the development of a front-end architecture to 

assist practitioners in the selection of ITS content.  

Team Type Taxonomies 

In an effort to better understand teams, there have been a multitude of team taxonomies and classification 

systems developed throughout the years (e.g., McGrath, 1984; Hackman, 1990; Sundstrom et al., 2000; 

Devine, 2002).  Taxonomies have been argued to serve several functions, including the parsimonious spec-
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ification of the phenomena of interest, critical structural components and, as such, the range of generaliza-

tion (Fleishman, Mumford, Zaccaro, Levin, Korotkin, & Hein, 1991).  In the case of teams, taxonomic 

efforts have been broadly used to describe the types of teams that exist in organizational settings and cor-

responding structural features.  A recent review of team taxonomic efforts, identified approximately seven-

teen team taxonomies that have appeared in the literature (Wildman et al., 2012). While there is no single 

agreed upon team taxonomy within the literature, the predominant number of team taxonomies are heavily 

influenced by the type of team and the nature of the tasks that are engaged in and, correspondingly, the 

underlying dimensions upon which these tasks vary.  The lack of agreement on a single team taxonomy 

may, in part, be due to the complexity of teams. 

Despite the multitude of team taxonomies and lack of an agreed upon gold standard, much can be leveraged 

from existing taxonomic efforts that can help to guide the building of a front-end architecture for team-

based ITSs.  Specifically, these taxonomies can provide insight into the types of defining features upon 

which teams are often classified.  These defining features have been argued to be important based on them 

driving the need for different sets of teamwork competencies.  Therefore, the defining features could po-

tentially be used to build a set of primer questions within the front-end architecture of a team-based ITS to 

facilitate the identification of the types of teamwork competencies that should most appropriately be trained.  

Next, we briefly describe a few of the more prominent taxonomies and  highlight their potential contribu-

tions in light of developing pieces of an architecture that could guide users to a better understanding of the 

types of competencies (and later corresponding scenarios) that may be most beneficial to train.  

McGrath (1984) presents one of the earlier team taxonomic efforts whereby eight team types are distin-

guished based on the types of tasks typically performed.  The eight team types (i.e., planning, creative, 

intellective, judgment, cognitive, mixed motive, contests, and psychomotor) are classified based on the 

degree to which they reflect: conflict-cooperation, conceptual-behavioral, and choose-execute. While this 

classification provides an initial leverage point, later taxonomies classify teams based on contextual char-

acteristics.  The contextual characteristics, or defining features, in turn are most often argued to have an 

impact on performance requirements and correspondingly the team competencies that might be most effi-

cacious to train.  Similar to McGrath (1984), in a primary focus on the nature of the team’s task is Devine’s 

(2002) work which delinates an integrative taxonomy of work teams consisting of fourteen team types 

which vary along the degree to which their tasks are intellectual (i.e., executive, command, negotiation, 

commissions, design, advisory) or physical (i.e., service, production, performance, medical, response, mil-

itary, transportation, sports). However, Devine (2002) pushes beyond the level of task type to identify a set 

of contextual characteristics which cut across intellectual and physical team tasks and through which teams 

can be classified.  Specifically, Devine (2002) argues that teams vary along the following defining features: 

fundamental work cycle, physical abilities, temporal duration, task structure, active resistance, hardware 

dependencies, and health risk. These contextual features have been, in turn, argued to impact the nature of 

coordination required and the types of competencies that might be most efficacious to train. 

Also of note is the work of Sundstrom and colleagues (e.g., Sundstrom, DeMeuse, & Futrell, 1990; 

Sundstrom & Altman, 1989). Similar to earlier efforts, Sundstrom and Altman (1989) classified teams into 

types (i.e., advice/involvement, production/service, project/development, and action/negotiation). How-

ever, these authors highlight contextual features which have not explicitly been delineated by the previously 

mentioned taxonomic efforts, but would most likely fall within task structural features.  Specifically, 

Sundstrom and Altman (1989) classified teams based on the degree of differentiation and external integra-

tion.  Again, for the current purposes, we are less interested in the ‘team type’ than the contextual features 

which have been argued to be important in that they drive a need for different types of competencies.  Dif-

ferentiation refers to, “degree of specialization, independence, and autonomy of a work team in relation to 

other work units” (Sundstrom et al., 1990, p. 124).  In contrast, external integration refers to the degree to 

which the team must coordinate and synchronize its actions with others outside the immediate team.  This 



 

 

197 

can refer to the integration of the team with other entities in the same organization, but outside the imme-

diate team or entities outside the organization. The degree of differentiation and external integration, in 

turn, are argued to create different demands for effectiveness. This distinction is important as it begins to 

point to the degree to which team competencies associated with boundary spanning are important. In addi-

tion, for those teams which have low levels of differentiation it may also begin to highlight the importance 

of a subset of team membership being trained on competencies that are emerging out of the literature on 

teams-of-teams or multiteam systems (see Zaccaro, Marks, & DeChurch, 2012; Shuffler, Rico, & Salas, 

2014).  As emerging work in this area is beginning to highlight that when teams are working within a 

multiteam system it is not enough to be trained in team competencies, but additional competencies may be 

needed to foster performance within the larger system.  In some cases what fosters effectiveness at the team 

level, may actually detract from coordinated interaction and corresponding effectiveness at the multiteam 

system level.  

Most recently, Wildman and colleagues (2012) developed an integrative taxonomy, in part, to combat weak-

nesses in prior taxonomies which do not elucidate team-level properties which serve to distinguish different 

team  types. Similar to earlier taxonomies, Wildman, Thayer, Rosen, Salas, Mathieu, and Rayne (2012) 

argue for an integrated set of task types: managing others, advising others, human service, negotiation, 

psychomotor action, defined problem solving, and ill-defined problem solving.  However, going beyond 

prior work, this taxonomy focuses on team-level attributes which distinguish the various team types and 

the corresponding implications for performance.  Specifically, Wildman et al. (2012) argue for the follow-

ing set of team-level characteristics: task interdependence, role structure, leadership structure, communica-

tion structure, physical distribution, and team life span.  

In looking at the team taxomic efforts that have been briefly described above, one can envision a series of 

prompts which could be incorporated into a front-end diagnostic tool and used to point those not experts in 

team science toward the types of competencies that may be needed to be covered within targeted teams. 

For example, (1) To what degree does the team need to rely on entities outside the immediate team?, (2) 

What is the expected life span and temporal duration of the team (e.g., ad-hoc, intact)?  (3) What is the level 

of task interdependence?, (4)  To what degree is the team distributed in time and/or space?, (5)  What is the 

fundamental work cycle?, and (6) What is the task structure?  Responses to the prompted questions serve 

to provide the system with a better understanding of the contextual, team, and task characteristics within 

which the targeted team(s) are most likely to be operating.  The science of teams could then be further 

leveraged to link defining features as pulled from the taxonomic efforts to the specific competencies under-

lying the type of team interaction needed as argued for within the taxonomic efforts. Within this front-end 

architecture specific competencies or perhaps sets of competencies would then be linked to scenario sets 

from which practitioners and users could choose.  It might also be possible to use this information to provide 

those who choose to use the team-based ITSs with a set of guidelines that would assist in creating new 

scenarios to tap into specific competencies once the initial front end mapping had been done.  

Conclusions and Recommendations for Future Research 

There is no denying that the design and delivery of team training is a complex endeavor, even when done 

outside the context of intelligent tutoring.  The complexity increases when attempting to design ITSs for 

teams not only due to the multitude of moving parts, but also in part due to the fact that a team of experts 

does often not equal an expert team.  In essence, ITSs that are seeking to target the training of teams must 

move beyond training those taskwork skills which have traditionally been the focus of ITSs, to training the 

more complex teamwork skills.  In doing so, there are implications and challenges from the front end design 

of the architecture, to the building of content, to assessment and feedback on the back-end.  Team training 

has a reputation for being resource intensive and it has traditionally been noted that it often takes a team to 

assess a team. The use of team-based ITS is not attempting to remove the instructor, but to reduce the 
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instructor’s burden.  It can also serve to increase the systematic design of training by providing instructors 

with a set of tools that can be leveraged by individuals who have the domain content knowledge, but may 

not be experts in team dynamics.   

While there are a number of challenges in designing ITSs for teams which have been covered elsewhere, 

there is also a large literature on the science of teams that can be leveraged.  Herein, we have attempted to 

examine a small piece of that existing literature to highlight how it could begin to be used to build a high-

level diagnostic capability into the front-end of the ITS architecture that could be used to more systemati-

cally map training needs to scenario design and content.  Here we provide a high-level vision. To substan-

titate this vision, future work needs to further use the science to drill down into the questions such that 

meaningful responses (i.e., meaningful to those outside team science) to the prompted questions can be 

provided within the architecture.  Additionally, while taxonomic work highlights the features argued to 

drive performance requirements, most do not explicitly systematically lay out how the different features 

drive the need for specific competencies. For some of the features highlighted that information exists at 

least, in part, based on meta-analytic efforts that have been conducted.  In other areas it may point a need 

for future meta-analytic efforts or alternatively thematic analysis of the literature to map the specific link-

ages.  In the cases where there are gaps, most notably on the knowledge or cognition side it points the need 

for additional targeted research.  It is our hope that we have served to pique the interest of those in the ITS 

community and highlight that there is a literature that can help the development of ITSs for teams.  

References 

Cannon-Bowers, J. A., Tannenbaum, S. I., Salas, E., & Volpe, C. E. (1995).  Defining competencies and establish-

ing team training requirements.  In R. A. Guzzo, E. Salas, & Associates (Eds.), Team effectiveness and de-

cision making in organizations (pp. 333-380).  San Francisco, CA: Jossey-Bass. 

Devine, D. J. (2002).  A review and integration of classification systems relevant to teams in organizations.  Group 

Dynamics: Theory, Research, and Practice, 6(4), 291-310.   

Fleishman, E. A., Mumford, M. D., Zaccaro, S. J., Levin, K. Y., Korotkin, A. L., & Hein, M. B. (1991). Taxonomic 

efforts in the description of leader behavior: A synthesis and functional interpretation.  The Leadership 

Quarterly, 2(4), 245-287. 

Hackman, J. R. (1990). Groups that work (and those that don’t): Creating conditions for effective teamwork.  San 

Francisco, CA: Jossey-Bass 

McGrath, J. E. (1984).  Groups: Interaction and performance.  Englewood Cliffs, NJ: Prentice Hall.  

Morgan, B. B. Jr., Salas, E., & Glickman, A. S. (1993). An analysis of team evolution and maturation. The Journal 

of General Psychology, 120(3), 277-291. 

Saavedra, R., Earley, P. C., & Van Dyne, L. (1993).  Complex interdependence in task-performing groups.  Journal 

of Applied Psychology, 78(1), 61-72. 

Salas, E., & Burke, C. S. (2002).  Simulation for training is effective when…  Quality Safety in Health Care, 11, 

119-120. 

Salas, E., Rosen, M. A., Burke, C. S., & Goodwin, G. F. (2009).  The wisdom of collectives in organizations: An 

update of the teamwork competencies.  In E. Salas, G. F. Goodwin, & C. S. Burke (Eds.), Team effective-

ness in complex organizations: Cross-disciplinary perspectives and approaches (pgs. 39-79).  New York, 

NY: Psychology Press.  

Salas, E., Shuffler, M. L., Thayer, A. L., Bedwell, W. L., & Lazzara, E. H. (2015).  Understanding and improving 

teamwork in organizations: A scientifically based practical guide.  Human Resource Management, 54(4), 

599-622. 

Shuffler, M. L., Rico, R., & Salas, E. (2014) (Eds.).  Pushing the boundaries: Multiteam systems in research and 

practice.  Research in Managing Groups and Teams, Vol. 16, UK: Emerald Group Publishing.  

Sundstrom, E. & Altman, I. (1989).  Physical environments and work group effectiveness.  Research in Organiza-

tional Behavior, 11, 175-209. 

Sundstrom, E., DeMeuse, K. P., & Futrell, D. (1990).  Work teams: Applications and effectiveness. American Psy-

chologist, 45(2), 120-133. 



 

 

199 

Wildman, J. L., Thayer, A. L., Rosen, M. A., Salas, E., Mathieu, J. E., & Rayne, S. R. (2012).  Task types and team-

level attributes: Synthesis of team classification literature.  Human Resource Development Review, 11(1), 

97-129.  

Zaccaro, S. J., Marks, M. A., DeChurch, L. A. (2012) (Eds.).  Multiteam systems: An organization form for dynamic 

and complex environments.  New York, NY: Taylor and Francis. 

 

  



 

 

200 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

201 

CHAPTER 20 – LESSONS LEARNED CREATING A TEAM TUTORING 

ARCHITECTURE: DESIGN RECONSIDERATIONS 
Keith Brawner1, Anne M. Sinatra1, Stephen Gilbert2  

1Army Research Laboratory, 2Iowa State University 

Introduction 

Intelligent Tutoring Systems have been constructed for many reasons by numerous groups of researchers 

and practitioners.  The Generalized Intelligent Framework for Tutoring (GIFT) was created in part to unify 

disparate research into a commonly shared research output.  Unlike individual tutoring, however, few 

groups have constructed an Intelligent Team Tutoring System (ITTS) (Robert A Sottilare, 2018; R.A. 

Sottilare, Holden, Brawner, & Goldberg, 2011).  While GIFT was created in order to address the problems 

of individual tutoring systems, small group (i.e., squad level) team tutoring is one of its goals, and it was 

modified to support the instruction of teams of individuals.  These modifications were consistent with the 

original GIFT design goals for individual tutoring systems (individual assessment/feedback files), but this 

ultimately proved cumbersome for the construction of a reusable set of modules and processes for teams.  

This paper reports on the experience of constructing an ITTS software architecture using GIFT, but expands 

on the challenges encountered during the design process, and what could be done differently during rede-

sign.  Perhaps more important than discussion of the original team tutoring design or an improved team 

tutoring design is a discussion of the reasoning behind using certain principles and implementations.  As 

among the first to try to construct a reusable team tutoring structure, the lessons learned should be consid-

ered as a basis for future implementations. 

Types of Team Tutoring 

Team tutoring is a complicated process, and requires updating existing ITS software architecture to support 

a team (Gilbert, Dorneich, Walton & Winer, 2018). However, the updating of the architecture is more than 

just duplicating what has been done for an individual multiple times. Careful consideration needs to be 

given to how the team will be tutored, how the team’s performance will be assessed, and the type of task 

that the team will be tutored on. In the case of GIFT, since it is a domain-independent ITS architecture, 

updating it to support teams is particularly difficult. The framework needs to be able to support multiple 

types of domains/content areas, multiple configurations of teams, as well as multiple types of team perfor-

mance assessments. In addition to this, GIFT must be able to support tutors that are focused on teamwork, 

taskwork, and collaborative learning.    

Further, team tutoring must support different team task configurations, and the different team pedagogies 

that might be used. Teamwork and taskwork tutoring differ from each other, as teamwork focuses on the 

general overarching principles of working together with a team, and taskwork is specific to the team task 

that is being engaged (Salas, 2015). In order to engage in teamwork tutoring, there should be a representa-

tion of generalized positive team behaviors that need to occur to reach a goal, as well as methods of meas-

uring those desired team behaviors. To engage in taskwork training, however, the focus is more on the 

actual performance of the task itself and the role that each of those team members play in it; performance 

on the task is usually more easily measured.  The structure and roles within the team are going to vary 

greatly based on what the overall task is that is being tutored. Additionally, some team tutoring tasks in-

cluding collaborative problem solving or collaborative learning may have a different learner configurations. 

Collaborative learning theory (Roschelle, Suthers, & Grover, 2014) characterizes teams as a community in 

which some team members might be core members, while other members are more peripheral. Thus, a key 

element of monitoring team dynamics is measuring the degree to which each team member is involved in 
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the community, e.g., team members' motivation for collaborating, the level of joint attention to the task, 

and the degree to which the team members reflect on the teamwork process. From the point of view of ITTS 

architecture, this theory creates a software requirement that the ITTS architecture support monitoring of 

each team member individually, as well as each member's interactions with teammates.  

GIFT 

GIFT is made up of a series of interchangeable modules which are linked together by a message bus (Robert 

A  Sottilare, Brawner, Sinatra, & Johnston, 2017). The core Modules of GIFT are the Domain, Learner, 

Pedagogical, Gateway, and Sensor.  However, GIFT is an architecture, and on top of this module foundation 

is built a number of less standardized components – items such as authoring tools (i.e., the GIFT Authoring 

Tool), dashboards (i.e., the learner panel), and post-processing tools (i.e., the Event Reporting Tool).  This 

ecosystem also includes less commonly used, or more commodity-manufactured, components such as a 

user database (i.e., User Management System), content repository (i.e., Nuxeo), and software libraries for 

external applications (i.e., XML Remote Procedure Calls). 

GIFT is relatively simple, containing a few key modules, which now seek standardization through the IEEE 

Adaptive Instructional Systems group.  Each of the core modules relates to the learner, e.g., a model of the 

learner's state, content to teach the learner, or expert information needed to evaluate the learner.  It is tempt-

ing to design a “Team GIFT” to be the same thing – a model of the team's state, content to teach the team, 

and expert information needed to evaluate the team.  As GIFT was built for an individual learner and then 

built out as a collection of differing tools in order to support the learner – the hope is that many of the tools 

can be re-used and not reinvented for team tutoring purposes. However, as has been reported in the litera-

ture, there are challenges involved with scaling up intelligent tutoring systems for teams (Bonner, Gilbert, 

et al., 2016; Bonner, Slavina, et al., 2016; S. Gilbert et al., 2015; S. B. Gilbert et al., 2017). Since a team's 

performance depends strongly on the team skills of the members', not only on the individuals' task skills, 

the complexity of the ITTS's model of the both the learners and the state of the training scenario grows 

exponentially. Additionally, there is the challenge of keeping GIFT domain-independent, therefore, any 

tools that are developed for authoring in team tutoring in GIFT need to support multiple types of team 

configurations.  

Team GIFT 

An initial team surveillance task tutor was developed using GIFT, and has been detailed in the literature (S. 

B. Gilbert et al., 2017).  One of the main goals in the development of the tutor was demonstrating that GIFT 

could be adapted for use by multiple players in a shared environment. The first version of the tutor consisted 

of two players working together to monitor their own portions of an environment in a scenario in the com-

puter-based software Virtual Battlespace 2. Challenges that needed to be overcome were how to assess the 

team members as individuals and as a team, and how to have GIFT assess their performance as well as 

provide feedback simultaneously.  The goals of this initial tutor creation included creating a shared termi-

nology; creating a militarily-relevant team task; and establishing an approach that can facilitate the devel-

opment of team tutors.  The challenges were overcome primarily by adapting the existing feedback and 

assessment structure (Domain Knowledge Files) to be able to track performance by both individuals and 

by a team. Primarily this was done by having a separate DKF for each individual player, and an additional 

DKF that assessed the team tasks and could provide feedback to both players if needed. The synchronization 

challenge was solved in this particular instance by utilizing a “lobby” in which both players checked in 

prior to the beginning of the tutoring session, as is used in many multiplayer commercial games. This lobby 

method is generalizable, as shown by the multitudes of commercial games, but the approach may have to 

differ based on the training applications in use with GIFT. 
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The initial team surveillance task was used to create two tutors.  The first of these was the Surveillance 

Tutor, which had two team members with the same role.  The second tutor was called “Surveillance Tutor 

with Sniper,” which was a three player version which involved creating an additional DKF file for the new 

team role and their interactions with other team members. These two tutors represent a first attempt to 

engage in team tutoring in the GIFT framework. They can be thought of ”successful” as they were opera-

tional enough to accomplish the task of team tutoring while being designed flexible enough to capture new 

tasks, domains, and team structures.  However, many of the approaches that were used in the creation of 

the two tutors were tightly coupled with the task that existed, and the addition of tasks lacked in both gen-

eralizability and scalability.  The simple addition of a new team member involved the addition of a role, its 

assessment, its communication, and the assessment of the communication; further additions would face 

exponential complexity.  While the initial two ITTS met their goals, but it is now time to consider how the 

approach could be improved; are there other approaches that could achieve the same goals but have addi-

tional scalability? 

First Pass Design and Walkthrough 

 

Figure 3.  Initial Team Tutoring System Design (S. B. Gilbert et al., 2017) 

As part of the initial GIFT ITTS approach, the team decided that the team tutoring system and architecture 

would be built on top of the existing GIFT structure.  The tutoring for a team consisted of the tutoring for 

each team member in the same manner as an individual tutor (based on an individual DKF assessment), 

and that the team members would additionally receive tutoring as part of team tutoring components (based 

on a team DKF assessment). See Figure 1 for a visual representation of the approach used in the initial 

GIFT team tutor. This decision to treat “the team” in a similar way that GIFT would treat an individual had 

ramifications for the core GIFT modules, but also for the less standardized components and for the com-

monly-used components.  The changes to individuals’ modules in order to support this decision are dis-

cussed next, on a module basis.  For an individual application, a single Gateway Module was needed to link 

the external simulation to the rest of GIFT.  For an individual learner, the Gateway Module translated 

simulation messages into GIFT messages and sent them to the Domain Module for assessment.  For a team 

of learners, the Gateway Module remains unchanged, except that messages for each player were appropri-

ately routed to the individual Domain Modules for the individual learners, and messages regarding each 

player should also be copied to a Team Domain Module (or, more accurately, the existing Domain Module 
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with a team configuration).  As mentioned above, the need to have multiple players within the same simu-

lation also imposed the requirement to have a shared start time, a “game lobby” functionality and other 

general synchronization logic. 

As noted above, for an individual learner, the Domain Module has a configuration called a Domain 

Knowledge File (DKF).  The DKF contains the information about how the learner will be assessed in the 

external application, and the domain specific feedback that they are to receive; it has links to content, as-

sessments, and feedback which are controlled by pedagogical direction.  For a team of learners, the GIFT 

architecture was tweaked to allow the existence of multiple simultaneous DKFs. Thus, each learner had an 

individual DFK, and a team DKF was added containing similar information.  The team DKF processed 

team performance, team assessment, and team feedback (for both teamwork and taskwork). For a team with 

three team members, one can imagine six DKFs: one for each team member, one for the team of three, and 

one for each pair of team members so that pair communications can be monitored. This architecture served 

the purpose of monitoring both individual and team performance, but it leads to the challenge that each 

DKF functions like an independent tutor that does not know the actions of its tutoring colleagues. See below 

for more detail on the implications.   

For an individual learner, the Learner Module gathered, stored, and reported information about the learner.  

In individuals, these attributes are items such as personality type, learning preference, as well as information 

about performance, learning, and affect.  Following the logic described above, to extend this for teams, the 

Team Learner Module (Learning Module with a "team" configuration coming from the Domain Module), 

would gather, store, and report information about the team. Relevant team specific learner module compo-

nents would include team performance and team-level assessments of state, such as measure of communi-

cation or trust.  However, in the two surveillance ITTSs, this team Learner Module did not add any specific 

value, as no domain-general team items were programmed to be observed. This design decision required 

results in the Domain Module to drive team instructional decisions. The result of this is that it is not easy 

to reuse this approach between domains, as many assessments rely on the content of the messages that team 

members communicate to each other.  In theory, however, the configuration of team assessments, such as 

frequency of communication acts, may be transferrable between domains. 

For an individual learner, the Pedagogical Module controls the instruction, including actions such as order-

ing content, requesting assessment, changing scenario difficulty, providing hints and feedback, and other 

instructional actions.  Following the logic above, for a team, a team pedagogical module would need to 

make the important decision of when to give feedback to specific team members and when to give feedback 

to the entire team.  In the surveillance ITTSs, the normal pedagogical module was fed information tagged 

with "team" simply passed the feedback onwards. Future implementations should allow for team-specific 

models, modeling of differing team members, and other pedagogically-specific items. 

Also, a key requirement for tutoring teams is monitoring the overall amount of feedback received by team 

members. With the multiple-DKF architecture mentioned above, it is easy for learners to be inundated with 

too much feedback with messages arriving from their individual DKF, the team DKF, and any sub-team 

DKFs that might exist. As a specific example, a learner who does not report an observation of an enemy 

ship in a timely manner may be graded poorly on their individual observation performance, graded poorly 

as a team on a communication metric, and graded poorly as a team for reporting observations – resulting in 

three pieces of feedback individually and two pieces of feedback for the team.  A better team tutoring 

system would handle individual and team feedback differently, such as providing individual task feedback 

during the event and saving team feedback for an After Action Review (AAR).  Ideally the team pedagog-

ical module would filter feedback messages from the multiple DKFs, correctly model a chain of command, 

or other more complex items.  
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In the surveillance tutors, an additional Feedback Filter component was created. Normally, GIFT offers 

feedback to the learner after every action that changes the learner's overall assessment state (Above, At, or 

Below Expectation). In tasks in which every learner action is noteworthy pedagogically, e.g., where learner 

actions consist of answering questions or completing tasks, this approach makes sense. But if the granularity 

of the learners' tasks is smaller, such that the overall pattern of learner actions is of pedagogical interest, 

but not the individual actions, feedback need not be given for each action. The surveillance tutors fit the 

latter category, with learners performing many repetitive small actions. Thus, the Feedback Filter allowed 

only every nth feedback message to reach the learners, where n depended on the subtask.  

Design Failures 

One of the design goals of GIFT is to provide a pedagogically sound approach to authoring a tutor that does 

not require the subject matter expert to understand the elements that make up a tutoring system. The tutor 

author brings his or her content to the system, and the system is primarily responsible for configuring the 

tutor. A part of this design trade-off is that the individual components of the tutoring system can be more 

complex, while reducing complexity overall.  As a specific example, consider the creation of a domain-

dependent model of content applicable to multiple new and unknown application tasks (e.g., modeling how 

to dress wounds in multiple application contexts such as in field, in the home, and in the workplace); this 

task is more complex than modeling the domain specifically for one application (e.g., how to dress wounds 

just at home), but did not require the additional creation of learner modeling techniques, instructional tech-

niques, feedback delivery mechanisms, and other tutoring components.  Although the individual model of 

the domain was more complex, the overall complexity required to make a tutoring system decreased.  This 

approach, while adding work for an individual component (the wound dressing model), gives an overall 

reduction to system authoring cost as applications are expanded. 

The architecture of the Feedback Filter, while a good first attempt, presented several problems. First, it was 

based on the assumption that feedback about individual performance and team performance were of equal 

weight. In reality, the nature of the task and coaching pedagogy would determine this weighting. For a small 

team with tightly interdependent tasks, the individual feedback may be critical for the overall team. For a 

team of people who act more independently, but share a common overall purpose, individual feedback may 

play a stronger role. Also, the approach of simply "passing along feedback" belies the careful strategic 

approach to giving feedback taken by a professional team coach. For the individual, every feedback state-

ment is a criticism, even if taken constructively. While sometimes the bitter pill of receiving feedback can 

be mollified by a framing of "It's for the good of the team," that approach can be used only a limited number 

of times. Thus, team feedback statements and individual feedback statements are not equivalent in impact 

on the learner, and should not be counted as such. Finally, different learners have different tolerances for 

receiving feedback. Ideally, this filter would be personalized for the team member based on a profile of 

whether the learner benefits from more or less feedback (ex. frequent feedback for novices, infrequent 

feedback for experts)..   

This complexity is compounded through the interactions of the various components.  The original GIFT 

architecture called for a single sequential round trip from the learner to the training environment to the 

Gateway Module to the Domain Module to the Learner Module to the Pedagogical Module and then back 

to the Domain Module, to the Gateway Module, to the training environment and to the learner.  This repre-

sents a single loop of human-system interactions.  The above design calls for a parallel linear interaction 

(adding “Team” to each Module), which is tied back into the training environment for multiple learners.  

The human-system interaction is then a product of two loops that interact: one for individual tutoring and 

one for team tutoring.  This makes testing, debugging, and tracking activities more complex, even without 

considering the challenges of time-delayed feedback, the construction of after-action review reports, or 

real-time feedback.   
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One approach to handling this is to create a broader, more generalized version of the Feedback Filter that 

one might call the Learning Experience (LX) Module (Cushard, 2012). Just as companies seek to optimize 

the customer experience they offer, the LX Module would maintain awareness of each team member's 

experience in the simulation: their initial learning profiles, how successful they are, their cognitive load, 

the amount of feedback they've received, how their performance is changing, how much impact they have 

on other team members, etc. – all the factors that a quality professional coach takes into consideration. This 

"executive" module of GIFT would be based on LX models of different team tasks and different team 

structures, so that it could be re-usable from team to team and task to task of the same genre.  

GIFT Design Principles 

GIFT was initially designed to solve complex but definitive problems.  The first of these is the problem of 

lack of standardization, causing increased initial construction cost of the ITS.  The second is the difficulty 

of modifying an existing system to suit new purposes.  These problems were addressed through the separa-

tion of logic and the creation of a common infrastructure.  The goals for team tutoring include the goals for 

individual tutoring with the added goal of being able to provide tutoring to multiple individual team mem-

bers and to the team as a whole.   

Separation of Logic 

Meeting the two goals discussed above starts with the separation of logic.  Separation of logic, or dividing 

the system architecture into maximally separate independent modules, so that each could be updated sepa-

rately for new training situations, is the primary design goal. This approach accommodates shared authoring 

tools, interchangeable instructional domains, keeping experimental control for instructional modifications, 

and other items.  Separating the logic into modules additionally allows for the topic area (domain) of a tutor 

to be changed to another topic (domain) area with relatively minor edits.  Similarly, it allows for the im-

provement of pedagogy across all topic areas through the replacement of a pedagogical module with an 

improved pedagogical module without further change. 

For a team, this issue matters – team assessment is not likely to be held constant across multiple team 

structures.  A good basketball team and a good aircraft maintenance team have both a) different jobs (score 

points, fix planes), b) different measures of what good taskwork is (pass ball and create openings, delegate 

out work), and c) different models of what good teamwork is (communicate frequently, leave people alone 

to work).  It seems possible that a model of team instruction may not be held constant over multiple do-

mains, though it could be that, if well designed, a relatively small set of team models could satisfy many 

domains (e.g., the Pareto 80/20 principal). 

Another approach to consider is a parent-child inheritance hierarchy within modules. For example, some 

pedagogical principles, like "If the learner is getting frustrated, try to offer him/her some small successes," 

might generalize across domains. Other pedagogical principles might be specific to the domain. For exam-

ple, if learning to write complex Excel formulas with multiple nested IF conditions, a principle might be, 

"If the learner can't debug the complex Excel formula, suggest breaking it up across multiple spreadsheet 

cells and building it up piece by piece." This more specific pedagogical principle could be considered to be 

a child class instance of the parent class principle of offering small successes. Thus, a new ITS or ITTS 

could be authored with a generic template of parent class principles, saving significant time, and then add 

more specific child instances as necessary.  This same hierarchical inheritance approach could apply to 

domain models and feedback instances as well.  

Figure 4 illustrates an example of an ITTS architecture that would use this inheritance approach to guide 

members of a medical team: a doctor and two nurses. The tutor contains domain models for general medical 
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task work, along with more specific models of doctor knowledge and nurse knowledge. Also, it contains a 

domain model for teamwork generally, and a more specific instance of that model focused on teamwork on 

medical teams. The domain models would like generate many possible feedback messages for any given 

configuration of world states and learner actions, and pass those messages to Pedagogical Prioritization for 

winnowing. The Pedagogical Prioritization module contains a model of the most general pedagogy, as well 

as more specific models for team pedagogy, and even more specifically, medical team pedagogy. Also, it 

contains pedagogical techniques designed specifically for doctors and nurses. This module would prioritize 

feedback messages based on pedagogical guidelines and pass the surviving options to the Feedback Filter 

or LX Module, which contains models of each of the learners, as well as a team model and sub-team models. 

This overall module is responsible for making sure the learners are not overwhelmed by feedback, and 

would maintain a history of their learning experiences so far so that it can optimize each person's learning. 

This module finally chooses among the multiple feedback messages passed to it and sends them along to 

the learners.  

 

Figure 4: Example of an ITTS architecture featuring hierarchical inheritance models. A doctor and two 

nurses are the team. 

Common infrastructure and Pipeline 

In the same manner as GIFT for individual tutoring is built upon interchangeable modules for the purpose 

of both production and experimentation, a team tutoring architecture should mirror this functionality.  

Achieving the first goal of logic and process separation should allow for the achieving of a second goal of 

a common infrastructure.  Advantages of construction in this manner is the ability to share a common set 

of authoring tools, a data processing pipeline, and standardization of requirements for construction.  While 

these are not explicit architectural principles, they are a desired product of the other principles. 

Individual and Team Tutoring 

For individuals, tutoring is synonymous with individualized feedback and path planning through content.  

For teams, however, teaming items are divided among both taskwork and teamwork.  Taskwork is the tasks 
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that have to be accomplished (it is domain dependent).  Teamwork is how the team is performing with 

respect to itself (it is mostly domain independent).  These items are somewhat separate, as a team can be 

internally consistent and work well together but still fail to accomplish the task.  As a concrete example, 

consider a losing World Cup team; the team is clearly very skilled and works well together, but in this 

specific instance did not accomplish their task. Similarly, it is possible to have poor team performance but 

accomplish mission or task objectives.  As a concrete example, consider a middle school soccer team with 

a single exceptional athlete. The team may perform poorly as a team, but still win because of the individual 

athlete's performance.  Tutoring a team to perform well (taskwork) and to be a functional unit (teamwork) 

are two separate items, but a flexible domain-independent team tutoring architecture should strive to ac-

commodate both goals. 

Team Design Examples – Training Different Types of Teams 

The structure of teams can vary significantly. Teams might have members with different roles, the same 

role, or a mix. Teams may have a central hierarchical leader, shared leadership, or no explicit leader. Team 

members may be co-located or distributed. These are just a few of the different characteristics of team 

structure described in (Bonner et al., 2015).  Also, team tasks themselves can vary significantly in interde-

pendence across team members, independent subtasks performance, and other criteria. In the following 

section we describe two different team tasks with different configurations of roles. 

These two examples highlight the differences that can exist in the roles, responsibilities and tasks of team 

members in different domains. A generalized ITTS framework needs to be flexible enough to allow for the 

authoring of tutors in both of these areas as well as other needed configurations.  

Anti-Submarine Warfare (ASW) Helicopter Team 

Anti-submarine warfare (ASW) helicopter team members have distinct roles with separate tasks. Physi-

cally, using active sonar reveals the position of the sonar system to those within range.  An alternative to 

the use of surface ship mounted active sonar, which effectively announces ship position to enemies, is to 

use helicopter-mounted “dipping” active sonar.  As it is technically difficult to hit a helicopter with an 

underwater-launched weapon without revealing the submarine’s position, this approach to active sonar is 

preferred in many contexts.  The goal of an ASW Helicopter team is to find hidden submarines from the 

(relative) safety of an airborne platform.  The ASW Helicopter team has three key members – a pilot, a 

copilot, and a sonarman, with the primary tasks of flying the helicopter, coordinating intelligence with the 

host ship, and operating the sonar to find submarines, respectively.  Theoretically there is no overlap be-

tween the tasks in each of these roles, while cross-training is common in practice. 

Combat Outpost Guard Team 

A combat outpost guard team has a very different configuration than an ASW helicopter team. The primary 

goal of a combat outpost is to extend the depth of the security area, or provide safety to forward observing 

positions who may be encircled by enemy forces.  There can be many members of a stationed combat 

outpost guard, but a minimum of two posted guards is common. The mission of the posted guards is to 

observe and report on relevant activities they observe outside the secure area until ordered to withdraw, 

advance, or some other order change.  Functionally, each member of the team has the same mission during 

this time period.  
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Team Architecture Design Goals 

Design Goals for Reuse 

GIFT, as originally designed for individuals, can be reused to provide tutoring for teams, provided that the 

tutoring system adequately represents each team member's task role.  As a design approach, this means that 

the individual tutoring for the combat outpost guard team can be identical without any significant change – 

the system can apply the assessments written for the individual for each team member. Reuse of individual 

tutoring is wholesale.  Similarly, changing the individual tutoring from tutoring two individuals to tutoring 

ten individuals playing similar roles involves little, if any, changes.  Similarly, the performance of the team 

can be a more simplistic roll-up of individual performance metrics; the security of the outpost is mostly a 

summation of the security at each point.  The assessment configuration of teamwork performance (e.g., 

communication, coordination, etc. (R. Sottilare et al., 2017)), however, may be able to be reused from 

another domain which is heavily communication-oriented.  

The ASW team, however, has different roles.  Each role has very different responsibilities – piloting air-

craft; tactics and procedure; operation of underwater acoustic sensors.  The individual tutoring that each of 

these learners receives is significantly different; there is little opportunity for reuse of domain content.  

GIFT, however, may reuse all of the other components of tutoring – Learner Module, Pedagogical Module, 

Gateway, etc.  The team performance metrics cannot be a simplistic roll-up of individual performances; 

there is not an additive relationship between 20 seconds of smooth hovering and spotting an enemy subma-

rine.  Alternatively, the performance of the team, or teamwork measures, such as communication and co-

ordination (Sottilare, 2017), may be able to be reused from a training environment similar to the above 

example guard team task. 

The intention behind a team tutoring framework is that, at a minimum, the teamwork tutoring component 

can be reused across instructional domains.  Further, that the generated team tutor can be expanded to 

accommodate additional team members and roles easily.  Additionally, similar to how GIFT does not 

change the Learner/Pedagogical/etc. Modules in order to instruct a new domain, the team tutoring system 

should be able to perform these actions on the team level – keep a history of the team, have a consistent 

instructional model, etc.  This design goal for a team tutoring architecture to support the training of many 

teams has two derived requirements: for the team component to be agnostic to both the domain of interest 

and the structure of the team. 

Agnostic to the Domain 

Firstly, the structure to support team modeling and instruction must be agnostic to the domain of instruction.  

If correctly designed, this is a direct product of modularity.  The ability to shift a team tutor from one type 

of team and task to another is critical to the creation of a team tutor; what good is a team tutoring architecture 

if it can only tutor ASW Helo teams?  One way to think about team taskwork is to think of it as domain-

dependent teamwork. 

Agnostic to Team Structure 

It is possible that different structures of teams should be instructed differently.  The authors, however, 

hypothesize that there are basic models of instruction or principles of teamwork that are applicable regard-

less of team structure.  The hope for such models is that they can be applied as baseline models for many 

types of teams, assuring that all teams get at least some instruction.  An example of a simplistic model of 



 

 

210 

team instruction, similar to the initial simplistic models for individual tutoring GIFT, is “feedback on un-

derperformance given immediately upon observation.”  Another simplistic model of team pedagogy is a 

“speak the same language” model which monitors for vocabulary overlap and gives corrective feedback 

when vocabulary overlap is not observed.  Both of these models are applicable regardless of team size and 

structure, albeit simplistic.  More complex models can be constructed with similar data, as enabled by ar-

chitectural design. 

Design Tradeoffs Considered for Taskwork and Teamwork 

Design Tradeoff Evaluation 

The design tradeoffs will be considered with their ability to provide for the following list of desired features, 

discussed above: 

1. Separation of logic among modules 

2. Ability to provide common infrastructure, such as for authoring tools and database structure 

3. Ability to tutor individually 

4. Ability to tutor team taskwork 

5. Ability to tutor teamwork 

6. Ability to accommodate differing team structures 

7. Ability to accommodate differing team assignments 

8. Ability to be authored 

Option 1 – Do Nothing: The Crowd of Tutors. 

GIFT is capable of team tutoring by default through the use of multiple simultaneous domain models: one 

for each player, one for the team, and others for subteams, if necessary.  This represents the failures of the 

first design, discussed earlier.  This approach provides good scores on the separation of logic and common 

infrastructure.  Upon use of this design, the team is instructed as though it is an individual learner – with 

content mapped to its joint traits, scenarios assigned in an escalating difficulty mastery-learning paradigm, 

and feedback given to all team members.  A direct result is that no individualized feedback is available 

from the system (except on individual tasks created in the individual tutors), but that team taskwork perfor-

mance is the primary means of adaptation.  No team-specific modeling pedagogy is assigned, although 

authoring considerations could provide teamwork items as authored domain-dependently within the Do-

main Module.  The structure does accommodate for differing team structures and roles. One of the primary 

disadvantages of this approach is that each of the learner components acts essentially as a separate, inde-

pendent tutor. Thus, each team member on a three-person team might get feedback from his or her individ-

ual tutor and the team tutor, without those two tutors knowing what each other's feedback was. If the three-

person task involved important pair-wise relationships, then it might require a learner module for each 

individual (A, B, and C), a learner module for each pair of individuals (A-B, B-C, A-C) and a learner 

module for the team (A-B-C). This "crowd" of six independent tutors could lead to significant feedback 

overload and even mixed messages that conflict in their direction. However, much like Selfridge's classic 

Pandemonium model of perception (Selfridge, 1958), in which we recognize objects by having a crowd of 

neural "demons" each simultaneously shouting about the features they see, and listening to the demons that 

shout loudest, a Crowd of Tutors approach could have a filter that quiets all but the "loudest" tutor feedback.  
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Figure 5. Do Nothing option for ITTS design 

 

Option 2 – Individual Tutors for Individuals, Information Reported to Single Team 

Tutor Information (Initial Design). 

The drawbacks of this type of design have been more thoroughly discussed in the earlier sections.  Suffice 

to say that the design allows for individual interchangeability and significant flexibility, but that it does so 

at the cost of the maintenance of many modules.  While the system is capable of tutoring the individual 

team members on taskwork and teamwork, the creation of the logic to assess, give feedback, and post-

process imposes significant burden on the author.  The author must answer the questions of what each team 

member should be performing with respect to his or her individual task, with respect to the overall team 

task (taskwork), and with respect to being a member of the team (teamwork).  This is more appropriate for 

teams such as the ASW team where roles are sufficiently different with little taskwork overlap. 

TEAM 
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Team
Learner

Pedagogical
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Learner 1 Learner 2 Learner 3



 

 

212 

 

 

Figure 6. Initial Design for ITTS 

Option 3 – “Team” Modules for Team Tasks 

In an effort to moderate the complications of authoring team and individual tasks, and to standardize team 

taskwork and teamwork items, a structure of “team” Domain items, team modeling and team pedagogy can 

be considered.  This mitigates many of the problems faced in the initial design.  Further, it allows the 

common tools for team items without being particularly concerned about the individual domains.  Author-

ing tools may be able to be templated for authoring team items, asking streamlined questions for individual 

domains such as “how often should team members communicate?” and “what should elements of a shared 

language or mental model be?”.  

Domain Learner Pedagogical

Gateway

Learner 1

Domain Learner Pedagogical

Gateway

Learner 2

Domain Team Pedagogical

Gateway
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Figure 7. Model of Team Tasking overlaid to individual tutoring 

 

Option 4 – “Role” Modules for Tasks, Team Roll-up 

In an effort to moderate the complications of authoring team and individual tasks, and to standardize team 

taskwork and teamwork items, a structure of “team” Domain items, team modeling and team pedagogy can 

be considered.  This mitigates many of the problems faced in the initial design.  Further, it allows the 

common tools for team items without being particularly concerned about the individual domains.  Author-

ing tools may be able to be templated for authoring team items, asking streamlined questions for individual 

domains such as “how often should team members communicate?” and “what should elements of a shared 

language or mental model be?”. Further, it allows for team member to switch roles and not be penalized for 

accomplishing team goals; as a concrete example if the ASW Pilot and Co-Pilot switch seats but the total 

team mission is still accomplished.  This type of design allows for an ease of authoring, as individual tasks 

can be mapped to one/more roles and evaluated at the “world” level for their accomplishment.  Further, it 

allows for the portability of team pedagogy and models, abstracted from the domain. 

Domain Learner Pedagogical

Gateway

Learner 1 Learner 2

Team
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Team
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Figure 8. “Role” Based Model of ITTS 

 

Design Recommendations for a Team Tutoring System 

Table 1. Table of Design Tradeoffs 

Individual Tutoring Poor Good Good Good

Team Taskwork Good* Good Good Good

Team Teamwork Poor* Good Good Good

Differing Team Structure Fair Good Good Good

Differing Team Roles Fair Good Good Good

Ability to be Authored Poor Fair Fair Good

*Dependent upon authoring

**Many modules, difficulty in commodizing

 
As we have described in this chapter creating a team tutoring framework is a difficult challenge. Creating 

a team tutor is difficult, but trying to account for all types of configurations of teams and retain flexibility 

makes it harder when designing an ITTS framework; achieving generalizability and scalability while not 
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compromising to individual items is fundamentally difficult. We have discussed different possible ap-

proaches of creating an architecture that can support multiple types of team tutoring and different domains.  

At the time of writing, it seems as though the creation of individual roles, logic for mapping individual team 

members to roles, assigning traditional tutoring over roles, and transferring team instructional models be-

tween domains as domain-general team training provides the greatest level of scalability and generalizabil-

ity.  This is what this paper recommends as a path moving forward, although implementation details such 

as “team member to role disambiguation” may prove more difficult than initially assessed. 
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Introduction  

 

With digital technology and the Internet infused in education, the research and practice of learning by means 

of digital technologies, or cyberlearning, is growing quickly. In order to understand how people learn in 

technology-rich learning environments, the computational modeling of learners and groups are of great 

importance to promoting learning science. Considering the interactions of the three forms of cyberlearning 

(individual learning, collaborative learning, and collective learning), we draw from the research of social 

learning, knowledge building, and computer-supported collaborative learning (CSCL). Based on the anal-

ysis of the character of social learning, knowledge building and taskwork, we propose a structure model for 

dynamic team formation and taskwork. The model will enable evaluating the process and effect of 

knowledge building and team taskwork by considering each individual’s contribution to the team. 

 

Infusing Cyberlearning into Classroom Learning 

 

With the expansion of the digital world, every sector of society has been influenced by information and 

communications technology (ICT). The digital world is a combination of the real world and virtual world, 

thus, people’s life style and ways of working have changed from real world to the blended world, as well 

as the ways of learning (Liu, et al., 2017). 

 

Nowadays, learning is not confined to only physical settings, like a classroom, but also happens in cyber 

settings, in either a synchronous or asynchronous approach. Informed by learning science, cyberlearning is 

the use of new technology to create effective new learning experiences that were never possible or practical 

before (CIRCL, 2017). 

 

In 2008, a report on “Fostering Learning in the Networked World: The Cyberlearning Opportunity and 

Challenge” (Borgman, et al., 2008) was presented by the US National Science Foundation (NSF), which 

stated the background for cyberlearning, strategies for building a cyberlearning framework, and opportuni-

ties for action. Cyberlearning offers new learning and educational approaches and the possibility of redis-

tributing learning experiences over time and space, beyond the classroom and throughout a lifetime 

(Borgman, et al., 2008). From the report, it is clear that “cyberlearning” reflects a growing interest in man-

aging the interactions of technology and education, especially concerning the use of Internet and infor-

mation technologies.  

 

China has implemented the ConnectSCS (connecting Schools through the broadband network, connecting 

Classes with quality digital resources, and connecting Students in cyber learning spaces) project since 2011. 

During this period, school Internet access rose from 25% in 2011 to 89.8% in 2017; 85.1% of schools were 

equipped with multimedia classrooms in September 2017; 55% of teachers have used cyber learning spaces, 
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and 38.4% students have used cyber learning spaces by September 2017 (MOE China, 2017). ICT in edu-

cation in China has changed from emerging and applying to integration and infusion. 

 

In China, the “Guidance on active promotion of ‘Internet +’ Initiative” was initiated by State Council in 

July 2015 (China State Council, 2015), with the aim to integrate mobile Internet, cloud computing, big data 

and the Internet of Things with modern manufacturing, to encourage the healthy development of e-com-

merce, industrial networks, and Internet banking, and to help Internet companies increase their international 

presence. Part 6 of the action plan is “‘Internet Plus’ Services for the benefit of people”, with the No. 5 of 

this part focuses on “Explore new service supply mode for education”. The main foci are: (1) encourage 

Internet enterprises and private educational institutions to develop digital education resources and to pro-

vide educational services via the Internet according to market demands; (2) encourage public schools to 

explore the new model of education by using digital education resources and educational services platforms, 

expand the coverage of quality education resources and promote education equity; (3) encourage schools 

to cooperate with Internet enterprises to provide new ways of public educational services for basic educa-

tion, vocational education and so on, by connecting online learning resources and offline learning resources; 

and (4) promote the sharing of online courses in colleges and universities, expand the new cyberlearning 

methods (such as Massive Open Online Courses), explore the system of learning credits recognition and 

learning credits transfer, and accelerate the reform of service mode of higher education. 

 

From the US to China, and from west to east, ICT in education has been paid more and more attention and 

is often regarded as the transformative force to innovate education. With ICT infused in education, the 

learning environment has become more blended, and learning in cyber spaces should be connected with 

classroom learning. It is urgent to understand how to connect different forms of learning in both physical 

spaces and cyber spaces. 

Collaborative Knowledge Building and Cyberlearning 

We consider three types of learning: individual learning, cooperative learning, and collective learning. In-

dividual learning is structured by creating no interdependence among learners; individuals perceive that the 

achievement of their goals is unrelated to other individual performance (Johnson and Johnson, 1978). Co-

operative learning is the instructional use of small groups through which students work together to maxim-

ize their own and each other’s learning (Johnson et al., 1994). It is similar to collaborative learning, which 

emphasizes that learning occurs as an effect of community (Johnson and Johnson, 1999). Collective learn-

ing refers to a conceptualization of learning that takes the structures and processes of social cooperation 

into account as a “reality sui generis” (Miller, 1987). Collective learning represents a macro concept that 

addresses learning at the levels of the team, the organization, and society, which can be conceived as an 

evolutionary process of perfecting collective knowledge (Garavan and Carbery, 2012).  

 

Cyberlearning, technologies are used to facilitate the efficiency of individual learning, cooperative learn-

ing, and collective learning, by exploring connections among human learning, cognition, collective intelli-

gence and technologies, and even artifacts. Cyberlearning not only addresses the next-generation genres 

(types) of learning technologies, but also how people learn in technology-rich learning environments 

through data collection and computational modeling of learners and groups of learners that can be done 

only in such environments (Borgman, et al., 2008). 

 

Modeling of learners and groups of learners is the key to understanding how people learn in the individually, 

through cooperative learning, and collective learning. Since the emergence of intelligent tutoring systems 

(ITS), the modeling of learners has been explored as an important part of the tutoring process. In this Inter-

net age, individual learning, cooperative learning and collective learning could happen hand in hand in a 
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cyberlearning setting, and the modeling of the group should get insights from this collaborative knowledge 

building.  

 

Computer Supported Collaborative Learning (CSCL) was first described as a pedagogical approach 

wherein learning takes place via social interaction using a computer or through the Internet (Stahl, Rosch-

mann, & Suthers, 2006). This kind of learning is characterized by the sharing and construction of knowledge 

among participants using technology as their primary means of communication or as a common resource 

(Stahl, Roschmann, & Suthers, 2006). However, since 2005, CSCL is increasingly deployed in support of 

other pedagogy, rather than as a distinct pedagogical approach (Dillenbourg, Järvelä, & Fischer, 2009). 

Collaborative activities are becoming integrated within comprehensive environments that include non-col-

laborative activities stretching over the digital and physical spaces and in which the teacher orchestrates 

multiple activities with multiple tools (Dillenbourg, Järvelä, & Fischer, 2009). In the research and practice 

of CSCL, the cultural differences of eastern world and western world should be noted. As an example, 

students in eastern world attached great importance to maintaining a harmonious atmosphere and maintain-

ing relationships, which normally leads to a superficial discussion in CSCL. However, students in the west-

ern world are more focused on the learning task, and when their opinions are different from others, they 

usually directly expressed what they thought, which will lead to relatively in-depth discussion (Yang et al., 

2014). 

 

In cyberlearning, the three different forms of learning are dynamically interconnected in both physical and 

virtual spaces, and CSCL provide valuable insights to the collaborative knowledge building in cyberspace. 

In order to deeply understand the group forming process and collaborative mechanism, the following sec-

tion will focus on social learning, knowledge building and team taskwork. 

 

Team Taskwork for Knowledge Building in Cyberspace 

 

Social learning was defined as “a learning theory that emphasizes how people learn from others through 

observation, imitation, and modeling” (Bandura, 1963). In order to stress the dynamic interaction between 

people and the context in the construction of meaning and identity, Reed et al. (2010) defined social learning 

as a change of understanding that goes beyond the individual to become situated in wider social units or 

communities of practice through social interactions between participants within social networks.  

 

Therefore, social learning must (1) demonstrate that a change in understanding has taken place in the indi-

viduals involved; (2) demonstrate that this change goes beyond the individual and becomes situated within 

wider social units or communities of practice; and (3) occur through social interactions and processes be-

tween actors within a social network (Reed, et al., 2010). 

 

Knowledge building could be defined as "the creation, testing, and improvement of public knowledge/cul-

tural artifacts" (Scardamalia, Bereiter, & Lamon, 1994), which is a social and collaborative process to ad-

vance knowledge and ideas of value to a community, with individual learning and growth of members as 

an important by-product (Zhen, 2012). Based on the ontological analysis of our existence as made up of 

three interacting worlds: World 1 (the physical), World 2 (the subjective) and World 3 (the locus of cultural 

products), Bereiter (2002) believed that learning took place in World 2, while knowledge is built in World 

3. One component of knowledge building is the creation of “epistemic artifacts,” tools that serve in the 

further advancement of knowledge (Sterelny, 2005). These may be purely conceptual artifacts (Bereiter, 

2002), such as theories and abstract models, or “epistemic things” (Rheinberger, 1997), such as concrete 

models and experimental setups. 
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Stahl (2000) proposed a model of collaborative knowledge building to describe the process and elements 

of interactions between personal knowledge and public knowledge, as shown in Figure 1. From the figure, 

the relationship of individual learning, collaborative learning, and collective learning could be easily un-

derstood. Social knowledge building was the process of collaborative creation of public, collective 

knowledge, while in the process individual learning is an essential and demonstrable by-product. 

 

 

Figure 1. A diagram of knowledge building processes 

Knowledge building stemmed from an early emphasize supporting individual intentional learning and ex-

pertise and has evolved to emphasize social production and improved collective knowledge. The change of 

this emphasis is of great importance to the design and use of computer-based environments to support 

collaborative learning and knowledge growth. In such a period, how individuals contribute to the develop-

ment of public knowledge and at the same time gain their own individual knowledge are the key for learner 

modeling and group modeling for cyberlearning. Teamwork and taskwork are the two concepts that should 

be considered in the modeling of knowledge building. 

 

Team taskwork refers to those relevant individual behaviors that directly lead to the successful accomplish-

ment of collective goals (Salas, 2015), while teamwork on the other hand describes the activities performed 

by a group of people focusing on how they work together. Teamwork consists of behaviors that are related 

to team member interactions and are necessary to establish coordination among individual team members 

in order to achieve team goals, whereas taskwork consists of behaviors that are performed by individual 

team members and are critical to the execution of individual team member functions (Morgan et al, 1986). 

Team performance is comprised of both teamwork and taskwork. Measuring teamwork requires identifying 

dimensions of teamwork or processes that comprise the teamwork construct, while taskwork requires iden-

tifying individual behaviors and therefore the specific team functions (Yeboah-Antwi, et al., 2013).  

 

The study of teamwork is becoming popular in service, hospitality, and tourism organizations because of 

its influence on service quality, productivity, and organizational effectiveness (Jong, Wetzels, & Ruyter, 

2008); Hu et al., 2007). Teamwork can be used as a knowledge building activity or a creative learning 

strategy. How to model teamwork and taskwork to promote the best performance of groups is still a chal-

lenge for technology-enhanced group learning.  

 

Intelligent tutoring frameworks like Generalized Intelligent Framework for Tutoring (GIFT) should include 

support for team taskwork (Sottilare et al., 2011). A typical Intelligent Tutoring System (e.g. GIFT) is 
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considered to have four major components: the domain model, the student model, the tutoring model and 

the tutor-student interface model. An ITS could be enhanced to include a group model. The proposed dy-

namic group model consists of two parts. One part is distributing different students into groups in an online 

system relying on the structure of student model and tutoring model, which is mainly focusing on group 

formation problem. The other part is supporting team taskwork with the consideration of the structure of 

the domain model, which is mainly focusing on profiling taskwork and team assessment.  

 

Profiling Group and Group Processing 

 

The collaboration between people in a virtual environment can be used as an important part of knowledge 

building. This trend is also reflected in the field of education in which students collaborate via an Intelligent 

Tutoring System. The increasing popularity of Intelligent Tutoring Systems has enabled students with dif-

ferent characteristics, skills and background to collaborate with each other in a teamwork setting, especially 

when students need to collaborate in different short-term groups, but each turn changes their role in the 

team. So to improve team performance and service quality, guarantee productivity and effectiveness of a 

team, we will put forward a model to identify dimensions of teamwork or process in collaborating learning. 

 

There exist several methods which solve a group formation problem in the educational domain (Isotani et 

al., 2009). The significant part of these methods focuses on long-term groups which collaborate on complex 

tasks during several days or even weeks. A minority of existing methods are aimed to propose short-term 

groups, but they usually consider only a single assignment of students into groups ignoring following col-

laboration. One of the most cited group formation models is Tuckman’s small group development model. 

Tuckman proposed a model with four stages of group development: forming, storming, norming and per-

forming in 1965. Then Tuckman and Jensen reviewed the original model and added a final stage called 

adjourning in 1977, as shown in table 1 (Tuckman & Jensen, 1977).  

 

Table 1. Stages of Group Development (Tuckman, 1965; Tuckman & Jensen, 1977) 

Attributes 

Group Structure 

The pattern of interpersonal relation-

ships; the way members act and relate 

to one another. 

Task Activity 

The content of interaction as related to 

the task at hand. 

Forming: 

orientation, testing and de-

pendence 

Testing and dependence Orientation to the task 

Storming: resistance to 

group influence and task 

requirements 

Intragroup conflict  Emotional response to task demands 

Norming: 

openness to other group 

members 

In-group feeling and cohesiveness de-

velop;  new standards evolve and new 

roles are adopted 

Open exchange of relevant interpreta-

tions;  

intimate, personal opinions are expressed 

Performing: 

constructive action  

Roles become flexible and functional; 

structural issues have been resolved; 

structure can support task 

Interpersonal structure becomes the tool 

of task activities; group energy is chan-

neled into the task; solutions can emerge 

Adjourning: 

disengagement  

Anxiety about separation and termina-

tion; sadness; feelings toward leader 

and group members 

Self-evaluation 
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Tuckman’s model has been already successfully applied to localized long-term study groups, but it is less 

suitable in online environments where storming and norming are sometimes short-circuited. However, 

Tuckman’s model laid a solid foundation for many other specialized groups’ lifecycle models as the attrib-

utes are key to long-term groups and distributed groups (e.g. those created in an ITS). Another model with 

a four-step scheme focuses on short-term group formation in a virtual learning environment (Daradoumis, 

et al. 2002). This model shows more details about how groups form in online learning environments (Table 

2). 

 

Table 2. Description of the group formation process (average duration time: 8 days) 

 
When Why How 

Initiation 

Initial action of 

the approach 

(duration: 2 

days) 

To initiate students into the new 

experience of virtual collabora-

tion and to enable them to under-

stand the notion and function of 

collaborative learning groups. 

All students collaborate together to re-

solve a specific case study about what 

they need to know and do in order to 

construct effective virtual  collaborative 

learning groups 

Introduction 

Second action 

of the approach 

(duration: 1 

day) 

To provide both one's own and 

other relevant information in or-

der to enhance a deeper 

knowledge of each other and to 

promote a better interaction. 

Students should work out a personal re-

port with important information, such as 

personal data, expertise level, work pace, 

available working time, temporal coinci-

dence, goals, and attitudes to collabora-

tive learning, social aspects of collabora-

tion, and previous experience in group-

ware. 

Negotiation 

Third action 

of the approach 

(duration: 4 

days) 

To form a learning group that 

satisfies both individual and 

group goals or to search for an 

open group that fits better one’s 

personal goals and needs. 

Each student initiates a negotiation pro-

cess either with individual candidate 

members whose characteristics match 

with his/her own in order to form a relia-

ble and effective learning group or with a 

possible open group in order to become 

an active member of it. 

Group Pro-

posal 

Final action 

of the approach 

(duration: 1 

day) 

To inform and ask the tutor to 

approve the definite formation of 

a learning group and the initia-

tion of the next collaborative 

phase. 

A member of the recently constructed 

learning group informs the tutor about 

the group’s constituent members, facili-

tates each member’s data and asks for its 

final approval. 

 

The main focus of our research is to support both short-term and long-term virtual groups. These dynamic 

groups exist especially in online learning systems in which students can choose the time, the content and 

the place they want to study, such as Intelligent Tutoring System (ITS), thus, groups need to be created in 

real time with consideration about students’ skill, knowledge and learning context. 

 

Considering both the characteristics of individuals and the characteristics of teams, we propose a structure 

model useful for dynamic team formation and evaluation. The model includes grouping, taskwork initiating, 

team working and group assessing. All information generated during collaboration can be stored in a data-

base (in Figure 2). In this part, we describe our model of the grouping function first, and represent the 

taskwork part in the following section. 
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Figure 2. A structure model for dynamic team formation and evaluation (DTFE Model) 

The main goal of the first stage of group development is how to distribute students into groups, known as 

group formation. Instead of selecting students randomly or grouping them manually by a teacher, automatic 

computer-supported methods are proposed. When identifying learning objectives (includes the learner’s 

objective, peer’s objective, and his/her group’s objective), several individual factors need to be considered, 

including knowledge level, learning styles, student’s preference. We can describe the user’s characters by 

the ABC User model (Abhiraj & Rodney, 2013). The ABC User model can track affective states, behavioral 

and cognitive states and patterns of the users and analyze the states and patterns of the user which can 

provide an adaptive e-learning environment.  

 

During the grouping process, each group is in one of three states, including assigning groups, adapting 

groups, and running groups. Assigning groups is at the beginning of grouping which focus on initiation 

action and introduction. Adapting groups focus on negotiation as the members of a group did not know 

each other before, and they need some time to identify and learn about their peer learners. In running groups, 

group members have a good interaction with each other and are well-prepared for the next step of collabo-

rative study.  

 

Dynamic modeling taskwork for cyberlearning 

 

Taskwork results in observable group performance and by the method of team-based assessment, partici-

pants will learn how their team is doing and whether they have achieved the learning goal. The taskwork 

part of the model consists of three functions, including taskwork initiating, team working, and group as-

sessing (Figure 2). It has a strong relation to the domain model and user-interface model in ITS. 

“Taskwork initiating” describes the series of learning activities for accomplishing the collaborative task, 

including discussion, decision, peer instruction, and sharing documents. For a collaboration group, the 
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grouping process organizes some learners together, and the learners form a set of a certain size and structure, 

but this collection does not have the interactive elements of the collaborative group. While the grouping 

process is transparent to learners, learners do not realize that they exist in a group and are about to establish 

a connection with others. At this stage, learners should be integrated into the collaborative group, not only 

to clearly recognize the various attribute parameters of the collaborative group, but also to identify the 

environment of the collaborative group. Specifically, the primary task in this phase is to identify learning 

goals, roles and principles, including the goals of individuals and the entire collaboration group, to under-

stand the roles of individuals and others, to be familiar with the principles in which their collaborating 

groups interact and complete collaborative tasks, and so on to prepare for learning behavior. 

 

“Team working” describes how team members coordinate with each other, including goal specification, 

mission analysis, conflict management and progress monitoring. After the group preparation phase, the 

attribute parameters of the collaboration group and the control parameters related to the specific learning 

task have been determined, and the collaboration group members can collaborate on the realization of the 

common goal. In the process of learning specific content and filling a particular role, the members of the 

collaboration group need to provide a variety of content materials, courseware and other resources. The 

basic material, tools or corresponding functions of a collaborative learning task can be provided to support 

them. The interactive behaviors of collaborative members at this stage will be recorded as a basis for as-

sessment. 

 

“Group assessment” refers to the criterion to evaluate a team’s performance including both the accomplish-

ment of the learning objective (test scores, academic performance), and the degree of collaboration in the 

group. After team working, the collaborative group members enter the test evaluation phase. The content 

of the test includes the completion of the learning goal and the degree of collaboration in the collaborative 

group learning process. The completion of the learning goal can be tested by means of general teaching 

quality, and an evaluation of the degree of collaboration that can be accomplished by the measurement of 

cohesion strength in the cooperative group. The results obtained through online testing are recorded in the 

report and evaluation database, which can be used to characterize the degree of collaboration of a collabo-

ration group and be stored in the corresponding collaboration file. 

 

The team assessment is a fully automated, web-based function that helps a team better understand its sus-

ceptibility, strengths, and weaknesses, as well as those areas where team members have significantly dif-

fering perspectives. For assessment, there exist some lessons in GIFT Analysis Construct. The GIFT Anal-

ysis Construct emphasizes the evaluation of the effect on learning, performance, retention and transfer. The 

goals of GIFT Analysis Construct are to support the conduct of both formative and summative assessment, 

to provide diagnose for identifying areas for individual’s improvement, to understand how learning is pro-

gressing. These goals lay a solid foundation for why we put forward DTFE model. 

 

At present, collaborations among learners happen in many web-based learning systems. Therefore, the 

study on group formation has a significant effect on knowing more details about the process of online 

collaborative learning. Although there are many existing methods for grouping formation, our concern is 

how to create dynamically both short-term and long-term groups repeatedly and automatically without the 

intervention by teachers. Future research will undoubtedly be needed to develop the system to realize the 

proposed DTFE Model and test the effectiveness of the model.  
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CHAPTER 22 – DEVELOPING THE GIFT EVENT REPORT TOOL TO 

SUPPORT EXPERIMENTATION FOR TEAMS  
Michael W. Boyce1, Anne M. Sinatra1, Stephen B. Gilbert2, Robert A. Sottilare1 

U.S. Army Research Laboratory1, Iowa State University2 

Introduction 

The Generalized Intelligent Framework for Tutoring (GIFT) is an open source framework for creating In-

telligent Tutoring Systems (ITSs). GIFT can provide tailored instruction and remediation that takes into 

account   the current state of the learner, and learner attributes such as individual differences in various 

domains (Sottilare, Brawner, Goldberg, & Holden, 2012; Sottilare, Brawner, Sinatra, & Johnston, 2017). 

GIFT is available in both downloadable and in online form (known as GIFT Cloud at https://cloud.gifttu-

toring.org). GIFT includes authoring tools that can be used to create “GIFT courses,” which are a sequence 

of materials, questions, and instruction that is presented to a learner. While GIFT is primarily a system for 

authoring ITSs, it can also be leveraged for use in experimentation in both traditional and ITS relevant 

experiments. For the purposes of experimentation, one of the major advantages of GIFT is its ability to 

extract participant data from GIFT courses through the use of either the desktop based Event Report Tool 

(ERT) or the GIFT Cloud Event Report Tool (Cloud ERT).  Each time learners participate in a GIFT course, 

a log file is created that includes all of their entered data, responses to questions, and a record of their 

actions. Using the Event Report Tools, experimenters can select the specific GIFT data pieces of interest 

and export those as comma separated value files, which can be easily imported into Microsoft Excel. The 

Army has expressed a growing need for applying ITS approaches to teams, through Intelligent Team Tu-

toring Systems (ITTSs).   There is also an increase in interest in developing GIFT Cloud to provide a proper 

mechanism for collecting team-based data. Part of creating a framework for ITTSs is not only providing 

guidance and authoring tools for the collection of team performance data, but also export tools that provide 

data in an understandable way. While both the team authoring and export aspects of GIFT are not currently 

implemented, this chapter’s focus provides a starting point on how to make the export tools (ERT) more 

suitable for team-based data collection. The current chapter will focus on the team elements, while also 

providing recommendations for overall improvements to the ERT’s flow and organization. Although the 

emphasis is on teams, the suggestions provided can help individual-based data collection as well. 

The structure of this chapter begins with a discussion on the related literature to date on data reporting for 

teams. It then looks at challenges that are faced by researchers trying to run experimentation with teams on 

GIFT and the needs they have. This follows with some high level recommendations to fit those needs, and 

concludes with an initial mockup of potential future ERT functionality.  

Related Literature 

History of Intelligent Tutoring Systems to Support Teams 

There is a vast literature expressing the characteristics of team training, team tutoring, and team perfor-

mance metrics that is well beyond the scope of this chapter, but a high-level discussion can assist in provid-

ing context for the rest of the chapter. There have been a couple of attempts at developing team tutoring 

systems. The Advanced Embedded Training System was developed by the Navy to support team training 

on ships (Zachary et al., 1998). The system acted as a support tool to reduce workload. It performed less 

than optimally because the amount of feedback in a real-time team scenario turned out to exceed the capa-

bilities of the instructor to provide remediation, thereby reducing performance. More recently, researchers 

using the Team Multiple Errands Task (TMET) were able to quantify and assess team performance without 

https://cloud.gifttutoring.org/
https://cloud.gifttutoring.org/


 

 

228 

demonstrating ceiling or floor effects (Bonner et al., 2016; Walton, Gilbert, Winer, Dorneich, & Bonner, 

2015). This computer-based task, which involved coordinating with a team and purchasing items from a 

list, had strong team characteristics and necessitated interdependence from the team members. 

Sottilare and colleagues (Sottilare, Burke, et al., 2017) performed a large scale meta-analysis on connecting 

teamwork behaviors (communication, coordination, cognition, etc.) to the appropriate team outcomes 

(learning, performance, satisfaction, and viability). Their research focused on team measurements being 

represented by attitudes, behaviors, and cognition (Sottilare, Burke, et al., 2017). Understanding the states 

and traits of an individual and how those relate to the progression of goals can provide guidance on specific 

actions during a tutor event. The research resulted in identifying six sets of behavioral markers: trust, col-

lective efficacy, cohesion, communication, and conflict / conflict management (Sottilare, Burke, et al., 

2017), which can assist in measuring team behaviors. While this research focused on a large scale meta-

analysis of the team literature, the majority of the articles available were in non-computer based and non-

ITS related areas. Additionally, the behavioral markers identified must still be operationalized in order to 

be implemented in an ITTS. This research demonstrates the need for further investigation on learning with 

teams and the complexities that come with ITTSs. 

Teams and Learning through Data 

Teams of two or more are the building blocks for all military collective performance. It is important to be 

able to quantify how teams are performing relative to their stated goals, the solutions being generated to 

solve team problems, and how the complex challenges from the military are being met (Sottilare, Burke, et 

al., 2017). Past research identified some of the big challenges in developing ITTSs. This includes: measur-

ing team performance, improving team performance, and studying team formation and development 

(Dorsey et al., 2009; Sottilare, Burke, et al., 2017). A defining characteristic of an ITTS is that it needs to 

account for individual interactions as well as team interactions with the tutor, and take into consideration 

the external factors associated with the environment of interest (Bonner et al., 2016; Gilbert et al., 2017). 

Since team skills contain social components like communication and coordination, it becomes harder to 

represent them quantitatively (Gilbert et al., 2017). In the military, communication and coordination can be 

manifested through collaborative learning or cooperative learning.  

Irrespective of the type of learning, these additional components increase the amount of data available 

exponentially as each additional learner is considered (Bonner et al., 2016). Team data can come from a 

variety of sources such as real time learner data, learner states determined from classification, and long term 

attributes established from previous data (Sottilare, Burke, et al., 2017). Data can be used both as a source 

for experimentation or as a basis to shape the learner experience. A challenge for ITTSs is being able to 

transform data based on empirical hypotheses into a format that can be readily interpreted and understood 

(MacAllister et al., 2017).  

When conducting research with an ITTS, there are four forms of data to collect and analyze. The first type 

is the low-level data such as users’ interface clicks, movements of entities in a system, and timing between 

events. These data are typically passed along to the tutor to trigger real-time feedback. This process is what 

VanLehn (2006) called the “inner loop” of an ITS. To analyze team data, one might conduct a “team loop” 

process, in which the behaviors of the team as a whole (a second type of data) are sent to the tutor to generate 

team feedback. The third type of data is present in VanLehn’ s “outer loop” process, in which data about 

users’ accumulated skill profile or learner model (not their real-time clickstream) are used to choose the 

best next training scenario for them based on the skills that need bolstering. The fourth type of data are 

those that are averaged across multiple teams and used for statistical analysis by researchers to evaluate 

learning effectiveness or the usability of the system (sometimes called educational data mining or educa-

tional data analytics). Each of these four types represents four different forms of data-based decision making 

that need to be made by either the tutor or the researcher (Gilbert, Dorneich, Walton, & Winer, in press). 
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Past research using GIFT with teams made strides on increasing understanding and working with data 

through visualization.  Data Visualization is the presentation of data in a graphical format so that it is easier 

to understand (Chen, Härdle, & Unwin, 2007). Data visualization can assist in organizing and grouping 

information to make it align with the mental model or schema of decision-makers with many different styles 

and techniques available (Bertini, Tatu, & Keim, 2011). Data visualization can be static (i.e. a snapshot of 

user / team performance) or it can be dynamic (e.g. a dashboard with consistently updating information). A 

data visualization can be passive, such as a view that can’t be changed or it can be interactive where indi-

viduals can modify the data as needed and the data is rendered to represent those changes. Data visualization 

can also be expanded to encompass related information that is not directly represented within the data (Chen 

et al., 2007).  As datasets become larger, individuals are forced to comprehend this data quickly and accu-

rately.   

Research conducted at Iowa State University used multiple techniques to manipulate and represent data for 

two-person teams. The researchers created customized post-processing solutions to be able to represent 

team variables (Gilbert et al., 2017; MacAllister et al., 2017). They also created a timeline chart, which 

provided information on the specific activities participants were doing during critical points in the experi-

ment (MacAllister et al., 2017). While the output created was highly task-dependent, the approaches that 

they used (i.e. time series analyses), and data they extracted are relevant in determining the types and group-

ings of data that are relevant to extract from an ITTS (MacAllister et al., 2017). 

Outside of the military environment, Dashi (2016, 2017) used Excel to generate macros to analyze student 

data. The data could be analyzed in a post processing format or during a class as they were interacting with 

an online learning platform, as well as creating pivot table solutions to better visualize the data. Specifically, 

student engagement was quantified through metrics such as mouse clicks, page views, and quiz scores. Data 

representations like these can provide insight on both the underlying empirical data and the complex rela-

tionships which often accompany team-based research studies.  

Information and Data Visualization Foundations to Support Understanding  

In developing concepts for improvements to the ERT, seminal research by two of the key contributors to 

the area of information and data visualization were examined: Ben Shneiderman and Edward Tufte. 

Shneiderman, a leader in the field of human-computer interaction, developed a list of “Eight Golden Rules 

for Interface Design” such as consistency, informative feedback, and reducing short term memory load (B. 

Shneiderman & Plaisant, 2005).  He also developed a task by data type taxonomy to support data visuali-

zations where he created his mantra for visual information seeking: “Overview-first, zoom and filter, then 

details on demand.” He breaks this down further into seven tasks when working with data visualizations: 

 Overview – Provide an overview of the entire interface 

 Zoom – Zoom in on areas of interest 

 Filter – Remove non-relevant items 

 Details on Demand – Provide ability to select specific items for more information 

 Relate – Show relationships among items 

 History – Maintain a history to support undo 

 Extract – Allow for collections of subsets of the data (Ben Shneiderman, 1996) 

 

These tasks are similar to the tasks that an individual might complete when using the ERT. 
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Edward Tufte is one of the key figures in maximizing the understanding of data representations. Tufte had 

four primary themes that echoed through his writings: graphical excellence, visual integrity, maximizing 

the data to ink ratio, and aesthetic elegance. 

 Graphical excellence refers to expressing the greatest number of ideas in the simplest form as pos-

sible, using minimum amounts of space, and the fewest words. 

 Visual integrity refers to having numerical scales that are proportionate to the values they represent. 

They should be tied directly to the data, rather than any sort of artistic interpretation.  

 Maximizing the data-ink ratio refers to comparing the amount of ink needed to describe the data as 

opposed to the total ink used for illustrative purposes. The visualization should be less distract-

ing and more useful for the user.  

 Aesthetic elegance, in Tuft’s view, is being able to clearly and simply display the complexity of 

data that is being represented via figures and tables (Tufte, 1983). 

 

As organizing team data and output is a complicated and information-intensive task, it is important to con-

sider visualization heuristics that will make the process easier to understand for users. It is through learning 

from previous research on teams, learning with ITTSs, and information visualization that we use to frame 

our concepts and mockups for improving the ERT for teams. However before going into improvements, 

there is a need to understanding the difficulties of running a team experiment in GIFT. 

Challenges and Functional Needs for Team Experiments  

When researchers retrieve data from an experiment, they face challenges to overcome and functional needs 

that must be fulfilled in order to support team based research. 

Challenges 

Tool Selection: Desktop vs. Cloud ERT 

After collecting data, researchers can select the types of data that they want to extract from logs using 

GIFT’s ERT. The ERT includes data categories such as survey responses, learner state, and more. However, 

researchers must decide whether to use the Desktop ERT or the Cloud ERT.  

Both the Desktop and Cloud ERT architectures are currently configured to focus on individual learners. As 

mentioned earlier in the chapter, the shift from desktop to the Cloud is resulting in different requirements 

for the ERT and ultimately a redesign to improve usability. The Desktop ERT has can produce greater 

granularity and the ability to handle sensor based data, which the Cloud ERT cannot. The Cloud ERT 

focuses more on usability, but has limitations in regard to the types of data that can be extracted and the 

organization of the data.  

For instance, the data from the Desktop version is pulled from an output folder in the GIFT installation 

folders, and allows experimenters to individually select the log files that they wish to include in the analysis. 

In the case of the Cloud ERT, all data from the specific instance of the course is housed online, and the 

output includes all logs relevant to the experiment. This may result in issues if there are participants with 

missing data or who had technical difficulty during the data collection. Experimenters need to realize that 

all participants were included and edit their output file appropriately to remove the data that should not be 

included. A current work-around for this issue is to download the log files from the cloud and import them 

into the Desktop version for analysis. However, this is not the ideal long-term solution.  Below we discuss 

an improved approach for the Cloud ERT system. 
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Data Representation: Working with and Merging Data 

Next, researchers need to decide the format for their data output. Currently, when experimenters want to 

collect data from an experiment run on GIFT Cloud, they have two options: download all of the raw data 

logs in order to export them using the desktop based ERT, or build a report by selecting the specific infor-

mation of interest. If experimenters decide to build a report, they must first choose from frequently reported 

event types, training application event types, and other event types. Depending on the type of data that is 

included in the report, experimenters can select an option to combine all data for a single user onto a hori-

zontal line. This option is useful in regards to survey output, and it facilitates the import of the output file 

into Excel or SPSS for further analysis.  

It is important to note that in the Desktop ERT, experimenters have the option of merging data by certain 

characteristics like Use rid or Username, whereas in the Cloud version, the merging occurs based on the 

specific log and user session. While in most cases this would not be a problem, it may be helpful to include 

survey questions within a course which asks for a Use rid so that it is clear which user the data came from 

when the data file is output. Currently, one of the solutions for identifying how to group team data would 

be to include questions within the course that requires the team number and participant number to be en-

tered. The data could then be sorted by the experimenter after it is output.  

Participant number management is particularly important in the online ERT, as currently the only way to 

extract data from Cloud GIFT is through using the Publish Courses function and distributing links to par-

ticipants that do not require logins. Due to this lack of a login requirement, the data logs that are being 

parsed are not associated with any particular participant number. It is important for the experimenter to 

realize this and include a question in their data set that asks for this information. 

Functional Needs of the ERT 

High-Level Needs 

The high-level needs consist of those that could be applied across all experiments, which includes team-

based experiments. They are discussed here to show both the potential of larger scale changes, and to de-

lineate general changes from those that are especially relevant to teams. 

Ontological Mapping of Across Levels of Data  

To facilitate effective analysis, data needs to be encapsulated into a hierarchical model. At the lowest level 

is the raw data that is streamed from the system, it could be combined with data collected by human exper-

imenters. Above that level are tools and methods to organize and present data for analysis. At the top level 

of the hierarchy is the collection of analyses compared against criteria for successful completion (Gilbert 

et al., 2017). Implementing this into the ERT will require a visual way for researchers to select and organize 

the log files that are being analyzed for the output. 

Interface Enhancements to Work with Complex Experiments  

One of the successes of the latest redesign of GIFT has been the incorporation of easier to use interfaces. 

This includes features like being able to drag and drop course objects in course authoring. In the same vein, 

an experimenter needs to be able to drag and drop experiment objects to represent their experiment design, 

much like what is possible in current leading experimental design software applications such as E-Prime 

(Schneider, Eschman, & Zuccolotto, 2002) and Open Sesame (Mathôt, Schreij, & Theeuwes, 2012). Rather 

than reinventing the wheel, integration with these software tools might provide the necessary infrastructure 

to better support experimenters using GIFT. 
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Matching Capabilities Between ERT Tools 

As mentioned in the previous section, experimenters must choose between the Desktop ERT and the Cloud 

ERT. This presents a problem for most experimenters using GIFT because they are not going to have a 

clear understanding of the capability differences between the ERT tools unless they try to perform a func-

tion that exists only in one tool or the other. Since the ERT is a post processing tool, it does not have the 

runtime restrictions that experiments visualizing live data might require.  

Scaffolding for First Time Users 

The first time someone attempts to use the ERT, there needs to be scaffolding which demonstrates how the 

ERT works. This could be in the form of an instructional overlay with coach marks, where GIFT highlights 

a series of user interface features to show them how the ERT works. Although this is currently done using 

documentation and videos, a short action-based (non-voice) tutorial could help. It could be done by keeping 

track of every time a GIFT user enters a new part of GIFT that is unfamiliar. Then, after they see the tutorial 

once, they do not have to see it again. However, it could be retrievable again from a help menu or button 

on the screen if users feel that they need a refresher. 

Linking to Data Sources 

Linking to the sources of data can ensure that an experimental measure is being used as it is intended to be 

used. This could be done by providing references to previous data repositories, published research papers, 

or user’s guides. It may also be of benefit to provide recommendations of related measures or data sets that 

might be of interest to the experimenter. 

Team-Specific Needs 

It is important to note that team experiments have different needs than individual learning experiments. The 

ERT can be improved and redesigned to allow researchers to include options to better frame team experi-

ments, and provide easier to deal with data output. A few needs that we have identified include the follow-

ing. 

Team Variables 

There needs to be a way to set team-specific variables that are dependent on multiple users before the data 

is requested from the ERT. This type of change can also have relevance to improving the log file analysis 

problems that exist in the current Cloud ERT. If specific user data logs could be selected in the ERT, and 

potentially grouped by the experimenter, it would assist in solving these problems. For instance, if the 

experimenter included questions such as “User ID” and “Team Number” in their questions, then perhaps 

these could be displayed to experimenters for selection as they begin analysis.  

Pre-Processing of Experimental Data 

Ideally, the ERT would begin the analysis process by populating the available logs on the screen for the 

experimenter, and instead of listing a title in the form of a string that does not have meaning to the experi-

menter. The title could pull specific values from the surveys in the file such as Use rid or Participant Num-

ber. This could be achieved in two ways: 1) creating standard questions that should be asked of all partici-

pants if it is indicated that an experiment is being created (e.g., “Use rid”, “Participant Number”) or 2) 

providing experimenters with a way to select specific survey answers that they want displayed as log titles 

for ease of use. Regardless, selectivity of specific logs and visibility of the participant identification are 

essential features as the Cloud ERT moves forward. 



 

 

233 

Considerations and Mockup for a TEAM ERT 

While the overall ERT would benefit from a thorough redesign that is focused on usability and functionality, 

it would be helpful to start from a design that is both helpful for individual and team data. While researchers 

often take individual data and compile it in a single line of a large spreadsheet that has data from all partic-

ipants, the design of the output file or features may look differently in a team setup. It might be helpful to 

have a way to easily determine which individuals were part of the same team, and to group their data close 

to each other in the output spreadsheet, or to even provide outputs that are specific to individual teams. The 

design of the ERT interface and functions needs to support multiple types of teams, multiple types of tasks, 

and different size teams, among other considerations. Therefore, it needs to be highly configurable and 

include highly generalizable functionality. Then a potential second level could be to represent those 

measures of team performance that may not necessarily be an aggregate of individual data.  

It is important for the interface to elicit the following information from the researcher: 

 How are team groupings identified in the data? (e.g., are they an entry in a specific survey field?) 

 How are team roles represented in the data? Are team roles unique or duplicated? 

 What are the team performance variables and what are the individual performance variables? 

 Should data output be separated at the team level or the individual level? 

Current Cloud ERT Design 

Figure 1 represents the current interface screen of the Cloud ERT. . In the figure it can be seen that each 

event type requires a check box next to it to be included in the output report. Additionally, there’s a single 

check box for merging each participant’s events into a single row. However, all participants are included 

in the outputs and there’s no way from the assigned log file numbers to tell which participant is which. 

Therefore, it would be helpful to have an earlier screen which allows for definition of the type of study 

(team or individual), and asks the user to define the above questions that will be used to help parse the data 

if it is a team study.  

  

Figure 1. A screenshot example of the current Cloud Based Event Report Tool selection screen. 
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Mockup for ERT for Teams 

A mockup for the ERT for teams can be seen in Figure 2. Attention was paid in the mockup to the design 

of the initial experimental set up screens to support the experimenter. The mockup is meant to provide an 

overview on the potential options that are available (per Shneiderman), and the screens are meant to be as 

simple and clear as possible (per Tuft’s graphical excellence). As mentioned above, it would be to the 

benefit of the experimenter to tell the ERT the relationship among the participants and their relationship to 

the data.  "Import your data" allows the researcher to use data files from various statistical or data manage-

ment formats. "Define experimental conditions" allows the experimenter to set up relationships. "Create 

new variables" provides a way to build team-specific variables from existing data. For the purposes of this 

discussion, we will focus on the process for defining experimental groups. 

 

Figure 2. Mockup of ERT for Teams Selection Screen 

The screen for defining experimental groups is shown in Figure 3. An experimenter would be able to set 

the relationship for each participant in terms of team and experimental condition. Participants could be 

assigned to more than one team, and they could also be assigned to more than one condition (in the event 

that the participant is going through the experiment more than once). As the experimenter would set the 

different groupings, GIFT would begin building a visual map of the structure. The assignment of groups 

and conditions could be modified to fit the researchers need (such as randomization). Once experimenters 

are finished making the selections, they would then move ahead and review their assignments.  

 

Figure 3. Mockup of the Define Experimental Groups Screen 
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Figure 4. Mockup of the Review Participant Assignments Screen 

Then the experimenter would have the chance to review and edit their assignments as necessary, which is 

shown in Figure 4. This is designed to mimic a flow chart where each relationship is defined by a line 

connector. Experimenters could add participants, move them between conditions and groups, and have a 

visual representation of how the experiment is set up. This design could potentially leverage a lot of existing 

GIFT functionality such as the zoom in and zoom out capability (make the diagram bigger or smaller when 

there is a need to focus on a specific participant or group of participants) of the authoring tools and the add 

/ delete nodes of GIFT conversation trees. Also relevant here is the experimenter’s ability to select each 

participant and view what measures are associated with them. This measures dropdown could be expanded 

to create and map measures similarly to experimental groups.  

Conclusions and Recommendations for Future Research 

This chapter offers suggestions for improving the current data export tools and ERT in GIFT so that they 

are more efficient and can be used to support team data extraction. The recommendations for updates to the 

ERT will not only be helpful from a team perspective, but will also provide researchers who are doing non-

team research with more power and control over their data which is collected in Cloud GIFT. Improving 

usability in the ERT’s design will ultimately make it more straightforward and result in increased use by 

the GIFT community. Additionally, allowing for flexibility in the way of defining teams within the ERT 

can also provide opportunities to leverage the team features for use by instructors in the classroom who are 

examining subgroups of student answers or in class team assessments. Designing an ITTS framework is a 

difficult challenge, but by focusing on identifying generalizable elements of team data analysis, and includ-

ing tools that lessen the burden on the experimenter it is likely to be achieved. Although this is only a 

mockup, a first step with open questions still to be answered, this chapter could be, in the words of Ben 

Shneiderman:  “A useful starting point for designing advanced graphical user interfaces…”(1996).   
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Scaling Up Success: Lessons Learned from Technology-based Educational Improvement, was published 

by Jossey-Bass in 2005. A second volume he edited, Online Professional Development for Teachers: 

Emerging Models and Methods, was published by the Harvard Education Press in 2006. In 2007, Mr. Dede 

was honored by Harvard University as an outstanding teacher. 

Dr. Sidney D’Mello (PhD in Computer Science) is an Associate Professor in the Institute of Cognitive 

Science and Department of Computer Science at the University of Colorado Boulder. He is interested in 

the dynamic interplay between cognition and emotion while individuals and groups engage in complex real-

world tasks. He applies insights gleaned from this basic research program to develop intelligent technolo-

gies that help people achieve to their fullest potential by coordinating what they think and feel with what 

they know and do. D’Mello has co-edited six books and published over 220 journal papers, book chapters, 

and conference proceedings (13 of these have received awards). His work has been funded by numerous 

grants and he serves(d) as associate editor for four journals, on the editorial boards for six others, and has 

played leadership roles in several professional organizations. https://www.colorado.edu/ics/sidney-dmello. 

Dr. Michael C. Dorneich is an Associate Professor of Industrial and Manufacturing Systems Engineering 

at Iowa State University. He is a member of the Human-Computer Interaction Graduate Program, and has 

a courtesy appointment in Aerospace Engineering.  He graduated from the University of Illinois at Urbana-

Champaign with a Ph.D. in Industrial Engineering in the Human Factors Program. His research interests 

focus on creating joint human-machine systems that enable people to be effective in the complex and often 

stressful environments found in aviation, military, robotic, and space applications. He specializes in adap-

tive systems which can provide assistance tailored to the user’s current cognitive state, situation, and envi-

ronment. Adaptive systems are becoming more necessary as intelligent assistants are spreading into every 

aspect of work, education, and home life. His recent work looks at the development of intelligent team 

tutoring systems, and the development of human-autonomy team frameworks. Prior to joining the faculty 

at Iowa State University, he worked in industry researching adaptive system design and human factors in a 

variety of domains. He was a visiting scientist at NASA Ames Research Center in 2004. He holds 28 US 
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and international patents. He has authored over 150 professional, peer-reviewed papers, and is currently an 

Associate Editor for the Journal of IEEE Transactions of Human-Machine Systems. 

Dr. Nia Dowell is a postdoctoral research fellow in the School of Information and Digital Innovation 

Greenhouse at the University of Michigan. She completed her Ph.D. at the Institute for Intelligent Systems 

in the University of Memphis. Her primary interests are in cognitive psychology, discourse processing, and 

learning sciences. Her research focuses on using language and discourse to uncover the dynamics of socially 

significant, cognitive, and affective processes. She is currently applying computational techniques to model 

discourse and social dynamics in a variety of learning environments including intelligent tutoring systems 

(ITSs), small group computer-mediated collaborative learning environments, and massive open online 

courses (MOOCs). Her current research highlights the practical applications of computational discourse 

science in the clinical, political and social sciences areas. 

Jing Du is a Ph.D. candidate at Beijing Normal University under the direction of Dr. Ronghuai Huang. Her 

research focuses on improving individualized instruction in tutoring systems using data driven methods and 

the mining of educational data. She also interested in learning space design, computer supported collabo-

rative learning. She earned her Master’s degree from Central China Normal University, China. 

Dr. Jeremiah T. Folsom-Kovarik is a Lead Scientist with Soar Technology, Inc. in the Intelligent Training 

research group. His research focuses on making intelligent automation capable and robust with advanced 

planning, user modeling, and contextual interpretation approaches to make technology meet individuals' 

needs. In learning systems, J.T. researches computer representations and algorithms that make adaptive 

training more effective via capabilities such as automation of instructor tasks that previously required labo-

rious attention or technical knowledge engineering, and planning ahead under uncertainty in order to con-

struct learning sequences that are more effective than individual choices. A natural continuation of his work 

is research into machine learning and planning approaches that extend across multiple learning systems to 

efficiently build a cohesive learning experience. 

Dr. Peter Foltz is Vice President in Pearson's Advanced Computing and Data Sciences Laboratory and 

Research Professor at the University of Colorado’s Institute of Cognitive Science.  His work covers dis-

course processing, reading comprehension and writing skills, 21st Century skills learning, large-scale data 

analytics, artificial intelligence, and uses of machine learning and natural language processing for educa-

tional and clinical assessments.  Much of his work has focused on techniques for automatically analyzing 

the meaning of language through writing and speaking.  The approaches are used for assessing abilities, for 

providing feedback, and for understanding underlying cognitive mechanisms in the brain.  The methods he 

has pioneered are used by millions of student annually to improve student achievement, expand student 

access, and make learning materials more affordable. Peter has served as the content lead for the framework 

development for several Organisation of Economic Cooperation and Development’s (OECD) Programme 

for International Student Assessment (PISA) assessments, including the 2018 Reading Literacy assessment, 

the 2015 assessment of Collaborative Problem Solving, and a new assessment of reading literacy for devel-

oping countries. He has served as guest editor for a number of journals including International Journal of 

AI in Education and Discourse Processes. Peter has authored more than 100 journal articles, book chapters, 

conference papers, as well as several patents. He previously worked as a professor at New Mexico State 

University, and as a researcher at Bell Communications Research, the Learning Research and Development 

Center at the University of Pittsburgh and Yale University. Dr. Foltz holds doctorate and master’s degrees 

in Cognitive Psychology from the University of Colorado, Boulder, and a bachelor’s degree from Lehigh 

University. 

Dr. Stephen Gilbert is an associate director of the Virtual Reality Applications Center and assistant pro-

fessor of Industrial and Manufacturing Systems Engineering at Iowa State University. His research interests 
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focus on technology to advance cognition, including interface design, intelligent tutoring systems, and cog-

nitive engineering. He is a member of IEEE and ACM and works closely with industry and federal agencies 

on research contracts. From 2015-2018 he led a project supporting the U.S. Army Research Laboratory 

STTC in future training technologies for teams. 

Dr. Benjamin Goldberg is a member of the LITE Lab at ARL-HRED in Orlando, FL. He has been con-

ducting research in the M&S community for the past eight years with a focus on adaptive learning in sim-

ulation-based environments and how to leverage AI tools and methods to create personalized learning ex-

periences. Currently, he is the LITE Lab’s lead scientist on instructional management research within adap-

tive training environments and is a co-creator of GIFT. He is a PhD graduate from UCF in the program of 

M&S. His work has been published across several well-known conferences, with recent contributions to 

the Human Factors and Ergonomics Society (HFES), Artificial Intelligence in Education and Intelligent 

Tutoring Systems proceedings. He has also recently contributed to the Journal Computers in Human Be-

havior and Journal of Cognitive Technology. 

Dr. Jamie Gorman received his PhD in Psychology from New Mexico State University and is an associate 

professor in Engineering Psychology at Georgia Tech. Dr. Gorman’s research focuses on human perfor-

mance in complex social and technological settings, including sports, medicine, and aviation. In particular, 

his research focuses on understanding and modeling human-systems interactions using dynamical systems 

theory. Research in Dr. Gorman’s Systems Psychology Lab seeks to understand and enhance human per-

formance using a variety of methodological approaches, including communication analysis, kinematics, 

physiological, and neural approaches. Dr. Gorman has over 50 refereed articles, proceedings, and book 

chapters, and his research has been funded by ONR, NSF, DARPA, and JUMP. Dr. Gorman is a member 

of the Human Factors and Ergonomics Society (HFES) and serves on the editorial board of the journal 

Human Factors. In 2011 he and his coauthors received the Jerome H. Ely award from HFES for the best 

paper published in the 2010 volume of Human Factors. 

Dr. Tina Grotzer is a cognitive scientist whose research identifies ways in which understandings about the 

nature of causality impact our ability to understand complexity in our world. Her work has important im-

plications for how we deal with global and ecological issues and is concerned with the environmental in-

justices that result from our inability to reason well about complexity.  She is a member of the faculty at 

the Harvard Graduate School of Education and at the Center for Health and the Global Environment. She 

received a Career Award from NSF in 2009 and a Presidential Career Award for Scientists and Engineers 

in 2011. She is the author of Learning Causality in a Complex World: Understandings of Consequence 

(2012) as well as numerous articles, book chapters, and resources for teachers. 

Dr. Mark Guadagnoli is a Professor of Neuroscience and Neurology at the UNLV School of Medicine 

where he serves as the Director of Learning and Performance as well as the Associate Dean of Faculty 

Affairs. He received his undergraduate and M.S. degrees at Texas A&M University, and Ph.D. at Auburn 

University in Human Performance/Cognitive Psychology. He has worked in industry and academia for over 

two decades. He specializes in optimizing performance, communication, leadership, and learning. He has 

received numerous awards for this work and has published more than 100 articles and abstracts as well as 

several books. His primary line of research is related to the Challenge Point Framework, which has been 

used to help corporate executives, medical professionals, and others who compete in high performance 

situations. His model of learning shows that appropriate short-term challenges result in long-term and stress 

resistant learning. 

Dr. Andrew J. Hampton studied at the University of Central Florida and the Burnett Honors College on 

a full National Merit scholarship. After graduating with a B.S. in psychology and a minor in cognitive 

science, he entered the Wright State Human Factors/Industrial Organizational doctoral program in the fall 

of 2011 where he worked as a graduate research and teaching assistant and as a graduate teaching assistant, 
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while also co-founding the Professional Development Group, a graduate student organization developed to 

encourage independent initiatives. While at Wright State, he earned his Master's degree in 2013, the pro-

gram's Graduate Student Excellence Award in 2014, and his PhD in 2018. In 2016, he accepted a position 

as a researcher under Art Graesser at the Institute for Intelligent Systems, within the University of Memphis. 

There, in addition to his research duties, he has taken on responsibilities as coordinator for a grant with the 

Office of Naval Research, and project manager for ElectronixTutor, a platform integrating several intelli-

gent tutoring systems in a common interface. His work won the 2016 Human Factors Prize for Excellence 

in Human Factors/Ergonomics Research, focusing on Big Data analytics. Andrew's research interests in-

clude technologically mediated communication, psycholinguistics, semiotics, intelligent tutoring systems, 

artificial intelligence, and political psychology.  

Dr. Jiangang Hao is a senior research scientist at the Psychometrics, Statistics and Data Science (PSDS) 

division at Educational Testing Service. His current research centers on response process data modeling, 

collaborative problem solving, game and simulation-based assessment, educational data mining & analyt-

ics, and automated scoring. Jiangang is leading the computational psychometrics subinitiative of the FASP 

initiative at ETS in the FY 2017, and has been co-leading the infrastructure subinitiative of the game, sim-

ulation and collaboration initiative from 2014 to 2016. He is the principal investigator of several research 

projects at ETS for designing simulation-based assessments, web-based platform for collaborative assess-

ments and data analytics packages for game-based assessments. Jiangang obtained his Ph.D. in Physics and 

M.A. in Statistics from the University of Michigan. Prior to joining in ETS, Jiangang worked on modeling 

and mining Terabyte-scale data in astrophysics at Fermi National Accelerator Laboratory. His work has 

been reported by leading technology media, such as the Wired and MIT Technology Review. He has pub-

lished over 50 peer-reviewed papers, with over 3500 total citations and h-index of 29. 

Michael Hoffman is a senior software engineer at Dignitas Technologies and the technical lead on the 

Generalized Intelligent Framework for Tutoring (GIFT) project.  He has been responsible for ensuring that 

the development of GIFT meets the evolving customer requirements in addition to supporting both intelli-

gent tutoring for computer based training and intelligent tutoring technology research of the growing user 

community.  Recently this has involved altering the GIFT architecture from an individual based ITS to one 

that supports team tutoring.  Michael manages and contributes support for the GIFT community through 

various mediums including the GIFT portal (www.GIFTTutoring.org), annual GIFT Symposium confer-

ences and technical exchanges with ARL and their contractors.  In addition he utilizes his expertise in 

integrating third party capabilities such as software and hardware systems to enable other organizations to 

integrate GIFT into their training solutions.    

Dr. Ronghuai Huang is a professor of Beijing Normal University. He currently works as Co-Dean of the 

Smart Learning Institute of Beijing Normal University, Director of UNESCO International Rural Educa-

tional and Training Centre, Director of National Engineering Lab for Cyberlearning Intelligent Technology, 

Director of Digital Learning and Public Education Service Center as well as Director of Beijing Key La-

boratory of Educational Technology. He also serves as Deputy Director of Professional Teaching and Guid-

ing Committee for Educational Technology, member of expert group for educational informatization in the 

Ministry of Education, Vice-Chairman of China Association for Education and Technology as well as 

Chairman of International Smart Learning Environment Association. He has taken charge of some key 

projects, including research on the development of international educational informatization, strategic re-

search on information-driven modernization for schools, IT curriculum standard revision for senior schools, 

etc. 

Dr. Joan Johnston has been in U.S. government civilian service for 33 years. She is currently a Senior 

Scientist with the U.S. Army Research Laboratory (ARL) where she conducts research on training effec-

tiveness and team training. She has produced over 80 professional papers, peer reviewed journal articles, 

http://www.gifttutoring.org/
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and presentations. In 2016, she received the U.S. Army Civilian Service Achievement Medal for an inno-

vative team training strategy to improve decision making under stress. Prior to her move to ARL, she was 

a senior research psychologist with the Naval Air Warfare Center Training Systems Division and a 

NAVAIR Fellow. For her innovations in Navy research, Dr. Johnston was awarded the ONR Dr. Arthur E. 

Bisson Prize for Naval Technology Achievement (2000) and the Society for Industrial and Organizational 

Psychology M. Scott Myers Award for Applied Research in the Workplace (2001).  She received her B.S 

in Biology with Honors from Rutgers University, and an M.A. and Ph.D. in Industrial and Organizational 

Psychology from the University of South Florida.  

Dr. Amy Kamarainen is a senior research manager and principal investigator at the Harvard Graduate 

School of Education where she collaboratively manages grant-based education research projects, most re-

cently the AR Girls, EcoXPT, EcoMOD and EcoMOBILE projects. Amy is an ecosystem scientist who 

applies her understanding of ecosystems science and education research to the design and evaluation of 

technologies that support science learning inside and outside of the classroom. Amy’s professional interests 

concern the application of these technologies to creative spaces like STEM learning, Citizen Science, and 

place-based education. The Ecological Society of America named Amy an Ecology Education Scholar in 

2011. 

Dr. Jong W. Kim is a postdoctoral researcher and adaptive tutoring scientist US Army Research Labora-

tory, Orlando, FL.  Kim received his PhD in Industrial Engineering from Pennsylvania State University, 

and MS in Industrial Engineering from University of Central Florida.  His research interests lie in the area 

of Cognitive Science and Adaptive Instructional Science.  Particularly, Kim is interested in testing cognitive 

theories of learning (and forgetting) for the development of adaptive instructional systems.  Previously, 

Kim has developed a theory of skill learning and forgetting (D2P: Declarative to Procedural) that is cur-

rently being applied to implement a series of intelligent tutoring systems for the Navy.  After joining the 

GIFT team at ARL, Kim started to investigate an adaptive instructional system in a psychomotor domain 

that can be run beyond the desktop environment, pursuing maximizing training effectiveness in a simulated 

and range-based training.   

Dr. H. Chad Lane is an Associate Professor of Educational Psychology and Informatics at the University 

of Illinois, Urbana-Champaign. Prof. Lane's research focuses on the design, use, and impacts of intelligent 

technologies for learning and behavior change. This work involves blending techniques from the entertain-

ment industry (that foster engagement) with those from artificial intelligence and intelligent tutoring sys-

tems (that promote learning), as well as running studies to better understand whether and how the resulting 

learning experiences impact learners. He has over 70 publications and has hands-on experiences in informal 

and formal learning contexts. He earned his Ph.D. in Computer Science from the University of Pittsburgh 

in 2004.  http://hchadlane.net 

Dr. Shari Metcalf is a Senior Researcher at the Harvard Graduate School of Education and Project Director 

for EcoLearn. Her research centers on the design and evaluation of computer–based tools for learning 

through scaffolded environments in which students can engage in authentic, project-based, constructivist 

activities. 

Dr. Benjamin D. Nye is the Director of Learning Sciences at University of Southern California Institute 

for Creative Technologies. Ben’s major research interest is to identify best-practices in advanced learning 

technology, particularly for frontiers such as distributed learning technologies (e.g., cloud-based, device-

agnostic) and socially-situated learning (e.g., face-to-face mobile use). His research interests include mod-

ular intelligent tutoring system (ITS) designs, modeling social learning and memes, cognitive agents, and 

educational tools for the developing world and low-resource/low-income contexts. He received his Ph.D. 

in Systems Engineering from the University of Pennsylvania in 2011.  

http://hchadlane.net/
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Dr. Andrew Olney presently serves as Associate Professor in both the Institute for Intelligent Systems 

<iis.memphis.edu> and Department of Psychology <psyc.memphis.edu>. Dr. Olney received a B.A. in 

Linguistics with Cognitive Science from University College London in 1998, an M.S. in Evolutionary and 

Adaptive Systems from the University of Sussex in 2001, and a Ph.D. in Computer Science from the Uni-

versity of Memphis in 2006. His primary research interests are in natural language interfaces. Specific 

interests include vector space models, dialogue systems, unsupervised grammar induction, robotics, and 

intelligent tutoring systems. 

Alec Ostrander is a Ph.D. student in Industrial Engineering and Human-Computer Interaction at Iowa 

State University's Virtual Reality Applications Center. He is currently exploring how intelligent systems 

can be designed to leverage principles and ideas from the teamwork literature to create effective human-

agent teams. 

Dr. Samantha (Baard) Perry is a Scientist at Aptima, Inc. has a decade of applied research experience 

with the Army, Air Force, NASA and EMTs. She has expertise in adaptation, training design and evalua-

tion, survey development and implementation, and, in particular, the unobtrusive measurement of team 

processes, states and performance. Her work incorporates a multilevel approach to examining team process 

dynamics, targeted at creating more efficient and effective training, all with the goal of maximizing human 

performance. Dr. Perry holds a Ph.D. and M.A. in Organizational Psychology from Michigan State Uni-

versity and a B.A. in Psychology from George Mason University. 

Dr. A. R. Ruis is a learning sciences researcher at the Wisconsin Center for Education Research and a 

historian at the University of Wisconsin–Madison. His work is primarily in the areas of food and nutrition 

studies, medical and surgical education, and learning analytics. He is the author of Eating to Learn, Learn-

ing to Eat: The Origins of School Lunch in the United States. 

Dr. Vasile Rus is a Professor of Computer Science with a joint appointment in the Institute for Intelligent 

Systems (IIS) at The University of Memphis. He also serves as Director of the Data Science Center at The 

University of Memphis. Dr. Rus’ areas of expertise are computational linguistics, artificial intelligence, 

software engineering, and computer science in general. His research areas of interest include question an-

swering and asking, dialogue-based intelligent tutoring systems (ITSs), assessment of open learner answers, 

knowledge representation and reasoning, information retrieval, and machine learning. For more than a dec-

ade, Dr. Rus has been heavily involved in various dialogue-based ITS projects including systems that tutor 

students on science topics (DeepTutor), reading strategies (iSTART), writing strategies (W-Pal), and met-

acognitive skills (MetaTutor). Dr. Rus coedited three books, received several Best Paper Awards, and au-

thored more than 100 publications in top, peer-reviewed international conferences and journals. 

Dr. David Williamson Shaffer is the Vilas Distinguished Professor of Learning Sciences at the University 

of Wisconsin–Madison in the Department of Educational Psychology, the Obel Professor of Learning An-

alytics at Aalborg University in Copenhagen, and a Data Philosopher at the Wisconsin Center for Education 

Research. He studies how to develop and assess complex and collaborative thinking skills, and is the author 

of How Computer Games Help Children Learn and Quantitative Ethnography. 

Genghu Shi is a Ph.D. student in Experimental Psychology and also pursuing a master’s degree in Statistics 

in University of Memphis. He works as a research assistant for Center for the Study of Adult Literacy in 

the Institute for Intelligent Systems. His research interests lie in Adult Literacy and the characteristics of 

conversations in intelligent tutoring systems. He is also interested in Data Science and Machine Learning. 

He earned a master’s degree in Cognitive Psychology from Central China Normal University and a Bach-

elor’s Degree in Computer Science from China University of Geoscience (Wuhan). 

http://iis.memphis.edu/
http://psyc.memphis.edu/
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Paul Shorter is an Operations Research Analyst with the Simulation Training and Technology Center 

(STTC).  He has B.S. degree in mathematics received in 1989 from Virginia Commonwealth University, 

Richmond, VA. He has worked for the US Department of Army since 1989 in various areas including 

systems analysis and evaluation of major weapon systems, logistics modeling and simulation applications, 

field research relating to dismounted Soldier activity.  His current assignments at STTC are in the areas of 

adaptive training and virtual reality applications. 

Dr. Ron Stevens received his Ph.D. In Microbiology and Molecular Genetics from Harvard University.  

He is currently a Professor (Emeritus), UCLA School of Medicine, a member of the UCLA Brain Research 

Institute, and the CEO of The Learning Chameleon, Inc.  He has published over 200 peer-reviewed studies 

in medical research, medical problem solving and team neurodynamics and is the author of three patents. 

Dr. Stevens early studies focused on the cellular and molecular defects in autoimmunity and immune defi-

ciency, and included pioneering studies on Acquired Immune Deficiency Syndrome (before it was termed 

AIDS). Subsequently he developed of the technology-based UCLA-IMMEX™ problem-authoring and 

solving project.  Funded in part by the National Science Foundation and the Department of Education, this 

project has engaged hundreds of teachers and tens of thousands of students, from middle school through 

medical school in scientific problem solving activities.  This project was recognized by the Smithsonian 

Institute in its ‘Search for New Hero’s’ program, by Zenith Corporation’s ‘Masters of Innovation’ program 

and by the UCLA Medical School’s ‘Excellence in Education’ award.  The software has been licensed for 

commercial development. In his role as the CEO of The Learning Chameleon, Inc., his recent research has 

focused on using EEG-derived measures to investigate team neurodynamics in the complex and real-world 

settings of military and healthcare training. Dr. Stevens’ research was the first to demonstrate the presence 

of neurodynamic organizations in teams.  These are states of neurodynamic persistence that team members 

enter into when their rhythm can no longer support the complexity of the task and they must expend energy 

to re-organize into structures that better minimize the ‘surprise’ in the environment.  These studies are 

leading to quantitative teamwork models showing how teams cognitively organize in response to environ-

mental and task changes, and are paving the way for future real-time individual and team adaptive learning.  

The studies have been recognized by multiple awards from the Human Factors and Ergonomics Society’s 

Augmented Cognition Group including the Admiral Leland Kollmorgen ‘Spirit of Innovation Award.’  This 

research has been supported by the National Science Foundation, DARPA, Office of Naval Research, De-

partment of Education, as well as corporate and private funding. More information may be accessed at: 

www.teamneurodynamics.com. 

Dr. Minhong Wang is associate professor and director of the Laboratory for Knowledge Management & 

E-Learning at The University of Hong Kong. She is also Eastern Scholar Chair Professor at East China 

Normal University. Her areas of expertise include e-learning design and evaluation, knowledge manage-

ment, inquiry learning and problem solving, visualization for deeper learning, medical education, work-

place e-learning, artificial intelligence, and business process management. She is editor-in-chief of 

Knowledge Management & E-Learning, and associate editor of Information & Management, in addition to 

guest-editor of Educational Technology & Society, and Computers in Human Behavior. She was previously 

a visiting scholar at Harvard Graduate School of Education, University of Cambridge, and MIT Sloan 

School of Management. More details can be found at http://web.edu.hku.hk/staff/academic/magwang. 

Dr. Junfeng Yang is distinguished professor in Hangzhou Normal University, and he is the dean of de-

partment of Educational Technology in Hangzhou Normal University. He received his PhD from Beijing 

Normal University in 2014. His research interests include smart learning environments, blended synchro-

nous cyber classroom, and the digital generation of learners. 

Dr. Wayne Zachary is CEO and Managing Partner of Starship Health Technologies. He holds a Ph.D. in 

Social and Cognitive Anthropology and M.S. in Computer Science from Temple University.  He has inte-

grated this multidisciplinary background in a career-long thread of research, technology development, and 

http://www.teamneurodynamics.com/
http://web.edu.hku.hk/staff/academic/magwang
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entrepreneurship focused on cognitive modeling of individuals and organizations as applied to of decision 

support systems and training systems.   Since founding Starship in 2012, he has focused on challenging and 

significant issues in human-computer interaction in health systems including improving clinical communi-

cations through intelligent virtual tutors. Prior to Starship, he was CEO of the award-winning CHI Systems, 

Inc. for over 20 years, a company which he also founded. He remains active in the research and technology 

communities, with over 110 technical and scientific publications.  

Dr. Diego Zapata-Rivera is a Principal Research Scientist in the Cognitive, Accessibility, & Technology 

Sciences (CATS) Center at Educational Testing Service in Princeton, NJ. He earned a Ph.D. in computer 

science (with a focus on artificial intelligence in education) from the University of Saskatchewan in 2003. 

His research at ETS has focused on the areas of innovations in score reporting and technology-enhanced 

assessment (TEA) including work on adaptive learning environments and game-based assessments. His 

research interests also include Evidence-Centered Design, Bayesian student modeling, open student mod-

els, conversation-based assessment, supporting collaboration, virtual communities, authoring tools and pro-

gram evaluation. Dr. Zapata-Rivera has produced over 100 publications including journal articles, book 

chapters, and technical papers. He has served as a reviewer for several international conferences and jour-

nals. He has been a committee member and organizer of international conferences and workshops in his 

research areas. He is a member of the Board of Special Reviewers of the User Modeling and User-Adapted 

Interaction journal and an Associate Editor of the IEEE Transactions on Learning Technologies Journal. 

Most recently, Dr. Zapata-Rivera has been invited to contribute his expertise to projects sponsored by the 

National Research Council, the National Science Foundation, NASA, and the US Army Research Labora-

tory. 
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