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NONLINEAR APPROXIMATION OF FUNCTIONS BY SUMS OF WAVE PACKETS∗

FREDRIK ANDERSSON†, MARCUS CARLSSON‡, AND MAARTEN V. DE HOOP§

Abstract. We consider the problem of approximating functions by sums of wave packets. Our objective is to find sparse decom-

positions of image functions, over a finite range of scales. We also address the naturally connected task of approximating the wavefront

set, computationally. We formulate the problem in terms of Hankel operators, Hankel matrices and their low-rank approximations, and

develop an algebraic structure associated with the decomposition of functions into wave packets.
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1. Introduction. We consider the problem of approximating functions that arise in wave-equation

imaging [12, 30] by sums of wave packets. Images are generated from (initial) data representing waves

scattered off unknown boundaries, essentially, by backpropagation, and, by realistic acquisition design, are

bandlimited in frequency. A natural candidate to represent images of these boundaries, and the data, is the

frame of curvelets [21]. This frame can be viewed as a multiscale pyramid with certain directions and po-

sitions at each length scale. Representations of images with discontinuities along smooth (C2) edges using

curvelets are optimally sparse [11]; however, the functions that we consider here, do not contain sharp edges.

Our objective is to find sparse decompositions of image, or data, functions over a finite range of scales, while

honoring the dyadic parabolic decomposition of phase space underlying the construction of the frame of

curvelets. We also address the naturally connected task of approximating the wavefront set, computationally,

of these functions. Our approach is built on the work of Beylkin and Monzón [7, 8].

The common point of departure for decompositions of the type mentioned above consists of Fourier

transforming the image function, and subjecting the result to a dyadic parabolic decomposition. One obtains

functions in frequency, supported on the wedges (or boxes) that tile phase space in accordance with the dyadic

parabolic decomposition (see Figure 1), by multiplication with appropriately chosen compactly supported

window functions. The squares of these window functions form a partition of unity. Essentially, by Fourier

series expansion of each such function defined on a wedge, one obtains a decomposition of the original image

function with respect to a frame of curvelets.

We carry over the decomposition of functions with respect to a frame of curvelets to a nonlinear approx-

imation by wave packets approach (for nonlinear wavelet approximations, see [13] and references therein).

The objective is to approximate a function by very few packets. Non-linear approximations of functions,

or signals, in one variable with wavelets have been in widespread use. The key concept here is to select the

elements on which the function is projected, adaptively, that is, in a fashion depending on the function. In this

spirit, pursuit algorithms [24] select approximation elements among given, redundant dictionaries of atoms.

These dictionaries can contain multiple frames. The extent of such a dictionary can lead to a “combinatorial

explosion” [24], however; pursuit algorithms reduce the computational complexity while searching for sub-

optimal approximations [24]. Matching pursuit [25], for example, reduces the computational complexity by

a greedy strategy. In our approach, we go beyond the use of given dictionaries, and adapt the “location” and

“shape” of wave packets extracted from a frame of curvelets, to the function to be decomposed, avoiding the

“combinatorial explosion”.

Essentially, in our approach, we replace the Fourier series expansion of each function (in frequency)

defined on a wedge in the dyadic parabolic decomposition in the following way. We begin with sampling

the Fourier transform of the original image function at points that lie on uniform, oriented, grids tied to

the wedges, such that the discrete inverse Fourier transform guarantees a prescribed accuracy. Given the

values of a component function on a grid over a wedge, and a prescribed accuracy, we then construct a sum,
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and Uhlmann [20]). The concept of parabolic cutoffs goes back to Boutet de Monvel [9]. Curvelets were

first introduced in the parametrix construction for the wave equation with C1,1 coefficients (Smith [27, 28]).

Furthermore, the frame of curvelets and the associated curvelet transform can be related to the Fourier-Bros-

Iagolnitzer (FBI) transform (Bros and Iagolnitzer [10]).

The outline of the paper is as follows. In Section 2 we summarize the dyadic parabolic decomposition

of phase space, and introduce the decomposition into, and non-linear approximation by sums of wave pack-

ets and the relevant discretization and sampling (Section 2.2). In Section 3 we reformulate the non-linear

approximation of sampled functions in phase space in terms of matrices. In Section 4 we develop the general

principle and theory to carry out the program by expressing the approximation problem in terms of Hankel

operators. The issue of developing a method for finding the complex nodes is postponed until Section 5.

There exist pathological block Hankel matrices (and underlying functions) for which the construction of

complex nodes proposed in Section 5 does not work; we characterize these in Section 5.3. In Section 6 we

give a method of reducing the complexity of computations pertaining to finding the complex nodes. We

conclude with some numerical experiments on real data in Section 7.

2. Dyadic parabolic decomposition of phase space. We summarize the method of second microlo-

calization, a tiling of phase space used throughout this paper. We begin with describing the dyadic parabolic

decomposition and restrict ourselves to the two-dimensional case. We define boxes

Bk =

[
ξ′k − L′

k

2
, ξ′k +

L′
k

2

]
×

[
−L′′

k

2
,
L′′

k

2

]
,

where the centers ξ′k, and the side lengths L′
k and L′′

k , satisfy the parabolic scaling condition,

ξ′k ∼ 2k, L′
k ∼ 2k, L′′

k ∼ 2k/2, as k → ∞.

For k = 0, B0 is a box centered at ξ′0 = 0, with L′
k = L′′

k .

We will cover the plane R
2 by a set of boxes indexed by two variables, k and ν, where ν (for each k)

takes values in a set of Nk = ⌊2k/2⌋ unit vectors distributed uniformly over the unit circle; we adhere to the

convention that e1 = (1, 0) is one of these vectors. For each ν, k we let Θν,k denote the rotation operator on

R
2 such that Θν,kν = e1. The boxes Bν,k are defined by

Bν,k = Θ
−1
ν,k(Bk).

The center of the box Bν,k is ξcent
ν,k with direction ν and |ξcent

ν,k | ≈ 2k.

We introduce smooth functions χ̂k(ξ) ≥ 0 that vanish outside Bk, and set

χ̂ν,k(ξ) = χ̂k(Θν,kξ).

Particular χ̂k can be constructed such that

(2.1) |χ̂0(ξ)|
2 +

∑

k≥1

∑

ν

|χ̂ν,k(ξ)|2 = 1,

yielding a partition of unity, while

(2.2) |〈ν, ∂ξ〉j ∂α
ξ χ̂ν,k(ξ)| ≤ Cj,α |ξ|−(j+|α|/2),

in which the constants, Cj,α, are independent of ν, k.

We define

(2.3) ϕ̂ν,k(ξ) = ρ
−1/2
k χ̂ν,k(ξ),

with ρk = |Bk| = L′
k L′′

k ∼ 23k/2. The functions ϕν,k satisfy estimates of the type

(2.4) |ϕν,k(x)| ≤ CN23k/4 ( 2k|〈ν, x〉| + 2k/2|x| )−N .



26 FREDRIK ANDERSSON, MARCUS CARLSSON, AND MAARTEN V. DE HOOP

The ϕν,k’s generate a tight frame of curvelets (in L2) and lead to a transform pair that is described below; we

will, here, depart from such a transform pair and develop a (non-linear approximation) decomposition where

the translations of ϕν,k are found optimally with regards to the function to be decomposed.

The frame representation mentioned above arises as follows. Following the partition of unity, one con-

siders û(ξ) |χ̂ν,k(ξ)|2 and expands û(ξ) χ̂ν,k(ξ) in a Fourier series on its support, Bν,k, generating an or-

thonormal basis exp[−2πi〈xν,k
j , ξ〉]. Here,

(2.5) xν,k
j = Θ

−1
ν,kD−1

k Xj ,

in which

Xj := (j1, j2),

while capturing the scaling of Bk in the dilation matrix

Dk =

(
L′

k 0
0 L′′

k

)
.

The Fourier series expansion leads to the introduction of translates of the cutoff functions, ϕν,k(x − xν,k
j ).

With the multi-index notation γ = (xν,k
j , ν, k), we set ϕγ(x) = ϕν,k(x − xν,k

j ), or

(2.6) ϕ̂γ(ξ) = ρ
−1/2
k χ̂ν,k(ξ) exp[−2πi〈xν,k

j , ξ〉], k ≥ 1

for scale k, orientation ν and a location xν,k
j . The coefficients in the Fourier series expansion of û(ξ) χ̂ν,k(ξ)

can be written in the form of an inner product

(2.7) uγ =

∫
u(x)ϕγ(x) dx,

and it follows that

(2.8) û(ξ) |χ̂ν,k(ξ)|2 =
∑

γ′: k′=k, ν′=ν

uγ′ ϕ̂γ′(ξ),

so that (cf. (2.1))

(2.9) u(x) =
∑

γ

uγϕγ(x).

Equations (2.7) and (2.9) define a curvelet transform pair.

In (2.6 we can make the translation in frequency explicit and introduce

(2.10) ϕ̂cent
γ (ξ) = ρ

−1/2
k χ̂ν,k(ξ) exp[−2πi〈xν,k

j , ξ − ξcent
ν,k 〉],

simply affecting the coefficients according to

ucent
γ = uγ exp[−2πi〈xν,k

j , ξcent
ν,k 〉], γ = (xν,k

j , ν, k)

cf. (2.8), where 〈xν,k
j , ξcent

ν,k 〉 = (L′
k)−1|ξcent

ν,k | j1.

2.1. Decomposition into wave packets. We seek to develop a non-linear approximation approach to

obtain sparse representations of functions u. We will differ from the above strategy by chosing xν,k
j to suit

the function u to be approximated while letting the coordinates of these points to become complex. Thus we

replace xν,k
j by xν,k

j + iyν,k
j ∈ C

2. We introduce functions

(2.11) ψ̂j,ν,k(ξ) = ρ
−1/2
j,ν,k |χ̂ν,k(ξ)|2 exp[−2πi〈xν,k

j + iyν,k
j , ξ − ξcent

ν,k 〉];
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ρj,ν,k is determined by the normalization, ‖ψj,ν,k‖2 = 1. Setting ûν,k(ξ) = û(ξ) |χ̂ν,k(ξ)|2, we then replace

identity (2.8) by the approximation

(2.12) ûν,k(ξ) ≈
Nν,k∑

j=1

cν,k
j ψ̂j,ν,k(ξ) :=

̂
u

Nν,k

ν,k (ξ).

The aim is to find, for each pair ν, k, for given ǫ > 0, an Nν,k and points xν,k
j + iyν,k

j , such that

(2.13) ‖uNν,k

ν,k − uν,k‖2 < Ck ǫ, with Ck = O(2−k/2k−1−δ), δ > 0.

Then
∑

ν,k

∑Nν,k

j=1 cν,k
j ψj,ν,k(x) yields a non-linear approximation of u(x). As in the frame expansion, we

could have expanded ûν,k in a Fourier series resulting in an exact expansion with yν,k
j = 0, xν,k

j lying

on the lattice in (2.5), and ρj,ν,k = ρk; here, we have introduced an alternative expansion with prescribed

(and finite) accuracy ǫ. Instead of locking the positions of the packets to pre-assigned values, we have let

them vary freely. In this way, we will be able to accurately capture the locations of singularities of u in

the decomposition. Moreover, the exponential factor exp[2π 〈yν,k
j , ξ − ξcent

ν,k 〉], will tune the shape of the

wavepackets. In this respect, we note that it has been established [11, 4] that the coefficients uγ decay

rapidly (super-algebraically) away from singularities; this result is essentially asymptotic. We develop, here,

a representation or decomposition of a function, with singularities, which is sparse over a finite range of

scales.

2.2. Discretization. We construct quadratures using rotated grids with respect to the partitioning func-

tions χ̂ν,k. We briefly review the necessary notation, and refer to [4] for details.

We normalize coordinates x such that u is supported on the disc, D = {x ∈ R
2 : |x| < 1

2}. We begin

with sampling (2.8) in accordance with discretizing its inverse Fourier transform, that is,

(2.14) uν,k(x) ≈ 1

τ ′
kτ ′′

k

∑

l

ûν,k(ην,k
l ) exp[2πi〈x, ην,k

l 〉],

where the points η
ν,k
l are chosen from a regular lattice: The points are obtained from the finite set

Ξ
k =

{
(l1, l2) ∈ Z

2

∣∣∣∣∣ − M ′
k

2
≤ l1 ≤ M ′

k

2
,−M ′′

k

2
≤ l2 ≤ M ′′

k

2

}
,

the elements of which are denoted by Ξk
l (in analogy with the notation Xj), and are given by

η
ν,k
l = ξcent

ν,k + Θ
−1
ν,kS−1

k Ξ
k
l .

Here, the parameters Mk = (M ′
k,M ′′

k ) are even natural numbers with M ′
k > L′

k and M ′′
k > L′′

k , while

τ ′
k = M ′

k/L′
k and τ ′′

k = M ′′
k /L′′

k are the oversampling factors. The dilation matrix Sk is defined as

Sk =

(
τ ′
k 0
0 τ ′′

k

)
=




M ′
k

L′
k

0

0
M ′′

k

L′′
k


 .

In practice, u is given in the form of an evenly sampled function on a covering of D. We apply a USFFT

[19, 6] to be able to evaluate the Fourier transform, û, at unequally spaced points η
ν,k
l jointly for all ν, k.

Upon discretization (2.14), the coefficients cν,k
j in (2.12) get replaced by coefficients bν,k

j , say:

(2.15) ûν,k(ην,k
l ) ≈

Nν,k∑

j=1

bν,k
j ψ̂j,ν,k(ην,k

l ).
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The exponential factor in ψ̂j,ν,k(ην,k
l ) (cf. (2.10)) can be written in the form

(2.16) exp[−2πi〈xν,k
j + iyν,k

j , ην,k
l − ξcent

ν,k 〉] = (zν,k
j )l = (zν,k

j;1 )l1(zν,k
j;2 )l2 ,

zν,k
j;1,2 = exp[−2πi (S−1

k Θν,k(xν,k
j + iyν,k

j ))1,2],

where we have adapted the notation to l = (l1, l2), replacing l, for the remainder of the paper. Setting

aν,k
j = ρ

−1/2
j,ν,k bν,k

j ,

(2.17) û(ην,k
l ) |χ̂ν,k(ην,k

l )|2 ≈
Nν,k∑

j=1

aν,k
j |χ̂ν,k(ην,k

l )|2(zν,k
j )l.

We will refer to the zν,k
j as “quadrature nodes”. The objective is to find nodes, such that a desired accuracy

is reached in (2.17) with minimal Nν,k. In this framework, not only the weights, aν,k
j , and Nν,k but also the

nodes will depend on uν,k.

To find the nodes, we consider the approximation

(2.18) û(ην,k
l ) ≈

∑

j∈J

aν,k
j (zν,k

j )l.

which, upon multiplication by |χ̂ν,k(ην,k
l )|2, attains the form of (2.17) with Nν,k < |J |; here, we note that all

η
ν,k
l are contained in Bν,k. This strategy is motivated by the following scenario. Suppose that u consists of

a few point scatterers, then û will naturally decompose into a sum of few exponentials, whereas ûν,k would

not. In our approximation strategy, we determine the nodes, using (2.18), first, and then compute the weights,

using (2.17), while reducing the number of nodes to Nν,k.

In Sections 3-6 we focus on finding the nodes, and hence use approximation (2.18). We focus on a single

ν, k box of the dyadic parabolic decomposition, and hence we will suppress the subscripts and superscripts

relating to such a box. We set M ′
k = 2m1 and M ′′

k = 2m2, and introduce the matrix f(l1 + m1, l2 + m2) =

û(ην,k
l ) IBν,k

(ην,k
l ) = û(ην,k

l ), −m1 ≤ l1 ≤ m1, −m2 ≤ l2 ≤ m2, that is

(2.19) f =




f(0, 0) f(0, 1) . . . f(0, 2m2)
f(1, 0) f(1, 1) . . . f(1, 2m2)

...
...

. . .
...

f(2m1, 0) f(2m1, 1) . . . f(2m1, 2m2)


 .

(We will also use the notation F (ξ) = û(ξ) IBν,k
(ξ).)

3. Sparse decompositions of two-dimensional data. We introduce some notation. We use bold letters

for multi-indices, m = (m1,m2) with m1,m2 ∈ N. Let Mm be the space of (m1 + 1)× (m2 + 1) matrices

with complex entries (ai)0≤i≤m, where 0 stands for (0, 0) and i ≤ m means that i1 ≤ m1 and i2 ≤ m2.

Given a point z = (z1, z2) ∈ C
2, we denote by z the element in M2m given by

(3.1) z =




1 z2 . . . z2m2
2

z1 z1z2 . . . z1z
2m2
2

...
...

. . .
...

z2m1
1 z2m1

1 z2 . . . z2m1
1 z2m2

2


 .

The matrix formulation analogue of (2.18) can be stated as follows: Consider f ∈ M2m as in (2.19); we seek

an approximation of the form

(3.2) f ≈
N∑

j=1

aj zj ,



NONLINEAR APPROXIMATION BY SUMS OF WAVE PACKETS 29

with aj ∈ C. In this process, the key objective is, for given m, to find points {zj}
N
j=1 such that

‖f − ProjZf‖ ≤ ǫ,

with 0 < ǫ ≪ 1 and N = N(ǫ) ≪ (2m1 + 1)(2m2 + 1), while ProjZ stands for the orthogonal projection

onto the subspace Z = span{ zj } of M2m. We develop such approximations in Sections 4-6. Once the set

{zj}
N
j=1 has been obtained, we determine the aj’s in principle by solving the normal equations corresponding

with the linear system (3.2) subjected to the windowing as in (2.17).

In the case of functions in one variable, a method to obtain approximations of the form (3.2) has been

developed by Beylkin and Monzón [8], which we will now describe. After sampling, a function defines a

vector f in C
2m+1, if 2m + 1 is the number of sample points. We will consider both column and row vectors

as elements of C
2m+1 and matrices as operators on this space in the usual way. One begins by forming the

Hankel matrix,

Hf =




f(0) f(1) . . . f(m)
f(1) f(2) . . . f(m + 1)

...
...

. . .
...

f(m) f(m + 1) . . . f(2m)


 .

By the Takagi factorization [22], Hf has m + 1 con-eigenvectors u1, u2, . . . , um+1 ∈ C
m+1 associated with

con-eigenvalues σ1 ≥ . . . ≥ σm+1 ≥ 0. That is,

(3.3) Hfun = σnun, n = 1, . . . ,m + 1,

where the bar denotes complex conjugation of the entries in un. Alternatively, this can be expressed as

(3.4) Hf = UΣ U∗,

where U = (u1, . . . , um+1) is unitary and

Σ =




σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...

0 . . . 0 σm+1


 .

If Dun
∈ Mm,2m denotes the “difference” operator given by

Dun
=




un(0) un(1) . . . un(m) 0 . . . 0
0 un(0) un(1) . . . un(m) . . . 0
...

...
...

...

0 . . . 0 un(0) un(1) . . . un(m)


 ,

then equation (3.3) can be rewritten in the form

(3.5) Dun
f = σnun, n = 1, . . . ,m + 1.

We now fix n. We let u̇n ∈ C
2m+1 be the first row in Dun

, and let S denote the “shift” operator on C
2m+1,

defined as

S(a(0), a(1), . . . , a(2m)) = (0, a(0), . . . , a(2m − 1)) for a ∈ C
2m+1.

It is easy to see that the vectors u̇n, Su̇n, . . . , Smu̇n are linearly independent; the range of Dun
is span{Sku̇n}

m
k=0.

Furthermore, we form the polynomial Pun
(z) =

∑m
p=0 un(p)zp. Generically, Pun

will have m distinct roots,
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which we assume is the case, and label them zj , j = 1, . . . ,m. We form vectors, zj ∈ C
2m+1, according to

zj = (1, zj , . . . , z
2m
j ). It follows that 〈 zj , Sku̇n〉 = zk

j Pun
(zj) = 0 1, and hence the complex conjugates

of Sku̇n are orthogonal to span{ zj }m
j=1; arguing by dimension, we obtain

(3.6) C
2m+1 = span

{
zj

}m

j=1
⊕ span

{
Sku̇n

}m

k=0
,

which implies that

KerDun
= span{ zj }m

j=1.

We write Zn = span{ zj }m
j=1.

The equation (cf. (3.5))

(3.7) Dun
y = σnun

clearly has many solutions. Let yp denote the solution of this equation with minimal norm, that is, yp is the

(unique) solution that is orthogonal to KerDun
. By extending Dun

to a circular matrix Ḋun
and subjecting

the equation, Ḋun
y = σnu̇n, corresponding with (3.7), to the finite Fourier transform, it is straightforward

to show 2 that there exists a solution y′ to (3.7) such that ‖y′‖ = ‖σnun‖ = σn. Hence,

(3.8) ‖yp‖ ≤ σn.

Clearly, f −y′ ∈ Zn. Using (3.6), we deduce that yp is the orthogonal projection of f onto span{Sku̇n}
m
k=0.

With (3.8) it follows that the distance from f to the subspace Zn is less than or equal to σn. This is essentially

a reformulation of [8, Theorem 2]. One obtains the approximation

(3.9) f ≈
m∑

j=1

aj zj

with error estimate σn. Given the number of sample points, 2m + 1, the best approximation is obtained by

letting n = m + 1, because σm+1 is the smallest con-eigenvalue of Hf . Moreover, if the vector f originates

from sampling a piecewise continuous function, F , on a closed interval, [0, 1] say (f(k) = 1√
2m+1

F ( k
2m ) for

k = 0, 1, . . . , 2m), then limm→∞ σm+1 = 0. This demonstrates convergence of the approximation method.

However, m is not a small number compared to 2m + 1, the original dimension of f , and hence the

approximation with n = m + 1 cannot be sparse in general. In fact, up to this point, the development

is essentially a slight improvement of Prony’s method, which prescribes that one should first append two

numbers to the vector f such that Hf becomes singular (then σm+2 = 0), which then by the above arguments

implies that f ∈ Zm+2; thus, an exact representation of f in the form (3.9) with m replaced by m + 1 can

be obtained. However, Prony’s method is known to be unstable and therefore of limited use in practice [8,

Section 2.3].

The key observation made by Beylkin and Monzón lies in discovering that the number of significant

terms in the approximation (3.9) is approximately equal to the index n (if we assume that f comes from

sampling some continuous function). They also observe a rapid decay of the con-eigenvalues of Hf for

given m. Thus, we can choose an n ≪ m + 1 such that σn is small and obtain an approximation

(3.10) f ≈
n∑

j=1

aj zj ,

with (cf. (3.2)) N = n and error of the same size as σn:

‖f −
n∑

j=1

aj zj ‖ ≈ σn.

1We topologize C2m+1 with the standard scalar product.
2See Lemma 4.5 for a proof in two dimensions.
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4. Quadrature nodes: General principle. In this section, we analyze and begin to extend approxima-

tions of the type (3.10) to two dimensions, thus considering functions in two variables. We let f ∈ M2m be

as in (2.19). We develop the necessary preparation for an explicit construction of non-linear approximations,

given in the next section, while making use of a single con-eigenvalue con-eigenvector pair as in the previous

section. We arrive at a description of approximations in terms of quadrature nodes that are constrained to lie

in a specific variety. The explicit construction of quadrature nodes, however, requires a refinement of this

method and is addressed in Section 5.

We will throughout treat M2m as a Hilbert space with the usual scalar product 〈u, v〉 =
∑

i u(i)v(i) and

we will assume that ‖f‖ = 1. We first form the operator Hf : Mm → Mm given by

(Hfu)(i) =
∑

0≤j≤m

f(i + j)u(j).

Let ei be the standard basis in Mm, that is, ei(j) = 1 if i = j and zero otherwise. If we order this basis in some

arbitrary fashion, then Hf is represented by a symmetric matrix, as the following calculation demonstrates:

〈Hfei, ej〉 = f(i + j) = 〈Hfej, ei〉.

But then, by the Takagi factorization, Hf has con-eigenvalues σ1 ≥ . . . ≥ σ(m1+1)(m2+1) ≥ 0 and corre-

sponding con-eigenvectors un ∈ Mm. That is,

(4.1) Hfun = σnun, n = 1, . . . , (m1 + 1)(m2 + 1).

As in [8], the error in our approximations will depend on σn for chosen n. Thus the decay of σn with n is

important in this context.

PROPOSITION 4.1. Let m = (m,m) with m ≥ 9 is an odd number. Let F ∈ C1([0, 1]2) be given and

let f ∈ M2m be sampled on an equally spaced grid according to f(i) = 1
2mF ( i1

2m , i2
2m ). Then

σn ≤ ‖F ′‖∞
5m

for all n ≥ (m+1)2

2 .

Proof. For 0 ≤ j1 ≤ (m−1
2 ), 0 ≤ j2 ≤ m we define bj = 1√

2
(e(2j1,j2) − e(2j1+1,j2)) ∈ Mm. These

vectors form an orthonormal set that span a subspace M of dimension m+1
2 (m + 1). We note that

∣∣∣Hf (bj)(k)
∣∣∣ =

1√
22m

∣∣∣F
(k1 + 2j1

2m
,
k2 + j2

2m

)
− F

(k1 + 2j1 + 1

2m
,
k2 + j2

2m

)∣∣∣ ≤ ‖F ′‖∞√
222m2

so that

‖Hf (bj)‖2 ≤
∑

0≤k≤m

‖F ′‖2
∞

25m4
=

(m + 1)2‖F ′‖2
∞

25m4
.

As {bj} is an orthonormal set and 22.5m/(m+1) > 5, the operator norm of Hf |M is less than
‖F ′‖∞

5m , where

Hf |M denotes the operator Hf restricted to M. We recall that {σn}
(m+1)2

n=1 is just the set of singular values

for Hf , and therefore (given k ∈ N) we have

(4.2) σ(m+1)2−k = inf
{
‖Hf |N ‖ : N ⊂ Mm is a linear subspace with dimN = k

}
,

where ‖ · ‖ denotes the operator norm. But then we have that

σ (m+1)2

2

= σ(m+1)2−m+1
2 (m+1) ≤

‖F ′‖∞
5m

,
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from the statement in the proposition follows.

We note that the requirement that m1 = m2 in the proposition can be removed.

We now return to the problem of finding quadrature nodes for a fixed f ∈ M2m. For 0 ≤ j ≤ m let Sj

denote the cyclic shift operator with index j in M2m, that is, for a ∈ M2m we have

Sja(i) = a[i − j]2m+1,

where 1 = (1, 1) and

[i − j]2m+1 =
(
(i1 − j1) mod (2m1 + 1), (i2 − j2) mod (2m2 + 1)

)
.

Loosely speaking, the operator Sj takes a matrix a, moves it j1 times downwards, j2 times to the right and

fills up the empty spaces by the terms that have been “pushed out”.

Let u̇n be the element in M2m formed by adding zeros to the right and below the matrix un ∈ Mm, and

let Rn ⊂ M2m be the subspace given by

(4.3) Rn = span{Siu̇n : 0 ≤ i ≤ m}.

Let Pun
be the polynomial given by

Pun
(z) =

∑

0≤i≤m

un(i)zi,

where z = (z1, z2) ∈ C
2 and zi = zi1

1 zi2
2 . Let V (Pu) denote the algebraic variety {z ∈ C

2 : Pu(z) = 0},

and set

Zn = span{ z : z ∈ V (Pun
)},

(cf. (3.1) for the notation). Finally, we form the “partial difference” operator Dun
: M2m → Mm according

to

(4.4) (Dun
y)(i) =

∑

0≤j≤m

y(i + j)un(j).

We note the identity

(4.5) (Dun
y)(i) = 〈y, Siu̇n〉,

and that

(4.6) Dun
f = Hfun = σnun.

LEMMA 4.2. The operator D∗
un

: Mm → M2m satisfies

PD∗
un

v = Pun
Pv,

where D∗
un

denotes the adjoint of Dun
. In particular, Rn = RanD∗

un
.

Proof. By direct evaluation, we find that

PD∗
un

v(z) = 〈D∗
un

v, z 〉 = 〈v,Dun
z 〉 =

∑

0≤i≤m

v(i)z̄iPun
(z̄) = Pv(z)Pun

(z),

using (4.4). The second statement is an immediate consequence.

We recall that a polynomial on C
2 is called reduced if all of its factors are distinct. Analogously to

equation (3.6) we have:
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PROPOSITION 4.3. Assume that Pun
is reduced and that un(m) 3= 0.3 Then

M2m = Rn ⊕ Zn,

and Zn = KerDun
.

Proof. Given any z ∈ C
2 we have

(Dun
z )(i) = 〈 z , Siu̇n〉 = ziPun

(z);

hence, Rn ⊥ Zn, and Zn ⊂ KerDun
. Let y ∈ Mm ⊖ (Rn ⊕ Zn). As 〈 z , y〉 = Py(z) we infer that

V (Py) ⊃ V (Pun
). By Hilbert’s Nullstellensatz and Proposition 9, Ch. 4.2 in [15], we deduce that

Py = Pun
Pv

for some v ∈ Mm. But then

y =
∑

0≤i≤m

v(i)Siu̇n,

whence y ∈ Rn, which is a contradiction. This concludes the proof that M2m = Rn ⊕ Zn. To argue that

Zn = Ker Dun
, we recall that KerDun

= M2m ⊖ RanD∗
un

= M2m ⊖ Rn where the second equality

follows by Lemma 4.2.

As the vectors Siu̇n, 0 ≤ i ≤ m, are linearly independent, we obtain the following corollary

COROLLARY 4.4. Under the assumptions of Proposition 4.3, we have

dimRn = (m1 + 1)(m2 + 1)

and

dimZn = 3m1m2 + m1 + m2.

Proposition 4.3 and equation (4.6) show that if yp ∈ M2m denotes the smallest (in M2m-norm) solution

to

Dun
y = σnun,

then yp is the orthogonal projection of f onto Rn. Moreover, ‖yp‖ is the distance from f to Zn. We now

show that

‖yp‖ ≤ σn,

in analogy with (3.8). Let γ = (e
2πi

2m1+1 , e
2πi

2m2+1 ) ∈ C
2 and set C = 1/

√
(2m1 + 1)(2m2 + 1). We define

the discrete Fourier transform in two variables, F : M2m → M2m, as

(Fy)(i) = CPy(γ−i).

We recall that this is a unitary operator with inverse transform given by (F−1y)(i) = CPy(γi).

Using that (Dun
y)(i) = 〈y, Siu̇n〉, we extend Dun

to an operator Ḋun
: M2m → M2m by letting

0 ≤ i ≤ 2m:

(Ḋun
y)(i) = 〈y, Siu̇n〉.

3This corresponds to the assumption that Pun has m distinct roots in the one-dimensional case.
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Given a, b ∈ M2m, we define the matrix a⊙ b by componentwise multiplication. Let dn = F u̇n. By explicit

calculation, if follows that

(4.7) F−1Ḋun
Fa = C−1dn ⊙ a, for all a ∈ M2m.

LEMMA 4.5. The equation

(4.8) Dun
y = σnun

has a solution, y′, with ‖y′‖ = σn.

Proof. We consider the extended equation σnu̇n = Ḋun
y. Any solution y is clearly also a solution to

the original equation (4.8). Using (4.7), we transform the equation to

σndn = σnF u̇n = F−1(σnu̇n) = F−1Ḋun
FF−1y = C−1dn ⊙ F−1y.

This equation is easily seen to have the solution F−1y′(i) = σnC d(i)
d(i) , and

‖y′‖ = ‖F−1y′‖ = σnC

√ ∑

0≤i≤2m

1 = σnC
1

C
= σn,

as desired.

COROLLARY 4.6. Generically, we have ‖f − ProjZn
f‖ ≤ σn, where ProjZn

denotes the orthogonal

projection onto Zn.

Proof. If we assume that f and n are such that Proposition 4.3 applies to un, then the statement follows

immediately from Lemma 4.5. What we mean with “holds generically” will be specified in the remark below.

The proof that Proposition 4.3 indeed applies generically is given in Appendix B.

REMARK 4.7. Let S(M2m) denote the unit sphere in the linear space M2m; we recall that f is assumed

to be a fixed element in S(M2m). By the expression “In the generic case ..” in the above Corollary, we

mean that the subset in S(M2m) of elements for which the result or statement is not applicable is of zero

area-measure. If f arises as a measurement from some experiment, this means that we have assumed that

the probability measure is absolutely continuous with respect to area-measure.

In summary, let us consider a given f , and let us choose an n such that σn is “small”. Corollary 4.4

states that, in the generic case, dimZn = 3m1m2 + m1 + m2. Moreover, Corollary 4.6 states that

‖f − ProjZn
f‖ ≤ σn.

Hence, if we choose points {zj}
N
j=1 ∈ C

2 in V (Pun
) such that { zj } is a basis for Zn, we have found

an approximation of f of the type (3.2) with N = 3m1m2 + m1 + m2 and accuracy ≤ σn. Moreover,

Proposition 4.1 implies that if f originates from sampling a C1 function, we can make σn arbitrarily small

upon choosing m, and n, sufficiently large.

So far, we have not addressed the issue of how to find points {zj}
N
j=1 ∈ C

2 in V (Pun
) that yield a basis

for Zn. In the next section, we further develop the theory to arrive at a construction of an appropriate basis.

Furthermore, N = 3m1m2 + m1 + m2 is not a small number. We provide insight in how to reduce N in

Section 6.

5. Quadrature nodes: An explicit construction. A natural approach to address the ambiguity in

choice of the points {zj} is to constrain them to the intersection of two Zn’s. For any pair n, n′ ≤ dim Mm,

n′ 3= n, we expect that

Zn ∩ Zn′ = span{ z : z ∈ V (Pun
, Pun′

)},

where V (Pun
, Pun′

) = {z ∈ C
2 : Pun

(z) = 0, Pun′
(z) = 0} is, in the generic case, a finite set. Based on

Corollary 4.6, one might conjecture that ‖f − ProjZn∩Zn′
f‖ will be small if σn,σn′ are sufficiently small,

achieved by choosing n, n′ appropriately. In the following two subsections, we show that



NONLINEAR APPROXIMATION BY SUMS OF WAVE PACKETS 35

(i) In the generic case, Pun
and Pun′

have exactly 2m1m2 common solutions {zj}
2m1m2
j=1 , and

Zn ∩ Zn′ = span{ zj }2m1m2
j=1 .

(ii) It is possible that f ⊥ Zn∩Zn′ , that is, ProjZn∩Zn′
f = 0, also with the largest n = (m1+1)(m2+

1) − 1 and n′ = (m1 + 1)(m2 + 1). In this case, the error of the approximation is ‖f‖.

5.1. Proof of (i). We will use the notation

(
Dun

Dun′

)
for the operator from M2m into Mm ⊕ Mm =

M
2
m given by

(
Dun

Dun′

)
(g) =

(
Dun

g
Dun′

g

)
, g ∈ M2m.

We will use both 2×1-matrices and 1×2-matrices to denote the elements in M
2
m. We note that

(
Dun

Dun′

)∗
:

M
2
m → M2m, is given by

(5.1)

(
Dun

Dun′

)∗ (
h1

h2

)
= D∗

un
h1 + D∗

un′
h2, h1, h2 ∈ Mm,

and that f satisfies

(
Dun

Dun′

)
(f) =

(
σnun

σn′un′

)
,

while

∥∥∥∥
(

σnun

σn′un′

)∥∥∥∥ =
√

σ2
n + σ2

n′ (in the usual product topology). However, in contrast to the results in

the previous section, we will show that the smallest solution, yp, to the equation

(
Dun

Dun′

)
(y) =

(
σnun

σn′un′

)
,

is not always of the same magnitude as
√

σ2
n + σ2

n′ .

We begin with determining for which (σ1,σ2) ∈ C
2 the equation

(5.2)

(
Dv1

Dv2

)
(y) =

(
σ1v1

σ2v2

)
,

for given v1, v2 ∈ Mm, has a solution, thereby answering the question of which pairs v1, v2 ∈ Mm are

con-eigenvectors to some operator Hf . Given any polynomial p(z) =
∑

i aiz
i on C

2, we let deg p denote

the smallest multi-index such that i ≤ deg p for all i with ai 3= 0.

PROPOSITION 5.1. Let v1, v2 ∈ Mm such that v1(m) 3= 0 3= v2(m)4 be given and let q be a greatest

common divisor of Pv1
, Pv2

. Let di ∈ Mm be such that Pvi
= Pdi

q for i = 1, 2. Form the matrixes

A1, A2 ∈ Mdeg q by

A1(i) = 〈v1, Sid2〉 and A2(i) = 〈v2, Sid1〉.

Then equation (5.2) has a solution if and only if σ1A1 − σ2A2 = 0. In particular, if A1 and A2 are linearly

independent, then equation (5.2) is solvable only for σ1 = σ2 = 0.

Proof. By Lemma 4.2 an element (w1, w2) ∈ M
2
m lies in Ker

(
Dv1

Dv2

)∗
if and only if

Pv1
Pw1

+ Pv2
Pw2

= q(Pd1
Pw1

+ Pd2
Pw2

) = 0.

4This assumption simplifies the statement of the proposition but can easily be removed.
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But two polynomials are equal if and only if they have the same factors, which implies that (w1, w2) lies in

Ker

(
Dv1

Dv2

)∗
if and only if

(5.3)

{
Pw1

= Pd2
Pr

Pw2
= −Pd1

Pr

for some r ∈ Mdeg q. Thus

(σ1v1,σ2v2) ∈ Ran

(
Dv1

Dv2

)

if and only if

(5.4) 〈(σ1v1,σ2v2), (w1, w2)〉 = 0

for all (w1, w2) ∈ M
2
m satisfying (5.3). The left-hand side of (5.4) equals

σ1

∑

0≤i≤deg q

r(i)A1(i) − σ2

∑

0≤i≤deg q

r(i)A2(i) =
〈
σ1A1 − σ2A2, r

〉
,

which is zero for all r ∈ Mdeg q if and only if σ1A1 − σ2A2 = 0.

It is not difficult to construct examples of v1, v2 ∈ Mm in the proof above, for which 〈v1, v2〉 = 0 and

q 3= 1 such that one of the following holds: (1) A1 = A2 = 0, or (2) A1, A2 are non-zero but linearly

dependent, or (3) A1, A2 are linearly independent. When q = 1 the situation much simpler, as the following

corollary shows.

COROLLARY 5.2. In the generic case we have q = 1. Then

Ran

(
Dv1

Dv2

)
=

{(
−v2

v1

)}⊥

In particular, if we assume that 〈v1, v2〉 = 0, then the equation

(
Dv1

Dv2

)
(y) =

(
σ1v1

σ2v2

)

has a solution for every pair (σ1,σ2) ∈ C
2.

Proof. The first equality follows by the calculations in the proof of Proposition 5.1, and the second

statement is an immediate consequence. The proof that q = 1 holds generically is given in Appendix B.

Proposition 5.1 and Corollary 5.2 describe which pairs (v1, v2) ∈ M
2
m can appear as con-eigenvectors

to some Hf . To prove claim (i) made in the beginning of this section, we first need the following lemma. We

will temporarily use the notation Zi = span{ z : z ∈ V (Pvi
)} and Ri = span{Sjv̇i : 0 ≤ j ≤ m} for

i = 1, 2 although this conflicts with the previous notation.

LEMMA 5.3. Let v1, v2 ∈ Mm be such that

(i) v1(m) 3= 0 and v2(m) 3= 0,

(ii) the polynomials c1(z1) =
∑m1

k1=0 v1(k1,m2)z
k1
1 and c2(z1) =

∑m1

k1=0 v2(k1,m2)z
k1
1 have no

common roots,

(iii) the polynomials d1(z2) =
∑m2

k2=0 v1(m1, k2)z
k2
2 and d2(z2) =

∑m2

k2=0 v2(m1, k2)z
k2
2 have no

common roots.

Then, for all w ∈ M2m we have that Pw ∈ 〈Pv1
, Pv2

〉 if and only if w ∈ R1 + R2.

Proof. The “if” part is immediate by Lemma 4.2. Conversely, let w ∈ M2m be such that Pw ∈
〈Pv1 , Pv2〉. Then

(5.5) Pw = Pv1
g1 − Pv2

g2
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for some g1, g2 ∈ C[z1, z2]. First assume that g1(z1, z2) =
∑a

k=0 h1
k(z2)z

k
1 with a > m1 and h1

a 3= 0. By

(i) it then follows that g2 also can be written as g2(z1, z2) =
∑a

k=0 h2
k(z2)z

k
1 and that

h1
ad1 = h2

ad2.

By (iii) it follows that there is some p ∈ C[z2] such that h1
a = pd2 and h2

a = pd1. By setting

g′1(z1, z2) = g1(z1, z2) − za−m1
1 p(z2)Pv2

(z1, z2)

(
=

a−1∑

k=0

h1
k(z2)z

k
1 + p(z2)d2(z2)z

a
1 − za−m1

1 p(z2)
(
d2(z2)z

m1
1 + lower powers of z1

))

and

g′2(z1, z2) = g2(z1, z2) − za−m1
1 p(z2)Pv1(z1, z2),

we obtain a new pair such that f = Pv1
g′1 − Pv2

g′2 with the property that g′j can be written as g′j(z1, z2) =∑a−1
k=0 hj

k
′(z2)z

k
1 , j = 1, 2.

We now repeat the argument with the variables interchanged. It becomes important to note that the

corresponding hj
k’s have degree ≤ m1 and that this property is preserved in the inductive process. We omit

the details. At the end we conclude that we can assume that g1 and g2 are such that there are w1, w2 ∈ Mm

with gj = Pwj
, which proves that w ∈ R1 + R2, as desired.

THEOREM 5.4. In the generic case we have

Ker

(
Dv1

Dv2

)
= Z1 ∩ Z2 and dimZ1 ∩ Z2 = 2m1m2.

Moreover, #V (Pv1 , Pv2) = 2m1m2 and

Z1 ∩ Z2 = span{ z : z ∈ V (Pv1
, Pv2

)}.

Proof. Bernstein’s theorem [5] implies that #V (Pv1
, Pv2

) = 2m1m2 holds generically. We will assume

that this is the case as well as that Pv1
and Pv2

are irreducible, that 〈Pv1
, Pv2

〉 is a radical ideal, and that

Lemma 5.3 applies. The proof that this holds generically is postponed until Appendix B.

It is immediate by Proposition 4.3 and the assumption that Pv1
and Pv2

are irreducible, that Ker

(
Dv1

Dv2

)
=

Z1 ∩ Z2. By Corollary 5.2 we have that

dim Ran

(
Dv1

Dv2

)
= 2(m1 + 1)(m2 + 1) − 1,

which implies that

dim Ker

(
Dv1

Dv2

)
= dim M2m − dim Ran

(
Dv1

Dv2

)
= 2m1m2,

and, hence, the first part is proved. As mentioned above, #V (Pv1
, Pv2

) = 2m1m2 holds generically by

Bernstein’s theorem and, clearly, we have

span{ z : z ∈ V (Pv1
, Pv2

)} ⊂ Z1 ∩ Z2.

To conclude the proof, it suffices to show that

(5.6) span{ z : z ∈ V (Pv1
, Pv2

)}⊥ ⊂ (Z1 ∩ Z2)
⊥.
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We note that

(Z1 ∩ Z2)
⊥ =

(
Ker

(
Dv1

Dv2

))⊥
= Ran

(
Dv1

Dv2

)∗
= R1 + R2,

where the last equality follows by by Lemma 4.2. To prove (5.6), assume that w ∈ span{ z : z ∈
V (Pv1 , Pv2)}

⊥ is arbitrary. Then Pw(z) = 0 for all z ∈ V (Pv1 , Pv2) which in turn, via Hilbert’s Null-

stellensatz, implies that Pw ∈
√

〈Pv1
, Pv2

〉 = 〈Pv1
, Pv2

〉, where the last equality follows as 〈Pv1
, Pv2

〉 is

assumed to be radical. By Lemma 5.3 this implies that w ∈ R1 + R2, as desired.

Pairs (v1, v2) ∈ Mm such that Theorem 5.4 applies will in the further analysis be referred to as proper.

If we set v1 = un and v2 = un′ then Theorem 5.4 proves claim (i) made in the beginning of this section,

although it remains to be shown that a generic f gives rise to a proper pair (un, un′). This is the content of

the next theorem, the proof of which is given in Appendix B.

THEOREM 5.5. Given a generic f ∈ M2m, the pair (un, un′) is proper for all n 3= n′. In particular, we

generically have dimZn ∩ Zn′ = 2m1m2 and

Zn ∩ Zn′ = span{ zj }2m1m2
j=1 ,

where {zj}
2m1m2
j=1 = V (Pun

, Pun′
).

Once the zj’s have been found, ProjZn∩Zn′
f can be calculated by solving the normal equations to the

linear system

f ≈
2m1m2∑

j=1

aj zj .

At this point it is straightforward to calculate the actual error ‖f − ProjZn∩Zn′
f‖, but it is advantageous to

have an estimate of the error that does not involve computing the zj’s. In the next section we shall therefore

give an upper bound for the error in terms of un, un′ that is simple to calculate.

5.2. The error ‖f − ProjZn∩Zn′
f‖.. Let s1 ≥ s2 ≥ . . . ≥ s(2m1+1)(2m2+1) be the singular values of

the operator

(
Dun

Dun′

)
.

PROPOSITION 5.6. Given f ∈ M2m such that Theorem 5.4 applies. Set a = dim M2m − 2m1m2 − 1.

Then

‖f − ProjZn∩Zn′
f‖ ≤

√
σ2

n + σ2
n′

sa
.

Proof. For simplicity of notation we set A =

(
Dun

Dun′

)
. By standard operator theory, we can write

A = V ΣU where U : M2m → C
(2m1+1)(2m2+1) is unitary, Σ : C

(2m1+1)(2m2+1) → C
(2m1+1)(2m2+1) is a

diagonal matrix with s1, s2 . . . , s(2m1+1)(2m2+1) on the diagonal (in that order) and V : C
(2m1+1)(2m2+1) →

M
2
m is an isometry when restricted to RanΣ. Moreover U(KerA) = KerΣ which, as dim Ker A =

dimZ1 ∩Z2 = 2m1m2 and a = (2m1 + 1)(2m2 + 1) − 2m1m2 − 1, implies that the last 2m1m2 sj’s are

zero and sa > 0.

Because yp ⊥ Zn ∩ Zn′ and (σnun,σn′un′) ∈ RanA we get that the equation (σnun,σn′un′) = Ayp

is equivalent to

x = ΣUyp,

where x is such that V x = (σnun,σn′un′). We also have ‖x‖ = ‖(σnun,σn′un′)‖ =
√

σ2
n + σ2

n′ and

‖Uyp‖ = ‖yp‖. By the above remarks it follows that Uyp is orthogonal to Ker Σ; since sa is the first

non-zero singular value, we get that

‖x‖ ≥ sa‖Uyp‖;
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but then

√
σ2

n + σ2
n′ ≥ sa‖yp‖,

as desired.

5.3. Statement (ii).. In this subsection we set n = (m1 +1)(m2 +1) and n′ = (m1 +1)(m2 +1)− 1,

because, intuitively, this choice should yield the least error. We construct a matrix f ∈ Mm of function

values, such that Theorem 5.5 applies, but

ProjZn∩Zn′
f = 0.

The construction does not yield a “small” error. The results in this section are independent of the further

developments and may therefore be skipped.

We recall that, given v ∈ Mm, v̇ ∈ M2m is the matrix with v in the upper left corner and zeroes

everywhere else.

LEMMA 5.7. Given a proper pair (v1, v2) and any (σ1,σ2) ∈ C
2, let {zj}

2m1m2
j=1 be an enumeration of

V (Pv1
, Pv2

). Then the quadratic linear system

(5.7)





σ1v1(i) = 〈yp, Siv̇1〉, 0 ≤ i ≤ m

σ2v2(i) = 〈yp, Siv̇2〉, 0 ≤ i ≤ m, i 3= m

0 = 〈yp, zi 〉, i = 1, 2, .., 2m1m2

has a unique solution yp, which is the smallest solution to (5.2).

Proof. Theorem 5.4 implies that the system of equations

(5.8)





σ1v1 = Dv1
yp

σ2v2 = Dv2yp

Ker

(
Dv1

Dv2

)
⊥ yp

has a solution, and that yp ⊥ Ker

(
Dv1

Dv2

)
is equivalent with the third set of equations in (5.7). Moreover,

the first set of equations in (5.7) is equivalent with σ1v1 = Dv1
yp by the definition of Dv1

. The system (5.8)

consists of (2m1 + 1)(2m2 + 1) + 1 equations. The fact that

−Pv2Pv1 + Pv1Pv2 = 0

together with the assumption that v1(m) 3= 0 shows that Smv̇2 is linearly dependent on the set

{
Siv̇1 : 0 ≤ i ≤ m

}⋃ {
Siv̇2 : 0 ≤ i ≤ m but i 3= m

}
,

and therefore the “mth” equation of σ2v2 = Dv2
yp can be removed from the system (5.8) without changing

the set of solutions.

We note that the number of equations in (5.8) is equal to the number of unknowns in (elements of) yp,

and thus we conclude that given a proper pair (v1, v2) and any (σ1,σ2), we can calculate the smallest solution

yp to (5.2) by inverting a matrix representing this system of equations.

We observe that the ratio

(5.9)
‖yp‖

‖(σ1v1,σ2v2)‖

in Lemma 5.7 can get arbitrarily large even for proper pairs (v1, v2). To see this, select v1, v2 ∈ Mm such

that (5.2), for σ1 = σ2 = 1, has no solution. Proposition 5.1 guarantees that this is possible. Then we take
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a sequence (vi
1, v

i
2) of proper pairs that converge to (v1, v2) and let (yi

p) be the corresponding sequence of

smallest solutions to the system
(

vi
1

vi
2

)
=

(
Dvi

1

Dvi
2

)
(yi

p).

If the sequence (‖yi
p‖) were to be bounded, then we could take a convergent subsequence with limit y∞

p , and

by continuity this would solve the equation
(

v1

v2

)
=

(
Dv1

Dv2

)
(y∞

p ),

which contradicts Proposition 5.1.

We now have the necessary ingredients to generate the aforementioned existence of an f ∈ Mm such

that ProjZn∩Zn′
f = 0. The idea is the following:

• Set σn = 1, σn′ = 2, and pick v1, v2 ∈ Mm such that

(a) ‖v1‖ = ‖v2‖ = 1 and v1 ⊥ v2

(b) Pv1 and Pv2 have a common factor and

(c) the by Proposition 5.1 associated matrices A1 and A2 satisfy A1 − 2A2 3= 0.

• Alter v1 and v2 slightly to get two new vectors v1
′ and v2

′ that are proper, satisfy (a), and such that

the corresponding smallest solution yp to (5.2) is large.

• Use Lemma 5.7 to calculate yp and set f = yp/‖yp‖.

• By the construction, (1, v1) and (2, v2) are con-eigenpairs to the operator Hyp
= ‖yp‖Hf . Check

if 1/‖yp‖ and 2/‖yp‖ are the two smallest con-eigenvalues to Hf . If so, set un = v1 and un′ = v2

and note that by the construction of yp we have f ⊥ Zn ∩ Zn′ . If not, try again.

We have constructed an explicit counterexample, f ∈ M4,4, in Appendix A.

5.4. Numerical experiments. We carry out some numerical experiments. To facilitate these, we rephrase

the results obtained so far in this section. Given f ∈ M2m we seek approximations of the form

f ≈
N∑

j=1

aj zj

with N ≪ (2m1 + 1)(2m2 + 1) ≈ 4m1m2. In the generic case, given any n, n′, we may assume that the

con-eigenvectors un, un′ to Hf are proper. We first note that

(5.10)

(
Dun

Dun′

)
(f) =

(
σnun

σn′un′

)

and decompose f as

(5.11) f = ProjKf + ProjK⊥f,

with K = Ker

(
Dun

Dun′

)
. It then turns out that, generically, K = Zn ∩ Zn′ , which is spanned by

{ zj }2m1m2
j=1 =

{
z : z ∈ V (Pun

, Pun′
)
}
,

while ProjK⊥f = yp where yp is the smallest solution to (5.10) considered as an equation with f as unknown.

Thus (5.11) can be written

f = ProjZn∩Zn′
f + yp

where the error

‖f − ProjZn∩Zn′
f‖ = ‖yp‖

is estimated in Section 5.2.

Our computational methodology can be summarized as follows:
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FIG. 2. Original data and reconstructions on the box depicted in Figure 1, right. The panels (from left to right) display recon-

struction using n = 8, 16, 32, and 64 quadrature nodes; n′ = n + 1 and 2m1m2 = 2 · 64 · 32 = 4096. In each panel the top shows

the original and the middle the reconstruction. The residual is shown at the bottom.

1. Sample Fourier transform data on boxes Bν,k according to (2.17).

2. For each box, compute a Takagi factorization of Hf , cf. (3.3).

3. Choose con-eigenvectors un, un′ with σn, σn′ corresponding to the desired level of accuracy.

4. Compute the quadrature nodes {zj}
2m1m2
j=1 = V (Pun

, Pun′
).

5. Obtain the weights aj from the linear system

f ≈
2m1m2∑

j=1

aj zj .

6. Restrict the roots zj to those with associated weights aj above the desired approximation level (ǫ).

As mentioned in Section 2.2, (1) can be realized by using the USFFT. Moreover, there exist fast algo-

rithms to compute the Takagi factorization of Hf in (2) (see, for example, [23]). The delicate issue in (3) is

which (n, n′) and corresponding (σn,σn′) to choose. They should be chosen to ensure the desired level of

accuracy, ǫ, in steps (5) and (6). However, in the absence of a sharp estimate, some scanning over (n, n′)
will be required. The computationally most demanding component in our approach is step (4), accurately

solving the relevant algebraic problem. Step (5) comprises solving a system of normal equations. However,

because of the possible occurrence of nodes that lie far away from the complex unit circles, some level of

regularization becomes necessary to solve the relevant linear system of equations. We have opted for Ty-

chonov regularization with a term α
∑2m1m2

j=1 |aj |
2 in the minimization thus promoting sparsity – one could

employ an ℓ1 minimization technique [16] instead. We find that, typically, in step (6) roughly n terms need

to be kept; this is in accordance with what was observed for the one-dimensional result in [8].

We carry some numerical experiments, using the image in Figure 1, left. This image was generated by

a wave equation and represents modelled seismic data, and contains caustics. Figure 1, right, shows the real

part of the Fourier transform of the image; we consider the data on the box (Bν,k) depicted in this figure.

In Figure 2, top row, we show Re{ûν,k(ην,k
l )}, revealing the multiplication by |χ̂ν,k(ην,k

l )|2. The middle

row shows the reconstructions using 8, 16, 32 and 64 (= n) quadrature nodes. In the bottom row, we show

the residuals between the original and reconstructed sampled functions, confirming the convergence of our

approach. We show the same results but in logrithmic scale in Figure 3, which demonstrates that, indeed,

using (roughly) n terms in the approximation is a proper guiding principle. Moreover, the number of nodes

(here, n) used in the reconstructions is much smaller than the total number of nodes, here 2m1m2 = 4096,

as desired.

In Figure 4, the partial reconstructions corresponding to the data on the specific box are illustrated. This

figure captures how much the shapes of the wave packets have been adjusted to the data. Naturally, these

reconstructions are restricted to a single scale, and hence represent only part of the frequency content of the

original data. In Figure 5 we illustrate how our approach gleans information about the wavefront set of the
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We shall bypass both issues in this section. The idea is most naturally explained in the one-dimensional

setting of Section 3. There, f ∈ C
2m+1, Hf is a square Hankel matrix

Hf =




f(0) f(1) . . . f(m)
f(1) f(2) . . . f(m + 1)

...
...

. . .
...

f(m) f(m + 1) . . . f(2m)


 ,

and the singular value decomposition can be chosen such that Hf = UΣU∗, where the column vectors in U
are the con-eigenvectors. This means that

Hfun = Dun
f = σnun.

The only point where this particular form of the singular value decomposition is used is in the proof that

Dun
y = σnun has a solution with norm less than σn, which implies that

(6.1) ‖f − ProjZn
f‖ ≤ σn.

Now, if we were to write 2m = p + q with q > p and follow the same strategy as above, with the operator

Hp
f =




f(0) . . . f(p)
f(1) . . . f(p + 1)

...
...

...
...

...
...

f(q) . . . f(p + q)




we would loose the con-eigenvalue structure of the singular value decomposition and therefore the estimate

(6.1), but the remaining parts of the argument would go through. More specifically, we carry out a standard

singular value decomposition

Hp
f = V ΣU∗

and let u1, . . . , up+1 respectively v1, . . . , vp+1 be the column vectors of U and V , respectively. We then

define Dp
un

: C
2m+1 → C

q by

Dp
un

=




un(0) un(1) . . . un(p) 0 . . . 0
0 un(0) un(1) . . . un(p) . . . 0
...

...
...

...

0 . . . 0 un(0) un(1) . . . un(p)




and note that

Hp
f (un) = Dp

un
f = σnvn.

Then, with {zk}
p
k=0 = V (Pun

), we can approximate f in Zp
n = span{zk}

p
k=0, with the only adjustment that

the estimate (6.1) has to be replaced with an estimate involving the singular values of Dp
un

as well. However,

both the size of Pun
as well as Zp

n were reduced by the above method.

We return to the two-dimensional case. We observed in Lemma 4.5 that (6.1) continues to hold in two

variables, but that while approximating f in Zn ∩ Zn′ we need to accept a weaker estimate of the form

‖f − ProjZn∩Zn′
f‖ ≤

√
σ2

n + σ2
n′

sa
,
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where sa is a singular value of

(
Dun

Dun′

)
(compare Proposition 5.6 and Section 5.3).

The approach based on “non-square Hf ” carries naturally over to two variables. Set 2m = p + q with

q > p, define Hp
f : Mp → Mq by

(Hp
f u)(i) =

∑

0≤j≤p

f(i + j)u(j), 0 ≤ i ≤ q

and Dp
u : M2m → Mq by

(Dp
uy)(i) =

∑

0≤j≤p

y(i + j)u(j), 0 ≤ i ≤ q.

We do a singular value decomposition for the operator Hp
f and get orthonormal vectors u1, . . . , u(p1+1)(p2+1) ∈

Mp, orthonormal vectors v1, . . . , u(p1+1)(p2+1) ∈ Mq and singular values σ1, . . . ,σ(p1+1)(p2+1) such that

σnvn = Hp
f un = Dp

un
f.

We consider n to be fixed. Let u̇n be the element in M2m formed by adding zeros to the right and below the

matrix un ∈ Mp, let Rn ⊂ M2m be the subspace

Rn = span{Sju̇n : 0 ≤ j ≤ q}.

Let Pun
be the polynomial given by Pun

(z) =
∑

0≤j≤p un(j)zj and set

Zn = span{ z : z ∈ V (Pun
)}.

The following proposition summarizes Proposition 4.3 and Corollary 4.4 in this more general setting.

The proof is identical, hence it is omitted.

PROPOSITION 6.1. Assume that Pun
is reduced and that un(m) 3= 0. Then

M2m = Rn ⊕ Zn

and Zn = KerDun
. In particular, dimZn = dim M2m − dim Mq.

Next, we address the essential part of Theorem 5.5:

THEOREM 6.2. Given a generic f ∈ M2m and any n, n′ we have #V (Pvn
, Pvn′

) = 2p1p2 and

Zn ∩ Zn′ = span{ z : z ∈ V (Pun
, Pun′

)}.

Proof. We prove in Appendix B that in the generic case, Theorem 5.4 applies to un, un′ (with p = m).

The theorem then says that #V (Pvn
, Pvn′

) = 2p1p2 and that { z : z ∈ V (Pun
, Pun′

)} is a linearly

independent set, with the difference that in that notation we have z ∈ M2p. In the notation of this section

we have z ∈ M2m, so as p ≤ m we conclude that the set { z : z ∈ V (Pun
, Pun′

)} ⊂ M2m is linearly

independent. It remains to prove that dimZn ∩ Zn′ = 2p1p2, which follows by the calculation

dim Ran

(
Dv1

Dv2

)∗
= 2dim Mq − dim Ker

(
Dv1

Dv2

)∗
=

= 2 dim Mq − (q1 + 1 − p1)(q2 + 1 − p2) = . . . = dim M2m − 2p1p2

where we have used similar methods as in the proof of Proposition 5.1.

Finally, we have the error estimate
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FIG. 7. The data of Figure 1, left, contaminated with additive random noise. Counterpart of Figure 1, right.

FIG. 8. Top row, from left to right: Original windowed, Fourier transformed image (real part), reconstruction (approximation)

using the original, difference between the original and the reconstruction using the original, real part of the difference between the

windowed, Fourier transformed noisy image and the reconstruction using the noisy image (“denoising”); bottom row, from left to right:

Windowed, Fourier transformed noisy image (real part), reconstruction (approximation) using the noisy image, difference between the

original and the reconstruction using the noisy image, real part of the difference between the original windowed, Fourier transformed

image and the windowed, Fourier transformed noisy image; n = 16. Counterpart of Figure 2.
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FIG. 9. Counterpart of Figure 5 starting from the noisy image illustrated in Figure 7; n = 16. The nodes are stable under random

perturbations.

FIG. 10. A stacked exploration seismic (North Sea) data section (5122 samples; left). Right: reconstruction with 5130 packets

(accounting for oversampling) with an effective compression rate of about 50.
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Appendix A. An example of a degenerate case: Failure of convergence.

Using the procedure outlined at the end of section 5.3 we obtain the following explicit example of an

f ∈ M(4,4) such that

f ⊥ span{ z : z ∈ V (Pun
, V (Pun′

)},

where σn and σn′ are the smallest con-eigenvalues.

EXAMPLE A.1. Let m1 = m2 = 2 and take v1, v2 ∈ M(2,2) such that

Pv1
(x, y) = (x − 1)(x(y2 + 2y − 8) + (y2 + 3))/n1

and

Pv1
(x, y) = (x − 1)(x(2y2 − 3y − 1) + (5y2 − 1))/n2

where n1 = 14.2 and n2 = 6.29 are constants so that ‖v1‖ = ‖v2‖ = 1. Recall Proposition 5.1. Setting

q(x, y) = (x − 1) we easily obtain that A1, A2 ∈ M(1,0) are given by

A1 =

(
−7
−7

)
, A2 =

(
7
7

)

We now look for v′1, v
′
2 of the form

v′1
ǫ
=



−3 0 −1
11 −2 0
−8 2 1 + ǫ


 /n1

ǫ

v′2
ǫ
=




1 0 −5
0 3 + ǫ 3
−1 −3 2


 /n2

ǫ

where n1
ǫ and n2

ǫ are normalizing constants. Note that v′1
ǫ ⊥ v′2

ǫ
and that v′1

0
= v1, v′2

0
= v2. It turns

out that the value ǫ = 0.02 yields a proper pair and that the corresponding solution yp to the equation system

(5.7) is such that the singular values of the operator Hyp
are

σ9 = 1, σ8 = 2, σ′
7 = 2.70, . . . , σ′

1 = 289.

Thus setting

f =
yp

‖yp‖
=

yp

205
= 10−2




−5.57 2.84 19.07 25.66 −27.10
2.18 −16.37 16.52 19.90 −31.32
2.58 −25.04 14.62 17.36 −29.44
0.59 −29.15 12.66 15.71 −37.24
0.21 −29.94 14.99 19.30 −11.35




we obtain an f ∈ M44 with lowest con-eigenvalues σn = 1/205, σn′ = 2/205 and corresponding con-

eigenvectors un =
◦
v1

0.02
, un′ =

◦
v2

0.02
. In particular, by the construction we get

f ⊥ span{ z : z ∈ V (Pun
, Pun′

)}.

Appendix B. The notion of “holds generically”.

In algebraic geometry, a statement S is often said to hold generically if the set where it fails is contained

in a proper algebraic variety. More precisely, if S concerns u for u ∈ Mm, say, then S holds generically
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if there are polynomials q1, . . . , qn ∈ C[Mm] such that S is true whenever u 3∈ V (q1, . . . , qn). (C[Mm]
denotes all polynomials with the entries in Mm as variables).

In this paper we use the definition that a statement S holds generically if the set where it fails has zero

Lebesgue measure. It is not hard to see that this is a weaker definition, i.e. all proper algebraic varieties have

Lebesgue measure zero. On any linear space we will denote the Lebesgue measure by L. 5

Let Am denote the area-measure on S(Mm) - the unit sphere in Mm. In case the statement S concerns

only u with u normalized, i.e. u ∈ S(Mm), we will say that it holds generically if the set where it fails has

zero Am−measure.

The following proposition shows that Proposition 4.3, Corollaries 4.4, 4.6 and 5.2 hold generically.

PROPOSITION B.1. Given u ∈ S(Mm) (or u ∈ Mm), we generically have that Pu is irreducible and

u(m) 3= 0.

Proof. The second statement is trivial so we will only prove the first. Set (Mm)ir = {u ∈ Mm :
Pu is irreducible}. Clearly, u ∈ S(Mm) is such that Pu is irreducible if and only if it the same holds for αu
for all α ∈ C \ {0}, and therefore it suffices to show that L((Mm)ir) = 0. Given u ∈ (Mm)c

ir there exists a

0 < k < m and u1 ∈ Mk, u2 ∈ Mm−k such that Pu = Pu1
Pu2

. If we hold k fixed and consider the entries

in u1, u2 as variables, it is easily seen that the set of such u’s is the image of a Mm-valued polynomial on

C
dim Mk+dim Mm−k . As dim Mk + dim Mm−k < dim Mm, it follows by Theorem 1, Section 3.3 [15] that

such a set is contained in a proper algebraic variety, and therefore it has Lebesgue measure zero.

We now consider (u1, u2) ∈ (Mm)2. The first objective is to prove that in the generic case, 〈Pu1 , Pu2〉
is a radical ideal. For w ∈ C

2 let Ew : C[z1, z2] → C denote the functional of evaluation at w.

LEMMA B.2. Let I ⊂ C[z1, z2] be an ideal such that
√

I = E0. Then I is radical if and only if it

contains elements p1, p2 of the form

p1(z1, z2) = z1 + {monomials with degree ≥ 2}

p2(z1, z2) = z2 + {monomials with degree ≥ 2}.

Proof. The ”only if”-direction is obvious, so we will only prove the ”if”-part. By Hilberts Nullstellensatz

there is an n ∈ N such that zn
1 ∈ I and zn

2 ∈ I , and hence E2n
0 ⊂ I . Given any p ∈ E0, it is easy to see that

we can find a q ∈ E0 such that p − q(p1(z), p2(z)) ∈ E2n
0 ⊂ I , which completes the proof.

The next proposition together with Proposition B.1 and Bernstein’s theorem implies that Theorem 5.4

indeed holds generically. (Technically, we also have to show that Lemma 5.3 holds generically, but this is

almost immediate so we omit the argument.)

PROPOSITION B.3. Given u1, u2 ∈ S(Mm), (or u1, u2 ∈ Mm), the ideal 〈Pu1 , Pu2〉 is radical in the

generic case.

Proof. Like in Proposition B.1 it suffices to prove the statement for u1, u2 ∈ Mm. By Proposition B.1

we may assume that Pu1
and Pu2

have no common factor. By the Lasker-Noether theorem we can then write

〈Pu1 , Pu2〉 = ∩N
j=1Ij

where
√

Ij = Ewj
for some wj ∈ C

2. Given g1, g2 ∈ C[z1, z2] let Res(g1, g2, z1) denote the residual of

g1 and g2 considered as polynomials in the variable z1 with coefficients in C[z2] (see [15]). Set g(z2) =
Res(Pu1

, Pu2
, z1) and recall that g ∈ 〈Pu1

, Pu2
〉 (Section 3.6, Proposition 1 [15]). g has a multiple zero if

and only if

Res(g,
d

dz2
g, z2) = 0.

Written out this means that a number of polynomials on M
2
m should vanish for (u1, u2), and therefore it

generically holds that g has no multiple zero. Switching positions of z1 and z2 and applying Lemma B.2 we

deduce that Ij = Ewj
for each j. Hence 〈Pu1

, Pu2
〉 = ∩N

j=1Ewj
which yields the desired result.

5This definition is imprecise, but we ignore this as we will only be interested in sets of measure zero.
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We will now prove that Theorem 5.5 holds generically, and for this we will need several lemmas.

LEMMA B.4. Given a generic f ∈ M2m, all con-eigenvectors un are such that Pun
is irreducible.

Proof. For all 0 ≤ k ≤ m, let Ak be the set of all f ∈ M2m such that there exists an n with the property

that Pun
= q1q2 where q1, q2 ∈ C[z1, z2] and deg q1 ≤ k, deg q2 ≤ m− k. To complete the proof it clearly

suffices to show that each Ak has zero Lebesgue measure for fixed k.

By standard arguments from integration theory, it follows that if β : R
N1 → R

N2 is a differentiable

function and N2 > N1, then Im β = {β(y) : y ∈ R
N1} has zero Lebesgue measure. We will prove the

lemma by showing that there exists a sequence of functions βj : R
N1 → C

dim M2m , (j = 1, . . . ,∞), with

N1 < 2 dim M2m and Ak ⊂ ∪∞
j=1 Im βj .

For any v ∈ Mk and w ∈ Mm−k, define u = u(v, w) ∈ Mm by requiring that Pu = PvPw. Recall that

u is a con-eigenvector to an f ∈ M2m if and only if

(B.1) σu = Duf

for some σ ≥ 0. By Lemma 4.2 we have that D∗
u is injective so

dim Ker Du = dim M2m − dim Mm.

Let (v0, w0) ∈ Mk × Mm−k be fixed but arbitrary and denote u(v0, w0) by u0. Set M = dim M2m −
dim Mm and choose a basis e1, . . . , eM for KerDu0

. For any a ∈ C
M , u(v, w) ∈ Mm and σ ∈ R consider

the following equation-system with f ∈ M2m as unknown:

(B.2)

{
σu = Duf

a(k) = 〈f, ek〉, k = 1, . . . ,M

If we order the dim M2m equations in (B.2) and identify M2m with C
dim M2m via a unitary map U , this

can be written as α0 = Λ0Uf , where α0 ∈ C
dim M2m and Λ0 is an dim M2m × dim M2m-matrix. We will

consider α0 in the natural way as a function of (v, w,σ, a) ∈ Mk ×Mm−k ×R×C
M , and Λ0 as a function

of (v, w) ∈ Mk × Mm−k. For (v, w) in an open neighborhood O0 of (v0, w0), Λ0 is invertible, so if f
satisfies (B.1) for some σ ≥ 0 and u = u(v, w) with (v, w) ∈ O0 then f = U−1Λ

−1
0 (v, w)α0(v, w,σ, a) for

some a ∈ C
M . Define β0 : O0 × R × C

M → M2m via β0 = U−1(Λ0(v, w))−1α0(v, w,σ, a).
By a compactness argument, we can choose a sequence

(
(vj , wj)

)∞
j=1

in Mk × Mm−k such that the

corresponding sets Oj cover Mk × Mm−k. If f ∈ Ak, then there exists some j such that f satisfies (B.2)

for some (v, w,σ, a) ∈ Oj × R × C
M , and hence

Ak ⊂ ∪∞
j=1 Im βj .

Moreover, each βj is defined on Oj × R × C
M which is an open subset of Mk × Mm−k × R × C

M , which

clearly can be identified with R
N1 where

N1 = 2 dim Mk + 2 dim Mm−k + 1 + 2M =

= 2 dim Mk + 2 dim Mm−k + 1 + 2(dim M2m − dim Mm) =

= 2 dim M2m + 1 − 2(dim Mm − dim Mk − dim Mm−k)

The last parenthesis is always a positive integer, and hence N1 < 2 dim M2m. By the remarks in the

beginning, the proof is complete.

Let ort denote the polynomial ort(u1, u2) =
∑

0≤k≤m u1(k)u2(k) on M
2
m.

LEMMA B.5. There exists a set of polynomials {pm : 0 ≤ m ≤ M} on M
2
m such that

(i) V (p0, . . . , pM ) contains the set of all non-proper pairs.

(ii) ∀m ∃d1(m), d2(m) ∈ N such that pm(ru1, su2) = rd1(m)sd2(m)pm(u1, u2)
(iii) ∀m, ort ∤ pm, (i.e. ort does not divide pm).

Proof. Using the proof of Propositions B.1 and B.3, Bernstein’s theorem and basic algebraic geometry it

is clear that there exists a non-zero polynomial q such that V (q) contains the set of non-proper pairs. If q has
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properties (ii) and (iii) we set p0 = q and M = 0. Otherwise, we define the polynomials {p′(a,b)}(a,b)∈N2

on M
2
m via the identity

q(ru1, su2) =
∑

(a,b)

p′(a,b)(u1, u2)r
asb

for all (u1, u2) ∈ M
2
m and r, s ∈ C. Clearly the amount of non-zero p′(a,b) are finite and each p′(a,b) satisfies

(ii). Rename the non-zero p′(a,b)’s to p′0, . . . , p
′
M . We claim that the set of non-proper pairs is contained in

the variety V (p′0, . . . , p
′
M ). Assume not and let (v1, v2) be a non-proper pair such that p′m(v1, v2) 3= 0 for

some m, 0 ≤ m ≤ M . Then we can find a r, s ∈ C such that q(rv1, sv2) 3= 0, which is a contradiction

because the pair (rv1, rv2) is also non-proper.

For m = 0 . . . , M let nm be numbers such that p′m = ortnmpm where ort ∤ pm. Clearly each pm

satisfy (ii) as well. The proof is complete if we show that the set of non-proper pairs is contained in the

variety V (p0, . . . , pM ). To see this, assume the contrary and let (u1, u2) be a non-proper pair such that

pm(u1, u2) 3= 0 for some m. A short argument shows that we may choose a non-zero r ∈ C such that the

pair (u1, u2 + ru1) is non-proper and pm(u1, u2 + ru1) 3= 0, (in case u2 is reducible one might need to take

(u1 + ru2, u2) instead). But u1 and u2 + ru1 are not orthogonal and therefore

p′m(u1, u2 + ru1) = ortnm(u1, u2 + ru1)pm(u1, u2 + ru1) 3= 0,

which is a contradiction.

Let B ⊂ S(Mm)2 denote the set of orthonormal pairs, i.e.

B = {(u1, u2) ∈ S(Mm)2 : u1 ⊥ u2}.

Let Bir be the set of pairs (u1, u2) in B such that both Pu1
and Pu2

are irreducible, and let Bnp be the set of

pairs (u1, u2) in B that are not proper. B can be considered as a differentiable manifold with real dimension

4 dim Mm − 4. In order to simplify notation, instead of defining the hole atlas we will specify one typical

chart T : R
4 dim Mm−4 → B. This is done as follows:

Define S : C
dim Mm → Mm via

S(c) =




c(0) c(1) . . . c(m1)

c(m1 + 1)
. . . . . . c(2m1 + 1)

...
. . .

...
...

c((m1 + 1)m2) . . . . . . c(dim Mm − 1)




.

Define B : C
2 dim Mm−3 → C via B(c) = c(0) +

∑dim Mm−2
k=1 c(k)c(dim Mm − 2 + k) and V1, V2 :

C
2 dim Mm−3 → C

dim Mm via

V1(c) = (1, c(0), c(1), . . . , c(dim Mm − 2))

V2(c) = (−B(c), 1, c(dim Mm − 1), . . . , c(2 dim Mm − 4))

Note that B was defined such that V1(c) ⊥ V2(c) for all c ∈ C
2 dim Mm−3. Finally define T : C

2 dim Mm−3 ×
R × R → B via

(B.3) T (c, r1, r2) =
( (1 + ir1)S(V1(c))

‖(1 + ir1)S(V1(c))‖
,

(1 + ir2)S(V2(c))

‖(1 + ir2)S(V2(c))‖
)
.

By identifying C with R
2 as usual we will regard T as a map from R

4 dim Mm−4 into B. It is easy to see that

T is injective and that it covers most of B. By changing the definition of S one obtains other maps like T
that together form an atlas for B, as desired. We denote this collection of maps by {Tl}

N
l=1 where N is some

finite number.
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LEMMA B.6. Let {Tl}
N
l=1 be as above and let l be fixed. Then T−1

l (Bnp) has zero Lebesgue measure.

Proof. Assume for simplicity that Tl = T ; the chart defined via (B.3). Let p1, . . . , pM be the polynomi-

als given by Lemma B.5. Then Bnp ⊂ V (p1, . . . , pM ) by (i). By (ii) and the definition of T it is easy to see

that for each pm there is a polynomial qm on R
4 dim Mm−4 such that

pm(T (r)) =
qm(r)

n1(r)d1(m)n2(r)d2(m)
,

where n1(r), n2(r) are factors coming from the first and second denominator in (B.3). Moreover, qm is not

identically zero because this would imply that B ⊂ V (pm) which by (ii) would imply that pm annihilates all

orthogonal pairs in M
2
m which by basic algebraic geometry implies that ort divides pm, thus contradicting

(iii). Hence T−1(Bnp) ⊂ V (q1, . . . , qM ), and it is easy to see that each proper algebraic variety has zero

Lebesgue measure.

PROPOSITION B.7. Given a generic f ∈ M2m, all pairs of con-eigenvectors un, un′ are proper.

Proof. Let A be the set of f ’s in M2m with the property that all con-eigenvectors are irreducible. Let

{Tl}
N
l=1 be the atlas for B defined after (B.3), and for each l, let Al be the subset of f ’s in A such that one

pair of con-eigenvectors lie in Im Tl. Finally, let Al
np be the subset of f ’s in Al such that at least one pair of

con-eigenvectors in Im Tl is not proper. In order to prove the proposition it suffices to show that L(Al
np) = 0

for a fixed l, by virtue of Lemma B.4 and the fact that the number of charts Tl is finite. Consider u1 and u2 as

functions on R
4 dim Mm−4 defined by

(
u1(r), u2(r)

)
= Tl(r). For r ∈ T−1

l (Bir) we have, (using the same

arguments as in Proposition 5.1), that

dim Ker

(
Du1(r)

Du2(r)

)∗
= 1

which implies that

dim Ran

(
Du1(r)

Du2(r)

)
= 2dim Mm − 1.

Set dran = 2dim Mm − 1 and dker = dim M2m − dran.
Let r0 ∈ R

4 dim Mm−4 such that Tl(r0) ∈ Bir be fixed but arbitrary. Choose a basis e1, . . . , edker

for Ker

(
Du1(r0)

Du2(r0)

)
and another basis e′1, . . . , e

′
dran

for Ran

(
Du1(r0)

Du2(r0)

)
. Let Ω0 ⊂ R

4 dim Mm−4 be a

neighborhood of r0 such that for all r ∈ Ω0 the following conditions hold:

{e1, . . . , edker
}⊥ ∩ Ker

(
Du1(r)

Du2(r)

)
= {0}

{e′1, . . . , e
′
dran

}⊥ ∩ Ran

(
Du1(r)

Du2(r)

)
= {0}

Tl(r) ∈ Bir.

We omit the argument which proves that such a neighborhood always can be found. Given r ∈ Ω0, b ∈ C
dker

and (σ1,σ2) ∈ R
+ × R

+ consider the following equation-system with f ∈ M2m as unknown:

(B.4)





〈(
σ1u1(r)

σ2u2(r)

)
, e′k

〉
=

〈(
Du1(r)

Du2(r)

)
f, e′k

〉
, k = 1, . . . , dran

b(k) = 〈f, ek〉, k = 1, . . . , dker

The equation-system consists of dran + dker = dim M2m equations. If we order them then the left hand

side defines a vector in C
dim M2m in a natural way, which we will consider as a function of (r, b,σ1,σ2) ∈

Ω0×C
dker ×R

+×R
+ and denote by α0. If we let U : M2m → C

dim M2m denote any fixed unitary operator,

then the equation-system (B.4) can be written as

α0 = Λ0Uf,
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where Λ0 is an dim M2m × dim M2m-matrix that we consider as a function of r ∈ Ω0. Note that Λ0(a)
always is invertible, by the choice of Ω0. Define the C∞-function β0 : Ω0 ×C

dker ×R
+ ×R

+ → M2m via

β0(r, b,σ1,σ2) = U−1
(
Λ0(r)

)−1
α0(r, b,σ1,σ2).

Recall that the above construction was made for an arbitrary point r0 ∈ R
4 dim Mm−4 such that Tl(r0) ∈ Bir.

Given another point r1 with the same properties we will associate to it the function β1 and the set Ω1

defined analogously. A short argument which we omit shows that Bir is an open set. Therefore, by a

simple compactness argument, we may choose a sequence of points r0, r1, . . . ∈ R
4 dim Mm−4 such that

(B.5) ∪∞
j=0Ωj ⊃ T−1

l (Bir).

Now, given any f ∈ Al then by definition there exists a pair of con-eigenvectors (v1, v2) ∈ Im Tl ∩Bir.

Let (σ1,σ2) be the corresponding con-eigenvalues. By (B.5) we may pick a j such that there exists an r ∈ Ωj

such that v1 = u1(r) and v2 = u2(r). It is not hard to see that

f = βj

(
r, b,σ1,σ2

)

for some choice of b ∈ C
dker . Hence

Al
np ⊂ ∪∞

j=1βj

((
Ωj ∩ T−1

l (Bnp)
)
× C

dker × R
+ × R

+
)

To conclude the proof we thus have to show that

(B.6) L
(
βj

((
Ωj ∩ T−1

l (Bnp)
)
× C

dker × R
+ × R

+
))

= 0

for each fixed value of l and j. By Lemma B.6 it follows that

(B.7) L
((

Ωj ∩ T−1
l (Bnp)

)
× C

dker × R
+ × R

+
)

= 0

and moreover,

(
Ωj ∩ T−1

l (Bnp)
)
× C

dker × R
+ × R

+ ⊂ R
4 dim Mm−4 × C

dker × R × R

which has real dimension

4 dim Mm − 4 + 2dker + 2 = 4 dim Mm − 4 + 2(dim M2m − (2 dim Mm − 1)) + 2 = 2 dim M2m.

Hence βj is a differentiable function between spaces of equal dimension. The identity (B.6) now follows by

(B.7) and the fact that such a function maps sets of Lebesgue measure zero to sets of Lebesgue measure zero.

It remains to show that Theorem 6.2 holds generically. A proof can be constructed using the above ideas,

but we will omit this.
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