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Abstract

Climate change and reductions in natural habitats necessitate that we better understand

species’ interactivity and how biological communities respond to environmental changes. How-

ever, ecological studies of species’ interactions are limited by geographic and taxonomic bias

which can lead to severe under-representation of certain species and distort our understanding

of inter-species interactions. We illustrate that ignoring these biases can result in poor perfor-

mance. We develop a model for predicting species’ interactions that (a) accounts for errors in

the recorded interaction networks, (b) addresses the geographic and taxonomic bias of exist-

ing studies, (c) is based on latent factors to increase flexibility and borrow information across

species, (d) incorporates covariates in a flexible manner to inform the latent factors, and (e) uses

a meta-analysis data set from 166 individual studies. We focus on interactions among 242 birds

and 511 plants in the Brazilian Atlantic Forest, and identify 5% of pairs of species with an un-

recorded interaction, but posterior probability of existing that is over 80%. Finally, we develop

a permutation-based variable importance procedure and identify that a bird’s body mass and

a plant’s fruit diameter are most important in driving the presence and detection of species

interactions, with a multiplicative relationship.

keywords: Bayesian methods; bipartite graph; ecology; graph completion; latent factors; variable

importance

1. Introduction

Animal-plant interactions have played a very important role in the generation of Earth’s biodi-

versity [Ehrlich and Raven, 1964]. Dozens or even hundreds of species form complex networks of

interdependences whose structure has important implications for the stability of ecosystems [Solé

and Montoya, 2001]. However, climate change and the reduction in species’ natural habitats neces-

sitates that we urgently understand species’ interactivity in order to better predict how biological

communities will respond to environmental changes, and how these changes will affect species’

interactions, equilibrium and co-existence.

Predicting and understanding species interactions is a long standing question in ecology. How-

ever, data on species’ interactions are scarce and limited in their coverage. Some studies are
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animal-centered and record interactions only for specific animal species. Similarly, there are stud-

ies that are plant-centered and record which animal species consume a given plant’s fruit. Such

studies are taxonomically biased in that they focus only on a subset of the species population. To

learn general animal-plant interactions, the most useful studies are network studies that record any

interaction that is observed. However, even these studies have severe limitations. They often focus

on a small area where not all animal and plant species can be found, and are hence geographically

biased. Even if the study area is well-defined, we do not have perfect knowledge of which species

actually exist in the area, therefore we cannot know which interactions are even possible to be ob-

served [Poisot et al., 2015]. This leads to complications in that interactions could be unrecorded

because (a) the species truly do not interact, (b) the species do not co-exist in the study area,

(c) the species co-exist in the study area and truly interact but the interaction was not detected

by the researchers, or (d) the interaction was detected but it was not recorded because it did not

include the specific study’s species of interest. Even though these biases and their implications are

well-recognized in the ecological literature [Báldi and McCollin, 2003, Seddon et al., 2005, Pyšek

et al., 2008, Trimble and van Aarde, 2012, Hale and Swearer, 2016, Jordano, 2016], most models

for species interactions do not account for them [e.g. Bartomeus, 2013, Gravel et al., 2013]. Even

though some advances are emerging in the literature [Cirtwill et al., 2019, Weinstein and Graham,

2017, Graham and Weinstein, 2018], the models therein do not provide a comprehensive treatment

of species’ traits and phylogenetic information. Our main focus is in addressing both sources of

bias in order to understand whether a given bird would eat the fruit of a given plant if given the

opportunity, and to learn which species traits are most important in forming and detecting these

interactions.

From a statistical perspective, a bird-plant interaction network can be conceptualized as a

bipartite graph, where the birds and plants form separate set of nodes, and a link connects one node

from each set and represents that the bird would eat the plant’s fruits if given the opportunity. If a

certain animal-plant interaction has been recorded, the corresponding edge of the graph necessarily

exists. However, absence of a recorded interaction does not mean that the interaction is not possible

and the networks are measured with error.

Modeling the probability of connections on a graph measured without error has received a lot of

attention in the statistics literature, and examples stretch across many applied fields such as social

[Newman et al., 2002, Eckmann et al., 2004, Wu et al., 2010], biological [Han et al., 2004, Sporns

et al., 2004, Chen and Yuan, 2006, Bullmore and Sporns, 2009], and ecological [Croft et al., 2004,

Blonder and Dornhaus, 2011] networks. Since we do not hope to cover all literature in network

modeling, we focus on statistical approaches for bipartite graphs. In an early approach, Skvoretz

and Faust [1999] adapted the classic p∗ network models to the bipartite setting. Within this string

of literature, there have been a number of frequentist and Bayesian approaches performing commu-

nity detection in bipartite graphs. Co-clustering was first introduced in Hartigan [1972]. Dhillon

[2001] used the left and right eigenvalues of a scaled adjacency matrix to simultaneously cluster

words and documents. Dhillon et al. [2003] developed an algorithm to cluster the nodes of a bipar-

tite graph such that the optimal clustering maximizes mutual information between the clustered
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random variables. Relatedly, Banerjee et al. [2007] viewed community detection in bipartite graph

as a matrix approximation problem, where the reconstruction minimizes information loss while

preserving co-clustering statistics of the original graph. From a Bayesian perspective, Shan and

Banerjee [2008] specified a generative model for co-clustering which allows for mixed membership

of the rows and columns. Wang et al. [2011] performed simultaneous and nested clustering of the

rows and columns of a bipartite graph, and Razaee et al. [2019] developed an approach to matching

communities of the one set of nodes to those of the other. Co-clustering is widely used in a number

of fields including genetics [Cheng and Church, 2000, Kluger et al., 2003, Madeira and Oliveira,

2004] and user-movie networks [Ungar and Foster, 1998, Hofmann and Puzicha, 1999, Yang et al.,

2002].

Our approach is more closely related to network modeling using latent variables [Hoff et al.,

2002, Handcock et al., 2007, Hoff, 2008] and its extension to bilinear and multilinear relationships

[Hoff, 2005, 2011, 2015]. In latent variable approaches, the nodes are often embedded in a Euclidean

space, and nodes’ connections depend on their relative distance in this latent space, and potentially

on covariates through linear terms. Since our observed networks have missing edges which we aim

to learn, our approach also has ties to modeling noisy observed networks [e.g., De Choudhury et al.,

2010, Jiang et al., 2011, Wang et al., 2012, Chatterjee, 2015, Priebe et al., 2015, Chang et al., 2020].

Our goal is two fold: (1) to complete the bipartite graph of bird-plant interactions given the

recorded network which is measured with error, and (2) to understand which covariates are most

important for driving and detecting interactions. To achieve this goal, we develop a Bayesian

approach to modeling the probability of bird-plant interactions, based on a meta-analysis data

set including recorded information on 166 published and unpublished studies [Bello et al., 2017]

on the Brazilian Atlantic Forest. The proposed approach (a) models the probability of a link

in the bipartite graph, (b) incorporates the missing data mechanism for unrecorded interactions,

addressing the taxonomic and geographic bias of the individual studies, (c) uses species’ trait

information to inform the network model and improve precision, (d) employs a latent variable

approach to link these three model components, which aids prediction of interactions of bird-plant

pairs that did not co-occur, (e) quantifies our uncertainty around the estimated graph, and (f) uses

posterior samples of estimated quantities and a permutation-based approach to acquire a variable

importance metric for trait matching and species detectability. Even though our model employs

latent factors, our approach is, to our knowledge, the first to employ latent network models for

noisy networks, and to use covariates to inform the latent factors via separate models, instead of

including them in the network model directly.

2. A multi-study data set of bird–plant interactions in the Atlantic Forest

We study bird-plant interactions in the Brazilian Atlantic Forest, whose area is decreasing fast,

threatening its biodiversity [Ribeiro et al., 2009]. Our data include recorded bird-plant interactions

from 166 published or unpublished studies. The original data set, which is thoroughly described

in Bello et al. [2017], includes frugivore-plant interactions for five frugivore classes, including the
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(b) Taxonomic bias

Figure 1: Geographical and Taxonomic Bias. Panel (a) shows the locations of recorded interactions
with reported coordinate information. Panel (b) shows the number of unique ave and plant species
with observed interactions within each study, by study type (animal/plant-oriented, network study).

class of Aves (birds). Since we focus on bird-plant interactions (hence excluding mammals or

other classes), we incorporate the 85 studies that include at least one such interaction. Across

the 85 included studies, there is a total of 6,024 recorded interactions among 242 bird and 458

plant species, and a total of 511 plant species. One of the key characteristics of our data is that

unobserved interactions are not necessarily impossible. For an interaction to be registered in our

data (1) both species must occur at the study site, (2) they must interact, and (3) the interaction

has to be detected and recorded. Therefore, a bird-plant interaction might be unrecorded because

studies have not focused on the species’ territory, or do not record the given species’ interactions.

Different studies took place across potentially overlapping or non-overlapping regions. Fig-

ure 1a shows the study locations of recorded bird-plant interactions with non-missing coordinate

information, amounting to 68% of all recorded interactions. Most of them are located in a small

geographic area along the coast and in the area near São Paulo in the southeast part of Brazil.

Therefore, interactions among species that do not co-occur in this area would be less likely to be

detected, implying that the data are geographically biased. On the other hand, out of the 85 stud-

ies, 19 were animal-oriented, 45 were plant-oriented, and 19 were network studies (the remaining

2 were a combination). Animal-oriented and plant-oriented studies record only a subset of the

interactions that are detected: an animal-oriented study focuses on a given animal’s diet whereas

a plant-oriented focuses on learning which animals eat the fruits of a given plant. In contrast,

the purpose of a network study is to record all detected interactions. The difference in studies’

focus leads to taxonomic bias of recorded interactions which might over-represent the interactions

of certain bird or plant species. Figure 1b illustrates the taxonomic bias in our data by showing

the number of unique species observed in each study by study type. Animal-oriented studies have

recorded interactions on a much smaller number of bird species than plant-oriented studies, and

the reverse is true for the number of unique plant species.
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In addition to the recorded bird-plant interactions, available data also include key bird and

plant traits, measured with varying amounts of missingness. In ecology, it is believed that physical

traits may influence the success of a frugivory interaction, and researchers are interested into

understanding this relationship [Dehling et al., 2016, Bello et al., 2017, Descombes et al., 2019].

For plants, available data include the diameter, length and color of the plant’s fruit and seed, its

lipid score, and the plant’s form (e.g., tree). For birds, covariates include its body mass, gape size,

migration status, and frugivory score.

3. Learning species interactions addressing geographic and taxonomic bias

We use i = 1, 2, . . . , nB, and j = 1, 2, . . . , nP to represent birds and plants respectively. For every

bird i, let Xi = (Xi1, Xi2, . . . , XipB )′ represent a collection of pB physical traits, and similarly

Wj = (Wj1,Wj2, . . . ,WjpP )′ for plant j. Recorded interactions are collapsed across studies into

one nB × nP interaction matrix, denoted by A, where Aij = 1 implies that bird i has been

recorded to interact with plant j, and Aij = 0 otherwise. We are interested in inferring the true

interaction matrix, denoted by L, representing whether bird i would interact with plant j if given

the opportunity (Lij = 1), or not (Lij = 0), and is also of dimension nB × nP . In our study, these

dimensions are 242 and 511, respectively.

We assume that there was no human error in recording interactions, and a recorded interaction

was truly observed and therefore possible (hence if Aij = 1, then Lij = 1 necessarily). But how can

we infer the probability that Lij = 1 for pairs (i, j) for which an interaction has not been recorded?

Available sources of information to estimate L are the following: (a) the recorded interactions

allow us to draw inferences for other combinations of the same species, (b) species with similar

traits might be involved in similar true interactions, and (c) the recorded interactions within each

study provide us with information on which interactions the specific study could have recorded.

The model presented below uses all the information in (a), (b) and (c) to infer the true interaction

matrix.

3.1 The covariate-informed latent interaction model

For bird i and plant j let Ui = (Ui1, Ui2, . . . , UiH)T and Vj = (Vj1, Vj2, . . . , VjH)T denote their latent

factors, respectively. The model presented below uses these factors for (a) the true interactions,

(b) the species’ physical traits, and (c) the probability of detecting a possible interaction. Figure 2

shows a graphical representation of our model.

First, the probability of a true interaction is modeled through the interaction submodel:

logitP (Lij = 1) = λ0 +
H∑
h=1

λhUihVjh, (1)

with λh ∈ R, h = 1, 2, . . . ,H. In (1), the latent factors are used as in classic bipartite network

models [e.g. Hoff, 2011], and they represent the species’ locations in the latent space, where birds

and plants in nearby locations are more likely to be connected. The interaction submodel is shown
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through the arrows originating from Ui and Vj into Lij in Figure 2. We link the species’ traits to

the probability of interaction by assuming that the latent factors U ,V are also the driving force

of birds’ and plants’ physical traits. For appropriately chosen link functions fm and gl, we assume

the trait submodel:

f−1m (E(Xim | Ui)) = βm0 +U ′iβm, m = 1, 2, . . . , pB, and

g−1l (E(Wjl | Vj)) = γl0 + V ′j γl, l = 1, 2, . . . , pP
(2)

for βm0, γl0 ∈ R, and βm,γl ∈ RH , shown in Figure 2 through the arrows originating from Ui to

Xi, and from Vj to Wj . The submodel (2) implies that the latent factors can be conceived as low-

dimensional summaries of the species’ traits. We adopt logistic link functions for binary traits. If

the trait submodel is not fully defined by its mean, additional parameters can be incorporated. For

continuous traits, the link function is set to the identity function, and we incorporate a parameter

for the residual variance.

The submodels (1)-(2) are interpretable from an ecological standpoint. Species’ traits are be-

lieved to play an important role in whether they interact. The classic approach in network modeling

includes covariates directly into the linear predictor of the interaction model in (1). However, the

role of traits in an ecological network is believed to be interactive [referred to as trait matching;

Fenster et al., 2015, Bender et al., 2018], and flexible approaches have performed better than includ-

ing the traits directly into the model [Pichler et al., 2020]. Hence, the submodels (1)-(2) are in-line

with current ecological knowledge as they represent a flexible representation of species’ interactions

that is driven by interactions among a low dimensional representation of the species’ physical traits.

If the recorded interaction matrix A was not geographically or taxonomically biased, then

the model (1)–(2) could be used to infer the true interaction matrix L. However, since species’

representation is biased, the model component connecting the truly possible interactions, L, to

the recorded interactions, A, has to be incorporated. We model this component accounting for

the fact that there is differential observational effort for different species. If bird i and plant j

Ui Vj

Xi WjLij

pi pj

Aij

nij

Figure 2: Graphical representation of the model. Shaded nodes represent latent variables. Bird and
plant covariates are denoted by Xi,Wj , and corresponding latent factors by Ui,Vj , respectively.
A recorded interaction is denoted by Aij = 1 and possible interactions by Lij = 1. The parameters
pi, pj represent the probability that a species is detected, and nij denotes the number of studies
that have recorded interactions of both species.
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were followed and recorded across many studies, but no study has recorded an interaction between

them (Aij = 0), then it is more likely that the (i, j) interaction is not possible (Lij = 0) than it

being possible and not detected. On the other hand, we are more uncertain of whether the (i, j)

interaction is possible if this interaction was not recorded and the species i and j have recorded

interactions in a single study. To formalize this, let nij be the number of studies that have recorded

at least one interaction for both i and j and consider species-specific detection probabilities which,

with some abuse of notation, we denote as pi for birds and pj for plants. We specify the probability

of observing an interaction (i, j) given whether it is possible as

P (Aij = 1 | Lij = l) =

{
0, if l = 0, and

1− (1− pipj)nij , if l = 1,
(3)

which expresses that a study which followed both i and j (and contributes to nij) would detect a

possible (i, j) interaction with probability pipj , independently from other studies. This indepen-

dence assumption has been previously employed within a related context [Weinstein and Graham,

2017]. Submodel (3) also expresses that it is impossible for a study to record a possible (i, j)

interaction if the species were not detected in the study.

The missingness mechanism in (3) is key in accounting for geographic and taxonomic biases:

If a species does not exist in the area under study or the species was not the focus of the study,

then the study will not contribute to the count nij . Therefore, this specification treats both

sources of bias simultaneously. Alternative specifications of this submodel could target the two

parts of the missingness mechanism separately, by (a) using the information on the study goal

(animal/plant-oriented, network study), and (b) knowledge on species’ spatial distribution and

co-occurrence. However, doing so would come with its own complications since available data

are missing coordinate information on 32% of the recorded interactions, and knowledge of species

spatial distributions during the different parts of the year is limited. This would require extensive

modeling in itself, and would likely lead to increased uncertainty. We discuss model adjustments

towards this direction in Section 6.

The detection of species is believed to depend on species traits such as size and behavior [Garrard

et al., 2013, Troscianko et al., 2017]. In our study, a bird’s body mass, whether they are solitary or

gregarious, and a plant’s height might affect whether their interactions are easily detected or not.

For that reason, we specify the detection submodel to depend on the species’ latent factors (which

act as a low-dimensional summary of the covariates) as:

E[logit(pi) | Ui] = δ0 +UT
i δ, and E[logit(pj) | Vj ] = ζ0 + V T

j ζ, (4)

for δ0, ζ0 ∈ R, and δ, ζ ∈ RH . We assume that logit(pi) and logit(pj) have conditional normal

distributions with mean as specified in (4) and residual variance σ2p,B and σ2p,P , respectively. As

specified, (3)–(4) form a key model component for estimating the latent factors, since for recorded

interactions it is known that Lij = 1, which can drive estimation of the corresponding pi, pj (Lij ←
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Ui → pi in Figure 2, and similarly for the plants).

Even though the same latent factors are assumed to be the drivers of true interactions in (1),

traits in (2), and the detection probability in (4), different latent factors might contribute to only a

subset of the models if their corresponding coefficients are small. For example, some latent factors

might inform only the probability of forming interactions, only the probability of detection, both

or none. We discuss this further in Section 3.2.

3.2 Bayesian inference

The model described above is placed within the Bayesian paradigm which allows for immedi-

ate uncertainty quantification on the probability of truly possible interactions. We assume in-

dependent Gaussian prior distributions for the latent factors, but include a covariance structure

across species (separately within birds, and within plants). Then, if U.h = (U1h, . . . , UnBh)T and

V.h = (V1h, . . . , VnP h)T , we specify

U.h ∼ N (0,ΣU ), and V.h ∼ N (0,ΣV ), (5)

independently across h, ΣU = ρUCU + (1 − ρU )I, and ΣV = ρVCV + (1 − ρV )I, where I is the

diagonal matrix, and CU ,CV are correlation matrices specified using subject-matter expertise (see

Section 5.1 for their specification in our study which uses phylogenetic information). We specify

ρU , ρV ∼ Beta(aρ, bρ).

Prior distributions need to be adopted for the remaining parameters which include the inter-

cept, variance terms, and the coefficients of the latent factors in the various models: λH×1 =

(λ1, λ2, . . . , λH)T in (1), BH×pB = (β1 β2 . . . βpB ) and ΓH×pP = (γ1 γ2 . . . γpP ) in (2), and

δH×1 and ζH×1 in (4). Due to the complete model’s high dimensionality, efficient estimation of

model parameters requires either a small pre-specified value for H, or a moderate value of H with

sufficient shrinkage of model parameters for increasing h. We follow the latter option by specify-

ing an increasing shrinkage prior on model parameters such that the prior distribution assigns an

increasing amount of weight to values close to zero as the index h increases. Specifically, we specify

βmh|τβmh, θh ∼ N(0, τβmhθh), γlh|τγlh, θh ∼ N(0, τγlhθh)

λh|τλh , θh ∼ N(0, τλh θh), δh|τ δh, θh ∼ N(0, τ δhθh), ζh|τ ζh , θh ∼ N(0, τ ζhθh)
(6)

where τβmh, τ
γ
lh, τ

λ
h , τ

δ
h, τ

ζ
h ∼ IG(ν/2, ν/2), and

θh | πh ∼ (1− πh)P0 + πhδθ∞ , πh =

h∑
l=1

ωl, ωl = vl

l−1∏
t=1

(1− vt)

vt ∼ Beta(1, α), t < H and vH = 1.

(7)

In (6), the prior variance of model coefficients is specified using parameter-specific variance terms

τ and overall variance terms θ. Equation (7) specifies the truncated increasing shrinkage prior

of Legramanti et al. [2019] for the overall variance terms. This prior distribution uses a stick-
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breaking specification to define the mixing probabilities of a spike-and-slab prior distribution on

θh, where P0 is a slab distribution, and δθ∞ represents a point-mass at θ∞. We set P0 to be an

inverse gamma distribution with parameters (αθ, βθ) and θ∞ close to zero. For larger values of h,

the prior on θh assigns larger weight to the point-mass rather than the slab distribution, resulting

in prior distributions for the parameters in (6) that are a priori concentrated closer to zero for

increasing values of h. At the same time, the parameter-specific variance terms (τ) are centered

at 1 and provide flexibility to the hth coefficient from each model to deviate from a N(0, θh) prior

if, for example, θh is too small, and would lead to over-shrinkage of the corresponding coefficient.

In that sense, the scaling parameters τ adjust the prior variance θh to allow for different latent

variables h to be most important across the submodels (1), (2), and (4). In Supplement C.2 we see

that including the parameter-specific variance terms τ only improves model performance. Inverse-

gamma prior distributions are also assumed for the remaining variance components, including the

residual variances of the trait models and the probability of detecting a given species.

3.3 Posterior computation

Since the posterior distribution of model parameters does not have a closed form, we approximate it

using Markov Chain Monte Carlo (MCMC). Here we describe the algorithm at a high-level, but all

details are included in Supplement A. All code for simulations and analyses will be made publicly

available at the first author’s Github page.

At each MCMC step, the entries of the true interaction matrix corresponding to recorded

interactions are set to 1. Entries corresponding to interactions that were not recorded are set to 1

or 0 with weights resembling the current values of (1) while reflecting that an unrecorded interaction

among species that co-existed in multiple studies is more likely to be impossible. The parameters

of the interaction model in (1) are updated using the Pólya-Gamma data augmentation scheme of

Polson et al. [2013] under which Pólya-Gamma random variables are drawn for all nB × nP pairs,

conditional on which posterior distributions of logistic model parameters are normally distributed.

All variance parameters are updated from inverse gamma distributions, and the parameters of

continuous traits and the probability of detection have normal conditional posterior distributions.

To update the parameters of the models for binary traits, we again employ that Pólya-Gamma

data augmentation, draw values from Pólya-Gamma distributions for each unit and each binary

covariate, and sample the parameters from their normal conditional posterior distributions. The

latent factors from each set of species inform the probability of interaction, the species’ covariates,

and their probability of being detected, and are therefore included in a number of continuous

and binary models. Despite their complicated form, conditional on all other parameters and the

Pólya-Gamma draws for the interactions and the binary covariates, the latent factors have normal

conditional posterior distributions. Updates for the parameters in the increasing shrinkage prior

are adapted to our setting from Legramanti et al. [2019]. To update the probability of detecting

a given species we perform Metropolis-Hastings steps where the proposal distribution is a Beta

distribution centered at the current value. Despite the large number of parameters to be updated

in this fashion (nB + nP ), we have found that these updates require minimal tuning. We update
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the parameters ρU , ρV in a similar manner. Missing covariate values are common in our data set,

but their imputation is based directly on (2).

3.4 Variable importance in latent interaction models

We propose a permutation-based approach to measure a covariate’s importance in latent factor

network models. In our study, this procedure will inform us of the relative importance of species

traits for forming and detecting interactions. We briefly discuss the approach here, though further

details are included in Supplement A.5. We are interested in studying the importance of the kth bird

trait. We useX.k to denote the vector of the kth covariate across all bird species. For each (i, j) pair

of species, let l
(r)
ij be the logit of the rth posterior sample for the probability of interaction in (1), and

l
(r)
.j be the vector of these probabilities across i, (l

(r)
1j , l

(r)
2j , . . . , l

(r)
nBj

)T . For each posterior sample r and

plant species j, we calculate the squared correlation between the predicted interaction probabilities

l
(r)
.j and the covariate X.k. We average these values over all plant species j and posterior samples.

For a large number of permutations B, we reorder the entries in X.k and repeat this process. We

use the number of standard deviations away from the mean of the permuted test statistics that the

observed test statistic falls as a measure of variable importance. In all the steps, we only consider

bird species with observed values of the covariate. The reason is that imputed covariate values are

based on the latent factors which also drive the interaction model, and using them in a variable

importance measure could lead to misleading conclusions on the covariate importance measure.

We discuss this and other considerations in more detail in Supplement A.5. A similar approach is

followed for the plant species W .

3.5 Prediction for out-of-sample species

Our main focus is in predicting whether a species i∗ with covariates Xi∗ would interact with a

species j∗ with covariates Wj∗ , if given the opportunity, where the covariates might be available

with missingness. If both species are included in the original nB × nP data, predictions are auto-

matic in our MCMC scheme via updating the corresponding entry of L. However, pairs of species

might be partially or completely unobserved, if one or both species have no recorded interactions.

Inference on the probability of interaction for pairs of two out-of-sample species could proceed by

extending the observed interaction matrix to (nB + 1) × (nP + 1) with ni∗j = 0 and nij∗ = 0

for all i, j species in the original data set, and re-fitting the MCMC. However, such approach is

computationally cumbersome since it would require re-fitting the MCMC for every new species.

Here, we present a computationally efficient algorithm for making predictions for out-of-sample

species, which combines the MCMC fit to the original data and importance sampling weighting.

Mathematical and implementation details, along with predictions for pairs of species of which only

one is out-of-sample, are shown in Supplement A.6.

For out-of-sample species i∗, j∗, let θ∗ denote all model parameters, D̃ observed data for all

in-sample species, and Ui∗ ,Vj∗ denote the latent factors corresponding to i∗, j∗ respectively. If
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Li∗j∗ ∈ {0, 1} represents whether the species interact or not, we have that

P (Li∗j∗ = 1 | D̃,Xi∗ ,Wj∗) ∝
∫ (A)︷ ︸︸ ︷
P (Li∗j∗ = 1 | θ∗,Ui∗ ,Vj∗)

(B)︷ ︸︸ ︷
p(Xi∗ | θ∗,Ui∗) p(Wj∗ | θ∗,Vj∗)

p(Ui∗ ,Vj∗ | θ∗)︸ ︷︷ ︸
(C)

p(θ∗ | D̃)︸ ︷︷ ︸
(D)

d(θ∗,Ui∗ ,Vj∗),

which is the basis of our algorithm. First, we use draws from the posterior distribution of model

parameters based on the original data (D) to draw latent factors for the new species i∗, j∗ (C)

where the correlation matrices CU ,CV are updated to include the new species. Based on the latent

factors and the model parameters, we draw values for the indicator of whether the species interact

(A). Since these draws do not account for the observed covariates, we denote the draw based on

the rth posterior sample by L̃
(r)
i∗j∗ and up(down)-weigh the samples which use parameters and latent

factors that have higher (lower) values of (B). Specifically, we let w
(r)
i∗ = w

(r)
i∗1w

(r)
i∗2 . . . , w

(r)
i∗pB

, where

w
(r)
i∗m is 1 if Xi∗m is missing, and according to p(Xi∗m | θ∗(r),Ui∗)(r) in (2) otherwise, and we

define w
(r)
j∗ similarly. Then, we set the posterior probability that species i∗, j∗ interact equal to∑R

r=1w
(r)
i∗j∗L̃

(r)
i∗j∗

/ ∑R
r=1w

(r)
i∗j∗ , where w

(r)
i∗j∗ = w

(r)
i∗ w

(r)
j∗ .

The algorithm presented above discusses how we can perform prediction for out-of-sample

species, when new species i∗, j∗ with covariate information Xi∗ ,Wj∗ become available. However,

availability of covariate information of new species requires that we update our predictions for

in-sample species since the posterior of the model parameters is now

p(θ∗ | D̃,Xi∗ ,Wj∗) ∝ p(θ∗ | D̃)

∫
p(θ∗ | θ∗i∗,j∗)

p(θ∗)
p(θ∗i∗,j∗ |Xi∗ ,Wj∗) dθ∗i∗,j∗ (8)

for θ∗i∗,j∗ denoting all model parameters for species i∗, j∗ (this expression is derived in Supplement

A.6). Intuitively, the covariates Xi∗ ,Wj∗ drive estimation of the latent factors for i∗, j∗ (last term

in (8)), and correlation of the latent factors across species would imply that the latent factors for

i∗, j∗ affect the latent factors for in-sample species and p(θ∗ | θ∗i∗,j∗) / p(θ∗) 6= 1. Therefore, the

integral in (8) will not be equal to 1, and the posterior distribution that incorporates the new

covariate values, p(θ∗ | D̃,Xi∗ ,Wj∗), will not be the same as the original posterior distribution,

p(θ∗ | D̃).

We evaluate the performance of the computationally efficient algorithm for out-of-sample pre-

diction and the impact that out-of-sample correlated species have in the interaction predictions of

in-sample species in simulation studies.

4. Simulations

We perform simulations to evaluate the following critical aspects of our model: How does our

model perform compared to 1) approaches that ignore the taxonomic and geographic biases? 2) an

interaction model that depends directly on covariates? Further, we evaluated 3) how our predictive
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performance varies with the amount of information that is available for a given species. Additional

simulations including simulations on variable importance and trait matching are included in the

Supplement, and discussed briefly below.

We considered alternative approaches that either use latent factors to link the various model

components or use covariates directly, and either accommodate the probability of false negatives

or not. Specifically, we considered: (Latent, observed) A model similar to the one in Section 3, but

assuming that the observed interaction network is the truth, (Covariates, bias corrected) A model

that allows for unobserved interactions to be possible, but for which the individual submodels

depend directly on covariates instead of the latent factors, and (Covariates, observed) An interaction

model that depends directly on covariates and assumes that the observed interaction network is

the truth. We present the models and corresponding MCMC schemes in Supplement B, and we

note here that the competing method Covariates, bias corrected is our own construction, and, to our

knowledge, does not exist in the literature. We also note that the models that are based directly

on the covariates do not incorporate phylogenetic information.

4.1 Data generation process imitating the observed data

Our simulations are based directly on our data on recorded bird-plant interactions in order to eval-

uate the models’ relative performance within the context of our scientific question. Data generation

followed closely several aspects of our observed data.

Sample sizes and observational effort. Across all simulations we used the observed number of bird

and plant species. Further, the number of studies that observed a pair (i, j), nij , was the same

as in our observed data. This ensured sufficient variability in the number of opportunities for a

species to be observed in an interaction with any other. If nij is the number of studies that recorded

interactions for both i and j, we define the observational effort for bird i as n+i =
∑

j nij , and as

n+j =
∑

i nij for plant j. Then, n+i and n+j have interquartile range 18–282 and 17–103, respectively.

For each simulated data set, a random sample of 10 bird species were assumed to have nij = 0 for

all j, and 10 plant species were assumed to have nij = 0 for all i to represent completely out-of

sample species.

Observed interactions. We ensured that the proportion of recorded interactions in each simulated

data set was approximately equal to the proportion of recorded interactions in our data, implying

a quite sparse scenario (only ≈ 3.1% of all pairs have a recorded interaction).

Covariates. We generated a large number of covariates X̃, W̃ from a matrix-normal distribution,

with correlation across covariates equal to 0.3, and correlation across species equal to the species’

phylogenetic correlation matricesCB andCP (discussed in Section 5.1). Some of the covariates were

then transformed to binary variables using the values in X̃, W̃ as linear predictors in a Bernoulli

distribution with a logistic link function. Only a subset of the generated covariates were available

in the simulated data, and we consider scenarios where the important covariates are unobserved.

To ensure that our generated data resembled the observed as closely as possible, we assumed that

the observed covariates in each simulated scenario maintained the same structure and proportion

12



of missingness as in the observed data: 2 continuous and 3 binary covariates with proportion of

missing values varying from 0 − 32% for the first set of species, and 4 continuous and 8 binary

covariates with proportion of missing values varying from 0 − 80% for the second set of species.

We denote the covariates that are observed in each simulated data set as Xi and Wj , vectors of

length five and twelve respectively, and assume that the continuous covariates are listed first, in

that Xi1, Xi2,Wj1,Wj2,Wj3,Wj4 are continuous, and the rest are binary.

True data generative models. We generated data in three different ways:

(dgm1) All the important covariates are observed in the simulated data. Covariates Xi1, Xi3, Xi4

(Wj1,Wj2,Wj5,Wj6) drive the detection of an interaction for the first (second) set of

species, and the true interaction model is multiplicative in the observed covariates:

logit(P (Lij = 1)) = κ0 +
5∑
l=1

κlXilWjl.

(dgm2) Data generation in (dgm1) was based on observed covariates with a multiplicative inter-

action submodel. In (dgm2), the models for the detection probability are the same as in

(dgm1), but the interaction model is additive in the observed covariates:

logit(P (Lij = 1)) = κ0 + κ1Xi2 + κ2Xi3 + κ3Xi5 + κ4Wj2 + κ5Wj10.

(dgm3) Data generation identical to (dgm1) but for which all submodels are functions of covariates

that are unobserved in the simulated data.

Importantly, in none of the above scenarios we generated data according to our model. However,

the competitive model is the true data generative model in (dgm2). Therefore, simulations under

(dgm2) inform us of our model’s performance in this extreme scenario, and in the case where the

linear predictor of our interaction submodel is misspecified. In (dgm1), we investigate the relative

importance of using observed covariates instead of latent factors, in the case where all the important

covariates are observed but the interaction model of the competitor model is misspecified. Then,

under (dgm3), we investigate how the methods’ relative performance changes when the observed

covariates are correlated with the important covariates, but are themselves unobserved.

4.2 Simulation results

Methods were evaluated in terms of their predictive power in identifying true interactions and their

misclassification rates. To compare the approaches in the presence of biases, predictive metrics

were evaluated across the following categories: (a) Performance was evaluated separately for the

observed interactions, the interactions that were not observed, and the interactions that were not

observed but are truly possible. (b) Predictive metrics were also evaluated separately among pairs

of species that have co-existed in studies, pairs that have not co-existed and hence it is impossible to

observe their interactions, and species that were not observed in any of the studies. Doing so allows
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Figure 3: Methods’ Predictive Performance in Simulations. Ratio of methods’ AUROC to the
AUROC using the true and known interaction model. Results are shown in percentages. Four
methods are considered, two using latent factors and two using the observed covariates, with and
without bias correction (horizontal axis). The method using latent factors with bias correction
(in bold) is the proposed method. The columns represent the three data generative mechanisms:
(dgm1) is a multiplicative interaction model using measured covariates, (dgm2) is an additive inter-
action model using measured covariates, and (dgm3) is a multiplicative model using unmeasured
covariates. Results are shown by observational effort for bird and plant species, by color and
row, respectively, showing the results for all species, and species at the 25-50, 50-75, and 75-100th

percentile of observational effort measured using n+i , n
+
j .

us to evaluate model performance for in-sample prediction with different amounts of information,

and out-of-sample prediction. (c) Lastly, we evaluated the methods’ predictive performance based

on the observational effort for each species, defined in Section 4.1.

Figure 3 shows the ratio of AUROC (area under the receiver operating characteristics curve) of

each method compared to the AUROC from the true, known interaction model, when predicting

the values of L among pairs with unrecorded interactions. The AUROC based on the true model

(which includes unmeasured variables under (dgm3)) was approximately 83% for all three data

generating processes. The results are shown by data generative mechanism, and separately by

quartile of observational effort for both sets of species (based on the distribution of n+i , n
+
j ).

First, we notice that bias correction always improves the methods’ predictive performance. The

performance of methods without bias correction deteriorates for species with a higher observational
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effort. Even though this might appear counter-intuitive at first, this is expected when considering

that methods without bias correction do not accommodate that an unrecorded interaction is more

likely to be impossible if there are more studies that could have observed it. This illustrates

that predictions can severely suffer when the taxonomic and geographic biases are not properly

accounted for. In all our simulations, we also observed that, on average, models without bias

correction predicted a smaller number of possible interactions compared to their counterparts with

bias correction, an observation that was also previously made by Weinstein and Graham [2017] and

Graham and Weinstein [2018].

In the scenario where the competitor model is the true model (dgm2), the competitor achieves

an AUROC ratio of 86.7% compared to the known model. Our method falls shortly behind with

an AUROC ratio of 81.5%. This result indicates that even when the model uses all the important

covariates correctly, our method performs only slightly worse for predicting missing unobserved

interactions, even though it is based on a multiplicative interaction model and the true model

is additive. In contrast, when the competing method uses the correct covariates but the wrong

functional form for the interaction model (dgm1), the latent factor model outperforms it with

AUROC ratios of 67% and 76%, respectively. Comparing the results of our method in (dgm1) and

(dgm3), we see that our model effectively uses the observed covariates when those are predictive of

interactions (dgm1), and it still outperforms a model based on the covariates when those are not

the important ones (dgm3).

4.3 Results from additional simulation studies

We show additional simulation results in Supplement C. In Supplement C.1, we compared methods

for half-in-sample and out-of-sample pairs and show that, even though the methods’ predictive

power is slightly lower there than compared to in-sample pairs, their relative performance remains

unchanged. In Supplement C.2, we evaluated the performance of the computationally efficient

out-of-sample prediction approach from Section 3.5, and we find that our importance sampling

procedure performs comparably to fitting a single MCMC. We also find that model accuracy for

in-sample predictions is essentially unchanged in the presence of out-of-sample correlated species,

which indicates that interaction predictions for in-sample species do not have to be updated when

new species become available. There, we also present simulation results under alternative specifica-

tion of the prior distribution in (6), and show that including the parameter specific variance terms

τ improve performance uniformly. Finally, in Supplement C.3 we show that using the procedure

described in Section 3.4 leads to accurate conclusions on variable importance and trait matching,

in that it accurately differentiates covariates that are important for forming or detecting interac-

tions from those that are not. However, we notice that this procedure cannot differentiate among

covariates that are important for the presence of interactions from those that are important for

their detection.
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5. Bird–plant interactions in the Atlantic Forest

5.1 Specifying the prior correlation matrices for the latent factors

In ecological studies, it is often assumed that the evolution of species over time follows a random

walk model, and their organization in an ancestral tree leads to species that share a recent ancestor

to be more similar than species that share a less recent ancestor. That means that species that are

more genetically related are likely to have more similar traits and share more interactions. This

ancestor and trait relationships are captured on phylogenetic trees which have been used to represent

correlations across species [Ives and Helmus, 2011]. In some cases, phylogenetic information has

agreed with observed correlations in species’ traits or interaction profiles [Gilbert and Webb, 2007,

Mariadassou et al., 2010], but not in others [Rezende et al., 2007].

A taxonomic tree is a simplification of a phylogenetic tree, in that it does not accommodate

the time length of species progression, and it assumes that every branch is of the same length. We

use the taxonomic tree to specify the matrix C in the latent factors’ correlation structure in (5)

as an approximation to the correlation matrix based on the phylogenetic tree [see Ovaskainen and

Abrego, 2020, Section 6.7], which can be used if available. For the bird species, we specify

[CU ]ii′ =



1, if i = i′,

0.75, if they belong to the same genus (very similar),

0.5, if they belong to the same family (similar),

0.25 if they belong to the same order (somewhat similar), and

0 if they are unrelated,

and similarly for CV , where plant species are organized in genera and genera in families. Therefore,

CU ,CV are correlation matrices which are motivated by the species’ evolutionary process. In the

correlation structure of the latent factors, Σ = ρC + (1 − ρ)I, the parameter ρ can be viewed

as a quantification of the taxonomic importance in driving commonalities in species’ traits and

interaction profiles.

5.2 Estimating the graph of possible bird-plant interactions

In order to estimateL in our study, we considered the two approaches that correct for taxonomic and

geographic bias discussed in Section 4: our approach, and a model for interactions which includes

the covariates directly in the linear predictor. We run three chains of 80,000 iterations each, with

a 40,000 burn in, and kept every 40th iteration. MCMC convergence was investigated for both by

studying traceplots and running means for identifiable parameters. Convergence diagnostics for

our approach are shown in Appendix F. Based on similar diagnostics, we found that the MCMC

of the alternative approach failed to converge based on the same number of iterations. For that

reason, we excluded from this analysis the two traits of the plant species with the largest amounts

of missingness (seed length and whether the species is threatened for extinction), which led to

improved diagnostic plots and no detectable lack of convergence.
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In Figure 4, we show estimates for the probability of interaction based on both models for a

subset of the taxonomic families (bird/plant families with at least 5/8 species), illustrated using

the vertical and horizontal blue lines. The complete results are shown in Supplement D but the

conclusions remain unchanged, and the complete list of species in the order shown is included

in Supplement G. The results from the two methods have important differences. According to

our method (Figure 4a), species within the same family form similar interactions, as evidenced

by the taxonomically-structured posterior interaction probabilities, where the blue lines separate

the posterior interaction probabilities in clusters with similar values. In contrast, results from

the alternative method that employs covariates directly (Figure 4b) indicate that some species

interact with most other species and some species with none, as evidenced by rows and columns

that are mostly close to one or zero. Since we do not expect this “all or none” structure in species

interactions, results from the covariate model seem untrustworthy, and indicate that this model

might rely on covariates too heavily. Species within the same family can belong to different genera,

but we refrain from including genera information in the figure to ease visualization. However, we

observed that clusters of posterior interaction probabilities from the latent factor model within a

pair of species families generally corresponded to species organization by genera. The taxonomic

structure in the results from our method is further supported by the posterior means (95% credible

intervals) for ρU and ρV which were 0.965 (0.929, 0.988) and 0.981 (0.961, 0.994), respectively.

We further compare interaction results from the two models in Figure 5. There are a few im-

portant conclusions. In Figure 5a, we see that the model that employs covariates directly predicts

that a large proportion of the pairs truly interact. However, it is agnostic as to whether a large

(a) Latent, Bias corrected (b) Covariates, Bias corrected

Figure 4: Posterior Probability of Possible Interactions. Posterior probability that bird species
(y-axis) and plant species (x-axis) interact according to (a) the proposed method and (b) the
alternative method. Species are organized in taxonomic families separated by blue vertical and
horizontal lines. Only taxonomic families with at least 5 bird and 8 plant species are shown to ease
visualization. Black color is used to represent interactions that are recorded in our data.
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(a) (b)

Figure 5: Comparison of Model Predictions. Values close to 1 indicate that an interaction between
the two species is likely to be possible. (a) Histograms of posterior interaction probabilities for all
pairs of species without a recorded interaction based on the two models. (b) The predictions from
the two models are plotted against each other.

portion of pairs are possible to interact or not, as evidenced by a distribution of interaction prob-

abilities that is uniform below 0.75. This illustrates that the model that uses covariates directly

cannot identify truly impossible interactions (this conclusion is further supported in Section 5.3).

In contrast, our model that uses latent factors predicts that a non-negligible, but more realistic,

proportion of pairs are possible to interact, and identifies a large number of pairs which are likely

impossible to interact. When studying these predictions against each other in Figure 5b, we see

that pairs that are predicted to almost surely interact based on the covariate model (values close

to 1 on the y-axis) have interaction predictions based on our model that range uniformly from 0 to

1. In contrast, pairs of species that are impossible to interact based on our model (values close to

0 on the x-axis) are likely to have low probability of interactions according to the covariates model

also, but these values range from 0 to 0.5. Therefore, the models seem to partially agree on which

pairs of species are impossible to interact, but our model is more confident in these predictions,

with posterior probabilities of interaction that are closer to zero.

5.3 Model performance in identifying truly possible interactions

We perform a variant of cross-validation to assess how well the two models fit the observed data.

Since our goal is to predict which of the unrecorded interactions are truly possible, our cross-

validation approach holds out a subset of the recorded interactions and studies model predictions

for these pairs of species. Specifically, we randomly choose 100 recorded interactions, we set their

corresponding values in the observed interaction matrix, A, equal to 0, without changing their

corresponding nij value, and we predict their probability of interaction. We repeat this procedure

20 times, each time holding out a different subset of recorded interactions. Then, model comparison

is based on how well each model can differentiate interactions that we know are possible (the
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Figure 6: Cross Validation Results. For each of the 20 cross-validation iterations, we calculate the
mean and median of the posterior interaction probability in the held-out, truly interacting pairs,
and in the overall species population. The two panels show boxplots for the ratio of held-out to
overall prediction mean (left) and median (right) by model. Higher values indicate that the true
interactions were identified more clearly.

held-out, truly recorded interactions) from the predictions of interactions across all species which

necessarily includes pairs that are impossible to interact. We note here that our setting forbids us

from comparing model performance based on unrecorded interactions, since those interactions are

not certainly impossible.

Figure 6 shows the results. Since the two models tend to return drastically different prevalence

of interactions (Figure 5a), we present results in terms of relative magnitude of average and median

posterior probability of interaction in the held-out and in the overall data, separately for the two

models. Figure 6 shows that the latent factor model is much more effective in differentiating the

truly possible interactions from the set of all interactions compared to the model that is based

directly on covariates.

5.4 Identifying important traits for species detectability and interactions

Apart from understanding which pairs of species are possible to interact, ecologists are also in-

terested in understanding the traits which make species interactions possible, referred to as trait

matching [e.g. Fenster et al., 2015], as well as the traits that affect species’ detectability [e.g. Garrard

et al., 2013, Troscianko et al., 2017]. Towards that goal, Bastazini et al. [2017] studied how traits

and phylogenetic information drive species interactions, and accounted for unrecorded interactions

due to lack of overlap in species distributions. Pichler et al. [2020] showed that flexible models

perform better than generalized linear models in both predicting interactions and identifying the

important trait for these interactions.

In Figure 7 we show the results of trait matching in our study. Figures 7(a-b) show the values of

the variable importance measure described in Section 3.4 for bird and plant traits separately. Darker

colors are used to indicate higher importance. We find that whether the species are endangered

plays a minimal role in whether an interaction is possible. We identify a bird’s body mass and a

plant’s fruit diameter as the most important traits in forming and detecting interactions among
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Figure 7: Trait Importance. Figures (a) and (b) show the variable importance metric of Section 3.4
for bird and plant species. Traits are ordered from most important (dark color) to least important
(light color), and ∗ is used for binary traits. Figure (c) shows the matrix of posterior probabilities
of interaction where the species have been re-ordered in increasing order of body mass for birds
and fruit diameter for plants, the most important traits. Orange and green are used for low and
high probability of interaction, respectively, and dark green is used for recorded interactions.

species. In Figure 7(c) we plot the posterior probabilities of interaction reordering the species in

increasing values of body mass for birds and fruit diameter for plants. We see that high posterior

probabilities are concentrated on the upper left triangle, whereas low posterior probabilities are

concentrated on the bottom right triangle. Therefore, our model estimates show that small birds

are less likely to interact with plants that produce large fruits, and large fruits are most often

consumed by large birds. Interestingly, our model returns estimates that indicate such interactive

relationships between traits which are in line with the current ecological literature [Fenster et al.,

2015, Bender et al., 2018] without having to specify this multiplicative trend parametrically.

6. Discussion

We introduced a latent factor model that uses species traits and recorded interactions in order

to complete the bipartite graph of species interactivity accounting for taxonomic and geographic

bias from different studies, and we proposed an approach to study variable importance in such

latent network models. We found that a number of unrecorded interactions are truly possible, and

identified important physical traits in forming and detecting interactions among species that are

in line with current knowledge in ecology. We see a number of possible extensions. One extension

could accommodate the spatial aspect of the data more directly, and treat the geographic and

taxonomic biases separately. One way forward is to alter the submodel in (3) to reflect

P (Aij = 1 | Lij = 1) = 1−
∏
s

(1−OijsFijspipj),
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where Fijs is equal to 1 if the focus of study s allowed for observation of both i, j species and 0

otherwise, and Oijs ∼ Bern(ψijs) represents whether species i, j co-occur at the location of study s.

A related extension could also allow for temporal variation focusing on learning whether species i

and j would interact if they co-existed at location s and time t. Extensions in this direction would

open the road for investigating the importance of species co-occurrence and competition in forming

interactions, a topic that would require explicit geographic modeling of species. However, even if all

studies provided detailed temporal and spatial information, scientists do not have perfect knowledge

of species’ spatial distributions, hence we could not accurately incorporate which species co-exist

(and specify ψijs above). One approach could treat ψijs as known using published geographic maps

of species distributions. Alternatively, it could be estimated incorporating geographic information

such as the state, municipality or bioregion of the Atlantic forest. However, studying the co-

existence of species across space is a hard problem in itself and it is the topic of joint species

modeling in ecology [Ovaskainen and Abrego, 2020].

One of the key aspects of our approach is that we assume that recorded interactions are necessar-

ily possible. Falsely recorded interactions could be accommodated by altering the model component

in (3) to reflect

P (Aij = 1 | Lij = 0) = 1−
∏
s

(1− perrors ),

where perrors is a study-specific probability of mis-recording an interaction. Even though we consider

this an interesting extension, we suspect that accommodating false positives could drastically affect

model efficiency, especially in our very sparse scenario with only ∼3.1% of all possible pairs having

a recorded interaction. An alternative approach to investigating the presence of false positives

could assess recorded interactions post-hoc by examining cases where the posterior probability of

interaction is low even though the interaction is recorded.

In our work, we found that using covariates to inform the latent factors performs better in

(a) predicting truly impossible interactions between species, and (b) separating interactions that

are possible from the rest, compared to an approach that uses the covariates directly. Even though

using the covariates in the proposed manner complicates the investigation of variable importance

since we cannot simply test a coefficient’s statistical significance, we proposed a measure for variable

importance which performed well in simulations and returned results that agree with subject-matter

knowledge. We find variable importance and the identification of important covariates in latent

factor models to be an interesting line of future work.
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Supplement A. MCMC scheme

A.1 Some notation

1. Outer product: We use A ⊗B to denote the outer product of vector A of length lA and

vector B of length lB, where A⊗B is a matrix of dimension lA× lB with (i1, i2) entry equal

to Ai1Bi2 .

2. Vectorization: For a matrixM of dimension r×c, denote the vectorization ofM as vec(M)

where vec(M) is a vector of length rc with entries

M11,M12, . . . ,M1c,M21, . . . ,M2c, . . . ,Mrc,

hence unpacking first across the columns and then across the rows.

3. Conditional distributions: We use p(x1 | x2, x3) to denote the distribution of x1 given

x2 and x3, p(x | ·) to denote the distribution of x given everything else, and p(x | ·,−y) to

denote the distribution of x given everything except y.

A.2 List of model parameters to be updated in an MCMC

Model parameters to be updated include

– the (nB × nP ) true interaction matrix L,

– the parameters of the interaction model λ,

– the latent factors U ,V of dimension (nB ×H) and (nP ×H) respectively,

– the parameters of the trait models B and Γ including the residual variances σ2m and σ2l of

continuous traits,

– the parameters of the models for the probability of observing a true interaction of a given

species δ and ζ and the residual variances σ2p,B, σ
2
p,P ,

– the probabilities themselves pB = (p1, p2, . . . , pnB ), and pP = (p1, p2, . . . , pnP ),

– the parameter in the latent factor covariance matrices ρU , ρV ,

– the variance scaling parameters τ across all models,

– the parameters θ,π,ω and v controlling the increasing shrinkage prior, and

– covariate missing values, if applicable.
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A.3 The posterior distribution

The posterior distribution of all model parameters (assuming no missing values of covariates) is

p(parameters |Data) ∝

∝
pB∏
m=1

p(X.m | βm.,U , σ2m)×
pP∏
l=1

p(W.l | γl.,V , σ2l )

×
nB∏
i=1

nP∏
j=1

[
p(Aij | pi, pj , Lij)p(Lij | λ,Ui.,Vj.)

]
×
{ nB∏
i=1

p(logit(pi) | δ,Ui., σ2p,B)
}
×
{ nP∏
j=1

p(logit(pj) | ζ,Vj., σ2p,P )
}

×
H∏
h=1

{
p(U.h | ΣB) p(V.h | ΣP )

}
× p(ρU )p(ρV )

×
pB∏
m=1

p(βm0)

H∏
h=1

p(βmh | τβmh, θh)

×
pP∏
l=1

p(γl0)
H∏
h=1

p(γlh | τγlh, θh)

× p(λ0)p(δ0)p(ζ0)
H∏
h=1

p(λh | τλh , θh)p(δh | τ δh, θh)p(ζh | τ ζh , θh)

×
H∏
h=1

[
p(τ δh)p(τ ζh)p(τλh )

pB∏
m=1

p(τβmh)

pP∏
l=1

p(τγlh)

]

×
H∏
h=1

p(θh | πh)p(πh | ω1, ω2, . . . , ωh)p(ωh | v1, v2, . . . , vh)p(vh),

where p(πh | ω1, ω2, . . . , ωh) and p(ωh | v1, v2, . . . , vh) are point mass distributions satisfying the

equations in (7).

A.4 MCMC updates

Updating the true interaction matrix L We update the (i, j) entry of L in the following manner:

If Aij = 1, then Lij is set to 1. If Aij = 0, then Lij is sampled using a Bernoulli distribution with

p(Lij = l | ·) ∝

1− pLij , if l = 0

pLij(1− pipj)nij if l = 1,

3



where pLij = expit
{
λ0 +

∑H
h=1 λhUihVjh

}
, and pi, pj are the probabilities of observing bird i and

plant j in (4).

Updating the parameters λ of the interaction model We update these parameters using the Pólya-

Gamma data-augmentation of Polson et al. [2013] in the following manner:

1. For each (i, j) pair, draw latent variables ωLij ∼ PG(1, λ0 +
∑

h λhUihVjh). Conditional on ωLij

the contribution of Lij to the likelihood is

p(Lij | ωLij ,λ,Ui.,Vj.) ∝ exp

−ωLij2

[
Lij − 1/2

ωLij
−

(
λ0 +

H∑
h=1

λhUihVjh

)]2 ,

which is the kernel of a normal distribution, and can be combined with the normal prior

distribution on λ.

2. Sample λ ∼ NH+1(µnew,Σnew) for parameters

Σnew =
[
DT
UV ΩLDUV + (Σλ

0)−1
]−1

,

and

µnew = Σnew

[
DT
UV (vec(L)− 1/2) + (Σλ

0)−1µλ0

]
,

where

• DUV is a matrix with (nB × nP ) rows and (H + 1) columns, with first column equal to

1, and (h+ 1)th column equal to

vec(U.h ⊗ V.h) = (U1hV1h, U1hV2h, . . . , U1hVnP h, U2hV1h, . . . , U2hVnP h, . . . , UnBhVnP h),

• ΩL is a matrix of dimension (nBnP × nBnP ) with the entries vec(ωLij) on the diagonal

and 0 everywhere else,

• Σλ
0 is a diagonal matrix with entries σ20, τ

λ
1 θ1, τ

λ
2 θh, . . . , τ

λ
HθH on the diagonal (σ20 is the

prior variance of λ0), and

• µλ0 is equal to (µλ00 , 0, 0, . . . , 0)T , where µλ00 is the prior mean of λ0.

Updating the variance scaling parameters τ Sample τβmh from an inverse gamma distribution with

parameters (ν + 1)/2 and (ν + β2mh/θh)/2. Similarly for τγlh, τ
δ
h, τ

ζ
h and τλh .
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Updating the parameters of continuous traits models For a continuous trait m, the full conditional

posterior distribution of βm. = (βm0, βm1, . . . , βmH)T is NH+1(µnew,Σnew) for parameters

Σnew =
[
DT
BDB/σ

2
m + (Σβ

0 )−1
]−1

and

µnew = Σnew

[
DT
BX.m/σ

2
m + (Σβ

0 )−1µβ0

]
,

where

• DB = (1 | U.1 | U.2 | · · · | U.H) matrix of dimension (nB × (H + 1)),

• X.m vector of entries for the mth trait (X1m, X2m, . . . XnBm)T ,

• Σβ
0 diagonal matrix with entries σ20, τ

β
m1θ1, . . . , τ

β
mHθH (σ20 is the prior variance of βm0, and

• µβ0 = (µβ00 , 0, 0, . . . , 0)T (µβ00 is the prior mean of βm0).

To update the residual variance of continuous trait m, we sample σ2m from an inverse gamma

distribution with parameters aσ+nB/2 and bσ+
∑nB

i=1(Xim−(1,UT
i. )

Tβm.)
2/2. Similarly we update

parameters γl. = (γl0, γl1, . . . , γlH)T and σ2l for continuous trait L of the other set of units.

Updating the parameters of binary traits models To update the coefficients βm. for a binary trait

m we again follow the Pólya-Gamma data augmentation approach. Specifically,

1. We sample ωim from PG(1, (1,UT
i. )

Tβm.) for all i = 1, 2, . . . , nB.

2. We draw βm. from NH+1(µnew,Σnew) for parameters

Σnew =
[
DT
BΩmDB + (Σβ

0 )−1
]−1

and

µnew = Σnew

[
DB (X.m − 1/2) + (Σβ

0 )−1µβ0

]
,

where Σβ
0 ,µ

β
0 ,DB and X.m are as above, and Ωm is a diagonal matrix with entries {ωim}nB

i=1.

Similarly we update the coefficients γl. = (γl0, γl1, . . . , γlH)T for the models of the binary traits

for the other set of units.

Updating the parameters of the probability of observing an interaction The parameters δ and σ2p,B

are updated similarly to the updates for the parameters of the continuous trait models β and σ2m,
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using the same matrix DB, and setting

X.m = (logit(p1), logit(p2), . . . , logit(pnB ))T .

The update of ζ and σ2p,P proceeds similarly.

Updating the latent factors We describe the update of the latent factors for the first set of units

U.h for h = 1, 2, . . . ,H, and updates for V.h are similar. Here, we will use the Pólya-Gamma draws

ωim for binary traits m, and ωLij , described above. For each h = 1, 2, . . . ,H, U.h is drawn from

NnB (µnew,Σnew) for parameters

Σnew =

 ∑
m: Xm

continuous

β2mh/σ
2
mInB + δ2h/σ

2
p,BInB +

∑
m: Xm
binary

β2mhΩm +

nP∑
j=1

λ2hV
2
jhΩ

L
j + Σ−1U


−1

and

µnew = Σnew

{ ∑
m: Xm

continuous

βmh/σ
2
m part(m,h) + δh/σ

2
p,B part(p, h)+

∑
m: Xm
binary

βmhΩm

[(
X − 1/2

ω

)
m

− (1 | U.−h)βm(−h)

]
+

nP∑
j=1

λhVjhΩj

[(
L− 1/2

ω

)
j

−
(
1 | U.−hVj(−h)

)
λ−h]

]}

where

• Ωj is used to denote, with some abuse of notation, the diagonal matrix of dimension nB with

entries representing the Pólya-Gamma draws from the interaction model involving unit j:

(ωL1j , ω
L
2j , . . . , ω

L
nBj

),

• ΣU is the covariance matrix of the latent factors in (5),

• part(m,h) is used to denote the residuals from the model for Xm when excluding the hth

latent factor, and is the following vector of length nB:

part(m,h) = X.m −
(
βm01+βm1U.1 + · · ·+ βm(h−1)U.(h−1)+

βm(h+1)U.(h+1) + · · ·+ βmHU.H
)
,

• Similarly, part(p, h) is used to denote a vector of length nB including the residuals of the
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model for the probability of observing when excluding the hth latent factor:

[part(p, h)]i = logit(pi)−
(
δ0 + δ1Ui1 + · · ·+ δh−1Ui(h−1) + δh+1Ui(h+1) + · · ·+ δHUiH

)
,

•
(
X − 1/2

ω

)
m

is a vector of length nB with ith element equal to (Xim − 1/2)/ωim,

• (1 | U.−h) is a matrix of dimension nB ×H representing a concatenation of a vector of 1 in

the first column and the latent factors U excluding the hth one,

• βm(−h) is the vector βm excluding the coefficient of the hth latent factor,

•
(
L− 1/2

ω

)
j

is the diagonal matrix of dimension nB including the transformed versions of

unit j’s interactions:
(
(L1j − 1/2)/ωL1j , (L2j − 1/2)/ωL2j , . . . , (LnBj − 1/2)/ωLnBj

)
,

•
(
1 | U.−hVj(−h)

)
is the nB ×H matrix with first column equal to 1, second column equal to

Vj1U.1 = (U11Vj1, U21Vj1, . . . , UnB1Vj1)
T , third column equal to Vj2U.2, up to the last column

which is equal to VjHU.H , excluding the hth vector VjhU.h, and always using the same unit

j’s latent factors, and

• λ−h includes the coefficients of the interaction model excluding λh.

Updating the parameters of the increasing shrinkage prior In order to ease the updates of the in-

creasing shrinkage prior parameters in (7), we introduce parameters z1, z2, . . . , zH with zh ∼

Multinomial(ω1, ω2, . . . , ωH) and θh|zh ∼ I(zh ≤ h)δθ∞ + I(zh > h)P0, similarly to Legramanti

et al. [2019]. Then, updates of the parameters proceeds by updating the parameters {vh}h which

deterministically set the values of {ωh}h and {πh}h, and updating the parameters {zh}h and {θh}h.

First, updates for vh are performed conditional on z1, z2, . . . , zH by counting the number of

z’s with values equal or greater than h: vh is sampled from a Beta distribution with parameters(
1 +

∑H
h′=1 I(zh′ = h), α+

∑H
h′=1 I(zh′ > h)

)
. Based on the sampled values for v1, v2, . . . , vH , the

values of ωh are updated from their deterministic relationship in (7).

Then, the variance parameters θh are updated using the part of the prior that is the slab P0 or

the spike δθ∞ depending on the value of the corresponding zh:

• If zh ≤ h (which happens with probability
∑

ωh
= πh) the variance component θh belongs to

the spike part of the prior, and it is set equal to θ∞.

• If zh > h, then θh belongs to the P0 part of the prior which is an inverse gamma distribution

in our case, and θh is drawn from an inverse gamma with parameters αθ + (pB + pP + 3)/2

and βθ +
(∑

m β
2
mh/τ

β
mh +

∑
l γ

2
lh/τ

γ
lh + λ2h/τ

λ
h + δ2h/τ

δ
h + ζ2h/τ

ζ
h

)
/2.

7



Lastly, the parameters zh are updated from a Multinomial distribution such that

p(zh = l | ·,−θ) ∝

ωl φ(x; θ∞Σ) for l = 1, 2, . . . , h

ωl τ(x; 2αθ, βθ/αθΣ) for l = h+ 1, h+ 2, . . . ,H,

where the vector x includes all coefficients of the hth latent factors: x = (βT.h,γ
T
.h, λh, δh, ζh)T , Σ

is a diagonal matrix with entries
(
(τβ.h)T , (τγ.h)T , τλh , τ

δ
h, τ

ζ
h

)
, φ(x; θ∞Σ) is the density of a normal

distribution centered at 0 with covariance matrix θ∞Σ evaluated at x, and τ(x; 2αθ, βθ/αθΣ) is the

density of a multivariate t-distribution with 2αθ degrees of freedom and covariance matrix βθ/αθΣ

evaluated at x. Note here that, even though the covariance matrix is diagonal, the density of the

multivariate t-distribution is not the same as the sum of the densities from univariate t-distributions.

Updating the probability of observing an interaction Since the conditional posterior distributions

of pi, and pj are not of known distributional form, we update them using Metropolis-Hastings. To

update pi:

• If p
(t)
i is the value of pi at iteration t, propose new value x from Beta(np

(t)
i , n(1− p(t)i )).

• Calculate the acceptance probability which is equal to

AP =


nP∏
j=1

[
1− (1− xpj)nij

1− (1− p(t)i pj)nij

]AijLij
[

1− xpj
1− p(t)i pj

]nij(1−Aij)Lij


×

φ(logit(x); (1 UTi )δ, σ2p,B)

φ(logit(p
(t)
i ); (1 UTi )δ, σ2p,B)

×
b(p

(t)
i ;nx, n(1− x))

b(x;np
(t)
i , n(1− p(t)i ))

,

where all other parameters are set to their most recent values, and b(x; a, b) is the density of

a Beta(a, b) distribution evaluated at x.

• Accept x with probability AP , or stay at p
(t)
i with probability 1−AP .

Similarly update the parameters pj .

Updating the latent factor covariance parameter We update the parameters ρU , ρV using a Metropolis-

Hastings step (similarly to the probability of detecting species). Specifically:

• If ρ
(t)
U is the value of ρU at iteration t, propose new value x from Beta(nρ

(t)
U , n(1− ρ(t)U )).

• Calculate the current and proposed value for the correlation matrix and denote them by Σ
(t)
U

and Σx
U , respectively.
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• Calculate the acceptance probability which is equal to

AP =

∏H
h=1 φ(U.h; 0,Σ

(t)
U )∏H

h=1 φ(U.h; 0,Σx
U )

b(ρ
(t)
U ;αρ, βρ)

b(x;αρ, βρ)

where all other parameters are set to their most recent values.

• Accept x with probability AP , or stay at ρ
(t)
U with probability 1−AP .

Update ρV is a similar manner.

Update missing values of covariates If a covariate includes missing values for a subject of units,

missing value imputation is straightforward and proceeds by drawing missing covariate values con-

ditional on parameters and latent factors from (2).

A.5 Variable importance in latent factor network models

Since the latent factors are not identifiable parameters, our approach to investigate variable im-

portance in network models is based on the posterior distribution of the probability of interaction

in (1). Specifically, assume we want to investigate the importance of the kth covariate for the first

set of species, X.k = (X1k, X2k, . . . , XnBk)
T . Let L

(r)
ij denote the logit of the fitted probability of

interaction between species i and j at the rth iteration of the MCMC and l
(r)
.j denote the vector of

probabilities L
(r)
ij for all i. In what follows we assume that species with missing information on the

kth covariate are excluded from both X.k and l
(r)
.j . Then,

1. For each posterior sample r and species j, we calculate the square correlation between l
(r)
.j

and X.k. We denote the value by T
∗(r)
jk .

2. We average the values of T
∗(r)
jk across species j and iterations r to acquire T ∗k .

3. For a large number of permutations B, do

(a) Permute the entries in the vector X.k, “breaking” any relationship between the proba-

bilities of interaction and the covariate.

(b) Perform steps 1-2 using the permuted vector to acquire T
∗(b)
k .

4. Calculate the mean and standard deviation of T
∗(b)
k across the B permutations.

5. Use
[
T ∗k − mean(T

∗(b)
k )

]
/ sd(T

∗(b)
k ) as a measure of variable importance, separately among

continuous and binary covariates.

Simulations for this measure of variable importance are shown in Supplement C.3.

9



We find the line of work of identifying important covariates in latent factor network models inter-

esting, and for this reason, we include some considerations that occurred during our investigations.

First, we found that the performance of the procedure described above drastically deteriorates when

species with missing covariate values are included by using their imputed values (imputed during

the MCMC). We believe that this happens because the latent factors are informed by the true inter-

actions in L and they themselves play a role in the imputation of missing covariates. Therefore, a

variable importance procedure that uses the imputed values will necessarily bias our understanding

about the presence or magnitude of a link between the covariate and interactions. Second, since

our approach to variable importance investigates marginal correlations between the covariate and

the probability of interaction, it will perform best when the covariates are independent. This is

well-known in the variable selection literature where a variable that is not important but is corre-

lated with an important one has inflated marginal importance. We investigated the performance

of using a multivariate linear regression and the absolute value of the regression coefficients as our

test statistic. This alternative would alleviate some of the issues with observed correlated variables

since each covariate’s importance would be investigated conditional on the rest. However, we found

that this approach did not perform as well as the method in Section 3.4. This might be because we

included all species, including those with missing covariates, in the regression model, using their

corresponding imputed values. Had we excluded the species with any missing covariate, the sample

size would be dramatically lower, and it would have hurt our efficiency in identifying the important

covariates. Finally, we also investigated the performance of a procedure that would find the latent

factor with the largest standardized coefficient in the interaction model, and it would investigate

the sum of squared residuals of that latent factor in the covariate models. This approach performed

decently, but is perhaps harder to justify. An alternative variable importance procedure which we

did not investigate could consider using the algorithm in Section 3.5 to make out of sample predic-

tions for species where all but the target covariate are fixed at their observed level and the target

covariate varies across all observed levels. Then, the variable’s importance could be quantified by

the variability in those predictions. We hope that this discussion might help interested researchers

investigate this topic further.

A.6 Computationally efficient approximate algorithm for out of sample predictions

Suppose we have species i∗ and species j∗ with covariates Xi∗ and Wj∗ , respectively, where the

covariate vectors can include missing values. If i∗, j∗ were both excluded from the original data

and the MCMC fit, we refer to this pair as an out of sample pair. If only one of the species was

excluded, the pair is referred to as a half in sample pair. In either case, the MCMC fit to the

original data does not immediately produce estimates for Li∗j∗ , the indicator that the two species
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are possible to interact. Inference on the interaction for half-in-sample or out-of-sample pairs could

proceed by re-fitting the MCMC including the new species in the data. However, this approach

would be computationally cumbersome, since it would require re-fitting the MCMC for every new

set of species whose interactions we wish to predict, if at least one species was not recorded in the

original data set.

Instead we propose an algorithm that uses samples from the posterior distribution of model

parameters to predict the probability of interaction for half-in-sample and out-of sample pairs.

This algorithm relies solely on the MCMC fit of the original data, and employs an importance

sampling step to adjust for any differences in the two posterior distributions.

Interaction prediction for out-of sample pairs Let θ∗ denote all model parameters, and D̃ denote

all observed data for all in-sample species. We denote the latent factors corresponding to units

i∗, j∗ as Ui∗ ,Vj∗ respectively. Then, we wish to predict Li∗j∗ based on what we have learnt from

the observed data and from the out-of-sample species covariates. That would amount to learning

P (Li∗j∗ = 1 | D̃,Xi∗ ,Wj∗)., which we rewrite as

P (Li∗j∗ = 1 | D̃,Xi∗ ,Wj∗) =

=

∫
P (Li∗j∗ = 1 | θ∗,Ui∗ ,Vj∗D̃,Xi∗ ,Wj∗) p(θ∗,Ui∗ ,Vj∗ | D̃,Xi∗ ,Wj∗) d(θ∗,Ui∗ ,Vj∗)

∝
∫
P (Li∗j∗ = 1 | θ∗,Ui∗ ,Vj∗) p(Xi∗ ,Wj∗ | θ∗,Ui∗ ,Vj∗D̃) p(θ∗,Ui∗ ,Vj∗ | D̃) d(θ∗,Ui∗ ,Vj∗)

∝
∫
P (Li∗j∗ = 1 | θ∗,Ui∗ ,Vj∗) p(Xi∗ | θ∗,Ui∗) p(Wj∗ | θ∗,Vj∗)

p(Ui∗ ,Vj∗ | θ∗) p(θ∗ | D̃) d(θ∗,Ui∗ ,Vj∗)

The last expression is the basis of our algorithm.

1. First, p(θ∗ | D̃) is the posterior distribution based on the MCMC of our original data.

Hence, the posterior samples we acquired using the MCMC in Supplement A can be used to

approximate this component.

2. Next, using the posterior samples of θ∗ (and the correlation matrices including the new

species), we can straightforwardly sample latent factors for species i∗, j∗ from p(Ui∗ ,Vj∗ | θ∗).

3. Based on the generated latent factors and model parameters, we can draw the interaction

indicator directly from P (Li∗j∗ = 1 | θ∗,Ui∗ ,Vj∗).

4. The previous steps did not take into consideration the components corresponding to the

observed covariates. For that reason, we perform an importance sampling weight, where

samples of Li∗j∗ which use parameters and latent factors having higher (lower) values of

p(Xi∗ | θ∗,Ui∗)p(Wj∗ | θ∗,Vj∗) are up(down)-weighted.
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We expand on how these steps are performed in what follows.

For i∗, j∗ out of sample species, let C∗U , C∗V be the extended correlation matrices. Then C∗U ,

C∗V are correlation matrices of dimension nB + 1 and nP + 1, and the upper left nB × nB and

nP × nP submatrices are CU , CV , respectively. In what follows the superscript (r) represents the

rth posterior sample from the MCMC out of a total of R samples.

The first step of predicting the interaction between i∗ and j∗ is to acquire samples for the

species’ latent factors based on samples from the posterior distribution of model parameters θ∗(r),

r = 1, 2, . . . , R. We do so as follows:

• Generate latent factors for species i∗:

For r = 1, 2, . . . , R, sample Ui∗h from N(µ, σ2) for values

σ2 =
[
S(r)

]
(nB+1),(nB+1)

−
[
S(r)

]
(nB+1),(1:nB)

[[
S(r)

]
(1:nB),(1:nB)

]−1 [[
S(r)

]
(nB+1),(1:nB)

]T
and

µ =
[
S(r)

]
(nB+1),(1:nB)

[[
S(r)

]
(1:nB),(1:nB)

]−1
U

(r)
1:nB ,h

,

where S(r) = ρ
(r)
U C

∗
U + (1 − ρ(r)U )InB+1, [S(r)]A,B represents the submatrix of S(r) with row

indices in A and column indices in B, and U
(r)
1:nB ,h

= (U
(r)
1h , U

(r)
2h , . . . , U

(r)
nBh

).

• Generate latent factors for species j∗ similarly as for species i∗, but substituting CU for CV ,

ρU for ρV , U for V , and nB for nP .

Performing these steps leads to latent factors U
(r)
i∗ = (Ui∗1, Ui∗2, . . . , Ui∗H)T for species i∗ and

Vj∗ = (Vj∗1, Vj∗2, . . . , Vj∗H)T for species j∗, for all r = 1, 2, . . . , R. We use these latent factors

to make an original set of predictions. For r = 1, 2, . . . , R, we generate L̃
(r)
i∗j∗ from a Bernoulli

distribution with probability of success equal to expit
(
λ
(r)
0 +

∑
h λ

(r)
h U

(r)
i∗hV

(r)
j∗h

)
.

However, the generated latent factors have been sampled taking only the correlation structure

of the latent factors across species into consideration, and as a result the latent factors and the

predictions do not use the information on the new species’ covariates. To account for the covariates

we perform importance weighting:

• For species i∗ with generated latent factors U
(r)
i∗ and covariates Xi∗ calculate the importance

sampling weight w
(r)
i∗ = w

(r)
i∗1w

(r)
i∗2 . . . , w

(r)
i∗pB

, where w
(r)
i∗m is 1 if Xi∗m is missing,

w
(r)
i∗m = φ

(
Xi∗m; l

(r)
i∗m, (σ

2
m)(r)

)
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if the mth covariate is continuous, and

w
(r)
i∗m = u(Xi∗m; expit(l

(r)
i∗m))

if the mth covariate is binary, where l
(r)
i∗m = β

(r)
m0+(U

(r)
i∗ )Tβ

(r)
m , φ(·;µ, σ2) is the normal density

with mean µ and variance σ2, and u(·; p) is the mass function for the Bernoulli(p) random

variable.

• Similarly to the above, we acquire wj∗ for species j∗.

• The importance sampling weight for the pair (i∗, j∗) is then defined as w
(r)
i∗j∗ = w

(r)
i∗ w

(r)
j∗ for

r = 1, 2, . . . , R.

We combine these importance sampling weights with the original predicted interaction values L̃
(r)
i∗j∗ .

Intuitively, w
(r)
i∗j∗ describes how in-line the generated latent factors U

(r)
i∗ and V

(r)
j∗ are with the

species’ covariate profiles, and, in a sense, how “trustworthy” the rth prediction is. For this reason,

we set the posterior probability for an i∗ − j∗ interaction equal to(
R∑
r=1

w
(r)
i∗j∗L̃

(r)
i∗j∗

)/( R∑
r=1

w
(r)
i∗j∗

)
.

Interaction prediction for half-in-sample pairs For half-in-sample pairs, one of the species is al-

ready included in the original data set, and samples from the posterior distribution for its latent

factors are already acquired through the MCMC. Therefore, the procedure above only has to be

performed for the species that are out-of-sample, and the importance sampling weights only repre-

sent one of the species. For example, if i∗ is included in the original data and j∗ is out-of-sample,

then we use the algorithm described above to acquire V
(r)
j∗ , wj∗(r), and L̃

(r)
i∗j∗ and set w

(r)
i∗j∗ = w

(r)
j∗ .

Performance of the algorithm for out-of-sample pairs The algorithm described above would the-

oretically return accurate predictions for Li∗j∗ for out-of-sample units. However, importance sam-

pling is known to have issues when weights become extremely large, and certain posterior samples

dominate the weighted predictions. We evaluated the performance of the out-of-sample prediction

algorithm in Supplement B.1. There, we see that prediction accuracy for out of sample pairs is

comparable to prediction accuracy for out of sample pairs when they are included in the original

MCMC.

Predictions for in-sample pairs The algorithms presented above discuss how we can perform pre-

diction for out-of-sample species, and out-of-sample or half-in-sample pairs. However, the species

i∗, j∗ have observed covariate information, Xi∗ and Wj∗ , and this information is not included in the
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original posterior distribution p(θ∗ | D̃). Therefore, when covariate data on i∗, j∗ become available,

the posterior for θ∗ should be

p(θ∗ | D̃,Xi∗ ,Wj∗) ∝ p(D̃ | θ∗,Xi∗ ,Wj∗) p(Xi∗ ,Wj∗ | θ∗) p(θ∗)

= p(D̃ | θ∗) p(Xi∗ ,Wj∗ | θ∗) p(θ∗)

= p(θ∗ | D̃)
p(θ∗ |Xi∗ ,Wj∗)

p(θ∗)

= p(θ∗ | D̃)

∫
p(θ∗ | θ∗i∗,j∗)

p(θ∗)
p(θ∗i∗,j∗ |Xi∗ ,Wj∗) dθ∗i∗,j∗ ,

where we use θ∗i∗,j∗ to denote all model parameters for species i∗, j∗ (includes latent factors and

detection probability).

Intuitively, since covariates are linked to latent factors and latent factors across species are

correlated, the observed covariate information for out-of-sample species should affect estimation of

interactions for in-sample pairs. If the species i∗, j∗ were included in the MCMC with corresponding

ni∗j and nij∗ equal to 0 for all i, j, then the covariate information Xi∗ ,Wj∗ for out-of-sample

species would drive estimation of latent factors for the i∗, j∗ units (through p(θ∗i∗,j∗ | Xi∗ ,Wj∗)

in the equation above), and as a result would affect estimation of latent factors, parameters and

predictions for all i, j (through the correlation of latent factors across species which implies that

p(θ∗ | θ∗i∗,j∗) / p(θ∗) 6= 1 in the equation above).

This result suggests that when out of sample species with their covariate information (and

non-zero correlation with in-sample species) become available, the interaction predictions for in-

sample pairs should also be updated. In Supplement C.2 we evaluated the impact that out-of-

sample correlated species have in the interaction predictions. There, we see that prediction of

interactions for in-sample pairs when the out-of-sample species are excluded is essentially identical to

the accuracy of the procedure that includes the out-of-sample species with corresponding n−values

set to 0. This indicates that the flow of information from the out-of-sample covariates to the latent

factors of in-sample species is quite weak, and ignoring it does not affect our predictions.

Supplement B. Alternative models

We consider four models that are combinations of using latent factors or covariates directly, and

accommodating or not false negatives. Any overlap in the notation of coefficients among the

models can be ignored. The model that uses latent factors and accommodates false negatives is the

proposed one in Section 3. Here, we present the other three models. MCMC schemes are shown in

Supplement E.

14



B.1 Model that uses covariates directly and accommodates false negatives

The first alternative model we consider includes covariates directly in model components’ linear

predictors and accommodates false negatives. It is specified as:

P (Aij = 1 | Lij = l) =

0, if l = 0, and

1− (1− pipj)nij , if l = 1

logitP (Lij = 1) = α0 +XT
i αX +W T

j αW

logit(pi) |Xi ∼ N (δ0 +XT
i δ, σ

2
p,B)

logit(pj) |Wj ∼ N (ζ0 +W T
j ζ, σ

2
p,P ).

(S.1)

The third and fourth lines in Supplement S.1 resemble the probability of observing model component

(4) but the latent factors are substituted by the covariates. The latent factors are also substituted

by covariates in the linear predictor of the interaction model (second line). The model linking the

observed interaction matrix A to the true interaction matrix L (first line) is the same between this

model and the one in Section 3. If the covariates include missing values, we extend Supplement S.1

to specify E[Xim] = µm and E[Wjl] = µl. If the covariate is continuous, we assume it is normally

distributed with variance σ2m and σ2l respectively. Doing so allows us to impute missing covariate

values. We assume normal and inverse gamma prior distributions on coefficients and variance

terms.

B.2 Model that uses covariates directly but does not accommodate false negatives

An alternative model we consider resembles the one in Supplement S.1 but assumes that there are

no false negatives and Lij = Aij for all i, j. Therefore, this model consists solely of the second line

in Supplement S.1 with Lij = Aij .

B.3 Model that uses latent factors but does not accommodate false negatives

Lastly, we consider a version of our model that ignores the presence of false negatives, but maintains

the use of latent factors to link the presence of an interaction and the model for the covariates.

Therefore, since it assumes that Aij = Lij , this model specifies

logitP (Aij = 1) = λ0 +

H∑
h=1

λhUihVjh,

f−1m (E(Xim | Ui)) = βm0 +U ′iβm, m = 1, 2, . . . , pB, and

g−1l (E(Wjl | Vj)) = γl0 + V ′j γl, l = 1, 2, . . . , pP

(S.2)
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Supplement C. Additional simulation results

C.1 Simulation results for out of sample species

For out-of-sample species, we might be interested in predicting their interactions with other out-of-

sample species, or with in-sample species. Pairs of species for which one is in-sample and the other is

out-of-sample are referred to as “half-in-sample” and pairs for which both species are out-of-sample

are referred to as “out-of-sample” pairs. Results are shown in Figure S.1.

The AUROC values for the methods are more variable here than in Figure 3 since they are

based on 10 out-of-sample bird species and 10 out-of-sample plant species, but the methods’ relative

performance remains unchanged. Again, we see that bias correction is beneficial for learning the

true interactions. However, methods performance is comparable in (dgm3) where the amount of

information in the observed data is low, since all important covariates are unobserved.

C.2 Alternative uses of our method

The results shown in Section 4 and Figure S.1 for our method are based on its specification in

Section 3 with out-of-sample species included in the MCMC and their interactions learnt through

the MCMC updates in Supplement A. Here, we show that (a) the inclusion of the variance scaling

components τ in (6) improves the method’s predictive accuracy, and (b) the approximate algorithm

for estimating the probability of interaction of out-of-sample species described in Section 3.5 and

in more detail in Supplement A.6 performs well.

Specifically, in Figure S.2 we show the ratio of AUROC to the AUROC of the true, known model

for three versions of our method: (Latent, Bias Corrected) The model as presented in Section 3,

(Latent, Bias Corrected, Control Variance) The model in Section 3, setting all values of τ equal to

1 throughout, hence eliminating them, and (Latent, Bias Corrected, In-sample-only) The model as

presented in Section 3 but fit over the subset of the species that were observed in at least one study:

n+i > 0 and n+j > 0, and using the algorithm in Supplement A.6 for prediction of interactions for

out-of-sample species.

Figure S.2 shows the results by type of pair (in-sample, half-in-sample, out-of-sample) and

by data generating mechanism. We see that eliminating the τ -parameters can only lead to a

reduction in the algorithm’s predictive accuracy. This reflects that the additional flexibility offered

by parameter-specific τ values is useful in improving our predictions. Further, our approximate

algorithm performs reasonably in out-of-sample prediction. As expected, its performance is better

when one of the species is in-sample (half-in-sample pairs) than when both species are out-of-sample

(out-of-sample pairs).
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Figure S.1: Predictive Performance for Out-of-Sample Species. Ratio of methods’ AUROC to
AUROC using the true, known interaction model, for unrecorded interactions among in-sample
bird species and out-of-sample plant species (half-in-sample pairs – top), and for out-of-sample
pairs (bottom).

17



dgm1 dgm2 dgm3

in sam
ple

60

70

80

90

100

dgm1 dgm2 dgm3

out of sam
ple

40

60

80

100

dgm1 dgm2 dgm3

half in sam
ple

La
ten

t

Bias
 C

or
re

cte
d

La
te

nt

Bias
 C

or
re

cte
d

Con
tro

l V
ar

ian
ce

La
te

nt

Bias
 C

or
re

cte
d

In
−s

am
ple

−o
nly

La
ten

t

Bias
 C

or
re

cte
d

La
te

nt

Bias
 C

or
re

cte
d

Con
tro

l V
ar

ian
ce

La
te

nt

Bias
 C

or
re

cte
d

In
−s

am
ple

−o
nly

La
ten

t

Bias
 C

or
re

cte
d

La
te

nt

Bias
 C

or
re

cte
d

Con
tro

l V
ar

ian
ce

La
te

nt

Bias
 C

or
re

cte
d

In
−s

am
ple

−o
nly

40

60

80

100

R
at

io
 o

f A
U

R
O

C
 to

 A
U

R
O

C
 u

si
ng

 th
e 

tr
ue

 m
od

el
 (

in
 %

)

Figure S.2: Comparison of predictive power of our method under alternative specifications. The
horizontal axis show the three methods considered, which represent the proposed method, the
proposed method fixing all values of τ to 1, and the proposed method fit using the in-sample species
only and using the algorithm in Supplement A.6 to make out-of sample predictions, respectively.
The predictive power is shown by type of pair: in-sample, out-of-sample, and half-in-sample pairs,
and by data generating mechanism.
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C.3 Simulation results for the variable importance metric

We performed simulations to investigate the performance of the variable importance measure of

Section 3.4. We considered the 3 data generative models used in the simulations Section 4. We

also considered an additional scenario that is identical to (dgm1) but considers only independent

covariates and uses both observed and unobserved covariates to simulate data. Which variables are

used in each simulated scenario and for each model are shown in Table S.1.

Figure S.3 shows the simulation results for the variable importance measure of Section 3.4.

Specifically, each panel corresponds to a different combination of covariate and data generative

model and it shows the distribution across simulated data sets of the number of permutation

standard deviations away from the permutation mean that the observed statistic falls. Larger

values represent that the observed covariate is more informative of the probability of forming and

detecting interactions between species. Dark blue color is used for covariates that are important

for both forming or detecting interactions (grey shaded checkmarks in Table S.1), light blue is used

for covariates that are important only for forming interactions (unshaded checkmarks in Table S.1),

green is used for covariates that are important only for detecting interactions (shaded cells without

checkmarks in Table S.1), and red is used for covariates that are important for neither (unshaded

cells without checkmarks in Table S.1).

Table S.1: Variables that are used for forming and detecting interactions in the four scenarios for
bird and plant species. X indicates that the covariate was used in the interaction model. Shaded
cells indicate that the covariate was used in the model for species detectability. The last column
shows the correlation ρ for the covariates.

Bird covariates

Continuous Binary Continuous Binary
1 2 3 4 5 Unobserved ρ

(dgm1) X X X X X 0.3
(dgm2) X X X 0.3
(dgm3) X X 0.3
(dgm4) X X X X X 0

Plant covariates

Continuous Binary Continuous Binary
1 2 3 4 5 6 10 7–9, 11-12 Unobserved ρ

(dgm1) X X X X X 0.3
(dgm2) X X 0.3
(dgm3) X X 0.3
(dgm4) X X X X 0
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Figure S.3: Variable importance simulations. Number of standard deviations away from the per-
mutation mean for the bird (top) and plant (bottom) traits by covariate and data generative model.
Different colors are used for variables of different importance (important or not for forming and/or
detecting an interaction), in agreement with Table S.1. Results for plant covariates 8, 9, 11, and
12 are similar to those of covariate 7 and are excluded.
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We find that the approach correctly identifies covariates that are not important for either form-

ing or detecting interactions, and the corresponding histograms are concentrated near 0 standard

deviations, implying that the observed statistics resembles that of the permuted data sets. In con-

trast, the histogram for covariates that are important for both forming and detecting interactions

are always well-separated from zero, and correctly identified. We find that continuous variables

always have higher variable importance scores than binary variables with the same importance (for

example, compare the results for covariates 1 & 3 of dgm1 of the bird species, and covariates 2 & 6

of dgm4 for the plant species). Importantly, we find that this variable importance measure (which

uses the fitted values for the probability of interaction in (1)) does not only identify variables that

are important for forming interactions, but also those that are only important for detecting them.

This is evident from the histograms for covariates that are only important for detection which are

also mostly separated from zero (green covariates). This result is not surprising when we think that

the latent factors are used in both models for interactions and detection, and therefore a variable

that is important for detection will likely inform the latent factors and as a result also inform the

probability of interactions. We find that variables that are important for detecting interactions

most often have variable importance that is higher than that of covariates that are important only

for forming these interactions (comparing green to light blue histograms such as covariates 4 & 5 in

dgm2 for the bird species). We think that this occurs because there is more signal in the detection

model than for the interaction model, but this is just a conjecture.

Supplement D. Additional study results

Figure S.4 shows the posterior probability that an interaction between two species is possible based

on our method and the alternative method. Vertical and horizontal blue lines separate different

taxonomic families. A list of all the species included in our analysis in the same ordering as shown

in the results is included in Appendix G. The same conclusions discussed in Section 5 also hold

when showing the full set of species.

Supplement E. MCMC for alternative models

We present the MCMC schemes for the alternative models introduced in Supplement B.

E.1 Model that uses covariates directly and accommodates false negatives

We employ an MCMC scheme that resembles the one for the proposed approach in Supplement A:

it uses the Pólya-Gamma data-augmentation of Polson et al. [2013] to update model parameters of

the interaction model, Gibbs updates for the parameters of the probability of observing models, and
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Figure S.4: Posterior Probability of Possible Interactions for all bird (y-axis) and plant (x-axis)
species. Species are organized in taxonomic families separated by blue vertical and horizontal lines.
Black color is used to represented interactions that are recorded in our data.
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Metropolis-Hastings steps for updating the actual probabilities of observing a species. Specifically:

– The update of the true interaction matrix with entries Lij proceeds exactly as in Supplement A,

but for pLij = expit
{
α0 +XT

i αX +W T
j αW

}
.

– We update the parameters of the interaction model (α0,αX ,αW ) using Pólya-Gamma data-

augmentation. For each (i, j) pair, we draw latent variables ωLij ∼ PG(1, α0 +XT
i αX +W T

j αW ).

Conditional on ωLij , we sample (α0,αX ,αW ) ∼ N (µnew,Σnew) for parameters

Σnew =
[
DTΩLD + Σ−10

]−1
, and µnew = Σnew

[
DT (vec(L)− 1/2) + Σ−10 µ0

]
,

where

1. D is a matrix with (nB × nP ) rows and (pB + pP + 1) columns, with first column equal to

1, each of the next pB columns equal to (X1m, X1m, . . . , X1m︸ ︷︷ ︸
nP times

, X2m, . . . , X2m, . . . , XnBm) for

m = 1, 2, . . . , pB (the ith entry of the mth covariate is repeated nP number of times), and

the next pP columns are (W1l,W2l, . . . ,WnP l,W1l, . . . ,WnP l, . . .WnP l) for l = 1, 2, . . . , pP

(the vector of the lth covariate is repeated nB times).

2. ΩL is a matrix of dimension (nBnP × nBnP ) with the entries vec(ωLij) on the diagonal and

0 everywhere else,

3. Σ0 = σ20I1+pB+pP is a diagonal matrix with prior variances, and

4. µ0 is the vector 0 of length 1 + pB + pP including prior means.

– We update the parameters of the model for the probability of observing a species interaction by

sampling (δ0, δ
T )T ∼ N (µnew,Σnew), where

Σnew =
[
X̃T X̃/σ2p,B + Σ−10

]−1
and

µnew = Σnew

[
X̃T [logit(p)]nB

i=1/σ
2
p,B + Σ−10 µ0

]
,

where X̃ = (1 | X.1 | X.2 | · · · | X.pB ) is of dimension nB × (pB + 1), Σ0 = σ20IpB+1 is the

diagonal matrix of prior variances, µ0 = 0 is the vector of prior means, and [logit(p)]nB
i=1 is the

vector of length nB including the entries logit(pi).

To update the residual variance, we sample σ2p,B from an inverse gamma distribution with param-

eters a0 +nB/2 and b0 +
∑nB

i=1(logit(pi)− δ0−
∑pB

m=1 δmXim)2/2, where a0, b0 are the parameters

of the inverse gamma prior distribution on σ2p,B.
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Similarly we update the parameters for the probability of observing an interaction for the second

set of species.

– The updates for the probability of observing an interaction logit(pi), logit(pj) proceed exactly as

in Supplement A, for latent factors substituted by the observed covariates.

– Lastly, if covariates include missing values, models for the covariates are specified which include

only an intercept if the covariate is binary, and an intercept and variance term if the covariate is

continuous. In the presence of missing data, at each MCMC iteration we update the parameters

(intercepts, residual variances for continuous covariates), and impute missing covariate values:

1. For continuous trait m with Xim ∼ N (µm, σ
2
m), and priors N (µ0, σ

2
0) and IG(a0, b0) for the

mean and variance parameters, we update µm from N (µnew, σ
2
new) where σ2new = [nB/σ

2
m +

(σ20)−1]−1, and µnew = σ2new[
∑nB

i=1Xim/σ
2
m+µ0/σ

2
0], and update σ2m from and inverse gamma

distribution with parameters a0 + nB/2 and b0 +
∑nB

i=1(Xim − µm)2/2. For these updates,

the full vector X.m is used, including the most current values of the imputed entries.

2. For the continuous trait m, we draw new values for Xim if this entry was missing from

N (µi,new, σ
2
i,new) where

σ2i,new =
(
α2
Xm

nP∑
j=1

ωLij + δ2m/σ
2
p,B + 1/σ2m

)−1
,

µi,new = σ2i,new

[
αXm

nP∑
j=1

(Lij − 1/2− ωLij(α0 +XT
i(−m)αX(−m) +W T

j αW )+

δm(logit(pi)− δ0 −XT
i(−m)δ−m)/σ2p,B + µm/σ

2
m

]
,

ωLij are the PG draws discussed above, and the subscript (−m) reflects that the mth covariate

(or its coefficient) is excluded.

3. For binary traits m with Xim ∼ Bern(µm) we assume a normal prior on logit(µm) with

mean µ0 and variance σ20. For the current values of µm, we draw nB values from a Pólya-

Gamma(1, logit(µm)) distribution, denoted by ωim, i = 1, 2, . . . , nB. We sample a new

value for logit(µm) from N (µnew, σ
2
new) where σ2new = [

∑nB
i=1 ωim + (σ20)−1]−1 and µnew =

σ2new[
∑nB

i=1(Xim − 1/2) + (σ20)−1µ0].

4. For binary covariates, if Xim is missing, we calculate pimx = p(Xim = x | ·) for x ∈ {0, 1}
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(up to a constant)

pimx ∝

 nP∏
j=1

(pLij)
Lij (1− pLij)1−Lij

 p(logit(pi) | δ,Xi, σ
2
p.B)[µxm(1− µm)1−x],

where pLij and the likelihood for the pi model are calculated by setting Xim = x, and set

Xim equal to x with probability pimx/(pim0 + pim1).

Updates for the missing covariates of the second set of species are identical, and the updates of

all other parameters always use the most recent imputations of the missing covariate values.

E.2 Model that uses covariates directly but does not accommodate false negatives

The MCMC scheme for this model includes solely the updates of the interaction model parameters,

which are the ones in Appendix E.1. In the presence of missing covariate values, models for

these covariates are assumed and updates of these models’ parameters are identical to the ones in

Appendix E.1. However, covariate value imputation is slightly different, since here we do not assume

a model for the probability of observation that depends on covariates. Therefore, covariate value

imputation is like in Appendix E.1, but excluding the term from µi,new and pimx corresponding to

the pi, pj-submodel.

E.3 Model that uses latent factors but does not accommodate false negatives

The updates for the parameters in the traits models for binary or continuous traits, the parameters

λ0,λ of the interaction model, the parameters in the covariance matrix of the latent factors ρU , ρV ,

and the variance scaling parameters τ are the same as in Supplement A, substituting Lij with

Aij where appropriate. Therefore, we only have to discuss updates for the latent factors and the

increasing shrinkage prior:

– To update the latent factors the MCMC proceeds with an update similar to the one in Supplement

A but accommodating the fact that the latent factors are no longer involved in the model for

the probability of observing an interaction from a given species. We describe the update of the

latent factors for the first set of units U.h for h = 1, 2, . . . ,H, and updates for V.h are similar. We

use the Pólya-Gamma draws ωim for binary traits m, and ωLij = ωAij from the interaction model.

For each h = 1, 2, . . . ,H, U.h is drawn from NnB (µnew,Σnew) for parameters

Σnew =

 ∑
m: Xm

continuous

β2mh/σ
2
mInB +

∑
m: Xm
binary

β2mhΩm +

nP∑
j=1

λ2hV
2
jhΩ

L
j + Σ−1U


−1
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and

µnew = Σnew

{ ∑
m: Xm

continuous

βmh/σ
2
m part(m,h)+

∑
m: Xm
binary

βmhΩm

[(
X − 1/2

ω

)
m

− (1 | U.−h)βm(−h)

]
+

nP∑
j=1

λhVjhΩj

[(
L− 1/2

ω

)
j

−
(
1 | U.−hVj(−h)

)
λ−h]

]}

where Ωj ,Ωm,ΣU ,part(m,h),

(
X − 1/2

ω

)
m

, (1 | U.−h),βm(−h),

(
L− 1/2

ω

)
j

,
(
1 | U.−hVj(−h)

)
,

and λ−h are defined in Supplement A.

– The updates for the increasing shrinkage prior are as in Supplement A with two exceptions:

· For the update of θh, if zh > h, then θh is drawn from an inverse gamma with parameters

αθ + (pB + pP + 1)/2 and βθ +
(∑

m β
2
mh/τ

β
mh +

∑
l γ

2
lh/τ

γ
lh + λ2h/τ

λ
h

)
/2.

· For the update of zh: zh are updated from a Multinomial distribution such that

p(zh = l | ·,−θ) ∝

ωl φ(x; θ∞Σ) for l = 1, 2, . . . , h

ωl τ(x; 2αθ, βθ/αθΣ) for l = h+ 1, h+ 2, . . . ,H,

where x = (βT.h,γ
T
.h, λh)T , and Σ is a diagonal matrix with entries

(
(τβ.h)T , (τγ.h)T , τλh

)
.

Supplement F. MCMC diagnostics

We evaluated convergence of MCMC scheme by studying traceplots of identifiable parameters across

chains. Since latent factors and their corresponding coefficients are not identifiable, we focused our

attention to: linear predictors and residual variances for the trait models, probabilities of detection

and residual variances for both sets of species, and the correlation parameters ρU , ρV in the latent

factors’ covariance structure across species in the same set. The traceplots for a subset of parameters

are shown in Figures S.5, S.6, S.7, and S.8.

We also investigated running means for the interactions indicators. If the posterior distribution

is unimodal and the MCMC has converged sufficiently well, the running means converge to the

same point. Running means for nine pairs of species without a recorded interaction are shown in

Figure S.9.
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Figure S.5: Probability of detection. Traceplots for the linear predictor (Rows 1 & 3) and posterior
samples (Rows 2 & 4) of the probability of detection for four randomly chosen bird (Rows 1 & 2)
and four plant (Rows 3 & 4) species. Colors correspond to different MCMC chains.
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Figure S.6: Correlation of latent factors. Traceplots showing MCMC samples from the posterior
distributions of ρU (left) and ρV (right). Colors correspond to different MCMC chains.

Figure S.7: Linear predictor of trait models for bird species. Traceplots for the linear predictor of
all traits for four randomly chosen species of birds. The rows correspond to different bird species
and the columns correspond to observed traits. The first two traits are continuous and the last
three traits are binary.

Figure S.8: Residual variances of continuous traits for plant species.
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Figure S.9: Probability of species interaction. Running means of the indicator Lij representing
whether species i, j are possible to interact. Running means are shown for nine pairs of species
without a recorded interaction.
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Supplement G. List of all species included in our analysis

Tables S.2 and S.3 show the bird and plant species, respectively, that are included in our analysis

along with their taxonomic information. The column “Included” denotes whether the species are

shown in the results of the main text or not.

Table S.2: Bird species included in our data and their taxonomic information.

Species Order Family Genus Included

Pyroderus scutatus Passeriformes Cotingidae Pyroderus X
Pachyramphus validus Passeriformes Cotingidae Pachyramphus X

Pachyramphus castaneus Passeriformes Cotingidae Pachyramphus X
Pachyramphus viridis Passeriformes Cotingidae Pachyramphus X

Pachyramphus polychopterus Passeriformes Cotingidae Pachyramphus X
Lipaugus lanioides Passeriformes Cotingidae Lipaugus X

Lipaugus vociferans Passeriformes Cotingidae Lipaugus X
Tityra cayana Passeriformes Cotingidae Tityra X

Tityra inquisitor Passeriformes Cotingidae Tityra X
Oxyruncus cristatus Passeriformes Cotingidae Oxyruncus X
Carpornis cucullata Passeriformes Cotingidae Carpornis X

Carpornis melanocephala Passeriformes Cotingidae Carpornis X
Schiffornis virescens Passeriformes Cotingidae Schiffornis X
Procnias nudicollis Passeriformes Cotingidae Procnias X

Tijuca atra Passeriformes Cotingidae Tijuca X
Phibalura flavirostris Passeriformes Cotingidae Phibalura X

Laniisoma elegans Passeriformes Cotingidae Laniisoma X
Cacicus haemorrhous Passeriformes Icteridae Cacicus X
Cacicus chrysopterus Passeriformes Icteridae Cacicus X

Chrysomus ruficapillus Passeriformes Icteridae Chrysomus X
Molothrus bonariensis Passeriformes Icteridae Molothrus X

Icterus cayanensis Passeriformes Icteridae Icterus X
Pseudoleistes guirahuro Passeriformes Icteridae Pseudoleistes X
Psarocolius decumanus Passeriformes Icteridae Psarocolius X

Gnorimopsar chopi Passeriformes Icteridae Gnorimopsar X
Sicalis flaveola Passeriformes Thraupidae Sicalis X

Thraupis palmarum Passeriformes Thraupidae Thraupis X
Thraupis episcopus Passeriformes Thraupidae Thraupis X

Thraupis sayaca Passeriformes Thraupidae Thraupis X
Thraupis cyanoptera Passeriformes Thraupidae Thraupis X

Thraupis ornata Passeriformes Thraupidae Thraupis X
Thraupis Passeriformes Thraupidae Thraupis X

Thraupis bonariensis Passeriformes Thraupidae Thraupis X
Tachyphonus coronatus Passeriformes Thraupidae Tachyphonus X
Tachyphonus cristatus Passeriformes Thraupidae Tachyphonus X

Tachyphonus rufus Passeriformes Thraupidae Tachyphonus X
Tangara cayana Passeriformes Thraupidae Tangara X
Tangara seledon Passeriformes Thraupidae Tangara X

Tangara mexicana Passeriformes Thraupidae Tangara X
Tangara desmaresti Passeriformes Thraupidae Tangara X

Tangara cyanocephala Passeriformes Thraupidae Tangara X
Tangara cyanoptera Passeriformes Thraupidae Tangara X

Tangara preciosa Passeriformes Thraupidae Tangara X
Tangara cyanoventris Passeriformes Thraupidae Tangara X

Tangara peruviana Passeriformes Thraupidae Tangara X
Tangara Passeriformes Thraupidae Tangara X

Dacnis cayana Passeriformes Thraupidae Dacnis X
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Dacnis nigripes Passeriformes Thraupidae Dacnis X
Ramphocelus carbo Passeriformes Thraupidae Ramphocelus X

Ramphocelus bresilius Passeriformes Thraupidae Ramphocelus X
Thlypopsis sordida Passeriformes Thraupidae Thlypopsis X

Conirostrum speciosum Passeriformes Thraupidae Conirostrum X
Hemithraupis guira Passeriformes Thraupidae Hemithraupis X

Hemithraupis ruficapilla Passeriformes Thraupidae Hemithraupis X
Hemithraupis flavicollis Passeriformes Thraupidae Hemithraupis X

Tersina viridis Passeriformes Thraupidae Tersina X
Chlorophanes spiza Passeriformes Thraupidae Chlorophanes X

Pipraeidea melanonota Passeriformes Thraupidae Pipraeidea X
Schistochlamys ruficapillus Passeriformes Thraupidae Schistochlamys X
Schistochlamys melanopis Passeriformes Thraupidae Schistochlamys X

Cissopis leverianus Passeriformes Thraupidae Cissopis X
Orthogonys chloricterus Passeriformes Thraupidae Orthogonys X

Trichothraupis melanops Passeriformes Thraupidae Trichothraupis X
Cyanerpes cyaneus Passeriformes Thraupidae Cyanerpes X

Stephanophorus diadematus Passeriformes Thraupidae Stephanophorus X
Nemosia pileata Passeriformes Thraupidae Nemosia X

Coryphospingus cucullatus Passeriformes Thraupidae Coryphospingus X
Coryphospingus pileatus Passeriformes Thraupidae Coryphospingus X

Volatinia jacarina Passeriformes Thraupidae Volatinia X
Sporophila caerulescens Passeriformes Thraupidae Sporophila X

Sporophila nigricollis Passeriformes Thraupidae Sporophila X
Sporophila leucoptera Passeriformes Thraupidae Sporophila X

Haplospiza unicolor Passeriformes Thraupidae Haplospiza X
Orchesticus abeillei Passeriformes Thraupidae Orchesticus X
Poospiza thoracica Passeriformes Thraupidae Poospiza X
Poospiza lateralis Passeriformes Thraupidae Poospiza X

Eucometis penicillata Passeriformes Thraupidae Eucometis X
Pyrrhocoma ruficeps Passeriformes Thraupidae Pyrrhocoma X

Elaenia flavogaster Passeriformes Tyrannidae Elaenia X
Elaenia Passeriformes Tyrannidae Elaenia X

Elaenia spectabilis Passeriformes Tyrannidae Elaenia X
Elaenia chiriquensis Passeriformes Tyrannidae Elaenia X

Elaenia mesoleuca Passeriformes Tyrannidae Elaenia X
Elaenia cristata Passeriformes Tyrannidae Elaenia X
Elaenia obscura Passeriformes Tyrannidae Elaenia X
Elaenia albiceps Passeriformes Tyrannidae Elaenia X

Elaenia parvirostris Passeriformes Tyrannidae Elaenia X
Myiodynastes maculatus Passeriformes Tyrannidae Myiodynastes X
Tyrannus melancholicus Passeriformes Tyrannidae Tyrannus X

Tyrannus savana Passeriformes Tyrannidae Tyrannus X
Tyrannus tyrannus Passeriformes Tyrannidae Tyrannus X

Pitangus sulphuratus Passeriformes Tyrannidae Pitangus X
Myiozetetes similis Passeriformes Tyrannidae Myiozetetes X

Myiozetetes cayanensis Passeriformes Tyrannidae Myiozetetes X
Myiarchus ferox Passeriformes Tyrannidae Myiarchus X

Myiarchus swainsoni Passeriformes Tyrannidae Myiarchus X
Myiarchus Passeriformes Tyrannidae Myiarchus X

Myiarchus tyrannulus Passeriformes Tyrannidae Myiarchus X
Cnemotriccus fuscatus Passeriformes Tyrannidae Cnemotriccus X

Mionectes oleagineus Passeriformes Tyrannidae Mionectes X
Mionectes rufiventris Passeriformes Tyrannidae Mionectes X

Megarynchus pitangua Passeriformes Tyrannidae Megarynchus X
Machetornis rixosa Passeriformes Tyrannidae Machetornis X

Attila rufus Passeriformes Tyrannidae Attila X
Attila phoenicurus Passeriformes Tyrannidae Attila X

Empidonomus varius Passeriformes Tyrannidae Empidonomus X
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Colonia colonus Passeriformes Tyrannidae Colonia X
Phyllomyias fasciatus Passeriformes Tyrannidae Phyllomyias X

Phyllomyias griseocapilla Passeriformes Tyrannidae Phyllomyias X
Camptostoma obsoletum Passeriformes Tyrannidae Camptostoma X

Conopias trivirgatus Passeriformes Tyrannidae Conopias X
Leptopogon amaurocephalus Passeriformes Tyrannidae Leptopogon X

Tolmomyias sulphurescens Passeriformes Tyrannidae Tolmomyias X
Tolmomyias flaviventris Passeriformes Tyrannidae Tolmomyias X

Lathrotriccus euleri Passeriformes Tyrannidae Lathrotriccus X
Phylloscartes ventralis Passeriformes Tyrannidae Phylloscartes X
Phylloscartes sylviolus Passeriformes Tyrannidae Phylloscartes X
Phylloscartes oustaleti Passeriformes Tyrannidae Phylloscartes X
Knipolegus nigerrimus Passeriformes Tyrannidae Knipolegus X

Knipolegus cyanirostris Passeriformes Tyrannidae Knipolegus X
Legatus leucophaius Passeriformes Tyrannidae Legatus X

Xolmis cinereus Passeriformes Tyrannidae Xolmis X
Xolmis velatus Passeriformes Tyrannidae Xolmis X

Fluvicola nengeta Passeriformes Tyrannidae Fluvicola X
Serpophaga subcristata Passeriformes Tyrannidae Serpophaga X

Myiophobus fasciatus Passeriformes Tyrannidae Myiophobus X
Satrapa icterophrys Passeriformes Tyrannidae Satrapa X
Capsiempis flaveola Passeriformes Tyrannidae Capsiempis X

Casiornis rufus Passeriformes Tyrannidae Casiornis X
Contopus cinereus Passeriformes Tyrannidae Contopus X

Sirystes sibilator Passeriformes Tyrannidae Sirystes X
Myiopagis caniceps Passeriformes Tyrannidae Myiopagis X
Phaeomyias murina Passeriformes Tyrannidae Phaeomyias X

Chiroxiphia caudata Passeriformes Pipridae Chiroxiphia X
Chiroxiphia pareola Passeriformes Pipridae Chiroxiphia X

Manacus manacus Passeriformes Pipridae Manacus X
Pipra rubrocapilla Passeriformes Pipridae Pipra X

Pipra pipra Passeriformes Pipridae Pipra X
Ilicura militaris Passeriformes Pipridae Ilicura X

Antilophia galeata Passeriformes Pipridae Antilophia X
Neopelma aurifrons Passeriformes Pipridae Neopelma X

Neopelma pallescens Passeriformes Pipridae Neopelma X
Machaeropterus regulus Passeriformes Pipridae Machaeropterus X

Coereba flaveola Passeriformes Coerebidae Coereba
Turdus amaurochalinus Passeriformes Turdidae Turdus X

Turdus flavipes Passeriformes Turdidae Turdus X
Turdus leucomelas Passeriformes Turdidae Turdus X
Turdus rufiventris Passeriformes Turdidae Turdus X

Turdus albicollis Passeriformes Turdidae Turdus X
Turdus subalaris Passeriformes Turdidae Turdus X

Turdus fumigatus Passeriformes Turdidae Turdus X
Turdus Passeriformes Turdidae Turdus X

Catharus fuscescens Passeriformes Turdidae Catharus X
Zonotrichia capensis Passeriformes Emberizidae Zonotrichia
Arremon flavirostris Passeriformes Emberizidae Arremon
Arremon taciturnus Passeriformes Emberizidae Arremon

Vireo olivaceus Passeriformes Vireonidae Vireo X
Hylophilus amaurocephalus Passeriformes Vireonidae Hylophilus X

Hylophilus thoracicus Passeriformes Vireonidae Hylophilus X
Hylophilus poicilotis Passeriformes Vireonidae Hylophilus X
Cyclarhis gujanensis Passeriformes Vireonidae Cyclarhis X

Saltator maximus Passeriformes Cardinalidae Saltator X
Saltator similis Passeriformes Cardinalidae Saltator X

Saltator fuliginosus Passeriformes Cardinalidae Saltator X
Saltator coerulescens Passeriformes Cardinalidae Saltator X
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Saltator maxillosus Passeriformes Cardinalidae Saltator X
Saltator atricollis Passeriformes Cardinalidae Saltator X

Habia rubica Passeriformes Cardinalidae Habia X
Piranga flava Passeriformes Cardinalidae Piranga X

Cyanocompsa brissonii Passeriformes Cardinalidae Cyanocompsa X
Mimus saturninus Passeriformes Mimidae Mimus

Mimus gilvus Passeriformes Mimidae Mimus
Cyanocorax cristatellus Passeriformes Corvidae Cyanocorax
Cyanocorax cyanomelas Passeriformes Corvidae Cyanocorax

Cyanocorax caeruleus Passeriformes Corvidae Cyanocorax
Cyanocorax chrysops Passeriformes Corvidae Cyanocorax

Euphonia violacea Passeriformes Fringillidae Euphonia X
Euphonia pectoralis Passeriformes Fringillidae Euphonia X
Euphonia chlorotica Passeriformes Fringillidae Euphonia X
Euphonia chalybea Passeriformes Fringillidae Euphonia X

Euphonia Passeriformes Fringillidae Euphonia X
Euphonia xanthogaster Passeriformes Fringillidae Euphonia X
Euphonia cyanocephala Passeriformes Fringillidae Euphonia X

Chlorophonia cyanea Passeriformes Fringillidae Chlorophonia X
Thamnophilus caerulescens Passeriformes Thamnophilidae Thamnophilus

Thamnophilus doliatus Passeriformes Thamnophilidae Thamnophilus
Myiothlypis flaveola Passeriformes Parulidae Myiothlypis
Setophaga pitiayumi Passeriformes Parulidae Setophaga

Basileuterus culicivorus Passeriformes Parulidae Basileuterus
Geothlypis aequinoctialis Passeriformes Parulidae Geothlypis

Estrilda astrild Passeriformes Estrildidae Estrilda
Cranioleuca pallida Passeriformes Furnariidae Cranioleuca

Synallaxis ruficapilla Passeriformes Furnariidae Synallaxis
Furnarius rufus Passeriformes Furnariidae Furnarius

Troglodytes aedon Passeriformes Troglodytidae Troglodytes
Crotophaga ani Cuculiformes Cuculidae Crotophaga

Crotophaga major Cuculiformes Cuculidae Crotophaga
Guira guira Cuculiformes Cuculidae Guira

Piaya cayana Cuculiformes Cuculidae Piaya
Patagioenas picazuro Columbiformes Columbidae Patagioenas X

Patagioenas cayennensis Columbiformes Columbidae Patagioenas X
Patagioenas Columbiformes Columbidae Patagioenas X

Patagioenas plumbea Columbiformes Columbidae Patagioenas X
Patagioenas speciosa Columbiformes Columbidae Patagioenas X

Leptotila verreauxi Columbiformes Columbidae Leptotila X
Leptotila rufaxilla Columbiformes Columbidae Leptotila X

Leptotila Columbiformes Columbidae Leptotila X
Zenaida auriculata Columbiformes Columbidae Zenaida X

Columbina talpacoti Columbiformes Columbidae Columbina X
Penelope superciliaris Craciformes Cracidae Penelope X

Penelope obscura Craciformes Cracidae Penelope X
Penelope Craciformes Cracidae Penelope X

Aburria jacutinga Craciformes Cracidae Aburria X
Ortalis guttata Craciformes Cracidae Ortalis X

Ortalis canicollis Craciformes Cracidae Ortalis X
Crax blumenbachii Craciformes Cracidae Crax X

Ramphastos dicolorus Piciformes Ramphastidae Ramphastos X
Ramphastos toco Piciformes Ramphastidae Ramphastos X

Ramphastos vitellinus Piciformes Ramphastidae Ramphastos X
Ramphastos Piciformes Ramphastidae Ramphastos X

Baillonius bailloni Piciformes Ramphastidae Baillonius X
Selenidera maculirostris Piciformes Ramphastidae Selenidera X

Pteroglossus aracari Piciformes Ramphastidae Pteroglossus X
Pteroglossus castanotis Piciformes Ramphastidae Pteroglossus X

33



Picumnus cirratus Piciformes Picidae Picumnus X
Picumnus nebulosus Piciformes Picidae Picumnus X

Celeus flavescens Piciformes Picidae Celeus X
Melanerpes flavifrons Piciformes Picidae Melanerpes X
Melanerpes candidus Piciformes Picidae Melanerpes X
Colaptes campestris Piciformes Picidae Colaptes X

Colaptes melanochloros Piciformes Picidae Colaptes X
Veniliornis spilogaster Piciformes Picidae Veniliornis X

Piculus aurulentus Piciformes Picidae Piculus X
Dryocopus lineatus Piciformes Picidae Dryocopus X

Trogon surrucura Trogoniformes Trogonidae Trogon
Trogon viridis Trogoniformes Trogonidae Trogon
Trogon rufus Trogoniformes Trogonidae Trogon

Trogon curucui Trogoniformes Trogonidae Trogon
Baryphthengus ruficapillus Coraciiformes Momotidae Baryphthengus

Coragyps atratus Accipitriformes Cathartidae Coragyps
Caracara plancus Falconiformes Falconidae Caracara
Aramides cajanea Gruiformes Rallidae Aramides

Table S.3: Plant species included in our data and their taxonomic information.

Species Family Genus Included

Abuta selloana Menispermaceae Abuta
Cissampelos andromorpha Menispermaceae Cissampelos

Acacia auriculiformis Fabaceae Acacia X
Andira fraxinifolia Fabaceae Andira X

Cajanus cajan Fabaceae Cajanus X
Copaifera langsdorffii Fabaceae Copaifera X
Copaifera trapezifolia Fabaceae Copaifera X
Desmodium incanum Fabaceae Desmodium X

Holocalyx balansae Fabaceae Holocalyx X
Hymenaea courbaril Fabaceae Hymenaea X

Inga edulis Fabaceae Inga X
Inga laurina Fabaceae Inga X

Inga marginata Fabaceae Inga X
Inga sessilis Fabaceae Inga X

Samanea tubulosa Fabaceae Samanea X
Acnistus arborescens Solanaceae Acnistus X
Aureliana fasciculata Solanaceae Aureliana X
Cestrum bracteatum Solanaceae Cestrum X

Cestrum mariquitense Solanaceae Cestrum X
Cestrum schlechtendalii Solanaceae Cestrum X

Lycianthes pauciflora Solanaceae Lycianthes X
Physalis pubescens Solanaceae Physalis X

Solanum aculeatissimum Solanaceae Solanum X
Solanum americanum Solanaceae Solanum X

Solanum argenteum Solanaceae Solanum X
Solanum bullatum Solanaceae Solanum X

Solanum corymbiflorum Solanaceae Solanum X
Solanum granulosoleprosum Solanaceae Solanum X

Solanum inodorum Solanaceae Solanum X
Solanum mauritianum Solanaceae Solanum X
Solanum megalochiton Solanaceae Solanum X
Solanum myrianthum Solanaceae Solanum X

Solanum nigrescens Solanaceae Solanum X
Solanum paranense Solanaceae Solanum X

Solanum pseudoquina Solanaceae Solanum X
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Solanum rufescens Solanaceae Solanum X
Solanum sanctae-catharinae Solanaceae Solanum X

Solanum scuticum Solanaceae Solanum X
Solanum subsylvestre Solanaceae Solanum X
Solanum swartzianum Solanaceae Solanum X

Solanum thomasiifolium Solanaceae Solanum X
Solanum variabile Solanaceae Solanum X

Solanum viscosissimum Solanaceae Solanum X
Vassobia breviflora Solanaceae Vassobia X

Acrocomia aculeata Arecaceae Acrocomia X
Allagoptera arenaria Arecaceae Allagoptera X

Archontophoenix cunninghamiana Arecaceae Archontophoenix X
Astrocaryum aculeatissimum Arecaceae Astrocaryum X

Attalea dubia Arecaceae Attalea X
Bactris gasipaes Arecaceae Bactris X

Elaeis guineensis Arecaceae Elaeis X
Euterpe edulis Arecaceae Euterpe X

Euterpe oleracea Arecaceae Euterpe X
Geonoma elegans Arecaceae Geonoma X

Geonoma gamiova Arecaceae Geonoma X
Geonoma pauciflora Arecaceae Geonoma X
Livistona chinensis Arecaceae Livistona X
Livistona chinensis Arecaceae Livistona X
Phoenix sylvestris Arecaceae Phoenix X

Roystonea oleraceae Arecaceae Roystonea X
Syagrus pseudococos Arecaceae Syagrus X

Syagrus romanzoffiana Arecaceae Syagrus X
Aegiphila integrifolia Lamiaceae Aegiphila

Callicarpa reevesii Lamiaceae Callicarpa
Vitex megapotamica Lamiaceae Vitex

Vitex polygama Lamiaceae Vitex
Aiouea saligna Lauraceae Aiouea X

Cryptocarya aschersoniana Lauraceae Cryptocarya X
Cryptocarya mandioccana Lauraceae Cryptocarya X

Cryptocarya moschata Lauraceae Cryptocarya X
Endlicheria paniculata Lauraceae Endlicheria X

Nectandra cuspidata Lauraceae Nectandra X
Nectandra grandiflora Lauraceae Nectandra X
Nectandra lanceolata Lauraceae Nectandra X

Nectandra megapotamica Lauraceae Nectandra X
Nectandra membranacea Lauraceae Nectandra X

Nectandra reticulata Lauraceae Nectandra X
Ocotea aeciphila Lauraceae Ocotea X

Ocotea bicolor Lauraceae Ocotea X
Ocotea catharinensis Lauraceae Ocotea X

Ocotea corymbosa Lauraceae Ocotea X
Ocotea diospyrifolia Lauraceae Ocotea X

Ocotea dispersa Lauraceae Ocotea X
Ocotea macropoda Lauraceae Ocotea X

Ocotea notata Lauraceae Ocotea X
Ocotea odorifera Lauraceae Ocotea X
Ocotea puberula Lauraceae Ocotea X
Ocotea pulchella Lauraceae Ocotea X
Ocotea silvestris Lauraceae Ocotea X
Ocotea spixiana Lauraceae Ocotea X

Ocotea teleiandra Lauraceae Ocotea X
Persea alba Lauraceae Persea X

Persea major Lauraceae Persea X
Persea willdenovii Lauraceae Persea X
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Phoebe pickelli Lauraceae Phoebe X
Alchornea discolor Euphorbiaceae Alchornea

Alchornea glandulosa Euphorbiaceae Alchornea
Alchornea sidifolia Euphorbiaceae Alchornea

Alchornea triplinervia Euphorbiaceae Alchornea
Sapium glandulosum Euphorbiaceae Sapium

Tetrorchidium rubrivenium Euphorbiaceae Tetrorchidium
Allophylus edulis Sapindaceae Allophylus X

Cupania emarginata Sapindaceae Cupania X
Cupania oblongifolia Sapindaceae Cupania X
Cupania riodocensis Sapindaceae Cupania X

Cupania vernalis Sapindaceae Cupania X
Litchi chinensis Sapindaceae Litchi X

Matayba elaeagnoides Sapindaceae Matayba X
Matayba guianensis Sapindaceae Matayba X
Paullinia carpopoda Sapindaceae Paullinia X
Paullinia micrantha Sapindaceae Paullinia X

Paullinia rhomboidea Sapindaceae Paullinia X
Paullinia uloptera Sapindaceae Paullinia X

Sapindus saponaria Sapindaceae Sapindus X
Amaioua guianensis Rubiaceae Amaioua X
Amaioua intermedia Rubiaceae Amaioua X
Chomelia parvifolia Rubiaceae Chomelia X

Coccocypselum geophiloides Rubiaceae Coccocypselum X
Coccocypselum hasslerianum Rubiaceae Coccocypselum X

Coffea arabica Rubiaceae Coffea X
Cordiera myrciifolia Rubiaceae Cordiera X
Coussarea contracta Rubiaceae Coussarea X

Galium hypocarpium Rubiaceae Galium X
Genipa americana Rubiaceae Genipa X

Geophila macropoda Rubiaceae Geophila X
Geophila repens Rubiaceae Geophila X

Guettarda viburnoides Rubiaceae Guettarda X
Ixora burchelliana Rubiaceae Ixora X
Ixora gardneriana Rubiaceae Ixora X

Ixora venulosa Rubiaceae Ixora X
Margaritopsis astrellantha Rubiaceae Margaritopsis X

Margaritopsis chaenotricha Rubiaceae Margaritopsis X
Palicourea macrobotrys Rubiaceae Palicourea X

Posoqueria latifolia Rubiaceae Posoqueria X
Psychotria carthagenensis Rubiaceae Psychotria X
Psychotria forsteronioides Rubiaceae Psychotria X

Psychotria gracilenta Rubiaceae Psychotria X
Psychotria hoffmannseggiana Rubiaceae Psychotria X

Psychotria leiocarpa Rubiaceae Psychotria X
Psychotria mapourioides Rubiaceae Psychotria X

Psychotria nuda Rubiaceae Psychotria X
Psychotria racemosa Rubiaceae Psychotria X

Psychotria sessilis Rubiaceae Psychotria X
Psychotria suterella Rubiaceae Psychotria X

Psychotria vellosiana Rubiaceae Psychotria X
Rudgea jasminoides Rubiaceae Rudgea X

Rudgea recurva Rubiaceae Rudgea X
Tocoyena bullata Rubiaceae Tocoyena X

Tocoyena formosa Rubiaceae Tocoyena X
Amaranthus hybridus Amaranthaceae Amaranthus

Chamissoa altissima Amaranthaceae Chamissoa
Anacardium occidentale Anacardiaceae Anacardium

Lithrea molleoides Anacardiaceae Lithrea
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Mangifera indica Anacardiaceae Mangifera
Schinus terebinthifolius Anacardiaceae Schinus

Tapirira guianensis Anacardiaceae Tapirira
Annona cacans Annonaceae Annona X

Annona emarginata Annonaceae Annona X
Annona neosericea Annonaceae Annona X
Guatteria australis Annonaceae Guatteria X

Guatteria sellowiana Annonaceae Guatteria X
Xylopia aromatica Annonaceae Xylopia X

Xylopia brasiliensis Annonaceae Xylopia X
Xylopia langsdorfiana Annonaceae Xylopia X

Xylopia sericea Annonaceae Xylopia X
Anthurium affine Araceae Anthurium X

Anthurium scandens Araceae Anthurium X
Anthurium sellowianum Araceae Anthurium X

Asterostigma lividum Araceae Asterostigma X
Heteropsis oblongifolia Araceae Heteropsis X

Heteropsis rigidifolia Araceae Heteropsis X
Monstera adansonii Araceae Monstera X

Philodendron appendiculatum Araceae Philodendron X
Philodendron imbe Araceae Philodendron X

Araucaria angustifolia Araucariaceae Araucaria
Artocarpus heterophyllus Moraceae Artocarpus X

Ficus carica Moraceae Ficus X
Ficus benjami Moraceae Ficus X

Ficus benjamina Moraceae Ficus X
Ficus carica Moraceae Ficus X

Ficus cestrifolia Moraceae Ficus X
Ficus citrifolia Moraceae Ficus X
Ficus enormis Moraceae Ficus X
Ficus eximia Moraceae Ficus X

Ficus guaranitica Moraceae Ficus X
Ficus hirsuta Moraceae Ficus X

Ficus insipida Moraceae Ficus X
Ficus luschnathiana Moraceae Ficus X

Ficus luschthia Moraceae Ficus X
Ficus microcarpa Moraceae Ficus X
Ficus organensis Moraceae Ficus X

Ficus pertusa Moraceae Ficus X
Ficus trigona Moraceae Ficus X

Maclura tinctoria Moraceae Maclura X
Morus alba Moraceae Morus X

Morus nigra Moraceae Morus X
Sorocea bonplandii Moraceae Sorocea X

Byrsonima cydoniifolia Malpighiaceae Byrsonima
Byrsonima ligustrifolia Malpighiaceae Byrsonima

Byrsonima sericea Malpighiaceae Byrsonima
Byrsonima variabilis Malpighiaceae Byrsonima

Malpighia glabra Malpighiaceae Malpighia
Cabralea canjerana Meliaceae Cabralea X

Guarea guidonia Meliaceae Guarea X
Guarea kunthiana Meliaceae Guarea X

Guarea macrophylla Meliaceae Guarea X
Melia azedarach Meliaceae Melia X
Trichilia catigua Meliaceae Trichilia X

Trichilia clausseni Meliaceae Trichilia X
Trichilia elegans Meliaceae Trichilia X
Trichilia pallida Meliaceae Trichilia X

Calophyllum brasiliense Calophyllaceae Calophyllum

37



Calyptranthes clusiifolia Myrtaceae Calyptranthes X
Calyptranthes concinna Myrtaceae Calyptranthes X

Campomanesia guaviroba Myrtaceae Campomanesia X
Campomanesia guazumifolia Myrtaceae Campomanesia X

Campomanesia neriiflora Myrtaceae Campomanesia X
Campomanesia phaea Myrtaceae Campomanesia X

Campomanesia xanthocarpa Myrtaceae Campomanesia X
Eugenia astringens Myrtaceae Eugenia X

Eugenia brasiliensis Myrtaceae Eugenia X
Eugenia cerasiflora Myrtaceae Eugenia X

Eugenia cuprea Myrtaceae Eugenia X
Eugenia florida Myrtaceae Eugenia X

Eugenia handroi Myrtaceae Eugenia X
Eugenia hiemalis Myrtaceae Eugenia X

Eugenia involucrata Myrtaceae Eugenia X
Eugenia melanogyna Myrtaceae Eugenia X

Eugenia mosenii Myrtaceae Eugenia X
Eugenia neoglomerata Myrtaceae Eugenia X

Eugenia oblongata Myrtaceae Eugenia X
Eugenia pyriformis Myrtaceae Eugenia X

Eugenia umbelliflora Myrtaceae Eugenia X
Eugenia uniflora Myrtaceae Eugenia X

Eugenia uruguayensis Myrtaceae Eugenia X
Eugenia verticillata Myrtaceae Eugenia X

Marlierea neuwiediana Myrtaceae Marlierea X
Marlierea obscura Myrtaceae Marlierea X

Marlierea reitzii Myrtaceae Marlierea X
Marlierea suaveolens Myrtaceae Marlierea X
Marlierea tomentosa Myrtaceae Marlierea X

Myrceugenia myrcioides Myrtaceae Myrceugenia X
Myrcia anacardiifolia Myrtaceae Myrcia X

Myrcia brasiliensis Myrtaceae Myrcia X
Myrcia ferruginea Myrtaceae Myrcia X

Myrcia hartwegiana Myrtaceae Myrcia X
Myrcia hebepetala Myrtaceae Myrcia X
Myrcia ilheosensis Myrtaceae Myrcia X
Myrcia oblongata Myrtaceae Myrcia X
Myrcia palustris Myrtaceae Myrcia X

Myrcia pubipetala Myrtaceae Myrcia X
Myrcia pulchra Myrtaceae Myrcia X

Myrcia spectabilis Myrtaceae Myrcia X
Myrcia splendens Myrtaceae Myrcia X

Myrcia tomentosa Myrtaceae Myrcia X
Myrciaria glomerata Myrtaceae Myrciaria X
Myrciaria cuspidata Myrtaceae Myrciaria X
Myrciaria floribunda Myrtaceae Myrciaria X
Myrciaria trunciflora Myrtaceae Myrciaria X

Myrrhinium atropurpureum Myrtaceae Myrrhinium X
Neomitranthes glomerata Myrtaceae Neomitranthes X

Neomitranthes obscura Myrtaceae Neomitranthes X
Plinia cauliflora Myrtaceae Plinia X

Psidium cattleianum Myrtaceae Psidium X
Psidium guajava Myrtaceae Psidium X

Siphoneugena densiflora Myrtaceae Siphoneugena X
Syzygium cumini Myrtaceae Syzygium X

Carica papaya Caricaceae Carica
Jacaratia spinosa Caricaceae Jacaratia

Casearia decandra Salicaceae Casearia
Casearia sylvestris Salicaceae Casearia
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Cecropia glaziovii Urticaceae Cecropia
Cecropia hololeuca Urticaceae Cecropia

Cecropia pachystachya Urticaceae Cecropia
Coussapoa microcarpa Urticaceae Coussapoa

Pourouma guianensis Urticaceae Pourouma
Urera baccifera Urticaceae Urera
Celtis iguanaea Cannabaceae Celtis

Trema micrantha Cannabaceae Trema
Cerastium glomeratum Caryophyllaceae Cerastium
Cereus fernambucensis Cactaceae Cereus X
Cereus hildmannianus Cactaceae Cereus X
Opuntia monacantha Cactaceae Opuntia X

Pereskia aculeata Cactaceae Pereskia X
Pilosocereus arrabidae Cactaceae Pilosocereus X

Rhipsalis campos-portoana Cactaceae Rhipsalis X
Rhipsalis elliptica Cactaceae Rhipsalis X

Rhipsalis paradoxa Cactaceae Rhipsalis X
Rhipsalis teres Cactaceae Rhipsalis X

Stephanocereus luetzelburgii Cactaceae Stephanocereus X
Chrysophyllum flexuosum Sapotaceae Chrysophyllum

Chrysophyllum gonocarpum Sapotaceae Chrysophyllum
Chrysophyllum viride Sapotaceae Chrysophyllum

Cinnamodendron dinisii Canellaceae Cinnamodendron
Cissus paulliniifolia Vitaceae Cissus

Cissus selloana Vitaceae Cissus
Cissus striata Vitaceae Cissus

Cissus verticillata Vitaceae Cissus
Citharexylum myrianthum Verbenaceae Citharexylum

Duranta erecta Verbenaceae Duranta
Lantana camara Verbenaceae Lantana

Lantana pohliana Verbenaceae Lantana
Citrus reticulata Rutaceae Citrus

Citrus x aurantium Rutaceae Citrus
Clausena excavata Rutaceae Clausena

Murraya paniculata Rutaceae Murraya
Zanthoxylum hyemale Rutaceae Zanthoxylum

Zanthoxylum rhoifolium Rutaceae Zanthoxylum
Zanthoxylum riedelianum Rutaceae Zanthoxylum

Clidemia hirta Melastomataceae Clidemia X
Clidemia urceolata Melastomataceae Clidemia X

Henriettea saldanhaei Melastomataceae Henriettea X
Leandra acutiflora Melastomataceae Leandra X

Leandra aurea Melastomataceae Leandra X
Leandra australis Melastomataceae Leandra X

Leandra barbinervis Melastomataceae Leandra X
Leandra carassana Melastomataceae Leandra X
Leandra laevigata Melastomataceae Leandra X

Leandra melastomoides Melastomataceae Leandra X
Leandra pilonensis Melastomataceae Leandra X

Leandra refracta Melastomataceae Leandra X
Leandra regnellii Melastomataceae Leandra X

Leandra sabiaensis Melastomataceae Leandra X
Leandra variabilis Melastomataceae Leandra X

Leandra xanthocoma Melastomataceae Leandra X
Miconia affinis Melastomataceae Miconia X

Miconia albicans Melastomataceae Miconia X
Miconia alborufescens Melastomataceae Miconia X

Miconia brasiliensis Melastomataceae Miconia X
Miconia budlejoides Melastomataceae Miconia X
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Miconia cabucu Melastomataceae Miconia X
Miconia chartacea Melastomataceae Miconia X

Miconia cinerascens Melastomataceae Miconia X
Miconia cinnamomifolia Melastomataceae Miconia X

Miconia collatata Melastomataceae Miconia X
Miconia cubatanensis Melastomataceae Miconia X

Miconia cuspidata Melastomataceae Miconia X
Miconia discolor Melastomataceae Miconia X
Miconia elegans Melastomataceae Miconia X

Miconia inaequidens Melastomataceae Miconia X
Miconia inconspicua Melastomataceae Miconia X
Miconia latecrenata Melastomataceae Miconia X
Miconia ligustroides Melastomataceae Miconia X
Miconia minutiflora Melastomataceae Miconia X
Miconia paniculata Melastomataceae Miconia X

Miconia pepericarpa Melastomataceae Miconia X
Miconia prasina Melastomataceae Miconia X

Miconia pusilliflora Melastomataceae Miconia X
Miconia racemifera Melastomataceae Miconia X
Miconia rubiginosa Melastomataceae Miconia X
Miconia sellowiana Melastomataceae Miconia X

Miconia tentaculifera Melastomataceae Miconia X
Miconia theizans Melastomataceae Miconia X

Miconia tristis Melastomataceae Miconia X
Miconia urophylla Melastomataceae Miconia X

Miconia valtheri Melastomataceae Miconia X
Ossaea amygdaloides Melastomataceae Ossaea X

Clusia criuva Clusiaceae Clusia
Clusia hilariana Clusiaceae Clusia

Clusia lanceolata Clusiaceae Clusia
Clusia organensis Clusiaceae Clusia

Garcinia gardneriana Clusiaceae Garcinia
Codonanthe cordifolia Gesneriaceae Codonanthe

Cordia abyssinica Boraginaceae Cordia X
Cordia axillaris Boraginaceae Cordia X

Cordia corymbosa Boraginaceae Cordia X
Cordia ecalyculata Boraginaceae Cordia X
Cordia sellowiana Boraginaceae Cordia X

Cordia silvestris Boraginaceae Cordia X
Myriopus paniculatus Boraginaceae Myriopus X
Varronia curassavica Boraginaceae Varronia X

Costus spiralis Costaceae Costus
Curatella americana Dilleniaceae Curatella

Davilla elliptica Dilleniaceae Davilla
Davilla rugosa Dilleniaceae Davilla

Doliocarpus dentatus Dilleniaceae Doliocarpus
Cybianthus peruvianus Primulaceae Cybianthus

Myrsine coriacea Primulaceae Myrsine
Myrsine ferruginea Primulaceae Myrsine

Myrsine gardneriana Primulaceae Myrsine
Myrsine lancifolia Primulaceae Myrsine

Myrsine umbellata Primulaceae Myrsine
Myrsine venosa Primulaceae Myrsine

Daphnopsis brasiliensis Thymelaeaceae Daphnopsis
Dendropanax cuneatus Araliaceae Dendropanax

Hedera nepalensis Araliaceae Hedera
Schefflera actinophylla Araliaceae Schefflera
Schefflera angustissima Araliaceae Schefflera

Schefflera arboricola Araliaceae Schefflera
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Schefflera macrocarpa Araliaceae Schefflera
Schefflera morototoni Araliaceae Schefflera

Dichorisandra thyrsiflora Commelinaceae Dichorisandra
Diospyros inconstans Ebenaceae Diospyros

Diospyros kaki Ebenaceae Diospyros
Drimys brasiliensis Winteraceae Drimys

Drimys winteri Winteraceae Drimys
Eriobotrya japonica Rosaceae Eriobotrya X

Prunus myrtifolia Rosaceae Prunus X
Prunus persica Rosaceae Prunus X

Pyracantha coccinea Rosaceae Pyracantha X
Rubus brasiliensis Rosaceae Rubus X

Rubus erythroclados Rosaceae Rubus X
Rubus rosifolius Rosaceae Rubus X

Rubus urticifolius Rosaceae Rubus X
Erythroxylum ambiguum Erythroxylaceae Erythroxylum

Erythroxylum argentinum Erythroxylaceae Erythroxylum
Erythroxylum deciduum Erythroxylaceae Erythroxylum

Erythroxylum gonocladum Erythroxylaceae Erythroxylum
Erythroxylum pauferrense Erythroxylaceae Erythroxylum

Erythroxylum pulchrum Erythroxylaceae Erythroxylum
Erythroxylum simonis Erythroxylaceae Erythroxylum

Frangula purshiana Rhamnaceae Frangula
Hovenia dulcis Rhamnaceae Hovenia

Scutia buxifolia Rhamnaceae Scutia
Fuchsia regia Onagraceae Fuchsia

Gaylussacia brasiliensis Ericaceae Gaylussacia
Gaylussacia pulchra Ericaceae Gaylussacia
Gaylussacia virgata Ericaceae Gaylussacia

Guapira opposita Nyctaginaceae Guapira
Guapira pernambucensis Nyctaginaceae Guapira

Hedychium coronarium Zingiberaceae Hedychium
Hedyosmum brasiliense Chloranthaceae Hedyosmum

Heisteria silvianii Olacaceae Heisteria
Hohenbergia ramageana Bromeliaceae Hohenbergia

Humiria balsamifera Humiriaceae Humiria
Hyeronima alchorneoides Phyllanthaceae Hyeronima

Margaritaria nobilis Phyllanthaceae Margaritaria
Richeria grandis Phyllanthaceae Richeria

Hypochaeris brasiliensis Asteraceae Hypochaeris
Ilex affinis Aquifoliaceae Ilex

Ilex brevicuspis Aquifoliaceae Ilex
Ilex microdonta Aquifoliaceae Ilex

Ilex paraguariensis Aquifoliaceae Ilex
Ilex pseudobuxus Aquifoliaceae Ilex

Ilex theezans Aquifoliaceae Ilex
Lasiacis sorghoidea Poaceae Lasiacis

Megathyrsus maximus Poaceae Megathyrsus
Triticum aestivum Poaceae Triticum

Urochloa decumbens Poaceae Urochloa
Urochloa plantaginea Poaceae Urochloa
Ligustrum japonicum Oleaceae Ligustrum

Ligustrum lucidum Oleaceae Ligustrum
Magnolia champaca Magnoliaceae Magnolia

Magnolia ovata Magnoliaceae Magnolia
Marcgravia polyantha Marcgraviaceae Marcgravia
Schwartzia brasiliensis Marcgraviaceae Schwartzia

Maytenus aquifolia Celastraceae Maytenus
Maytenus brasiliensis Celastraceae Maytenus
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Maytenus gonoclada Celastraceae Maytenus
Maytenus littoralis Celastraceae Maytenus

Schaefferia argentinensis Celastraceae Schaefferia
Meliosma sellowii Sabiaceae Meliosma

Melothria cucumis Cucurbitaceae Melothria
Momordica charantia Cucurbitaceae Momordica
Mollinedia boracensis Monimiaceae Mollinedia
Mollinedia schottiana Monimiaceae Mollinedia

Mollinedia triflora Monimiaceae Mollinedia
Mollinedia uleana Monimiaceae Mollinedia

Muntingia calabura Muntingiaceae Muntingia
Musa paradisiaca Musaceae Musa

Musa rosacea Musaceae Musa
Ouratea polygyna Ochnaceae Ouratea

Ouratea vaccinioides Ochnaceae Ouratea
Passiflora actinia Passifloraceae Passiflora
Passiflora edulis Passifloraceae Passiflora

Peplonia organensis Apocynaceae Peplonia
Peschiera catharinensis Apocynaceae Peschiera

Tabernaemontana hystrix Apocynaceae Tabernaemontana
Pera glabrata Peraceae Pera

Phoradendron crassifolium Santalaceae Phoradendron
Phoradendron piperoides Santalaceae Phoradendron

Phoradendron quadrangulare Santalaceae Phoradendron
Phytolacca dioica Phytolaccaceae Phytolacca

Piper aduncum Piperaceae Piper X
Piper amalago Piperaceae Piper X

Piper corintoanum Piperaceae Piper X
Piper dilatatum Piperaceae Piper X

Piper gaudichaudianum Piperaceae Piper X
Piper hispidinervum Piperaceae Piper X

Piper miquelianum Piperaceae Piper X
Piper mollicomum Piperaceae Piper X

Piper tectoniifolium Piperaceae Piper X
Podocarpus sellowii Podocarpaceae Podocarpus

Protium heptaphyllum Burseraceae Protium
Protium spruceanum Burseraceae Protium

Protium widgrenii Burseraceae Protium
Psittacanthus robustus Loranthaceae Psittacanthus

Struthanthus concinnus Loranthaceae Struthanthus
Struthanthus vulgaris Loranthaceae Struthanthus

Quiina glazovii Quiinaceae Quiina
Scaevola plumieri Goodeniaceae Scaevola

Sloanea guianensis Elaeocarpaceae Sloanea
Sloanea hirsuta Elaeocarpaceae Sloanea
Smilax elastica Smilacaceae Smilax

Smilax rufescens Smilacaceae Smilax
Stromanthe tonckat Marantaceae Stromanthe

Strychnos brasiliensis Loganiaceae Strychnos
Styrax leprosus Styracaceae Styrax

Styrax pohlii Styracaceae Styrax
Symplocos estrellensis Symplocaceae Symplocos

Symplocos glandulosomarginata Symplocaceae Symplocos
Symplocos laxiflora Symplocaceae Symplocos

Symplocos pubescens Symplocaceae Symplocos
Symplocos revoluta Symplocaceae Symplocos

Symplocos tetrandra Symplocaceae Symplocos
Symplocos uniflora Symplocaceae Symplocos

Turnera ulmifolia Turneraceae Turnera
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Virola bicuhyba Myristicaceae Virola
Virola gardneri Myristicaceae Virola
Virola sebifera Myristicaceae Virola

Vismia brasiliensis Hypericaceae Vismia
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