
 

 

 
 DEPARTMENT OF BIOLOGICAL AND 

ENVIRONMENTAL SCIENCES 

 

 

 

Degree project for Master of Science (120 HEC) with a major in Environmental Science 
ES2510, Degree project in Environmental Science, 60 HEC 
Second cycle   
Semester/year: 2023 Spring 

Supervisors: 

Irina Polovodova Asteman, Department of Marine Sciences; 
Allison Yi Hsiang, University of Stockholm, Department of Geological Sciences; 
Mats Josefson, Oral Product Development, AstraZeneca  

Examiner: Lennart Bornmalm, Department of Marine Sciences 
 

IDENTIFICATION OF ENVIRONMENTALLY 
RELEVANT BENTHIC FORAMINIFERA 
FROM THE SKAGERRAK FJORDS BY DEEP 
LEARNING IMAGE MODELING 
 

 

 

 

 

 

 

 

 

 

 

 

Marko Plavetić 



 

Image drawn by Ana Crnogorac; all rights reserved. 
 

 



 

1 

Table of Contents 
List of abbreviations ......................................................................................................................... 3 

Abstract ............................................................................................................................................ 4 

1. Introduction .................................................................................................................................. 5 

1.1 Foraminifera ........................................................................................................................... 5 

1.2 Benthic foraminifera in environmental monitoring ................................................................ 5 

1.3 Aim ......................................................................................................................................... 7 

1.4 Benthic foraminifera used in this thesis ................................................................................. 7 

2. Background on machine learning............................................................................................... 11 

3. Materials and methods ............................................................................................................... 16 

3.1 Image acquisition ................................................................................................................. 16 

3.2 Image processing .................................................................................................................. 17 

3.3 Dataset creation .................................................................................................................... 17 

3.4 ML model training ................................................................................................................ 18 

3.5 Introduction to object detection metrics ............................................................................... 19 

4. Results ........................................................................................................................................ 20 

4.1 Training curves ..................................................................................................................... 21 

4.2 Confusion matrix .................................................................................................................. 22 

4.3 F1 curve ................................................................................................................................ 23 

4.4 PR curve ............................................................................................................................... 24 

4.5 P and R curves ...................................................................................................................... 24 

4.6 Output image ........................................................................................................................ 26 

5. Discussion .................................................................................................................................. 27 

5.1 Species performance comparison ......................................................................................... 27 

5.2 Comparison with other foraminifera ML models ................................................................. 28 

5.3 Implications for future studies .............................................................................................. 29 

6. Conclusion ................................................................................................................................. 30 

Acknowledgements ........................................................................................................................ 31 

References ...................................................................................................................................... 32 

Appendix ........................................................................................................................................ 36 

Additional images of model detections ...................................................................................... 36 

exp 10 ......................................................................................................................................... 40 

exp 51 ......................................................................................................................................... 43 

exp 52 ......................................................................................................................................... 46 

exp 53 ......................................................................................................................................... 49 

exp 56 ......................................................................................................................................... 52 

exp 58 ......................................................................................................................................... 55 



 

2 

 

  



 

3 

List of abbreviations 
ANN – Artificial Neural Network 

AP - Average Precision 

API - Application Programming Interface 

CNN – Convolutional Neural Network 

COCO – Common Objects in Context 

ExpHbc – Hill’s number diversity index 

EQS – Ecological quality status 

Foram-AMBI – Foraminiferal AZTI Marine Biotic Index 

GPU – graphical processing unit 

FOBIMO - FOraminiferal BIo-MOnitoring 

IoU – Intersection over Union 

mAP - mean Average Precision 

mAP@.5 - mean Average Precision at IoU 0.5 threshold 

mAP@.5:.95 – mean Average Precision at IoU 0.5 to 0.95 threshold  

ML - Machine learning 

MSFD - Marine Strategy Framework Directive 

NQIf – Norwegian Quality Index (using Foraminifera) 

P - Precision 

R - Recall 

SML - Supervised Machine Learning 

TOC – Total organic carbon 

WFD - Water Framework Directive 

YOLO – You Only Look Once 

  



 

4 

Abstract 
Over the several past decades, there has been increasing interest in using foraminifera as 
environmental indicators for coastal marine environments. As compared to macrofauna, which are 
currently used in environmental studies, foraminifera offer several distinct advantages as 
bioindicators, including short generation times, a high number of individuals per small sample 
volume, hard and durable tests with high preservation potential, and low cost of sample extraction. 
One of the main problems with foraminifera identification is reliance on manual identification and 
expert judgement, which is a tedious and slow process prone to errors and subjectivity. Deep 
learning, a subfield of machine learning, has emerged as a promising solution to this challenge, 
since a neural network can learn to recognize subtle differences in shell morphology that may be 
difficult for the human eye to distinguish. Benthic foraminifera mounted on microslides from 
several Skagerrak fjords including Gullmar Fjord, Hakefjord, and Idefjord were imaged using a 
Nikon SMZ-10 stereomicroscope and DeltaPix DP450 microscope camera. Images were then 
processed in Roboflow API, where individual foraminifera were labelled and classified. This 
resulted in 3003 images and 22 138 labelled individuals. Using the labeled images, a dataset was 
created to be used for deep learning training. YOLO (You Only Look Once) v7 model implemented 
in the PyTorch framework was used in this work, which has demonstrated state-of-the-art speed 
and performance for object detection as of the time of writing. Models were trained using a Nvidia 
RTX A4000 GPU (graphical processing unit). The models are able to distinguish 29 species, while 
preliminary results show a 90.3% mAP (mean average precision) and 78.8% mAP on the best and 
the worst performing models, respectively. Even though the imaging and labelling was done in a 
short amount of time, the results look promising and show that even a relatively small dataset can 
be used for training a reliable deep learning species identification model. 

Keywords: benthic foraminifera, deep learning, environmental monitoring, YOLOv7 
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1. Introduction 
Coastal areas are an ever-changing and subject to environmental pressures from both the land and 
the sea. As such, it is important to have reliable, fast, and easy to use bioindicators to assess the 
environmental state and health of coastlines. Benthic foraminifera can be used for monitoring of 
the environmental state and for assessing the reference (pre-disturbance) conditions of a given 
environment. However, due to the long and tedious process of manual identification and presence 
of other accepted bioindicators (e.g., macrofauna), foraminifera have not yet been widely accepted 
in environmental monitoring by governmental organizations.  

1.1 Foraminifera 

Foraminifera are a diverse group of cosmopolitan marine single-celled protozoans. Depending on 
the part of the water column they inhabit, one can differentiate between planktonic and benthic 
foraminifera. 

Planktonic foraminifera are floating organisms that live in the upper part of the water column. They 
have a test (shell) of globular shape made from calcium carbonate. There are about 50 extant 
species, and their test size is typically smaller than 1 mm. 

Benthic foraminifera, on the other hand, as the name implies, belong to the benthos, organisms 
dwelling on the ocean floor. Unlike planktonic foraminifera, benthic foraminifera have a diverse 
range of body plans and test sizes, and their tests can be made from calcium carbonate, or out of 
glued together particles of surrounding sediment. There are about 10 000 extant species of benthic 
foraminifera, and their test sizes range from 0.5 mm up to 20 cm (Boersma 1998).  

1.2 Benthic foraminifera in environmental monitoring 

In the year 2000, the European Union member states, European Commission and Norway, agreed 
to implement a new framework concerning water environments. The Water Framework Directive 
(WFD) aims to better manage, preserve, and protect European water environments (WFD 2000). 
The directive produced a framework for the long-term protection of all water resources and was 
later supported by the Marine Strategy Framework Directive (MSFD 2008). Ecological assessment 
is based on the status of biological, physicochemical, and hydro morphological quality elements. 
At the time of implementation of MSFD, the biological elements which are used as indicators were 
phytoplankton, macroalgae, benthic macroinvertebrates, and fish (Borja et al. 2009).  

According to Schönfeld et al. (2012), good bioindicators are specific to certain habitats and should 
have fast turnover rates. Foraminifera fit those criteria and offer several key advantages compared 
to macrofaunal organisms, including short generation times, high number of individuals per small 
sample volume, hard and durable tests with high fossilization potential, and low cost of sample 
extraction (Alve 1995; Alve et al. 2009). Benthic foraminifera have been used as proxies for 
different kinds of pollutants, including heavy metals and hydrocarbons in a wide range of marine 
environments. Effects of pollution can be visible in benthic foraminiferal population by observing 
changes in: faunal distribution and diversity, local disappearance, development of abnormal tests, 
and increase of opportunistic species (Alve 1991; Yanko et al. 2003). Furthermore, shells are 
preserved after death in most species of foraminifera, and thus can inform on reference conditions 
of preindustrial times. 
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Due to non-standardized methods of sample acquisition, preparation, and data processing, benthic 
foraminifera have remained a marginal environmental monitoring tool. In recent years there has 
been a push towards more standardizing monitoring methods, and the first such attempt was done 
by the FOBIMO initiative (FOraminiferal BIo-MOnitoring). FOBIMO standardized sampling 
devices, sampling intervals, sampling depth, sample processing, and sample acquisition (Schönfeld 
et al. 2012). After standardizing sample acquisition and processing, scientists started working on 
the development of foraminiferal diversity and sensitivity indices. Some examples of these include 
Foram-AMBI, Exp (Hbc), NQIf etc. Sensitivity indexes like Foram-AMBI are used for determining 
the sensitivity of species to environmental stressors, and in Foram-AMBI they are given five 
categories depending on their tolerance to total organic carbon (TOC). Benthic foraminiferal 
species are assigned into one of five ecological groups: 

Group I (EGI): “sensitive species” are sensitive to TOC enrichment. Their relative 
abundance is highest at the lowest TOC values and drops to zero as organic carbon 
concentration increases. 
Group II (EGII): “indifferent species” are indifferent to the initial stages of organic carbon 
enrichment and never dominate the assemblage. They occur in low relative abundance over a 
broad range of organic carbon concentrations but are absent at very high concentrations. 
Group III (EGIII): “tolerant species” are able to endure excess organic carbon enrichment. 
They may occur at low TOC; their highest frequencies are stimulated by organic carbon 
enrichment, but they are absent at very high organic carbon concentrations. This group 
has been termed “third-order opportunistic species”. 
Group IV (EGIV): “second-order opportunistic species” show a clear positive response 
to organic carbon enrichment with maximum abundances between the maxima of EGIII 
and EGV. 
Group V (EGV): “first-order opportunistic species” exhibit a clear positive response 
to excess organic carbon enrichment with maximum abundances at a higher stress level 
induced by organic load than species belonging to EGIV. At even higher TOC concentrations, 
foraminifera are not able to survive. 
 
Foraminiferal diversity indices on the other hand, allow for monitoring the present and past human 
environmental impact, based on species diversity of a given study area (O’Brien et al. 2021). 
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Figure 1. A general overview of foraminiferal applications in biomonitoring studies. a) EcoQS 
indices based on species sensitivity and diversity; b) reconstruction of preindustrial reference 
conditions; c) accumulation of pollutants within foraminiferal tests; d) species response to 
environmental pressures in situ; e) simulated species response in the laboratory; and f) genomic 
methods such as eDNA (O’Brien et al. 2021). 

1.3 Aim 
Benthic foraminifera can be used for monitoring environmental state and for assessing the reference 
conditions of a given environment (Fig. 1), but due to long and tedious process of manual picking 
and species identification, they have not yet been widely used in environmental monitoring studies. 
This thesis aims to reduce the time necessary for identification and increase the accuracy of 
identifications by the use of machine learning, specifically deep learning convolutional neural 
networks. 

1.4 Benthic foraminifera used in this thesis 

A total of 59 species were identified in the samples from the fjords on the west coast of Sweden 
including Gullmar Fjord, Idefjord and Hakefjord. Of those 29 species were chosen for training the 
machine learning model in this study. Gullmar Fjord is a fjord situated in the Bohuslän Province, 
about 80 km north of the city of Gothenburg. The fjord is about 30 km long and between 1-2 km 
wide, with a maximum water depth of 119 meters. Idefjord is a fjord that is located at the national 
border between Norway and Sweden. It is about 150 km north of the city of Gothenburg, and it is 
about 25 km long and approximately 1 km wide, with a maximum depth of 48 meters. Finally, 
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Hakefjord is the most southern fjord of the Orust-Tjörn fjord system, located to the east of island 
Tjörn. It is about 16 km long and 2-5 km wide with a maximum depth of 35 meters. 

The most important foraminifera species for the afore-mentioned fjords are the native Skagerrak-
Kattegat (S-K) fauna species including Cassidulina laevigata, Textularia earlandi, Bulimina 
marginata, Liebusella goesi, Hyalinea balthica and Nonionellina labradorica (Nordberg et al. 
2000). These species are commonly recorded in high abundances in the adjacent Skagerrak and 
Kattegat straits. The S-K fauna species usually prevail at sites with salinities >30 psu below the 
pycnocline (Filipsson & Nordberg 2004). Recently an invasive species Nonionella sp. T1 has been 
discovered in the Skagerrak (Polovodova Asteman & Schönfeld 2015; Deldicq et al. 2019) and 
prefers nitrate-rich sediment at shallower water (30 - 40 m) depth with salinities of 32-34 psu 
(Choquel et al. 2021). Another important species is Stainforthia fusiformis, which has an ability to 
outcompete the native fauna with an opportunistic lifestyle under hypoxic conditions (Alve 2003). 
In general, S-K fauna showed a general tendency to decline as a response to bottom water hypoxia 
as a result of reduced bottom water exchanges in Gullmar Fjord. 

Below are summarized the most important ecological preferences of the aforementioned species. 

The species H. balthica is considered to be a cold to temperate water species in the North Atlantic 
on muddy bottoms (Ross 1984). Another limiting factor in the distribution of this hyaline 
foraminifera species are nutritional preferences and corresponding competition with more 
opportunistic species, which may explain why it was missing in parts of the record (Polovodova 
Asteman & Nordberg 2013). 

The hypoxia intolerant C. laevigata becomes opportunistic under hyperoxic conditions with rapid 
growth and reproductive rates. This species is found in sediment depths of up to 14-15 cm in the 
Skagerrak (Murray 2003).  

The two agglutinated species of the S-K fauna are opportunistic and widely spread and abundant 
species. Textularia earlandi and L. goesi have an omnivorous lifestyle and are both agglutinated 
(Polovodova Asteman & Nordberg 2013). Textularia earlandi increased in an unfed experiment 
after 2 years (Alve 2010) and its distribution is suggested to be controlled by sediment depth rather 
than food availability (Duffield et al. 2014). For the best stabilization of the test L. goesi uses 
different sized particles depending on the chamber and sediment (Hari et al. 2020). 

The detritivore B. marginata, a detritivore species, is a part of the infauna of the Skagerrak dwelling 
down to 13-15 cm sediment depth. The foraminiferal surface water assemblage varies regionally 
while the deep-water assemblages in Scandinavia are relatively constant with abundant specimens 
of C. reniforme, Elphidium sp. and N. labradorica (Murray 2006). Nonionellina labradorica occurs 
simultaneously with Nonionella sp. T1 in Oslo fjord and is generally a widespread species (Deldicq 
et al. 2019). The species is common in salinities >34 psu in cold Scandinavian fjords and other 
cold-water regions (Murray 2006). 
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Invasive Nonionella sp. T1 

The first record of Nonionella sp. T1 in Gullmar Fjord was from 2011, though its first appearance 
can be traced in the sediment core to sometime around 1985, afterwards it spread northwards to 
Oslofjord. The reference species with the closest morphological resemblance is N. stella from the 
San Pedro Basin, although specimens from Oslofjord and California are genetically not the same 
as is confirmed by DNA studies (Deldicq et al. 2019). Both N. stella and N. sp. T1 can be 
recognized morphologically via the expansion of the last chamber, which covers the umbilicus and 
resembles a hand. Nonionella sp. T1 is thought to have similar benefits from hypoxic conditions as 
the opportunistic S. fusiformis, however when comparing two sites with documented hypoxia and 
not, Nonionella sp. T1 was more abundant at well-oxygenated site (Choquel et al. 2021). This is 
likely explained by the Nonionella sp. T1 ability to perform a complete denitrification (Choquel et 
al. 2021), which requires presence of oxygen. 

Opportunistic Stainforthia fusiformis 

Stainforthia fusiformis is categorized as a ubiquitous and infaunal species with a thin test and an 
opportunistic lifestyle in the North Sea at salinities of >28 psu (Alve, 2003). The low oxygen 
tolerance of S. fusiformis enables the species to thrive and outcompete the natural S-K fauna under 
low oxygen conditions. The success stems from the ability to store copious amounts of nitrate and 
perform a complete denitrification (Risgaard-Petersen et al. 2006). This species’ abundance and 
dominance over the native foraminifera species of the Gullmar Fjord is indicative of its hypoxic 
conditions. Comparison between the native S-K fauna and S. fusiformis can be used to reconstruct 
paleoenvironmental conditions (Filipsson & Nordberg 2004).  
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Other relevant species Ten more species were selected for identification in this study and those 
are described below. 
  
● Bolivina pseudopunctata was recorded to occur under similar environmental conditions as the 
opportunistic S. fusiformis. It has a thinner test and is relatively small in size. Bolivina species 
together with Textularia and Bulimina species can commonly be found at oxygen deficient sites 
(Alve 1995; Bernhard & Alve 1996; Nordberg et al. 2000)  
 
● Eggerelloides scaber requires salinities >24 psu and has no dependence on specific substrate 
types (Luze et al. 1983)  
 
● Eggerelloides medius’ test is rougher in texture while E. scabers’ test is more elongated. E. 
medius is found in muddy sediment deeper than 40 m (Murray 2003).  
 
● Nonionella iridea flourishes in greater depths within the sediment and displays opportunistic 
behaviour in the presence of phytodetritus (Duffield et al. 2014).  

● Nonionella turgida is a calcareous species with an increasing concentration in Gullmar Fjord 
after 1990 (Filipsson & Norberg 2004). This species together with S. fusiformis shows an affinity 
for chlorophyll A in surface layers (Murray 2006)  

● Epistominella vitrea is a cosmopolite and opportunistic species commonly found in deep sea and 
it associated with phytodetritus deposition on the sea floor (Murray 2006; Pawlowski et al. 2007).  

● Quinqueloculina stalkeri is agglutinated species, which can be indicative of glaciomarine fjords 
with muddy sediment (Filipsson & Norberg, 2004; Korsun & Hald 1998).  

● Adercotryma glomerata is an agglutinated foraminifera often discovered in temperate fjords and 
areas such as Sweden, Norway, and Scotland (Murray 2006). Its salinity tolerance range is 
considered as large (28-35 psu) (Polovodova Asteman et al. 2011) and it has disappeared from the 
heavily polluted Idefjord in connection with the maximum effluent discharges from the pulp and 
paper mill (Polovodova Asteman et al. 2015). 

● Brizallina skagerakensis is a hyaline species that can be found in the outer fjord areas (Murray, 
2006) and has been associated with increased primary productivity in the Skagerrak and Norwegian 
fjords (Duffield et al. 2014; Polovodova Asteman et al. 2018). 
● Elphidium excavatum is commonly observed in temperate fjords with little water turbidity. The 
species lives within the shallow brackish water condition with sandy sediment together with E. 
scaber. Experiments have been conducted on these species revealing their ability to survive 24 h 
of anoxia (Murray 2006). It has also been shown that the species is sensitive to heavy metal 
pollution (Lintner et al. 2021). 
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2. Background on machine learning 
Machine learning (ML) is a field in computer science devoted to understanding and developing 
methods that can give machines the ability to “learn”. In this background, I will mainly focus on a 
subset of machine learning, called supervised machine learning (SML). The SML methodology 
involves using a given set of identified and labeled images, commonly referred to as a training set, 
to construct a machine learning model that learns the correlation between an input image and its 
corresponding classification. To be able to do this, a machine learning model must be able to 
determine which parts of the image are relevant to the object detection task at hand. The process 
of determining which parts in an image are relevant is called feature extraction. Feature extraction 
is a form of dimensionality reduction in which the complexity of the data is reduced into a set of 
simpler explanatory variables that are grouped using similarity or distance metrics. After obtaining 
the appropriate correlation between an input image and classification, the fitted model is used to 
classify a second dataset called the validation dataset. Validation dataset provides an unbiased 
evaluation of the model, since the model has not seen those images before while tuning the model’s 
hyperparameters. Finally, a test dataset is a dataset used to evaluate the accuracy of the final model. 
The test dataset was not used in training or validation stages of model fitting, so it is a completely 
unbiased measure of the model’s performance. 

Artificial neural networks (ANNs) are used in machine vision applications. ANNs consist of a 
cluster of neurons or nodes and connections in between those neurons. When there are numerous 
neurons connected, the input for the following neuron is the output of the previous neuron. Each 
connection is assigned an associated weight, based on the relative importance of the input. In a 
neuron, computation is carried out by determining the summation of its inputs. The computation a 
neuron makes is known as an activation function. It is the activation function that provides the non-
linear modelling ability for ANNs. Some of the common activation functions are: a) sigmoid, which 
maps the input to a value between 0 and 1; b) Rectified Linear Unit (ReLU), which replaces all 
negative input values with zero while leaving positive values unchanged; and c) Tanh, which maps 
the input to a value between -1 and 1. Both, sigmoid and Tanh suffer from a vanishing gradient 
problem, which is why ReLU is the most popular activation function in machine vision tasks 
(Krizhevsky et al. 2012). The output of the neuron is passed to the next adjacent neuron. Neural 
networks used in machine vision are typically feed-forward networks, meaning that all connections 
flow in a single forward direction. This implies that all neurons in a single layer have no 
connections between each other, but only with neurons in preceding and following layers (Fig. 2). 
For a long time, the most commonly used type of feed-forward ANN was the multilayer perceptron, 
and in this type of ANN, every neuron in a fully connected layer has connections to every neuron 
in the preceding layer (Castro et al. 2017). 
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Figure 2. Artificial neural network architecture, which has an input layer, a set of hidden layers 
and an output layer. In each hidden and output layer, there are neurons interconnected via adaptive 
weights. These weights are calibrated through the training process (Bre et al. 2017). 

Convolutional neural networks (CNNs) are currently the state-of-the-art algorithms for image 
classification and feature extraction. CNNs extend to ANNs by including several layers that 
perform convolutions, which are used to extract specific features from the image. Each image can 
be represented by a matrix of values for each pixel. Convolutions use these pixel values to compute 
new values by using element-wise matrix multiplication with a smaller matrix called a filter or a 
kernel that operates over the original pixel values (Fig. 3). The sum of the element-wise 
multiplication with a filter matrix and the original pixel matrix results in a new matrix of convolved 
features or also known as a feature map. Examples of feature maps are horizontal and vertical edge 
detection, sharpening, and blurring (Fig. 4). Convolutional operations are inherently linear, but 
linear functions are limited in their ability to map relationships between the input and the output. 
Also in CNN, an activation function is used to introduce nonlinearity into the network. After 
applying an activation layer, a pooling layer is applied to reduce the dimension or in other words 
to downsample the input image. This removes all unimportant information, while preserving 
features that are relevant for identification. Common pooling layers are max pooling, where the 
highest value in a given area of a pixel is retained, and average pooling, where the average value 
of the pixel in a given area is calculated and retained (Dumoulin & Visin 2016). 
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Figure 3. Two-dimensional convolution operation on a 3×3 matrix using a 2×2 kernel. The shaded 
portions are the first output element as well as the input and kernel elements used for the output 
computation: 0×0 + 1 × 1 + 3 × 2 + 4 × 3 = 19. Convolution is performed by moving the filter 
across the input image and summing the values from element-wise multiplication. These sums 
create a new matrix that corresponds to a convolved feature, which is known as an “activation map” 
or a “feature map”. 

A training set is a dataset of labelled images, which provides a correct mapping of pixel values and 
weights and the final classification. When the CNN is first initialized, all the weights and filters are 
randomly selected. Then the network takes the input image and performs a forward pass through 
the network. The total error of the pass is calculated. The network then performs a backpropagation, 
a process that uses gradient descent to update the weights and filters to minimize the total error. 
One forward propagation and one backpropagation is called an epoch. Since the training system’s 
memory is limited, we are forced to split a dataset into smaller batches (ideally, we would load the 
whole dataset into the system, but this is not currently possible due to hardware limitations). In 
general, a larger batch is better than a smaller one. The number of batches needed to complete one 
epoch is called the number of iterations. The number of epochs varies based on the dataset and 
parameters set at the start of the training. By using backpropagation to update weights and kernels, 
the network learns how to classify the training images. The accuracy of the model is then tested by 
using a validation set of images that the model has not yet seen, as this gives us an idea of what 
sort of accuracy to expect when classifying completely new images. The performance of the model 
is evaluated using the validation accuracy i.e., the proportion of correctly identified objects in an 
image and the validation loss function, which is a sum of all errors for each image in a validation 
set (Fei-Fei et al. 2007, Lecun et al. 2010). 
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Figure 4. Visualization of a feature map. From left to right: Original image; feature maps of the 
background; and the feature map of the object (Sun et al. 2018). 

You Only Look Once or YOLO is a family of machine vision deep learning models used for object 
detection (Redmon et al. 2015). They have consistently been the fastest and most accurate models 
since their introduction back in 2015. Since then, it has had 8 iterations of which the latest one is 
YOLOv8. In this project, YOLOv7 was used. YOLOv7 is a single-shot detector, which uses 
reparametrized convolutions and model scaling for improving the speed of the detector. A single 
shot detector uses a different approach compared to traditional object detection algorithms. Instead 
of using a sliding window approach where a smaller window is passed through an image to scan 
for objects, single shot detector divides the image into an x-by-x grid and have each grid cell be 
responsible for detecting objects in that region of the image. After identifying objects, an anchor 
box is assigned to the detected object. During training, anchor boxes are manipulated in size so that 
they resemble ground truth bounding boxes as close as possible. It has several versions; 2 P5 
models and 4 P6 models respectively (Wang et al. 2022). P5 models take 640×640 pixels as their 
input image size, while P6 models take 1280×1280 pixels. If the image is bigger than the input 
size, a sliding window approach is used to pass through the whole image. In Table 1 the differences 
between each model are discussed in detail. In this thesis, 3 models were used, YOLOv7, 
YOLOv7x, and YOLOv7E6E. P5 models were chosen first since they are less resource intensive 
compared to P6 models, but one P6 model was included for comparison since it performed better 
on the Common Objects in Context (COCO) database. The COCO database contains 300 thousand 
images and 1.5 million objects (Lin et al. 2014) and is commonly used for training object detection 
deep learning models. 
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To reduce the computational cost and train robust models with relatively small datasets and 
relatively resource limited machines, a so-called transfer learning method can be used to train the 
model. In transfer learning, the weights of a model previously trained on a different dataset are 
used for a new task; the frozen top layer is used as a starting point for a new model. This reduces 
the time required to train the new model because it has already learned low level general features 
(e.g., edges) from the previous dataset. This method allows a model to be trained by using 
thousands of images, rather than millions of images (He et al. 2015). In the case of YOLOv7 a 
COCO database was used for obtaining the starting weights before training the model.  

Table 1. A comparison of YOLOv7 models performance on the COCO dataset. 

Model Type 
Test 
Size APtest AP50test AP75test 

batch 1 
fps 

batch 32 average 
time 

YOLOv7 P5 P5 640 51.40% 69.70% 55.90% 161 fps 2.8 ms 
YOLOv7-X P5 640 53.10% 71.20% 57.80% 114 fps 4.3 ms 
YOLOv7-

W6 P6 1280 54.90% 72.60% 60.10% 84 fps 7.6 ms 
YOLOv7-

E6 P6 1280 56.00% 73.50% 61.20% 56 fps 12.3 ms 
YOLOv7-

D6 P6 1280 56.60% 74.00% 61.80% 44 fps 15.0 ms 
YOLOv7-

E6E P6 1280 56.80% 74.40% 62.10% 36 fps 18.7 ms 
 

In this thesis, a relatively large dataset of benthic foraminifera with associated labels was created 
with the help of a taxonomic expert. This dataset was then used to train a supervised machine 
learning object detection classifier by using deep CNNs that can automatically identify benthic 
foraminifera within an image with accuracies comparable to an identification by human experts.  
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3. Materials and methods 
3.1 Image acquisition  

Sediment samples prepared or picked for benthic foraminifera by the Department of Marine 
Sciences (UGOT) students from Swedish fjords including Gullmar Fjord, Hakefjord, and Idefjord, 
were imaged on a Nikon SMZ 10 stereo microscope using a DeltaPix DP450 microscope camera 
(1.92 MP, 1600×1200 resolution) (Fig. 5). Samples were imaged at 30× optical magnification, 
which gives an optical resolution of 4.16 microns per pixel. A total of 3095 images were produced 
during a 2-month period. Special care was taken to ensure that all images were imaged at the same 
exposure time, light angle, and magnification to produce a normalized dataset that could later be 
augmented, so that all the images to which augmentation was applied, behaved in a predictable 
manner i.e., for a 20% brightness increase there would be a similar effect on different images to 
which augmentation was applied. Since the micropaleontological slides included both mounted and 
non-mounted foraminifera, this ensured that there would be different orientations of the tests, which 
has been considered beneficial for training a robust machine learning model. 

After creating the dataset on which the model was trained on, a second dataset was obtained during 
the SEEPS II cruise. SEEPS II cruise was done between 17th and 23rd of April 2023, and it’s purpose 
was to detect gas seepage and pockmarks. During the cruise I assisted in sediment core extraction 
and sediment processing and sampling. After the sediment was processed, some surface samples 
were imaged and a dataset was created. This dataset has 2011 images, and differs from the training 
one, as it only has unpicked foraminifera with the surrounding sediment and faecal pelets. This was 
done in order to assess the models performance on a new dataset, giving independent results. 

 

Figure 5. Experimental setup used for image acquisition. Visible in the image is the Nikon SMZ10 
stereomicroscope, DeltaPix DP450 microscope camera, and a Lenovo PC used for saving the data. 
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3.2 Image processing 

All images were saved in TIFF format and labeled by using a web-based application programming 
interface (API) Roboflow (Fig. 6). Roboflow is a machine learning tool that enables the end user 
to easily label and develop a machine learning dataset. The tool includes several useful features 
including a content aware selection tool, which speeds up the labelling process by selecting a rough 
mask of the object selected to label, which significantly reduces the labelling time per individual. 
A total of 22 138 individual foraminifera were labelled.  

 
Figure 6. Roboflow interface for classifying individual foraminifera in an image. On the left side 
of the window, there is a color-coded list of labelled foraminifera in an image on the right. On the 
rightmost side, there is a tool selection panel, from which a user can label foraminifera either by 
using an automatic feature extraction tool or by manually drawing a polygon around the 
foraminifera. 

3.3 Dataset creation 

After producing a labeled set of 3003 images, a dataset was created. Out of 59 identified species 
and 22 138 individuals, a total of 29 species were used for creating the dataset (Table 2). In total, 
30 species were discarded due to too low individual count, which would reduce the accuracy of the 
model while training it. The cutoff point was established to be around 70 individuals while training 
the first models. The dataset was split into training, validation, and test sets in a 70%-20%-10% 
split. To increase the number of effective images for training, images were augmented in their 
brightness, contrast, and vibrance, and they were horizontally and vertically flipped. After 
augmentation, the dataset contained 7089 images and 49 459 individual foraminifera. 
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Table 2. Number of individual foraminifera in the raw dataset (3003 images, 22 138 individuals). 
Color mapping is to indicate the viability of each species for being used for training purposes. Here 
the cutoff point is Quinqueloculina seminula at 72 individuals, meaning that species with < 72 
labelled individuals were excluded from training dataset. The thick line represents the cutoff point. 

Species Count Species Count Species Count Species Count 

Bulimina marginata 2325 Spiroplectammina biformis 341 Epistominella vitrea 68 Nonionella iridea 9 

Textularia earlandi 2105 Globobulimina sp. 335 Cornuspira foliacea 37 Oolina hexagona 9 

Stainforthia fusiformis 1737 Brizallina skagerrakensis 307 Mellonis barleeanum 37 Lagena striata 8 

Hyalinea balthica 1719 Nonionella turgida 299 
Haplophragmoides 
bradyi 31 Milliolinella subrotunda 8 

Eggerelloides scaber 1590 Uvigerina peregrina 215 Cribrostomoides sp. 26 Trifarina angulosa 7 

Nonionella sp. T1 1507 Liebusella goesi 211 Guttulina lactea 23 Trochammina rotaliformis 7 

Elphidium excavatum 1343 Leptohalysis catella 203 
Elphidium 
albiumbilicatum 21 Milliammina fusca 6 

Ammonia sp. 1279 Quinqueloculina stalkeri 187 Cassidulina neoteretis 15 Psammosphaera bowmanni 6 
Bolivina 
pseudopunctata 1221 

Ammoscalaria 
pseudospiralis 169 Cribrostomoides jeffreysii 15 Hormosinella gracilis 4 

Cassidulina laevigata 804 Inner Organic Lining (IOL) 169 Textularia bocki 15 Lagena laevis 4 

Ammodiscus sp. 774 Elphidium magellanicum 134 Elphidium williamsoni 12 
Recurvoides 
trochamminiforme 4 

Adercotryma 
glomerata 725 Eggerlloides medius 97 Elphidium macellum 11 Lagena mollis 2 
Nonionellina 
labradorica 664 Hippocrepinela acuta 87 Pullenia osloensis 10 Epistominella exigua 1 

Cibicides lobatulus 549 Pyrgo williamsoni 73 Elphidium incertum 9   
Reophax sp 396 Quinqueloculina seminula 72 Glandulina laevigata 9   

 

3.4 ML model training 

After creating an augmented dataset, images were used to train three different YOLOv7 models, 
listed in order of increasing size, and include YOLOv7, YOLOv7x and YOLOv7E6E. The main 
difference between those models is the number of layers in a model, and the different input size of 
images; the first two take 640 x 640 pixel images, while the last one takes 1280 x1280 pixel images. 
The models were trained on a workstation comprising of an Intel i7 9700K (8 cores, 8 threads@3.60 
GHz), 32 GB of RAM and a Nvidia RTX A4000 graphics card running Kubuntu 22.04. PyTorch 
version 2.0.0 was used for training with CUDA version 11.7. Models were trained on 350 epochs. 
Training times were 18 hours for the smallest model, 25 hours for the medium sized model and 
120 hours for the largest model.  
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3.5 Introduction to object detection metrics 

In object detection, accuracy of the training model is determined by the overall precision (P) and 
recall (R) of the model. Precision measures the proportion of objects that are correctly classified in 
a model, while recall denotes the proportion of the objects that are retrieved in a picture. They are 
expressed in mathematical formulas as such:  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃) =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
  ,   𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅(𝑅𝑅) =  

𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹

 

with TP standing for True Positive, FP for False Positive and FN for False Negative. In object 
detection however, there is also another important metric, which measures the overlap of the object 
location of the ground truth versus the model detection (Davis & Goadrich 2006). Intersection over 
Union (IoU) measures the overlapping percentage between the ground truth and models detection 
bounding box (Fig. 7). The IoU measure will be considered a good match if the overlap between 
the two bounding boxes exceeds a certain threshold. By using precision, recall and IoU, new 
indicators can be computed such as Average Precision (AP) and mean Average Precision (mAP). 
Average Precision is computed as the area under the PR curve, where PR curve is a plot of the 
precision (y-axis) and the recall (x-axis) for different confidence thresholds. F1 score is a measure 
that combines the precision and recall scores of a model. Based on a harmonic mean of precision 
and recall, F1 score can be computed by using the following formula: 

𝐹𝐹1 = 2 ∗  
𝑃𝑃 ∗ 𝑅𝑅
𝑃𝑃 + 𝑅𝑅

 

Since the F1 score is an average of precision and recall, it means that F1 score gives equal weight 
to precision and recall, meaning that a model with a high precision and recall will obtain a high F1 
score, a model with low precision and recall will obtain a low F1 score, and lastly a model with a 
low precision and high recall or vice versa will obtain a medium F1 score. This characteristic makes 
it suitable for unbalanced datasets with high discrepancy in individual counts between classes.  

Finally, mAP is calculated as the average of the AP values over all classes (Padilla et al. 2021). 
Mean average precision can be calculated at different thresholds of IoU. Common mAP thresholds 
are 0.5 and 0.5 to 0.95. This is depicted as mAP@.5 and mAP@.5:.95 in literature. 

 
 
 
 
 
 
 
 
 
Figure 7. Illustration of the IoU measure. The green bounding box is the ground truth, and the red 
is the detected bounding box. IoU depends on the threshold defined by the user, so a threshold can 
be higher or lower than the ones depicted in the figure. 
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4. Results 
After performing the augmentations on the original dataset, the augmented dataset contained 7089 
images and 49 459 images. This dataset was then used to train the machine learning models. In 
total there were 58 attempts while training in the YOLOv7 architecture. Out of those 58 attempts, 
there were 23 successful attempts and 35 failed ones, which failed due to memory overflow. The 
default name for each attempt is ‘exp’ in YOLOv7 architecture, so those were the names used for 
the models. Models exp 10 and exp 50 used a 16-image batch size, while exp 56 and 58 used 8 
image batch size. E6E models exp 51, 52 and 53 used only a 2-image batch size due to memory 
limitations. The best performing models from the training attempts are presented in Table 3.  
Table 3. A performance comparison of trained models during this project. The best performing 
model is highlighted in green. 

Model P R mAP@.5 mAP@.5:.95 model architecture 
exp 10 0.868 0.855 0.889 0.696 YOLOv7@640 
exp 50 0.877 0.882 0.903 0.699 YOLOv7x@640 
exp 51 0.797 0.849 0.867 0.661 YOLOv7E6E@640 
exp 52 0.862 0.863 0.895 0.690 YOLOvE6E@1280 
exp 53 0.833 0.853 0.870 0.680 YOLOv7E6E@640 
exp 56 0.845 0.874 0.887 0.695 YOLOv7x@640 
exp 58 0.827 0.883 0.888 0.691 YOLOv7@640 

 

As can be seen in Table 3, the best performing model in this study is exp 50. Each of the models 
was trained on the same dataset, with the same cutoff point (72 labelled individuals) for the species 
used as seen in Table 2. The models differed in the size of the input image and learning rate drop 
off rate, which was faster for the lower performing models compared to exp 50.  
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4.1 Training curves 

There are three different types of loss shown in Figure 8: box loss, objectness loss and classification 
loss. The box loss represents how well the algorithm can locate the center of an object and how 
well the predicted bounding box covers an object. Objectness is a measure of the probability that 
an object exists in a proposed region of interest. If the objectness is high, this means that the image 
window is likely to contain an object. Classification loss gives an idea of how well the algorithm 
can predict the correct class of a given object (Alexe et al. 2012). 

 
Figure 8. Results showing box loss, objectness loss, classification loss, precision, recall and mean 
average precision (mAP) over the training epochs for the training and validation set of model exp 
50 in this study.  
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4.2 Confusion matrix 

A confusion matrix is a matrix that summarizes the performance of the machine learning model on 
a set of test data (Fig. 9). It shows how many predictions are correct and incorrect per class. It helps 
in identifying the classes that are being confused by the model as other classes. 

 
Figure 9. Confusion matrix of the best performing model exp 50. On the left-hand side are the 
predicted labels made by the model, and on the bottom of the matrix are the ground truth labels. 
The shade of the blue indicates the probability of the model to correctly identify the given species 
(only values >0 are shown). It is visible that the model has false negatives of background in all 
species, while mistaking only a small percentage of one foraminifera species with other 
foraminifera species. 
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4.3 F1 curve 

F1 scores can be plotted across different confidence thresholds. We can adjust the threshold in 
order to maximize F1 score. In this case, the confidence threshold for obtaining the maximum F1 
score is 0.540. 

 
Figure 10. F1 score plot of model exp 50. 
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4.4 PR curve 

Precision-Recall curve is a curve that combines precision and recall in a single visualization. For 
every threshold, a P and R value is calculated and plotted. It is desired that an algorithm has both 
a high precision and a high recall value. A high area under the curve represents both high recall 
and high precision, where high precision relates to a low false positive rate, and high recall relates 
to a low false negative rate. 

 
Figure 11. PR plot of model exp 50. 

4.5 P and R curves 

Precision and recall curves are useful for determining if a model is behaving properly while training 
it. Typically, as you increase the confidence threshold the precision will go up, and the recall will 
go down, as is visible in Figure 12 and 13. Since precision and recall are inversely related, other 
metrics such as F1 score, and PR curve give a more balanced outlook on the model’s performance. 
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Figure 12. P plot of model exp 50. 

 
Figure 13. R plot of model exp 50. 
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4.6 Output image 

 

 
Figure 14. Input image of foraminifera on the top of the figure is processed by a model and creates 
a new image with bounding boxes and species name. The number next to the species is the 
confidence level of the model between 0-1. 
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5. Discussion 
5.1 Species performance comparison 

Model exp 50 was evaluated on a per species basis and obtained the following results. As can be 
seen in Table 4, performance of the model varies considerably, based on the identified species. 
Generally, it appears, that common denominators of poor performance of the model are:  

a) agglutinated species, which the model has difficulty of distinguishing against the black 
background. 

b) large and voluminous (e.g., globular to spherically shaped) species, which require multiple 
focus points in order to distinguish details needed for accurate identification. 

c) Species with a low number of individuals in the training set (lower than 100 individuals). 

Table 4. Performance of model exp 50 on individual species level. 

Species P R  mAP@.5 mAP@.5:.95 

Adercotryma glomerata 0.862 0.888 0.883 0.574 

Ammodiscus sp. 0.893 0.895 0.915 0.713 

Ammonia sp. 0.905 0.902 0.953 0.715 

Ammoscalaria pseudospiralis 0.957 0.919 0.971 0.843 

Bolivina pseudopunctata 0.779 0.855 0.844 0.508 

Brizallina skagerrakensis 0.916 0.907 0.944 0.796 

Bulimina marginata 0.920 0.947 0.964 0.780 

Cassidulina laevigata 0.908 0.880 0.910 0.731 

Cibicides lobatulus 0.768 0.796 0.838 0.712 

Eggerlloides medius 0.553 0.731 0.691 0.522 

Eggerelloides scaber 0.862 0.931 0.946 0.765 

Elphidium excavatum 0.818 0.880 0.888 0.619 

Globobulimina sp. 0.939 0.976 0.989 0.905 

Hippocrepinela acuta 0.687 0.898 0.750 0.579 

Hyalinea balthica 0.925 0.949 0.975 0.867 

IOL 0.843 0.976 0.947 0.550 

Leptohalysis catella 0.850 0.948 0.878 0.607 

Liebusella goesi 0.828 0.935 0.955 0.846 

Nonionella sp. T1 0.852 0.918 0.937 0.703 

Nonionella turgida 0.709 0.619 0.699 0.519 

Nonionellina labradorica 0.899 0.887 0.925 0.797 

Pyrgo williamsoni 0.901 0.810 0.887 0.800 

Quinqueloculina seminula 0.976 0.727 0.856 0.755 

Quinqueloculina stalkeri 0.778 0.833 0.824 0.611 

Reophax sp 0.827 0.904 0.923 0.709 

Spiroplectammina biformis 0.842 0.822 0.825 0.631 

Stainforthia fusiformis 0.826 0.933 0.916 0.610 

Textularia earlandi 0.794 0.914 0.881 0.635 

Uvigerina peregrina 0.937 0.987 0.996 0.883 

 

Since some of the foraminifera used in this dataset were only imaged on mounted 
micropaleontological slides, this can also be a contributing factor to a poor model performance, 
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since it allows the model to see only one orientation of the foraminifera. Background choice is also 
an important factor to be discussed, since as is seen in Figure 9, ML model confused the background 
as a FP or FN for every species between 1 to 13% at a time. Since the low contrast of the 
background could explain the FP and FN performance, a different color of the background could 
be beneficial for reducing the error rate. Furthermore, in Figure 9, it is visible that the model 
confuses foraminifera in the same genus, which is comparable to human taxonomists.  

5.2 Comparison with other foraminifera ML models 

To the best of my knowledge, there are no YOLO based foraminifera ML models reported and 
published to date. Therefore, I shall compare the model performance to different ML model 
architecture. Within those models, only a part deals with benthic foraminifera, and for that reason 
I will include the planktonic foraminifera ones as well for completion. Firstly, I will give a brief 
overview of foraminifera ML models used to date, and afterwards I will compare the performance 
of those models to the model used in this thesis. 

Hsiang et al. (2019) used a VGG16 ML model trained on a dataset of 35 species of planktonic 
foraminifera obtaining an 87.4% precision. Their project also resulted in a published open access 
dataset Endless Forams, which contains 34 640 individual planktonic foraminifera. Further, 
Marchant et al. (2020) used their custom modified version of ResNet50 ML model, which was 
pretrained on ImageNet database. They used a custom Base-Cyclic CNN, which adapts to the input 
image size, and reduces the time needed to learn image features, since it learns the features from 
multiple orientations at the same time. On Endless Forams database, their network obtained a 
90,3% precision, while in their custom dataset, which included both planktonic and benthic 
foraminifera, it resulted in an 89.8% precision. In another study by Mitra et al. (2019), the authors 
used a combination of ResNet50 and VGG16 ML models on a custom planktonic foraminifera 
dataset and obtained 80% precision. Their lower precision results could be attributed to a small 
dataset of foraminifera (1437 individuals). Next, Johansen & Sørensen (2020) use a VGG16 ML 
model, that detects the particles on a micropaleontological tray, and classifies it either as a sediment 
particle, benthic or planktonic foraminifera. For such a simple task VGG16 proved to be highly 
effective, and the model obtained 98.5% precision. Karaderi et al. (2022) use the Endless Forams 
database and implement a custom ResNet50 ML model obtaining 92% accuracy. Nanni et al. 
(2023) use the same dataset as Mitra et al. (2019), but they use a different pipeline for preprocessing 
the images. They use RGB preprocessing on original greyscale images to improve ResNet50 
performance, and obtain an 89% precision rate. When ML models are compared to taxonomic 
experts, they outperform taxonomic experts by a 10-15% margin. 

Now comparing my YOLOv7x exp 50 model to the aforementioned models, it can be seen that it 
performs comparably well, but the difference is that the YOLO family of models are object 
detection models, which can be used for more applications than just classification-based models.  

For example, object detection models can be used in imaging unpicked foraminifera samples and 
still obtain a species identification. This allows for shorter processing times of sediment samples, 
as compared to manual picking of foraminifera. The performance of model exp 50 can be seen in 
the appendix, where one can see the sediment ignorance of the model. The SEEPS 2 dataset 
unfortunately hasn’t yet been fully labeled so accurate metrics are not available, but preliminary 
results show higher than 85% precision on the new images. Another application could be real-time 
foraminifera detection from a webcam or mobile phone.  
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The use case of such applications could be teaching future taxonomists or used by non-experts, 
who do not have the means to learn foraminifera identification from a trained expert, or to be used 
as a teaching aid in a university environment. During the course of this thesis, one such application 
was developed for Android based devices, but it is not yet available for use, since the YOLO models 
are non-optimized for ARM processors. Work on this application is going and it is anticipated that 
it will be published later this year.  

5.3 Implications for future studies 
One limitation in the method described in this project is that each individual foraminifera specimen 
is only represented by one hyperfocal image. This is a problem since some foraminifera have 
distinguishing features at different focal planes, so for further research, one should strive to take 
images at different focal planes and Z-stack them for better performance. Another drawback is that 
the background used for imaging the foraminifera is low contrast compared to the foraminifera, so 
one could change the background into some other high contrast color. A personal suggestion would 
be chroma key green (i.e., the shade used for green screens), since it has a proven track record for 
distinguishing foreground from background in the movie industry for decades. 

Better performance could also result from higher quality microscopes and cameras, since the 
optical resolution and megapixel count of the camera could have affected the model training 
performance for small individuals, which on 1.92 MP can be only a few dozen pixels in size. A 
higher megapixel count of the camera would allow for better resolving power of certain identifying 
features in foraminifera, which would allow for them to be identified to species level. For some 
genus such as Ammonia this is crucial, since identifying features are really small and hard to spot 
even for human taxonomic experts (Pavard et al. 2021). 

An important observation was made while preparing the training dataset: one should always try to 
use the same imaging settings and setup while imaging, to reduce the number of variables that can 
affect the model performance. One should use augmentation to artificially add different lighting 
conditions to the dataset. This is best used when preparing a relatively large dataset in a short 
amount of time. Another time-saving method would be to employ an automatic microscopic table 
and autofocus system which would dramatically reduce the time necessary to image the 
microscopic samples. 

In order to fully test the performance of the newly trained model, a good practice would be to test 
the model on a different imaging setup to see how the model performs on different hardware. 
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6. Conclusion 
This thesis addresses the two main tasks of foraminifera detection and classification using deep 
learning. 

For the detection, besides showing that deep learning-based approaches can be used successfully 
to detect benthic foraminifera on light microscope images, the chosen model has demonstrated 
extremely fast detection times on the scale of milliseconds. This study, compared to other works, 
has included a relatively high count of benthic foraminifera species used in machine learning 
dataset, and obtained favorable results in picked and unpicked sediment samples.  

Lastly, this study does not aim to eliminate human expertise from the taxonomic identification 
process. Instead, an ML based approach could be used as a labor-saving device to go through the 
bulk of the dataset, and later a person could validate and if needed correct the identifications. By 
reducing the time needed to identify foraminifera, one could focus more on analysis of the 
ecological interactions between the species. 
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Appendix 
Additional images of model detections 
Listed below are examples of images taken during the SEEPS II cruise. They are here to illustrate 
the performance of the model on unpicked samples and to showcase excellent sediment and faecal 
pellets ignorance of the model. 
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exp 10 

 
Figure A1. Results of box loss, objectness loss, classification loss, precision, recall and mean 
average precision (mAP) over the training epochs for the training and validation set of model exp 
10. 

Figure A2. Confusion matrix of exp 10 model. The shade of the blue indicates the probability of 
the model to correctly identify the given species (only values>0 are shown). 
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Figure A3. F1 score plot of exp 10 model.

Figure A4. PR plot of exp 10 model.



 

42 

Figure A5. P plot of exp 10 model.

Figure A6. R plot of exp 10 model. 
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exp 51 

Figure A7. Results of box loss, objectness loss, classification loss, precision, recall and mean 
average precision (mAP) over the training epochs for the training and validation set of model exp 
51.  

Figure A8. Confusion matrix of exp 51 model. The shade of the blue indicates the probability of 
the model to correctly identify the given species (only values>0 are shown). 
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Figure A9. F1 score plot of exp 51 model.

Figure A10. PR plot of exp 51 model.
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Figure A11. P plot of exp 51 model.

Figure A12. R plot of exp 51 model. 
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exp 52 

Figure A13. Results of box loss, objectness loss, classification loss, precision, recall and mean 
average precision (mAP) over the training epochs for the training and validation set of model exp 
52.  

Figure A14. Confusion matrix of exp 52 model. The shade of the blue indicates the probability of 
the model to correctly identify the given species (only values>0 are shown). 
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Figure A15. F1 score plot of exp 52 model.

Figure A16. PR plot of exp 52 model.
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Figure A17. P plot of exp 52 model.

Figure A18. R plot of exp 52 model. 
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exp 53 

Figure A19. Results of box loss, objectness loss, classification loss, precision, recall and mean 
average precision (mAP) over the training epochs for the training and validation set of model exp 
53.  

Figure A20. Confusion matrix of exp 53 model. The shade of the blue indicates the probability of 
the model to correctly identify the given species (only values>0 are shown). 
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Figure A21. F1 score plot of exp 53 model.

Figure A22. PR plot of exp 53 model.
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Figure A23. P plot of exp 53 model.

Figure A24. R plot of exp 53 model. 
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exp 56 

Figure A25. Results of box loss, objectness loss, classification loss, precision, recall and mean 
average precision (mAP) over the training epochs for the training and validation set of model exp 
56.  

Figure A26. Confusion matrix of exp 56 model. The shade of the blue indicates the probability of 
the model to correctly identify the given species (only values>0 are shown). 
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Figure A27. F1 score plot of exp 56 model.

Figure A28. PR plot of exp 56 model.
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Figure A29. P plot of exp 56 model.

Figure A30. R plot of exp 56 model. 
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exp 58 

Figure A31. Results of box loss, objectness loss, classification loss, precision, recall and mean 
average precision (mAP) over the training epochs for the training and validation set of model exp 
58. 

Figure A32. Confusion matrix of exp 58 model. The shade of the blue indicates the probability of 
the model to correctly identify the given species (only values>0 are shown). 
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Figure A33. F1 score plot of exp 58 model.

Figure A34. PR plot of exp 58 model.
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Figure A35. P plot of exp 58 model.

Figure A36. R plot of exp 58 model. 
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