ACCEPTED VERSION

"This is the peer reviewed version of the following article:

J. M. Serb, E. Sherratt, A. Alejandrino & D. C. Adams **Phylogenetic convergence and multiple shell shape optima for gliding scallops (Bivalvia: Pectinidae)** Journal of Evolutionary Biology, 2017; 30(9):1736-1747

© 2017 European Society for Evolutionary Biology

which has been published in final form at <u>https://doi.org/10.1111/jeb.13137</u> This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."

PERMISSIONS

https://authorservices.wiley.com/author-resources/Journal-Authors/licensing-open-access/open-access/self-archiving.html

Publishing in a subscription based journal

Accepted (peer-reviewed) Version

The accepted version of an article is the version that incorporates all amendments made during the peer review process, but prior to the final published version (the Version of Record, which includes; copy and stylistic edits, online and print formatting, citation and other linking, deposit in abstracting and indexing services, and the addition of bibliographic and other material.

Self-archiving of the accepted version is subject to an embargo period of 12-24 months. The embargo period is 12 months for scientific, technical, and medical (STM) journals and 24 months for social science and humanities (SSH) journals following publication of the final article.

- the author's personal website
- the author's company/institutional repository or archive
- not for profit subject-based repositories such as PubMed Central

Articles may be deposited into repositories on acceptance, but access to the article is subject to the embargo period. Journal of Evolutionary Biology - 12 months embargo

The version posted must include the following notice on the first page:

"This is the peer reviewed version of the following article: [FULL CITE], which has been published in final form at [Link to final article using the DOI]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."

The version posted may not be updated or replaced with the final published version (the Version of Record). Authors may transmit, print and share copies of the accepted version with colleagues, provided that there is no systematic distribution, e.g. a posting on a listserve, network or automated delivery.

There is no obligation upon authors to remove preprints posted to not for profit preprint servers prior to submission.

5 September 2018

Phylogenetic convergence and multiple shell shape optima for gliding scallops (Bivalvia: Pectinidae)

Journal:	Journal of Evolutionary Biology			
Manuscript ID	JEB-2017-00260			
Manuscript Type:	Research Papers			
Keywords:	Morphometrics, macroevolution, Mollusca, Morphology, Phylogenetics			

SCHOLARONE[™] Manuscripts

1	Abstract					
$\frac{2}{3}$	An important question in evolutionary biology is how often, and to what extent,					
4	similar ecologies elicit the same phenotypic response in distantly related taxa. In some					
5	scenarios, the repeated evolution of particular phenotypes may be expected, for					
6	instance when species are exposed to common selective forces that result from strong					
7	functional demands. In bivalved scallops (Pectinidae), some species exhibit a distinct					
8	swimming behavior (gliding), which requires specific biomechanical attributes to					
9	generate lift and reduce drag during locomotive events. Further, a phylogenetic					
10	analysis revealed that gliding behavior has independently evolved at least four times,					
11	which raises the question as to whether these independent lineages have also					
12	converged on a similar phenotype. In this study, we test the hypothesis that gliding					
13	scallops display shell shape convergence using a combination of geometric					
14	morphometrics and phylogenetic comparative methods that evaluate patterns of					
15	multivariate trait evolution. Our findings reveal that the gliding species display less					
16	morphological disparity and significant evolutionary convergence in morphospace,					
17	relative to expectations under a neutral model of Brownian motion for evolutionary					
18	phenotypic change. Intriguingly, the phylomorphospace patterns indicate that gliding					
19	lineages follow similar evolutionary trajectories to not one, but two regions of					
20	morphological space, and subsequent analyses identified significant differences in					
21	their biomechanical parameters, suggesting that these two groups of scallops					
22	accomplish gliding in different ways. Thus, while there is a clear gliding morphotype					
23	that has evolved convergently across the phylogeny, functionally distinct					
24	morphological sub-forms are apparent, suggesting that there may be two optima for					
25	the gliding phenotype in the Pectinidae.					

26

27	Introduction
28	How often, and to what extent, do similar ecologies elicit the same phenotypic response
29	in distantly related taxa? Alike phenotypes can arise when species exploit a common trophic
30	niche and evolutionarily respond in a congruent manner to those selective constraints required
31	for particular function or biomechanical task (Herrel et al., 2008; Vincent et al., 2009; Adams &
32	Nistri, 2010). This is the pattern of convergence, the repeated evolution of similar traits among
33	multiple lineages that ancestrally lack the trait (Stayton, 2015), and convergent evolution is
34	regularly treated as evidence for adaptation (Harvey & Pagel, 1991; Larson & Losos, 1996).
35	Some of the best known examples of convergent evolution are seen in the similarity in body
36	plans of the succulent plants in Euphorbiaceae and Cactaceae (Alvarado-Cárdenas et al., 2013)
37	and Old and New World anteaters (Beck et al., 2006), or the similarity of skull shape between
38	the marsupial Thylacine (Tasmanian wolf) and that of the placental canids (Wroe & Milne, 2007;
39	Goswami et al., 2011).
40	However, convergence need not create perfect morphological replicas. Rather, there can
41	be varying degrees of morphological variance among phenotypes even if they experience
42	selective regimes that impose similar or identical functional demands. For example, lineages may

Il functional demands. For example, lineages may 43 converge towards a general area of morphospace, but occupy different regions within it (Herrel 44 et al., 2004; Leal et al., 2002; Stayton, 2006). Likewise, independent lineages may evolve to a 45 distinct region in morphospace, but the size of this region may be larger than what the 46 morphospace is for the ancestral phenotypes of those lineages (Collar *et al.*, 2014). Furthermore, 47 when multiple levels of biological organization are compared, one may observe convergence in the ability to perform a particular task across a set of taxa, even when such taxa exhibit distinct 48 49 or even divergent morphologies (reviewed in Wainwright, 2007). This disconnect across the 50 functional-morphological boundary can occur when modular morphological components are

present, allowing for distinct combinations of morphological forms to create similar functional
properties ('many-to-one mapping' of form to function: Alfaro *et al.*, 2004; Wainwright *et al.*,
2005).

54 For evolutionary biologists, quantifying convergent patterns has long been an analytical 55 challenge, and numerous approaches have been suggested to characterize particular attributes 56 that inform on patterns and processes of convergence (Stayton, 2006, 2008; Muschick et al., 57 2012; Arbuckle et al., 2014). However, several recently-developed synthetic quantitative 58 measures have been proposed which characterize the overall extent to which two or more 59 lineages display convergent morphological patterns (Stayton, 2015). Importantly, these 60 approaches are process-neutral; describing only patterns of convergence, and leveraging the 61 shared phylogenetic history of the taxa under investigation when making evolutionary inferences of those patterns (see Stayton, 2015). As such, these tools provide a powerful means of 62 63 evaluating evolutionary convergence, and provide key evidence in determining the extent to 64 which independent lineages converge on a common phenotype or display a suite of closely 65 related solutions to similar ecological challenges.

66 One the strongest illustrations for how functional demands influence morphology is the 67 many instances of convergent shell form of bivalved molluscs (Bivalvia). It has long been 68 recognized that there is a strong association between shell form and ecological niche in bivalves 69 (Verrill, 1897; Kauffman, 1969; Stanley, 1970, 1972). Stanley (1970) was the first to described 70 in detail how particular shell traits are found in species belonging to one of seven "life habit" 71 classes (sensu Stanley, 1970), which are defined by the animal's life position relative to the 72 substrate, type of locomotion or attachment, and feeding mode (hereafter referred to as 73 "ecomorphs" sensu Williams, 1972). Thus, shell form is the evolutionary response to the external requirements for living space, locomotion, defense, and survival of the adult animal.

75 Modifications to shell morphology include changes to the overall outline of each valve (left vs.

right), the form along the hinge, the degree of shell inflatedness (convexity vs. concavity), or the

extent of ornamentation over each valve. In ecological classes with more specific performance

needs, there is a greater opportunity for convergent shell forms (Stanley, 1972; Thomas, 1978;

Serb *et al.*, 2011). Thus, performance may be a strong predictor of the degree of shell shape

80 convergence.

Within scallops (Bivalvia: Pectinidae), one striking example of convergent evolution is 81 82 found in species displaying high-performance swimming, or gliding, behavior (Serb et al., 2011; 83 Mynhardt *et al.*, 2015). This behavior is characterized by the expulsion of water from the mantle 84 cavity while the valves are closed, allowing the animal to propel forward with the ventral-edge 85 leading (Manuel & Dadswell, 1993; Cheng et al., 1996). The biomechanic properities of gliding 86 have been extensively studied, and we have a good understanding of the parameters important to 87 maximize performance (Morton, 1980; Joll, 1989; Hayami, 1991; Millward & Whyte, 1992; 88 Manuel & Dadswell, 1993; Cheng et al., 1996; Ansell et al., 1998; Himmelman et al., 2009; 89 Guderley & Tremblay, 2013; Tremblay et al., 2015). Intriguingly, some measurements of gliding 90 kinematics vary within the ecomorph (Caddy, 1968; Morton, 1980; Joll, 1989; Ansell et al., 91 1998; Mason et al., 2014), suggesting that there are differences among the functional 92 components of locomotion (see results below). However, it is unknown whether these 93 differences are the result of variation in shell shape, or other functionally-relevant morphological 94 traits (Guderley & Tremblay, 2013). Collectively, species in the gliding ecomorph have a 95 qualitatively similar shell form that is discoid in shape, lacks prominent external shell surface 96 sculpture, and have a left valve that is slightly more convex than the lower right valve (Stanley,

97	1970; Gould, 1971). In this instance where there appears to be a tight association between shell
98	shape and performance, the morphology would be predicted to be under strong selection,
99	resulting in a narrow area of occupied morphospace for gliding lineages.
100	Interestingly, the phylogenetic history of the gliding form across the Pectinidae is
101	uncertain, but a recent phylogenetic analysis revealed that the behavior has evolved
102	independently in at least four lineages: Adamusium-Placopecten, Amusium, Euvola, and Ylistrum
103	(Alejandrino et al., 2011). Previous work (Serb et al., 2011) has shown that morphological
104	similarities in shell shape occur between two gliding lineages (Amusium and Ylistrum; Fig 1b-d),
105	but at the time a more comprehensive phylogenetic framework, as well as the necessary
106	analytical tools (sensu Stayton, 2015), were lacking to rigorously test the hypothesis of more
107	widespread morphological convergence in the group. In this study, we test the hypothesis that
108	shell shape similarity in gliding scallops is the result of evolutionary convergence, using
109	expanded taxon sampling which includes all five genera with gliding species. We adopt an
110	integrative approach combining 3-D geometric morphometric techniques to quantify shell shape
111	variation and phylogenetic comparative methods to infer the history of morphological
112	diversification across species. With this approach we test the following hypotheses: 1) the
113	specific biomechanic requirements of gliding have led to morphological convergence in shell
114	shape; 2) due to the the importance of shell shape for efficient gliding, the shell morphologies of
115	gliding species will exhibit less shell shape variation, and taxa will therefore occupy a more
116	restricted region of morphospac, than non-gliding ecomorphs; and 3) differences in shell shape
117	are related to differences in how gliding is performed biomechanically, potentially resulting in
118	multiple anatomical solutions for a common biomechanical challenge. To quantitatively address
119	these hypotheses, we utilize phylogenetic comparative methods for evaluating trends in high-

dimensional multivariate data (Adams, 2014a; b), new methods for evaluating morphological disparity in a phylogenetic context, as well as several recently-developed measures that evaluate the degree of evolutionary convergence relative to what is expected based on the phylogeny for the group (Stayton, 2015). Our findings reveal strong evidence for evolutionary convergence in shell shape of gliding species, in which gliding lineages follow similar trajectories to not one, but two regions of morphological space. This pattern suggests that there may be two optima for the gliding phenotype in the Pectinidae.

- 127
- 128

Materials and Methods

129 Specimen selection and morphological characterization: A total of 933 specimens from 121 130 species were used in this study, and were selected to represent a wide range of taxa displaying all 131 six ecomorphs exhibited in the Pectinidae (data from Sherratt et al., 2016) (natural history 132 museums listed in Table S1 and Acknowledgments. For each specimen, shell morphology was 133 quantified using geometric morphometric methods (Bookstein, 1991; Mitteroecker & Gunz, 134 2009; Adams et al., 2013). These methods utilize the locations of landmark coordinates as the 135 basis of shell shape quantification. The method is identical to Sherratt et al. (2016), and uses a 136 total of 202 landmarks and semilandmarks to characterize shell shape (Fig. 1). Briefly, we first 137 obtained high-resolution scans of the left valves of each individual using a NextEngine 3D 138 surface scanner. From these scans we then digitized the locations of five homologous anatomical 139 locations following Serb *et al.* (2011): 1: ventroposterior auricle, 2: dorsoposterior auricle, 3: 140 umbo, 4: dorsoanterior auricle, 5: ventroanterior auricle (Fig. 1). Next, twelve semilandmarks 141 were placed equidistantly between these fixed points to capture the shape of the auricles, and 35 142 equidistant points were placed along the ventral edge of the valve between the anterior and 143 posterior auricles. Finally, we used an automated procedure to fit 150 semi-landmarks to the

144	shell surface using a template; these are allowed to slide in 3D over the surface (Gunz et al.,
145	2005; Serb et al., 2011; Sherratt et al., 2016).
146	To obtain a set of shape variables for each specimen, we aligned the 933 landmark
147	configurations using a generalized Procrustes analysis (GPA: Rohlf & Slice, 1990). Procrustes
148	superimposition removes differences in specimen position, orientation, and scale, and aligns all
149	specimens to a common coordinate system. During this analysis, the semilandmarks were
150	permitted to slide along their tangent directions using the Procrustes distance criterion. The
151	aligned specimens were then projected orthogonally to tangent space to obtain a set of shape
152	variables (Procrustes tangent coordinates: Rohlf, 1990) for use in all subsequent analyses.
153	Specimen digitizing and GPA were performed in R 3.3.2 (R Core Team, 2017) using the package
154	geomorph v.3.0.3 (Adams & Otárola-Castillo, 2013; Adams et al., 2016).
155	Statistical Analyses: Overall patterns of variation in shell shape were visualized in
156	morphospace using a principal components analysis (PCA). However, because species are not
157	independent of one another, all subsequent statistical analyses evaluating our evolutionary
158	hypotheses were conducted on species means and using a phylogenetic comparative framework.
159	To evaluate morphological trends in a phylogenetic context, we performed several phylogenetic
160	comparative analyses, using a multi-gene molecular phylogeny containing 143 species of
161	Pectinidae (Fig. S1; Table S2) (Alejandrino et al, 2011; Sherratt et al., 2016). Briefly, we
162	constructed a robust, time-calibrated phylogeny using sequence data from two mitochondrial
163	genes (12S, 16S ribosomal RNAs) and two nuclear genes (histone H3, 28S ribosomal RNA)
164	which were obtained from museum specimens using procedures in Puslednik and Serb (2008)
165	and Alejandrino et al. (2011). Sequence data were aligned using CLUSTAL W (Thompson et al.,
166	1994) in Geneious Pro v.5.6.4 (http://www.geneious.com) (Kearse et al., 2012) with a gap-

167 opening penalty of 10.00 and a gap-extending penalty of 0.20. GBlocks Server (Talavera & 168 Castresana, 2007) was used to remove ambiguous alignment in 16S rRNA. For Bayesian 169 inference, we used a relaxed clock model as implemented in BEAST v.1.8.0 (Drummond & 170 Rambaut, 2007) with a speciation model that followed incomplete sampling under a birth-death 171 prior and rate variation across branches uncorrelated and exponentially distributed. Three 172 independent simulations of Markov Chain Monte Carlo for 20 million generations were run, 173 sampling every 100 generations, and 20,000 trees were discarded as burn-in using Tracer v.1.61 174 (Rambaut et al., 2014). The remaining trees were combined in LogCombiner; the best tree was 175 selected using TreeAnnotator. We used 30 fossils to constrain the age of nodes through assigning 176 node priors, details of which are in Sherratt et al. (Table 2 in 2016). 177 Combining the morphological and phylogenetic data, the mean shell shape was estimated 178 for each species and the morphological dataset was matched to the phylogeny. As there were 93 179 species shared between the two datasets, and the phylogeny and the morphological data matrix 180 were pruned to contained the unique set of 93 taxa (Fig. 2, as in Sherratt et al. 2016). 181 Phylogenetic patterns of shell shape evolution were examined using several approaches. First, to 182 evaluate phylogenetic trends in the shape data we first conducted an analysis of phylogenetic 183 signal, using the multivariate version of the *kappa* statistic (K_{mult}: (Adams, 2014a). Next, we 184 performed a phylogenetic analysis of variance (ANOVA) to evaluate whether shell shape 185 differed among ecomorphs while accounting for phylogenetic non-independence. This approach 186 is based on a generalization of phylogenetic generalized least squares (PGLS), and is appropriate 187 for evaluating trends in high-dimensional multivariate data (described in Adams, 2014; Adams & 188 Collyer, 2015). We visualized patterns of shell shape evolution using a phylomorphospace 189 approach (sensu Sidlauskas, 2008), where the extant taxa and the phylogeny were projected into

morphospace, and evolutionary changes in shape were visualized along the first two axes of thisspace using PCA.

192 Finally, we performed several quantitative analyses to evaluate the degree of 193 morphological convergence in a phylogenetic context, including two recently-developed 194 convergence measures (Stayton, 2015). The first convergence measure, C_1 (Stayton, 2015), 195 characterizes the degree of morphological difference between extant taxa relative to the maximal 196 morphological distance between any of their ancestors. This measure represents the proportion of 197 morphological divergence that has been reduced in the extant taxa, with a maximal value (1.0)198 indicating the extant species are morphologically identical (Stayton, 2015). The second 199 convergence measure, C_5 (Stayton, 2015), describes the frequency of convergence into a 200 particular region of morphospace, and is estimated by determining the number of extant lineages 201 of the putatively convergent taxa that cross the boundary of a convex hull formed by the focal 202 taxa (Stayton, 2015). Both measures were statistically evaluated using phylogenetic simulation, 203 where multivariate datasets are simulated along the phylogeny using Brownian motion, and the 204 observed test measures are compared to a distribution of possible values obtained from these 205 simulations to assess their significance (Stayton, 2015).

Additionally, we evaluated whether the degree of morphological disparity (Stayton, 2006; see also Zelditch *et al.*, 2012) among species in the gliding ecomorph was less than expected by chance while accounting for phylogenetic relatedness using two novel approaches. For the first approach, we estimated the observed morphological disparity among species within each ecomorph, and ranked the degree of disparity in the gliding ecomorph relative to the disparity observed within all other ecomorphs. Then, we generated 1000 simulated datasets under a Brownian motion model of evolution, using the time-dated molecular phylogeny above and an 213 input covariance matrix based on the covariance matrix of the observed shape data. From each 214 dataset, we then estimated measures of morphological disparity for each ecomorph, and 215 compared the observed patterns of disparity to what was expected under a Brownian motion 216 model of evolution (for a related procedure see: Garland Jr. et al., 1993; Sherratt et al., 2016). 217 Our second approach accounted for the phylogeny directly in the disparity calculations. 218 Here, we performed a transformation of the data using the phylogenetic transformation matrix 219 (Garland, Jr., & Ives, 2000; see also Adams, 2014b), and obtained estimates of disparity for each 220 ecomorph in the phylogenetically-transformed space following standard computations. The 221 phylogenetic morphological disparity for the gliding ecomorph was then evaluated statistically 222 using permutation tests, where morphological values were permuted across the tips of the 223 phylogeny to disassociate the morphological data from the ecomorph groups (see Adams, 224 2014a). Note that our procedure for phylogenetic morphological disparity differ from that of 225 Brusatte et al. (2017), in that our approach directly accounts for species' non-independence due 226 to the phylogeny when estimating patterns of morphological diversity in extant taxa. By contrast, 227 Brusatte et al. (2017) use estimated ancestral states to inform disparity measures among fossils at 228 particular time periods in the paleontological history of a group, but did not incorporate the 229 phylogeny in extant analyses directly. All analyses were performed in R 3.3.2 (R Core Team, 230 2017) using the package geiger 2.0.6 (Pennel et al., 2014), the package geomorph v.3.0.3 231 (Adams & Otárola-Castillo, 2013; Adams et al., 2016), the package convevol v.1.0 (Stayton, 232 2014), and routines written by one of the authors (DCA). 233 *Biomechanical data and analysis:* In addition to morphological data we obtained several

234 measurements of functional performance in swimming for four species of gliding scallops (*A*.

235 pleuronectes, Ad. colbecki, P. magellanicus, and Y. balloti). Performance measures were taken

236	from the primary literature, and were based on swimming trials of animals in the laboratory
237	(Morton, 1980) or under natural conditions (Joll, 1989; Ansell et al., 1998; Mason et al., 2014).
238	Data collected by SCUBA divers and high-definition video recordings include: distance traveled,
239	the number of adductions during the swimming bout, swimming time, and swimming velocity.
240	Because data from some publications were presented only as means and standard deviations, we
241	performed t-tests comparing pairs of taxa for each performance measure.
242	
243	Results
244	Visual inspection of morphospace using PCA revealed distinct clusters that broadly
245	corresponded to the ecomorph groups (Fig. 3). Specifically, the free-living and byssal attaching
246	ecomorphs occupied most of the morphospace and overlapped greatly in PC1 vs PC2, but
247	showed some separation along PC3. The recesser ecomorph formed an elongate cluster
248	extending away from the main cloud of free/byssal species. The specimens of Pedum
249	spondyloideum, the only nestling species, were all very different from one another, and lay at the
250	edge of the free-living/byssal attaching ecomorph cloud, as did species of the cementing
251	ecomorph (see full list in Supplementary Materials, Table S1).
252	The gliding ecomorph occupies the extreme positive end of PC2 where valves have
253	smaller auricles compared to other ecomorphs. Interestingly, these gliding individuals occupied
254	two distinct regions of morphospace. This implies that two sub-clusters of similar, yet subtly
255	distinct shell shapes were exhibited by species that utilize this behavior. The shape difference
256	between the two gliding morphotypes was described by the degree of valve flatness (Z-axis),
257	where flatter valves were at the positive end of PC1 (Fig. 3, lateral views). Further, gliding
258	species appeared to display less variation in shell shape when compared to the other ecomorphs,

as the patterns of distribution in morphospace of the two clusters were each more restrictedcompared to other ecomorphs.

Across scallops, shell shape displayed significant phylogenetic sigal ($K_{mult} = 0.2778$; P 261 262 <0.001). Using phylogenetic ANOVA, we found significant differences in shell shape across 263 ecomorphs (D-PGLS, $F_{5,87} = 5.505$, P < 0.001, $R^2 = 0.240$, Z = 8.60), implying that the 264 functional groups were morphologically distinct in spite of shared evolutionary history. When 265 viewed in phylomorphospace (Fig. 4), the shell shape differences were evident, with the gliding 266 species occupying a unique region of morphospace when compared to taxa from the other 267 functional groups. Lending support to this visual observation, both measures of convergence for 268 the gliding taxa revealed strong evolutionary signals for morphological similarity in gliding 269 species. Specifically, the average measure C_1 between pairs of gliding taxa was 0.45, indicating 270 that the extant gliding species occupied 45% less of morphospace as compared to the maximum 271 spread of their ancestors. Using Brownian motion simuations, this value was highly significant (P > 0.001). Likewise, the number of convergent events in gliding species $(C_5 = 5)$ was 272 273 significantly greater than would be expected from a Brownian motion model of evolution (P =274 0.016). Additionally, gliding species displayed the lowest levels of within-ecomorph disparity 275 (Table 1), and this pattern differed significantly from what was expected under a Brownian 276 motion model of evolution (P = 0.031). Further, when morphological disparity was evaluated in 277 a phylogenetic context, there was less variation within the gliding ecomorph than expected by a random association of morphology and ecotype (MD_{glide} = 3.28×10^{-5} ; P = 0.004: Table 1). 278 279 Taken together, these analyses provided significant empirical support for the hypothesis that 280 species in the gliding ecomorph displayed phylogenetic evolutionary convergence.

281	Interestingly, as was observed in the PCA of all individuals, phylogenetic patterns in
282	shell shape viewed in phylomorphospace (Fig. 4) revealed two clear clusters of gliding species.
283	One of these clusters (the 'A' morphotype) was comprised of four species derived from three
284	distinct phylogenetic lineages [Ylistrum ballotti (Bernardi, 1861) & Y. japonicum (Gmelin,
285	1791); Amusium pleuronectes (Linnaeus, 1758); Euvola papyraceum Gabb, 1873] (species d, c,
286	b, and a, respectively, in Fig. 2) (Pectininae; see Serb, 2016). The 'B' gliding morphotype was
287	comprised of species from two Tribes [Adamussiini: Adamussium colbecki (Smith, 1902) &
288	Palliolini: Placopecten magellanicus (Gmelin, 1791)] (Serb, 2016) (species e and f: Fig. 2).
289	Thus, patterns of phenotypic evolution of shell shape appeared to display two distinct gliding
290	morphologies. Interestingly, we observed significant differences in biomechanical performance
291	measures between species in these two morphotypes, with the A morphotype attaining greater
292	distances, displaying a higher number of adductions, longer swim times, and faster velocities
293	then the B morphotype (Table 3). Taken together, these results imply that there are two two
294	gliding morphs in scallops, and each has accomplished their gliding behavior differently from a
295	biomechanical perspective.

296

297

Discussion

Morphological convergence provides a series of independent tests of the phenoptypic response to a particular selective regime. In phenotypes where performance level is determined by the morphology of the organism, strong selective forces may act on specific components of that form. In the case of gliding scallop species, this hypothesis is supported. Specifically, we found significant similarity in shell shape across these species in a manner suggestive of evolutionary convergence. Further, explicit tests of evolutionary convergence revealed that the

304 observed similarities were unlikely if traits evolved under multivariate Brownian motion, lending 305 additional support to the convergence hypothesis. Together our results are consistent with the 306 prediction that locomotory performance elicits selection on shell morphology, resulting in 307 evolutionary convergence in shell shape in those species which have independently evolved 308 gliding behavior. Interestingly, while gliding taxa do occupy a distinct region in morphospace 309 from scallop species exhibiting other behaviors, the evolution of the gliding form in Pectinidae is 310 not a simple example of convergence. Rather, there is still some additional structure within the 311 gliding morphotype suggestive of both overall convergence in shell shape, as well as a degree 312 morphological divergence (a relatively flat valve with small auricles, and the degree of valve 313 flatness, respectively). This latter finding is evidenced by the fact that two clusters of gliding 314 taxa are evident in phylomorphospace (Fig. 4; see also Fig. 3), and that species in these two 315 clusters display significant differences in biomechanical performance (Table 3). Thus, while 316 there is a clear gliding morphotype displayed across all gliding lineages, sub-forms within this 317 group are also apparent.

318 From these observations, we can draw three conclusions. First, morphological 319 convergence in shell shape does occur for the five gliding lineages, and lineages occur in a 320 distinct, but broad, region of morphospace, separate from other life habit forms. Second, while 321 all gliding species occupy the same general region of morphospace, among the gliders, two 322 morphotypes can be distinguished. This implies that two subtle, yet distinct shell shapes are 323 exhibited by species that must solve the same performance challenges related to the gliding 324 behavior. Third, gliding has more restrictive shell form requirements than other life habits. 325 Gliding species display less variation in shell shape when compared to the other life habits. 326 Indeed, the two gliding morphotypes had roughly 30% of the variation observed in the other life

327 habit groups, indicating a significant reduction in shell shape variation among gliding 328 individuals. Overall, both the individual-based patterns (Fig. 3) and the phylomorphospace 329 pattern (Fig. 4) suggest that there may be two optima for the gliding phenotype in the Pectinidae. 330 Interestingly, the limited performance data on gliding in scallops is consistent with our 331 two optima hypothesis implied by the morphological data. Several parameters of functional 332 performance in swimming have been evaluated in these taxa, and slight differences in these 333 biomechanical parameters exist between the gliding species including: the maximum distance 334 traveled of a single swim, the number of adductions per swimming effort, and horizontal 335 swimming speed (Caddy, 1968; Morton, 1980; Joll, 1989; Ansell et al., 1998) (Table 2). Further, 336 the differences in performance observed between taxa also correspond to the two gliding 337 morphotypes found in this study. When placed in the context of our morphological findings, it is 338 clear that the two gliding morphotype differ in how they locomote. Specifically, the data 339 examined here suggest that members of morphotype A (A. pleuronectes, E. papyraceum, Y. 340 *balloti*, and *Y. japonicum*) can swim faster and for longer distances than members of morphotype 341 B (P. magellanicus, Ad. colbecki) (Tables 2-3). We hypothesize this may be a direct result of a 342 more effective gliding phase due to shells having a more discoid and aerodynamic form through 343 the reduction of the auricles (and other conclusions from our results). This hypothesis has 344 support from previous work by Hayami (1991), who found Y. japonicum (morphotype A) shells 345 have the lower value of drag coefficient and higher lift-drag ratio when compared to P. 346 magellanicus (morphotype B), which is likely to be because morphotype A is flatter than B. 347 Future biomechanical studies directly linking gliding performance with three-dimensional shell 348 shape would be essential in testing these observations and this hypothesis.

A central conclusion of our study is that the shell shape of gliding scallops exhibits a
strong pattern of convergence. Quantifying convergence is important not only for identifying
major evolutionary trends, but to discover, and subsequently measure, the more subtle degrees of
morphological convergence. This variation can then be placed into the relevant biological
context and direct future research efforts. However, the challenge has been to apply a pattern-
based, rather than process-based, approach. The recent development of quantative, pattern-based
evolutionary convergence tests finally provides us with a useful set of tools to evaluate
convergence within a phylogenetic context (Stayton, 2015). This approach has been used
successfully to quantify convergent evolution across ecological guilds in a wide variety of taxa
including pythons and boas (Esquerré et al., 2016), planktivorous surgeonfishes (Friedman et al.,
2016), social swallows (Johnson et al., 2016) and squirrels (Zelditch et al., 2017). Thus, the
application of quantitative measures should illuminate convergence patterns in understudied taxa
and provide key evidence in determining the extent to which independent lineages converge on a
common phenotype or display a suite of closely related solutions to similar ecological
challenges.
References
Adams, D. 2014a. A generalized K statistic for estimating phylogenetic signal from shape and
other high-dimensional multivariate data. Syst. Biol. 63: 685–697.
Adams, D. 2014b. A method for assessing phylogenetic least squares models for shape and other
high-dimensional multivariate data. Evolution (N. Y). 68: 2675–2688.
Adams, D. & Otárola-Castillo, E. 2013. geomorph: an R package for the collection and analysis
of geometric morphmetric shape data. Methods Ecol. Evol. 4: 393-399.

- Adams, D., Rohlf, F.J. & Slice, D.E. 2013. A field comes of age: Geometric morphometrics in
 the 21st century. *Hystrix* 24: 7–14.
- Adams, D.C. & Collyer, M.L. 2015. Permutation tests for phylogenetic comparative analyses of
 high-dimensional shape data: What you shuffle matters. *Evolution (N. Y)*. 69: 823–829.
- Adams, D.C., Collyer, M.L., Kaliontzopoulou, A. & Sherratt, E. 2016. geomorph 3.0.3: software
 for geometric morphometric analyses.
- Adams, D.C. & Nistri, A. 2010. Ontogenetic convergence and evolution of foot morphology in
 European cave salamanders (Family: Plethodontidae). *BMC Evol. Biol.* 10: 1–10.
- Alejandrino, A., Puslednik, L. & Serb, J.M. 2011. Convergent and parallel evolution in life habit
 of the scallops (Bivalvia: Pectinidae). *BMC Evol. Biol.* 11: 164.
- Alfaro, M.E., Bolnick, D.I. & Wainwright, P.C. 2004. Evolutionary dynamics of complex
 biomechanical systems: an example using the four-bar mechanism. *Evolution* 58: 495–503.
- 386 Alvarado-Cárdenas, L.O., Martínez-Meyer, E., Feria, T.P., Eguiarte, L.E., Hernández, H.M.,
- Midgley, G., *et al.* 2013. To converge or not to converge in environmental space: Testing
 for similar environments between analogous succulent plants of North America and Africa. *Ann. Bot.* 111: 1125–1138.
- Ansell, A.D., Cattaneo-Vietti, R. & Chiantore, M. 1998. Swimming in the Antartic scallop
 Adamussium colbecki analysis of in situ video recordings. *Antarct. Sci.* 10: 369–375.
- Arbuckle, K., Bennett, C. & Speed, M. 2014. A simple measure of the strength of convergent
 evolution. *Methods Ecol. Evol.* 5: 685–693.
- Beck, R.M.D., Bininda-Emonds, O.R.P., Cardillo, M., Liu, F.-G.R. & Purvis, A. 2006. A higherlevel MRP supertree of placental mammals. *BMC Evol. Biol.* 6: 93.
- 396 Bernardi, C. 1861. Journal de Conchyliologie. P.-H. Fischer., [Paris].
- Bookstein, F.L. 1991. *Morphometric tools for landmark data: geometry and biology*. Cambridge
 University Press, Cambridge.
- Brusatte, S.L., Montanair, H.-Y. & Norell, M. 2017. Phylogenetic corrections for morphological
 disparity analysis: new methodology and case studies. *Paleobiology* 37: 1–22.
- 401 Caddy, J.F. 1968. Underwater observations on scallop (Placopecten magellanicus) behavior and
 402 drag efficiency. J. Fish. Res. Board Canada 25: 2123–2141.
- 403 Cheng, J., Davison, I.G., Demont, M.E. & Chang, J.-Y. 1996. Dynamics and energetics of
- 404 scallop locomotion. J. Exp. Biol. **199**: 1931–1946.

- 405 Collar, D.C., Reece, J.S., Alfaro, M.E., Wainwright, P.C. & Mehta, R.S. 2014. Imperfect
- 406 morphological convergence: variable changes in cranial structures underlie transitions to
 407 durophagy in moray eels. *Am. Nat.* 183: E168-84.
- 408 Drummond, A.J. & Rambaut, A. 2007. BEAST: Bayesian evolutionary analysis by somping
 409 trees. *BMC Evol. Biol.* 7: 214.
- Esquerré, D., Scott Keogh, J. & Harmon, L. 2016. Parallel selective pressures drive convergent
 diversification of phenotypes in pythons and boas. *Ecol. Lett.* 19: 800–809.
- 412 Friedman, S.T., Price, S.A., Hoey, A.S. & Wainwright, P.C. 2016. Ecomorphological
 413 convergence in planktivorous surgeonfishes. *J. Evol. Biol.* 29: 965–978.
- Garland, Jr., T. & Ives, A.R. 2000. Using the past to predict the present: Confidence intervals for
 regression equations in phylogenetic comparative methods. *Am. Nat.* 155: 346–364.
- 416 Garland Jr., T., Dickerman, A.W., Janis, C.M. & Jones, J.A. 1993. Phylogenetic analysis of
- 417 covariance by computer simulation. *Syst. Biol.* **42**: 265–292.
- 418 Gmelin, J.F. 1791. Caroli a Linné, systema naturae. Tom. I. Pars VI. Lipsiae [Leipzig] :
- Goswami, A., Milne, N. & Wroe, S. 2011. Biting through constraints: cranial morphology,
 disparity and convergence across living and fossil carnivorous mammals. *Proc. Biol. Sci.*278: 1831–1839.
- 422 Gould, S.J. 1971. Muscular mechanics and the ontogeny of swimming in scallops. *Palaeontology*423 14: 61–94.
- 424 Guderley, H.E. & Tremblay, I. 2013. Escape responses by jet propulsion in scallops. *Can. J.*425 *Zool.* 91: 420–430.
- Gunz, P., Mitteroecker, P. & Bookstein, F.L. 2005. Semilandmarks in three dimensions. In: *Modern morphometrics in physical anthropology* (D. E. Slice, ed), pp. 73–98. Klewer
 Academic/Plenum Publishers, New York.
- Harvey, P.H. & Pagel, M.D. 1991. *The comparative method in evolutionary biology*. Oxford
 University Press, Oxford.
- Hayami, I. 1991. Living and fossil scallop shells as airfoils: an experimental study. *Paleobiology*17: 1–18.
- Herrel, A., Vanhooydonck, B. & Van Damme, R. 2004. Omnivory in lacertid lizards: Adaptive
 evolution or constraint? *J. Evol. Biol.* 17: 974–984.
- 435 Herrel, A., Vincent, S.E., Alfaro, M.E., Wassenbergh, S. Van, Vanhooydonck, B. & Irschick,

436	D.J. 2008. Morphological convergence as a consequence of extreme functional demands:
437	examples from the feeding system of natricine snakes. J. Evol. Biol. 21: 1438–1448.
438	Himmelman, J.H., Guderley, H.E. & Duncan, P.F. 2009. Responses of the saucer scallop
439	Amusium balloti to potential predators. J. Exp. Mar. Bio. Ecol. 378: 58-61.
440	Johnson, A.E., Mitchell, J.S. & Brown, M.B. 2016. Convergent evolution in social swallows
441	(Aves: Hirundinidae). Ecol. Evol. 550–560.
442	Joll, L.M. 1989. Swimming behavior of the saucer scallop Amusium balloti (Mollusca,
443	Pectinidae). Mar. Biol. 102: 299-305.
444	Kauffman, E.G. 1969. Form, function, and evolution. In: Treatis on Invertebrate Paleontology,
445	Part N, Mollusca 6, Bivalvia (R. C. Moore, ed), pp. N130-N205. Geological Society of
446	American and University of Kansas, Lawrence, KS.
447	Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. 2012.
448	Geneious Basic: An integrated and extendable desktop software platform for the
449	organization and analysis of sequence data. Bioinformatics 28: 1647-1649.
450	Larson, A. & Losos, J.B. 1996. Phylogenetic systematics of adaptation. In: Adaptation (M. R.
451	Rose & G. V Lauder, eds), pp. 187–220. Academic Press, San Diego.
452	Leal, M., Knox, A.K. & Losos, J.B. 2002. Lack of convergence in aquatic Anolis lizards.
453	<i>Evolution</i> 56 : 785–791.
454	Linnaeus, C. 1758. Systema Naturae per Regna tria naturae, secundum classes, ordines, genera,

- 455 species, cum characteribus, differentiis, synonymis, locis [...] Tomus I, Editio Decima,
 456 Reformata.
- 457 Manuel, J.L. & Dadswell, M.J. 1993. Swimming of juvenile sea scallops, Placopecten
- 458 magellanicus (Gmelin) a minimum size for effective swimming. J. Exp. Mar. Bio. Ecol.
 459 174: 137–175.
- 460 Mason, G.E., Sameoto, J.A. & Metaxas, A. 2014. In situ swimming characteristics of the sea
- 461 scallop, Placopecten magellanicus, on German Bank, Gulf of Maine. *J. Mar. Biol. Assoc.*462 *United Kingdom* 94: 1019–1026.
- 463 Millward, A. & Whyte, M.A. 1992. The hydrodynamic characteristics of six scallops in the
 464 superfamily Pectinacea, Class Bivalvia. *J. Zool.* 227: 547–566.
- 465 Mitteroecker, P. & Gunz, P. 2009. Advances in Geometric Morphometrics. *Evol. Biol.* 36: 235–
 466 247.

- 467 Morton, B. 1980. Swimming in Amusium pleuronectes (Bivalvia: Pectinidae). J. Zool. 190: 375–
 468 404.
- 469 Muschick, M., Indermauer, A. & Salzburger, W. 2012. Convergent evolution within an adaptive
 470 radiation of cichlid fish. *Curr. Biol.* 22: 1–7.
- 471 Mynhardt, G., Alejandrino, A., Puslednik, L., Corrales, J. & Serb, J. 2015. Shell shape
- 472 convergence masks biological diversity in gliding scallops: description of Ylistrum n.gen.
 473 (Pectinidae) from the Indo-Pacific Ocean. *J. Molluscan Stud.*
- 474 Pennel, M., Eastman, J., Slater, G., Brown, J., Uyeda, J., Fitzjohn, R., *et al.* 2014. geiger v2.0: an
 475 expanded suite of methods for fitting macroevolutionary models to phylogenetic trees.
 476 *Bioinformatics* 30: 2216–2218.
- 477 Puslednik, L. & Serb, J.M. 2008. Molecular phylogenetics of the Pectinidae (Mollusca: Bivalvia)
- 478 and the effect of outgroup selection and increased taxon sampling on tree topology. *Mol.*
- 479 *Phylogenet. Evol.* **48**: 1178–1188.
- 480 R Core Team. 2017. R: a language and environment for statistical computing. RFoundation for
 481 Statistical Computing, Vienna.
- 482 Rambaut, A., Suchard, M., Xie, D. & Drummond, A. 2014. Tracer v1.6, available from
 483 http://beast.bio.ed.ac.uk/Tracer.
- 484 Rohlf, F.J. 1990. Morphometrics. Annu. Rev. Ecol. Syst. 21: 299–316.
- 485 Rohlf, F.J. & Slice, D.E. 1990. Extensions of the Procrustes method for the optimal
 486 superimposition of landmarks. *Syst. Zool.* 39: 40–59.
- 487 Serb, J. 2016. Reconciling morphological and molecular approaches to develop a phylogeny for
 488 the Pectinidae (Mollusca: Bivalvia). In: *Scallops: Biology, Ecology and Aquaculture* (G. J.
 480 Development of C. E. Classical and D
- 489 Parsons & S. E. Shumway, eds), pp. 1–29. Elseiver.
- 490 Serb, J.M., Alejandrino, A., Otárola-Castillo, E. & Adams, D.C. 2011. Shell shape quantification
- 491 using geometric morphometrics reveals morphological convergence of distantly related
 492 scallop species (Pectinidae). *Zool. J. Linn. Soc.* 163: 571–584.
- 493 Sherratt, E., Alejandrino, A., Kraemer, A., Adams, D. & Serb, J. 2016. Trends in the sand:
- 494 directional evolution in the shell shape of recessing scallops (Bivalvia: Pectinidae).
- 495 *Evolution (N. Y).* **70**: 2061–2073.
- 496 Sidlauskas, B. 2008. Continuous and arrested morphological diversification in sister clades of
- 497 characiform fishes: A phylomorphospace approach. *Evolution (N. Y).* **62**: 3135–3156.

Page 31 of 57

Journal of Evolutionary Biology

400	
498	Smith, E. 1902. Report on the collections of natural history made in the Antarctic region during
499	the voyage of the "Southern Cross." In: <i>Mollusca</i> (I. Franklin, ed), pp. 201–213.
500	Stanley, S.M. 1972. Functional morphology and evolution of bysally attached bivalve mollusks.
501	<i>J. Paleontol.</i> 46 : 165–212.
502	Stanley, S.M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). Geol. Soc.
503	<i>Am. Mem.</i> 125 : 1–296.
504	Stayton, C.T. 2014. convevol: Quantifies and assesses the significance of convergent evolution.
505	R package version 1.0. Available at http://cran.r-
506	project.org/web/packages/convevol/index.html.
507	Stayton, C.T. 2008. Is convergence surprising? An examination of the frequency of convergence
508	in simulated data sets. J. Theor. Biol. 252: 1-14.
509	Stayton, C.T. 2006. Testing hypotheses of convergence with multivariate data: morphological
510	and functional convergence among herbivorous lizards. Evolution (N. Y). 60: 824-841.
511	Stayton, C.T. 2015. The definition, recognition, and interpretation of convergent evolution, and
512	two new measures for quantifying and assessing the significance of convergence. Evolution
513	(N. Y). 69 : 2140–2153.
514	Talavera, G. & Castresana, J. 2007. Improvement of phylogenies after removing divergent and
515	ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56: 564-77.
516	Thomas, R.D.K. 1978. Shell form and the ecological range of living and extinct Arcoida.
517	Paleobiology 4: 181–194.
518	Thompson, J.D., Higgins, D.G. & Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of
519	progressive multiple sequence alignment through sequence weighting, position-specific gap
520	penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
521	Tremblay, I., Samson-Dô, M. & Guderley, H.E. 2015. When behavior and mechanics meet:
522	scallop swimming capacities and their hinge ligament. J. Shellfish Res. 34: 203–212.
523	Verrill, A.E. 1897. A study of the family Pectinidae, with a revison of genera and subgenera.
524	Trans. Connect. Acad. Arts Sci. 10: 41–95.
525	Vincent, S.E., Brandley, M.C., Herrel, A. & Alfaro, M.E. 2009. Convergence in trophic
526	morphology and feeding performance among piscivorous natricine snakes. J. Evol. Biol. 22:
527	1203–1211.
528	Wainwright, P.C. 2007. Functional Versus Morphological Diversity in Macroevolution. Annu.

- 529 *Rev. Ecol. Evol. Syst.* **38**: 381–401.
- Wainwright, P.C., Alfaro, M.E., Bolnick, D.I. & Hulsey, C.D. 2005. Many-to-one mapping of
 form to function: A general principle in organismal design? *Integr. Comp. Biol.* 45: 256–
 262.
- Williams EE. 1972. The origin of faunas. Evolution of lizard congeners in a complex island
 fauna: A trial analysis. *Evol. Biol.* 6: 47–89.
- Wroe, S. & Milne, N. 2007. Convergence and remarkably consistent constraint in the evolution
 of carnivore skull shape. *Evolution (N. Y)*. 61: 1251–1260.
- 537 Zelditch, M.L., Swiderski, D.L. & Sheets, H.D. 2012. *Geometric Morphometrics for Biologists:*538 *A Primer*, 2nd ed. Academic Press.
- 539 Zelditch, M.L., Ye, J., Mitchell, J.S. & Swiderski, D.L. 2017. Rare ecomorphological
- 540 convergence on a complex adaptive landscape: body size and diet mediate evolution of jaw
- 541 shape in squirrels (Sciuridae). *Evolution (N. Y).*, doi: 10.1111/evo.13168.
- 542

543

Tables

Table 1 Levels of morphological disparity (MD) among species within each ecomorph. The first row represents MD obtained

 using standard approaches while the second row contains measures obtained while accounting for phylogenetic non

 independence among taxa. MD for the nestling ecomorph is not shown, as there was only one species represented in this study.

Ecomorph	Byssal attaching	Cementing	Free-living	Gliding	Recessing
MD: Standard	2.144 x 10 ⁻³	2.079 x 10 ⁻³	3.593 x 10 ⁻³	1.937 x 10 ⁻³	2.036 x 10 ⁻³
MD: Phylogenetic	6.515 x 10 ⁻⁵	3.949 x 10 ⁻⁵	1.055 x 10 ⁻⁴	3.286 x 10 ⁻⁵	1.186 x 10 ⁻⁴

Table 2 Some aspects of swimming performance during the horizontal phase in gliding scallops from the A and B morphotypes

(indicated in parentheses).

	A. pleuronectes (A)*	Y. balloti (A) †	P. magellanicus (B)‡	Ad. colbecki (B) ¶
Distance traveled (m)	1-10 N/A	1.0-23.1 mean = 8.01 ± 4.57 (n = 200)	0.26-3.26 mean = 1.44 ± 0.599 (n = 126)	0.11-2.03 mean = 0.276 ± 0.14 (n = 9)
Number of adductions	10-50 mean = 22.968 ± 9.816 (n = 29)	N/A	8-21 mean = 13.38 ± 3.49 (n = 32)	1-18 mean = 2.44 ± 1.24 (n = 9)
Swimming time (s)	5-18 mean = 9.72 ± 3.1327 (n = 32)	N/A	1.2-7.4 mean = 3.1 ± 1.2 (n = 126)	0.86-10.16 mean = 1.72 ± 0.78 (n = 9)
Swimming velocity (m/s)	$0.23-0.73 \\ mean = 0.39 \pm 0.107 \\ (n = 37)$	0.2-1.6 mean = 0.86 ± 0.288 (n = 25)	0.42-1.03 mean = 0.474 ± 0.166 (n = 200)	0.19-0.43 mean = 0.157 ± 0.04 (n = 7)

* Morton, 1980

† Joll, 1989

‡ Mason *et al.* 2014

§ Caddy, 1968

¶Ansell, 1998

Table 3 Results from pairwise t-tests (T) comparing performance measures between members of the A morphotype and the Bmorphotype. All comparisons were statistically significant at the experiment-wise Bonferroni value (P < 0.005) unlessindicated.

	Distance	traveled	Num adduo	ber of ctions	Swimm	ing time	Swimmin	g velocity
	Т	Р	Т	Р	Т	P	Т	Р
Y_balloti (A) vs. P_magellanicus (B)	39.54	2.46 x 10 ⁻¹²⁶	N/A		N/A		3.47	3.08 x 10 ⁻⁴
Y_balloti (A) vs. Ad_colbecki (B)	39.46	1.41 x 10 ⁻⁹⁸	N/A		N/A		5.35	4.27 x 10 ⁻⁶
A_pleuronectes (A) vs. P_magellanicus (B)	N/A		16.07	1.27 x 10 ⁻³⁹	20.19	1.09 x 10 ⁻⁴⁵	0.47	0.316 NS
A_pleuronectes (A) vs. Ad_colbecki (B)	N/A		29.20	3.06 x 10 ⁻²⁷	18.60	2.61 x 10 ⁻²¹	1.23	0.112 NS

Figure legends

Figure 1 Three-dimensional surface scan of the left valve of a scallop with the position of landmarks and semilandmarks indicated as silver spheres. Five landmarks are numbered and represented by large spheres: Landmark 1 ventroposterior auricle; Landmark 2 dorsoposterior auricle; Landmark 3 umbo; Landmark 4 dorsoanterior auricle; Landmark 5 ventroanterior auricle. Semilandmarks are shown as small spheres. Redrawn from Sherratt *et al.* (2016).

Figure 2 Pruned chronogram of 93 scallop species for which morphological data is available. Species labels are colored by life habit (green = cementing, red = nestling, blue = byssal attaching, purple = recessing, black = free-living, orange = gliding). Left valves of the six gliding species are shown on the right (marked by letters a-f). Genera and species as in Table S2. Time calibration based upon 30 node groups. Redrawn from Sherratt *et al.* (2016).

Figure 3 Principal components plot of shell shape based on 933 specimens. The first two axes explain 66.7% of the total shape variation (PC1 = 42%; PC2 = 24.6%). Specimens are colored by the life habit group to which they belong (legend inset, ordered by increasing mobility). Shape deformations relating to the positive and negative extremes of each axis are shown as surfaces warped using thin-plate spline, depicted in dorsal (left) and lateral (right) views.

Figure 4 Phylomorphospace plot visualizing the first two axes of morphospace of scallops, with the phylogeny superimposed for 93 species. Colored dots represent extant species and white dots represent hypothesized ancestors inferred from ancestral state reconstruction. The inset shows an enlargement of the region in morphospace containing gliding species with orange dots,

displaying the two gliding morphotypes (A and B). Only those phylogenetic branches containing gliding species and their ancestors (squares) are shown.

Supporting information

Additional Supporting Information may be found online in the supporting information tab for this article: **Fig. S1** Chronogram of 143 scallop species.

Fig. S2 Axes 2 and 3 of a principal components plot of shell shape based on 933 specimens, plotted as PC3 vs 2 to be compared side-by-side with Figure 3. Together, PCs 1-3 explain 78.8% of the variation (PC2 = 24.6%, PC3 = 12.2%; subsequent axes each contribute less than 5% of the total shape variation). Specimens are colored by the life habit group to which they belong (legend inset, ordered by increasing mobility). Shape deformations relating to the positive and negative extremes of PC3 are shown as surfaces warped using thin-plate spline, depicted in dorsal (left) and lateral (right) views.

Table S1 Scallop behavioral life habit categories for morphological specimens.

Table S2 Genbank accession numbers for 143 specimens included in the molecular phylogeny.

Data deposited at Dryad (need to update): doi:10.5061/dryad.43548.

Three-dimensional surface scan of the left valve of a scallop, with the position of landmarks and semilandmarks indicated as silver spheres. Five landmarks are numbered and represented by large spheres and the semilandmarks are shown as small spheres. Landmark 1: ventroposterior auricle, 2: dorsoposterior auricle, 3: umbo, 4: dorsoanterior auricle, 5: ventroanterior auricle.

171x181mm (300 x 300 DPI)

Pruned chronogram of 93 scallop species with morphological data. Species labels are colored by life habit (green = cementing, red = nestling, blue = byssal attaching, purple = recessing, black = free-living, orange = gliding). Left valves of the six gliding species are shown on the right (marked by letters a-f). Genera and species as in Table S2. Time calibration based upon 30 node groups.

234x307mm (300 x 300 DPI)

Figure 3 Principal components plot of shell shape based on 933 specimens. The first two axes explain 66.7% of the total shape variation (PC1 = 42%; PC2 = 24.6%). Specimens are colored by the ecomorph to which they belong (legend inset, ordered by increasing mobility). Shape deformations relating to the positive and negative extremes of each axis are shown as surfaces warped using thin-plate spline, depicted in dorsal (left) and lateral (right) views.

Phylomorphospace plot visualizing the first two axes of morphospace of scallops, with the phylogeny superimposed. Colored dots represent extant species and white dots represent hypothesized ancestors found from ancestral state reconstruction. The inset shows an enlargement of the region in morphospace containing gliding species with orange dots, displaying the two gliding morphotypes (A and B). Only those phylogenetic branches containing gliding species and their ancestors (squares) are shown.

234x307mm (300 x 300 DPI)

Supporting Information for

Phylogenetic convergence and multiple shell shape optima for gliding scallops (Bivalvia: Pectinidae)

(2 supplementary figures and 2 supplementary tables)

Figure S1 Chronogram of 143 scallop species. A time-calibrated phylogeny constructed from all molecular data available. Species in grey are those not included in this morphological study, including five outgroups. Remaining 93 species for which we had morphometric data are colored by life habit (green = cement, red = nestle, blue = byssal, purple = recess, black = free, orange = glide). Red dots indicate the fossil calibration points (details in Table 2). Blue bars represent 95% CI.

Figure S2 Axes 2 and 3 of a principal components plot of shell shape based on 933 specimens, plotted as PC3 *vs* 2 to be compared side-by-side with Figure 3. Together, PCs 1-3 explain 78.8% of the variation (PC2 = 24.6%, PC3 = 12.2%; subsequent axes each contribute less than 5% of the total shape variation). Specimens are colored by the life habit group to which they belong (legend inset, ordered by increasing mobility). Shape deformations relating to the positive and negative extremes of PC3 are shown as surfaces warped using thin-plate spline, depicted in dorsal (left) and lateral (right) views.

Table S1 Scallop behavioral life habit categories for morphological specimens. The phylogeny ID corresponds to the tip label of Figure 2 (and Figure S1). Number of specimens used (No. spec.) to calculate the average for each species were taken from museum collections, summarized here using the official museum acronyms.

Species	Phylogeny ID	Habit	No. spec.	Museum
Adamussium colbecki	A.colbecki	glide	39	USNM
Aequipecten glyptus	A.glyptus	free	5	FMNH
Aequipecten opercularis	A.opercularis	free	7	FMNH
Amusium pleuronectes	A.pleuronectes	glide	30	USNM
Anguipecten picturatus	A.picturatus	free	3	MNHN
Annachlamys flabellata	A.flabellata	free	5	UF
Annachlamys kuhnholtzi	A.kuhnholtzi	free	2	MNHN
Antillipecten antillarum	A.antillarum	byssal	7	UF; LACM; USNM; LACM
Argopecten gibbus	A.gibbus	free	5	LACM
Argopecten irradians	A.irradians	free	28	DMNH
Argopecten nucleus	A.nucleus	free	10	LACM
Argopecten purpuratus	A.purpuratus	free	25	UF
Argopecten ventricosus	A.ventricosus	free	6	LACM; CAS
Azumapecten farreri	A.farreri	byssal	5	LACM; BPBM
Azumapecten nipponensis	A.nipponensis	byssal	2	AMNH
Bractechlamys vexillum	B.vexillum	free	10	LACM
Caribachlamys ornata	C.ornata	byssal	2	BPBM
Caribachlamys sentis	C.sentis	byssal	30	UF
Chlamys behringiana	C.behringiana	byssal	19	
Chlamys hastata	C.hastata	byssal	13	MCZ; BPBM
Chlamys islandica	C.islandica	byssal	8	YPM; LACM
Chlamys rubida	C.rubida	byssal	5	BPBM
Coralichlamys madreporarum	C.madreporarum	byssal	9	LACM; MNHN
Crassadoma gigantea	C.gigantea	cement	1	NCSM
Cryptopecten bullatus	C.bullatus	byssal	2	MCZ; UF
Cryptopecten nux	C.nux	byssal	8	MNHN
Cryptopecten vesiculosus	C.vesiculosus	byssal	5	LACM
Decatopecten plica	D.plica	free	10	LACM
Decatopecten radula	D.radula	free	10	LACM; BPBM
Decatopecten strangei	D.strangei	free	6	LACM
Delectopecten randolphi	D.randolphi	byssal	3	MCZ
Delectopecten vancouverensis	D.vancouverensis	byssal	7	LACM
Dentamussium obliteratum	D.obliteratum	glide	5	LACM; DMNH
Equichlamys bifrons	E.bifrons	free	9	LACM; DMNH; BPBM
Euvola chazaliei	E.chazaliei	recess	5	NCSM; AMNH
Euvola papyraceum	E.papyraceum	glide	14	FMNH
Euvola perula	E.perula	recess	7	UF
Euvola raveneli	E.raveneli	recess	7	LACM; YPM
Euvola vogdesi	E.vogdesi	recess	12	LACM; USNM
Euvola ziczac	E.ziczac	recess	28	FMNH; LACM
Excellichlamys spectabilis	E.spectabilis	byssal	16	LACM
Flexopecten glaber	F.glaber	byssal	2	MNHN; YPM
Gloripallium pallium	G.pallium	byssal	9	FMNH

Gloripallium speciosum	G.speciosum	byssal	8	LACM
Juxtamusium coudeini	J.coudeini	byssal	6	MNHN
Laevichlamvs gladvsiae	L.gladysiae	byssal	5	MNHN
Laevichlamvs cuneata	L.cuneata	byssal	8	LACM; MNHN
Laevichlamys lemniscata	L.lemniscata	byssal	5	LCSM; MCZ; DMNH
Laevichlamys sauamosa	L.squamosa	byssal	8	MNHN: CAS
Laevichlamys weberi	L.weberi	byssal	5	CAS: USNM
Laevichlamys willhelminae	L.willhelminae	byssal	4	USNM
Leptopecten latiauratus	L.latiauratus	byssal	5	BPBM: NCSM: CAS
Mesopeolum convexum	M.convexum	free	5	MCZ: DMNH
Mimachlamys asperrima	M.asperrima	byssal	7	LACM
Mimachlamys cloacata	M.cloacata	byssal	7	MNHN; USNM
Mimachlamys crassicostata	M.crassicostata	byssal	10	FMNH
Mimachlamys sanguinea	M.sanguinea	byssal	5	MCZ: USNM: CAS
Mimachlamys townsendi	M.townsendi	byssal	5	USNM: AMNH
Mimachlamys varia	M.varia	byssal	8	FLMNH
Miranecten mirificus	M.mirificus	byssal	4	BPBM: DMNH
Mirapecten moluccensis	M.moluccensis	byssal	1	MNHN
Mizuhonecten vessoensis	M vessoensis	recess	5	CAS: UF: AMNH
Nodinecten subnodosus	N subnodosus	free	4	LACM [·] YPM
Pallialum tigerinum	P tigerinum	byssal	2	CAS
Paralantonactan hayayi	P havavi	byssal	5	DAMNH. LIF
Pascahinnitas coruscans	P coruscans	byssal	8	FMNH USNM
Patinopactan caurinus	P caurinus	recess	4	CAS MCZ DMNH
Pactan fumatus	P fumatus	recess	17	LACM
Pactan jacobaaus	P jacobaeus	recess	5	NCSM: YPM
Paotan maximus	P maximus	recess	6	
Pactan novazzalandiaa	P novaezelandiae	recess	5	NCSM
Padum spondyloidaum	P spondyloideum	nestle	1	MNHN: USNM: YPM
Placonactan magallaniaus	P magellanicus	glide		
Psaudamussium alayatum	P clavatum	free	5	MCZ. AMNH
1 seudamussium Clavaium Deaudamussium	P sentemradiatus	free	28	USNM
sentemradiatus	1.septennatiatus	nee	20	OSINI
Scaeochlamys livida	S.livida	byssal	5	FMNH; YPM; BPBM
Scaeochlamys squamata	S.squamata	byssal	5	MNHN; USNM
Semipallium dianae	S.dianae	byssal	3	MCZ; DMNH
Semipallium dringi	S.dringi	byssal	24	MCZ; MNHN
Semipallium fulvicostatum	S.fulvicostatum	byssal	5	MNHN; YPM; BPBM
Semipallium wardiana	S.wardiana	byssal	1	AMNH
Spathochlamys benedicti	S.benedicti	byssal	5	FMNH; DMNH
Swiftopecten swiftii	S.swiftii	byssal	8	DMNH; CAS
Talochlamys dichroa	T.dichroa	byssal	3	MNHN; DMNH
Talochlamys gemmulata	T.gemmulata	byssal	5	AMNH; BPBM; UF; MCZ
Talochlamys multistriata	T.multistriata	byssal	4	MNHN
Talochlamys pusio	T.pusio	cement	5	BPBM; YPM; DMNH?
Veprichlamys jousseaumei	V.jousseaumei	byssal	5	MCZ
Ylistrum balloti	Y.balloti	glide	39	WAMS; BALD ISL
Ylistrum japonicum	Y.japonicum	glide	36	LACM; USNM
Zygochlamys amandi	Z.amandi	byssal	3	USNM

Journal of Evolutionary Biology							
Zygochlamys delicatula	Z.delicatula	byssal	5	AMNH; MCZ	_		
Zygochlamys patagonica	Z.patagonica	byssal	14	BPBM; YPM; LACM; UF			

Table S2 Genbank accession numbers for 143 specimens included in the molecular phylogeny. Outgroup species indicated by asterisk (*). The phylogeny ID corresponds to the tip labels of Figure 2 and Figure S1. When available, morphological vouchers are listed by museum and collection accession number: AMNH = American Museum of Natural History; MNHN = Muséum National d'Histoire Naturelle, Paris, France; NIWA = National Institute Water and Atmospheric Research, New Zealand; QM = Queensland Museum, Australia; TM = Tepapa Museum, New Zealand; UF = Florida Museum of Natural History, Gainesville, Florida, United States; USC = University of the Sunshine Coast Pectinid Collection, Queensland, Australia; USNM = United States National Museum, Smithsonian Institution.

Species	Phylogeny ID	Locality	12S Genbank	16S Genbank	H3 Genbank	28S Genbank	Voucher
Adamussium colbecki	A.colbecki	Terra Nova Bay, Antarctica	EU379383	EU379437	EU379491	FJ263652	Serb lab
Aequipecten glyptus	A.glyptus	Gulf of Mexico, Florida, USA	EU379391	EU379445	EU379499	HM622699	UF351155
Aequipecten opercularis	A.opercularis	Millport, Scotland	EU379408	EU379462	EU379516	HM630527	Serb lab
Amusium pleuronectes	A.pleuronectes	Rayong Province, Thailand	EU379415	EU379469	EU379523	HM630508	USNM 1236642
Anguipecten picturatus	A.picturatus	Mariana Islands	HM630510	HM630511	HM630512	HM630513	UF288930
Annachlamys flabellata	A.flabellata	Yeppoon, QLD, Australia	KP300578	KP300544	KP300481	KP300515	USC SCALL151- 153
Annachlamys kuhnholtzi	A.kuhnholtzi	Gladstone, QLD, Australia	KP300587	KP300553	KP300490	KP300522	USC SCALL151- 155
Antillipecten antillarum	A.antillarum	unknown	HM535656	HM535657	HM535658	HM535659	
Argopecten gibbus	A.gibbus	Harrington Sound, Bermuda	EU379388	EU379442	EU379496	HM622697	Serb lab
Argopecten irradians	A.irradians	Gulf of Mexico, Florida, USA	EU379392	EU379446	EU379500	HM622700	Serb lab
Argopecten nucleus	A.nucleus	Key Largo, Florida, USA	EU379406	EU379460	EU379514	HM630528	AMNH 298075
Argopecten purpuratus	A.purpuratus	Tongoy Bay, Chila	EU379417	EU379471	EU379525	HM630495	N/A
Argopecten ventricosus	A.ventricosus	Bahia Magdalena, Baja California Sur, Mexico	HM630407	HM630408	HM630409	HM630410	Serb lab
Azumapecten f. farreri	A.farreri	Aquaculture Facility in Qindao, China	HM622677	HM622678	HM622679	HM622680	Serb lab
Azumapecten f. nipponensis	A.nipponensis	Kitaibaraki City, Japan	HM622685	HM622686	HM622687	HM622688	Serb lab
Bractechlamys vexillum	B.vexillum	West Great Palm Island, QLD, Australia	KP300601	KP300566	KP300504	N/A	QM SBD005517

Bractechlamys vexillum	B.vexillum	Cebu Island, Philippines	HM630395	HM630396	HM630397	HM630398	UF313444
Bractechlamys vexillum	B.vexillum	Phuket, Thailand	HM630391	HM630392	HM630393	HM630394	UF281663
Caribachlamys mildredae	C.mildredae	N of Crawl Cay, Bocase del Toro, Panama	HM630541	HM630542	HM630543	HM630544	UF289624
Caribachlamys ornata	C.ornata	La Parquera, Collao, Puerto Rico	HM630379	HM630380	HM630381	HM630382	Serb lab
Caribachlamys ornata	C.ornata02	La Parquera, Collao, Puerto Rico	HM630375	HM630376	HM630377	HM630378	Serb lab
Caribachlamys sentis	C.sentis	unknown	GU953232	GU953234	GU953233	HM630478	UF313459
Chlamys rubida	C.rubida	San Juan Island, Washington, USA	FJ263636	FJ263645	FJ263665	FJ263655	Serb lab
Chlamys behringiana	C.behringiana	Monti Bay, Yakutat, Alaska, USA	FJ263632	FJ263641	FJ263661	FJ263650	Serb lab
Chlamys hastata	C.hastata	San Juan Island, Washington, USA	FJ263639	FJ263648	FJ263667	FJ263658	Serb lab
Chlamys islandica	C.islandica	Quebec, Canada	FJ263637	FJ263646	FJ263666	FJ263656	Serb lab
Complichlamys wardiana	S.wardiana	Lady Musgrave Island, QLD, Australia	KP300602	KP300567	KP300505	KP300534	QM SBD026668
Coralichlamys madreporarum	C.madreporarum03	Viti Levu Island, Fiji	EU379396	EU379450	EU379504	HM630548	UF296052
Coralichlamys madreporarum	C.madreporarum	Sabben Island, Bismarck Archipelago, Papua New Guinea	EU379397	EU379451	EU379505	HM630547	UF323809
Crassadoma giganeta	C.gigantea	Santa Barbara, California, USA	FJ263635	FJ263644	FJ263664	FJ263654	Serb lab
Cryptopecten bullatus	C.bullatus	Bohol Sea, off Balicasag Island, Philippines	KP300573	KP300539	KP300476	KP300510	MNHN IM- 2007-33796
Cryptopecten nux	C.nux	Low Wooded Island, QLD, Australia	KP300594	KP300560	KP300497	KP300527	QM SBD001138
Cryptopecten vesiculosus	C.vesiculosus	Miura City, Japan	HM630403	HM630404	HM630405	HM630406	Serb lab
Ctenoides annulatus*	C.annulatus	Bismark Archipelago, Papua New Guinea	EU379385	EU379439	EU379493	HM535655	UF322180
Ctenoides mitis*	C.mitis	Florida Keys, Long Point Park, USA	EU379386	EU379440	EU379494	HM600745	UF367478
Decatopecten plica	D.plica	Tateyama, Japan	HM630435	HM630436	HM630437	HM630438	Serb lab

Decatopecten radula	D.radula	Sulawsi Island, Indonesia	N/A	HM630492	HM630493	HM630494	UF280376
Decatopecten strangei	D.strangei01	Western Australia, Australia	HM630439	HM630440	HM630441	HM630442	UF296996
Decatopecten strangei	D.strangei03	Great Barrier Reef, QLD, Australia	KP300598	KP300564	KP300501	KP300531	QM SBD004329
Delectopecten fosterianus	D.fosterianus	Chatham Rise, New Zealand	KP300579	KP300545	KP300482	N/A	NIWA 29947
Delectopecten randolphi	D.randolphi	Hitachi City, Japan	HM630488	HM630489	HM630490	HM630491	Serb lab
Delectopecten vancouverensis	D.vancouverensis	North Pacific Ocean; 32°36'N; 117°30.5'W	HM630418	HM630420	HM630416	HM630417	Scripps Inst Oceanograp hy
Delectopecten vitreus	D.vitreus	Skagerrak, Sweden	JQ611464	JQ611441	JQ611553	JQ611530	Genbank
Dentamussium	D.obliteratum	E Aoré Island,	KP300595	KP300561	KP300498	KP300528	MNHN IM-
obliteratum		Aimbuei Bay, Vanuatu					2007-32426
Equichlamys bifrons	E.bifrons	Tasmania, Australia	HM561991	HM561992	HM561993	HM561994	Serb lab
Euvola chazaliei	E.chazaliei	Gulf of Los Mosquitos, Panama	EU379382	EU379436	EU379490	HM561999	Serb lab
Euvola papyraceum	E.papyraceum	Gulf of Mexico, USA	HM630371	HM630372	HM630373	HM630374	TCWC 40985
Euvola perula	E.perula	Pacific Ocean, Panama	EU379413	EU379467	EU379521	HM630515	Serb lab
Euvola raveneli	E.raveneli	Gulf of Mexico, Florida, USA	EU379419	EU379473	EU379527	HM630487	UF351301
Euvola vogdesi	E.vogdesi	Bahia Magdalena, Baja California Sur, Mexico	HM630387	HM630388	HM630389	HM630390	Serb lab
Euvola ziczac	E.ziczac	Harrington Sound, Bermuda	EU379430	EU379484	EU379538	HM630509	Serb lab
Execellichalmys spectabilis	E.spectabilis	Mariana Islands	HM630461	HM630462	HM630463	HM630464	UF282416
Flexopecten flexuosus	F.flexuosus	Alcocebre, Spain	JQ611465	JQ611442	JQ611554	JQ611531	Genbank
Flexopecten glaber	F.glaber	Rovinj, Croatia	JQ611466	JQ611443	JQ611569	JQ611532	Genbank
Gloripallium pallium	G.pallium	Viti Levu Island, Fiji	EU379410	EU379464	EU379518	HM630525	UF292105
Gloripallium speciosum	G.speciosum	Viti Levu Island, Fiji	HM630465	HM630466	HM630467	HM630468	UF292110
Juxtamusium coudeini	J.coudeini	Nymph Island, QLD, Australia	KP300575	KP300541	KP300478	KP300512	QM SBD005325
Laevichlamys cuneata	L.cuneata01	Tateyama City, Chiba,	HM622702	HM622703	HM622704	HM622705	Serb lab
(irregularis)		Japan					
Laevichlamys cuneata	L.cuneata02	Milne Bay, Papua New	EU379429	EU379483	EU379537	HM622701	UF310406

(irregularis)		Guinea					
Laevichlamys cuneata (lemniscata)	L.lemniscata01	Tateyama City, Chiba, Japam	HM622715	HM622716	HM622717	HM622718	Serb lab
Laevichlamys lemniscata	L.lemniscata03	Port Ehoala, Madagascar	KP300588	KP300554	KP300491	KP300523	MNHN IM-2009- 21008
Laevichlamys multisquamata	L.multisquamata	Pelican Point, St Maarten, Lesser Antilles	KP300593	KP300559	KP300496	N/A	UF348863
Laevichlamys sp.	Laevichlamys sp.AA2011	Japan	HM630469	HM630470	HM630471	HM630472	Serb lab
Laevichlamys wilhelminae	L.willhelminae	Great Barrier Reef, QLD, Australia	KP300605	KP300570	N/A	N/A	QM SBD036419
Laevichlamys gladysiae	L.gladysiae	16°04'N; 121°57'E, Philippines	KP300582	KP300548	KP300485	KP300518	MNHN IM-2007- 33785
Laevichlamys weberi	L.weberi01	Phare Flacourt, Madagascar	KP300603	KP300568	KP300506	KP300535	MNHN IM-2009- 21007
Laevichlamys weberi	L.weberi02	Cap Sainte Marie, Madagascar	KP300604	KP300569	KP300507	KP300536	MNHN IM-2009- 20966
Leptopecten latiauratus	L.latiauratus	Goleta, California, USA	EU379393	EU379447	EU379501	HM622714	Serb lab
Levichlamys squamosa	L.squamosa	Okinawa, Japan	EU379426	EU379480	EU379534	HM630443	UF351954
Lima coloratazealandica*	L.colorata	North Cape, New Zealand	HM600760	HM600753	HM600733	HM600746	UF332786
Lima sowerbyi*	L.sowerbyi	Masirah Island, Oman	HM600763	HM600756	HM600736	HM600749	UF286387
Limaria hemphilli*	L.hemphilli		KP300584	KP300550	KP300487	N/A	
Mesopeplum convexum	M.convexum	Stewart Island, New Zealand	KP300574	KP300540	KP300477	KP300511	TM M297699
Mimachalmys cloacata	M.cloacata	Shiangjianwan, Taiwan	HM562000	HM562001	HM562002	HM562003	UF309990
Mimachalmys sanguinea	M.sanguinea05	S of Faux Cap, Madagascar	KP300597	KP300563	KP300500	KP300530	MNHN IM-2009- 20994
Mimachalmys sanguinea	M.sanguinea01	Thailand	HM630479	HM630480	HM630481	HM630482	Serb lab
Mimachalmys sp.	Mimachlamys sp.AA2011	Zanzibar Island, Tanzania	HM630473	HM630474	HM630475	HM630476	UF297000

Mimachalmys asperrima	M.asperrima	Hobart, Australia	HM540080	HM540081	HM540082	HM540083	Serb lab
Mimachlamys	M.crassicostata	Kumatoto, Japan	HM630531	HM630532	HM630533	HM630534	Serb lab
crassicostata		-					
Mimachlamys townsendi	M.townsendi	Masirah Island, Oman	HM630422	HM630423	HM630424	HM630425	UF292821
Mimachlamys gloriosa	M.gloriosa	E of Great Palm Island,	KP300583	KP300549	KP300486	KP300519	QM
		QLD, Australia					SBD004187
Mimachlamys varia	M.varia	Rovinj, Croatia	JQ611468	JQ611446	JQ611557	JQ611535	Genbank
Mimachlamys varia	M.varia01	Gallicia, Spain	EU379428	EU379482	EU379536	HM630415	Serb lab
Mirapecten mirificus	M.mirificus	Saipan Island,	EU379401	EU379455	EU379509	HM630540	UF295809
		Northern Mariana					
		Islands					
Mirapecten spiceri	M.spiceri	Mariana Islands	EU379422	EU379476	EU379530	HM630456	UF282407
Mirapecten tuberosus	M.tuberosus	S of Faux Cap,	KP300600	N/A	KP300503	KP300533	MNHN
		Madagascar					IM-2009-
							21009
Mirapecten moluccensis	M.moluccensis	Panglao Island,	KP300592	KP300558	KP300495	KP300526	MNHN IM-
		Bingag, Philippines					2007-32456
Mizuhopecten yessoensis	M.yessoensis	Mutsu Bay, Japan	HM630383	HM630384	HM630385	HM630386	Serb lab
Nodipecten subnodosus	N.subnodosus	Pacific Ocean, Panama	EU379427	EU379481	EU379535	HM630434	Serb lab
Notochlamys hexates	N.hexactes	Edithburg, SA,	KP300585	KP300551	KP300488	KP300520	USC
	D' 1'1	Australia	10 (11 170	10 (11 170	10(115(0	10 (11 500	SCALL201
Palliolum incomparabile	P.incomparabile	Skagerrak, Sweden	JQ611472	JQ611450	JQ611560	JQ611539	Genbank
Palliolum minutulum	P.mintulum	Aoré Island, Aimbuei	KP300591	KP300557	KP300494	KP300525	MNHN
		Bay, Vanuatu					IM-2007-
	D	01 1 0 1	10(11474	10(11452	10(115(1	10(11541	33927
Palliolum striatum	P.striatum	Skagerrak, Sweden	JQ611474	JQ611452	JQ611561	JQ611541	Genbank
Pallolum tigerinum	P.tigerinum	North Sea	JQ0114/5	JQ011455	JQ011502	JQ611542	Gendank
Paraleptopecten bavayi	P.bavayi	E of Naos, Panama	EU3/9381 VD200500	EU3/9433	EU3/948/	HIMI540102	$\frac{UF3/18/3}{NIW}$
Parvamussium maorium *	P.maonum	UTM -42.7871700, -	KP300590	KP300556	KP300493	N/A	NIWA 22065
		1/0./222000, New Zooland					22903
Datin on acton causinus	D courinus	Valatet Day Alaska	E1262622	E126642	E1262662	E1262651	Sarh lah
Faimopecien caurinus	r.cauimus	i akulat Day, Alaska,	FJ203033	FJ20042	FJ203002	FJ203031	Selo lao
Decton fumatus	P fumatus	Hobert Tesmania	НМ622680	HM622600	HM622601	HM622602	Serb lab
i ecten jumutus	1.1umatus	Australia	1111022007	1111022070	1111022071	1111022072	Selu lau
Pactan jacobaaus	Piacohaeus	Rergen Norway	IO611477	IO611455	IO611564	IO611544	Genhank
Pocton maximus	P maximus	Millport Scotland	FU379400	FU379454	FU379508	HM630545	Schodik
Pactan novaazalandiaa	P novaezelandiae	Mercury Cove Great	FU379400	FU379458	EU379512	HM630530	Serh lah
recien novaezeianaide	1.novaezelanulae	Mercury Cove, Oreat	EU3/9404	EU3/9430	EU3/9312	110000000	Selo lao

		Mercury Island, New Zealand					
Pedum spondyloideum	P.spondyloideum	Stingray Shoals, Mariana Islands	HM630452	HM630453	HM630454	HM630455	UF343587
Placopecten magellanicus	P.magellanicus	Georges Bank, USA	FJ263638	FJ263647	EU379506	FJ263657	Serb lab
Propeamussium alcocki*	P.alcocki	14°50'N; 123°12'E, Philippines	KP300572	KP300537	KP300474	N/A	MNHN IM-2007- 33735
Propeamussium dalli*	S.squamata	Dry Tortugas, Florida, USA	EU379416	EU379470	EU379524	HM600740	UF289879
Propeamussium pourtalesianum*	P.pourtalesianum	Florida Straits, Florida, USA	EU379411	EU379465	EU379519	HM600741	UF323764
Propeamussium sibogai	P.sibogai	NW of Nomamishaki, Kasasa-cho, Japan	HM600762	HM600755	HM600735	HM600748	Serb lab
Pseudamussium clavatum	P.clavatum	Portimao, Portugal	JQ611479	JQ611457	JQ611565	JQ611546	Genbank
Pseudamussium septemradiatus	P.septemradiatus	Millport, Scotland	EU379420	EU379474	EU379528	FJ263659	Serb lab
Pseudamussium sulcatum	P.sulcatum	Bergen, Norway	JQ611481	JQ611459	JQ611566	JQ611548	Genbank
Scaeochlamys livida	S.livida05	Masthead Island, QLD, Australia	KP300589	KP300555	KP300492	KP300524	QM SBD020910
Scaeochlamys livida	S.livida01	Muscat, Qurm, Oman	HM630549	HM630550	HM630551	HM630552	UF367882
Scaeochlamys squamata	S.squamata	Tateyama City, Chiba, Japan	HM630444	HM630445	HM630446	HM630447	Serb lab
Semipallium c. coruscans	P.coruscans	Cocos-Keeling Island, Australia	EU379384	EU379438	EU379492	HM600739	UF296350
Semipallium dianae	S.dianae	Ie Island, Okinawa, Japan	HM630553	HM630554	HM630555	HM630556	UF352388
Semipallium dringi	S.dringi	Ie Island, Okinawa, Japan	EU379387	EU379441	EU379495	HM622672	UF352373
Semipallium fulvicostatum	S.fulvicostatum	Lloyd Island, QLD, Australia	KP300580	KP300546	KP300483	KP300516	QM SBD020910
Semipallium marybellae	S.marybellae	Luminao Reef, Mariana Island, Guam	EU379399	EU379453	EU379507	HM630546	UF287521
Semipallium schmeltzii	P.schmeltzii	Maruki hama, Bonotsu City, Japan	HM630483	HM630484	HM630485	HM630486	Serb lab
Serratovola angusticostata	S.angusticostata	Dipolog Bay, Philippines	N/A	KP300538	KP300475	KP300509	MNHN IM-2007- 33795

Serratovola pallula	S.pallula	E of Port Douglas, QLD, Australia	KP300596	KP300562	KP300499	KP300529	QM SBD000145
Spathochlamys benedicti	S.benedicti	W of Cedar Key, Florida, USA	HM540103	HM540104	HM540105	HM540106	UF369432
Spondylus cruentus*	S.cruentus	Tateyama City, Japan	HM600761	HM600754	HM600734	HM600747	Serb lab
Spondylus ictericus*	S.ictericus	Florida Keys, Florida, USA	EU379423	EU379477	EU379531	HM600742	UF367487
Spondylus squamosus*	S.squamosus	Shefa Province, Vanuatu	EU379425	EU379479	EU379533	HM600744	UF368676
Spondylus nicobaricus*	S.nicobaricus	W of New Briton, Papua New Guinea	EU379424	EU379478	EU379532	HM600743	UF322550
Spondylus wrightianus*	S.wrightianus	Stradbroke Island, QLD, Australia	KP300606	KP300571	KP300508	N/A	USC SCALLOG2 3
Swiftopecten swiftii	S.swiftii	Japan	KP300599	KP300565	KP300502	KP300532	Serb lab
Talochlamys multistriata	T.multistriata01	Raxo, Ria de Pontevedra, Gallicia, Spain	EU379403	EU379457	EU379511	HM630539	Serb lab
Talochlamys multistriata	T.multistriata02	Raxo, Ria de Pontevedra, Gallicia, Spain	HM630535	HM630536	HM630537	HM630538	Serb lab
Talochlamys tinctus	T.tinctus	Port Elizabeth, South Africa	HM630426	HM630427	HM630428	HM630429	UF329089
Talochlamys dichora	T.dichroa	Otago Peninsula, New Zealand	KP300577	KP300543	KP300480	KP300514	TM M297698
Talochlamys gemmulata	T.gemmulata	Stewart Island, New Zealand	KP300581	KP300547	KP300484	KP300517	TM M297697
Talochlamys pusio	T.pusio	Bergen, Norway	JQ611483	JQ611461	JQ611568	JQ611550	Genbank
Talochlamys pusio	T.pusio01	Raxo, Ria de Pontevedra, Gallicia, Spain	HM600764	HM600757	HM600737	HM600750	Serb lab
Verpichlamys empressae	V.empressae	Off Joga shima, Miura City, Japan	HM622673	HM622674	HM622675	HM622676	Serb lab
Verpichlamys jousseaumei	V.jousseaumei	Ktonan-cho, Japan	HM622710	HM622711	HM622712	HM622713	Serb lab
Verpichlamys kiwaensis	V.kiwaensis	Louisiville Ridge, New Zealand	KP300586	KP300552	KP300489	KP300521	NIWA TAN0707/ 84
Ylistrum balloti	Y.balloti	Bunderberg, QLD,	HM540088	HM540089	HM540090	HM540091	USNM

		Australia					1236641
Ylistrum japonicum	Y.japonicum	Oyano Island,	HM622706	HM622707	HM622708	HM622709	USNM
		Kumamoto, Japan					1236649
Zygochlamys amandi	Z.amandi	Puerto Montt, Chile	HM485575	HM485576	HM485577	HM485578	N/A
Zygochlamys delicatula	Z.delicatula	Dunedin, New Zealand	KP300576	KP300542	KP300479	KP300513	NIWA
							SCALNZ01
Zygochlamys patagonica	Z.patagonica	Chile	EU379412	EU379466	EU379520	HM630524	N/A

Table S3 Sensitivity simulations using different strengths of directional evolution (μ , from 2.1 to 3.5). Angles (°) shown are the mean pairwise angle (MPA) observed in the *Euvola* recessers (MPA-obs), and for the Brownian motion simulated data (MPA-BM) and Brownian motion plus directional trend data (MPA-BMT). In all cases, the observed pattern is more similar to those obtained under BM with a directional trend than to BM alone.

μ	MPA-obs	MPA-BMT	MPA-BM
3.5	41.5	36.42	60.15
3	41.5	41.02	60.13
2.75	41.5	43.64	60.15
2.5	41.5	46.29	60.16
2.25	41.5	49.56	60.16
2.1	41.5	51.55	60.12