2 Surface Water Hydrology

- 18 Hours 40%
- Precipitation: Types, forms, measurement, estimation of missing data, mean rainfall computation
 Evaporation: Process, factors affecting, measurement -
- analytical methods & evaporimeters
- 2.3 Evapotranspiration: Transpiration, evapotranspiration, factors affecting, measurement – field methods
- 2.4 Infiltration: Process, infiltration rate, infiltration capacity, infiltration indices, measurement - infiltrometers
- 2.5 Runoff: Types, factors affecting, estimating volume of runoff (yield) – rainfall runoff correlation & empirical equations
- 2.6 Hydrograph: Factors affecting, components, unit hydrograph, S-Hydrograph, computation of flood
- 2.7 Flood: Definition, estimation rational, empirical, Gumble's method & flood frequency studies, SPF, PMF

Runoff

Types, factors affecting, estimating volume of runoff (yield) – rainfall runoff correlation & empirical equations

Runoff

• Draining or flowing off of precipitation from a catchment area through a surface channel.

Types of Runoff

Factors affecting runoff

Meteorological factors :

- Type of precipitation (rain, snow, sleet, etc.)
- Rainfall intensity
- Rainfall amount
- Rainfall duration
- Distribution of rainfall over the watersheds
- · Direction of storm movement
- Antecedent precipitation and resulting soil moisture
- Meteorological parameters affecting evapotranspiration. e.g. temperature, wind, relative humidity, and season.

Factors affecting runoff

Physical characteristics :

- Land use
- Vegetation
- Soil type
- Drainage area
- Basin shape
- Elevation
- Slope
- Topography
- Direction of orientation
- Drainage network patterns
- Ponds, lakes, reservoirs, sinks, etc. in the basin, which prevent or alter runoff from continuing downstream

SHAPE OF CATCHMENT

Runoff Estimation

The runoff from rainfall estimated by :

(i) Empirical Formulae, Curves And Tables

(Ii) Infiltration Method

(Iii) Rational Method

(Iv) Overland Flow Hydrograph

(V) Unit Hydrograph Method

(Vi) Coaxial Graphical Correlation And API

RAINFALL RUNOFF RELATION

R = a P + b

sometimes, $R = a P^n$

R = runoff,

P = rainfall,

a, b, and n, are constants

Estimating volume of runoff

Rational Method

• Simplest form of rainfall-runoff estimation

 $Q_p = C \cdot i \cdot A$

C=runoff coefficient, variable with land use

i=intensity of rainfall of chosen frequency for a duration equal to time of concentration t_c (mm/hr)

 $t_c = equilibrium time for rainfall occurring at the most remote portion of the basin to contribute flow at the outlet (min or hr).$ A = area of watershed (acres or ha).

Values of Runoff coefficients, C (Chow, 1962)				
Type of drainage area	Runoff coefficient, C	Type of drainage area	Runoff coefficient, C	
Lawns: Sandy soil, flat, 2% Sandy soil, average, 2-7% Sandy soil, steep, 7% Heavy soil, flat, 2% Heavy soil, average, 2-7% Heavy soil, steep, 7% Business: Downtown areas	0.05-0.10 0.10-0.15 0.15-0.20 0.13-0.17 0.18-0.22 0.25-0.35 0.70-0.95	Industrial Light areas Heavy areas Parks, cemeteries Playgrounds Railroad yard areas Unimproved areas	0.50-0.80 0.60-0.90 0.10-0.25 0.20-0.35 0.20-0.40 0.10-0.30	
Neighborhood areas Residential: Single-family areas Multiunits, detached Multiunits, attached Suburban Apartment dwelling areas	0.50-0.70 0.30-0.50 0.40-0.60 0.60-0.75 0.25-0.40 0.50-0.70	Streets: Asphaltic Concrete Brick Drives and walks Roofs	0.70-0.95 0.80-0.95 0.70-0.85 0.75-0.85 0.75-0.95	

Assumptions of rational method

- Steady flow and uniform rainfall rate will produce maximum runoff when all parts of a watershed are contributing to outflow.
- Runoff is assumed to reach a maximum when the rainfall intensity lasts as long as $t_{\rm c}$
- Runoff coefficient is assumed constant during a storm event .

Drawbacks of rational method

- The rational method is often used in small urban areas to design drainage systems and open channels .
- For larger watersheds, this process is not suitable since this method is usually limited to basins less than a few hundred acres in size

Types of Rainfall-Runoff models Models

Empirical Equations

- Binnie's Percentages
- Barlow's Tables
- Strange's Tables
- Inglis and DeSouza Formula
- Khosla's Formula
- SCS-CN technique

Binnie's Percentages

Sir Alexander Binnie measured the runoff from a small catchment near Nagpur (Area of 16 km2) during 1869 and 1872

• Developed curves of cumulative runoff against cumulative rainfall

- Established percentages of runoff from rainfall
- These percentages are used in Madhya Pradesh and Vidarbha region of Maharashtra for the estimation of yield

Barlow's Tables

Barlow, the first Chief Engineer of the Hydro-Electric Survey of India (1915)

• Conducted study on small catchments (area~ 130Km²)in Uttar Pradesh expressed runoff R as

R = Kb P

where Kb = runoff coefficient - which depends upon

type of catchment

• • nature of monsoon rainfall.

Barlow's Runoff Coefficient K_b in Percentage

Class	Description of catchment	V	Values of K _b Season (Rercentage)	
		Season		
		1	2	3
Α	Flat, cultivated and absorbent soils	7	10	15
В	Flat, partly cultivated and stiff soils	12	15	18
С	Average catchment	16	20	32
D	Hills and plains with little cultivation	28	35	60
Е	Very hilly, steep and hardly any cultivation	36	45	81
Season	1: light rain, no heavy downpour			
Season 2: Average or varying rainfall, no continuous downpour				
Season 3: Continuous downpour				

Strange's (1928) Tables

 Data on rainfall and runoff in the border areas, of Maharashtra and Karnataka and obtained the values of the runoff coefficient

Ks = R/P

as a function of the catchment character

- Catchments were characterized as "good", "average" and "bad'.
- Strange also gave a table for calculating the daily runoff from daily rainfall.

 In this the runoff coefficient depends not only on the amount of rainfall but also on the state of the ground.

 \bullet Three categories of the original ground state as 'dry', 'damp' and 'wet' are used by him

Extract of Strange's Table of Runoff Coefficient K, in Percent

Total monsoon rainfall (cm)	Runoff coefficient K_s percent			
	Good Catchment	Average Catchment	Bad Catchment	
25	4.3	3.2	2.1	
50	15	11.3	7.5	
75	26.3	19.7	13.1	
100	37.5	28	18.7	
125	47.6	35.7	23.8	
150	58.9	44.1	29.4	

Inglis and DeSouza (1929) Formula

Stream gauging in 53 sites in Western India resulted, two regional formulae between annual runoff R in cm and annual rainfall p in cm as follows:

• For Ghat regions of western India

• For Deccan plateau

$$R = \frac{1}{254} P(P - 17.8)$$

Khosla's Formula

 Monthly data on rainfall, runoff and temperature data for various catchments in India and USA considered

$$\begin{aligned} R_m &= P_m - L_m \\ L_m &= 0.48 \ T_m \quad for \ T_m > 4.5^\circ C \end{aligned}$$

where $R_m \equiv Monthly runoff in cm and <math>R_m \geq 0$ $P_m = monthly rainfall in cm$ <math>L = monthly losses in cm $T_m^m = mean monthly temperature of the catchment in °C$

• For $T_m \leq 4.5^{\circ}$ C, the loss L_m may provisionally be assumed as

T⁰C	4.5	-1	-6.5
L_m (cm)	2.17	1.78	1.52

Annual runoff = ΣR_m