Technische Thermodynamik und Thermische Verfahrenstechnik PD. Dr.-Ing. <u>habil. J. Vrabec</u>

Übersättigte Dämpfe im kanonischen und großkanonischen Ensemble

Martin Horsch

18. Juni 2008

Untersuchung von Nukleationsprozessen

Nuklei der flüssigen Phase im übersättigten Dampf:

eingesetzte Tropfen im Nichtgleichgewicht

eingesetzte Tropfen im Gleichgewicht

Homogener übersättigter Dampf:

- > metastabiler Zustandspunkt bei geringer Übersättigung
- > Nukleation bei hoher, schnell sinkender Übersättigung
- metastabiler Zustandspunkt bei hoher Übersättigung
- > Nukleation bei gleichbleibend hoher Übersättigung

Freie Bildungsenthalpie eines Tropfens

Freie Bildungsenthalpie eines Tropfens in einem übersättigten ($\mu > \mu_{sat}$) Dampf:

 $G_n = n(\mu_n^{\text{liq}} - \mu) + \zeta_n$

Für die kritische Größe n^* ist G_n maximal:

Geschwindigkeit von Kondensation und Verdampfung ist gleich.

Oberflächenenergie $\zeta_n = \int_0^{A_n} \gamma dA$

Annahmen der klassischen Nukleationstheorie:

$$\mu_n^{\rm liq} = \mu_{\rm sat}$$

 $\zeta_n = A_n \gamma_{\infty}$

Einsetzung eines Nukleus in ein großes System

Die Übersättigung des Dampfes ändert sich im Laufe der Simulation kaum.

LJ stetig abgeschnitten bei 2,5 σ

Universität Stuttgart

 $N = 130000 \\ \rho = 0,0268 / \sigma^{3} \\ T = 0,80 \ \varepsilon / k_{\rm B}$

Der Intervall entspricht 1 ns.

Klassische Nukleationstheorie: $n^* = 850$

Verfolgung von Tropfen im Nichtgleichgewicht ist ein ineffektives Verfahren.

Indirekte Gleichgewichtssimulation

- Getrennte Äquilibrierung beider Phasen
- Einsetzung eines kleinen Tropfens (100<N<10000) in den Dampf
- Ein maßgeblicher Anteil der Stoffmenge befindet sich im Tropfen
- Vollständige Verdampfung des Tropfens ist unmöglich
- Gleichgewicht nach wenigen Nanosekunden

Lennard-Jones, stetig abgeschnitten bei 2,5 σ

<mark>i t 1</mark>

Kritischer Nukleus: Simulationsergebnisse

Aktivierung der Kondensation:

Bildung eines kritischen Nukleus aus *t** Molekülen

Universität Stuttgart

Oberflächenspannung gekrümmter Phasengrenzen

Oberflächenspannung aus Normaldruckprofilen

Größenabhängigkeit (Tolman):

$$\gamma_n = \frac{\gamma_{\infty}}{1 + 2\delta_{\mathrm{To}}/R}$$

Korrelation aus Simulationen für T = 0.65; 0.70; ... 0.95 $\varepsilon / k_{\rm B}$:

$$\gamma_{\infty} = 2,08 \left(1 - T/T_{\rm c}\right)^{1,21} \varepsilon/\sigma^2$$

$$\delta_{\rm To} = \left(\frac{0,7}{T_{\rm c}^* - T^*} - 0,9\right) Rn^{-1/3}$$

G

Modifikation der klassischen Theorie

Oberflächenkorrektur (SPC) der klassischen Theorie berücksichtigt

$$\zeta_n = \int_0^n \gamma_n \frac{dA_n}{dn} dn$$

und geht von einer nichtsphärischen Oberfläche aus:

$$\frac{A_n}{A_0} = \frac{0.85(1 - T/T_c)^{-1} + 0.24n^{1/3}}{1 + 0.24n^{1/3}}$$

- --- Klassische Theorie
 - Oberflächenkorrektur (SPC)

Effektiver Exzessradius

Der sterische Faktor A_n/A_0 , umgerechnet auf den Radius, führt auf einen **Exzessradius** in der Größenordnung der **Grenzschichtdicke**.

<u>www.itt.uni-stuttgart.de</u>

Nukleationsrate

"Anzahl der Tropfen pro Volumen- und Zeiteinheit"

Klassische Theorie (1921-66):

$$J = \frac{pA^* \rho_{\text{mon}}^2}{\sqrt{2\pi mk_B T}} \exp\left(\frac{-\Delta G^*}{k_B T}\right) Z\vartheta$$

$$J = 0,75J_{\rm c}\rho_{\rm r}^{\frac{-2}{3}} \left(\frac{T_{\rm r}}{\eta}\right)^{\frac{-1}{2}} p_{\rm r}^{2} 1,16^{-\left(\frac{kT}{\Delta\mu}\right)^{2}\eta^{3}}$$

Modell von Hale (1984):

Theorie von Reguera und Reiss (2004):

Nukleation: Video

Direkte Nukleationssimulation

- MD-Zeitschritt liegt in der Regel zwischen 2 und 5 fs
- ➤ Ein Intervall von 1 ns entspricht 2 5 · 10⁵ Zeitschritten
- Ein gesättigter Dampf mit einem Volumen von $(0,1 \ \mu m)^3$ enthält: 80.000 Moleküle (Methan bei 114 K = 0,6 $T_{c, CH4}$) 700.000 Moleküle (CO₂ bei 253 K = 0,83 $T_{c, CO2}$)
- Eine Nukleationsrate kann nur bestimmt werden, wenn einige Nuklei, mindestens ca. 10, aufgetreten sind

#Nuklei/(Volumen V xZeit Δt)=Nukleationsrate J10/ $(10^{-21} \text{ m}^3 \times 10^{-9} \text{ s})$ = $10^{31} / \text{ m}^3 \text{ s}$ Molekulardynamik
 $ab 10^{31} / \text{ m}^3 \text{ s}$ Experiment
 $bis zu 10^{23} / \text{ m}^3 \text{ s}$

Thethermodynamik Technische Thermodynamik und Thermische Verfahrenstechnik PD. Dr.-Ing. habil. J. Vrabec

Massiv-parallele MD-Simulation

1 this doot of 7 of the offer

Auswertung der NVT-Simulationen

Nukleationsrate $J_{\geq i}$ nach Yasuoka und Matsumoto (1998):

Anzahl entstehender Nuklei mit ≥*i* Molekülen pro Volumen und Zeit

Ansatz:

bestimme $J_{\geq i}$ für verschiedene *i*

250.000 Methanmoleküle bei 130 K und 1.606 mol/l (Standard-LJ-Potential)

Universität Stuttgart

Nukleationsrate aus NVT-Simulationen

Universität Stuttgart

Der szilárdsche Dämon

www.itt.uni-stuttgart.de

SZILÁRD

EINSTEIN

McDonald's Dämon

SZILÁRD

EINSTEIN

<u>i t t</u>

www.itt.uni-stuttgart.de

Simulation im metastabilen µVT-Ensemble

Technische Thermodynamik und Thermische Verfahrenstechnik PD. Dr.-Ing. habil. J. Vrabe<u>c</u>

Einstellung des metastabilen Gleichgewichts

The function of the function o

Nukleationsrate

- Simulation (kanonisch, i > 120)
- Simulation (großkanonisch)
 Oberflächenkorrektur (SPC)

Zusammenfassung

- Zur Bestimmung von Nukleationsraten ist es sinnvoll, möglichst große Systeme zu simulieren
- Im großkanonischen Ensemble mit McDonald's Dämon können der metastabile Zustand und der Nukleationsvorgang gleichzeitig untersucht werden
- Die klassische Nukleationstheorie kann so modifiziert werden, dass sie die Nukleationsrate, die kritische Größe und die Oberflächenspannung reproduziert