
Reprint

Repenning, A., & Citrin, W. (1993). Agentsheets: Applying Grid-Based Spatial Reasoning to Human-
Computer Interaction. In 1993 IEEE Workshop on Visual Languages, Bergen, Norway: IEEE Computer

Society Press.

VL ‘93

Agentsheets: Applying

Spatial Reasoning to Human-Computer Interaction

Alex Repenning1, Wayne Citrin2

1Department of Computer Science and Institute of Cognitive Science
2Department of Electrical Engineering

Campus Box 430
University of Colorado, Boulder CO 80309

303 492-1218, {ralex, citrin}@cs.colorado.edu

Keywords:

Agents, agentsheets, cellular automata, construction kits, spatial reasoning, spreadsheets, spatial metaphor, temporal
metaphor, human-computer interaction, object-oriented programming, data-flow, iconic programming environments, visual
programming, grids, building blocks.

Abstract

This paper argues that grid-based spatial reasoning can significantly improve human-computer interaction. While grids
constrain the user’s ability to position objects on a screen on one hand, they greatly increase the transparency of functional
relationships among these objects on the other hand. A system called Agentsheets employs a spatio-temporal metaphor of
communicating agents sharing a structured space. This domain-independent metaphor can be used to create domain-oriented
visual programming systems. This paper explains how Agentsheets fits into the spectrum of domain-orientation ranging from
general purpose visual programming languages to domain-oriented construction kits, gives a short introduction of
Agentsheets, sketches sample applications, and evaluates the contribution of grid-based spatial reasoning to human-computer
interaction.

Agentsheets: Applying
 Spatial Reasoning to

 Human-Computer Interaction

Alex Repenning1, Wayne Citrin2

1Department of Computer Science and Institute of Cognitive Science
2Department of Electrical Engineering

Campus Box 430
University of Colorado, Boulder CO 80309

(303) 492-1218, {ralex, citrin}@cs.colorado.edu

ABSTRACT Visual programs are created by drawing building blocks
and establishing relationships among them.This paper argues that grid-based spatial reasoning can

significantly improve human-computer interaction. While
grids constrain the user’s ability to position objects on a
screen on one hand, they greatly increase the transparency
of functional relationships among these objects on the other
hand. A system called Agentsheets employs a spatio-
temporal metaphor of communicating agents sharing a
structured space. This domain-independent metaphor can
be used to create domain-oriented visual programming
systems. This paper explains how Agentsheets fits into the
spectrum of domain-orientation ranging from general
purpose visual programming languages to domain-oriented
construction kits, gives a short introduction of Agentsheets,
sketches sample applications, and evaluates the
contribution of grid-based spatial reasoning to human-
computer interaction.

The designers of tools having graphical user interfaces are
faced with a dilemma regarding the degree of domain-
orientation represented by the building blocks:

• Construction Kits: High Level Building Blocks provide
powerful abstractions but are quite likely domain-
oriented and therefore not applicable to a broad palette
of different applications.

• General-Purpose Visual Programs: Low Level Building
Blocks are used as a general purpose tool for a wide set
of applications. However, the composition of non-trivial
functionality from these building blocks might be
beyond the reach of a casual computer user.

The low level building blocks of general-purpose visual
programs are too close in their semantics to conventional
programming. Often visual programming systems can be
viewed as syntactic variants of existing conventional
programming languages; for example, boxes and arrows
representing procedures and procedure calls, etc. These
systems typically add only little value to their textual
counterparts.

1. INTRODUCTION

The design and implementation of a human-computer
interface is, no doubt, a verifiably hard task. Construction
kits have been shown to be effective tools for human-
computer interaction [3]. Designers using construction kits
create systems by composing building-blocks instead of
implementing systems on a conventional programming
language level. These building blocks serve as abstractions
of complex functionality. Hardware designers, for instance,
typically think in terms of integrated circuits and not on the
level of individual transistors; that is, they view integrated
circuits as abstractions of compositions of simpler
constituents.

The use of high level graphical building blocks in
construction kits deserves more attention. In situations in
which a construction kit is inadequate, either because it
would lead to a very long-winded solution or because the
set of building-blocks provided is incomplete, a user will be
forced to resort to programming on a much lower level of
abstraction. The gap between a building block level and the
level of a conventional programming language used to
implement the building-blocks is called the “Representation
Cliff” [14]. Users not only have to understand the
underlying programming language, they also have to know
about the possibly very complex transformation between
the language constructs (for example, a library consisting of
a large set of functions), the behavior, and look of artifacts.

Visual programming systems, on the other hand, are
supposed to help users to program computers by
capitalizing on human spatial reasoning skills [2, 18].

Agentsheets [15, 16] take the edge off the representation
cliff by introducing an intermediate level of abstraction
between high-level building-blocks and the level of
conventional programming languages called the spatial
reasoning level. Agentsheets make use of a grid structure
to clarify essential spatial relationships such as adjacency,
relative and absolute position, distance, and orientation.
These relationships, easy for the user to understand and
manipulate, allow the system to create implicit
communication channels between agents.

agentsheet, changing their appearance, playing a sound, or
involving other agents in the process of computation
through effectors. The ability of agents to move extends the
spatial metaphor with a kinetic component. Hence, visual
programming systems based on Agentsheets are not limited
to static, topological relationships between visual entities
on the screen.

Agents

Agent Structure

Depictions

Behavior
(Methods)

Sensors Effectors

State

The spatial reasoning level employed by Agentsheets
supports the design of domain-oriented visual programming
systems by:

• providing a spatial metaphor of communicating agents
sharing a structured space

• providing a temporal metaphor of simple kinetic entities
behaving like autonomous processes that can move in
space

• being domain-independent; the spatial and the temporal
metaphor are not application domain-oriented

• being programming-language-independent; the spatial
and the temporal metaphor do not reflect the underlying
programming language

2. THE AGENTSHEETS SYSTEM

The basic components of Agentsheets are agents [6, 10].
Generally, an agent is a thing (or person) empowered to act
for a client. Each agent, in the Agentsheets sense, is a fine
grained, autonomous unit of behavior. In contrast to many
other agent-based systems, the Agentsheets agents are not
user interface agents playing the role of mediators between
the user and an application. Instead, the Agentsheets agents
are the application. That is, the interaction between a user
and the agents is, in fact, the main focus of an Agentsheets
application.

Figure 1. The Structure of an Agentsheet
2.1 Human-Agent Interaction The depictions in Figure 1 show the graphical

representation of an agentsheet as it is seen on the screen by
users. Each depiction represents the class of an agent; for
example, the symbol of an electrical switch denotes a
switch agent. Furthermore, different states of an agent are
mapped to different depictions; for example, an open
switch versus a closed switch. The agents, corresponding to
the cells in the depiction level, consist of:

The Agentsheets system is a tool for visual programming
system designers and end users. A spatio-temporal
metaphor consisting of “communicating agents sharing a
structured space” (see Figure 1) is used by a visual
programming system designer to create a visual language
tailored to a problem domain. End users program by
placing agents in meaningful arrangements within a grid
where what is “meaningful” is determined by the
application domain.

• Sensors. Sensors invoke methods of the agent. They are
triggered by the user (for example, clicking at an agent)
or by the Agentsheets process scheduler.The human-agent interaction in Agentsheets combines

direct manipulation techniques [17] with simulation.
Agents can simply react to user or agent sensor stimuli (for
instance, mouse clicks, dragging, application of tools,
detecting other agents) or they can take the initiative and
autonomously invoke actions, such as moving around in an

• Effectors. Effectors are a mechanism to communicate
with other agents by sending messages to agents either
using grid coordinates or explicit links (for example
Petri Nets: Figure 4). The receiving agents may be in the
same agentsheet, in a different agentsheet on the same

computer or even in a different agentsheet on a different
computer (connected via network). The messages, in
turn, activate sensors of receiving agents.

concepts like the connectivity of components and
electromagnetic fields to the adjacency concept being part
of the “communicating agents sharing a structured space”
metaphor. In Figure 2 a solenoid is created simply by
putting an electromagnet and an electromagnetic switch
next to each other (the electromagnet it above the leftmost
switch in the bottom row of switches).

• Behavior: The built-in agent classes provide a default
behavior defining reactions to all sensors. In order to
refine this behavior incrementally subclasses of agents
can be defined making use of the object-oriented
paradigm [19].

2.3 Defining Depictions and Behaviors of
Agents

• State. The state describes the agent’s condition.

• Depiction. The graphical representation of the class and
state; that is, the look of the agent. The depictions of agents are defined by the visual

programming systems designer using the Agentsheets icon
editor. The icon editor is an agentsheet in which every pixel
is a very simple pixel agent. The collection of all depictions
is stored in another agentsheet called the gallery. The
gallery serves as agent repository for the visual
programming system designer as well as for the end user.
Special agent classes are provided that have dynamic
depictions, including spread sheet cell agents and colorable
agents.

2.2 Domain-Oriented Metaphors

The essence of Agentsheets is to use the domain-
independent “communicating agents sharing a structured
space” spatio-temporal metaphor to create a new spatio-
temporal metaphor reflecting application domain-oriented
semantics. In the Circuits application (Figure 2) of
Agentsheets a visual programming system designer has
created a set of agents modeling the behavior of simple
electric components like wire pieces, switches, bulbs,
electromagnets, and electromagnetic switches. A user
creates a circuit by composing it from components. At any
time a user can interact with the circuit (for example, by
opening and closing switches, adding and removing
components).

The visual programming designer defines the reactive
behavior of agents by attaching specialized Lisp code to
sensors and defines the proactive behavior of agents by
setting up tasks that are performed spontaneously at regular
intervals. A higher, but less powerful, level of
programming is provided to the end user through graphical
rewrite rules.

2.4 Platforms

Agentsheets has been implemented on Macintosh
computers using Macintosh Common Lisp and on SPARC
Stations using Allegro Common Lisp and the Garnet tool
kit.

3. RELATED WORK

Agentsheets are related to cellular automata (CA) [20].
Similar to CAs, they define complex global behavior in
terms of simple, local relations. CAs also make use of the
high degree of regularity furnished by grids. In contrast to
CAs, however, Agentsheets contain heterogeneous agents
instead of simple homogenous cells. These Agents have a
large set of sensors allowing them not only to perceive the
state of their environment, i.e., the agentsheet, but also to
react to user events (for example, a user clicking at an
agent). Furthermore, the state of an agent is visualized by
an entire bitmap instead by a single pixel on the screen.

Furnas’ BITPICT system employs graphical, two
dimensional rewriting rules to augment human spatial
problem solving [5]. Like CAs, BITPICT operates on the
pixel level.

Figure 2. Agentsheets Application: Circuits

The consistency between a real-world situation and a
domain-oriented spatio-temporal metaphor is controlled by
the person creating the application-domain-tailored visual
programming system. The Circuits application maps MAGES [1] shares the idea of agents and grids with

Agentsheets. However, the agents employed are very

abstract; that is, they are not intended to represent
application domain-oriented entities. Furthermore, the
Agentsheets agents are not bound to cells; they can move
around in the agentsheet, and multiple agents can inhabit
the same cell simultaneously.

Spreadsheets have shown to be powerful tools because they
adopted an interaction format with which people were
already familiar [4]. Many extensions to spreadsheets have
been proposed to further increase their usability. Piersol
suggested the use of object-oriented techniques for
spreadsheets [13]. In his system a cell may not only be
represented with a piece of text, but also with a bitmap.
However, in Piersol’s system individual bitmaps are not
intended to be part of a large composite picture.

Figure 3. Flow Semantics: Channels

In the case of the Channel system logical relationships and
physical relationships (for example Euclidean distance)
between components are crucial. In the Petri net
application, the position of so-called places and transitions
are irrelevant. Agentsheets provides “explicit relationships”
objects, such as links, but it is generally suggested that
designers minimize their usage since they generally result
in a weaker spatial metaphor.

Not only are spreadsheets user interfaces, they can also be
employed to design user interfaces [7, 8, 12, 21].
Agentsheets go one step further by unifying the graphical
user interfaces to be designed with the design tool. There is
no distinction between the model of the artifact to be
designed and the model of the tool to design it.

4. EXAMPLE APPLICATIONS

Agentsheets is a substrate to build applications like domain-
oriented visual programming systems, and simulation
environments. Since the appearance of the first prototype in
1990 about 40 applications have been built using
Agentsheets ranging from very simple educational games to
very complex design environments. Hence, at the cost of
giving an in-depth explanation of one application, it seems
appropriate to illustrate the versatility of Agentsheets by
briefly describing four different applications.

The spatial organization of agents in a grid and their ability
to communicate with each other can be used to simulate the
semantics of flow. Individual agents, representing flow
propagators (for example, pieces of wire or water pipes),
are connected simply by placing them next to each other;
that is, connectivity is represented by spatial adjacency.
Figures 2 and 3 show applications relying on flow
semantics. Users can interact with more complex conductor
agents like switches and valves to control the flow. Figure 4. Petri Net

The ability to animate agents (change look, move, play
sounds) can be used to implement very different
Agentsheets applications. Figure 5 shows an application to
simulate ecosystems. End users build environments
consisting of mountains, grass tundra, and so on. Then, they
set out animals (for example, wolfs, and bear) in those
environments. The behavior of the animals is controlled by
spatial relations including adjacency and overlap.

Figure 6. Phone Based Voice Dialog Environment

5. DISCUSSION

One of the central problems in visual programming is to
parse pictures. A desirable goal is to find spatial
representations that can be parsed efficiently by machines
as well as human beings. Often the ease of parsing through
humans is achieved by adding very explicit relationship
objects, such as arrows connecting icons (as seen in data
flow diagrams), to spatial representations. To reduce screen
clutter these explicit relationship objects can frequently be
replaced with implicit topology information. Unconstrained
topological information, however, may be hard for humans
to parse. A grid structure is one way to disambiguate
topological information.

Figure 5. Ecosystem Simulation

The individual patches of the environment and the animals
are both agents. End users define simple behaviors for all
ecosystem agents. The objective for users is to create
ecologically stable environments as well as to get an
intuition for the relationships between local behavior and
global consequences.

Figure 6 below depicts a more “traditional” visual
programming environment based on Agentsheets used to
design and run phone-based voice dialog applications [16].
The semantics of voice dialog diagrams are captured by 3
rules: horizontal adjacency or an arrow indicates a temporal
relationship; vertical adjacency indicates a choice for the
user or by the system. This application includes two
different interfaces for two types of users:

Grids are well known in the area of graphic design,
typography, and three-dimensional design. Müller-
Brockman [11] characterizes the purpose of grids as
follows:

• the customer interface simulates the very limited
touch-tone-button-input/voice-output user interface of an
ordinary telephone.

“The use of a grid system implies the will to systematize,
to clarify; the will to penetrate to the essentials, to
concentrate; the will to cultivate objectivity instead of
subjectivity;...”

• the voice dialog designer interface shows a voice
dialog designer a trace of usage and allows the designer
to modify a design, while the system is in use, based on
customer’s suggestions or problems.

The main reasons to use grids in Agentsheets are:

• Avoiding Brittleness: Without a grid spatial relations can
become very brittle. A brittle spatial representation is a
representation in which a small change to the visual
manifestation of a program on the screen by a user may
result in a dramatically different interpretation by the
machine. For instance, moving an object (agent) on the
screen one pixel may change its spatial relation to an
other object in an underlying machine interpretation
model from an adjacent relation to a non-adjacent
relation. Grids reduce brittleness by discretizing the
positions of objects and, therefore, they reduce the
chance of mismatches between the interpretation of a
picture by a human and the machine.

• Relational Transparency: The use of grids increases the
transparency of spatial relationships considerably.

• Implicit Communication: Communication among agents
is accomplished implicitly by placing them into the grid.
That is, no explicit communication channel between
agents needs to be created by the user. In the circuit
Agentsheet shown in Figure 1 and Figure 2, the
electrical components get “wired-up” simply by placing
them in adjacent positions. The individual agents know
how to propagate information (flow in this case); for
example, the voltage source agent will always propagate
flow to the agent immediately below it.

ACKNOWLEDGMENTS

This research is supported by the National Science
Foundation under the grant MDR-9253425, Apple
Computer Inc., and US WEST Advanced Technologies.
The HCC group at the University of Colorado has provided
invaluable and insightful help supporting this work.

REFERENCES
• Regularity: Grids also ease the location of such common

regular substructures as one dimensional vectors or
submatrices.

1 . T. Bouron, J. Ferber and F. Samuel, "MAGES: A
Multi-Agent Testbed for Heterogeneous Agents,"
Decentralized A.I. 2, Saint-Quentin en Yvelines,
France, 1991, pp. 195-214.

6. CONCLUSIONS 2 . S.-K. Chang, Principles on Visual Programming
Systems, Prentice Hall, New Jersey, 1990.

Agentsheets is a tool for generating iconic programming
environments [9]. It is not intended to replace general-
purpose visual programming techniques because for most
of these established visual representation techniques very
elegant implementations already exist. Instead, the spatio-
temporal metaphor of Agentsheets supports the creation of
domain-oriented programming and simulation
environments in a domain-independent way. As such,
Agentsheets can be viewed as a generic substrate to quickly
prototype and implement new approaches to programming
that make use of new, innovative spatial and temporal
metaphors.

3 . G. Fischer and A. C. Lemke, "Construction Kits and
Design Environments: Steps Toward Human
Problem-Domain Communication," HCI, Vol. 3, pp.
179-222, 1988.

4 . G. Fischer and C. Rathke, "Knowledge-Based
Spreadsheets," 7th National Conference on Artificial
Intelligence, St. Paul, MI, 1988, pp. 1-10.

5 . G. W. Furnas, "New Graphical Reasoning Models
for Understanding Graphical Interfaces,"
Proceedings CHI'91, New Orleans, Louisiana, 1991,
pp. 71-78.

6 . M. R. Genesereth and N. J. Nilson, Logical
Foundations of Artificial Intelligence, Morgan
Kaufman Publishers, Inc., Los Altos, 1987.

7 . S. E. Hudson, "An Enhanced Spreadsheet Model for
User Interface Specification," Technical Report, TR
90-33, University of Arizona, Department of
Computer Science, Tucson, AZ, 1990.

8 . C. Lewis, "NoPumpG: Creating Interactive Graphics
with Spreadsheet Machinery:," Technical Report,
CU-CS-372-87, Department of Computer Science,
University of Colorado at Boulder, Boulder,
Colorado 80309-0430, 1987.

9 . D. W. McIntyre and E. P. Glinert, "Visual Tools for
Generating Iconic Programming Environments,"
Proceedings of the 1992 IEEE Workshop on Visual
Languages, Seattle, 1992, pp. 162-168.

10 . M. Minsky, The Society of Minds, Simon &
Schuster, Inc., New York, 1985.

11 . J. Müller-Brockmann, Grid Systems in Graphic
Design: A Visual Communication Manual for
Graphic Designers, Typographers and Three
Dimensional Designers., Verlag Arthur Niggli,
Niederteufen, 1981.

12 . B. A. Myers, "Graphical Techniques in a
Spreadsheet for specifying User Interfaces,"
Proceedings SIGCHI'91, New Orleans, LA, 1991,
pp. 243-249.

13 . K. W. Piersol, "Object Oriented Spreadsheets: The
Analytic Spreadsheet Package," OOPSLA '86, 1986,
pp. 385-390.

14 . A. Repenning, "Creating User Interfaces with
Agentsheets," 1991 Symposium on Applied
Computing, Kansas City, MO, 1991, pp. 190-196.

15 . A. Repenning, "Agentsheets: A Tool for Building
Domain-Oriented Visual Programming
Environments," INTERCHI '93, Conference on
Human Factors in Computing Systems, Amsterdam,
NL, 1993, pp. 142-143.

16 . A. Repenning and T. Sumner, "Using Agentsheets to
Create a Voice Dialog Design Environment,"
Proceedings of the 1992 ACM/SIGAPP Symposium
on Applied Computing, Kansas City, 1992, pp. 1199-
1207.

17 . B. Shneiderman, "Direct Manipulation: A Step
Beyond Programming Languages," in Human-
Computer Interaction: A multidisciplinary
approach, R. M. Baecker and W. A. S. Buxton, Ed.,
Morgan Kaufmann Publishers, INC. 95 First Street,
Los Altos, CA 94022, Toronto, 1989, pp. 461-467.

18 . N. C. Shu, "Visual Programming: Perspectives and
Approaches," IBM Systems Journal, Vol. 28, pp.
525-547, 1989.

19 . M. Stefik and D. G. Bobrow, "Object-Oriented
Programming: Themes and Variations," The AI
Magazine, ,pp. 40-61, 1984.

20 . T. Toffoli and N. Margolus, Cellular Automata
Machines, MIT Press, Cambridge, Massachusetts,
1987.

21 . N. Wilde and C. Lewis, "Spreadsheet-based
interactive graphics: from prototype to tool,"
Proceedings CHI'90, Seattle, WA., 1990, pp. 153-
159.

