
CECS 329, Solutions to LO5 Assessment, 10-13, Fall 2022, Dr. Ebert

NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMU-
NICATION ALLOWED. Submit each LO solution on ONE SIDE of a single sheet of
paper.

Problems

LO1. An instance of the Simultaneous Incongruences decision problem is a set

S = {(a1, b1), (a2, b2), . . . , (an, bn)}
of pairs of positive integers, where ai ≤ bi for every i = 1, . . . , n. The problem is to decide if
there is a positive integer x for which

x 6≡ ai mod bi,

for every i = 1, . . . , n.

(a) Verify that S = {(1, 2), (2, 3), (3, 5), (4, 7), (5, 11), (6, 13)} is a positive instance of Simultaneous
Incongruences.

Solution. x = 10 satisfies x 6≡ ai mod bi, for each i = 1, . . . , 6.

(b) Provide two size parameters for the Simultaneous Incongruences problem. Hint: you
may assume bn is the largest integer occurring in any pair in S.

Solution. n: number of pairs. log bn: bound on the number of bits required by each
integer.

(c) Rocky claims that he has discovered an algorithm for deciding Simultaneous Incongruences

whose running time is worst-case quadratic and includes both size parameters. Provide a
big-O expression that accurately represents Rocky’s claim.

Solution. O(n log bn).

LO2. A flow f (2nd value listed on each edge) has been placed in the network G below.

(a) Draw the residual network Gf and use it to determine an augmenting path P . Highlight
path P in the network so that it is clearly visible.
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(b) In the original network, cross out any flow value that changed, and replace it with its
updated value from f2 = ∆(f, P ).

Answer. See the original network graph.

(c) What one query can be made to a Reachability oracle to determine if f2 is a maximum
flow for G? Hint: three inputs are needed for the reachable query function. Cleary define
each of them.

Answer. reachable(Gf2 , s, t).

LO3. Answer the following questions.

(a) Provide the definition of what it means to be a mapping reduction from decision problem
A to decision problem B.

Answer. See page 1 of Mapping Reducibility lecture.

(b) As part of her network security project, Laura is working with a simple graph H that has
78 vertices and 232 edges. She needs to know whether or not H has a Hamilton path. Her
colleague Simon has implemented the Python function

Boolean has_LPath(Graph G, int k);

that decides if the input graph G has a simple path of length k. Explain how Laura can
use Simon’s function to determine whether or not H has a Hamilton path.

Answer. Laura can call has LPath with inputs H and k = 77, since a graph will have a
Hamilton path iff it has a simple path of length |V | − 1.

LO4. Recall that an instance of the Hamilton Cycle (HC) decision problem is a simple graph G =
(V,E) and the problem is to decide if G has a Hamilton cycle, i.e. a path P that visits every
vertex of G exactly once before returning to P ’s start vertex. We now establish that HC is a
member of NP.

(a) Define a certificate for verifying that an instance of HC is positive. Hint: recall that a path
can be represented as a sequence of vertices.

Answer. Certificate P is a sequence of n = |V | vertices v1, v2, . . . , vn−1, vn.

(b) Provide a semi-formal verifier algorithm for HC.

Answer.

Create an empty lookup table T .

For each i = 1, . . . , n− 1,

If (vi, vi+1) 6∈ E, then return 0.

If vi ∈ T , then return 0. //vi occurs more than once in P

Insert vi into T .

If vn ∈ T , then return 0. //vn occurs more than once in P

If (vn, v1) 6∈ E, then return 0.

Return 1.

(c) Provide size parameters for HC and clearly define each one. Hint: there are two of them.

Answer. m = |E|, n = |V |.
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(d) Provide the verifier’s running time. Justify your answer.

Answer. After creating an edge lookup table in O(m) steps, O(n) steps are required to
verify that each (vi, vi+1) is an edge of G. Also, it takes O(n) steps to i) check that each
vertex v does not appear in T , followed by inserting v into T . This gives a total running
time of O(m+ n).

LO5. An instance C of 3SAT consists of clauses c1 = (x1, x2, x3), c2 = (x2, x3, x4), c3 = (x1, x2, x4), and
c4 = (x1, x3, x4). Answer the following questions about the mapping reduction f(C) = (G, k)
provided in lecture from 3SAT to Clique and applied to instance C.

(a) How many vertices and edges does G have? Explain and show work. Hint: there are six
different vertex-group pairs.

Answer. |V | = (3)(4) = 12, while |E| = 9 + 7 + 7 + 7 + 8 + 8 = 46 is the number of
consistent pairs of vertices that come from different groups.

(b) What is the value of k?

Answer. k = 4, the number of clauses.

(c) Given that α = (x1 = x2 = 0, x3 = 1, x4 = 0) satisfies C, provide a clique set for G that
certifies (G, k) is a positive instance of Clique. Hint: for each clique member, indicate
the group from which it came.

Answer. C = {x2, x2, x1, x1} is a 4-clique, where the i th literal in C comes from group i,
i = 1, 2, 3, 4. Since C is a consistent set of literals, and each literal comes from a different
group (i.e. clause), it follows that C forms a clique in G.
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