NO NOTES, BOOKS, ELECTRONIC DEVICES, OR INTERPERSONAL COMMUNICATION ALLOWED. Submit each LO solution on ONE SIDE of a single sheet of paper.

## Problems

LO1. An instance of the Simultaneous Incongruences decision problem is a set

$$
S=\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)\right\}
$$

of pairs of positive integers, where $a_{i} \leq b_{i}$ for every $i=1, \ldots, n$. The problem is to decide if there is a positive integer $x$ for which

$$
x \not \equiv a_{i} \bmod b_{i},
$$

for every $i=1, \ldots, n$.
(a) Verify that $S=\{(1,2),(2,3),(3,5),(4,7),(5,11),(6,13)\}$ is a positive instance of Simultaneous Incongruences.
Solution. $x=10$ satisfies $x \not \equiv a_{i} \bmod b_{i}$, for each $i=1, \ldots, 6$.
(b) Provide two size parameters for the Simultaneous Incongruences problem. Hint: you may assume $b_{n}$ is the largest integer occurring in any pair in $S$.
Solution. $n$ : number of pairs. $\log b_{n}$ : bound on the number of bits required by each integer.
(c) Rocky claims that he has discovered an algorithm for deciding Simultaneous Incongruences whose running time is worst-case quadratic and includes both size parameters. Provide a big-O expression that accurately represents Rocky's claim.
Solution. $\mathrm{O}\left(n \log b_{n}\right)$.
LO2. A flow $f$ (2nd value listed on each edge) has been placed in the network $G$ below.
(a) Draw the residual network $G_{f}$ and use it to determine an augmenting path $P$. Highlight path $P$ in the network so that it is clearly visible.


(b) In the original network, cross out any flow value that changed, and replace it with its updated value from $f_{2}=\Delta(f, P)$.
Answer. See the original network graph.
(c) What one query can be made to a Reachability oracle to determine if $f_{2}$ is a maximum flow for $G$ ? Hint: three inputs are needed for the reachable query function. Cleary define each of them.
Answer. reachable $\left(G_{f_{2}}, s, t\right)$.
LO3. Answer the following questions.
(a) Provide the definition of what it means to be a mapping reduction from decision problem $A$ to decision problem $B$.
Answer. See page 1 of Mapping Reducibility lecture.
(b) As part of her network security project, Laura is working with a simple graph $H$ that has 78 vertices and 232 edges. She needs to know whether or not $H$ has a Hamilton path. Her colleague Simon has implemented the Python function

Boolean has_LPath(Graph G, int k);
that decides if the input graph $G$ has a simple path of length $k$. Explain how Laura can use Simon's function to determine whether or not $H$ has a Hamilton path.
Answer. Laura can call has_LPath with inputs $H$ and $k=77$, since a graph will have a Hamilton path iff it has a simple path of length $|V|-1$.

LO4. Recall that an instance of the Hamilton Cycle (HC) decision problem is a simple graph $G=$ $(V, E)$ and the problem is to decide if $G$ has a Hamilton cycle, i.e. a path $P$ that visits every vertex of $G$ exactly once before returning to $P$ 's start vertex. We now establish that HC is a member of NP.
(a) Define a certificate for verifying that an instance of HC is positive. Hint: recall that a path can be represented as a sequence of vertices.
Answer. Certificate $P$ is a sequence of $n=|V|$ vertices $v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}$.
(b) Provide a semi-formal verifier algorithm for HC.

Answer.
Create an empty lookup table $T$.
For each $i=1, \ldots, n-1$,
If $\left(v_{i}, v_{i+1}\right) \notin E$, then return 0 .
If $v_{i} \in T$, then return $0 . / / v_{i}$ occurs more than once in $P$
Insert $v_{i}$ into $T$.
If $v_{n} \in T$, then return $0 . / / v_{n}$ occurs more than once in $P$
If $\left(v_{n}, v_{1}\right) \notin E$, then return 0 .
Return 1.
(c) Provide size parameters for HC and clearly define each one. Hint: there are two of them.

Answer. $m=|E|, n=|V|$.
(d) Provide the verifier's running time. Justify your answer.

Answer. After creating an edge lookup table in $\mathrm{O}(m)$ steps, $\mathrm{O}(n)$ steps are required to verify that each $\left(v_{i}, v_{i+1}\right)$ is an edge of $G$. Also, it takes $\mathrm{O}(n)$ steps to i) check that each vertex $v$ does not appear in $T$, followed by inserting $v$ into $T$. This gives a total running time of $\mathrm{O}(m+n)$.

LO5. An instance $\mathcal{C}$ of 3SAT consists of clauses $c_{1}=\left(x_{1}, \bar{x}_{2}, x_{3}\right), c_{2}=\left(\bar{x}_{2}, x_{3}, x_{4}\right), c_{3}=\left(\bar{x}_{1}, x_{2}, \bar{x}_{4}\right)$, and $c_{4}=\left(\bar{x}_{1}, \bar{x}_{3}, x_{4}\right)$. Answer the following questions about the mapping reduction $f(\mathcal{C})=(G, k)$ provided in lecture from 3SAT to Clique and applied to instance $\mathcal{C}$.
(a) How many vertices and edges does $G$ have? Explain and show work. Hint: there are six different vertex-group pairs.
Answer. $|V|=(3)(4)=12$, while $|E|=9+7+7+7+8+8=46$ is the number of consistent pairs of vertices that come from different groups.
(b) What is the value of $k$ ?

Answer. $k=4$, the number of clauses.
(c) Given that $\alpha=\left(x_{1}=x_{2}=0, x_{3}=1, x_{4}=0\right)$ satisfies $\mathcal{C}$, provide a clique set for $G$ that certifies $(G, k)$ is a positive instance of Clique. Hint: for each clique member, indicate the group from which it came.
Answer. $C=\left\{\bar{x}_{2}, \bar{x}_{2}, \bar{x}_{1}, \bar{x}_{1}\right\}$ is a 4 -clique, where the $i$ th literal in $C$ comes from group $i$, $i=1,2,3,4$. Since $C$ is a consistent set of literals, and each literal comes from a different group (i.e. clause), it follows that $C$ forms a clique in $G$.

