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Lecture 5-3: 
Applications polytrope 

models 

Literature: MWW Chapter 19 
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g) Eddington’s standard model 

In this model, the energy equation and equation of 
diffusive radiative transfer are included (approximately) 
to arrive at simple solutions. In essence, this model 
boils down assuming a constant b throughout the star. 
We looked at this in section 5a. From a slightly different 
angle, with b is constant we have Prad/P is constant: 
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∇ =
d lnT
d lnP

=
3

64πσ
Pκ
T 4

Lr
GMr

with Prad = 4σT 4 3c  we can write: ∇ =
P

4Prad
dPrad
dP

dPrad
dP

=
κL

4πcGM
Lr L
Mr M

Introduce, ε ≡ dLr dMr

ε(r) = ε dMr
0

r

∫ Mr =Lr Mr

η(r) ≡ ε(r) ε(R) =
Lr L
Mr M

dPrad
dP

=
L

4πcGM
κ (r)η(r)
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Prad r( ) = L
4πcGM

κ r( )η r( ) P r( )  with 

κ r( )η r( ) = κηdP
0

P r( )

∫ P r( ),  and we have,

1−β = L
4πcGM

κ r( )η r( )

Now, realize that κ  decreases rapidly inwards while η  decreases 
rapidly outwards for main sequence stars. Eddington assumed
that β  is constant and that results in a simple T -P or T -ρ  relation.
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ρ 4/3 r( ),  see slide 4 lecture 5-1

The constant in brackets is also equal to the constant K in slide 8 lecture 5-1
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but note β  and M  in this T -ρ  relation are not independent5 



One-parameter family of models:    decreases with increasing M 

Other properties:  ρc = 54.18ρ

Pc =1.242×1017 M
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Standard model provides the run of density, temperature, and 
pressure. For absolute values, we need to provide stellar mass 
and radius. i.e.,  
 
 
as the constant K in the pressure density relation is not 
specified aforehand in the standard model. E.g., the 
combination       sets      and hence K but then there are still an 
infinite number of solutions corresponding to different R. 

M  & R ⇒  ρ  ⇒ ρc  and hence ρ r( ), T r( ), P r( )  are set
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m≈0.6 

Inner region well approximated by a polytrope of index 3. 
Outer region is convective and better approximated by a 
polytrope of index 1.5 (but this is only 0.6% of the mass) 
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The Eddington Solar model 
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h) Completely convective stars 

Examples: late M dwarfs 
                  cool, gravitationally contracting stars 

Internal Structure 
Consider case with                            everywhere in the star 

Then:                or                  with 
If Γ2 constant     completely convective star: polytrope of index n  

Useful specific case: ideal gas     n = 3/2 (§5-2, slides 8-10)   

 
 

 

Radial behavior of  

follows from Lane-Emden function: 
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Γ2 −1

∇ =∇ad = (Γ2 −1) /Γ2

θ3/2

(effective polytropic index) 
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i) Hayahsi track 

Hayashi track: Location of low-mass (<3 Mo), fully 
convective stars in the  Hertzsprung-Russell diagram. 
Relevant for low-mass protostars, red giants, and 
asymptotic red giants. 
 
Match fully convective stellar structure models with 
boundary conditions for the photosphere. Assume the star 
is fully convective (polytrope with n=3/2) with a thin 
radiative outer layer where the opacity is dominated by H–.  
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dP
dr

= −gρ  and dτ
dr

= −κρ  or dP
dτ

=
g
κ

Assume κ  is constant,

P τ = 2 3( ) = 2g
3κ

 with g = GM
R2

with P = k
µmu

ρT, κ=κoρ
0.5T 7.7,  and κo =10−25Z 0.5  we have,

ρ1.5T 8.7 =
2µmu

3k
G
κo

M
R2
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For a polytrope with n = 3 2  we have,

ρ
ρc
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We assume that convection starts at the photosphere (T = Teff )

and use L = 4πR2σTeff
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Summary 

Fully convective stars (with a radiative atmosphere) of a 
given mass and composition in hydrostatic equilibrium lie at 
a constant (low) effective temperature independent of 
luminosity. Conversely, the effective temperature is nearly 
independent of how the luminosity is generated. 
 
Objects to the right of these Hayashi tracks have too steep a 
temperature gradient and convection will set in. Convection 
quickly sets the adiabatic temperature gradient (lecture 3-3, 
slide 14). That quickly rearranges the stellar structure and 
the star will settle on the Hayashi track.  
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j) protostars & the Hayashi track 

Premain sequence evolution: Molecular cloud core 
collapses on a slow timescale (t~1/(Gr)1/2). When the core 
becomes optically thick, the internal temperature rises 
(virial theorem) and molecules (e.g., H2) will dissociate, 
and then H and He will ionize.  
 
 
 
No nuclear reactions. High luminosity and high opacity. 
Protostar is fully convective except for an H– dominated 
atmosphere. Star will start high up on the Hayashi track. 
As it contracts, the radius will decrease but the effective 
temperature stays constant. 

Rps

Ro
≈ 50 M

Mo

,  and T ≈105  K (virial theorem)
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Et = −Ei = Eg / 2 and L = !Et = − !Eg 2 ≈ 3GM 2

7R2
dR
dt

with L = 4πR2σTeff
4 , we then have:

1
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where Ro = R(t = τ KH 3) with τ KH = 3GM 2 7RoL0 and L0 = 4πR0
2σTeff

4
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Radiative (Henyey) protostellar tracks 

Convection will stop when ∇rad =
d lnT
d lnP

=
3κRP

64GπσT 4
L
M

< 0.4

As the star contracts, the luminosity will drop and radiative 
energy transport will take over in the core 
 
 
 
 
 
The star evolves now towards the left in the HR diagram with 
a slowly increasing luminosity. 

Note thatPc Tc
4  does not decrease (slide 10 of section 5.2). 

T ∝M R  and ρ∝M R3  and κ ∝ρT −3.5  and adopt dT dr = Tc R
L∝M 5.5R−0.5
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Summary 

A protostar will initially be fully convective and contract on a 
Hayashi track of (almost) constant effective temperature. 
Eventually, the core will become radiative, the star will 
switch to a Henyey track and the luminosity will 
(moderately) increase.  As the star contracts, the central 
temperature will increase (Virial theorem). Eventually, H-
burning will be ignited in the core and the star will settle on 
the main sequence. The timescale for this is set by the 
Kelvin Helmholtz timescale and this is set for when the star 
evolves the slowest (eg., near the main sequence). 

17 



18 



19 

Protostellar tracks (solid lines) for different protostellar stellar masses. Isochrones 
are indicated by dashed lines. The solid lines crossing the tracks indicate the region 
of  D-burning and Li-burning. 
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k) White dwarfs 

A white dwarf is the stellar remnant of a low mass star with a 
mass typically half that of the Sun but a radius comparable 
to the Earth, corresponding to a density of 106 g/cm3. The 
star is pressure-supported by a degenerate electron gas 
with (cf., Lecture 3-2 slide 14): 
 
 
 
 
 
The mechanical properties are controlled by the electrons 
while the thermal energy is stored in the ions. We can use 
polytropes of index 3/2 and 3 to describe them.  

P = KNR ρ µe( )5/3     non-relativistic

P = KER ρ µe( )4/3     extremely relativistic
where the constants Ki  only depend on atomic physics
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Mass-radius relation 

For the non-relativistic equation of state, we find (Lecture 
5-2, slide 8):  
 
 
Thus, a more massive white dwarf has to be smaller and 
will be denser than a less massive white dwarf. Eventually 
when the density is high enough, the electron gas will 
become relativistic (cf., lecture 3-2 slide 25) and we have: 

M 1/3R = cst    and   ρ ∝M R3 ∝M 2
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2

Chandrasekhar mass

Mch =
5.86
µe

2 Mo ≈1.46Mo  for C,  O, ... composition
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Heuristically: Mass-radius relation 

When analyzing stars using the virial theorem, we discovered  
that stars are unstable when g<4/3 (lecture 2 slide 11). Evaluate 
hydrostatic equilibrium 
 
 
 
 
 
 
 
Non-relativistic: For any given mass, star can adjust its radius to 
reach equilibrium. 
Extreme-relativistic: Internal energy and gravity have same 
dependence on radius but different dependence on mass. So, if 
mass is too large, gravity will win. 

		

dP
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= −qGMρ
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White dwarfs that reach the Chandrasekhar mass – either  
through accretion from a companion or through merging of 
binary WDs – will explode as SN Ia. 
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Observed mass-size relation for White Dwarfs 
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Radiative cooling 

The mechanical and thermal structure are decoupled. 
Hence, we have to relate the temperature to the luminosity 
and mass to calculate the cooling rate and timescale. Or 
equivalently, we will use the luminosity to calculate the 
internal temperature. Conduction keeps the interior at 
(almost) uniform temperature. We will assume that the 
photosphere is radiative (only true for white dwarfs with 
SpT earlier than A) and is described by the ideal gas law. 
Use the radiative zero conditions (lecture 5-1, slide 5/6) 
with Kramers opacity,  κ =κoρT
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L = 5.7×105 µ
µe
2

Ttr
7/2

Z(1+ X)
M
MO

 
Ideal gas:                                          (i) 
 
Transition from non-degenerate to degenerate gas at 

 with:  

                                                                                                (ii) 

Use (i) and (ii), and     for bound-free transitions  
 
 
Since interior is isothermal: Ttr is interior temperature 
Integrate radiative gradient between T=0 and T=Ttr  
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	κ 0 ⇒

⇒



Cooling time scale can be evaluated from: 
 

                      (iv) 
 
Differentiate eqn (iii), substitute in eqn (iv) and use eqn (iii) to 
eliminate Ttr: 

		
L= − dE
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L0 	is	luminosity	at	start	of	cooling



 
 
(    mean molecular weight per nucleus; 4.4 for Y=0.9, Z=0.1, 12 for C white 

dwarf) 

Cooling time: tcool>1010 yr when L<10-4L#           

Evolution along line of constant radius in HRD 

	µA
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All energies sources have to be taken into account: 
neutrino losses & nuclear energy left-overs (early on), 
gravitational contraction (early on and in the last stages) 
crystallization energy, followed by Debye cooling. 
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l) Neutron stars 

Neutron stars pack the mass of the Sun in a radius of some  
10 km (e.g., the size of Amsterdam), corresponding to a density 
of ~1014 g/cm3.  
Nuclear energy generation stops after Fe-core formation. The 
core will collapse and neutronization occurs (Lecture 4-2 slide 
20): 
If the core is not too massive, collapse will be halted by the 
degeneracy pressure due to neutrons. The equation of state is 
complex but let’s just scale the Chandrasekhar mass: 
 
 
 
Actually, have to take into account that neutrons can couple and 
form a boson. Limiting mass ~3-4 Mo. Cores more massive than 
this will collapse and form a black hole. 

e− + p+ → n0 +νe

Mch,n =1.46 2
µn
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≈ 5.8 Mo


