
Object Oriented 
Programming

Modularity

2023/24



Module?



Lecture Outline

•Evolution and history of programming languages

•Modularity

•Example



History of Programming



Programming Paradigms

• How and why do languages develop?

• How does the OOP differ from previous paradigms?

• Aspects of software quality.



Large Projects

• Programming of large software projects qualitatively 
differs from creating of small programs.

• The reason for thinking about the principles of 
programming is the increasing complexity of computer 
programs.



Paradigms

• Imperative programming (we describe HOW to solve)

• Declarative programming (we declare WHAT to solve)

• Functional programming

• Logic programming

• Modular programming

• Object oriented programming



Imperative Programming

• The sequence of steps (statements) by which we change the state of 
program variables.

• Structured programming

• Sequence, iteration (loops), branching (selection), jumps, recursion and abstraction.

• As we know from the most commonly used languages.



Modular Programming

• Top-down design of code.

• Division of the program into independent, 
interchangeable modules that provide partial 
functionality.

• The module contains everything necessary to ensure 
the functionality (data and algorithms).



Object Oriented Programming



Factors of Software Quality

• Internal and external factors.

• Internal factors are hidden from the user. (HOW)

• External factors describe the external behavior. (WHAT)

• It is necessary to know how to measure the quality



External Factors

• Correctness

• Robustness

• Reusability, extendibility, usability, compatibility,...



Key Factors



Robustness?

• Robustness costs can be higher than correctness costs.

• Robustness is not the goal of the OOP course, so we will 
not require it,…

• …therefore, we will always assume the correct inputs



Other Factors



Modularity



Modul

• A software construction method is modular, then, if it helps 
designers produce software systems made of autonomous 
elements, modules, connected by a coherent, simple structure.



Modularity of Program

• Understandability

• Independence

• Composability

• Encapsulation

• Explicit interface

• Syntactic support



Understandability

• The module should provide a clearly defined and simple task, 
or a few clearly defined tasks.



Independence

• Each module must be relatively independent and should have 
the minimum possible number of links to other modules.

• It would not be appropriate for all program modules to be 
interconnected and interdependent.

• The modules cannot be individually tested, understood, or 
transferred to another project.



Composability

• The modules need to be combined with each other. It must be 
possible to take the module and use it in another context, or 
even in another project.



Encapsulation

• Modules must have some privacy; it is desirable that any 
information that is not needed for clients of modules should be 
hidden inside the module.

• In practice, it shows that most of the functionality of the module 
are hidden, and only a small part is visible externally.

• Hidden parts of a module are often called module 
implementation and public parts are called interface of the 
module.



Explicit Interface

• It must be universally understood what assumptions module 
needs to perform its tasks.



Syntactic Support

• The modules of a computer program must be clearly defined as 
syntactic units of the program.

• From the source code of the programming language must be 
quite clear where a single module begins and ends.



Five Criteria and Rules

• Decomposability

• Composability

• Understandability

• Continuity

• Protection

• Direct Mapping

• Few Interfaces

• Small interfaces (weak coupling)

• Explicit Interfaces

• Information Hiding



Criteria Decomposability, Composability, Understandability



Criteria Continuity, Protection



Rules Direct Mapping, Few Interfaces, Small interfaces, Explicit Interfaces, Information Hiding



Example



Class x Object

• Class as a static description.

• Object as a run-time representation:

• state (data)

• behavior (algorithms)



Terminology

• Class

• Member function, method

• Member variable

• Object, instance of a class

• Constructor, destructor



Class Declaration



Class Definition (implementation)



Using the Class 1



Using the Class 2



Result



Using the Class 3



Seminar Assignments

• Implement KeyValue class according to the lecture and create a build a linear structure of 
many (for example, thousands) of objects and work with it (display a list of all keys from 
the first to the last object, for example).

• Implement a similar class to KeyValue with value and key member variables of string 
type (class) and with two adjacent objects (pointers to objects). Implement a simple 
structure for animal identification; key is a decision criterion, and value is an animal 
name, species, etc. Put at least ten objects into the structure and then display its content in 
a suitable form.



Seminar Questions

• What is the main motivation for developing programming paradigms from the 
imperative to the object-oriented?

• What is imperative programming?

• What is modular programming?

• What are the main factors of software quality?

• What understandability of module?

• What is the independence of module?

• What is composability of modules?

• What is the encapsulation of module?

• What is the explicit interface of a module?

• What is the syntactic support for modularity?

• What are the five criteria for good modularity?

• What is meant by the five rules of good modularity?

• What is a constructor for? Give an example.

• What is a destructor for, when do we need it and when don't we need it? Give an 
example.



Sources

• History of programming languages. Wikipedia.
https://en.wikipedia.org/wiki/History_of_programming_languages#Establishing_fundamental_paradigms

• Bertrand Meyer. Object-Oriented Software Construction. Prentice 
Hall 1997. [3-16, 39-52]

https://en.wikipedia.org/wiki/History_of_programming_languages#Establishing_fundamental_paradigms

	Snímek 1: Object Oriented Programming
	Snímek 2: Module?
	Snímek 3: Lecture Outline
	Snímek 4
	Snímek 5: Programming Paradigms
	Snímek 6: Large Projects
	Snímek 7: Paradigms
	Snímek 8: Imperative Programming
	Snímek 9: Modular Programming
	Snímek 10: Object Oriented Programming
	Snímek 11: Factors of Software Quality
	Snímek 12: External Factors
	Snímek 13: Key Factors
	Snímek 14: Robustness?
	Snímek 15: Other Factors
	Snímek 16
	Snímek 17: Modul
	Snímek 18: Modularity of Program
	Snímek 19: Understandability
	Snímek 20: Independence
	Snímek 21: Composability
	Snímek 22: Encapsulation
	Snímek 23: Explicit Interface
	Snímek 24: Syntactic Support
	Snímek 25: Five Criteria and Rules
	Snímek 26: Criteria Decomposability, Composability, Understandability
	Snímek 27: Criteria Continuity, Protection 
	Snímek 28: Rules Direct Mapping, Few Interfaces, Small interfaces, Explicit Interfaces, Information Hiding
	Snímek 29
	Snímek 30: Class x Object
	Snímek 31: Terminology
	Snímek 32: Class Declaration
	Snímek 33: Class Definition (implementation)
	Snímek 34: Using the Class 1
	Snímek 35: Using the Class 2
	Snímek 36: Result
	Snímek 37: Using the Class 3
	Snímek 38: Seminar Assignments
	Snímek 39: Seminar Questions
	Snímek 40: Sources

