Object Oriented

Programming

Modularity
2023/24



Module?

—lclass KeyValue
{
private:
int key,
double value;

public:
KeyValue(int k, double v);
int GetKey();
double GetValue();




Lecture Outline

* Evolution and history of programming languages
* Modularity

* Example



History of Programming



Programming Paradigms

* How and why do languages develop?
* How does the OOP differ from previous paradigms?

* Aspects of software quality.



Large Projects

* Programming of large software projects qualitatively
differs from creating of small programs.

* The reason for thinking about the principles of
programming is the increasing complexity of computer
programs.



Paradigms

* Imperative programming (we describe HOW to solve)

* Declarative programming (we declare WHAT to solve)
 Functional programming

* Logic programming
* Modular programming

* Object oriented programming



Imperative Programming

e The sequence of steps (statements) by which we change the state of
program variables.

e Structured programming

e Sequence, iteration (loops), branching (selection), jumps, recursion and abstraction.

e As we know from the most commonly used languages.



Modular Programming

* Top-down design of code.

* Division of the program into independent,
interchangeable modules that provide partial
functionality.

* The module contains everything necessary to ensure
the functionality (data and algorithm:s).



Object Oriented Programming




Factors of Software Quality

* Internal and external factors.
* Internal factors are hidden from the user. (HOW)

» External factors describe the external behavior. (WHAT)

* It is necessary to know how to measure the quality



External Factors

e Correctness
 Robustness

* Reusability, extendibility, usability, compatibility,...



Key Factors

Definition: correctness

Correctness 1is the ability of software products to perform their exact tasks,
as defined by their specification.

Definition: robustness

Robustness 1s the ability of software systems to react appropriately to
abnormal conditions.

SPECIFICATION
Correctness

Robustness



Robustness?

* Robustness costs can be higher than correctness costs.

* Robustness is not the goal of the OOP course, so we will
not require it,...

* ...therefore, we will always assume the correct inputs



Other Factors

Definition: extendibility

Extendibility i1s the ease of adapting software products to changes of
specification.

Definition: reusability

Reusability 1s the ability of software elements to serve for the construction
of many different applications.

Definition: compatibility

Compatibility is the ease of combining software elements with others.

Definition: functionality

Functionality 1s the extent of possibilities provided by a system.




Modularity



Modul

* A software construction method is modular, then, if it helps
designers produce software systems made of autonomous
elements, modules, connected by a coherent, simple structure.

AN
N




Modularity of Program

Understandability

Independence

Composability

Encapsulation

Explicit interface

Syntactic support



Understandability

* The module should provide a clearly defined and simple task,
or a few clearly defined tasks.



Independence

* Each module must be relatively independent and should have
the minimum possible number of links to other modules.

* [t would not be appropriate for all program modules to be
interconnected and interdependent.

* The modules cannot be individually tested, understood, or
transferred to another project.



Composability

* The modules need to be combined with each other. It must be
possible to take the module and use it in another context, or
even in another project.



Encapsulation

* Modules must have some privacy; it is desirable that any
information that is not needed for clients of modules should be
hidden inside the module.

* In practice, it shows that most of the functionality of the module
are hidden, and only a small part is visible externally.

* Hidden parts of a module are often called module
implementation and public parts are called interface of the
module.



Explicit Interface

* [t must be universally understood what assumptions module
needs to perform its tasks.



Syntactic Support

* The modules of a computer program must be clearly defined as
syntactic units of the program.

* From the source code of the programming language must be
quite clear where a single module begins and ends.



Five Criteria and Rules

* Decomposability * Direct Mapping

» Composability * Few Interfaces

* Understandability * Small interfaces (weak coupling)
 Continuity * Explicit Interfaces

* Protection * Information Hiding



Crlterla Decomposability, Composability, Understandability

A software construction method satisfies Modular Decomposability if it
helps 1n the task of decomposing a software problem into a small number of
less complex subproblems, connected by a simple structure, and independent
enough to allow further work to proceed separately on each of them

A method satisfies Modular Composability if it favors the production of
software elements which may then be freely combined with each other to
produce new systems, possibly in an environment quite different from the
onc 1n which they were nitially developed.

A method favors Modular Understandability if it helps produce software in
which a human reader can understand each module without having to know
the others, or, at worst, by having to examine only a few of the others.




Criteria Continuity, Protection

A method satisfies Modular Continuity if, in the software architectures that
it yields, a small change 1n a problem specification will trigger a change of
just one module, or a small number of modules.

A method satisfies Modular Protection if it yields architectures in which the
effect of an abnormal condition occurring at run time 1n a module will remaimn
confined to that module, or at worst will only propagate to a few neighboring
modules.




RUleS Direct Mapping, Few Interfaces, Small interfaces, Explicit Interfaces, Information Hiding

The modular structure devised i the process of building a software system
should remain compatible with any modular structure devised in the process
of modeling the problem domain.

Every module should communicate with as few others as possible.

If two modules communicate, they should exchange as little information as
possible

Whenever two modules 4 and # communicate, this must be obvious from the
text of 4 or 5 or both.

The designer of every module must select a subset of the module’s properties
as the official information about the module, to be made available to authors
of client modules.




Example



Class x Object

* Class as a static description.

* Object as a run-time representation:
* state (data)

* behavior (algorithms)



Terminology

* Class

* Member function, method
* Member variable

* Object, instance of a class

e Constructor, destructor



Class Declaration

#include <iostream>
using namespace std;

-lclass KeyValue
{
private:
int key;
double value;
KeyValue *next;

public:
KeyValue(int k, double v);
~KeyValue();
int GetKey();
double GetValue();
KeyValue* GetNext();
KeyValue* CreateNext(int k, double v);

}s




Class Definition (implementation)

- Keyvalue: :KeyValue(int k, double v)

{
this->key = k;
this->value = v;
this->next = nullptr;
}
- KeyValue: :~KeyValue()
{
= if (this->next != nullptr)
{
delete this->next;
this->next = nullptr;
}

-IKeyValue* KeyValue::GetNext()
{

return this->next;

}

- KeyValue* KeyValue::CreateNext(int k, double v)

{
this->next = new KeyValue(k, v);
return this->next;




Using the Class 1

-int main()

{

KeyValue *kvl = new KeyValue(1l, 1.5);
cout << kvil->CreateNext(2, 2.5)->GetKey() << endl;

KeyValue *kv2 = kvl->GetNext();
cout << kv2->GetNext() << endl;

delete kvil;
//delete kv2;

cout << kvi->GetKey() << endl;
cout << kv2->GetKey() << endl;

getchar();
return e,




Using the Class 2

- int main()

{
KeyValue *kvl = new KeyValue(l, 1.5);
cout << kvl->CreateNext(2, 2.5)->GetKey() << endl;

KeyValue *kv2 = kvl->GetNext();
cout << kv2->GetNext() << endl;

//delete kv2;
delete kvi;

cout << kvi->GetKey() << endl;
cout << kv2->GetKey() << endl;

getchar();
return ©;




Result




Using the Class 3

-int main()
{
KeyValue *kvl = new KeyValue(l, 1.5);
cout << kvl->CreateNext(2, 2.5)->GetKey() << endl;

KeyValue *kv2 = kvl->GetNext();
cout << kv2->GetNext() << endl;

delete kvil;
kvl = nullptr;
kv2 = nullptr;

= //cout << kvl->GetKey() << endl;
//cout << kv2->GetKey() << endl;

getchar();
return ©,;




Seminar Assignments

« Implement KeyValue class according to the lecture and create a build a linear structure of
many (for example, thousands) of objects and work with it (display a list of all keys from
the first to the last object, for example).

* Implement a similar class to KeyValue with value and key member variables of string
type (class) and with two adjacent objects (pointers to objects). Implement a simple
structure for animal identification; key is a decision criterion, and value is an animal
name, species, etc. Put at least ten objects into the structure and then display its content in
a suitable form.



Seminar Questions

* What is the main motivation for developing programming paradigms from the
imperative to the object-oriented?

« What is imperative programming?

* What is modular programming?

* What are the main factors of software quality?
* What understandability of module?

* What is the independence of module?

» What is composability of modules?

* What is the encapsulation of module?

* What is the explicit interface of a module?

* What is the syntactic support for modularity?
* What are the five criteria for good modularity?
* What is meant by the five rules of good modularity?
* What is a constructor for? Give an example.

 What i? a destructor for, when do we need it and when don't we need it? Give an
example.



Sources

* History of programming languages. Wikipedia.

https://en.wikipedia.org/wiki/History of programming languages#Establishing fundamental paradigms

* Bertrand Meyer. Object-Oriented Software Construction. Prentice
Hall 1997. [3-16, 39-52]


https://en.wikipedia.org/wiki/History_of_programming_languages#Establishing_fundamental_paradigms

	Snímek 1: Object Oriented Programming
	Snímek 2: Module?
	Snímek 3: Lecture Outline
	Snímek 4
	Snímek 5: Programming Paradigms
	Snímek 6: Large Projects
	Snímek 7: Paradigms
	Snímek 8: Imperative Programming
	Snímek 9: Modular Programming
	Snímek 10: Object Oriented Programming
	Snímek 11: Factors of Software Quality
	Snímek 12: External Factors
	Snímek 13: Key Factors
	Snímek 14: Robustness?
	Snímek 15: Other Factors
	Snímek 16
	Snímek 17: Modul
	Snímek 18: Modularity of Program
	Snímek 19: Understandability
	Snímek 20: Independence
	Snímek 21: Composability
	Snímek 22: Encapsulation
	Snímek 23: Explicit Interface
	Snímek 24: Syntactic Support
	Snímek 25: Five Criteria and Rules
	Snímek 26: Criteria Decomposability, Composability, Understandability
	Snímek 27: Criteria Continuity, Protection 
	Snímek 28: Rules Direct Mapping, Few Interfaces, Small interfaces, Explicit Interfaces, Information Hiding
	Snímek 29
	Snímek 30: Class x Object
	Snímek 31: Terminology
	Snímek 32: Class Declaration
	Snímek 33: Class Definition (implementation)
	Snímek 34: Using the Class 1
	Snímek 35: Using the Class 2
	Snímek 36: Result
	Snímek 37: Using the Class 3
	Snímek 38: Seminar Assignments
	Snímek 39: Seminar Questions
	Snímek 40: Sources

