Euler continuants, *N*-spherical functors and periodic semi-orthogonal decompositions

M.Kapranov, based on joint work in progress with T.Dyckerhoff and V.Schechtman

Conference Bondal60, Moscow, December 15, 2021

Universal continued fractions

$$R_{N} = x_{1} - \frac{1}{x_{2} - \frac{1}{x_{N}}} \in \mathbb{Q}(x_{1}, \dots, x_{N})$$

$$R_{2} = x_{1} - \frac{1}{x_{2}} = \frac{x_{1}x_{2} - 1}{x_{2}}$$

$$R_{3} = x_{1} - \frac{1}{x_{2} - \frac{1}{x_{3}}} = \frac{x_{1}x_{2}x_{3} - x_{1} - x_{3}}{x_{2}x_{3} - 1}$$

NB: We can make the x_i noncommutative: $R_n \in$ any skew field containing $\mathbb{Q}\langle x_1, \cdots, x_N \rangle$.

Euler continuants (noncommutative, alternating)

 $I \subset \{1, \dots, N\}$ called cotwinned, if its complement is a (possibly empty) disjoint union of "twins" $\{i, i+1\}$. Depth of I is dep(I) = #(such twins). Ordered product x_I of x_i , $i \in I$.

$$E_N(x_1,\cdots x_N):=\sum_{I\subset \{1,\cdots,N\} \text{Cotwinned}} (-1)^{\operatorname{dep}(I)} x_I \in \mathbb{Z}\left\langle x_1,\cdots,x_N
ight
angle.$$

$$E_1(x) = x,$$

$$E_2(x_1, x_2) = x_1x_2 - 1,$$

$$E_3(x_1, x_2, x_3) = x_1x_2x_3 - x_1 - x_3,$$

$$E_4(x_1, x_2, x_3, x_4) = x_1x_2x_3x_4 - x_1x_2 - x_1x_3 - x_3x_4 + 1, \text{ etc.}$$

of monomials = φ_N (Fibonacci) 1, 2, 3, 5, \cdots

Continuants and continued fractions

Noncommutative
$$R_N = x_1 - \cfrac{1}{x_2 - \cfrac{1}{\ddots - \cfrac{1}{x_N}}}$$
 is represented as

$$R_N = P_N Q_N^{-1} = (Q_N')^{-1} P_N', \text{ where}$$

 $P_N = E_N(x_1, \dots, x_N), \quad Q_N = E_{N-1}(x_2, \dots, x_N),$
 $P_N' = E_N(x_N, \dots, x_1), \quad Q_N' = E_{N-1}(x_N, \dots, x_2).$

Categorification: continuant complexes of adjoints

 \mathcal{A}, \mathcal{B} pre-triangulated dg-categories, $F: \mathcal{A} \to \mathcal{B}$ dg-functor, $F^*: \mathcal{B} \to \mathcal{A}$ right adjoint (appropriate sense, also ∞ -cat. version)

counit :
$$FF^* \Rightarrow Id_{\mathcal{B}}$$
, unit : $Id_{\mathcal{A}} \Rightarrow F^*F$

A chain of iterated adjoints (F_1, \dots, F_N) : $F_i = F_{i-1}^*$. Suppose \exists .

$$I = \{i_1 < \cdots < i_p\} \subset \{1, \cdots, N\}$$
 cotwinned $\leadsto F_I = F_{i_1} \cdots F_{i_p}$ Composite functor makes sense!

Nth continuant chain complex of functors

$$\mathcal{E}_N(F_1,\cdots,F_n) = \left\{ F_1\cdots F_N \to \bigoplus_{\mathsf{dep}(I)=1} F_I \to \bigoplus_{\mathsf{dep}(I)=2} F_I \to \cdots \right\}$$

Differential made of counits.

Dually, the Nth cochain complex $\mathcal{E}^N(F_N, \dots, F_1)$ (reverse order).

Differential made of units.

Examples

$$\mathcal{E}_2(F, F^*) = \{FF^* \stackrel{c}{\rightarrow} \operatorname{Id}\}, \quad \mathcal{E}^2(F^*, F) = \{\operatorname{Id} \stackrel{u}{\rightarrow} F^*F\}$$

Totalizations (i.e. cones of c, u) = spherical twist, cotwist. F a spherical functor: when these Tots are equivalences.

$$\mathcal{E}_3(F, F^*, F^{**}) = \left\{ FF^*F^{**} \longrightarrow F \oplus F^{**} \right\}, \quad \mathcal{E}^3 : \text{ dually}$$

Kuznetsov's definition of spherical functors : Tot $\mathcal{E}_3 = 0$ and of \mathcal{E}^3 .

$$\mathcal{E}_4 = \big\{ \mathit{FF}^*\mathit{F}^{**}\mathit{F}^{***} \to \mathit{FF}^* \oplus \mathit{FF}^{***} \oplus \mathit{F}^{**}\mathit{F}^{***} \to \mathsf{Id} \big\}.$$

Define the Nth spherical twist and cotwist of a functor F:

$$\mathbb{E}_{N}(F) = \operatorname{Tot} \mathcal{E}_{N}(F, F^{*}, \cdots, F^{(N-1)})$$

$$\mathbb{E}^{N}(F) = \operatorname{Tot} \mathcal{E}^{N}(F^{(N-1)}, \cdots, F^{*}, F).$$

(Co)units allow us to categorify the continuants.

N-spherical functors

Def. A (dg-)functor F (s.t. adjoints \exists) is called N-spherical, if $\mathbb{E}_{N-1}(F) = \mathbb{E}^{N-1}(F) = 0$.

Prop. In this case $\mathbb{E}_{N-2}(F)$ and $\mathbb{E}_N(F)$ are equivalences and similarly for $\mathbb{E}^{N-2}, \mathbb{E}^N$.

Reason: Categorification of classical formula ("continued fractions give best approximation")

$$R_{N+1} - R_N = \frac{-1}{Q_N Q'_{N+1}}$$
, or, equivalently

$$Q_{N+1}'P_N - P_{N+1}'Q_N = -1$$
, or, equivalently

(!)
$$E_{N}(x_{1}, \dots, x_{N})E_{N}(x_{N+1}, \dots, x_{2}) - E_{N+1}(x_{1}, \dots, x_{N+1})E_{N-1}(x_{N}, \dots, x_{2}) = 1.$$

Meaning of N-spherical for small N

2-spherical means F = 0.

3-spherical means that F is an equivalence.

4-spherical means spherical in the usual sense: Kuznetsov's definition is via $\mathbb{E}_3=\mathbb{E}^3=0$. His arg. categorifies the identity

$$(ab-1)(cb-1) - (abc-a-c)b = 1$$

which is an instance of (!).

If N is odd and $F: \mathcal{A} \to \mathcal{B}$ is N-spherical, then \mathcal{A} is equivalent to \mathcal{B} via \mathbb{E}_{N-2} or \mathbb{E}_{N} .

Semi-orthogonal decompositions and gluing functors

[Bondal-K., 1990] \mathcal{C} triangulated $\supset \mathcal{A}, \mathcal{B}$ full triangulated. Said to form an SOD, (notation $\mathcal{C} = \langle \mathcal{A}, \mathcal{B} \rangle$ and \mathcal{A} called left admissible) if

$$A = B^{\perp} := \{A : \mathsf{Hom}(B, A) = 0, \forall B \in \mathcal{B}\}, \quad \mathcal{B} = {}^{\perp}A,$$

and any $C \in \mathcal{C}$ includes into into a triangle

$$B \longrightarrow C \longrightarrow A \longrightarrow B[1], \quad A \in \mathcal{A}, B \in \mathcal{B}.$$

Gluing functor [Bondal, Kuznetsov-Lunts] $F : A \rightarrow B$ (if \exists) s.t.

$$\operatorname{\mathsf{Hom}}_{\mathcal{C}}(A,B)=\operatorname{\mathsf{Hom}}_{\mathcal{B}}(F(A),B).$$

In dg-setting: can construct an SOD with any F as $C = S_1(F)$ Ob = data $(A, B, \gamma : B \to F(A)$ closed degree 0 morphism). First level of relative Waldhausen S-construction.

For stable ∞ : Dyckerhoff-K-Schechtman-Soibelman [2106.02873]

N-Periodic SODs

Iterated orthogonals

$$\cdots^{\perp\perp}\mathcal{A}=\mathcal{A}^{(-2)},\ ^{\perp}\mathcal{A}=\mathcal{A}^{(-1)},\ \mathcal{A}=\mathcal{A}^{(0)},\ \mathcal{A}^{\perp}=\mathcal{A}^{(1)},\ \mathcal{A}^{\perp\perp}=\mathcal{A}^{(2)},\cdots$$

Can happen that $A^{(N)} = A$ (periodic SOD).

Thm. In the dg-setting, for a dg-functor F TFAE:

- (i) The glued (along F) SOD $C = \langle A, B \rangle$ is N-periodic.
- (ii) F is N-spherical.

For N = 4 this is due to Halpern-Leinster and Shipman.

Rem. For any ∞ -admissible chain of orthogonals (each $(\mathcal{A}^{(i)},\mathcal{A}^{(i-1)})$ is an SOD) we have mutation equivalences $\mathcal{A}^{(i)} \to \mathcal{A}^{(i+2)}$. The equivalences $\mathbb{E}_{N-2}(F)$, $\mathbb{E}_N(F)$ are compositions of such mutations.

Why continued fractions?

Continued Fractions \sim compositions of FLT \sim of 2 \times 2 matrices

$$z\mapsto a_1-\dfrac{1}{a_2-\dfrac{1}{\ddots -\dfrac{1}{a_N-\dfrac{1}{z}}}} \quad \text{is a FLT} \quad \dfrac{az+b}{cz+d}$$

composition of

$$z\mapsto a_i-rac{1}{z}=rac{a_iz-1}{z},\quad \mathsf{matrix}=egin{bmatrix} a_i & -1\ 1 & 0 \end{bmatrix}$$

Continuants and continued fractions \sim multiplying such matrices.

Matrix calculus for functors between SODs

(Dg- or stable ∞ -context) Suppose:

$$\mathcal{A}=\langle\mathcal{A}_1,\mathcal{A}_2\rangle$$
, so $\mathcal{A}_i \overset{\mathrm{emb.}}{\underset{\mathrm{proj.}}{\longleftarrow}} \mathcal{A}$, with gluing functor $\varphi:\mathcal{A}_1 \to \mathcal{A}_2$,

$$\mathcal{B} = \langle \mathcal{B}_1, \mathcal{B}_2 \rangle$$
, so $\mathcal{B}_i \overset{\text{emb.}}{\underset{\text{proj.}}{\rightleftharpoons}} \mathcal{B}$, with gluing functor $\psi : \mathcal{B}_1 \to \mathcal{B}_2$,

$$F:\mathcal{A}\to\mathcal{B}$$
: (dg- or exact ∞ -) functor $\stackrel{1:1}{\Longleftrightarrow}$ "Enhanced matrix", i.e.,

$$\begin{array}{ll} \text{Matrix of functors} & \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix}, \quad F_{ij}: \mathcal{A}_j \to \mathcal{B}_i \\ + \text{ Nat. transformations} \quad \psi F_{1j} \Rightarrow F_{2j}, \quad F_{i1} \Rightarrow F_{i2} \varphi \\ \end{array}$$

such that the two ways to paste a transformation $\psi F_{11} \Rightarrow F_{22} \varphi$ are the same ("commutative tetrahedron").

Such enhanced matrices can be composed.

Mutation coordinate change as a Cont. Fr.-matrix

Suppose $A \subset C$ is an admissible subcategory, i.e.,

$$\mathcal{C} = \begin{cases} \langle \mathcal{A}, ^{\perp} \mathcal{A} \rangle, \text{ with gluing functor } \varphi : \mathcal{A} \to {}^{\perp} \mathcal{A} \\ \langle \mathcal{A}^{\perp}, \mathcal{A} \rangle, \text{ gluing functor then } \varphi^* M[1]. \end{cases}$$

 $M: \mathcal{A}^{\perp} \stackrel{\sim}{\longrightarrow} {}^{\perp}\mathcal{A}$ mutation.

(Enhanced) matrix of $\langle \mathcal{A}^{\perp}, \mathcal{A} \rangle \xrightarrow{\operatorname{Id}_{\mathcal{C}}} \langle \mathcal{A}, {}^{\perp}\mathcal{A} \rangle$ is of Cont. Fr. type

	A^{\perp}	$ \mathcal{A} $
$\overline{\mathcal{A}}$	$\varphi^* \circ M[1]$	Id
$^{\perp}\mathcal{A}$	М	0

This explains the relevance of continued fractions in the theory of SODs

Examples of N-periodic SOD's: quivers

Ex.1:
$$A_n$$
-quiver. $C = D^b \{ V_1 \to \cdots \to V_n \} = \{ V_1^{\bullet} \to \cdots \to V_n^{\bullet} \}.$

$$\mathcal{A} = \{ V^{\bullet} \to 0 \to \cdots \to 0 \}, \quad \mathcal{B} = \{ 0 \to V_2^{\bullet} \to \cdots \to V_n^{\bullet} \}.$$

$$\langle \mathcal{A}, \mathcal{B} \rangle \text{ is a } 2(n+1)\text{-periodic SOD.}$$

NB: Here $\mathcal C$ is fractional CY: Serreⁿ⁺¹ = [-2]. So any SOD is 2(n+1) periodic, as $\mathcal A^{\perp\perp}=\operatorname{Serre}(\mathcal A)$.

Similarly for other quivers, e.g., ${\cal C}$ consist of

$$V_{1}^{\bullet} \rightarrow V_{2}^{\bullet} \rightarrow \cdots \rightarrow V_{n-2}^{\bullet}$$

$$V_{n-1}^{\bullet}$$

$$V_{n-1}^{\bullet}$$

Example: Waldhausen S-construction

Ex.2. $f: \mathcal{A} \to \mathcal{B}$ usual (4-)spherical functor \leadsto $S_n(f)$ nth Waldhausen category. Ob = $\{B_1 \to \cdots \to B_n \to f(A)\}$. Has SOD

$$\langle \mathcal{B}, \cdots, \mathcal{B}, \mathcal{A} \rangle = \langle \mathcal{D}, \mathcal{A} \rangle, \quad \mathcal{D} = \langle \mathcal{B}, \cdots, \mathcal{B} \rangle$$

It is 2(n+1)-periodic.

This is because $S_{\bullet}(f) = (S_n(f))_{n \geq 0}$ is a paracyclic object, see [DKSS 2106.02873]. Paracyclic rotation τ_n acts on $S_n(f)$ with $\tau_n^{n+1} =$ "monodromy of the schober". Also the SOD

$$\langle \text{first } \mathcal{B}, \mathcal{E} \rangle, \quad \mathcal{E} = \langle \text{second } \mathcal{B}, \cdots, \mathcal{B}, \mathcal{A} \rangle.$$

N-spherical objects

X smooth projective, $\omega = \Omega_X^n[n]$, $n = \dim X$, $E \in D^b \operatorname{Coh}_X$ object.

$$\mathcal{A} = D^{b}(\text{Vect}) \xrightarrow{F = -\otimes E} \mathcal{B} = D^{b}\text{Coh}_{X}$$

$$\xrightarrow{F^{*} = \text{Hom}(E, -)} \xrightarrow{F^{**} = -\otimes E \otimes \omega}$$

$$\xrightarrow{F^{(3)} = \text{Hom}(E \otimes \omega, -)} \xrightarrow{F^{(4)} = -\otimes E \otimes \omega^{\otimes 2}}$$

E is called an *N*-spherical object, if $F = - \otimes E$ is an *N*-spherical functor.

Examples related to $X = \operatorname{CY}/\mathbb{Z}_n$ (generalized Enriques mflds). [In progress].

Relation to other work

- T. Kuwagaki [1902.04269]: *N*-periodic SOD are categorical analogs of irregular connections near $\infty \in \mathbb{C}$ with exponential data (Lissajous figure) being a 2:1 covering of S^1_∞ with N switches.
- Such as for \mathbb{C} Schrödinger $\psi'' = P(z)\psi$, $P(z) \in \mathbb{C}[z]$, $\deg = N$.
- P. Boalch [1501.00930] Moduli space of Stokes data for \mathbb{C} -Schrödinger (following Shibuya) related to Euler continuants.
- M. Fairon, D. Fernandez [2105.04858] Continuants as group valued moment maps for some multiplicative quiver varieties. NB: by [Bezrukavnikov-Kapranov 1506.07050] these varieties parametrize microlocal sheaves on the nodal curve which is the complexification of the Lissajous figure above (\mathbb{CP}^1 's instead of circles).