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We would like to use correct programs.
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Programming Language Matters (1)

Correctness proofs of

quicksort in Haskell,

the type checking program for pure λ-calculus in Prolog,

the program solving Sudoku puzzles in ECLiPSe,

are straightforward.
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Programming Language Matters (2)
Compare ALMA-0 program

MODULE queens;

CONST N = 8;

TYPE board = ARRAY [1..N] OF [1..N];

PROCEDURE queens(VAR x: board);

VAR i, column, row: [1..N];

BEGIN

FOR column := 1 TO N DO

SOME row := 1 TO N DO

FOR i := 1 TO column-1 DO

x[i] <> row;

x[i] <> row+column-i;

x[i] <> row+i-column

END;

x[column] = row

END

END

END queens;

END queens.
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with
public class Queens {

/***********************************************/

* Return true if queen placement q[n] does not conflict with

* other queens q[0] through q[n-1]

/***********************************************/

public static boolean isConsistent(int[] q, int n) {

for (int i = 0; i < n; i++) {

if (q[i] == q[n]) return false;

if ((q[i] - q[n]) == (n - i)) return false;

if ((q[n] - q[i]) == (n - i)) return false;

}

return true;

}

/***********************************************/

* Try all permutations using backtracking

/***********************************************/

public static void enumerate(int N) {

int[] a = new int[N];

enumerate(a, 0);
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public static void enumerate(int[] q, int n) {

int N = q.length;

if (n == N) printQueens(q);

else {

for (int i = 0; i < N; i++) {

q[n] = i;

if (isConsistent(q, n)) enumerate(q, n+1);

}

}

}

public static void main(String[] args) {

int N = Integer.parseInt(args[0]);

enumerate(N);

}

}

(Copyright 2007, Robert Sedgewick and Kevin Wayne. )
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Mathematics Matters

Examples

Simplex algorithm with Bland anti-cycling rule,

Gröbner’s basis,

Hungarian method,

. . .,
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Program refinement matters

Small personal story: Constraint propagation algorithms.

Several algorithms proposed in the literature (AC-3, PC-2,
DAC, bounds consistency, relational consistency, . . .)

They turned out to be special cases of two generic chaotic
iteration algorithms.

K.R. Apt, The essence of constraint propagation,
TCS 221(1-2), 179-210 (1999).
K.R. Apt, The role of commutativity in constraint
propagation algorithms,
ACM Toplas, 22(6), 1002-1036 (2000).
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So far so good, but . . .

Programs are mostly written in mainstream programming
languages.

Translation of theorems into programs is not a formal
process.

Translation of simplest statements to these programming
languages is clumsy.

Example

Translate: ‘If a[1..m][1..n] has a zero entry’ to Java.
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Translation to A LMA -0

IF
SOME i := 1 TO m DO
SOME j := 1 TO n DO
a[i,j] = 0

END
END

THEN ...

K. R. Apt, J. Brunekreef, V. Partington, A. Schaerf,
ALMA-O: An Imperative Language That Supports Declarative
Programming,
ACM Toplas 20(5): 1014-1066 (1998).
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Program Verification

Assertional approach

Basic Idea:
Reason on the level of assertions instead of states.

Axioms and proof rules to reason about while programs
(Hoare ’69),

Example:

{p ∧ B} S {p}

{p} while B do S od {p ∧ ¬B}

(p is the loop invariant).
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Some Theoretical Milestones

Recursive procedures (Hoare ’71),

Arrays (Hoare and Wirth ’73, Gries ’78, De Bakker ’80),

Parallel programs (Owicki and Gries, ’76, Lamport (’77)),

Distributed programs (Apt, De Roever and Francez, ’80),

Notion of completeness (Cook ’78),

Impossibility of completeness for ‘full ALGOL’ (Clarke ’79).
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Drawbacks and Remedies

Deterministic programs

Specifications in first-order logic can be clumsy or
impossible.

Remedy: use appropriate specification languages (Z of
Abrial ’74, ISO standard: 2002).

Correctness proofs are tedious and error-prone.

Remedy 1: develop the program together with its correctness
proof (Dijkstra ’76).

Remedy 2: certify proofs.

Another tack: Higher-level system development
(Abrial ’96, ’09).
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Mechanical Verification

Use a theorem prover /proof assistant.

Underlying assumption:
the theorem prover is a correct program.

Verify mechanically soundness of the used proof systems.

Establish correctness of a given program by verifying
mechanically its correctness proof in a sound proof system.
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Gap between Theory and Practice

Grand Challenge in Program Verification

Build a library of provably correct OO programs dealing with
data structures.

Example: Verify the programs in
LEDA: A Platform for Combinatorial and Geometric
Computing,
Mehlhorn and Näher, ’99.
Cambridge University Press, 1034 pages.

Main difficulty: these are C++ programs; extensively use
classes.
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Verification of OO Programs

Initial idea: De Boer, ’91,

Presented using program transformation in

Verification of Sequential and Concurrent Programs,
Apt, De Boer and Olderog,
Springer, 2009, 502 pages.
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Main difficulties

How to deal with

instance variables,

transfer of control between caller and callee,

void references (calls on null object).
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Approach

Carefully choose a kernel language.

Provide a syntax-directed transformation of object-oriented
programs to the kernel language.

Enrich the assertion language to reason about objects.

Use this translation to derive the proof rules.

Detailed omitted (here).
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Example
find :: if val = 0 then return := this

else if next 6= null

then next.find

else return := null

fi
fi

val is an instance integer variable,

next is an instance object variable,

first and return are normal object variables.

Intuition: first.find returns the first object that stores 0.
The search starts at the object stored in first.
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Back to the Grand Challenge (1)

Missing Features

object creation (handled in ABO ’09),

access to instance variables of arbitrary objects (handled in
ABO ’10),

inheritance, subtyping (Pierik and De Boer, ’05),

exception handling, . . .
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Back to the Grand Challenge (2)

Are Mechanical Proofs Needed?

Rules can be unsound.
Example: SUBSTITUTION RULE (ABO ’09)

{p} S {q}

{p[z̄ := t̄]} S {q[z̄ := t̄]}

where ({z̄} ∪ var(t̄)) ∩ change(S) = ∅.

Correct version (ABO ’10):

where ({z̄} ∩ var(S)) ∪ (var(t̄) ∩ change(S)) = ∅.

find program may not terminate for cyclic lists.
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Back to the Grand Challenge (3)

We need to

rely on mathematical theorems

and combine them with

stepwise refinement,

program refinement and transformations,

assertional verification,

in one framework.
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Summary

Focus on libraries of existing OO programs.

Create a catalogue of mechanically certified programs.

Small comment: one needs first to choose the assertion
language and the programming language . . .,

. . . and ideally prove mechanically the underlying
mathematical theorems.
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Is this realistic?
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