
Quo Vadis Program Verification
Krzysztof R. Apt

CWI, Amsterdam, the Netherlands,

University of Amsterdam

Quo Vadis Program Verification – p. 1/24

We would like to use correct programs.

Quo Vadis Program Verification – p. 2/24

Programming Language Matters (1)

Correctness proofs of

quicksort in Haskell,

the type checking program for pure λ-calculus in Prolog,

the program solving Sudoku puzzles in ECLiPSe,

are straightforward.

Quo Vadis Program Verification – p. 3/24

Programming Language Matters (2)
Compare ALMA-0 program

MODULE queens;

CONST N = 8;

TYPE board = ARRAY [1..N] OF [1..N];

PROCEDURE queens(VAR x: board);

VAR i, column, row: [1..N];

BEGIN

FOR column := 1 TO N DO

SOME row := 1 TO N DO

FOR i := 1 TO column-1 DO

x[i] <> row;

x[i] <> row+column-i;

x[i] <> row+i-column

END;

x[column] = row

END

END

END queens;

END queens.
Quo Vadis Program Verification – p. 4/24

with
public class Queens {

/***/

* Return true if queen placement q[n] does not conflict with

* other queens q[0] through q[n-1]

/***/

public static boolean isConsistent(int[] q, int n) {

for (int i = 0; i < n; i++) {

if (q[i] == q[n]) return false;

if ((q[i] - q[n]) == (n - i)) return false;

if ((q[n] - q[i]) == (n - i)) return false;

}

return true;

}

/***/

* Try all permutations using backtracking

/***/

public static void enumerate(int N) {

int[] a = new int[N];

enumerate(a, 0);

} Quo Vadis Program Verification – p. 5/24

public static void enumerate(int[] q, int n) {

int N = q.length;

if (n == N) printQueens(q);

else {

for (int i = 0; i < N; i++) {

q[n] = i;

if (isConsistent(q, n)) enumerate(q, n+1);

}

}

}

public static void main(String[] args) {

int N = Integer.parseInt(args[0]);

enumerate(N);

}

}

(Copyright 2007, Robert Sedgewick and Kevin Wayne.)

Quo Vadis Program Verification – p. 6/24

Mathematics Matters

Examples

Simplex algorithm with Bland anti-cycling rule,

Gröbner’s basis,

Hungarian method,

. . .,

Quo Vadis Program Verification – p. 7/24

Program refinement matters

Small personal story: Constraint propagation algorithms.

Several algorithms proposed in the literature (AC-3, PC-2,
DAC, bounds consistency, relational consistency, . . .)

They turned out to be special cases of two generic chaotic
iteration algorithms.

K.R. Apt, The essence of constraint propagation,
TCS 221(1-2), 179-210 (1999).
K.R. Apt, The role of commutativity in constraint
propagation algorithms,
ACM Toplas, 22(6), 1002-1036 (2000).

Quo Vadis Program Verification – p. 8/24

So far so good, but . . .

Programs are mostly written in mainstream programming
languages.

Translation of theorems into programs is not a formal
process.

Translation of simplest statements to these programming
languages is clumsy.

Example

Translate: ‘If a[1..m][1..n] has a zero entry’ to Java.

Quo Vadis Program Verification – p. 9/24

Translation to A LMA -0

IF
SOME i := 1 TO m DO
SOME j := 1 TO n DO
a[i,j] = 0

END
END

THEN ...

K. R. Apt, J. Brunekreef, V. Partington, A. Schaerf,
ALMA-O: An Imperative Language That Supports Declarative
Programming,
ACM Toplas 20(5): 1014-1066 (1998).

Quo Vadis Program Verification – p. 10/24

Program Verification

Assertional approach

Basic Idea:
Reason on the level of assertions instead of states.

Axioms and proof rules to reason about while programs
(Hoare ’69),

Example:

{p ∧ B} S {p}

{p} while B do S od {p ∧ ¬B}

(p is the loop invariant).

Quo Vadis Program Verification – p. 11/24

Some Theoretical Milestones

Recursive procedures (Hoare ’71),

Arrays (Hoare and Wirth ’73, Gries ’78, De Bakker ’80),

Parallel programs (Owicki and Gries, ’76, Lamport (’77)),

Distributed programs (Apt, De Roever and Francez, ’80),

Notion of completeness (Cook ’78),

Impossibility of completeness for ‘full ALGOL’ (Clarke ’79).

Quo Vadis Program Verification – p. 12/24

Drawbacks and Remedies

Deterministic programs

Specifications in first-order logic can be clumsy or
impossible.

Remedy: use appropriate specification languages (Z of
Abrial ’74, ISO standard: 2002).

Correctness proofs are tedious and error-prone.

Remedy 1: develop the program together with its correctness
proof (Dijkstra ’76).

Remedy 2: certify proofs.

Another tack: Higher-level system development
(Abrial ’96, ’09).

Quo Vadis Program Verification – p. 13/24

Mechanical Verification

Use a theorem prover /proof assistant.

Underlying assumption:
the theorem prover is a correct program.

Verify mechanically soundness of the used proof systems.

Establish correctness of a given program by verifying
mechanically its correctness proof in a sound proof system.

Quo Vadis Program Verification – p. 14/24

Gap between Theory and Practice

Grand Challenge in Program Verification

Build a library of provably correct OO programs dealing with
data structures.

Example: Verify the programs in
LEDA: A Platform for Combinatorial and Geometric
Computing,
Mehlhorn and Näher, ’99.
Cambridge University Press, 1034 pages.

Main difficulty: these are C++ programs; extensively use
classes.

Quo Vadis Program Verification – p. 15/24

Verification of OO Programs

Initial idea: De Boer, ’91,

Presented using program transformation in

Verification of Sequential and Concurrent Programs,
Apt, De Boer and Olderog,
Springer, 2009, 502 pages.

Quo Vadis Program Verification – p. 16/24

Main difficulties

How to deal with

instance variables,

transfer of control between caller and callee,

void references (calls on null object).

Quo Vadis Program Verification – p. 17/24

Approach

Carefully choose a kernel language.

Provide a syntax-directed transformation of object-oriented
programs to the kernel language.

Enrich the assertion language to reason about objects.

Use this translation to derive the proof rules.

Detailed omitted (here).

Quo Vadis Program Verification – p. 18/24

Example
find :: if val = 0 then return := this

else if next 6= null

then next.find

else return := null

fi
fi

val is an instance integer variable,

next is an instance object variable,

first and return are normal object variables.

Intuition: first.find returns the first object that stores 0.
The search starts at the object stored in first.

Quo Vadis Program Verification – p. 19/24

Back to the Grand Challenge (1)

Missing Features

object creation (handled in ABO ’09),

access to instance variables of arbitrary objects (handled in
ABO ’10),

inheritance, subtyping (Pierik and De Boer, ’05),

exception handling, . . .

Quo Vadis Program Verification – p. 20/24

Back to the Grand Challenge (2)

Are Mechanical Proofs Needed?

Rules can be unsound.
Example: SUBSTITUTION RULE (ABO ’09)

{p} S {q}

{p[z̄ := t̄]} S {q[z̄ := t̄]}

where ({z̄} ∪ var(t̄)) ∩ change(S) = ∅.

Correct version (ABO ’10):

where ({z̄} ∩ var(S)) ∪ (var(t̄) ∩ change(S)) = ∅.

find program may not terminate for cyclic lists.

Quo Vadis Program Verification – p. 21/24

Back to the Grand Challenge (3)

We need to

rely on mathematical theorems

and combine them with

stepwise refinement,

program refinement and transformations,

assertional verification,

in one framework.

Quo Vadis Program Verification – p. 22/24

Summary

Focus on libraries of existing OO programs.

Create a catalogue of mechanically certified programs.

Small comment: one needs first to choose the assertion
language and the programming language . . .,

. . . and ideally prove mechanically the underlying
mathematical theorems.

Quo Vadis Program Verification – p. 23/24

Is this realistic?

Quo Vadis Program Verification – p. 24/24

	Programming Language Matters (1)
	Programming Language Matters (2)
	with
	Mathematics Matters
	Program refinement matters
	So far so good, but $LL $
	Translation to 	extsc {Alma-0}
	Program Verification
	Some Theoretical Milestones
	Drawbacks and Remedies
	Mechanical Verification
	Gap between Theory and Practice
	Verification of OO Programs
	Main difficulties
	Approach
	Example
	Back to the Grand Challenge (1)
	Back to the Grand Challenge (2)
	Back to the Grand Challenge (3)
	Summary

