
Mobile and Heterogeneous databases
Heterogeneous Distributed Databases

Concept, Data Integration, and Approaches

A.R. Hurson
Computer Science

Missouri Science & Technology

1

Note, this unit will be covered in eight
lectures. In case you finish it earlier, then
you have the following options:

1) Take the early test and start CS6302.module5
2) Study the supplement module

(supplement CS6302.module4)
3) Act as a helper to help other students in

studying CS6302.module4
Note, options 2 and 3 have extra credits as noted in course
outline.

Heterogeneous Distributed Databases

2

Glossary of prerequisite topics

Familiar with the topics?
No Review CS6302

module4background

Yes

Remedial action
Yes

No
Take the Module

Take Test

Pass?

Glossary of topics

Familiar with the topics?
Yes

Pass?

Take Test

Yes

Options

Lead a group of students in
this module (extra credits)?

Study more advanced related
topics (extra credits)?

Study next module?

No

{

Extra Curricular activities

Enforcement of
background

{Current
Module

At the end: take
exam, record the

score, impose
remedial action if not

successful

No

Heterogeneous Distributed Databases

3

 You are expected to be familiar with:
 Homogeneous Distributed Databases,
 Query processing and Transaction processing in

homogeneous distributed databases
 If not, you need to study CS6302.module2

and CS6302.module3

Heterogeneous Distributed Databases

4

Heterogeneous Distributed Databases

 Discussion in the last two modules was concentrated on traditional
distributed databases, namely “homogeneous distributed databases”.
We also focused on two aspects of homogeneous distributed databases:
query processing and transaction processing.

 In general, design of homogeneous distributed databases is a top-down
process, i.e., during the design phase, global database administrator is
well aware of data type, data model, applications, operations, … that
the system is designed for.

 Consequently, within the scope of homogeneous distributed databases
the main challenge lies in the data distribution: i.e., “how the data
should be distributed” to meet various performance constraints.

5

 The next two modules will look at the so called “heterogeneous distributed
databases”. In contrast to “homogeneous distributed databases”,
“heterogeneous distributed databases” design is a bottom up approach: i.e.,
during the design phase, the global database administrator, in general, neither
has any clear notion about the structure and type of data nor has knowledge
about the type of application or operations performed on the data.

 Reading between the lines, “heterogeneous distributed databases” is more
dynamic than “homogeneous distributed databases” and this dynamic nature
needs to be reflected in the design and operational procedures of the system.

 To look further, while data distribution is the main challenge in the design of
“homogeneous distributed databases”, data integration is the main challenge in
the design of “heterogeneous distributed databases” .

6

Heterogeneous Distributed Databases

 First, we will express the notions of heterogeneity and
autonomy and will link it to the definition of
“heterogeneous distributed databases”, then we will talk
about different classes of information processing that fall
under the general concept of “heterogeneous distributed
databases”. Different issues of concern within the scope of
“heterogeneous distributed databases” will be enumerated
and discussed. Data integration and different methods to
implement “heterogeneous distributed databases” will be
addressed in this module.

7

Heterogeneous Distributed Databases

 Contents:
 Definition of heterogeneous distributed databases
 Different classes of multidatabases: a taxonomy
 Database integration
 Issues in Multidatabases
 Design choices
 Summary schemas model
 Performance analysis of summary schemas model

8

Heterogeneous Distributed Databases

9

Heterogeneous Distributed Databases

 MultiDatabase Systems
 In general systems that allow information

sharing among several component data sources
can be classified along three dimensions:
 Autonomy
 Heterogeneity
 Distribution

10

Heterogeneous Distributed Databases

 MultiDatabase Systems

Heterogeneity

Distribution

Autonomy

11

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Autonomy
 Autonomy refers to the distribution of control not data.

It indicates the degree to which individual database can
operate independently.

 Autonomy is a function of several factors:
 Whether the component systems exchange information

(communication autonomy),
 Whether the component systems can independently execute

transactions (execution autonomy),
 Whether a component system is allowed to modify information

(design and execution autonomy).

12

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Autonomy
 Distributed and heterogeneous databases are

under separate and independent control.
 Autonomy comes in different forms and

shapes:
 Design autonomy,
 Communication autonomy,
 Execution autonomy,
 Association autonomy.

13

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design autonomy

 Local databases choose their own data
model, query language, semantic
interpretation of data constraints,
functions/operational support, etc.

14

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Communication autonomy

 Local databases decide when and how to
respond to the requests from other
databases.

15

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Execution autonomy

 The execution order of local and global
transactions is controlled locally and
local databases do not need to inform
other database management systems of
the execution order of transactions.

16

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Association autonomy

 Local databases decide how much of their
functions/operations and data to be
shared globally.

 Local databases have the right to
associate and disassociate themselves
from the network of databases.

17

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Local autonomy

 The literature also has referred to the term of
local autonomy that comes in two forms:
 Operation autonomy requirements ─ ability of the

local database to exercise control over its database.
 Service autonomy requirements ─ ability of the

local database to exercise control over services it
provides to other local databases.

18

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Local autonomy
 From the global database management system,

local autonomy takes several forms:
 Heterogeneity of local databases (Design

autonomy),
 Refusing to provide services necessary for the

global system to do the job or efficiently to do the
job (Execution autonomy and Communication
autonomy).

19

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Local autonomy
 From the local database system, local autonomy

can be violated in different ways:
 Being modified,
 Being forced to do things that it was not

originally designed to do,
 Being prevented from doing things it was

originally able to do.

20

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Autonomy
 Along this dimension one can also talk

about different strategies:
 Tight integration (Traditional

(homogeneous) distributed databases),
 Semi-autonomous, and
 Total isolation (Multidatabases).

21

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Tight integration
 A single image of the entire databases is

available to any user who wants to share the
information which may reside in multiple
databases.

 In this environment, one of the data managers is
in control of processing of each user request
even if that request is serviced by more than
one data manager.

22

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Semi-autonomous
 The system consists of database management systems

that can operate independently but have decided to
participate in a federation to make their local data
sharable.

 Each component database can determine what part of
their database they will make accessible to the users of
other database management systems.

 The local databases are not fully autonomous systems
since they need to be modified to be able to exchange
information with one another.

23

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Total isolation
 In this configuration, individual systems are

stand alone which know neither the existence of
other systems, nor how to communicate with
them.

 In this configuration, the processing of the user
request that spans over several databases is very
difficult, since there is no global control over
the execution of individual database systems.

24

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Distribution
 Autonomy refers to the distribution of control,

the distribution dimension deals with data and
services ─ physical distribution of data over
multiple sites. Along this dimension one can
recognize two subclasses:
 Client/server platform
 Peer-to-peer platform

25

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Distribution
 Client/server platform: In this environment data

management duties are concentrated at the servers and
clients facilitate requirements for the application
environment needs such as user interface. In this
platform we can talk about:
 Thin client
 Fat client

 Peer-to-peer platform: In this environment, also called
fully distributed, each site has full database
management functionality and can communicate with
other sites in order to execute queries and transactions.

26

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Heterogeneity
 Along this dimension we can talk about various

forms of heterogeneity such as hardware
heterogeneity.

 At this point, I am expecting you to fully
appreciate the issue of autonomy and its
potential effects on database functions such
as query processing and transaction
processing (refer to our discussion in
modules 2 and 3 about query processing and
transaction processing in traditional
distributed databases) .

27

Heterogeneous Distributed Databases

28

Heterogeneous Distributed Databases

 As noted before, the distributed databases
can be classified into two groups:
 Homogeneous distribute databases,
 Heterogeneous distributed databases.

29

Heterogeneous Distributed Databases

 Homogeneous distributed databases are logically
integrated data sources to provide a single image
of the database though they are physically
distributed.

 Heterogeneous distributed databases are intended
to provide interoperability among a set of
preexisting (and by default, heterogeneous)
database management systems.

30

Heterogeneous Distributed Databases

 MultiDatabase Systems
 Existing databases are managed by different database

management systems running on heterogeneous
platforms.

 The challenge is to give the user the illusion that they
are accessing a single database (distribution
transparency, heterogeneity transparency) that contains
desired information while preserving the integrity and
investment of preexisting environment.

31

Heterogeneous Distributed Databases

 MultiDatabase Systems
 In a multidatabase system it is necessary to:

 Provide uniform access to the data and resources,
 Allow databases to cooperate by exchanging data

and synchronizing their execution seamlessly.

32

Heterogeneous Distributed Databases

 MultiDatabase Systems
 In general, any solution to establish

interconnection and cooperation among
preexisting autonomous and heterogeneous
databases has to address two fundamental
issues:
 Autonomy
 Heterogeneity

33

Heterogeneous Distributed Databases

 MultiDatabase Systems
 Various classes of solutions to multidatabase

approach (as will be discussed later) are an
attempt to compromise between autonomy and
heterogeneity.

 As an example, federated database approach
favored heterogeneity over autonomy and
multidatabase language approach favored
autonomy over heterogeneity

 So far, we referred to several terms such as:
 Homogeneous distributed databases,
 Heterogeneous distributed databases,
 Federated databases,
 Multidatabases, and
 Multidatabase language.

 Now we will define a taxonomy in order to
distinguish these terms from each other.

34

Heterogeneous Distributed Databases

35

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy

 There is a wide range of solutions for global
information sharing in a distributed system.
Factors such as:
 User Requirements,
 Existing Hardware and Software, and
 The Amount of Investment Available

Will determine which solution is appropriate in
an application domain.

36

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy

 Terms such as:
 Distributed Databases,
 Multidatabases,
 Federated Databases, and
 Interoperable Systems

Have been tossed up in the literature.

37

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy
 In spite of their differences, these solutions

have two common characteristics:
 They are intended to address a distributed system

with two distinguishing components:
 A global component with access to all globally shared

information and
 Multiple local components that only manage information

at that site.
 They are designed to provide timely and reliable

access to the information sources.

38

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy
 Our taxonomy distinguishes these solutions

according to how tightly/loosely the local
components are integrated with the global
component.
 In a tightly coupled system, the global functions

have access to low level internal functions of the
local database systems.

 In a loosely coupled system, the global functions
access local functions through the database
management system external user interface.

39

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy

Tightly
Coupled

Loosely
Coupled

Distributed
Database

Global-Schema
Multidatabase

Federated
Database

Multidatabase
Language

Homogeneous
Multidatabase
Language

Interoperable
System

40

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy
 Distributed Databases

 Global and Local functions share very low level
internal interfaces and are so tightly integrated that
there is little distinction between them.

 They are typically designed in a top-down fashion.
 Local database management systems are typically

homogeneous, even though they may be
implemented on different hardware systems and/or
software platforms.

41

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy

 Distributed Databases
 The global system has control over local data and

processing.
 The system typically maintains a global schema by

integrating the schemas of all the local databases.
 It offers the best performance of all the information

sharing solutions, at the cost of significant local
modification and loss of control.

42

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy

 Multidatabases
 Multidatabases are more loosely coupled than

distributed databases because global functions
access local information through the external user
interface of the local database management system.

 Multidatabases typically integrate the data from pre-
existing, heterogeneous local databases.

 Multidatabases present global users with transparent
methods to use the total information in the system.

43

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy

 Federated Databases
 Federated databases do not maintain a single

common global schema.
 Each local system maintains its own partial global

schema which contains only the global information
description that will be used at that node.

 Each node cooperates closely with the specific
nodes it accesses.

44

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy

 Federated Databases
 As noted before, federated database is a compromise

between no integration and total integration. It
allows more local autonomy relative to total
integration approach (association autonomy).

 The association autonomy is made possible through
several layers of abstractions and schema
generations, as follows:

45

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy
 Federated Databases

 Local schema: The conceptual schema of a
component database expressed in the data model of
component database management system.

 Component Schema: A local schema is translated to
the common data model of the federated database
system to alleviate data model heterogeneity. Each
local database should store one-to-one mappings
between the local data model and conceptual data
model objects during the schema translation.

46

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy

 Federated Databases
 Export Schema: Each database can specify the

sharable objects to other members of the federated
database system ─ Association autonomy is
maintained here.

 Federated schema: This is the global view schema of
exported schemas of component databases forming a
federation.

47

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy
 Federated Databases

 Federated schema can be statically integrated
schemas or a dynamic user view of multiple
schemas.
 The integrated schema is managed and controlled by the

federated database system administrator, if the federated
database is tightly coupled.

 The view is managed and controlled by the user if the
federated database is loosely coupled. There can be
multiple federated schemas, one for each class of
federation users.

48

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy

 Federated Databases
 External Schema: It is mainly for customization

when the federated database is large and
complicated.

49

Heterogeneous Distributed Databases

Local Schema Local Schema

Component Schema Component Schema

Export Schema Export Schema Export Schema

External Schema

Federated Schema Federated Schema

External Schema External Schema

Local
Database

Local
Database

Local
Database

• • •

• • •

Component Schema• • •

Local Schema• • •

50

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy

 Federated Databases
 Federated database systems can be further

classified as:
 Loosely coupled, and
 Tightly coupled

51

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy
 Loosely coupled

 It is the user’s responsibility to maintain and create the
federation schema.

 No control is enforced by the federation system or federation
administrator.

 Each user is expected to be knowledgeable about the
information and the structure of the relevant export schemas.

 Federated schema is dynamic and can be created or dropped on
the fly.

 This class of systems are intended for highly autonomous read-
only databases and cannot support view updates

52

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy
 Tightly coupled

 Federation administrators have full control over the
creation and maintenance of federated schemas and
access to the export schemas.

 As a result, this class of systems provides location,
replication, distribution, and heterogeneity
transparency.

 It supports one or more federated schemas.

53

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy

 Interoperable Systems
 Global function is limited to single message passing

and does not support full database functions.
 Global system is not database-oriented, hence local

systems may include other types of information
repositories such as: Expert systems, Knowledge-
based systems, ...

54

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ A Taxonomy

 Tightly <--> Loosely
coupled coupled

Distributed
Database

Global Schema
Multidatabase

Federated Database

Multidatabase
Language System

Homogeneous
Multidatabase

Language System

Interoperable

System
Global system has
access to local ...

Internal DBMS

function

DBMS user

interface

DBMS user

interface

DBMS user

interface

DBMS user
interface, plus some

internal functions

Application on top

of DBMS

Local nodes
typically are ...

Homogeneous

databases

Heterogeneous

databases

Heterogeneous

databases

Heterogeneous

databases

Heterogeneous

databases

Any data source
that meets the

interface protocol
Full global database

function

Yes

Yes

Yes

Yes

Yes

No

55

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Some terminologies

 Effective sharing, and use of data and
functions can be achieved in the forms of
integration, interoperability,
interdependency, and exchange.

56

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Some terminologies
 Interoperability is the ability to request and

receive services among the interoperating
systems in order to use each others’
functionalities.

 In another words, information systems are
interoperable if:
 They can exchange messages and requests,
 They can receive services and operate as a unit in

solving a common problem.

57

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Some terminologies
 Interdependency means functions and data in

different systems are related or dependent on
each other.

 Integration implies uniform and transparent
access to data managed by multiple databases.

 Within the scope of multidatabases, data
integration has two general aspects:
 Schema integration: to provide a uniform global view

of the shared data and a means to locate and access
distributed and heterogeneous data sources.

 Result integration: to fuse partial and heterogeneous
results and present it in a uniform format to the user.

 In the following discussion, we concentrate on schema
integration since it is a more challenging issue.

58

Heterogeneous Distributed Databases

59

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration
 Database integration involves the process by

which information from participating databases
can be conceptually integrated (fused) to form a
single comprehensive definition of a
multidatabase ─ designing the global
conceptual schema (schema integration).

60

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration
 Database integration is based on complete

integration of multiple databases to provide a
single and uniform view (global schema) of the
shared data. This process should provide:
 Distribution transparency,
 Uniform view of data,
 Consistent and uniform access to data, and
 Heterogeneity transparency.

61

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration
 In short, schema integration refers to the

methodology that facilitates integration of
schemas in order to:
 Hide any heterogeneity and
 Represent the semantics of the database.

62

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration
 The integrated schema is used to formulate the

global queries and global transactions that may
possibly span multiple databases.

 It should be noted that the schema integration
differs from view integration in several ways:

63

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration
 View integration is used in a top-down database

design. It is the process of generating a single
integrated schema from multiple user views.

 Schema integration is a bottom-up approach,
since it attempts to integrate existing databases.

64

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration
 In view integration, users define views using a

single data model ─ Homogeneity.
 In schema integration, schemas may be

represented using multiple data models.

65

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration
 At the time view integration is defined, user

views do not reflect existing data in a database
─ views represent abstract objects.

 In schema integration, we integrate schemas
that represent existing databases ─ the schema
integration process cannot violate the semantics
of the existing databases.

66

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration
 Schema integration is not a one time process and

changes in databases may force changes at integrated
schema.

 Integrated schema should be dynamic because of:
 Changes in the database structure (may result changes in the

local schema).
 Changes in constraints on the underlying databases.
 Changes to database values due to addition, deletion, and

modification operations, and
 Addition/departure of data sources to/from global information

sharing environment.

67

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration
 A three layered schema framework can be used to

facilitate the integration of heterogeneous systems:
 The first layer is represented by the native schemas of the local

databases,
 The second layer is represented by imported schemas that are

direct translation of the native schemas to a common and
global data model.

 The third layer is the conceptual unified schema that defines a
consistent and unified set of rules and constructs that facilitate
the global information sharing process.

68

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration
 Database integration requires two steps:

 Schema translation and
 Schema integration

69

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration
 Schema translation: The component databases

schemas are translated to a common
intermediate canonical representation. This
step is necessary if we are dealing with
heterogeneous local components.

 Schema integration: Intermediate schemas are
integrated into a global conceptual schema.

70

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integrationDatabase1 Database2 Databasen• • •

InS1 InS2 InSn• • •

Translator1 Translator2 Translatorn

Integrator

Global Component Schema

71

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration
 In more detail, schema integration is a four-

phase process:

Heterogeneous Distributed Databases

72

Local Schemas to be integrated

Schema
Translation

InterSchema
relationship
identification

Integrated
Schema generation

Schema mapping
generation

Semantic InterSchema
relationship

Confirmed InterSchema
relationship

Designer/expert input

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration
 Schema translation: Local schemas are

translated into schema using a common model.

73

74

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration
 Schematic interschema relationship generation: To

identify objects in the local components that may be
related and to categorize the relationships among them.

 In this process, we need to examine the semantics of the
objects in different databases and identify the
relationship among objects based on their semantics.
The final goal of this step is to generate a reliable and
accurate set of relationships among database objects,
i.e., semantic differences and semantic similarities must
be resolved.

75

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration
 Integrated schema generation: Various forms of

existing heterogeneity that might exist must be
resolved.

 Schema mapping generation: This phase maps entities
in the integrated schema to the objects in local schemas.

76

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration
 Integration methodologies have been classified as,

binary and n-ary mechanisms.
 Binary integration involves the manipulation of two schemas at

a time. Binary integration methods can be further subgroups
into:

 Ladder pattern
 Balanced pattern

 n-ary integration involves more than two schemes at a time. n-
ary integration methods can be further classified as:

 One pass integration
 Iterative n-ary integration

77

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration

Integration process

n-ary integration

BalancedLadder

Binary integration

Iterative n-aryOne-pass

78

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration

Ladder integration method Balanced integration method

79

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration

One-step integration method Iterative n-ary method

80

Heterogeneous Distributed Databases

 Questions
 Compare and contrast loosely coupled and tightly

coupled federated database systems against each other.
 Compare and contrast different classes of integration

methodologies against each other.

81

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration
 In general, schema integration:

 Is hard to automate,
 Violates local autonomy,
 Is computation intensive,
 Has the potential of missing some of the embedded

semantic knowledge,
 Is not dynamic Hard to expand/shrink

multidatabases.

82

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Database integration
 As an example, federated databases are a

compromise between no integration and total
integration. It is aimed to ease static nature of
global schema integration approach while
allowing more local autonomy Association
autonomy.

83

Heterogeneous Distributed Databases

 MultiDatabase Systems
 Corporate mainframes are sources of global

administrative functions, departmental systems run
specific technical functions, and workstations and
personal computers provide individual services and
immediate access to remote locations.

 Databases in each of these environments have
developed independently to meet specific requirements
and incompatible database management systems have
evolved to meet the varying needs in these independent
environments.

84

Heterogeneous Distributed Databases

 MultiDatabase Systems
 Separate, autonomous data sources — islands of

information — are no longer able to meet increasingly
sophisticated user needs in today's networked world.

 Related information important to a global application
may exist in multiple incompatible databases.

 Users cannot be expected to manage system details of
sending multiple requests in different languages,
possibly different data models, to multiple information
sources.

85

Heterogeneous Distributed Databases

 MultiDatabase Systems
 A multidatabase system is a particular type of

distributed system that allows global user to
easily access information from multiple local
databases.

 key features that distinguish a multidatabase
system from a distributed database system are:
 Local autonomy, and
 Heterogeneity

86

Heterogeneous Distributed Databases

 MultiDatabase Systems
 By preserving the autonomy of local databases,

existing organizational investment in local
applications and user training is preserved
while significant new functions of global data
access is provided.

87

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Issues
 Multidatabases inherit many of the problems

associated with distributed systems in general
and distributed databases in particular.

88

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Issues
 Site Autonomy
 Differences in Data Representation

 Name Differences
 Structural Differences
 Abstraction Differences
 Missing or Conflicting Data

 Heterogeneous Local Databases
 Global Constraints
 Global Query Processing
 Concurrency Control
 Security
 Local Node Requirements

89

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Site Autonomy
 Each local database management system retains complete control

over local data and processing. Each site independently
determines what information it will share with the global system,
what global requests it will service, when it will join the
multidatabase, and when it will stop participating in the
multidatabase.

 Therefore, the database management system itself is not modified
and global changes — i.e., addition and deletion of other sites,
global optimization — do not effect the local database
management system.

90

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Site Autonomy
 Site autonomy may be desirable for a number of

reasons:
 Some local databases may have critical roles in an

organization, and economically it may be impossible to change
them.

 Capital invested in existing hardware, software, and user
training is preserved.

 A site can protect information by not including it in the local
schema that is shared with the global schema.

91

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Site Autonomy

 Factors such as economical issues and security
measures motivate site autonomy. However,
despite these desirable aspects, site autonomy
and lack of control over local resources
introduce global performance degradation
relative to a tightly coupled distributed database
system.

92

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Site Autonomy

 Local autonomy can be handled in two ways:
 Imposing limitations and restrictions on global function

implementation and/or capability,
 Compromising local autonomy to some extent and handling

any local autonomy violations as they occur.

 To read between the lines, it is impossible to support
global applications without compromising local
autonomy in one way or another.

93

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Differences in Data Representation

 Since local databases are developed independently with
differing local requirements, it is possible for the same
real-world objects to be modeled and represented
differently.

 The same object in different local databases should be
mapped to a single global representation and naturally,
semantically different objects should be mapped to
different global representations.

94

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Differences in Data Representation

 Name Differences: Local databases may have
different conventions for naming objects. This
leads to the problems of:
 Synonyms: The same data item has different names

in different databases, and
 Homonyms: Different data items have the same

name in different databases.

95

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Differences in Data Representation

 Format Differences: These include differences in:
 Data type — part number is defined as an integer in one

database and as an alphanumeric string in another,
 Domain — temperatures in one database may be rounded off,

while another keeps exact readings,
 Scale — in one database the area is measured in square feet

and acres in another,
 Precision — one database may use single-precision floating-

point numbers for a given quantity while another uses double-
precision, and

 Item combinations — dates can be kept as a single string, such
as 012290, or as separate quantities for month, day, and year

96

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Differences in Data Representation

 Structural Differences:
 Objects may be structured differently in separate local

databases — different data models,
 A data item may have a single item in one database and

multiple values in another,
 The same item may be a data value in one place, an attribute in

another place, and a relation in a third place,
 The relationships between objects may differ from database to

database,
 Dependencies between objects may differ in databases.

97

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Differences in Data Representation

 Recognizing semantically equivalent objects
despite their structural differences can be a
difficult task and is almost always a manual
process for the global Data Base Administrator
or user.

98

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Differences in Data Representation

 Abstraction Differences: Different local users may be
interested in different levels of detail about the same
object.

 Different levels of abstraction can be integrated through
the use of generalization hierarchies — an object at one
level of the hierarchy represents the collection of the
common attributes of its immediate descendant at the
next level of the hierarchy.

99

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Differences in Data Representation

 Missing or Conflicting Data:
 Local databases may have embedded information that is

not explicitly recorded. Embedded data is information
that is assumed by local users, so it does not have to be
spelled out with explicit data value — company's name.

 Databases that model the same real-world object may
have conflicts in the actual data values recorded. One
site may not have some information recorded due to the
incomplete updates, system error, or insufficient demand
to maintain such data.

100

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Local Heterogeneity
 Multidatabases claim to support heterogeneous data

models at the local level.
 The support mainly consists of providing local

translation capability from the local model to the
common global model.

 A problem with supporting local database management
system heterogeneity is making the trade-off between
writing translation code and limiting participation.
Moreover, any local functional deficiencies must be
compensated for with global system software.

101

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Global Constraints

 Since different local databases may represent
semantically equivalent data or semantically
related data, the global system needs some
method for specifying and enforcing integrity
constraints on inter-database dependencies and
relationships.

102

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Global Constraints
 The enforcement of global constraints should

address issues such as:
 Inter-database update dependency — updating an

object in one database should cause an equivalent
object in another to be updated, and

 Aggregate privacy dependency — combining
independent data from several sources may reveal
more information than the simple sum of the
individual data items.

103

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Global Query Processing
 Query decomposition and optimization in a distributed

database environment was discussed in detail.
 The query is decomposed into a set of sub-queries. The query

optimizer creates an access strategy that specifies which local
databases are to be involved, what each will do, how the
intermediate results will be combined, and where the global
processing will occur.

 Global constraints must also be checked and enforced during
the query execution.

104

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Global Query Processing
 Multidatabase systems must also handle inter-database

dependencies, manage global resources, and support
additional language features.

 All these demands on the query processor must be
handled in an efficient manner, despite its dynamic,
distributed nature and the lack of control over local
database management systems.

105

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Global Query Optimization

 In distributed database, a global query optimizer deals
with parameters such as:
 Capabilities of individual nodes,
 Communication link costs,
 Data and processing requirements.

 The optimizer applies a cost function that weighs these
factors and produces an efficient strategy to handle the
query.

106

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Global Query Optimization

 In a multidatabase system, global query
optimization is becoming more complicated
due to the lack of control over local database
management systems and possible conflicts
between global and local optimization.

107

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Concurrency Control
 The traditional concept of a transaction as short lived

and atomic is unsuited to the multidatabase
environment.

 Multidatabase transactions will typically involve
multiple, separate local databases and several layers of
data/query translations.

 While the global system has information and control
over global transactions, it does not have information
about local transactions. Furthermore, site autonomy
prevents global control from enforcing local
serializability orders.

108

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Concurrency Control

 In a multidatabase environment semantic
knowledge about the transaction may be used to
break it up into atomic sub-transactions.

 The quest for global concurrency control may
be a strong enough incentive to violate site
autonomy.

109

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Security

 Providing security in any distributed system is a
difficult task at best. Problems include non-
secure communication links and varying levels
of security provided at different nodes.

 Site autonomy provides some measure of local
security.

110

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Local Node Requirements

 Multidatabases require global data structures and global
software modules to implement global functions.
Although, site autonomy guarantees that local DBMSs
will be unchanged by joining a multidatabase, the local
machine will have to share some of the global storage
and processing requirements.

 Maintaining a full complement of global data and
software modules on a personal computer or a heavily
loaded mainframe may be difficult or impossible.

111

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design choices

 There are two major approaches to designing a
multidatabase system:
 The global schema approach, and
 The multidatabase language approach.

112

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design choices
 Global Schema Approach

 This approach, known as the Schema (view) integration,
provides a conceptual layer that represents a single and
integrated Schema (view) of the data available in the
multidatabase system.

 For the very same reasons discussed earlier, Global schema
design is much more difficult than just taking a union of the
input schemas of the local nodes.

 It should take the independently developed local schemas,
resolves semantic and syntactic heterogeneity between them,
and creates an integrated summary of all the information from
the union of the local schemas.

113

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design choices
 Global Schema Approach

 There are a number of common techniques for
integrating multiple, distinct schemas:
 Analyzing similarities and conflicts between objects and

relationships in separate schemas must be done before
they can be integrated.

 Generalization hierarchies — the process of taking similar
objects and creating a new, generic object that has all the
common properties of the original objects,

 Can be used to develop the global schema.

114

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design choices
 Global Schema Approach

 This approach is a direct outgrowth of distributed databases.
 The global schema is just another layer, above the local

external schemas, which provides additional data
independence.

 The global schema makes global access quite user friendly.
 The global interface is independent of all the heterogeneity in

local database management systems and data representations.
 The global schema is usually replicated at each node.

115

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design choices
 Global Schema Approach

 The amount of global knowledge required about what is being
integrated and how to integrate it is a major problem with the
global schema approach.

 Despite the methodologies, algorithms and heuristics that have
been defined to help automate parts of the schema-integration
process, this process is still very human-labor-intensive.

 The sheer size of a global schema can make it a problem to be
replicated at nodes with limited storage capabilities.

 Global schema must also be maintained in the face of arbitrary
changes to local schemas.

116

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design choices
 Global Schema Approach

 The literature is largely silent on how to maintain
the global schema. Changes to local schemas,
addition and deletion of a local node means massive
computation and synchronization that should be
reflected in all replicated copies.

 Local changes may force the global DBA to
reconsider many design decisions made during the
initial integration process — with wide-reaching
consequences.

117

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design choices
 Multidatabase Language Approach

 It provides local data integration dynamically
through global query language features.

 It is an attempt to resolve some of the problems
associated with global schemas, such as up-front
knowledge, up-front development cost, large
maintenance requirements, and processing/storage
requirements placed on local nodes.

118

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design choices
 Multidatabase Language Approach

 A basic requirement for a multidatabase language is to define a
common name space across all participating schemas. The
most straightforward way to accomplish this is to allow data-
item names to be qualified with the associated database name
and node identifier.

 A common name space can still provide some measure of
location independence in the face of data-item movement if
object names are independent of the node they currently reside
at.

119

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design choices
 Multidatabase Language Approach

 A multidatabase language system puts most of the
integration responsibility on the user, but alleviates
the problem by giving the user many functions to
ease this task.

 Multidatabase language system users must have a
means to display what information is available from
various sources.

 The user is assumed to have well-defined ideas
about what information is required and where it
probably resides.

120

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design choices
 Multidatabase Language Approach

 Multidatabase language approach shifts the burden of
integration from global database administrators to users and
local database administrators. User queries may have to
contain some programming to achieve the desired results.
However, the results and processing methods can be
individually tailored.

 Multidatabase language systems trade a level of data
independence for a more dynamic system and greater control
over system information.

121

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design choices
 Multidatabase designers have created methods to

integrate semantically similar, but syntactically
different data entities.

 These methods all assume that database designers or
users can identify semantically similar entities despite
the representation and naming differences. Without
intimate knowledge of the structure of all local
databases, this assumption in invalid.

122

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design choices
 The Summary Schemas Model has been

developed as an extension to multidatabase
systems to provide linguistic support to
automatically identify semantically similar
entities with different access terms.

123

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design choices
 A Summary Schema is a concise, abstract

description of the semantic contents of a group
of input schemas.

 Summary Schemas Model uses specific
linguistic relationships between schema terms
to build a hierarchical global meta data which
describes the information available in all local
databases in an increasingly abstract form.

124

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design choices
 Summary Schemas Model provides intelligent,

user friendly access to multidatabase systems.
 Summary Schemas Model global integration

process is largely automatic.
 Summary Schemas Model meta data is

relatively much smaller and easier to create,
maintain, and store — the hierarchy is short and
bushy.

125

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design choices
 Summary Schemas Model allows multidatabase users to

submit global database queries that describe requested data
in terms that are meaningful to the user — imprecise query.

 Summary Schemas Model uses the global meta data and an
on-line linguistic tools to interpret the user's imprecise query
and associate it with the precise local system access terms
that are semantically closest to the user's terms.

 Summary Schemas Model allows the users to iteratively
identify multiple sources of data that match an imprecise
query — query Refinement Facility.

126

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design choices

Level 1

(Local Nodes)

Summary-Schemas Nodes

Thesaurus

Root Node

Level 2

127

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design choices
 In SSM hierarchical structure leaf nodes are the local databases

and Internal nodes are responsible for the summary schemas
structure.

 Each leaf node contributes a database schema.
 Each access term in a leaf schema is associated with an entry level

term in the system taxonomy. Once these terms are linked to the
taxonomy hierarchy, creating the summary schema at the internal
nodes is automatic.

 Summary schemas at the internal nodes are lists of hypernyms
from the taxonomy, where each hypernym keeps a list of all child
nodes with corresponding hyponyms.

128

Heterogeneous Distributed Databases

Node A
{DB: Personnel
R: Employee
A: Name
A: Wage
….}

Node B
{DB: Staff
R: Engineers
A: ID Number
A: Salary
….}

Node C
{DB: Accounts
R: Clients
A: Tax Number
A: Interest
….}

Node D
{DB: Personnel
R: Retirees
A: ID Number
A: Pension
….}

Level 1:
Class Terms

Level 2:
Sections

Level 3:
Heads

Level 4:
Subheads

KEY:{…schema contents …}
DB = database name
R = relation name
A = attribute name

Node 4.A
{Earnings,…}

Node 4.B
{Gains,…}

Node 4.C
{Pay,…}

Node 3.A
{Acquisition,…}

Node 3.B
{Payment,…}

Node 2.A
{Possessive Relations,…}

Node 1.A
{Volition,…}

129

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Design choices
 Summary Schemas Model ─ Advantages

 The meta-data is by orders of magnitude smaller
than the meta-data generated by the Global-schema
approach.

 Preserves local DBMS autonomy.
 Provides good system scalability.
 Reduces average search time.
 Resolves imprecise queries.

130

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Summary Schemas Model
 Global Data Structure Costs

 Using Roget's Taxonomy, Summary Schemas
Model must maintain a taxonomy structure of 7300
entries, their hypernym/hyponym links, and 30,000
cross reference links.

 For linking local database schemas into the
Summary Schema hierarchy, the taxonomy structure
must include an additional 215,000 entry level terms
and their associated links.

131

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Summary Schemas Model

 Precise Query Processing
 Traditional multidatabase language systems queries precisely

reference data to be accessed and how that data is to be
manipulated.

 A data reference includes location, a local access term, and
how the local name and structure are to be mapped with similar
data to a common name and structure for global processing.

 The origin node parses the query, sends requests to remote
sources, and combines the partial results.

132

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Summary Schemas Model

 Imprecise Query Processing
 Summary Schemas Model performs the same step,

but adds a reference resolution phase between
parsing the query and sending the remote access
requests.

 If the user is unsure of the existence, location, or
local access terms, she/he can initiate an imprecise
query processing procedure.

133

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Summary Schemas Model

 Imprecise Query Processing
 Summary Schemas Model also allows searching for

more distant semantic matches, by using the
Semantic Distant Metric.

 The Semantic Distant Metric is a weighted Count of
the number of semantic links in the path between
two terms in the taxonomy.

134

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Summary Schemas Model

 Global Data Structure Costs
 On a sample of ≈ 1000 schema access terms, there

was an 80% reduction in the number of terms when
they were mapped to the corresponding hypernyms.
The next level of mapping produced a 31%
reduction and a final mapping to the highest level
hypernyms produces a 79% reduction.

135

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Summary Schemas Model

 Global Data Structure Costs
 In another experience, the space requirements across

the whole system for the Summary Schemas Model
was 4% of the total space required by the global
schemas.

136

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Summary Schemas Model
 Network Topology

1

2 3

4 5 6 7 8

9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Summary Schema

Local Database Schema

137

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Summary Schemas Model

 Precise vs. Imprecise query

36343230282624222018
0

300

600

900

1200

1500

precise
imprecise

�

origin node

138

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Summary Schemas Model

 Search and Return Paths1

2 3

4 5 6 7 8

9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

return paths
search paths

origin node origin node destination
search path: 22,11,4,2,1,3,8,17,35
return path: 35,17,8,4,11,22

search path: 31,15,7,3,8,17,35
return path: 35,17,8,7,15,31

139

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Summary Schemas Model

 Querying from Summary Schema Node
1

2 3

4 5 6 7 8

9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

origin node

destination

search path: 5,2,1,3,7,15,30
return path: 30,15,7,6,5

140

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Summary Schemas Model

 Incremental Expansion
1

2

5

12 13

24 25 26
{Pension,...}

{Salary,...}
{Wage,...}

{Earnings,...}{Pay,...}

{Acquisition,...}

{Possessive Relations,...}

{Volition,...} 1

2

5

12 13

24 25 26
New node

{Acquisition,...}

{Possessive Relations,...}

{Volition,...}

{Pay, Gain,...} {Earnings,...}

{Wage,...}
{Salary,...}{Interest,...}

{Pension,...}

Update

 MultiDatabase Systems ─ Summary Schemas Model
 The meta-data is by orders of magnitude smaller than

the meta-data generated by the Global-schema
approach.

 Preserves local DBMS autonomy.
 Provides good system scalability.
 Reduces average search time.
 Resolves imprecise queries.

141

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Summary Schemas Model

 Prototyped a Client/Server based SSM
 Access Control and Security in SSM
 Transaction management in SSM
 Query processing in SSM

142

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Summary Schemas Model
 Lessons learned

 Lack of portability,
 Lack of stability,
 Relying on network connectivity.

143

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Summary Schemas
Model
 Current distributed and multidatabase systems are

designed to allow timely and reliable access to large
amounts of autonomous and heterogeneous data
sources — Sometimes, somewhere access
environment.

144

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Summary Schemas Model

 Adding mobility and wireless connection to the
traditional multidatabase environments allow
anytime, anywhere access to the information
sources.

 However, this advantage comes at the expense
of additional complexities due to the network
bandwidth, frequent disconnections, and limited
processing power and resources.

145

Heterogeneous Distributed Databases

 MultiDatabase Systems ─ Extended SSM
 Add mobility to the Summary Schemas Model (MDAS)
 Transaction management in MDAS
 Power management
 Application of Software Agent
 Multimedia support
 Community of local ad-hoc nodes/sensor networks

146

Heterogeneous Distributed Databases

 It was decided to use agent technology to
overcome technological constraints and
shortcomings of the first prototype.

 Mobile agent-based computation paradigm
responds to the:
 Limited resources of mobile devices by migrating

tasks to more powerful servers on the network, and
 Intermittent connectivity by supporting disconnected

operations.

147

Heterogeneous Distributed Databases

 Mobile users only need to maintain the
connection during agent submission and
retraction:
 Handle intermittent network connectivity,
 Reduce bandwidth consumption,
 Reduce Power Consumption.

148

Heterogeneous Distributed Databases

149

Heterogeneous Distributed Databases

SSM Prototype MAMDAS
Design Model Client/Server Model Agent-Based Model

Language C & Java Java

Communication
Protocol

UNIX Sockets Agent transportation
& communication

Protocols

Heterogeneous Distributed Databases

150

SSM Prototype MAMDAS

Average
Response Time

Good Six times
faster

Scalability Not Reported Good

Portability Poor Good

Robustness Poor Good

Heterogeneous Distributed Databases

 A simulator was developed to simulate MAMDAS
and quantitatively study its behavior.

 The simulator was extended to compare and
contrast client/server and agent-based paradigms
within the scope of the Summary Schemas Model.

 The simulator mimics our computational
environment based on a set of rich statistical input
parameters.

151

Heterogeneous Distributed Databases

152

0

1000

2000

3000

4000

5000

6000

7000

8000

SSM Improved SSM MAMDAS

Systems

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(m
s)

 simulation results vs. prototype results

153

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 3 4 5 6 7

Number of Local Nodes

Semantic-Aware-Sim

Semantic-Aware

Non-Semantic-Aware-Sim

Non-Semantic-Aware

Av
er

ag
e

Re
sp

on
se

 T
im

e
(s

ec
.)

Heterogeneous Distributed Databases

 Assume Perfect Network Condition and Centralized
Thesaurus

154

0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(s
ec

)

10 20 30 40 50 60 70 80 90 100
Number of Local Nodes

SSM_SIM

MAMDAS_SIM

Heterogeneous Distributed Databases

 Number of Local Nodes = 70

155

0

50

100

150

200

250

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(s
ec

)

0 0.1 0.3 0.4 0.5 0.55 0.6

Collision Rate

SSM_SIM

MAMDAS_SIM

Heterogeneous Distributed Databases

	Mobile and Heterogeneous databases �Heterogeneous Distributed Databases�Concept, Data Integration, and Approaches
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases
	Heterogeneous Distributed Databases

