Tame Fréchet Spaces

Buket Can Bahadir

Middle East Technical University

Istanbul, 2016

Can Tame Fréchet Spaces



Introduction

Alinearmap T : E — F, where E and F are Fréchet Spaces with
increasing seminorm systems, is continuous if for each k € N there
exists j € N and Ck > 0 such that

Il Tx llk< Ck Il x 1Ij, ¥x € E.
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Introduction

Alinearmap T : E — F, where E and F are Fréchet Spaces with
increasing seminorm systems, is continuous if for each k € N there
exists j € N and Ck > 0 such that

Il Tx llk< Ck Il x 1Ij, ¥x € E.

We define n7, the characteristic of continuity map of the linear
operator T as:

nr(k) =inffo e N: sup || Tx |lx< oo}.

[Ixll-<1
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Introduction

Alinearmap T : E — F, where E and F are Fréchet Spaces with
increasing seminorm systems, is continuous if for each k € N there
exists j € N and Ck > 0 such that

Il Tx llk< Ck Il x 1Ij, ¥x € E.

We define n7, the characteristic of continuity map of the linear
operator T as:

nr(k) =inffo e N: sup || Tx |lx< oo}.

[Ixll-<1

Let:

I T llk.r= sup Il Tx [l -

lIxll-<1

Then clearly n7(k) = infoen || T llk.o-



Introduction

Definition

We say that the pair (E, F), where E and F are Fréchet spaces, is
called a tame pair, and denote (E, F) € T, if there exists an
increasing function S : N — N such that for all T € L(E, F) there
exists kg € N and a constant Cx with

I Tx k< Ci ll X llsqy  Vx € E, Vk 2 ko.
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Introduction

Definition

We say that the pair (E, F), where E and F are Fréchet spaces, is
called a tame pair, and denote (E, F) € T, if there exists an
increasing function S : N — N such that for all T € L(E, F) there
exists kg € N and a constant Cx with

I Tx k< Ci ll X llsqy  Vx € E, Vk 2 ko.

Definition

Let S : N — N be an increasing function. Let T € L(E, F), where E
and F are Fréchet spaces.

We say that T is S-tame if there exists kg € N such that Yk > ko,
ACk with

I Tx k< Ck I X lsk),  Yx € E.
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Introduction

Given a nondecreasing function ¢ : N —» N, for T € L(E, F), we
define:

L,(E,F) = {TelL(E,F):Yk3aCVx:| Tx k< Cl x llp(ky} (1)
= {TelL(E,F)IT llk (k)< @ Yk} (2)

Then clearly, L,(E, F) is a Fréchet Space with seminorm system
Il Mk p(k)s kK € N.
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Introduction

With this notation, we have:
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Introduction

With this notation, we have:

Theorem (Piszczek)
The following are equivalent:
i (E,F) is a tame pair
i There exists an increasing function S : N — N, tending to

infinity such that for any other increasing function ¢ : N - N
tending to infinity we have:

3kYm > k3An, Cy VT € L,(E, F) :

max || T <Cmmax || T
kglsm” s (). m1spsn|| o(p).p
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Characterization for Kéthe Spaces

If (2(A),A(B)) € T, where A(A) and A(B) are Kdthe Spaces with
corresponding matrices (aj,) and (b,q) by applying this theorem to
all one dimensional operators | e, ® €; |, we get, for each

m: N — N there exists a € N such that for each r € N there are

go € Nand C > 0 with

b,
b < Csup{—L}, Vi,
ajs,(r) q<qo Qir(q)
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Characterization for Kéthe Spaces

If (2(A),A(B)) € T, where A(A) and A(B) are Kdthe Spaces with
corresponding matrices (aj,) and (b,q) by applying this theorem to
all one dimensional operators | e, ® €; |, we get, for each

m: N — N there exists a € N such that for each r € N there are

go € Nand C > 0 with

bv bV ,
—_ < Csupf g Y, Vi, w
ajs,(r) g<qo 8in(q)

On the other hand, if the above inequality holds, for any
T e L(A(A),A(B), we can find S, : N — N’s, such that the
tameness criteria is satisfied.

Can Tame Fréchet Spaces



Characterization for Kéthe Spaces

Theorem (Piszczek)

Let A = (ap) and B = (b,q) be Kéthe matrices. The following are
equivalent:
i) (AP(A),A9(B)) € T for every pair (p,q), 1 < p,q < co, where
p=1org=o
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Characterization for Kéthe Spaces

Theorem (Piszczek)

Let A = (ap) and B = (b,q) be Kéthe matrices. The following are
equivalent:
i) (AP(A),A9(B)) € T for every pair (p,q), 1 < p,q < co, where
p=1org=o
i) (AP(A),A9(B)) € T for some pair (p,q), 1 < p,q < oo, where
p=1org=co
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Characterization for Kéthe Spaces

Theorem (Piszczek)

Let A = (ap) and B = (b,q) be Kéthe matrices. The following are
equivalent:

i) (AP(A),A9(B)) € T for every pair (p,q), 1 < p,q < co, where
p=1org=o
i) (AP(A),A9(B)) € T for some pair (p,q), 1 < p,q < oo, where
p=1orq=o
iii) There exist nondecreasing functions S, : N — N such that for

each r : N — N there exists a € N such that for eachr e N
there are qo € N and C > 0 with

by

byq
< C supf }s
a;s,(r) g<qo in(q)

holds for all i, v.
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Characterization for Kéthe Spaces

Dragilev and Nurlu proved that the existence of an continuous
linear unbounded operator between nuclear Kéthe Spaces implies
the existence of a continuous unbounded quasi-diagonal operator
between them. Djakov and Ramanujan sharpened this result by
omitting the nuclearity condition. We can state a similar result
about tameness of two Kéthe Spaces.
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Characterization for Kéthe Spaces

Dragilev and Nurlu proved that the existence of an continuous
linear unbounded operator between nuclear Kéthe Spaces implies
the existence of a continuous unbounded quasi-diagonal operator
between them. Djakov and Ramanujan sharpened this result by
omitting the nuclearity condition. We can state a similar result
about tameness of two Kéthe Spaces.

Theorem

L(AP(A), 9(B)) is tame for every pair (p,t), 1 < p,q < oo, where
p = 1 or g = oo if and only if the family of continuous
quasidiagonal operators from AP(A) to 19(B) is tame.
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Power Series Spaces

Power series spaces are defined as:

. 1/
A2(@) = (x e Kl x llk= (D) eP | x 1P )P < ok}, 1 p <o,
jeN
AP (@) = {x € K 1| X |lk= sup E™ | x; |< ooVk]}
jeN
where «a is a nondecreasing sequence of nonnegative scalars

which tends to infinity and rx 7 r. If r = 0, the space is of finite
type, and if r — oo it is of infinite type.
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Power Series Spaces

Power series spaces are defined as:

. 1/
A2(@) = (x e Kl x llk= (D) eP | x 1P )P < ok}, 1 p <o,
jeN
AP (@) = {x € K 1| X |lk= sup E™ | x; |< ooVk]}
jeN
where «a is a nondecreasing sequence of nonnegative scalars

which tends to infinity and rx 7 r. If r = 0, the space is of finite
type, and if r — oo it is of infinite type.

The sequence « is called stable if

. @j1
S=suUp—— <
jeN @
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Power Series Spaces

Vogt proved that finite type power series spaces are always tame,
and Dubinsky and Vogt characterized the tameness in infinite type
power series spaces.

The following table summarizes the characterization of tameness
between power series spaces.

Ag(p) stable Ao(B) nonstable A (B) stable Ao(3) nonstable
Apla) stable Tame Tame Tame Tame
Ag(a) nonstable Tame Tame Tame Tame
A (@) stable Non-tame Non-tame Tame iff bounded Tame iff bounded
As(@) nonstable | Non-tame | Tame with conditions | Tame iff bounded | Tame with conditions
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Power Series Spaces

Theorem
(Ao(@), Ao(B)) is a tame pair for any a, B. J
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Power Series Spaces

Theorem
(Ao(@), Ao(B)) is a tame pair for any a, B. ’

Proof.

Since any T € L(Ag(@), A(B)) is compact (Zakhariuta),
(MNo(@), Ao (B)) is tame. O
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Power Series Spaces

Theorem
(Ao(@), Ao(B)) is a tame pair for any a, B. \

Proof.

Since any T € L(Ag(@), A(B)) is compact (Zakhariuta),
(MNo(@), Ao (B)) is tame. O

Theorem
(MNo(@), No(B)) is a (linearly) tame pair for any a, 3. ’
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Power Series Spaces

Theorem (Nyberg)
The following conditions are equivalent.
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Power Series Spaces

Theorem (Nyberg)
The following conditions are equivalent.
(i) Every operator from N (a) to No(B) is bounded,
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Power Series Spaces

Theorem (Nyberg)

The following conditions are equivalent.
(i) Every operator from N (a) to No(B) is bounded,
(i) (Aso(@),No(B)) is tame,
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Power Series Spaces

Theorem (Nyberg)

The following conditions are equivalent.
(i) Every operator from N (a) to No(B) is bounded,
(i) (Aso(@),No(B)) is tame,

(iii) (Ao(@),No(B)) is linearly tame,
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Power Series Spaces

Theorem (Nyberg)
The following conditions are equivalent.
(i) Every operator from N (a) to No(B) is bounded,
(i) (Aso(@),No(B)) is tame,
(iii) (Ao(@),No(B)) is linearly tame,
(iv) Mg, ; the set of finite limit points of (Bj/«;);jex is bounded.
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Power Series Spaces

Theorem (Nyberg)
The following conditions are equivalent.
(i) Every operator from N (a) to No(B) is bounded,
(i) (Aso(@),No(B)) is tame,
(iii) (Ao(@),No(B)) is linearly tame,
(iv) Mg, ; the set of finite limit points of (Bj/«;);jex is bounded.

When « is stable, all linear operators are bounded if and only if
Ny (B)) has the property (LB) (Vogt). This implies that A5(8)) has
the property (DN), which is impossible.
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Power Series Spaces

Theorem (Nyberg)
The following conditions are equivalent.
(i) Every operator from N (a) to No(B) is bounded,
(i) (Aso(@),No(B)) is tame,
(iii) (Ao(@),No(B)) is linearly tame,
(iv) Mg, ; the set of finite limit points of (Bj/«;);jex is bounded.

When « is stable, all linear operators are bounded if and only if

Ny (B)) has the property (LB) (Vogt). This implies that A5(8)) has
the property (DN), which is impossible. When g is stable, the pair
is tame if and only if A (@) is (2) (Piszcek), which is a
contradiction.
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Power Series Spaces

Theorem (Nyberg)
The following conditions are equivalent.
(i) Every operator from N (a) to No(B) is bounded,
(i) (Aso(@),No(B)) is tame,
(iii) (Aso(@),No(B)) is linearly tame,
(iv) Mg, ; the set of finite limit points of (Bj/«;);jex is bounded.

When « is stable, all linear operators are bounded if and only if

Ny (B)) has the property (LB) (Vogt). This implies that A5(8)) has
the property (DN), which is impossible. When g is stable, the pair
is tame if and only if A (@) is (2) (Piszcek), which is a
contradiction.

Theorem

If @ or B is stable then (A (@), No(B)) is not tame.
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Power Series Spaces

Theorem (Nyberg)
The following statements are equivalent:
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Power Series Spaces

Theorem (Nyberg)
The following statements are equivalent:
() (Aw(@), Ao(B)) is tame,
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Power Series Spaces

Theorem (Nyberg)

The following statements are equivalent:
(i) (Aw(@),N(B)) is tame,
(i) (Aw(@),No(B)) is linearly tame,
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Power Series Spaces

Theorem (Nyberg)
The following statements are equivalent:
(i) (Aw(@),N(B)) is tame,
(i) (Aw(@),No(B)) is linearly tame,
(iii) Mgq; the set of finite limit points of (Bi/a;)ijex is bounded.
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Power Series Spaces

Theorem (Nyberg)
The following statements are equivalent:
(i) (Aw(@),N(B)) is tame,
(i) (Aw(@),No(B)) is linearly tame,
(iii) Mgq; the set of finite limit points of (Bi/a;)ijex is bounded.

Theorem

If a or B8 is stable then (A2,(a), A2,(B)) if and only if every
continuous linear operator betwen these spaces is bounded.
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Power Series Spaces

Example

Let g and y be sf[able.

Consider y; = 2 and cin = exp{nj"y;}. Since /\f(y) is nuclear
() = N,(y). Then (A(C), A%(y)) is tame but not bounded.
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Power Series Spaces

Example

Let g and y be sf[able.
Consider y; = 2 and cin = exp{nj"y;}. Since /\f(y) is nuclear
() = N,(y). Then (A(C), A%(y)) is tame but not bounded.

Similarly, for 8; = 2° and ¢j, = exp{-1j1/"y;}, (A°(B), (A(C)) is
tame but not bounded.
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Power Series Spaces

When a = 3, Vogt gave some refined results about tameness.
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Power Series Spaces

When a = 3, Vogt gave some refined results about tameness.

Given power series sequences «, 3, we find increasing sequences
tn, Sn, and define another power series sequence vy by letting

Yt, = Qn, Vs, = Bn, and {(?’n)neN} = {(th)neN} ) {(Vsn)neN}-
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Power Series Spaces

When a = 3, Vogt gave some refined results about tameness.

Given power series sequences «, 3, we find increasing sequences
tn, Sn, and define another power series sequence vy by letting

Yt, = Qn, Vs, = Bn, and {(?’n)neN} = {(th)neN} ) {(Vsn)neN}-

We define the operator Ty : Aw(y) = Ac(@) by
T1((%n)nen) = (Xt,)nen,
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Power Series Spaces

When a = 3, Vogt gave some refined results about tameness.

Given power series sequences «, 3, we find increasing sequences
tn, Sn, and define another power series sequence vy by letting
Yt, = @n, Vs, = Bn, and {(Yn)neN} = {(th)neN} ) {(Vsn)neN}-

We define the operator Ty : Aw(y) = Ac(@) by
T1((%n)nen) = (Xt,)nen,

To: /\oo(ﬂ) - Aoo(?’) by TZ((Yn)neN) = (Zk)keN’ where zx =y, if
k = sp, 0 otherwise.
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Power Series Spaces

When a = 3, Vogt gave some refined results about tameness.

Given power series sequences «, 3, we find increasing sequences
tn, Sn, and define another power series sequence vy by letting
Yt, = @n, Vs, = Bn, and {(Yn)neN} = {(th)neN} ) {(Vsn)neN}-

We define the operator Ty : Aw(y) = Ac(@) by
T1((Xn)next) = (Xt,)nex,

To: /\oo(ﬂ) - Aoo(?’) by TZ((Yn)neN) = (Zk)keN’ where zx =y, if
k = sp, 0 otherwise.

Given any T € L(Ax(@), As(B)), if we define S € L(Aw(y), Aoo(Y))
by S = T, o T o Ty, then Range(S) isomorphic to Range(T).
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Power Series Spaces

Theorem

The range of every tame operator T € L(Aw (@), Aw(B)) has a
basis.
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Power Series Spaces

Theorem

The range of every tame operator T € L(Aw (@), Aw(B)) has a
basis.

Corollary

If in addition A« (B) is nuclear, then Range(T) has an absolute
basis.
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Power Series Spaces

Theorem |

The range of every tame operator T € L(Aw (@), Aw(B)) has a
basis.

If in addition A« (B) is nuclear, then Range(T) has an absolute

Corollary
basis. |

Corollary

If in this case, N (B) is nuclear, and Range(T) is closed, Then
Range(T) is isomorphic to a closed subspace of s.
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Power Series Spaces

T € L(A/(@) x As(B)) has a matrix representation:

T T
T =
[T21 T2z

where Ty € L(A(a), Ar(@)), T2 € L(Ar(@), As(B)),
To1 € L(As(B), Ar(@)), Taz € L(As(B), As(B)).

] D (%, y) = (Ti1x + Tray, To1x + Ta2y),
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Power Series Spaces

T € L(A/(@) x As(B)) has a matrix representation:

T = [21 22] D (X, y) = (T11x + Tyay, Torx + Taoy),
where Tis € L(Ar(@), Ar(@)), Tio € L(A(e), As(B)),
To1 € L(As(B), Ar(@)), Taz € L(As(B), As(B)).

Theorem

We have the following about cartesian product of power series
spaces:
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Power Series Spaces

T € L(A/(@) x As(B)) has a matrix representation:

T = [21 22] D (X, y) = (T11x + Tyay, Torx + Taoy),
where Tis € L(Ar(@), Ar(@)), Tio € L(A(e), As(B)),
To1 € L(As(B), Ar(@)), Taz € L(As(B), As(B)).

Theorem

We have the following about cartesian product of power series
spaces:

@ The cartesian product No(a) x No(B) is always tame.
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Power Series Spaces

T € L(A/(@) x As(B)) has a matrix representation:

T = [21 22] D (X, y) = (T11x + Tyay, Torx + Taoy),
where Tis € L(Ar(@), Ar(@)), Tio € L(A(e), As(B)),
To1 € L(As(B), Ar(@)), Taz € L(As(B), As(B)).

Theorem

We have the following about cartesian product of power series
spaces:

@ The cartesian product No(a) x No(B) is always tame.

@ The cartesian product No(@) X A(B) is tame if and only if
both Ao (B) and (A (B), No(@)) are tame.
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Power Series Spaces

T € L(A/(@) x As(B)) has a matrix representation:

T = [21 22] D (X, y) = (T11x + Tyay, Torx + Taoy),
where Tis € L(Ar(@), Ar(@)), Tio € L(A(e), As(B)),
To1 € L(As(B), Ar(@)), Taz € L(As(B), As(B)).

Theorem

We have the following about cartesian product of power series
spaces:

@ The cartesian product No(a) x No(B) is always tame.

@ The cartesian product No(@) X A(B) is tame if and only if
both Ao (B) and (A (B), No(@)) are tame.

@ The cartesian product Ao (@) X A (B) is tame if and only if all
Neo(@), Noo(B), (Ao(@), Noo(B)) and (Ao (B), Ao()) are tame.
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Tame Factorization Property

Let E, F and G be Fréchet Spaces. An operator T € L(E, F)
factors over G, if T can be expressed as a composition of two
operators R e L(E,G) and Q € L(G, F).

Can Tame Fréchet Spaces



Tame Factorization Property

Let E, F and G be Fréchet Spaces. An operator T € L(E, F)
factors over G, if T can be expressed as a composition of two
operators R e L(E,G) and Q € L(G, F).

Definition
When E, F and G are Fréchet Spaces, we will say that the triple
(E, G, F) has the tame factorization property, and denote it by
(E, G, F) € IF if there exists a nondecreasing map S : N —» N
such that

n1(k) < S(k)

forall T € L(E, F) that can be factored over G.
If E = F, we will say that E has the tame factorization property and
write (E, G) € TG.
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Tame Factorization Property

Terzioglu and Zakhariuta studied the bounded factorization
property of Fréchet spaces, and characterized them.
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Tame Factorization Property

Terzioglu and Zakhariuta studied the bounded factorization
property of Fréchet spaces, and characterized them.

We want to characterize the pairs of Fréche Spaces, for which the
continuity characteristic maps of all linear continuous operators
that can be linearly and continuously factored over a third Fréchet
spaces can be estimated by a nondecreasingmap S : N — N.
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Tame Factorization Property

Terzioglu and Zakhariuta studied the bounded factorization
property of Fréchet spaces, and characterized them.

We want to characterize the pairs of Fréche Spaces, for which the
continuity characteristic maps of all linear continuous operators
that can be linearly and continuously factored over a third Fréchet
spaces can be estimated by a nondecreasingmap S : N — N.
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Tame Factorization Property

We have the following:

Theorem

For Fre¢het Spaces E, F and G, (E, G, F) has the tame
factorization property iff and only if there exists nondecreasing

S, : N — N such that for each = : N — N, there exists a such that
for every r € N there is some qg € N and C > 0 with

Il RQ lIr.s,(n< C suplll R llgx(q)} sUptll Q llgx(q)}
g<qo g<qo

forevery R e L(G,F) and Q € L(E, G).
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Tame Factorization Property

For Kéthe spaces we get more refined results:

Theorem

For Kéthe Spaces A(A), A(B) and A(C), where 1 is either A or A%,
(A(A), A(B), A(C)) € IF if and only if there exists nondecreasing
S. : N — N such that for each r : N — N, there exists a such that
for every r € N there is some qo € N and C > 0 with

Vv bj Cv,
O C sup{—2-} sup{—2
ais,(r) a<do Qin(q) 9<q bjr(q)

holds for all i, j,v € N

L
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Tame Factorization Property

For Kéthe spaces we get more refined results:
Theorem

For Kéthe Spaces A(A), A(B) and A(C), where 1 is either A or A%,
(A(A), A(B), A(C)) € IF if and only if there exists nondecreasing
S. : N — N such that for each r : N — N, there exists a such that
for every r € N there is some qo € N and C > 0 with

bjq Cyq
— < C sup{ } supf 1,

a,s (r) a=qo Qir(g) 9<qo bjﬂ(Q)

holds for all i, j,v € N

Theorem
A(A),A(B),A(C) e TF ifandonly if A={T =RQ:R e
L(A(B),A(C)) and Q € L(A(A), A(B)) are quasidiagonal} is tame.
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Tame Factorization Property

We have the following characterization about factorization of power

series spaces:

Theorem
If B and y are stable, then
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Tame Factorization Property

We have the following characterization about factorization of power
series spaces:
Theorem
If B and y are stable, then
o (A2(B), A(B)&:A(C), N (y)) € IF if and only if
(AZ(B). A(B)&xA(C). N (v)) € B3,
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Tame Factorization Property

We have the following characterization about factorization of power
series spaces:
Theorem
If B and y are stable, then
© (A&(B), A(B)&xA(C), N ()
(A%(B): A(B)&xA(C). Nd(y)) € BT,
® (A5(8). A(B)&xA(C).Ag(v)) € T3 if A(B) € (DN), A(C)
nuclear and has property (),

) € TF if and only if
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Tame Factorization Property

We have the following characterization about factorization of power
series spaces:

Theorem
If B and y are stable, then
o (A2(B), A(B)&:A(C), N (y)) € IF if and only if
(A& (8), A(B)&7A(C), AL (7)) € B3,
® (A5(8). A(B)&xA(C).Ag(v)) € T3 if A(B) € (DN), A(C)
nuclear and has property (),
o (A%(B), A(B)&-A(C),A(7)) € TF if A(B) € (LBx), A(C)
nuclear and has property (Q),
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Tame Factorization Property

We have the following characterization about factorization of power
series spaces:

Theorem
If B and y are stable, then
o (A2,(B), A(B)&:A(C), N (y)) € TF if and only if

(A& (8), A(B)&7A(C), AL (7)) € B3,
® (A5(8). A(B)&xA(C).Ag(v)) € T3 if A(B) € (DN), A(C)
nuclear and has property (),
o (A%(B), A(B)®xA(C), N{(y)) € T§ if A(B) € (LBx), A(C)
nuclear and has property (£2),

o (AL (B), A(B)&:A(C), AL (y)) € T, for any A(B) andA(C), and
for any a, B.
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Tame Factorization Property

For Further Reading |
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