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 well known theorem proved (independently) by J. Paris and H. Friedman states that BΣn+1 (the fragment of Arithmetic given 
by the collection scheme restricted to Σn+1-formulas) is a Πn+2-conservative extension of IΣn (the fragment given by the 
induction scheme restricted to Σn-formulas). In this paper, as a continuation of our previous work on collection schemes for 
∆n+1(T )-formulas (see [4]), we study a general version of this theorem and characterize theories T such that T + BΣn+1 is a 
Πn+2-conservative extension of T . We  prove that this conservativeness property is equivalent to a model-theoretic property 
relating Πn-envelopes and Πn-indicators for T . The analysis of Σn+1-collection we develop here is also applied to Σn+1-
induction using Parsons’ conservativeness theorem instead of Friedman-Paris’ theorem.

As a corollary, our work provides new model-theoretic proofs of two theorems of R. Kaye, J. Paris and C. Dimitracopoulos 
(see [8]): BΣn+1 and IΣn+1 are Σn+3-conservative extensions of their parameter free

and IΣ−
n+1n+1versions, BΣ− .

1 Introduction

In studying the class of provably total functions of a fragment of Arithmetic a useful idea is to isolate a subclass
of those functions with good growth properties. Typically, one obtains a sequence of increasing functions of
ever-faster rate of growth such that each provably total function is bounded by some function in the sequence.
This kind of constructions not only provides descriptions of the class of provably total functions but also of the
class of the Π2-consequences of the considered fragment. In this way, they also constitute a useful tool to obtain
Π2-conservation results.

A basic principle involved in those arguments is the collection principle. In one of its formulations this prin-
ciple asserts that every total function can be bounded by an increasing one. Hence, there exist natural relations
between conservation properties for collection principles and conditions under which the above mentioned con-
structions can be carried out. In a model-theoretic setting previous ideas occur notably in the theory of indicators
and envelopes of fragments of Arithmetic but, in some aspects, only in an implicit and ad hoc form. In this paper
we shall make explicit this relationship and develop a general theory on this topic.

Indicators were introduced by L. Kirby and J. Paris in [9] (see also [12]) as a tool to study the distribu-
tion in models of Peano Arithmetic of initial segments satisfying a given property. Paris and Kirby (see [14]
or [10]) developed the theory of indicators in countable models of Peano Arithmetic. However, as noticed, for
example, in [11], it is possible to develop a general theory of indicators in countable models of theories weaker
than Peano Arithmetic. Indeed, in [15] Paris stated the main results on indicators for theories extending IΣ1,
see [15, Theorem 0]. Here, we shall consider a more concrete (but still general enough) notion of indicator
in (countable) models of theories that can prove a weak form of collection. In [4], these theories have been
called Πn-functional.



On the other hand, the notion of an envelope was first isolated by K. McAloon in [13]. There envelopes
were used to give an alternative treatment to some results previously formulated in terms of indicators. However,
envelopes were implicit in Paris’ first works on indicators (see [14]) as a tool to characterize the class of provably
total recursive functions of a theory.

Since that early work it is well known that it is possible to obtain an envelope from an indicator. A general
version of this fact, for indicators for theories extending IΣ1, is proved in P. Hájek and P. Pudlák’s book [5].
Conversely, in certain cases, it is possible to get an indicator from an envelope. This suggests that in some sense
envelopes and indicators are equivalent notions. The principal aim of this work is to provide a precise formulation
of this equivalence by explicitly stating the conditions under which it holds.

In order to get those conditions a general theory of envelopes is needed. Such a general theory was developed
in [4] elaborating on the material on indicators included by R. Kaye in his book [7]. There he introduced the con-
cept of a Πn-envelope of a theory T in another theory T0. As it is apparent from our work in [4], Πn-functional
theories are the proper context to deal with Πn-envelopes. Roughly speaking a theory is Πn-functional if its
Πn+2-consequences can be described by IΣn plus a class of nondecreasing Πn-functions. In this case, (if there
exists) a Πn-envelope provides a uniform description of such a family of nondecreasing functions. Here we
study the equivalence between Πn-envelopes and Πn-indicators in this context. The key property to obtain that
equivalence is a general version of Friedman-Paris’ Πn+2-conservativeness theorem between BΣn+1 and IΣn.
That property was considered in [4], where we asked the following question (see [4, Problem 7.3]):

(P) Let T be a theory such that T + BΣn+1 is consistent. Are the following conditions equivalent?

(a) T is a Πn-functional theory.

(b) T + BΣn+1 is Πn+2-conservative over T .

Since property (b) will play a central role through this paper, we introduce the following definition.

Definition 1.1 We say that a theory T is ΠB
n+2-conservative if T +BΣn+1 is Πn+2-conservative over T ; that

is, ThΠn+2(T + BΣn+1) = ThΠn+2(T ).
Using this definition Friedman-Paris’ theorem can be stated as: IΣn is ΠB

n+2-conservative. L. Beklemishev
showed in [2, Theorem 3.2] that if T is a Πn+3-axiomatizable theory (proving that exponential function is total)
and it is closed under Σn+1-collection rule, then it is ΠB

n+2-conservative. (Collection rule is defined by

CR :
∀x∃y ϕ(x, y)

∀z∃u (∀x ≤ z) (∃y ≤ u)ϕ(x, y)
.

For a theory T , T + Σn+1-CR denotes the closure of T under first-order logic and applications of CR restricted
to formulas ϕ ∈ Σn+1.)

It is easy to see that every ΠB
n+2-conservative theory is closed under Σn+1-collection rule. Therefore,

ΠB
n+2-conservativeness is equivalent to the closure under Σn+1-collection rule, for Πn+3-axiomatizable theo-

ries. This fact is used in [2] to derive a proof-theoretic proof of Friedman-Paris’ theorem. In addition, it also
provides a partial answer to problem (P), as long as the theories closed under Σn+1-collection rule are exactly
the Πn-functional ones (see Theorems 1.3 and 1.4 below).

In this paper we address a general answer to problem (P) and provide a model-theoretic analysis of this ques-
tion. Our work relates ΠB

n+2-conservativeness to a model-theoretic property of Πn-envelopes. Roughly speaking,
that property (that we call Πn-IND) asserts that Πn-envelopes define (Πn-)indicators, for precise definitions see
Section 2. The analysis of Πn-IND was initiated in [4] in connection with our work on the collection scheme
for ∆n+1(T )-formulas. Here, we continue that analysis pointing out a close relation between conservation re-
sults on Σn+1-collection (including both axioms and rules) and natural conditions to develop a general theory of
indicators and envelopes.

In order to present more precisely the results obtained in this paper and their connection with the above
conservation property we state some general notation and recall some concepts and results from [4]. We shall
work in the first-order language of Arithmetic, L. As usual, we denote by exp a Π2-sentence expressing that
exponential function is total. As above, T will denote a consistent theory in the language L. For such a theory
we introduced the classes of formulas

∆n+1(T ) = {ϕ(x) ∈ Σn+1 : there exists ψ(x) ∈ Πn+1, T � ϕ↔ ψ}.



When the schemes of induction and minimization are restricted to these classes of formulas we obtain the theo-
ries I∆n+1(T ) and L∆n+1(T ). We also consider the following version of the collection scheme:

B∗∆n+1(T ) = I∆0 + {Bϕ,x,y : ϕ ∈ Πn, ∃y ϕ(x, y) ∈ ∆n+1(T )},
where Bϕ,x,y(z, �v ) denotes the collection axiom for ϕ(x, y, �v ) with respect to x, y; that is, the formula

(∀x ≤ z)∃y ϕ(x, y, �v ) → ∃u (∀x ≤ z) (∃y ≤ u)ϕ(x, y, �v ).

In [4] and [3] properties and relative strength of these schemes were studied. We introduced, among others,
the following notion:

Definition 1.2 We say that a theory T has ∆n+1-collection if T ⇒ B∗∆n+1(T ).
The main feature of theories having ∆n+1-collection is that for every such a theory T , the class of

∆n+1(T )-formulas is closed in T under bounded quantification. From this basic fact we derived in [4] that
if T has ∆n+1-collection, then T extends L∆n+1(T ) and I∆n+1(T ).

It is not difficult to prove (see [4, Remark 2.8]) that an extension of I∆0 has ∆n+1-collection if and only if it is
closed under Σn+1-collection rule. Besides this proof-theoretic characterization of ∆n+1-collection we obtained
a “functional” characterization more amenable to model-theoretic investigation. This is precisely the notion of
a Πn-functional theory. We need some notation to state it.

In what follows, Γ will denote a class of formulas of L with two free variables, x, y say. For a formulaϕ(x, y),
IPF(ϕ) will denote a formula expressing that ϕ(x, y) defines a nondecreasing (partial) function. Let

Γ∗ = {IPF(ϕ(x, y)) : ϕ(x, y) ∈ Γ} ∪ {∀x∃!y ϕ(x, y) : ϕ(x, y) ∈ Γ}.
Let us observe that if Γ ⊆ Πn, then Γ∗ is a set of Πn+2-sentences expressing that each formula in Γ defines a
nondecreasing total function. We consider the following concepts:

1. We say that Γ ⊆ Πn is a Πn-functional class if IΣn + Γ∗ is consistent.

2. A theory T is Πn-functional if there exists a Πn-functional class Γ such that

ThΠn+2(T ) = ThΠn+2(IΣn + Γ∗).

The class of formulas ∆n+1(T ) is determined by the Πn+2-consequences of T , so it is natural to look for a
characterization of the theories having ∆n+1-collection which relies on the description of ThΠn+2(T ). This is
achieved through the notion of a Πn-functional theory. The next theorem sums up the equivalence among the
three notions we have introduced (see [4, Theorem 3.5 and Remark 2.8]). For n = 0 a similar result was obtained
by L. Beklemishev in [1, Proposition 5.4].

Theorem 1.3 Let T be a consistent theory. The following conditions are equivalent:
1. T has ∆n+1-collection.

2. T is Πn-functional.

3. T is an extension of I∆0 closed under Σn+1-collection rule; that is, T ⇔ T + Σn+1-CR.

In view of this result and our previous remarks on Beklemishev’s work ([2, Theorem 3.2]) we can state the
following theorem.

Theorem 1.4 Let T be a Πn+3-axiomatizable and consistent theory. The following conditions are equivalent:
(1) T is Πn-functional.

(2) T is ΠB
n+2-conservative.

In this paper we present a model-theoretic proof of this result. In [4, Remark 3.7.2], we proved this theorem
for Πn+2-axiomatizable theories. Here, we give an alternative proof for the Πn+2 case and we extend it to
Πn+3-axiomatizable theories as an application of our work on Πn-envelopes. Since T+BΣn+1 has ∆n+1-collec-
tion, part (2) ⇒ (1) easily follows from Theorem 1.3. Hence, our concern here will be the converse. Moreover, we
will show that Theorem 1.4 is optimal with respect to the syntactical complexity of the theory (see Remark 3.10)
and this answers problem (P).

The paper is organized as follows. In Section 2 we introduce the basic notions we will deal with in this paper:
Πn-envelopes, Πn-indicators and the property Πn-IND. We describe the relationship between property Πn-IND
and ΠB

n+2-conservativeness and obtain the results on Πn-envelopes that constitute the real core of this paper.



Firstly, without restrictions on the syntactical complexity of the theory, we characterize recursively axiomati-
zable and Πn-functional theories (proving that exponential function is total) which are ΠB

n+2-conservative. They
are, namely, those theories whose Πn-envelopes define (well-behaved) Πn-indicators. The next theorem sums up
the results obtained in Theorems 2.4 and 2.7.

Theorem 1.5 Let T be a recursively axiomatizable and Πn-functional theory such that T � exp. The follow-
ing conditions are equivalent:

1. T is ΠB
n+2-conservative.

2. There exists a Πn-envelope of T in T satisfying Πn-IND.

3. There exists a well-behaved Πn-indicator, Y (x, y) = z, for T in T such that for all k ∈ ω,

T � ∀x∃y (Y (x, y) > k).

Secondly (see Theorem 2.10), we prove (a slightly sharper variation of) the following theorem.

Theorem 1.6 Let T be a Πn-functional theory such that T � exp. If T is Πn+3-axiomatizable, then every
Πn-envelope of T in T satisfies Πn-IND.

From these results Theorem 1.4 can be derived for theories proving that exponential function is total (see Co-
rollary 2.11). However, because known existence theorems for envelopes use the exponential function, the proof
of Theorem 1.4 in its whole generality requires some additional work that will be done in Section 3. To this end,
the central result is Theorem 3.7 there. The proof of this theorem deals with the notion of a pseudo-Πn-envelope
and provides a model-theoretic tool for the analysis of collection rule. As we have noticed, the first condition
of Theorem 1.4 is equivalent to the closure of T under Σn+1-collection rule; so, the work presented here (and
in [4]) can be considered as a model-theoretic analysis of collection rule (and, therefore, it is closely tied to
Beklemishev’s work in [2]). As a matter of fact, from Theorem 3.7 we derive [2, Theorem 3.2] (proved there
by a cut-elimination argument) and a new model-theoretic proof of a conservativeness result between BΣn+1

and BΣ−
n+1 firstly proved by R. Kaye, J. Paris and C. Dimitracopoulos (see [8, Theorem 2.4]).

Finally, in Section 4 we apply the previously developed analysis of Σn+1-collection rule to Σn+1-induction.
This can be done with minor changes. Now the basic result that plays the role of Friedman-Paris’ theorem is
Parsons’ conservation theorem on Σn+1-induction rule. Induction rule is given by

IR :
ϕ(0), ∀x (ϕ(x) → ϕ(x + 1))

∀xϕ(x)
.

As for collection rule, T + Σn+1-IR denotes the closure of T under first-order logic and applications of IR
restricted to formulas ϕ ∈ Σn+1. C. Parsons proved that (see [16]):

Theorem 1.7 (Parsons) IΣn+1 is a Πn+2-conservative extension of I∆0 + Σn+1-IR.

Since IΣn is equivalent to I∆0 + Σn+1-CR (see [2, Corollary 4.2]), Friedman-Paris’ theorem can be stated
as: BΣn+1 is a Πn+2-conservative extension of I∆0 + Σn+1-CR.

So, it is natural to introduce a notion of ΠI
n+2-conservativeness and study it along the lines just described for

the collection case.

Definition 1.8 A theory T is ΠI
n+2-conservative if T + IΣn+1 is Πn+2-conservative over T .

The main result on Σn+1-induction rule proved here is the following one:

Theorem 1.9 (see Theorem 4.1) Let T be a Πn+3-axiomatizable theory. Then we have:

T is closed under Σn+1-induction rule ⇔ T is ΠI
n+2-conservative.

As for collection, Theorem 1.9 is optimal with respect to the syntactical complexity of the theory. It is easy to
offer examples along the lines given in Remark 3.10 for the collection case. Moreover, Theorem 1.9 provides a
new proof of [8, Theorem 2.1]: IΣn+1 is a Σn+3-conservative extension of IΣ−

n+1.
The work presented in this paper shows the relationship between conservation (for BΣn+1 and BΣ−

n+1) and
consistency of theories of the form T + BΣn+1, where T is Πn-functional. We conclude this section with a re-
lated question.

Problem 1.10 Let ϕ ∈ Πn+2 be a sentence such that L∆−
n+1 + ϕ (or L∆−

n+1 + ϕ+ IΣn) is a consistent
theory. Is there a Πn-functional theory T such that T � ϕ?

If yes, then BΣn+1 is Σn+2-conservative over L∆−
n+1 (or over L∆−

n+1 + IΣn). Let us prove it.



Let ϕ ∈ Σn+2 be a sentence such that BΣn+1 � ϕ. If L∆−
n+1(+IΣn) �� ϕ, then L∆−

n+1 + ¬ϕ (+IΣn) is
consistent. By hypothesis, there exists a Πn-functional theory T such that T � ¬ϕ. Since ¬ϕ is Πn+2, we
may assume that T is Πn+2-axiomatizable. Hence, by Theorem 1.4, T + BΣn+1 is consistent. Since T � ¬ϕ
and BΣn+1 � ϕ, this gives the desired contradiction.

2 Πn-envelopes and Πn-indicators

In what follows we introduce the basic notions we will deal with in this paper: Πn-envelopes, Πn-indicators and
the property Πn-IND. We describe the relationship between property Πn-IND and ΠB

n+2-conservativeness and
obtain the main results relating Πn-envelopes and Πn-indicators.

2.1 The property Πn-IND

In this section we give a short review of some relevant facts of the theory of Πn-envelopes as developed in [4]. In
this way, in addition to present the exact definitions of the notions involved we will make explicit the connection
between Πn-envelopes and ΠB

n+2-conservativeness.
To get a uniform description of Πn-functional classes, in [4] we introduced the concept of a Πn-envelope.

Definition 2.1 Let T, T0 be consistent theories, ϕ(u, x, y) ∈ Σn+1 and Γϕ = {ϕ(k, x, y) : k ∈ ω}. We say:

(1) ϕ(u, x, y) is a Πn-q-envelope of T in T0 if

(a) T � Γ∗
ϕ; that is, for all k ∈ ω, T � IPF(ϕ(k, x, y)) ∧ ∀x∃y ϕ(k, x, y);

(b) for all k ∈ ω, T0 � ϕ(k + 1, x, y) → (∃z < y)ϕ(k, x, z).
(2) ϕ(u, x, y) satisfies Πn-ENV for T and T0 if for each ψ(x, y) ∈ Πn such that T � ∀x∃y ψ(x, y), there ex-

ists k ∈ ω such that T0 � ϕ(k, x, y) → (∃z < y)ψ(x, z). (By a standard quantifier contraction argument this
property also holds for ψ(x, y) ∈ Σn+1.)

(3) ϕ(u, x, y) is a Πn-envelope of T in T0 if ϕ(u, x, y) is a Πn-q-envelope of T in T0 and satisfies Πn-ENV
for T and T0.

This definition describes a very general notion and, at a first sight, the role of T0 could be seen as artificial; so,
some comments are in order. Actually, in most of the cases, it can be assumed that T0 is IΣn+exp. This assump-
tion would simplify the statements of the results in this section; and the reader can assume that this is the case
until Section 3. However, when dealing with the weaker notion of a pseudo-Πn-envelope in Section 3, it will be
useful to consider different choices of T0. So, we prefer to make explicit the role of T0 from the very beginning.

Let us denote the formula ϕ(u, x, y) by Fu(x) = y. Then, roughly speaking, a Πn-envelope is a Σn+1-de-
finable sequence of provably total nondecreasing functions, {Fk}k∈ω. Its essential feature is property Πn-ENV
expressed in item (2): Every Πn-definable (or even Σn+1-definable) function provably total in T is (provably
in T0) majorized by a function in the sequence. The remaining properties stated in (1) are of technical char-
acter. Sequences satisfying these properties have been called Πn-q-envelopes in order to discuss alternatives
to Πn-ENV. The following property can be considered as a model-theoretic strong version of Πn-ENV. It cap-
tures a common property of envelopes defined from indicators.

Definition 2.2 Let ϕ(u, x, y) ∈ Σn+1. We say ϕ(u, x, y) satisfies Πn-IND for T and T0 if for every A � T0

countable, nonstandard and a, b ∈ A, the following conditions are equivalent:

IND-(i): For all k ∈ ω, A � (∃y < b)ϕ(k, a, y).
IND-(ii): There exists I � T such that I ≺e

n A and a < I < b.

In [4] we obtained conditions under which Πn-ENV is equivalent to Πn-IND. As we noticed there, if T0

extends IΣn, then every Πn-q-envelope of T in T0 that satisfies Πn-IND is a Πn-envelope. The converse also
holds for ΠB

n+2-conservative theories. We shall reformulate these facts in the following two results.

Proposition 2.3 Assume that T ⇒ T0 ⇒ IΣn + exp and T is a consistent recursively axiomatizable theory.
The following conditions are equivalent:

(1) T is Πn-functional.

(2) There exists a Πn-envelope of T in T0.



P r o o f.
(1) ⇒ (2): Since T � exp and it is recursively axiomatizable, this part follows by [4, Theorem 5.8].
(2) ⇒ (1): By Theorem 1.3 it is enough to prove that T is closed under Σn+1-collection rule. Therefore,

let ψ(x, y) ∈ Σn+1 such that T � ∀x∃y ψ(x, y) and ϕ(u, x, y) ∈ Σn+1 a Πn-envelope of T in T0. Then, there
is k ∈ ω such that

T0 � ϕ(k, x, y) → (∃z < y)ψ(x, z).

Since T � ∀x∃y ϕ(k, x, y) and T extends T0, we have

(�) T � ∀x∃y∃z (z < y ∧ ϕ(k, x, y) ∧ ψ(x, z)).

In addition, T also proves that ϕ(k, x, y) defines a nondecreasing function, so, from (�) it follows that

T � ∀u∃v (∀x ≤ u) (∃y ≤ v)ψ(x, y),

as required.

Theorem 2.4 Assume that T ⇒ T0 ⇒ IΣn + exp and T is a consistent recursively axiomatizable theory.
The following conditions are equivalent:

(1) T is ΠB
n+2-conservative.

(2) There exists a (and therefore every) Πn-envelope of T in T0 that satisfies Πn-IND.

P r o o f. This result is essentially proved in [4, Theorem 5.5]. We will include the proof here for the sake of
completeness.

(1) ⇒ (2): In the proof we use some basic results on recursive saturation and the standard system of a mo-
del, SSy(A), see [7] for details. By (1), T is Πn-functional; so, by Proposition 2.3 there exists ϕ(u, x, y) ∈ Σn+1,
a Πn-envelope of T in T0. In order to show that ϕ(u, x, y) satisfies property Πn-IND it is enough to see
that IND-(i) ⇒ IND-(ii). We follow the proof of [7, Theorem 14.7]. Let A � T0 countable, nonstandard and
let a, b ∈ A such that A � (∃y < b)ϕ(k, a, y), for all k ∈ ω. Let

T ′ = T + BΣn+1 + c + {∀�z ψ(c, �z ) : ψ(x, �z ) ∈ Σn,A � (∀�z ≤ b)ψ(a, �z )}.
By (1), as in [7, proof of Theorem 14.7], it follows that T ′ is consistent. Since A � IΣn + exp, the Σn-type
of a, b in A belongs to SSy(A); hence,

{�∀�z ψ(c, �z )� : ψ ∈ Σn,A � (∀�z ≤ b)ψ(a, �z )} ∈ SSy(A).

So, as T is recursively axiomatizable, T ′ ∈ SSy(A). Since SSy(A) is a Scott set, there exists B � T ′ count-
able and SSy(A)-saturated (hence, B is recursively saturated). Let c = B(c). Then, for each θ(x, �z ) ∈ Πn,
if B � ∃�z θ(c, �z ), then A � (∃�z ≤ b) θ(a, �z ). So, by Friedman’s theorem, there exists H : B�e

nA such that
H(c) = a and b /∈ H(B). Let I = H(B). Then I � T , I ≺e

n A and a < I < b.
(2) ⇒ (1): Let ϕ(u, x, y) ∈ Σn+1 be a Πn-envelope of T in T0 that satisfies Πn-IND. Let ψ(x, y) ∈ Πn

such that T + BΣn+1 � ∀x∃y ψ(x, y). We must prove that T � ∀x∃y ψ(x, y). Since T � ∀x∃y ϕ(k, x, y) for
all k ∈ ω and T ⇒ T0, it suffices to see that there is k ∈ ω such that

T0 � ϕ(k, x, y) → (∃z < y)ψ(x, z).

Towards a contradiction, assume that for all k ∈ ω, T0 �� ϕ(k, x, y) → (∃z < y)ψ(x, z). Then, for each k ∈ ω,
there exist Ak � T0, and a, b ∈ Ak such that Ak � ϕ(k, a, b) ∧ (∀z < b)¬ψ(a, z). Let c and d be two new con-
stants and T ′ the theory

T0 + (∀z < d)¬ψ(c, z) + {(∃y < d)ϕ(j, c, y) : j ∈ ω}.
By compactness, T ′ is consistent. Let A′ � T ′ countable, A the restriction of A′ to L, a = A′(c) and b = A′(d).
Then A � T0 and, for each k ∈ ω, A � (∃y < b)ϕ(k, a, y). By hypothesis, there exists I � T such that I ≺e

n A
and a < I < b. As a consequence, we get I � T + BΣn+1; so, there exists e ∈ I such that I � ψ(a, e). Hence,
A � (∃z < b)ψ(a, z). Contradiction.



Remark 2.5 The proof of (1) ⇒ (2) in Theorem 2.4 yields:
1. Condition IND-(ii) is equivalent to the following one:

IND-(ii)′: There exists I � T recursively saturated such that I ≺e
n A and a < I < b.

This well known fact of the general theory of indicators will be extensively used through this work.

2. If there exists a Πn-envelope of T in T0 that satisfies Πn-IND, then every Πn-envelope of T in T0 satis-
fies Πn-IND.

We close this section with some remarks on a special kind of Πn-functional classes which are useful in order
to get a uniform treatment of Πn-envelopes. We recall the following definitions from [4].

Let Γ be a Πn-functional class. We say that Γ is a strong Πn-functional class if for every model A � I∆0 +Γ∗

and I ⊂e A, it holds that

I ≺e
n A ⇔ for each ϕ(x, y) ∈ Γ and a ∈ I there exists b ∈ I such that A � ϕ(a, b).

That is, if Γ is a strong Πn-functional class and A � I∆0+Γ∗, then every initial segment of A closed (in A) under
the family of functions defined by Γ is a Σn-elementary substructure of A (the converse is obviously true). Notice
that the notions of Π0-functional class and strong Π0-functional class coincide since each initial substructure of a
model of I∆0 is ∆0-elementary. However, these notions differ for n > 0. In [4], we studied properties of strong
Πn-functional classes and proved existence results. In particular, elaborating on a construction by R. Kaye in [6],
we showed (see [4, Theorem 5.13]) that for each n ∈ ω, there exists a Πn-formula Kn(x) = y such that:

1. IΣn � IPF(Kn) ∧ ∀x∃y (Kn(x) = y).
2. Γn = {Kn(x) = y} is a strong Πn-functional class and IΣn � (x+ 1)2 ≤ Kn(x). So, if A � IΣn and I is

an initial segment of A closed (in A) under the function defined by Kn, then I ≺e
n A.

Strong Πn-functional classes provide us with a special kind of Πn-envelopes. Let ϕ(u, x, y) ∈ Πn be a Πn-en-
velope of T in T0. We say that ϕ(u, x, y) is a strong Πn-envelope if Γϕ is a strong Πn-functional class. In this
definition we restrict ourselves to Πn-formulas, while our definition of a Πn-envelope deals with Σn+1-formulas.
This is not an essential restriction. By a straightforward construction, from any Πn-envelope we can obtain a new
Πn-envelope given by a Πn-formula (see [4, Remark 5.9]).

Bearing in mind this fact and the formulas Kn(x) = y, it is easy to get strong Πn-envelopes. Indeed, if T0

extends IΣn and ϕ(u, x, y) ∈ Πn is a Πn-envelope of T in T0, then the following Πn-formula

(u = 0 ∧ Kn(x) = y) ∨ (u > 0 ∧ (∃y1, y2 ≤ y) (Kn(x) = y1 ∧ ϕ(u, x, y2) ∧ y = y1 + y2))

is a strong Πn-envelope of T in T0. So, in what follows we can assume without loss of generality that the Πn-en-
velopes involved are strong or are given by Πn-formulas.

2.2 Πn-indicators

In this section we characterize Πn-functional theories which are ΠB
n+2-conservative by means of indicators,

envelopes and the distribution, in countable and recursively saturated models of T , of the initial segments which,
in turn, are models of T .

Let A be a countable L-structure and Q a class of initial segments. In [9] an indicator for Q in A is defined as
a formula Y (x, y) = z such that

1. A � ∀x, y∃!z (Y (x, y) = z);
2. for each a, b ∈ A, (∃I ∈ Q) (I ⊂e A ∧ a < I < b) ⇔ Y (a, b) > ω.
We shall consider the following notion of indicator.

Definition 2.6 We say that a Σn+1-formula Y (x, y) = z is a Πn-indicator for T in T0 if
1. T0 � ∀x, y∃!z (Y (x, y) = z);
2. for each (countable) A � T0 and a, b ∈ A, (∃I � T ) (I ≺e

n A ∧ a < I < b) ⇔ Y (a, b) > ω.

In order to get a more elegant theory it is usual to consider a stronger notion of indicator, namely well-behaved
indicators (see [9] or [7]). We say that Y (x, y) = z is a well-behaved Πn-indicator if

T0 � ∀x, y (Y (x, y) ≤ y) ∧ ∀x, y, x′, y′ [x ≤ x′ ≤ y′ ≤ y → Y (x′, y′) ≤ Y (x, y)].



It is easy to prove that if T0 is a Πn-functional theory, then there exists a Πn-indicator for T in T0 if and only if
there exists a well-behaved one. As a matter of fact, for Πn-functional theories a general theory of Πn-indicators
can be developed as in [9, 12, 14]. The basic results on indicators can be stated in this context as in those papers.

As noticed in the introduction, given a (well-behaved) indicator Y (x, y) = z it is possible to define an enve-
lope ϕY (u, x, y). The following result shows that the converse is also true for Πn-functional theories: given an
envelope ψ(u, x, y), we can get a (well-behaved) indicator Yψ(x, y) = z. The key property that allows us to
get Πn-envelopes from Πn-indicators is ΠB

n+2-conservativeness. Along the proof we shall describe explicitly the
construction of ϕY and Yψ.

Theorem 2.7 Let T be a Πn-functional theory such that T � exp. The following conditions are equivalent:

(1) There exists a Πn-envelope of T in T satisfying Πn-IND.

(2) There exists a well-behaved Πn-indicator, Y (x, y) = z, for T in T such that for all k ∈ ω,

T � ∀x∃y (Y (x, y) > k).

P r o o f.
(2) ⇒ (1): Let ϕY (u, x, y) be a Σn+1-formula equivalent (in T ) to

y = u+ min{v ≥ x : Y (x, v) > u}.

By definition, for every k ∈ ω, T � ϕY (k+1, x, y) → (∃z < y)ϕY (k, x, z). Let us see now that for every k ∈ ω,
T � IPF(ϕY (k, x, y)). Indeed, uniqueness follows from the definition ofϕY (u, x, y), and in order to prove (in T )
that ϕY (k, x, y) defines a nondecreasing function it is enough to observe that if x1 ≤ x2 and ϕY (k, x2, y2), then
Y (x2, y2 − k) > k and, since Y (x, y) = z is a well-behaved Πn-indicator,

k < Y (x2, y2 − k) ≤ Y (x1, y2 − k).

So, if ϕY (k, x1, y1), then y1 − k ≤ y2 − k; hence, y1 ≤ y2.
Let k ∈ ω. Then Y (x, y) > k is a ∆n+1(T )-formula. Since T is a Πn-functional theory, T ⇒ L∆n+1(T ); so,

as T � ∀x∃y (Y (x, y) > k), T � ∀x∃y ϕY (k, x, y). This proves that ϕY (u, x, y) is a Πn-q-envelope of T in T .
Next we show that ϕY (u, x, y) satisfies Πn-IND for T and T . Let A � T and a, b ∈ A such that for ev-

ery k ∈ ω, A � (∃y < b)ϕY (k, a, y). By the definition of ϕY (u, x, y), for each k ∈ ω there is bk ∈ A such
that A � bk < b ∧ Y (a, bk) > k. Since Y (x, y) = z is a well-behaved Πn-indicator for T in T , for every k ∈ ω,

A � k < Y (a, bk) ≤ Y (a, b).

Hence, Y (a, b) > ω. So, there exists I � T such that I ≺e
n A and a < I < b.

(1) ⇒ (2): Let ϕ(u, x, y) ∈ Πn be a Πn-envelope of T in T that satisfies Πn-IND. Let ψ(u, x, y) ∈ Πn be the
formula

Seq(y) ∧ lg(y) = x+ 1 ∧ (∀j ≤ x)ϕ(u, j, (y)j).

That is, ψ(u, x, y) expresses that y is a sequence of length x+ 1 and for each j ≤ x, its jth component, (y)j ,
satisfies ϕ(u, j, (y)j). Then ψ(u, x, y) is a Πn-envelope of T in T satisfying Πn-IND. Moreover,

(•) T � x1 ≤ x2 ∧ ψ(u, x2, y2) → (∃y1 ≤ y2)ψ(u, x1, y1).

Let Yψ(x, y) = z be a Σn+1-formula equivalent (in T ) to

[y ≤ x ∧ z = 0] ∨ [x < y ∧ z = max{w ≤ y : (∀u < w) (∃v ≤ y)ψ(u, x, v)}].

Let us see that Yψ(x, y) = z is a well-behaved Πn-indicator for T in T .
First of all, observe that, as T ⇒ IΣn, T � ∀x, y∃!z (Yψ(x, y) = z). Now, let A � T countable and a, b ∈ A.

Then

(∃I � T ) (I ≺e
n A) ∧ a < I < b⇔ (∀k ∈ ω) (A � (∃y < b)ψ(k, a, y)) ⇔ Yψ(a, b) > ω.



This proves that Yψ(x, y) = z is a Πn-indicator for T in T . By the definition of Yψ(x, y) = z, it follows that
T � Yψ(x, y) ≤ y. Let a′, b′, c′ ∈ A such that a ≤ a′ < b′ ≤ b and A � Yψ(a′, b′) = c′. Then, by (•),

A � (∀u < c′) (∃y ≤ b′)ψ(u, a′, y).

Hence, A � Yψ(a, b) ≥ c′. Consequently, Yψ(x, y) = z is a well-behaved Πn-indicator. To conclude the proof let
us see that:

Claim 2.7.1 For every k ∈ ω, T + BΣn+1 � ∀x∃y (Yψ(x, y) > k).

P r o o f. Let A � T + BΣn+1. Without loss of generality we may assume that A is countable, recursively
saturated and T ∈ SSy(A). Let c be a new constant and let T ′ be the theory

T + {(∃�y < c)ψ(�y ) : ψ(�y ) ∈ Πn,A � ∃�y ψ(�y )}.
By compactness T ′ is consistent. Since A is recursively saturated,

{ψ(�y ) ∈ Πn : A � ∃�y ψ(�y )} ∈ SSy(A).

Hence, as T ∈ SSy(A), T ′ ∈ SSy(A). So, there exists B � T ′ countable and recursively saturated verify-
ing SSy(A) = SSy(B). Let c = B(c). Then,

A � ∃�y ψ(�y ) ⇒ B � (∃�y < c)ψ(�y ).

So, by Friedman’s immersion theorem, there is H : A �e
n B such that c /∈ H(A). Therefore, identifying H(A)

and A, we get A ≺e
n B and B � T .

Let a ∈ A. Then for each b ∈ B such that b > A and k ∈ ω, B � Yψ(a, b) > k. Then, as Yψ(x, y) > k is
a ∆n+1(T )-formula and T extends I∆n+1(T ), by underspill, there exists d ∈ A such that B � Yψ(a, d) > k;
hence, A � Yψ(a, d) > k. � (Claim 2.7.1)

By (1) and Theorem 2.4, T is ΠB
n+2-conservative; therefore, by the above claim, we get that for all k ∈ ω,

T � ∀x∃y (Yψ(x, y) > k),

as required.

By Theorems 2.4 and 2.7, consistent and recursively axiomatizable ΠB
n+2-conservative theories (proving exp)

correspond to those theories whose Πn-envelopes define Πn-indicators. Moreover, from the above results, we
can also derive the following model-theoretic characterization of ΠB

n+2-conservativeness.

Corollary 2.8 Let T be a recursively axiomatizable theory such that T � exp. The following conditions are
equivalent:

(1) T is ΠB
n+2-conservative.

(2) For every countable and recursively saturated A � T and a ∈ A there is I ≺e
n A (proper) such that I � T

and a ∈ I .

P r o o f.
(1) ⇒ (2): Let A � T recursively saturated and a ∈ A. By Theorems 2.4 and 2.7, there exists a well-behaved

Πn-indicator, Y (x, y) = z, for T in T such that for all k ∈ ω,

T � ∀x∃y (Y (x, y) > k).

Clearly, p(y) = {Y (a, y) > k : k ∈ ω} is a recursive type over A. Then, as A is recursively saturated, there ex-
ists b ∈ A such that A � p(b); that is, for each k ∈ ω, A � Y (a, b) > k. So, Y (a, b) > ω and, since Y (x, y) = z
is a Πn-indicator, there exists I � T such that I ≺e

n A and a < I < b.
(2) ⇒ (1): Let ϕ(x, y) ∈ Πn such that T + BΣn+1 � ∀x∃y ϕ(x, y). Let A � T countable and recursively

saturated and a ∈ A. By (2), there exists I � T such that a ∈ I ≺e
n A and I �= A. Then we have I � T +BΣn+1;

hence I � ∃y ϕ(a, y). So, A � ∃y ϕ(a, y).



2.3 Πn+3-axiomatizable theories

In view of Proposition 2.3 and Theorem 2.4, our problem (P) on the equivalence between Πn-functional and
ΠB
n+2-conservative theories can be reformulated as follows:

(P′) Assume that T + BΣn+1 is consistent. Are the following conditions equivalent?

(a) There is a Πn-envelope of T in T .

(b) There is a Πn-envelope of T in T that satisfies Πn-IND.

Here we obtain a positive answer to (P′) for recursively Πn+3-axiomatizable theories (proving exp). As a
corollary, we also obtain a model-theoretic proof of Theorem 1.4 for theories proving exp. Our starting point is
a positive answer to (P′) for Πn+2-axiomatizable theories.

Lemma 2.9 Let T be a Πn-functional theory and T0 an extension of IΣn+exp. If T is Πn+2-axiomatizable,
then every Πn-envelope of T in T0 satisfies Πn-IND.

P r o o f. Let ϕ(u, x, y) ∈ Πn be a Πn-envelope of T in T0. In the proof we will denote the formula ϕ(u, x, y)
by Fu(x) = y.

Let A � T0 countable and a, b ∈ A such that, for all k ∈ ω, A � (∃y < b) (Fk(a) = y). We must prove that
there exists I � T such that I ≺e

n A and a < I < b.
Let I = {c ∈ A : there exists k ∈ ω such that A � c < Fk(a)}. Obviously, a < I < b. Let us see that I � T

and I ≺n A. First we prove that I is closed (in A) under functions Fm, m ∈ ω; that is

(�) for each m ∈ ω and c ∈ I there exists d ∈ I such that A � Fm(c) = d.

Now let c ∈ I and k ∈ ω be such that c < Fk(a). Since T � ∀x∃z (∀x0 < Fk(x)) (∃y0 < z) (Fm(x0) = y0)
and (∀x0 < Fk(x)) (∃y0 < z) (Fm(x0) = y0) is a Πn-formula, there exists j ∈ ω such that

T0 � Fj(x) = y → (∃z < y) (∀x0 < Fk(x)) (∃y0 < z) (Fm(x0) = y0).

Hence, for x = a it holds that A � (∃z < Fj(a)) (∀x0 < Fk(a)) (∃y0 < z) (Fm(x0) = y0). So, now for x0 = c,
A � (∃y0 < Fj(a)) (Fm(c) = y0), as required.

We show that I ≺n A. Since T is Πn-functional, T extends IΣn; so, T � ∀x∃y (Kn(x) = y). Hence, there
exists k ∈ ω such that

T0 � Fk(x) = y → (∃z < y) (Kn(x) = z).

Hence, by (�), I is closed under the function Kn. But, as remarked at the end of Section 2.1, {Kn(x) = y} is a
strong Πn-functional class, so I ≺n A.

Next we show that I � T . Let ψ(x, y) ∈ Πn such that ∀x∃y ψ(x, y) is an axiom of T . Then there is k ∈ ω
such that

T0 � Fk(x) = y → (∃z < y)ψ(x, z).

Let c ∈ I . Then A � (∃z < Fk(c))ψ(c, z). By (�), Fk(c) ∈ I; so, it follows that I � ∃z ψ(c, z) since I ≺n A.
Hence, I � ∀x∃y ψ(x, y), as required.

This completes the proof of the lemma.

Theorem 2.10 Let T be a Πn-functional theory and let T0 be a Πn+2-axiomatizable theory such that

T ⇒ T0 ⇒ IΣn + exp.

If T is Πn+3-axiomatizable, then every Πn-envelope of T in T0 satisfies Πn-IND.

P r o o f. Let ϕ(u, x, y) ∈ Πn be a strong Πn-envelope of T in T0 and T ∗ = ThΠn+2(T ). First of all let us
observe that ϕ(u, x, y) is a Πn-envelope of T ∗ in T0 and also, as T ∗ extends T0, of T ∗ in T ∗.

Let A � T0 countable and a, b ∈ A such that for all k ∈ ω, A � (∃y < b)ϕ(k, a, y). We must prove that there
exists I � T such that I ≺e

n A and a < I < b.



Let {ak : k ∈ ω} be an enumeration of all the elements of A less than b such that a0 = a, and let

{θk(x, y, z) ∈ Σn : k ∈ ω}
be an enumeration of the Σn-formulas such that T � ∀x∃y∀z θk(x, y, z). We shall define a sequence of initial
segments {Ik ≺e

n A : k ∈ ω} and two sequences of elements of A,

{bk ∈ A : a ≤ bk < b} and {dk ∈ A : a ≤ dk < b}
such that for each k ∈ ω,

1. dk+1 ≥ dk and a, dk ∈ ⋂
j∈ω Ij ;

2. bk+1 < Ik < bk;

3. Ik+1 ≺e
n Ik ≺e

n A;

4. Ik � T ∗ is recursively saturated;

5. for each i ≤ k, if ai ∈ Ik, then Ik � (∃y0, . . . , yk ≤ dk)∀z (
∧
j≤k θj(ai, yj , z)).

Properties 1. – 5. will turn evident from the definition. We proceed by recursion on k ∈ ω.
k = 0: Since ϕ(u, x, y) is a Πn-envelope of T ∗ in T0, by Lemma 2.9, there exists I ′0 � T ∗ such that I ′0 ≺e

n A
and a < I ′0 < b. By Remark 2.5 we can assume that I is recursively saturated. We denote the formula ϕ(u, x, y)
by Fu(x) = y. Since T � ∀x∃y∀z θ0(x, y, z), for each m ∈ ω,

T ∗ � ∀x∃z (∃y < z) [Fm(max(x, y)) < z ∧ (∀z′ < z) θ0(x, y, z′)].

Let ψ(u, a0, z) ∈ Σ0(Σn) be the formula

(∃y < z) (Fu(max(a0, y)) < z ∧ (∀z′ < z) θ0(a0, y, z
′)

∧ (∀u′ < u) [Fu′(max(a0, y)) < Fu(max(a0, y))]).

Then p0(z) = {ψ(m, a0, z) : m ∈ ω} is a recursive type over I ′0; hence, as I ′0 is recursively saturated, there
exists b0 ∈ I ′0 realizing p0(z) in I ′0; that is, for all m ∈ ω, I ′0 � ψ(m, a0, b0). Since ψ is Σ0(Σn), by overspill,
there exists q > ω such that I ′0 � ψ(q, a0, b0). Let d0 < b0 such that

I ′0 � Fq(max(a0, d0)) < b0 ∧ (∀z′ < b0) θ0(a0, d0, z
′)

∧ (∀u′ < q) [Fu′(max(a0, d0)) < Fq(max(a0, d0))].

Then, for each m ∈ ω, I ′0 � (∃y < b0) [Fm(max(a0, d0)) = y]. Therefore, as ϕ(u, x, y) is a Πn-envelope of T ∗

in T ∗, by Lemma 2.9 and Remark 2.5, there exists I0 � T ∗ recursively saturated such that I0 ≺e
n I

′
0 ≺e

n A and
max(a0, d0) < I0 < b0. Clearly, I0 � (∃y ≤ d0)∀z θ0(a0, y, z).
k → k + 1: Assume that Ik , bk and dk have been defined. We define Ik+1, bk+1 and dk+1 as follows.

Let c0, . . . , cr be an enumeration of {aj ∈ Ik : j ≤ k + 1}. Since

T � ∀x0 · · · ∀xr∃y0,0 · · · ∃yr,k+1 (
∧r
i=0

∧k+1
j=0 ∀z θj(xi, yi,j , z)),

for each m ∈ ω, T ∗ proves that

∀�x∀v∃z (∃�y < z) [Fm(max(�x, v, �y )) < z ∧ ∧r
i=0

∧k+1
j=0 (∀z′ < z) θj(xi, yi,j, z′)].

Let ψk+1(u, c0, . . . , cr, dk, z) ∈ Σ0(Σn) be the following formula

(∃�y < z) (Fu(max(�c, dk, �y )) < z ∧ ∧r
i=0

∧k+1
j=0 (∀z′ < z) θj(ci, yi,j , z′)

∧ (∀u′ < u) [Fu′(max(�c, dk, �y )) < Fu(max(�c, dk, �y ))]).

Then pk+1(z) = {ψk+1(m,�c, dk, z) : m ∈ ω} is a recursive type over Ik; hence, as Ik is recursively saturated,
there exists bk+1 ∈ Ik realizing pk+1(z); that is, for allm ∈ ω, Ik � ψk+1(m,�c, dk, bk+1). By overspill, as ψk+1

is a Σ0(Σn)-formula, there exists q > ω such that Ik � ψk+1(q,�c, dk, bk+1). Let ei,j < bk+1, i ≤ r, j ≤ k + 1,
such that

Ik � Fq(max(�c, dk, �e )) < bk+1 ∧ ∧r
i=0

∧k+1
j=0 (∀z′ < bk+1) θj(ci, ei,j, z′)

∧ (∀u′ < q) [Fu′(max(�c, dk, �e )) < Fq(max(�c, dk, �e ))].



Let dk+1 = max(dk, �e ). Then bk+1 < Ik < bk and Ik � (∃y < bk+1) [Fm(max(�c, dk+1)) = y], for eachm ∈ ω.
Therefore, as ϕ(u, x, y) is a Πn-envelope of T ∗ in T ∗, by Lemma 2.9 and Remark 2.5, there exists Ik+1 � T ∗ re-
cursively saturated such that Ik+1 ≺e

n Ik and max(�c, dk+1) < Ik+1 < bk+1. Moreover, property 5. follows from

Ik+1 � (∃�y ≤ dk+1) (
∧r
i=0

∧k+1
j=0 ∀z θj(ci, yi,j , z)).

This concludes the definition of Ik+1, bk+1 and dk+1. Let I =
⋂
j∈ω Ij . Then a < I < b. It holds:

Claim 2.10.1 I ≺e
n A and I � T .

P r o o f. First of all let us recall that ϕ(u, x, y) is a strong Πn-envelope and that each Ik is closed in A under
the functions Fm defined in A by the formulas ϕ(m,x, y). As a consequence, I is also closed (in A) under those
functions. Since Γϕ is a strong Πn-functional class, I ≺e

n A.
Let us see that I � T . Let θ(x, y, z) ∈ Σn such that T � ∀x∃y∀z θ(x, y, z) and let c ∈ I . Then there ex-

ist i,m ∈ ω such that ai = c and θ(x, y, z) is θm(x, y, z). Let k > m, i. Then ai = c ∈ Ik and, by 5.,

Ik � (∃y0, . . . , yk ≤ dk)∀z (
∧k
j=0 θj(ai, yj, z)).

In particular, Ik � (∃y ≤ dk)∀z θm(c, y, z). Since dk ∈ I , there is e ∈ I such that Ik � ∀z θm(c, e, z). Then we
have I ≺e

n Ik, since I ≺e
n A and I ⊂e Ik ≺e

n A; hence, I � ∀z θm(c, e, z). It follows that I � ∀x∃y∀z θ(x, y, z);
so, I � T as required. � (Claim 2.10.1)

The previous claim concludes the proof of the theorem.

Corollary 2.11 Let T be a Πn+3-axiomatizable and consistent extension of IΣn + exp. Then

T is Πn-functional ⇔ T is ΠB
n+2-conservative.

P r o o f. By Theorem 1.3, it easily follows that every ΠB
n+2-conservative theory is Πn-functional. Let us prove

the converse. First of all, observe that, by Proposition 2.3 and Theorems 2.4 and 2.10, the result holds if T is
recursively axiomatizable. Now we address the general case.

Let ψ ∈ Πn+2 be such that T + BΣn+1 � ψ. Then there exists a sentence θ ∈ Πn+3 such that T � θ and
BΣn+1 + θ � ψ. Let T ′ be the theory (IΣn + exp + θ) + Σn+1-CR. Then T ′ is recursively Πn+3-axioma-
tizable, proves exp and, as it is closed under Σn+1-collection rule, is Πn-functional. So, as noticed above,
by Proposition 2.3 and Theorems 2.4 and 2.10, T ′ is ΠB

n+2-conservative; hence, as T ′ + BΣn+1 � ψ, it holds
that T ′ � ψ. Since T extends T ′, we get that T � ψ, as required.

Corollary 2.12 Let T be a recursively Πn+3-axiomatizable and Πn-functional theory such that T � exp
and A � T is countable and recursively saturated. Then for every a ∈ A there exists I ≺e

n A (proper) such
that I � T and a ∈ I .

3 Collection rule vs. collection axioms

Corollary 2.11 gives Theorem 1.4 for n ≥ 1. Nevertheless, known existence results for Π0-envelopes use that
exponential function is total. This fact forced us to develop an alternative proof for n = 0. However, the method
used in this new proof does work for every n ∈ ω. This is why we present our arguments for every n ∈ ω and
not only for n = 0. The main idea is to adapt the proof of Theorem 2.10 giving a direct construction of the
proper Σn-elementary initial segment required there. To this end, the key tool is the following weak notion
of Πn-envelope.

Definition 3.1 A pseudo-Πn-envelope of T in T0 is a sequence Γ = {ϕk(x, y) : k ∈ ω} of Σn+1-formulas
satisfying

1. T � Γ∗ and for all k ∈ ω, T0 � ϕk+1(x, y) → (∃z < y)ϕk(x, z);
2. for each ψ(x, y) ∈ Πn such that T � ∀x∃y ψ(x, y) there exists k ∈ ω such that

T0 � ϕk(x, y) → (∃z < y)ψ(x, z).

Pseudo-Πn-envelopes will provide us with a reduction of BΣn+1 to Σn+1-collection rule. We shall thus
obtain a model-theoretic proof of [2, Theorem 3.2], proved there by a cut-elimination argument.



Remark 3.2 A pseudo-Πn-envelope is, essentially, a “non-uniform” Πn-envelope. So, results on Πn-en-
velopes not depending on their uniform character also hold for pseudo-Πn-envelopes. In particular, if Γ is a
pseudo-Πn-envelope of T in T0, by the very definition it follows that:

(i) If T ⇒ T0, then ThΠn+2(T ) = ThΠn+2(T0 + Γ∗).
(ii) If Γ ⊆ Πn and T + IΣn is consistent, then Γ is a Πn-functional class.

Definition 3.3 Let Γ = {ϕk(x, y) : k ∈ ω} be a sequence of Σn+1-formulas. We say that Γ satisfies Πn-IND
for T and T0 in recursively saturated models if for each A � T0 countable and recursively saturated and a, b ∈ A,
the following conditions are equivalent:
IND-(i): For all k ∈ ω, A � (∃y < b)ϕk(a, y).
IND-(ii): There exists I � T such that I ≺e

n A and a < I < b.

Remark 3.4 By the proof of (2) ⇒ (1) in Theorem 2.4, if Γ is a sequence of Σn+1-formulas that verifies
condition 1. in the definition of pseudo-Πn-envelope and satisfies Πn-IND in recursively saturated models, then Γ
is a pseudo-Πn-envelope and T is ΠB

n+2-conservative.

Remark 3.5 (The class Γ(θ)) The next construction associates a pseudo-Πn-envelope to each Σn-form-
ula θ(x, y, z) such that ∀x∃y∀z θ(x, y, z) is provable in a Πn-functional theory. In order to ensure that initial
segments closed under the functions defined by the pseudo-Πn-envelope are Σn-elementary substructures, we
shall use the auxiliary functions Kn(x) = y discussed at the end of Section 2.1.

Let θ(x, y, z) ∈ Σn such that ∀x∃y∀z θ(x, y, z) is provable in some Πn-functional theory. Let

Γ(θ) = {ϕk(x, y) : k ∈ ω},
where, for each k ∈ ω, ϕk(x, y) is a Σ0(Σn)-formula defining the functionGθk(x) = y given by

Gθ0(x) = (µz)((∀x0 ≤ x) (∃y0 < z) [Kn(max(x, y0)) < z ∧ (∀z′ < z) θ(x0, y0, z
′)]),

Gθk+1(x) = (µz)((∀x0, . . . , xk+1 ≤ x) (∃y0, . . . , yk+1 < z) (Gθk(Kn(max(x, �y ))) < z

∧∧k+1
j=0 (∀z′ < z) θ(xj , yj , z′))).

We shall prove that Γ(θ) is a pseudo-Πn-envelope of BΣn+1 + ∀x∃y∀z θ(x, y, z) in IΣn + Γ(θ)∗ and satis-
fies Πn-IND in recursively saturated models.

Lemma 3.6 Let θ(x, y, z) ∈ Σn, T ′ be a Πn-functional theory such that T ′ � ∀x∃y∀z θ(x, y, z) and Γ(θ) as
above. Then we have:

(1) T ′ � Γ(θ)∗. So, T ′ extends IΣn + Γ(θ)∗.

(2) For all k ∈ ω, IΣn + Γ(θ)∗ � Gθk+1(x) = y → (∃z < y) (Gθk(x) = z).

P r o o f. Property (2) easily follows from definition. Let us prove (1). We show by induction on m that for
all m ∈ ω, T ′ � IPF(Gθm(x) = y) ∧ ∀x∃y (Gθm(x) = y).
m = 0: Let θ0(x, x0, z) be the Σ0(Σn)-formula

(∃y0 < z) [Kn(max(x, y0)) < z ∧ (∀z′ < z) θ(x0, y0, z
′)].

Since T ′ � ∀x∃y∀z θ(x, y, z), T ′ � ∀x∀x0∃z θ0(x, x0, z) and, as a consequence, ∃z (θ0(x, x0, z) ∈ ∆n+1(T ′)).
Since T ′ extends B∗∆n+1(T ′), it holds that T ′ � ∀u∃z (∀x0 ≤ u) (∃z0 ≤ z) θ0(x, x0, z0).

In particular, T ′ � ∀x∃z (∀x0 ≤ x) (∃z0 ≤ z) θ0(x, x0, z0). Since T ′ is an extension of IΣn,

T ′ � ∀x∃v (v = (µz)((∀x0 ≤ x) (∃z0 ≤ z) θ0(x, x0, z0))).

This proves that T ′ � ∀x∃y (Gθ0(x) = y). Uniqueness follows from the definition of Gθ0.
Finally, we must prove now that Gθ0 is a nondecreasing function. We reason in T ′. Let x0, x1, x2 be such

that x0 ≤ x1 ≤ x2. Then x0 ≤ x2; thus, there exists y < Gθ0(x2) such that

Kn(max(x2, y)) < Gθ0(x2) ∧ (∀z′ < Gθ0(x2)) θ0(x0, y, z
′).

Since Kn(x) = y defines a nondecreasing function, Kn(max(x1, y)) < Gθ0(x2) ∧ (∀z′ < Gθ0(x2)) θ0(x0, y, z
′).

Hence, Gθ0(x1) ≤ Gθ0(x2).
m→ m+ 1: To prove that T ′ � IPF(Gθm+1(x) = y) ∧ ∀x∃y (Gθm+1(x) = y), we can easily adapt our pre-

vious argument for m = 0.



Theorem 3.7 Let θ(x, y, z) ∈ Σn and Γ(θ) as above. Then we have:
(a) BΣn+1 + ∀x∃y∀z θ(x, y, z) is consistent.

(b) The class Γ(θ) is a pseudo-Πn-envelope of BΣn+1 +∀x∃y∀z θ(x, y, z) in IΣn+Γ(θ)∗ satisfying Πn-IND
in recursively saturated models.

(c) ThΠn+2(BΣn+1 + ∀x∃y∀z θ(x, y, z)) = ThΠn+2(IΣn + Γ(θ)∗).

P r o o f. Part (c) follows from the previous ones: By (a), BΣn+1 +∀x∃y∀z θ(x, y, z) is Πn-functional; so, by
Lemma 3.6, BΣn+1 +∀x∃y∀z θ(x, y, z) extends IΣn+Γ(θ)∗. Hence, (c) follows by part (b) and Remark 3.2(i).
Now we prove parts (a) and (b).

Let us denote BΣn+1 + ∀x∃y∀z θ(x, y, z) by T1 and IΣn + Γ(θ)∗ by T0. First we prove that

(•) Γ(θ) satisfies Πn-IND for T1 and T0 in recursively saturated models.

Let A � T0 be countable and recursively saturated and a, b ∈ A, such that A � (∃y < b) (Gθk(a) = y), for
all k ∈ ω. In order to get (•) we prove that there exists I � T1 such that I ≺e

n A and a < I < b.
Let {ak : k ∈ ω} be an enumeration of all the elements of A less than b such that a0 = a. We shall define a

sequence of elements {ck < b : k ∈ ω} and two sequences {bk ∈ A : a ≤ bk < b} and {dk ∈ A : a ≤ dk < b}
such that for each k ∈ ω,

1. dk+1 ≥ dk and bk+1 ≤ bk;

2. a0 = c0, ck < bk and, for all m ∈ ω, Gθm(max(c0, . . . , ck, dk)) < bk;

3. A � (∃y0, . . . , yk ≤ dk) (∀z < bk) (
∧k
j=0 θ(cj , yj , z)).

We proceed by recursion on k ∈ ω.
k = 0: Let c0 = a0. Observe that for each m ∈ ω,

T0 � ∀x∃z (∀x0 ≤ x) (∃y0 < z) [Gθm(Kn(max(x, y0))) < z ∧ (∀z′ < z) θ(x0, y0, z
′)].

For each m ∈ ω, let ψ(m, c0, y0, z, b) ∈ Σ0(Σn) be the formula

y0 < z < b ∧Gθm(Kn(max(c0, y0))) < z ∧ (∀z′ < z) θ(c0, y0, z′).

Then p0(y0, z) = {ψ(m, c0, y0, z, b) : m ∈ ω} is a recursive type over A; hence, as A is recursively saturated,
there exist d0, b0 ∈ A realizing p0(y0, z) in A; that is, for allm ∈ ω, A � ψ(m, c0, d0, b0, b). Then, for allm ∈ ω,
Gθm(max(c0, d0)) < b0 and, clearly, A � (∃y0 ≤ d0) (∀z′ < b0) θ(c0, y0, z′).
k → k + 1: Assume that ck, bk and dk have been defined. We define ck+1, bk+1 and dk+1 as follows. Let

a′ = max({c0, . . . , ck, dk, ak+1}). We distinguish two cases:
C a s e 1: There existsm ∈ ω such that A � Gθm(a′) ≥ bk. Then we define bk+1 = bk, ck+1 = ck, dk+1 = dk.
C a s e 2: For all m ∈ ω, A � Gθm(a′) < bk. Let ck+1 = ak+1. For each m ∈ ω, T0 proves that

∀x∀v∃z (∀�x ≤ x) (∃�y < z) [Gθm(Kn(max(x, v, �y ))) < z ∧ ∧k+1
j=0 (∀z′ < z) θ(xj , yj , z′)].

Let ψk+1(m, c0, . . . , ck+1, dk, bk, y0, . . . , yk+1, z) ∈ Σ0(Σn) be the formula

z < bk ∧ y0 < z ∧ · · · ∧ yk+1 < z ∧Gθm(Kn(max(�c, dk, �y ))) < z ∧ ∧k+1
j=0 (∀z′ < z) θ(cj , yj , z′).

Then pk+1(�y, z) = {ψk+1(m,�c, dk, bk, �y, z) : m ∈ ω} is a recursive type over A; hence, as A is recursively
saturated, there exist e0, . . . , ek+1, bk+1 ∈ A realizing pk+1(�y, z) in A; that is, for all m ∈ ω,

A � ψk+1(m,�c, dk, bk, �e, bk+1).

Let dk+1 = max(dk, �e ).
Then bk+1 < bk and for everym ∈ ω,Gθm(max(c0, . . . , ck+1, dk+1)) < bk+1. Moreover, we can check that 3.

holds since we have

A � (∃�y ≤ dk+1) (
∧k+1
j=0 (∀z < bk+1) θ(cj , yj , z)).



This concludes the definition of bk+1, ck+1 and dk+1. Let I = {ck : k ∈ ω}. It holds that a < I < b and

Claim 3.7.1
(i) I ≺e

n A. Hence, I � BΣn+1.

(ii) For all k ∈ ω, dk ∈ I .

(iii) I � T1.

P r o o f.
(i) First we prove that I is an initial segment of A. Let e ∈ I and c < e. Then there is k ∈ ω such that ck = e.

Assume that there is no i < k such that ci = c. Then, there exists j ≥ k such that aj+1 = c. So,

aj+1 ≤ max(c0, . . . , cj , dj).

By 2., for each m ∈ ω,

Gθm(max(c0, . . . , cj , dj)) < bj .

Since a′ = max(c0, . . . , cj , dj) = max(c0, . . . , cj, aj+1, dj), then by definition c = aj+1 = cj+1 ∈ I .
Now we prove that I ≺n A. It is enough to show that for each k ∈ ω, Kn(ck) ∈ I , recall that (x+1)2 ≤ Kn(x)

and {Kn(x) = y} is a strong Πn-functional class. For each k,m ∈ ω, it holds that

Kn(ck) ≤ Gθ0(ck) ≤ Gθm(ck) ≤ Gθm(max(c0, . . . , ck, dk)) < bk.

Moreover, for all m, k ∈ ω,

Gθm(Kn(ck)) ≤ Gθm+1(ck) ≤ Gθm+1(max(c0, . . . , ck, dk)) < bk.

Hence, we prove that Kn(ck) ∈ I as previously: If there is no i < k such that ci = Kn(ck), then there
is j ≥ k such that aj+1 = Kn(ck). Since a′ = max(c0, . . . , cj , dj , aj+1) = max(c0, . . . , cj , dj), then, by defi-
nition, Kn(ck) = aj+1 = cj+1 ∈ I .

(ii) Since for all m ∈ ω, Gθm(dk) < bk, we have dk ∈ I .
(iii) Let us see that I � T1. Since I � BΣn+1, it is enough to prove that I � ∀x∃y∀z θ(x, y, z).
Let c ∈ I . Then there exists k ∈ ω such that ck = c and ck < bk. By 3.,

A � (∃y0, . . . , yk ≤ dk) (∀z < bk) (
∧k
j=0 θ(cj , yj , z)).

In particular,

A � (∃y ≤ dk) (∀z < bk) θ(c, y, z).

Since dk ∈ I and I ⊂e A, there exists e ∈ I such that A � (∀z < bk) θ(c, e, z). Since I ≺e
n A and I < bk, it

holds that I � ∀z θ(c, e, z). This proves that I � ∀x∃y∀z θ(x, y, z), as required. � (Claim 3.7.1)

This completes the proof of (•).
Since there exists a Πn-functional theory (so, consistent) T ′ such that T ′ � ∀x∃y∀z θ(x, y, z), by Lemma 3.6,

T ′ extends T0; so, T0 is consistent. As a consequence, there exists A � T0 countable and recursively saturated
and a, b ∈ A, such that A � (∃y < b) (Gθk(a) = y), for all k ∈ ω. Hence, by (•) there exists I � T1 and this
proves (a).

Finally, part (b) follows from (•) and Remark 3.4.

P r o o f o f T h e o r e m 1.4. We only prove (1) ⇒ (2). Let T be a Πn+3-axiomatizable and Πn-functional
theory and ψ ∈ Πn+2 a sentence such that T + BΣn+1 � ψ. We must prove that T � ψ. Let θ(x, y, z) ∈ Σn
such that T � ∀x∃y∀z θ(x, y, z) and BΣn+1 + ∀x∃y∀z θ(x, y, z) � ψ. By Theorem 3.7,

ThΠn+2(BΣn+1 + ∀x∃y∀z θ(x, y, z)) = ThΠn+2(IΣn + Γ(θ)∗);

so, IΣn + Γ(θ)∗ � ψ; hence, by Lemma 3.6(1), T � ψ.

As a corollary we get [2, Theorem 3.2]:

Corollary 3.8 Let T be a Πn+3-axiomatized extension of I∆0. Then

ThΠn+2(T + BΣn+1) = ThΠn+2(T + Σn+1-CR).



P r o o f. If T + Σn+1-CR is inconsistent, then there is nothing to prove. So assume that it is consistent and,
thus, by Theorem 1.3, Πn-functional. Let ψ ∈ Πn+2 be a sentence such that T + BΣn+1 � ψ. Then there
exists θ(x, y, z) ∈ Σn such that T � ∀x∃y∀z θ(x, y, z) and BΣn+1 + ∀x∃y∀z θ(x, y, z) � ψ. Then, by Theo-
rem 3.7, IΣn + Γ(θ)∗ � ψ. By Lemma 3.6(1), T ′ = T + Σn+1-CR is an extension of IΣn + Γ(θ)∗. Hence,

T + Σn+1-CR � ψ,
as required.

In [8], R. Kaye, J. Paris and C. Dimitracopoulos proved that BΣn+1 is a Σn+3-conservative extension of
its parameter free version, BΣ−

n+1. A proof-theoretic proof of this result was obtained by L. Beklemishev as
a consequence of his analysis of collection rule in [2]. Our work provides a new model-theoretic proof of that
conservation result.

Corollary 3.9 BΣn+1 is a Σn+3-conservative extension of BΣ−
n+1.

P r o o f. Let ψ ∈ Σn+3 be a sentence such that BΣ−
n+1 �� ψ. Then T ′ = BΣ−

n+1 + ¬ψ is a Πn-functional
theory and ¬ψ is a Πn+3-sentence provable in T ′. Let θ(x, y, z) ∈ Σn such that ¬ψ is ∀x∃y∀z θ(x, y, z). By
Theorem 3.7(a), BΣn+1 + ¬ψ is consistent. Hence, BΣn+1 �� ψ.

Remark 3.10 Theorem 1.4 is optimal with respect to the syntactical complexity of the axioms of the theory T .
Below we give examples of Σn+3-axiomatizable theories which are Πn-functional, but not ΠB

n+2-conservative.

1. Let ϕ ∈ Πn+3 be a sentence such that BΣn+1 � ϕ and BΣ−
n+1 �� ϕ. Let T = BΣ−

n+1 + ¬ϕ. Since T is a
consistent extension of BΣ−

n+1, then it is Πn-functional. It is obvious that T + BΣn+1 is inconsistent. So, T is
not ΠB

n+2-conservative.

2. Now we give an example where T + BΣn+1 is consistent. Let ψ ∈ Π1 such that IΣn + exp �� ψ and
BΣn+1 + exp + ψ is consistent. Let T be the theory

IΣn + exp + {ΘB → ψ},
where ΘB is a Πn+3-sentence axiomatizing BΣn+1 + exp. It is obvious that T + BΣn+1 is consistent and T
is Σn+3-axiomatizable. It also holds that

(�) ThΠn+2(T ) = ThΠn+2(IΣn + exp).

To prove (�), it is enough to see that IΣn + exp ⇒ ThΠn+2(T ). By way of contradiction, suppose that there is
a sentenceϕ ∈ Πn+2 such that T � ϕ, but IΣn + exp �� ϕ. We may assume thatϕ is ∀xϕ0(x), with ϕ0 ∈ Σn+1.
Then there exists A � IΣn + exp + ¬ϕ and p ∈ A such that A � ¬ϕ0(p). Let us denote by Kn+1(A, p) the
substructure of A determined by the Σn+1-definable elements of A. It is well known that Kn+1(A, p) ≺n A
and Kn+1(A, p) �� BΣn+1. So,

Kn+1(A, p) � IΣn + exp + ¬ϕ.
Since Kn+1(A, p) �� BΣn+1, we get Kn+1(A, p) � T + ¬ϕ and this contradicts T � ϕ.

Since IΣn+exp is Πn-functional, by (�), so is T . However,T is not ΠB
n+2-conservative since T+BΣn+1 � ψ

and, by (�), T �� ψ.

4 On Σn+1-induction rule

The analysis of collection rule we have presented in the previous section can be applied with minor changes to
Σn+1-induction rule. Now the basic result that plays the role of Friedman-Paris’ theorem is Parsons’ conservation
theorem. Actually, here we shall obtain a general version of Parsons’ theorem, namely

Theorem 4.1 Let T be a Πn+3-axiomatizable extension of I∆0. Then we have:

T is closed under Σn+1-induction rule ⇔ T is ΠI
n+2-conservative.



We will derive Theorem 4.1 along the lines used in Section 3 to prove Theorem 1.4. Only two additional facts
are needed:

1. If T is closed under Σn+1-induction rule, then the class of Σn+1-definable functions which are provably to-
tal in T is closed under iteration. That is: Let F (x) = y denote a Σn+1-formula such that T � ∀x∃!y (F (x) = y).
Then there exists a Σn+1-formula F ′(x, z) = y such that T proves the formulas ∀x∀z∃!y (F ′(x, z) = y) and

∀x∀z (F ′(x, 0) = x ∧ F ′(x, z + 1) = F (F ′(x, z))).

The formula F ′(x, z) = y will be denoted by F z(x) = y. Since T is closed under Σn+1-induction rule, T � exp
and the usual definition of F z(x) = y works. Moreover, if T � IPF(F (x) = y), then T proves that the for-
mula F x+1(x) = y also defines a nondecreasing total function.

2. By [2, Lemma 5.1], every theory closed under Σn+1-IR is also closed under Σn+1-CR; thus, by Theo-
rem 1.3, if T is consistent and closed under Σn+1-IR, then T is Πn-functional.

Bearing in mind these facts, our arguments in Section 3 can be adapted to prove Theorem 4.1. First we
associate a pseudo-Πn-envelope to each Σn-formula, θ(x, y, z), such that ∀x∃y∀z θ(x, y, z) is provable in some
consistent theory closed under Σn+1-induction rule. For each k ∈ ω, ϕk(x, y) is a Σn+1-formula defining the
function Hθ,k(x) = y given by

Hθ,0(x) = (µz)((∀x0 ≤ x) (∃y0 < z) (Kn(max(x, y0)) < z ∧ (∀z′ < z) θ(x0, y0, z
′))),

Hθ,k+1(x) = (µz)((∀�x ≤ x) (∃�y < z) (Hx+2
θ,k (Kn(max(x, �y ))) < z

∧∧k+1
j=0 (∀z′ < z) θ(xj , yj, z′))).

We shall prove that ΓI(θ) = {ϕk(x, y) : k ∈ ω} is a pseudo-Πn-envelope of IΣn+1 + ∀x∃y∀z θ(x, y, z)
in IΣn + ΓI(θ)∗ and satisfies Πn-IND in recursively saturated models.

Lemma 4.2 Let θ(x, y, z) ∈ Σn and let T ′ be a consistent extension of I∆0 closed under Σn+1-induction
rule such that T ′ � ∀x∃y∀z θ(x, y, z) and ΓI(θ) as above. Then we have:

(1) T ′ � ΓI(θ)∗. So, T ′ extends IΣn + ΓI(θ)∗.

(2) For all k ∈ ω, IΣn + ΓI(θ)∗ � Hθ,k+1(x) = y → (∃z < y) (Hx+2
θ,k (x) = z).

P r o o f.
(1) We show by induction on m that for all m ∈ ω,

T ′ � IPF(Hθ,m(x) = y) ∧ ∀x∃y (Hθ,m(x) = y).

m = 0: Notice that Hθ,0 = Gθ0 and by Theorem 1.3, T ′ is Πn-functional since it is consistent and closed
under Σn+1-collection rule. So, the result follows by Lemma 3.6.
m→ m+ 1: Recall that T ′ is closed under Σn+1-IR; so, Hz

θ,k(x) = y defines a total function in T ′. Now,
we can proceed as in Lemma 3.6.

(2) By (1), Hθ,m is a nondecreasing function; so, part (2) follows from definition.

Theorem 4.3 Let θ(x, y, z) ∈ Σn and ΓI(θ) as above. Then we have:
(a) IΣn+1 + ∀x∃y∀z θ(x, y, z) is consistent.

(b) The class ΓI(θ) is a pseudo-Πn-envelope of IΣn+1+∀x∃y∀z θ(x, y, z) in IΣn+ΓI(θ)∗ satisfying Πn-IND
in recursively saturated models.

(c) ThΠn+2(IΣn+1 + ∀x∃y∀z θ(x, y, z)) = ThΠn+2(IΣn + ΓI(θ)∗).

P r o o f. We follow the proof of Theorem 3.7. Part (c) follows from parts (a) and (b) as there. Let us denote
IΣn+1 + ∀x∃y∀z θ(x, y, z) by T1 and IΣn + ΓI(θ)∗ by T0. Now, we prove that

(•) ΓI(θ) satisfies Πn-IND for T1 and T0 in recursively saturated models.

Parts (a) and (b) follow from (•) as in Theorem 3.7.
Let A � T0 countable and recursively saturated and a, b ∈ A, such that A � (∃y < b) (Hθ,k(a) = y), for

all k ∈ ω. In order to get (•) we show that there exists I � T1 such that I ≺e
n A and a < I < b.



Let {βk(x, y, v) ∈ Πn : k ∈ ω} be an enumeration of all Πn-formulas with exactly those free variables.
Let {(ak, rk, sk) : k ∈ ω} be an enumeration of all triples of elements of A such that a0 = a and ak, rk, sk < b.
We can assume that for each c < b the set {βj(x, rj , sj) : c = aj} is the set of all Πn-formulas with only one
free variable and two parameters < b. Moreover, we can assume that for all m ∈ ω,

A � (∃y < b) (Hθ,m(max(a0, r0, s0)) = y).

We shall define a sequence of elements {ck < b : k ∈ ω} and four sequences {bk ∈ A : a ≤ bk < b},
{dk ∈ A : a ≤ dk < b}, {tk ∈ A : tk < b} and {pk ∈ A : pk < b} such that for each k ∈ ω,

1. dk+1 ≥ dk and bk+1 ≤ bk;

2. a0 = c0, ck < bk and, for all m ∈ ω, Hθ,m(max(c0, . . . , ck, dk)) < bk;

3. A � (∃�y ≤ dk) (
∧k
j=0(∀z < bk) θ(cj , yj, z));

4. A � βk(0, tk, pk) ∧ (∀u < ck) ((∃w < bk)βk(u,w, pk) → (∃w < bk)βk(u+ 1, w, pk))
→ (∀u ≤ ck) (∃w ≤ dk)βk(u,w, pk).

We proceed by recursion on k ∈ ω. We assume that, for all m ∈ ω, Hθ,m(max(a0, r0, s0)) < b.
k = 0: Let a′ = max(a0, r0, s0) and c0 = a0, t0 = r0 and p0 = s0. Observe that, for each m ∈ ω,

T0 � ∀x∃z (∀x0 ≤ x) (∃y0 < z) (Hθ,m(Kn(max(x, y0))) < z ∧ (∀z′ < z) θ(x0, y0, z
′)).

For each m ∈ ω, let ψ0(m, y0, z) be the formula Hθ,m(Kn(max(a′, y0))) < z < b ∧ (∀z′ < z) θ(x0, y0, z
′).

Then p0(y0, z) = {ψ0(m, y0, z) : m ∈ ω} is a recursive type over A; hence, as A is recursively saturated,
there exist d′0, b

′
0 ∈ A realizing p0(y0, z) in A; that is, for all m ∈ ω, A � ψ(m, d′0, b

′
0). Then, for all m ∈ ω,

Hθ,m(max(a′, d′0)) < b′0 and, clearly, A � (∃y0 ≤ d′0) (∀z′ < b′0) θ(c0, y0, z′).
Now, there are three cases. Properties 1. – 3. will follow from definitions. We pay attention to 4.
C a s e A: A � ¬β0(0, t0, p0). Then, we set d0 = d′0 and b0 = b′0. Obviously, 4. holds.
C a s e B: A � β0(0, t0, p0) and there exists j ∈ ω such that

(�) A � (∀u < c0) ((∃w1 < b′0)β0(u,w1, p0) → (∃w2 < Hθ,j(max(a′, d′0, w1)))β0(u+ 1, w2, p0)).

Let d = max(a′, d′0). Observe that T0 is Πn-functional; hence, T0 extends I∆n+1(T0). On the other hand, the
formula (∃w < Hx+1

θ,j (z))β0(u,w, v) is ∆n+1(T0); so, by induction on u < c0 we prove that

(��) A � (∀u ≤ c0) (∃w < Hu+1
θ,j (d))β0(u,w, p0).

u = 0: It is enough to observe that A � β0(0, t0, p0) ∧ t0 ≤ a′ ≤ Hu+1
θ,j (d).

u→ u+ 1: From the induction hypothesis and (�) follows that there existsw < Hθ,j(Hu+1
θ,j (d)) = Hu+2

θ,j (d)
such that β0(u+ 1, w, p0), as required.

We define d0 = Hc0+1
θ,j (d) and b0 = b′0. Observe that c0 ≤ d0 and, by Lemma 4.2(2), for all m ≥ j,

Hθ,m(d0) ≤ Hθ,m(Hd+2
θ,j (d)) ≤ Hθ,m(Hθ,m+1(d)) ≤ H2

θ,m+1(d) ≤ Hθ,m+2(d) < b0.

This yields property 3. Moreover,Hθ,j is nondecreasing and, by (��), A � (∀u ≤ c0) (∃w ≤ d0)β0(u,w, p0); so,
property 4. also holds.

C a s e C: A � β0(0, t0, p0) and for all j ∈ ω, (�) does not hold. Let ψ′
0(m,u,w1, z) be the formula

Hθ,m(max(c0, d′0, w1)) < z < b′0 ∧ u < c0 ∧ β0(u,w1, p0) ∧ (∀w2 < z)¬β0(u+ 1, w2, p0).

Then q0(u,w1, z) = {ψ′
0(m,u,w1, z) : m ∈ ω} is a recursive type (since each Hθ,m is a non-decreasing func-

tion). So, there exist e, d′′0 , b
′′
0 such that A � q0(e, d′′0 , b

′′
0). We define b0 = b′′0 and d0 = max(d′0, d

′′
0 ). Clear-

ly 4. holds since A � (∃u < c0) ((∃w1 < b0)β0(u,w1, p0) ∧ (∀w2 < bk)¬β0(u + 1, w2, p0)).
k → k + 1: Assume that ck, bk, dk, pk and tk have been defined. We define ck+1, bk+1, dk+1, pk+1 and tk+1

as follows. Let a′ = max{c0, . . . , ck, dk, ak+1, rk+1, sk+1}. We distinguish two cases:
C a s e 1: There exists m ∈ ω such that A � Hθ,m(a′) ≥ bk. Then define bk+1 = bk, ck+1 = ck, dk+1 = dk,

pk+1 = pk and tk+1 = tk.



C a s e 2: For all m ∈ ω, A � Hθ,m(a′) < bk. Let ck+1 = ak+1, pk+1 = sk+1 and tk+1 = rk+1. Then for
each m ∈ ω, T0 proves that

∀x∃z (∀�x ≤ x) (∃�y < z) (Hθ,k(Kn(max(x, �y ))) < z ∧ ∧k+1
j=0 (∀z′ < z) θ(xj , yj , z′)).

Let ψk+1(m,�y, z) be the formula Hθ,m(Kn(max(a′, �y ))) < z < bk ∧
∧k+1
j=0 (∀z′ < z) θ(cj , yj, z′). Then

pk+1(�y, z) = {ψk+1(m,�y, z) : m ∈ ω}
is a recursive type over A; as a consequence, there exist e0, . . . , ek+1, b

′
k+1 ∈ A, such that for all m ∈ ω,

A � ψk+1(m,�e, d, bk+1). Let d′k+1 = max(dk, �e ).
Now, we distinguish three cases:
C a s e A: A � ¬βk+1(0, tk+1, pk+1). Then, we set dk+1 = d′k+1 and bk+1 = b′k+1.
C a s e B: A � βk+1(0, tk+1, pk+1) and there exists j ∈ ω such that

A � (∀u < ck+1) ((∃w1 < b′k+1)βk+1(u,w1, pk+1)
→ (∃w2 < Hθ,j(max(a′, d′k+1, w1)))βk+1(u+ 1, w2, pk+1)).

Then, we set dk+1 = H
ck+1+1
θ,j (max(a′, d′k+1)) and bk+1 = b′k+1. Properties 1. – 4. follow as for k = 0.

C a s e C: A � βk+1(0, tk+1, pk+1) and Case B fails. Let ψ′
k+1(m,u,w1, z) be the formula

Hθ,m(max(a′, d′k+1, w1)) < z < b′k+1 ∧ u < ck+1 ∧ βk+1(u,w1, pk+1)
∧ (∀w2 < z)¬βk+1(u+ 1, w2, pk+1).

As for k = 0, qk+1(u,w1, z) = {ψ′
k+1(m,u,w1, z) : m ∈ ω} is a recursive type. So, there exist e, d′′k+1, b

′′
k+1

such that A � qk+1(e, d′′k+1, b
′′
k+1). We define bk+1 = b′′k+1 and dk+1 = max(d′k+1, d

′′
k+1).

This concludes the definition of the five sequences. Let I = {ck : k ∈ ω}. Obviously a < I < b.

Claim 4.3.1

(i) I ≺e
n A.

(ii) For all k ∈ ω, dk, tk, pk ∈ I .

(iii) I � T1.

P r o o f. (i) and (ii) are proved as in Theorem 3.7.
(iii) We only prove I � IΣn+1 since I � ∀x∃y∀z θ(x, y, z) can be checked as in Theorem 3.7.
Let β(x, y, p) be a Πn-formula with parameter p ∈ I and t ∈ I such that

(H) I � β(0, t, p) ∧ ∀x (∃y β(x, y, p) → ∃y β(x + 1, y, p)).

Let c ∈ I . We must prove that I � ∃y β(c, y, p). By construction, there exists k ∈ ω such that ck = c, tk = t,
pk = p and βk = β. Since I ≺e

n A, by (H), at step k of the construction we are in Case B. So, it follows
that A � (∀u ≤ ck) (∃w ≤ dk)βk(u,w, pk). In particular, A � (∃w ≤ dk)βk(ck, w, pk); hence,

I � (∃w ≤ dk)β(c, w, p)

since I ≺e
n A and dk ∈ I . � (Claim 4.3.1)

This completes the proof of (•). Parts (a) and (b) follow from (•) as in Theorem 3.7.

Now Theorem 4.1 can be derived from Theorem 4.3 following the proof of Theorem 1.4 in Section 3. More-
over, modifying accordingly the proofs of Corollaries 3.8 and 3.9 we get

Corollary 4.4

1. IΣn+1 is a Σn+3-conservative extension of IΣ−
n+1.

2. Let T be a Πn+3-axiomatizable extension of I∆0. Then T + Σn+1-IR is ΠI
n+2-conservative.
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