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Outline
• Dealing with the semantic gap: exploiting the 

semantics of medical language 
• concept based search & inference, query expansion, learning 

to rank 

• Dealing with the nuances of medical language 
• negation, family history, understandability 

• Understanding and aiding query formulation 
• query variations, query reformulation, query clarification, query 

suggestion, query intent, query difficulty, task-based solutions
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Dealing with the 
semantic gap
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Exploiting semantics of  
medical language

• What are medical concepts, where are they defined 

• Why use concepts 

• Why concepts and terms
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Medical concepts

• Medical concepts are defined in domain knowledge 
resource 

• Capture the key aspects of the domain or some 
specific sub-domain 

• Relationships between concepts capture associations
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Implicit VS Explicit Semantics

• Explicit semantics: structured human representation of 
knowledge and its concepts 

• e.g., medical terminologies 
• Implicit Semantics: draw representation of words/concepts 

from data  
• e.g., distributional/latent semantic models
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Key Medical 
Terminologies



Medical Subject Headings (MeSH)

Controlled vocabulary for 
indexing journal articles 

Mainly used by researchers 
and clinicians searching the 
literature.
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SNOMED CT
Formal medical ontology: ~500,000 concepts ~3,000,000 
relationships 

Becoming de-facto mean of formally representing clinical data. 

Adopted by software  
vendors
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ICD 

International Statistical 
Classification of Diseases and 
Related Health Problems 
(ICD) 

Diagnosis classification from 
World Health Organisation 

Used extensively in billing
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Unified Medical Language System (UMLS)

• UMLS is a compendium of many controlled 
vocabularies in the biomedical sciences 

• Combined many terminologies under one 
umbrella 

• UMLS concept grouped into higher level semantic 
types 

• Concept: Myocardial Infarction [C0027051] of type Disease or Syndrome [T047] 

• https://uts.nlm.nih.gov//metathesaurus.html
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An important note
• These resources contain information that can help characterise medical 

language 

• Synonyms of a term 

• Relationship between terms/concepts 

• Rarely do these resources contain information that directly answers questions 
like 
 
 
 
 
 

• That is, they do not directly resolve the clinical questions presented in 
[Ely et al., 2000] taxonomy 

• They capture truisms/universal facts, not subjective knowledge/things that 
could change over time �12

• What is the drug of choice for condition 
x? 

• What is the cause of symptom x? 
• What test is indicated in situation x?  
• How should I treat condition x (not limited 

to drug treatment)? 

• How should I manage condition x (not 
specifying diagnostic or therapeutic)? 

• What is the cause of physical finding x? 
• What is the cause of test finding x? 
• Can drug x cause (adverse) finding y?  
• Could this patient have condition x?



Convert Terms to Concepts 
(aka Concept Mapping)

“esophageal reflux”

“human immunodeficiency virus” 
“T-lymphotropic virus” 
“HIV” 
“AIDS”

86406008 
(Human 
immunodeficiency 
virus infection)

235595009   Gastroesophageal reflux 
196600005   Acid reflux or oesophagitis 
47268002    Reflux 
249496004  Esophageal reflux finding

“metastatic breast cancer”
“metastatic” 

 “breast”  
“cancer”

Concept Id:
60278488 
(Breast Cancer 
Metastatic)

Term Encapsulation

Concept Expansion

[Aronson&Lang, 2010]

Conflating Term-variants

�13



Concept extraction/mapping tools
• Metamap — National Library of Medicine [Aronson&Lang, 2010] 

• Extensive configuration option; but: default options tuned for biomedical 
literature, not necessarily websites or clinical text 

• Can be slow and unstable 

• QuickUMLS [Soldaini&Goharian, 2016] 
• Modern computationally efficient mapper 

• Shown in the hands-on session 

• SemRep — to extract relations between concepts 
[Rindflesch&Fiszman, 2003] 
• <subject, object, relation> from 27.9M PubMed articles stored into 

SemMedDB: https://skr3.nlm.nih.gov/SemMedDB/ 

• Others exist: cTakes [Savova et al., 2010], Ontoserver [McBride et al., 2012], etc.
�14
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Concept Mapping as an IR problem
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“…the patient had headaches and was home…”

25064002
162307009
162308004

…

Ranked list of concepts

Issue the query “headaches” to IR system

Select top ranking concept

[Mirhosseini et al., 2014]

Metamap Ontoserver IR
Metamap 191 9/193 41/211

Ontoserver - 11 9/63
IR - - 61

Table 2: The first diagonal of the table reports the

number of queries with no retrieved result for each

of the systems; the remaining cells report the size

of the intersection and of the union of the sets of

queries with no retrieved result for each pair of sys-

tems.

System RR S@1 S@5 S@10

Metamap 0.3015 0.2032 0.4354 0.5941
Ontoserver 0.6315 0.5323 0.7576 0.8111

TF-IDF 0.3959* 0.2967* 0.5069* 0.5920
BM25 0.3925* 0.2953* 0.5048* 0.5852
JMLM 0.3691* 0.2747* 0.4766 0.5714
DLM 0.2914 0.1848 0.4059 0.5227*

Table 3: Retrieval results on the concept map-

ping task using benchmark systems and standard

IR techniques and excluding queries where no re-

sult is returned by at least one approach. All dif-

ferences between IR techniques and benchmark sys-

tems are statistically significant with p < 2.2 ⇤ 10�16

(paired t-test); statistical significant di↵erence be-

tween IR techniques and Metamap are marked with

⇤ (p < 0.01).

ment returned by each approach, along with the size of the
intersection and union of the sets of queries with no result
returned when systems were pairwise compared. Overall,
there were 212 queries for which at least one system did not
return a result and 43 queries for which no system returned
any results. This highlights that although all systems su↵er
from not retrieving results for certain queries — more so for
the IR approaches and Metamap; thus these approaches are
characterised by poor matching (recall). However, IR ap-
proaches did retrieve concepts for a minority of queries for
which Ontoserver retrieved no results.

Table 3 reports the retrieval e↵ectiveness of the methods
on the queries for which all systems returned at least one
result (1,457 queries): while the e↵ectiveness was naturally
higher than that reported in Table 1 (because queries with
0 e↵ectiveness are removed), the results exhibit the same
trends observed in the previous analysis. Results of the
cross-validation experiments are omitted because their value
was similar to the oracle tuning, as it was the case in Ta-
ble 1. These results highlight that not only IR approaches
su↵er from poor matching when compared to Ontoserver,
but they also exhibit poor ranking choices (precision).

5. FUTURE WORK AND CONCLUSION
In this paper we have investigated the e↵ectiveness of

general-purpose, baseline IR approaches on the task of (med-
ical) concept mapping, i.e., the labelling of a free-text ex-
tract with a concept identifier from a reference ontology. The
concept mapping problem was cast into a retrieval problem
and the e↵ectiveness of the IR methods was compared with
the results obtained by two complex, comprehensive and

dedicated clinical NLP pipelines. As a by-product, the map-
ping problem was evaluated from a ranked-based standpoint
rather than the traditional classification standpoint used in
previous work [10].
The empirical results suggested that, although the IR

methods are comparable with one of the benchmark meth-
ods (Metamap), state-of-the-art custom benchmark meth-
ods (Ontoserver) are still far more e↵ective than the stan-
dard IR approaches. In addition, we found that probabilistic
language modelling approaches are actually worse than the
heuristic methods (TF-IDF and BM25). Other specific IR
models, such as the translational language models, might be
better suited to this task because they may also consider
reformulations of the free-text terms that match relevant
concepts.

Acknowledgements. Shahin Mirhosseini was supported
by a CSIRO student scholarship; experiments were executed
on equipment purchased with the support of the QUT SEF
Large Equipment Grant #94.
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Practical - part 1
• In this hands-on session, we will: 

1. Take a collection of clinical trials, annotate them with medical concepts, 
producing documents with both term and concept representation. 

• In part 2, we will use these results to: 

2. Index these documents in Elasticsearch with multi term/concepts fields. 

3. Search Elaticsearch with either term or concept, demonstrating 
semantic search capabilities. 

4. Play a bit more (maybe) 

• Instructions: https://ielab.io/russir2018-health-search-tutorial/hands-on/
�16
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Implicit Medical Concept 
Representations: Word Embeddings

• [Pyysalo et al., 2013]: word2vec and random indexing on very large corpus of 
biomedical scientific literature.  http://bio.nlplab.org 

• [De Vine et al., 2014]: word2vec on medical journal abstracts (embedding for UMLS) 

• Learns embedding of a concept, from co-occurrence with concepts 

• [Zuccon et al., 2015, b]: word2vec on TREC Medical Records Track.   
http://zuccon.net/ntlm.html 

• [Choi et al., 2016]: word2vec on medical claims (embedding for ICD), clinical narratives 
(embedding for UMLS)    https://github.com/clinicalml/embeddings 

• [Beam et al., 2018]: cui2vec (variation of word2vec) on 60M insurance claims + 20M 
health records + 1.7M full text biomedical articles.   
https://figshare.com/s/00d69861786cd0156d81 

• Nuances of medical word embeddings:  

• [Chiu et al., 2016]: bigger corpora do not necessarily produce better biomedical 
word embeddings
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Concept-based IR



Two types for Concept-based Retrieval

• Concept Augmented Term-based Retrieval  
e.g. [Ravindran&Gauch, 2004] 

• Maintain the original term representation of documents. 

• Use a concept-based approach to improve the query representation.  

• Pure Concept-based Retrieval 
• Map the terms in documents to higher-level concepts 

• Retrieval is then done in ‘concept space’ rather than ‘term space’ 

• SAPHIRE system [Hersh&Hickam, 1995] 

• Language modelling concepts [Meĳ et al., 2010]
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Combining Text and Concept 
Representations

[Limsopatham et al., 2013c]: learning framework that 
combines bag-of-words and bag-of-concepts 
representations on per-query basis 

1. Linear combination model for merging scores from 
the two representations 

2. Features: QPPs for both representations 

3. Regression to infer model parameters (Gradient 
Boosted Regression Trees)
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Exploiting concept hierarchies

�21[Zuccon et al., 2012]

Query = “Opiate” 

Base query concept Subsumed query concepts



Semantic Inference for IR
Concept-based retrieval that exploits ontology relationships 

• Inferring conceptual relationships [Limsopatham et al., 2013] 
• Information Retrieval as Semantic Inference [Koopman et al., 

2016] 
• both: expand queries by inferring additional conceptual 

relationships from KB, but in different ways 
• [Limsopatham et al., 2013] also infers relationships  

• from collection of medical free-text, and 
• via PRF
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• Hemodialysis ✔   

• DM? Diabetes mellitus? 

• Avapro? Hypertension!

“This is a 62-year-old gentleman 
who has Type 1 DM and is on 
hemodialysis. He is currently taking 
Avapro”
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Inferring conceptual relationships 
[Limsopatham et al., 2013]

• For KB: use semantic relationships of concepts to represent 
the relationships between concepts. 

• For free-text: MetaMap to identify concepts from the free-text, 
then infer relationships by co-occurence/association rules

�24

From KB
From free-text



“This is a 62-year-old gentleman 
who has history of  Type 1 DM 
and is on hemodialysis.”

Diabetes 
mellitus

Kidney failure?

P(D.M.)
P(H.)

df(D.M., K.F.)df(H., K.F.)

Hemodialysis

? 
P(K.F.)

Graph Inference Model

Treatment for Cause of

“Patients with diabetes 
and renal failure”

Renal failure

? 
P(R.F..)

df(K.F., R.F.)
Synonym of

P (d|q) = 0

P (d ! q)

q d

P (d|q) = 0

⇡ P (D.M.) ⇤ df(D.M.,K.F.) +P (H.) ⇤ df(H.,K.F.)
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[Koopman et al., 2016]

https://uts.nlm.nih.gov//semanticnetwork.html#Therapeutic%20or%20Preventive%20Procedure;0;0;2013AA
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Practical - part 2
• Let’s resume from where we left in part 1, and let’s do: 

1. Index these documents in Elasticsearch with multi 
term/concepts fields. 

2. Search Elaticsearch with either term or concept, 
demonstrating semantic search capabilities. 

3. Play a bit more (maybe) 

• Instructions: https://ielab.io/russir2018-health-search-
tutorial/hands-on/

�26
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Workflow

11

E

F F F

1. KB Construction
natural cures for lifelong insomnia

{“cures”, “lifelong”, “insomnia”}

2. Entity Mapping Extraction

3. Entity 
Mapping

q’ = q + F

4. Source 
Expansion 

Terms

5. Relevance 
Feedback

q” = q’ + (p)rf

Choices in KB Query Expansion
• Many other approaches to do inference over KB data 

• [Jimmy et al., 2018] consider the Entity Query Feature 
Expansion model [Dalton et al., 2014] and the influence settings 
choices have
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• For CHS, EQFE based on UMLS is more effective than 
based on Wikipedia. 

• Choice 1: Index all UMLS concepts 

• Choice 2: Use all uni-, bi-, and tri-grams of the 
original queries 

• Choice 3: Map mentions to UMLS aliases 

• Choice 4: Source expansion from the UMLS title 

• Choice 5: Add relevance feedback terms
�28

Choices in KB Query Expansion 
Findings for CHS



Knowledge based vs data-driven 
Query Expansion

�29

Knowledge based query expansion Corpus/Data Driven

Multi-evidence
Co-

occurences, 
Latent methods & 

Word2vec

Subsumption

Concept 
relationships

Inference

Combine documents that refer to the same case 
[Zhu&Carterette, 2012; Limsopatham et al., 2013b]

Different, diverse corpora used for query expansion 
[Zhu&Carterette, 2012 b; Zhu et al., 2014]

Measure the usefulness of different collections  
[Limsopatham et al., 2015]

…



Combine multiple-evidences in the 
collection that refer to the same case
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[Zhu&Carterette, 2012]

• Ranking generated for each document, individually 

• Ranking generated for an aggregated case 

• Online possible in situations where multiple documents are available 
for one case (e.g. with health records, where case=patient)

visits 

reports 

indexing 

merging III 

merging I 

visits ranking II 

visits ranking I 

retrieving 

reports ranking 

merging II 

retrieving 

indexing 

visits ranking III 
    RbM 

    VRM 

baseline/MRF/MRM models 

ICD, NEG 

    MbR 

Figure 1: Merging results from two different retrieval methods.

and then construct an index for visit documents. With this
strategy, the language model built on a merged document
can naturally combine the evidence scattered across mul-
tiple reports. Furthermore, this strategy can directly lead
to a ranking of visits which are the desired retrieval units.
We call this second evidence aggregation strategy Merging-
before-Retrieval (MbR). The merging process involved in
MbR corresponds to “merging II” in Figure 1.

3.1.4 Top-level Evidence
RbM and MbR as described above are two different strate-

gies for aggregating evidence and ranking visits. RbM and
MbR complement each other in that the former can natu-
rally aggregate evidence spreading across multiple reports
(which would be challenging to do at the report-level) while
the latter can leverage the strongest evidence (which may
become less apparent after reports merging in MbR) to esti-
mate relevance. This leads to our third evidence aggregation
method in which we take advantage of both RbM and MbR
by merging their visit rankings, as demonstrated by “merg-
ing III” in Figure 1. We call third strategy as Visit-Ranking-
Merging (VRM). The merging method (i.e., “Merging III” in
Figure 1) is defined by:

scoreVRM(V,Q) = fVRM(scoreRbM(V,Q), scoreMbR(V,Q)), (3)

where scoreRbM(V ) and scoreMbR(V ) are the language mod-
eling scores for visit V with respect to query Q in the two
visit rankings obtained by RbM and MbR respectively, fVRM

is the function for score aggregation, and scoreVRM(V,Q) is
the final score of visit V in the merged ranking. We will try
different methods for fVRM such as CombMNZ, CombSUM,
and CombMAX in Section 5 below.

4. EVALUATION
This section describes evaluation metrics and experimen-

tal setup.

4.1 Evaluation Metrics
The official evaluation metrics for the TRECMedical Records

track are precision at rank 10 (P10), bpref, and R-precision
(Rprec). Here we also use mean average precision (MAP)
as an additional metric. They are defined as follows:
1) P10 measures the proportion of relevant documents

among the top 10 retrieved.
2) MAP, as one of the most standard evaluation measures

among TREC community, provides a single-figure measure

of quality across recall levels [2]. If {d1,...,dj} is the set of
relevant documents for an information need q ∈ Q, then
MAP is defined as:

MAP(Q) =
1
|Q|

∑

q∈Q

∑
d∈{d1,...,dj} Precision(rank(d))

|{d1, ..., dj}|
, (4)

where Precision(k) is the proportion of relevant documents
among the top k retrieved.

3) bpref is defined as:

bpref =
1
R

∑

r

(1− |n ranked higher than r|
min(R,N)

), (5)

where R is the number of judged relevant documents, N is
the number of judged irrelevant documents, r is a relevant
retrieved document, and n is a member of the first R ir-
relevant retrieved documents. bpref computes a preference
relation of whether judged relevant documents are retrieved
ahead of judged irrelevant documents. It is based on the
relative ranks of judged documents only.

4) R-precision is the precision after R documents have
been retrieved (also known as the break-even point), where
R is the number of relevant documents for the topic. It
de-emphasizes the exact ranking of the retrieved relevant
documents, though it is highly correlated to MAP in prac-
tice.

Note that in rest of the paper, when we mention bpref,
P10, or Rprec, we are referring to the average score of bpref,
P10, or Rprec over all topics in a run.

4.2 Experimental Setup
We use the Indri5 retrieval system for indexing and re-

trieving. In particular, we use the Porter stemmer to stem
words in both reports and queries, and use a simple standard
medical stoplist [8] for stopping words in queries only. Then
we conduct 5-fold cross-validation and use top 1000 retrieved
visits6 for each query to evaluate our system under different
settings. In each iteration, we train our system on 28 queries
to obtain the best parameter setting for MAP by sweeping
over the range of [1000, 20000] at a step size of 1000 for the
Dirichlet smoothing parameter (i.e., µ in Equation 1), and
then generate a ranking for each of the remaining 7 queries
based on the trained system. When complete, we have full

5http://www.lemurproject.org/indri/
6The guideline of TREC medical records track requires each
retrieval set contain no more than 1000 visits.

51
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Adaptively Combine (or not)  
Records of a Case

�31

[Limsopatham et al., 2013b] 

• Choose between: 
1. Combine records for a patient, then rank patient 
2. Rank records, then identify patients based on relevance 

of records ranking 
• Classifier to learn to select which ranking approach to 

use, depending on query 
• Features: query difficulty measures (QPPs), number of 

medical concepts in query



Different, diverse corpora used for 
query expansion

• Mixture of relevance models to combine evidence from 
different collections to derive query expansions 
• Collections: Mayo Clinic health records (39M), TREC Genomics 

(166K), ClueWeb09B (44M), TREC Medical Records (100K) 
• Findings: 

• Access to large clinical corpus significantly improves query 
expansion 

• The more difficult the query, the more it benefit expansion 
benefits from auxiliary collections 

• “use all available data" is sub-optimal: value in collection 
curation �32

[Zhu et al., 2014]



Measure the usefulness of  
different collections

• Automatically decide which collection to use for query 
expansion evidence 

• 14 different document collections, from domain-specific 
(e.g. MEDLINE abstracts) to generic (e.g. blogs and 
webpages) 

• But they are not all useful, and not to the same 
extent to generate query expansion terms 

• Techniques based on resource selection and learning to rank 

�33

[Limsopatham et al., 2015]



Co-occurences, Latent Methods & 
Word2vec

• (Co-occurence of) concepts as a graph -> application 
of link analysis methods [Koopman et al., 2012; 
Martinez et al., 2014] 

• Explicit and latent concepts [Balaneshin-
kordan&Kotov, 2016] 

• Word embeddings and concept embeddings [Zuccon 
et al., 2015, b; Nguyen et al., 2017]
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Co-occurence Graphs, Semantic 
Graphs and Page Rank

• [Koopman et al., 2012]: 

1. Build concept graph from document concepts as they co-occur in 
document 

2. Run Pagerank 

3. Use Pagerank scores as additional weights for retrieval 
• [Martinez et al., 2014]:  

1. Build concept graph from query concepts and related concepts in UMLS 

2. Run Pagerank 

3. Rank concepts using page rank scores; select top K concepts as query 
expansion 

• Analysis shows expansion terms selected by Pagerank: taxonomic (eg., synonyms) 
and not taxonomic (eg., disease has associated anatomic site). 
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Explicit and Latent Concepts
• [Balaneshin-kordan&Kotov, 2016]: different concept types/

sources (KBs, PRF) should have different weights 
• Builds upon Markov Random Field retrieval [Metzler&Croft, 

2005] 
• Different features for different semantic types + topical 

features of KB graphs, and statistics of concepts in 
collection 

• Learns optimal query concept weight using multivariate 
optimisation 

• Base approach (without optimisation) best system at TREC 
CDS 2015

�36



Word Embeddings and Concept 
Embeddings: Neural Translation LM

�37

cancer 
p(cancer|d)

headache 
p(headache|d)

carcinoma 
p(carcinoma|d)

chemotherapy 
p(chemotherapy |d)

seizures 
p(seizures|d)

p(cancer|headache)

p(cancer|carcinoma)
p(cancer|seizures)

p(cancer| chemotherapy)

an attractive approach as it directly models how language
is used to express meaning; in addition, it has proven an
e↵ective method for document retrieval [34]. In the language
modelling retrieval framework, the probability of relevance
of a document d to a query q is expressed by p(d|q), which
in turn is computed as

p(d|q) / p(q|d)p(d) (1)
following Bayes Theorem and ignoring p(q) for rank equiv-

alency reasons. The prior probability p(d) is often assumed
to be uniform and can also be ignored for ranking purposes.
The query likelihood (i.e., p(q|d)) is then the core component
that di↵erent language models attempt to estimate. As-
suming that query q is composed of terms q1, . . . , qi, . . . , qn,
p(q|d) can be rewritten as the multiplication of the likeli-
hood of each query term. Considering log likelihoods for
decimal precision reasons, we have that documents can be
ranked according to:

logp(q|d) =
nX

i=1

p(qi|d) (2)

If no smoothing is applied, p(qi|d) is estimated as the max-
imum likelihood of the query term qi in document d, i.e.,
pml(qi|d) = c(qi;d)

|d| , where c(qi; d) is the count of term qi in d

and |d| is the length of document d. Smoothing, however, is
often used in information retrieval because of both theoreti-
cal (if a query term is missing from a document, its p(d|q) is
zero) and empirical reasons (the introduction of an idf com-
ponent in the retrieval formula) [34]. Smoothing methods
discount the probability of seen (i.e., matched) query terms
in documents (ps(q|d)) to in turn assign extra probability
mass to unseen terms according to a background, or fallback,
model, usually the likelihood of each term in the collection,
p(q|C). Following Zhai and La↵erty [34], Equation 2 can be
further rewritten to expressively consider terms that match
document d (i.e., c(qi, d) > 0) separately from a component
that is a function of a document dependent constant ↵d and
a third, document independent, component:

logp(q|d) =
X

i:c(qi;d)>0

log
ps(qi|d)
↵dp(qi|C)

+nlog↵d+
nX

i=1

logp(qi|C)

(3)
The last component of the previous equation can be ig-

nored for ranking purposes as it is document independent.
Di↵erent smoothing strategies to language models instan-

tiate the likelihood of seen term ps(w|d) (and consequently
↵d) in di↵erent ways. Dirichlet smoothing, the smoothing
method we will consider in this paper, estimates ps(w|d)
according to the following equation:

pµ(w|d) = c(w, d) + µp(w|C)
|d|+ µ

=
pml(w|d)/|d|+ µp(w|c)

|d|+ µ
(4)

and consequently ↵d = µ/(|d| + µ) [34]. Substituting
pµ(w|d) to ps(w|d) in Equation 3 leads to the retrieval for-
mula of language model with Dirichlet smoothing (recall
that the logarithm of a ratio is the subtraction of the loga-
rithms):

logp(q|d) =
X

i:c(qi;d)>0

log
pml(qi|d)/|d|+ µp(w|C)

|d|+ µ

�
X

i:c(qi;d)>0

log
µ

|d|+ µ
p(qi|C)

+ nlog
µ

|d|+ µ

(5)

where n is the number of query terms in q.

2.2 Statistical Translation Language Models

In Dirichlet smoothing language models, ps(w|d) is esti-
mated by mixing the maximum likelihood estimation, pml(w|d),
with the collection background probability, p(w|C). Berger
and La↵erty have proposed an alternative estimation of ps(w|d)
inspired by models in statistical machine translation [6]. In
that work, they modelled retrieval as a machine transla-
tion process and estimated the query likelihood by means of
a translation model that computes the likelihood that the
query has been produced by a translation of the document.
Their translation document model prescribes to compute the
query likelihood as

pt(w|d) =
X

u2d

pt(w|u)p(u|d) (6)

In Equation 6, pt(w|u) represents the probability of trans-
lating term u into w. As Karimzadehgan and Zhai have
noted [17], the translation probability pt(w|u) allows for the
incorporation of semantic relations between terms with non-
zero probabilities: this provides a sort of “semantic smooth-
ing” for p(w|d). The new estimation pt(w|d) provided by
translation language models can be injected into the Dirich-
let smoothed language models by substituting pml(w|d) in
Equation 5 with pt(w|d) [17].
The key challenge in translation language models then

becomes how to estimate pt(w|u), i.e., the probability of
translation of u into the (query) term w. Berger and Laf-
ferty have proposed estimating the translation probabilities
for each document by synthesising a query for which the
document would be relevant [6]. This approach requires the
availability of labelled training data (relevance assessments),
is ine�cient and does not guarantee translation probabilities
are available for all query terms [17].

2.3 Estimation of Translation Probability based

on Mutual Information

As alternative to the synthetic queries process, Karimzade-
hgan and Zhai have proposed a family of approaches to es-
timate pt(w|u) based on mutual information [17, 18]. In
statistics, mutual information measures the mutual depen-
dence between two random variables by determining how
similar the joint distribution p(X,Y ) is to the products of
the marginals, p(X)p(Y ). When applied to distributions of
terms in documents, mutual information provides a measure
of the strength of relation between two terms.
In mutual information based translation language models,

for each term in the collection, scores are computed for words
with high mutual information and further normalised [17].
The mutual information between terms w and u is computed
as (refer to [17] for details):

I(w, u) =
X

Xw=0,1

X

Xu=0,1

p(Xw, Xu)log
p(Xw, Xu)
p(Xw)p(Xu)

(7)

where Xu and Xw are binary variables indicating the pres-
ence or absence of u and w, respectively. Mutual information
values are then normalised to obtain the translation proba-
bility pmi(w|u) estimated based on mutual information:

pmi(w|u) = I(w, u)P
w0 I(w0, u)

(8)

We refer to the use of pmi(w|u) to estimate the translation
probability pt(w|u) in Equation 6 as the translation language
model based on mutual information (TLM-MI).

p(cancer|cancer): self-translation probability

use Word 
Embeddings for 
computing this

[Zuccon et al., 2015, b] 



Constraining word embeddings by 
prior knowledge

• [Liu et al., 2016]: learn concept embeddings 
constrained by relations in KB (UMLS)   

• Results in a modified CBOW 

• Use word embeddings to re-rank results: interpolate 
original relevance score with similarity based on 
embeddings 

• Experiments only limited to synonym relations & single-
word concepts
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1. Introduction 2. Basics 3. Semantic Search Models 4. Evaluation Approaches and Results 5. Conclusion and discussion

REPRESENTATION LEARNING FOR MEDICAL SEARCH
LEARNING WORD, CONCEPT, DOCUMENT REPRESENTATIONS
[JA ET AL., 2014, NGUYEN ET AL., 2017, LOZA MENCÍA ET AL., 2016, PENG ET AL., 2016]

• Extension of the Doc2Vec model [Nguyen et al., 2017]
I Build the optimal real-valued representation d̂ of document d such that the knowledge-based

embedding d̂(cd2vec)
i and the corpus-based embedding d̂(PV�DM) are nearby in the latent space.

Formally through the minimization problem:

 (D) =
X

d2D

 (d) =
X

d2D

h
(1 � �) ⇥ kd � d̂(cd2vec)k2 + � ⇥ kd � d̂(PV�DM)k2

i

I Concept-based latent representation of document d is obtained using and extension of the
cd2vec model. Document vectors d̂(cd2vec) are learned so they allow predicting concepts in their
context by maximizing the log-likelihood:

' =
X

d2D

logP(d | c1, . . . , cm) +
X

cj2Cd

logP(cj | cj�W : cj+W, d)

100 / 161

Concept-Driven Medical Document 
Embeddings

• Uses neural-based 
approach (akin to doc2vec) 
to create embedding that 
captures latent relations from 
concepts and terms in text.  

• Uses embedding to identify 
top documents 

• Extract top words and 
concepts from top 
documents to produce 
expansions �39

[Nguyen et al., 2017]: optimises document representation for 
medical content



Learning to Rank
[Soldaini&Goharian, 2017]: compares 5 LTR in CHS context: 

• LTR: logistic regression, random forests, LambdaMART, 
AdaRank, ListNet 

• Features: statistical (36 features),  statistical health (9), 
UMLS (26), latent semantic analysis (2), word 
embeddings (4). 

• LambdaMART performed best; all features required
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Dealing with the 
nuances of medical 

language
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Negation & Family History

�42

“denies fever”
“no fracture”

 “mother had breast cancer”

NegEx/ConText [Harkema et al., 2009]:  
Algorithm for extracting negated content

• Negated content best handled by: 
• Not removing negated content (as is commonly done) 

• Indexing positive, negated & family history content 
separately [Limsopatham et al., 2012] 

• Weighting content separately [Koopman & Zuccon, 2014]



PICO
• PICO: framework for formulating clinical questions  

P: Patient/Problem (P) (e.g., males aged 20-50)    
I:  Intervention (e.g., weight loss drug)  
C: Comparison (e.g., controlled exercise regime) 
O: Outcome (e.g., weight loss) 

• Exploiting PICO elements in IR: 
• Language modelling based content weighting [Boudin et al., 2010] 

• Tagging PICO elements for IR - “I” & “P” elements most beneficial 
for retrieval 

• Field retrieval based on PICO [Scells et al., 2017b] 
• promising, but needs method to predict which keywords require 

PICO annotations

�43

RobotReviewer [Marshall et al., 2015]:  
Algorithm for extracting  
PICO elements from free-text



Readability & Understandability
• Laypeople do not necessarily understand medical 

documents that clinicians would understand 

• Need to retrieve documents that are both 
understandable and relevant 

• [Palotti et al., 2016 b]: LTR with two sets of features: 

• Estimate relevance: standard IR features 

• Estimate understandability: features based on 
readability measures and medical lexical 
aspects
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Understanding and 
aiding query 
formulation
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What would search for?

Enter your search terms at http://chs.ielab.webfactional.com/
 46

http://chs.ielab.webfactional.com/


Symptom Group Crowdsourced Circumlocutory Queries

alopecia baldness in multiple spots, circular bald spots, loss of hair
on scalp in an inch width round

angular cheilitis broken lips, dry cracked lips, lip sores, sores around mouth
edema fluid in leg, pu↵y sore calf, swollen legs
exophthalmos bulging eye, eye balls coming out, swollen eye, swollen eye

balls
hematoma hand turned dark blue, neck hematoma, large purple

bruise on arm
jaundice yellow eyes, eye illness, white part of the eye turned green
psoriasis red dry skin, dry irritated skin on scalp, silvery-white

scalp + inner ear
urticaria hives all over body, skin rash on chest, extreme red rash

on arm

“Circumlocutory” queries 
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[Stanton et al., 2014]



How effective are Google & Bing at 
Health Search?

�48
[Zuccon et al., 2015]



Performance per query
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exophthalmos: 
“eye balls coming out” 

“swollen eye”
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Query Recommendation
[Zeng et al, 2006]: recommend queries based on UMLS and 
query log (CHS task) 

• Leads to higher user satisfaction and query success rate
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Query Reformulation
[Soldaini et al., 2015]: compares the effectiveness of 7 query 
reformulation techniques (CDS task) 

1. UMLS Concepts Selection (MMselect): remove all terms 
with no mapping to any UMLS concepts 

2. Health-related terms selection (HT): compute ratio of 
associated Wikipedia page P being health-related over being 
not-health-related. Retain only query terms with ratio ≥ 2. 

3. Query Quality Predictors (QQP): use QPPs as features of 
SVMrank to select query terms. 

4. Faster QQP: rank sub-queries using MI and retains the top 
50. In addition to QQP features, add features: UMLS concepts 
found, UMLS sem-types found,  HT ratio, and MeSH found.
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Query Reformulation
[Soldaini et al., 2015]: compares the effectiveness of 7 query 
reformulation techniques (CDS task) 

5. UMLS Concepts Extraction (MMexpand): append the 
preferred terms UMLS query concepts to expand original 
query 

6. Pseudo Relevance Feedback (PRF): weight terms in top 
10 initial results, rank and add top 20 terms not in original 
query. 

7. Health Terms PRF (HT-PRF): as PRF, but candidate 
expansion terms filtered health term ratio 

• This is empirically identified as the best technique 
• The HT component in general seems effective
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Query Reformulation  
with deep learning

[Soldaini et al., 2017]: considers short clinical notes as 
queries (CDS task) 

1. Generate candidate terms using PRF 

2. Train supervised neural network to predict Weight 
Relevance Ratio (WRR) of candidate terms: importance 
of term in relevant documents 

3. For representations it uses word embeddings, statistical 
features over multiple collections, syntactical and 
semantical features 

• The neural network approach and HT-PRF perform 
similarly
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Query Clarification
[Soldaini et al., 2016]: add the most appropriate expert expression to 
queries submitted by users 

• Acquire expert expressions from 3 KBs: behavioral (logs), 
MedSyn, and DBpedia 

• Select expression with the highest probabilities of appearing in 
health-related Wikipedia pages, using logistic regression classifier 

• Finding through user study evaluation (CHS task): 

• Expressions from all 3 KBs improve rate of correct answers 
(behavioural KB best) 

• number of correct answers significantly increases when users 
clicked HON-certified websites
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Query Reduction
• [Koopman et al., 2017 c]: reduce verbose clinical queries (health 

records, CDS task) using generic & domain-specific methods 

• Reduce to only UMLS Medical Concepts & Tasked UMLS 
• Combined model UMLS + IDF-r (proportion of top-ranked IDF 

terms retained) 

• Comparison vs human-generated queries: human generated 
queries significantly more effective 
• per-query parameter learning promising 
• automated reduction handicapped in that they only use terms 

from narrative
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Query Reduction
[Soldaini et al., 2017 b]: use convolutional neural networks (CNN) to 
reduce queries (CDS task) 

• Queries are short clinical notes 

• CNN is used to estimate the importance of each query term 

• Given a query, a relevant document and a non-relevant 
document: 

1.  Use CNN to determine weights terms in query  

2.  Use term weights to score relevant and non-relevant 
documents 

3. Back-propagate a loss if non-relevant document is scored 
higher than relevant document
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Query Rewriting
[Scells&Zuccon, 2018]: through a chain of transformation, generates 
better (Boolean) queries (for systematic reviews compilation) 

• Defines set of transformations: mostly syntactic transformations 
• Selects transformations based on: heuristics, classifier, learning 

to rank 
• Large gains possible by transforming queries
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A rewritten query



Query Difficulty
• [Boudin et al., 2012]: predictor that exploits MeSH structure to 

ascertain how difficult queries are — estimates query variability and 
specificity 

• V(t): set of alternative expressions of the concept t; depth/length in 
MeSH 

• coverage of thesaurus & concept mapping influence quality 

• [Scells et al., 2018]: standard predictors for QPP and QVPP 
(V=variation) in systematic reviews compilation 

• Predictors not suited to the domain-specific nature of the task 

• Identifying best performing variations hard task
�58

because the size of the expected result set is much larger. We use the hierarchi-
cal structure of MeSH to di↵erentiate between narrower and broader terms. A
narrower term is defined as close to a leaf of the concept tree. Given a query
Q = (t1, t2, · · · tn), our query di�culty predictor is computed as:

MeSH-QD(Q, T ) =
X

t2Q

term variabilityz }| {
df(t)P

t02V (t)

df(t0)
· ln

⇣
1 +

N

df(t)

⌘
·

term generalityz }| {
depth(t)

length(t)
(1)

with df(t) the number of documents containing the term t, V (t) the set of alter-
native expressions of the concept t in the thesaurus, N the size of the collection,
depth(t) the depth of t in the concept tree, and length(t) the maximum depth
of the branch containing t. The higher MeSH-QD, the less the query di�culty.

4 Experimental settings

In this study, we evaluate the above new predictor using the CLIREC test collec-
tion [1], made of 155 clinical queries, 2596 relevance judgments and 1.5 million
documents extracted from PubMed5, one of the most searched medical resources.

In order to use our predictor, query terms have to be mapped to MeSH. How-
ever, mapping terms to an existing resource is a di�cult task. Spelling problems,
synonyms, or term ambiguity are some of the di�culties that can introduce er-
rors. To estimate the impact of the mapping quality on the performance of our
prediction method, we performed this process both manually and automatically.
In the manual mapping, two annotators were asked to map query terms to
MeSH. 78 queries were fully mapped at the phrase level. All the experiments in
this study are conducted on this subset of queries. We used Metamap6 to per-
form the automatic mapping. In comparison to the manual mapping, Metamap
achieves a recall of 83.2% and a precision of 85.4%.

We evaluate prediction quality by measuring the correlation between the ac-
tual performance of queries (as determined by using relevance judgments) and
the di�culty scores assigned by the predictors. In previous work, two evaluation
methodologies were used, comparing prediction scores with individual retrieval
models (e.g. [7]) or with the average performance of several models (e.g. [2]).
In this study, we use the latter. Retrieval tasks are performed using the Lemur
toolkit7. We experiment with three retrieval models: tf.idf, Okapi BM25 and a
language modeling approach with Dirichlet prior smoothing (µ = 2000). Re-
trieval accuracy is evaluated in terms of Mean Average Precision (MAP).

Three correlation coe�cients are commonly used in the query di�culty esti-
mation literature: Pearson product-moment correlation, Spearman’s rank order
correlation and Kendall’s tau. As there is currently no consensus on which cor-
relation measure is the most appropriate, all the three measures are reported.

5 http://www.pubmed.com
6 http://metamap.nlm.nih.gov
7 http://www.lemurproject.org



Task based retrieval
• Research on how clinicians’ query shows a set of 

standard query types [Ely et al., 2000] 
• Can be simplified to three clinical tasks: 

i.searching for diagnoses given a list of symptoms;  

ii.searching for relevant tests given a patient’s situation 

iii.searching for effective treatments given a particular 
condition. 

• These can be exploited in a retrieval scenario…
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Tasked-based retrieval
• Concept-based approach but “focusing only on medical 

concepts essential for the information need of a medical 
search task” [Limsopatham et al., 2013] 

• Tasked-oriented filtering, visualisation and retrieval 
[Koopman et al., 2017 b]
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How does a good health query  
look like?

• [Tamine&Chouquete, 2017] found that in health search, query 
quality is influenced by medical expertise 

• [Koopman et al., 2017] studied the querying behaviour of 4 
clinicians 

• most effective clinicians those who entered short queries 
(but retrieval models optimised for short queries) 

• most effective clinicians those who inferred novel 
keywords most likely to appear in relevant documents 

• most effective clinicians posed queries around treatments 
rather than diagnoses (but influenced by task: searching 
for clinical trials)
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