
GeoTemCo: Comparative Visualization of
Geospatial-Temporal Data with Clutter Removal

Based on Dynamic Delaunay Triangulations

Stefan Jänicke1, Christian Heine2, and Gerik Scheuermann1

1Image and Signal Processing Group, Institute for Computer Science,
University of Leipzig, Germany

{stjaenicke,scheuermann}@informatik.uni-leipzig.de
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Abstract. The amount of online data annotated with geospatial and
temporal metadata has grown rapidly in the recent years. Providers like
Flickr and Twitter are popular, but hard to browse. Many systems exist
that, in multiple linked views, show the data under geospatial, temporal,
and topical aspects. We unify and extend these systems in a Web ap-
plication to support comparison of multiple, potentially large result sets
of textual queries with extended interaction capabilities. We present a
novel fast algorithm using a dynamic Delaunay triangulation for merging
glyphs in the map view into so-called circle groups to avoid visual clut-
ter, which is critical for the comparative setting. We evaluate our design
by qualitative comparison with existing systems.

Keywords: Visual data exploration, geovisualization, comparative vi-
sualization, dynamic Delaunay triangulation.

1 Introduction

Although the amount and types of data available through public Web resources
is seemingly endless, finding information is still largely performed by text queries.
Popular search engines rank the typically huge amounts of query results based
on relevance and popularity. When too many irrelevant items remain, the user is
required to restate the query by adding or replacing search terms. Unfortunately,
repeated refinement can lead to frustration. An alternative is to spatialize the
data and allow the user to refine queries using mouse-based navigation.

While the data amount is increasing, data also become more structured.
Websites such as Flickr and Twitter provide rich data sources annotated with
geospatial and temporal metadata. This metadata can be used to provide a con-
textual overview of the data in many forms: topical, geospatial, and temporal,
being some of the most popular. Users already familiar with searching in geo-
graphic environments like Google maps, can find results presented directly on a
map rather than in a list, emphasizing the geospatial aspect. A tool providing
more contextual overview and filter capabilities allows for synergetic effects.
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In this paper, we present a Web application that enables the synergetic ex-
ploration of multiple topical queries in a geospatial and temporal context. It
employs a map view for the geospatial context, a time view for the temporal
context, and provides on-demand tag clouds for topical refinements. All views
provide linked brushing. This allows, for instance, to juxtapose and compare
spatial distribution and temporal trends of multiple queries. Our design is based
on a number of published systems that each allow only a subset of our require-
ments: comparing multiple datasets, refining temporal context, and scaling to a
large number of items, both computationally and visually. We achieve the later
by zoom-dependent aggregation of result locations into non-overlapping circles,
thus avoiding visual clutter in the map view.

We extend our design, which we reported on in a previous version of this pa-
per [1], to reflect the results of a usability study. In particular, we made circles
transparent to mitigate potential occlusions of map labels, provide a new tag
cloud design for detailed comparison of result sets, and present a novel aggre-
gation algorithm that removes the run-time complexity in the start-up phase of
our system from O(n2) to O(n log n).

2 Related Work

Our work can be placed in the domain of thematic cartography and geovisual-
ization. Overviews of the field are given by, e.g. Dent [2] and Slocum et al. [3].
An overview of tools, principles, challenges, and the concept of the analysis of
geotemporal data are given by Andrienko and Andrienko [4, 5]. An important
role plays the representation of data at multiple levels of detail to allow both
gaining an overview and an interactive drilling down onto the details, as well
as linking different views on the data, i.e. allowing interaction in one view to
affect other views. This typically makes it easier to find causal relationships and
unforeseen connections.

Because of limited space we can address only a few representative designs
that exploit synergetic effects of linked views for geospatial-temporal data.

The Web application VisGets [6] employs four linked views: a location view,
showing the result items as small glyphs on a map, a time view, showing his-
tograms of results for year, month, and day resolution, a tag view, showing
most-frequent words in a size proportional to their importance, and a results
view, showing small textual or image thumbnails of results arranged as a table.
VisGets offers query refinement in space (selecting a glyph), time (selecting a
year, month, or day), and by topic (selecting a tag). Each refinement affects the
presentation in all other views. VisGets also provides many mechanisms to inter-
act with the results of a single query, but a comparison of different queries is not
directly supported. Because no aggregation of closely positioned glyphs takes
place, visual clutter often ensues. The time view supports only query refinement
for months within the same year, or days within the same month. The pro-
vided time resolutions make it also inconvenient to work with datasets spanning
centuries or just hours and minutes.



GeoTemCo 3

GeoVISTA CrimeViz [7] enables comparison and analysis of different crime
incident types. The map view shows individual circles only when zoomed in. In
overviews, the incidents of all types are aggregated into hexagonal bins, thereby
disabling comparison. The display of the bins using transparency interacts with
the map: in dense areas the map is occluded and the underlying map can bias
the transparency perception. In the CrimeViz time view, the number of incidents
per time period of different types are stacked. It can show the total trend well,
but is insufficient for comparing the different incident types [8]. The supported
linked interactions are asymmetric: a selection in the time view (year, month,
week, no time ranges) filters items on the map but not vice versa. CrimeViz’s
data source offers 8 different incident types, of which only the 3 smallest (with a
maximum total of 637 incidents per year) are used. The other 5 types, ranging
from 2,600 to 9,300 incidents per year each, are omitted.

The problem with many results in a map view becomes apparent in the
visualization of the Iraq conflict incidents by The Guardian [9]. It does not make
use of the different casualty types present in the data source or time information,
and suffers from “red-dot fever” [10]: glyphs overlap in the map to an extent
where the spatial distribution can no longer be determined reliably. To support
large datasets, our tool thus automatically aggregates result hits in the map
to non-overlapping circles. It becomes indispensable when presenting glyphs of
different visual properties, since overlaps could bias the perceived distributions.

The increasing data sizes to be shown in scatter plots, forced the development
of binning strategies. Data-independent, top-down approaches like rectangular
binning [11] and hexagonal binning [12] split the plane into rectangular or hexag-
onal bins. The number of items per bin can be reflected in different ways, e.g.,
a bin coloring with associated colors from a predefined color map. Furthermore,
specific shapes (e.g., circles, hexagons) reflecting the bin count with size can be
placed in the bin area. A special case for shapes are so called sunflower plots [13],
which reflect the number of items in one bin of the scatter plot with a sunflower
glyph, that has a specific number of petals for a specific number of points.

These top-down binning strategies are widely used in geoapplications [5].
However, Novotny [14] remarked that the result can be misleading since cluster
centers might be split into distinct bins. He proposes K -means [15] as a bottom-
up binning approach, but it requires an appropriate selection of the number of
clusters. General clustering algorithms cannot make assumptions on the dimen-
sionality of the data and can therefore be slow. In this paper, we propose to use
a fast data-driven clustering employing a dynamic 2D Delaunay triangulation
algorithm. Delaunay triangulations are typically used in geographic information
systems to model terrain [3], but to the best of our knowledge, we are the first
to employ it as a clustering algorithm for clutter removal of glyphs.

3 Design

Our system’s design is inspired by Dörk et al. [6]. It also consists of a map view
showing the position of query results, a time view showing the distribution of
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results in a time span, and a detail view showing textual contents or thumbnails
of data items arranged in a table. Our system differs in that we allow comparison
of multiple result sets from a classical keyword or term-based topical search,
support time-span data, show tag clouds for selected data on demand in the
map, provide more flexible selections in the time domain, and render glyphs in
the map avoiding visual clutter. Internally, we support any simple statistical
graph, with the time view being a special case, and a designer can add more
views based on the data to show. Fig. 4c gives an example view composition.

We chose colors to mark the different result sets, because of their effective
use to discriminate categorical data [16]. An alternative is to use small multiples
similar to the system LISTA-Viz [17], but we found the use of small multiples
makes comparison of scattered data with irregular spatial distribution difficult.
Furthermore, colors can serve as the visual link between the different views. As
the number of colors that can be easily distinguished by humans is limited to 12
[18], we restricted our method to four datasets, to ensure both a good distinction
from the map, as well as allowing colors to mix in the time view. We presume
map colors to be mostly dark, cold, or unsaturated, and select very light colors
for deselected and very saturated colors for selected circles to ensure that the
thematic overlay pops out in comparison to the base map. The four base colors
used for datasets 1 through 4 are red, blue, green, and yellow – to accommodate
color impaired users while preserving red for single type datasets.

Each view provides native navigation and selection that results in updates
of the other views. The map and the time views provide simple zoom and pan.
Because of the way we aggregate data in these views an animation between
zoom levels or time resolution changes is not performed. We reflect selections
by marking table entries and the corresponding fraction of map glyphs and time
graphs with saturated versions of the datasets’ base colors. When selections are
performed by a mouse drag gesture, the impact of releasing the mouse at this
point is immediately reflected in the other views. Selections can be modified by
dragging shapes or clicking on table entries in the detail view.

3.1 Map View

The dominant view in our visualization in terms of screen space is the map view.
It is a thematic map [3] comprising a base map and a thematic overlay. The
base map can be a contemporary map or one of 23 different historical maps
showing political borders from 2000 BC to 1994 AD provided by Thinkquest1.
Overlaying data over historic maps can benefit applications in the humanities
(see e.g. Tsipidis et al. [19] for archaeological data, or the HESTIA project [20],
which investigates the differences between imagined geographic distances and
real distances in ancient Mediterranean space). Because a dataset may span a
time range for which multiple maps are available and there is no concept of
“average political border” we show the map closest to the median time stamp
occurring in the dataset as default and allow the user to switch maps.

1 http://library.thinkquest.org/C006628/
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Fig. 1: Place name tag clouds with different levels of detail

For the overlay, we chose a proportional glyph map over isopleth and choro-
pleph maps due to the scattered nature of our data. We can use neither dasy-
metric nor dot maps, as these require ancillary information and a cartographer
to apply this information correctly. The spatial distribution could also be shown
via heat map, but to preserve legibility of the base map and to show multiple
datasets, color mixing would ensue, against which Ware [18] argues. Also, hu-
mans are more accurate judging areas than they are judging color tones, making
areas a better candidate for quantitative values [8]. Using glyphs also allows to
group glyphs and to make every data item individually accessible for interaction.

We disallow the glyphs to overlap in order to avoid visual clutter. While
drawing rules such as “always let the smaller overlap the larger” can reduce the
risk of occluding small glyphs, this is only a solution if glyphs do not differ in
their other visual attributes, like shape or color. Instead, we merge circles based
on their size, distances, and the current scale in an iterative process.

The overlap removal algorithm, which can be directly attached for single
input sets (m = 1), is described in the next section. In the case of multiple
(m = 2, 3, 4) input sets, we compose multiple circles c1, . . . , cm into a more
complex glyph – a circle group – whose bounding circle b will be used for the
aggregation. We chose them over pie charts, because these improve comparisons
of data at the same point at the expense of comparison of the global distribution.

The grouping process is illustrated in Fig. 2d-f. Initially we place the centers
of m prototype circles on the vertices of a regular m-polygon. The prototype
circles’ radius is set equal to the largest circle to group. Then we move the m
circles using their correct radius from their polygon vertex closest to the polygon
center without leaving the prototype. Finally we construct the bounding circle
by moving it from the polygon center towards the center of the largest circle
until its boundary touches two circles. Although this wastes some space, it is
quick to compute and allows the map to be seen through. To ensure the map
legibility underneath large circles, we draw all circles semi-transparent.

Selections in the map view can be specified by clicking on items or by draw-
ing circles, rectangles, polygons, or clicking on an administrative region (e.g.
country), which then selects the items in the surrounding polygon. Each of the
map’s circles is associated with a details-on-demand tag cloud showing the most
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frequent place names in a font scaled proportional to their frequency. The cloud
provides a preview of how a glyph arising from agglomeration would split if
zoomed in. If the data offers different levels of detail for a place, we choose the
label dependent on the current zoom level. We distinguish between country, re-
gion, city, and borough level. We replace missing levels by the next coarser or the
next finer level. Fig. 1 gives example place name tag clouds. In the comparison
setting we use lines to link tags between datasets, as can be seen in Fig. 5b.

3.2 Time View

Using terminology of Harris [21], our time view is a segmented area graph with
time for the x-axis. A segmented area graph is a line chart where the area under
the line is filled. T1, . . . , Tn partition the interval T = [tmin, tmax] of the given
dataset into intervals of regular duration: either seconds, minutes, hours, days,
weeks, months, quarters, years, or decades. It is chosen to maximize the number
of intervals without exceeding 400. Short units typically arise from dynamic data
sources and large units arise from data with historic context. The resolution unit
changes automatically when the user zooms inside the time view.

Whereas the x-axis of the time view is directly defined by T1, . . . , Tn, the y-
direction shows the number of data items that fall in each interval using binning.
For data items with time stamps the counting is straight-forward, for data items
with time spans we add a value proportional to the amount of overlap with each
bin. Although this can lead to an over-representation of items with long time
spans in the time view, we found this to be no problem. For the datasets we
considered, either the effect was benign as the time spans had approximately
the same duration or items with longer time spans were also more interesting.

In the comparative setting we perform the bin counting per group. In the
final visualization the bins’ sizes are shown as overlapping segmented area graphs
rather than bar charts because the former is better suited to direct comparison
of the groups’ time distribution. We shade the area under each line using a semi-
transparent version of that datasets color, ensuring that all curves are visible
and also hinting at the area that would have been present in the bar chart.
Through the use of blending, the limitation to four colors as well as the stacked
area graphs’ shape mitigates ambiguities. The user can switch to logarithmic
scale if datasets to be compared have largely different totals.

The time view allows both the clicking on one bin and the selection of a time
range using a mouse drag gesture. A toolbar is then shown, that offers to add
a “gray zone” which blends between selected and unselected elements. A play
button starts an animation mode causing the selected time window to loop.

3.3 Detail View

For inspection of single data items that match the current filtering we present
small textual or image thumbnails presented as a table in the detail view. This
view is the only one which does not include any aggregation, but results are
presented on multiple pages if they exceed a certain fixed number.
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The system also allows to export elements of a selection as a new dataset.
This can be used for the temporal comparison of different geographical regions of
one dataset or the geographical comparison of different time periods is possible.

4 Overlap Removal Algorithm

In the following let k denote the number of supported scales (i.e. magnifications).
The scale doubles with each level l (1 ≤ l ≤ k). Furthermore, let N denote the
number of points P , pi = (0.5+loni/360◦, 0.5+lati/180◦) in a normalized space.
Each circle i represents ni points. We define a minimum radius rmin dependent
on the average font size of common Web mapping services’ labels (e.g. Google
Maps, Bing Maps) so that circles have salience no smaller than labels. The
maximum radius was found empirically as rmax = 4 log2(N + 1). A circle’s area
Ai is a linear interpolation between the corresponding minimum and maximum
circle areas Amin and Amax based on ni:

Ai = Amin +
ni − 1

N − 1
(Amax −Amin).

Because neighboring circles are most likely to overlap and we want to merge
close circles before far circles, we use a dynamic Delaunay triangulation as sup-
porting data structure, allowing us to quickly find and merge overlapping circles.

The algorithm is detailed in Algorithm 1 and illustrated in Fig. 2a-c. It
initially creates a dynamic Delaunay triangulation of the given points in the
normalized space merging duplicates. After initialization, all edges of the trian-
gulation are inserted into a priority queue with a priority ψ depending on the
amount of overlap. ψ relates the distances after transformation from normalized
space to screen space and the radii of the circles in pixel. The factor containing
l in the formula for ψ assumes that the map image for level 1 has dimensions
256 × 256. For simplicity and speed we use the ratio of the minimum distance
desired plus ε ≥ 0 and the real distance as priority. Circles overlap or are too
close when ψ > 1. After constructing the priority queue, we repeatedly find the
overlap of highest priority and remove it by merging the circles, which affects
both the Delaunay triangulation and the priority queue, and finish when there
are no more overlaps. Then we proceed with the next scale, which implicitly
halves point distances but not radii in the formula for ψ.

In our implementation we use the algorithm proposed by Kao et al. [22]. It is
a randomized incremental algorithm that constructs the initial triangulation in
O(N logN) expected time, and can find a duplicate to a given point in O(logN).
As the triangulation contains O(N) edges, construction of the priority queue us-
ing a simple heap requires O(N logN) time. Each merging of circles requires 3
elementary operations on the triangulation, each with O(logN) expected time,
and an expected constant number of updates to the priority queue, each with
O(logN) time. As building the priority queue and merging circles takes place for
each scale we can give the trivial upper bound of our algorithm as O(kN logN).
This is a significant improvement over the agglomeration algorithm using clus-
tering presented in the previous version of this paper [1].
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Algorithm 1 OverlapRemoval(P)

D ← empty Delaunay triangulation
for i = 1 to |P | do

if pi ∈ D then
pj ← duplicate of pi in D
nj ← nj + 1

else
Insert(pi,D)
ni ← 1

end if
end for
for l = k to 1 do
Q← empty priority queue
for all edges {pi, pj} in D do
ψ ← (ε+ ri + rj)/(2

7+l||pi − pj ||)
if ψ > 1 then

Insert({pi, pj},ψ,Q)
end if

end for
while Q not empty do
{pi, pj} ← highest priority element of Q
nij ← ni + nj

pij ← ni
nij

pi +
nj

nij
pj

Delete(pi,D)
Delete(pj ,D)
Insert(pij ,D)
Update(Q)

end while
end for

5 Results

GeoTemCo is the main application which implements the design described in
Section 3. GeoTemCo works completely within the client’s browser, performing
filtering, visualization, and interaction, and allows to load data locally or using
a server that is an adapter for dynamic data source. Within the development
phase for GeoTemCo we used among others the following three dynamic sources:
Europeana2, an online library of several million digitized objects of European’s
cultural heritage, eAQUA3, a project studying topic migrations in the ancient
Mediterranean based on words extracted from ancient Greek texts, and Flickr4:
a database of millions of public user-provided photos. All items are annotated
with creation place and date.

2 http://www.europeana.eu/
3 http://www.eaqua.net/
4 http://www.flickr.com/
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Fig. 2: Aggregation of single and multiple items. The next occlusion to be re-
solved is marked by line thickness.

GeoTemCo supports both KML and JSON exchange formats. Since the over-
all support for JavaScript as well as its browser performance has increased in
the last years, we decided to implement GeoTemCo completely in JavaScript.
We adapted two OpenSource JavaScript libraries for implementing our views:
OpenLayers5 is used to provide both the thematic layer and the base map from
different Web mapping services, e.g., Google Maps, Open Street Map or historic
maps, hosted on our own GeoServer6 instance. Also, we extended the Simile
Widgets Timeplot7 for displaying statistical graphs to support our interaction.

5.1 Crime Incidents

We compared the CrimeViz application (Fig. 3a) to our visualization (Fig. 3b)
for crime incidents in 2009. Both show the distribution of homicide, arson, and
sex abuse incidents in the Washington D.C. metropolitan area. Our tool easily
shows that there was neither homicide (blue) nor arson (red) incidents in the
north western neighborhoods, which is not directly visible in the CrimeViz map,
because of the hexagonal binning, that furthermore causes a loss of map con-
text in dense regions. When considering further crime types, we find patterns
for thefts and robberies near populated places like metro stations or shopping
centers. Unlike CrimeViz, we aggregate preserving incident types, hence we find
more relations, e.g. by comparing the crime types stolen cars (red), burglaries
(blue), thefts (green), and robberies (yellow) (Fig. 3c). We detect relatively few
stolen car (20%) and burglary incidents (23%) in comparison to thefts (45%)
and robberies (35%) in Washington D.C.’s downtown.

Crime analysts can use our visualization to detect connected crime incidents
of different types. For instance, a daily exploration reveals, that stolen car in-

5 http://openlayers.org/
6 http://geoserver.org/
7 http://www.simile-widgets.org/timeplot/
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(a) CrimeViz (b) Our system

(c) Four more crime types (d) Co-located incidents (e) Neighborhoods

Fig. 3: Crimes in Washington D.C. [Fig. 3a reproduced with permission from [7]]

cidents are often grouped with a theft, burglary or robbery incident, e.g., co-
located incidents at 27th of June (Fig. 3d). The number of correlations increases
further by choosing a two day time range. The original CrimeViz did not allow
such fine-grained selection of time ranges. The analyst can furthermore compare
different districts using the administrative region selection offered by the map
view. Another application could be a decision making support for apartment
search, based on regions of low burglary probability, or where it would be safe to
rent a garage for a car. Fig. 3e indicates Neighborhood 13 (top) as substantially
safer than Neighborhood 39 (bottom) with respect to stolen cars and burglaries.

5.2 Guardian Data

The Iraq war logs dataset as published by The Guardian, contains around 60,000
entries; one for each incident with at least one casualty during the Iraq conflict
from 2004 to 2009. Each entry states place and time, as well as the number of
casualties by type (civilian, enemy, Iraq forces, coalition forces).
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(a) Guardian map (b) Our map view

(c) Incidents by casualty type (d) Operation Imposing Law

Fig. 4: Iraq War Logs: Analysis [Fig. 4a reproduced with permission from [9]]
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The Guardian visualization [9] for the Iraq war logs is a map containing one
circle for each incident. It produces a lot of clutter as the result of overlap-
ping glyphs distorting perception of incident densities. In Fig. 4a three conflict
centers can be guessed: Baghdad in the center, Al Mausi in the north, and Al
Basrah in the south-east, but easily confirmed using the overlap removal algo-
rithm (Fig. 4b) in our tool. Baghdad clearly stands out as the region with most
incidents.

For comparison, we split all incidents based on the casualty type into four
different datasets. Fig. 4c shows an increased number of incidents with civilian
casualties (red) in 2006 and 2007. A second histogram using logarithmic scale
shows the number of incidents by casualty total. We discover the incident with
most casualties, which is known as the 2005 Baghdad bridge stampede. In contrast
to various newspaper reports of around 1,000 casualties, the data shows only 437
civilian and 7 Iraq forces casualties (green).

Furthermore, we prepared four datasets containing one item for each casualty
to point out regions and time periods with lots of casualties. Fig. 4d (top) shows
an increased number of casualties in 2007 compared to 2004, except for enemy
casualties, in particular in Baghdad. The Operation Imposing Law (February
14th - November 24th 2007) reduced the overall number of victims, most notably
in Baghdad. On March 14th 2007, the Iraq military stated, that there were only
265 civilian casualties in the first month of Operation Imposing Law, which is a
low compared to the month before the operation (1440). By filtering using the
proper time ranges and clicking the tag cloud for Baghdad, we find 2,540 and
997 civilian casualties, respectively, for these time periods in Fig. 4d (bottom).

5.3 Biodiversity Data

The European project BioVeL8 combines several biodiversity databases with
the goal to implement and provide flexible user interfaces for biologists for their
research on biodiversity issues. In this context GeoTemCo is integrated into a
complex workflow process as one of the major visual interfaces for researchers.
Biologists select a list of specific species and initialize GeoTemCo with observa-
tion entries of different time periods used as different datasets. Exploration and
filtering abilities help to detect geospatially migrating species over time. Further-
more, GeoTemCo is used to clean the underlying databases from wrong entries.
The results of these user interactions are exploited for the onward workflow.

Fig. 5a gives an example for two observation cycles for marine organisms at
the south-eastern coast of Sweden, the first from 1916 to 1938 and the second
from 2006 to 2009. For each item, the species’ identifier replaces the place name
field, so that place name tag clouds show most frequently observed species for
geographical areas (Fig. 5b). Hovering, a circle pack’s boundary shows tag lists
for both circles. Tags which occur in both lists are connected to each other.
Hovering an unconnected tag in one list shows an additional link. If the tag
also exists in the opposite list, it appears as a new entry (top). Otherwise, the

8 http://www.biovel.eu/
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(a) observations (b) circle pack tagclouds

Fig. 5: Observation cycles from 1916-1938 (red) and 2006-2009 (blue)

information “Not available” is shown, which indicates migrated (middle) and
non-native species (bottom).

5.4 Books from Google Ancient Places

Google Ancient Places (GAP) [23] is concerned with the analysis of books on
history. GapVis9 is a visualization from GAP where historic places mentioned
in books are plotted onto a map. Page numbers are used as a second dimension,
so that an analysis of geospatially migrating topics in books is possible. GapVis
does not avoid visual clutter on the map and a comparative view for books is
also lacking.

We use the same data and utilize our time view for the books’ page dimension.
Fig. 6 shows an example for two books about the Roman empire, written by Livy
approximately 2000 years ago: Roman History and The History of Rome, Vol.
5. The political map of 1BC reflects proper historian circumstances. Instantly

9 http://nrabinowitz.github.com/gapvis
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(a) Distribution of named places (b) First and last book pages

Fig. 6: Livy books: Roman History (red) and The History of Rome, Vol. 5 (blue)

we see quite different geospatial references. Fig. 6a (bottom) clearly indicates
that the second book thematizes the conflict between the ancient Rome and the
Volscian territory starting at around page 100. In contrast, this period is not
discussed in Roman History, rather we detect a thematic migration (Fig. 6b)
from the ancient Italian (top) to the ancient Greek region (bottom).

5.5 Timing Evaluation

We compared the performance of the Delaunay overlap removal algorithm (DOR)
with the hierarchical agglomerative clustering method (HAC) as described in [1].
We used the Iraq war logs data as benchmark because of its high number of data
items non-uniformly spread. We split the incidents randomly into sets of different
size and performed several iterations in different browsers for each set. For the
test with Ubuntu 12.04, we used a quadcore Intel(R) Core(TM) i5-2410M CPU
@ 2.30GHz and 8GB memory. As Internet browsers, we chose Google Chrome
19 and Mozilla Firefox 13. The following table shows the median runtimes of 11
iterations for all datasets with both algorithms in both browsers.

558 1,185 2,523 4,628 8,917 15,716 33,801 52,048
DOR (Chrome19) 0.08s 0.17s 0.42s 0.86s 1.69s 3.64s 6.85s 10.79s

DOR (FF13) 0.11s 0.26s 0.5s 1.03s 2.1s 3.98s 7.46s 12.45s
HAC (Chrome19) 0.16s 0.37s 1.56s 4.17s 14.41s 42.21s 193.38s 518.24s

HAC (FF13) 0.71s 0.16s 3.07s 7.58s 30.39s 110.35s 483.19s 1038.78s



GeoTemCo 15

6 Conclusion and Future Work

We presented a novel approach and Web application to show, compare, and
explore multiple topical query results in a geographical and temporal context.
We were able to utilize, combine, and improve approaches from several prior
works. In contrast to CrimeViz [7], which also offers comparative visualization,
we display items without aggregating them into the same representatives for
coarser zoom levels. We aggregate map glyphs to avoid visual clutter, which is
an issue in the Guardian visualization for the Iraq war logs [9]. Compared to
the similar system VisGets [6], which only works for one set of results, we also
made use of the linked views approach (map, time line, detail view) to extend
the users exploration abilities. Furthermore, we enriched the filter capabilities
in both geospatial (e.g., selecting all results inside a country) and temporal
dimension (e.g., selecting dynamic time ranges).

Our case studies show that visually comparable datasets extend the explo-
ration and analysis abilities of the user in an effective way. It helps to detect
equalities and varieties between distinct data contents that unveil their relation-
ships in space and time. Our method is limited to four datasets at a time mainly
to ensure that the colors used for discrimination are properly distinguishable,
the splitting of circles does not waste too much screen space, and the overlapping
segmented area graphs do not occlude each other too much.

In the future we will direct our attention to the extension of our method to
very large datasets by searching for client-server communication where most of
the data remains on the server but a working set is transmitted to the client for
quick interaction. We aim to extend our system to extract and show trajectories
of distinct sets containing movement data, potentially leading to new insights.
At some point we also want to support live update of dynamic data sources
like Twitter feeds to see how topics proliferate. We would also like to extend
our system to show the uncertainty in data with historic context, which is often
annotated by hand and uses places’ names instead of longitude and latitude.
These names can be resolved, but often yield polygonal regions.
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