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Flocculated	and	deflocculated	suspension	pdf

A	pharmaceutical	suspension	is	the	dispersion	of	solid	particles	(usually	a	drug)	in	a	liquid	medium	(usually	aqueous)	in	which	the	drug	is	not	readily	soluble.	This	dosage	form	is	used	for	providing	a	liquid	dosage	form	for	insoluble	drugs	(hydrophobic	drugs).	Suspensions	can	be	classified	into	flocculated	and	deflocculated	suspensions	based	on	the
electrokinetic	nature	of	the	dispersed	phase.	In	this	article	the	following	key	areas	will	be	covered;	1.	Flocculated	suspension	2.	Deflocculated	suspension	3.	Differences	between	flocculated	and	deflocculated	Suspensions	Read	more	on	classifications	of	suspensions	Flocculated	suspensions	Flocculation	refers	to	the	formation	of	a	loose	aggregation	of
discrete	particles	held	together	in	a	network	like	structure	by	physical	adsorption	of	macromolecules	when	the	longer-range	van	der	Walls	forces	of	attraction	exceed	the	shorter-range	forces	of	repulsion.	Particles,	therefore,	experience	attraction	at	significant	interparticle	distances	(10	–	20	nm)	and	form	an	open	network	of	aggregated	particles
known	as	floccules.	
Such	a	suspension	is	called	flocculated	suspension.	In	this	suspension	type,	the	structure	of	the	aggregates	is	quite	rigid;	hence	they	settle	quickly	to	form	a	high	sediment	height	and	are	easily	redispersible	because	the	particles	constituting	individual	aggregates	are	sufficiently	far	apart	from	one	another	to	preclude	caking.	A	repulsive	barrier
termed	the	primary	maximum,	separates	the	secondary	minimum	from	the	primary	minimum.	The	magnitude	of	the	repulsive	forces	at	the	primary	maximum	determines	whether	a	flocculated	system	will	remain	flocculated.	If	the	thermal	energy	in	the	system	is	similar	to,	or	greater	than,	the	repulsive	barrier,	the	particles	in	the	system	can	move
closer	together	(0.5	–	2.0	nm)	and	encounter	strong	attraction	due	to	the	primary	minimum.	The	strong	attraction	in	the	primary	minimum	gives	rise	to	the	particle	interaction	termed	coagulation.	Closed	aggregates,	or	coagula,	is	characterized	by	a	tight	packing	and	is	not	easily	redispersed.	Upon	sedimentation,	the	aggregates	tend	to	form	a	single
large	film-bonded	aggregate,	which	is	difficult,	if	not	impossible,	to	redisperse.	Deflocculated	suspensions	Whether	a	suspension	is	flocculated	or	deflocculated	depends	on	the	relative	magnitudes	of	the	electrostatic	forces	of	repulsion	and	the	forces	of	attraction	between	the	particles.	At	low	electrolyte	concentration,	the	electrical	repulsive	force
predominates	and	particle	interactions	are	maximized.	The	individual	particles	are	dispersed	as	discrete	entities,	resulting	in	a	smooth-looking	suspension,	called	deflocculated	or	peptized	suspension.	Compared	with	the	flocculated	suspension,	this	suspension	sediment	slowly	and	attains	the	lowest	possible	sediment	height.	

In	this	suspension	type,	the	structure	of	the	aggregates	is	quite	rigid;	hence	they	settle	quickly	to	form	a	high	sediment	height	and	are	easily	redispersible	because	the	particles	constituting	individual	aggregates	are	sufficiently	far	apart	from	one	another	to	preclude	caking.	A	repulsive	barrier	termed	the	primary	maximum,	separates	the	secondary
minimum	from	the	primary	minimum.	The	magnitude	of	the	repulsive	forces	at	the	primary	maximum	determines	whether	a	flocculated	system	will	remain	flocculated.	If	the	thermal	energy	in	the	system	is	similar	to,	or	greater	than,	the	repulsive	barrier,	the	particles	in	the	system	can	move	closer	together	(0.5	–	2.0	nm)	and	encounter	strong
attraction	due	to	the	primary	minimum.	The	strong	attraction	in	the	primary	minimum	gives	rise	to	the	particle	interaction	termed	coagulation.	Closed	aggregates,	or	coagula,	is	characterized	by	a	tight	packing	and	is	not	easily	redispersed.	

Such	a	suspension	is	called	flocculated	suspension.	In	this	suspension	type,	the	structure	of	the	aggregates	is	quite	rigid;	hence	they	settle	quickly	to	form	a	high	sediment	height	and	are	easily	redispersible	because	the	particles	constituting	individual	aggregates	are	sufficiently	far	apart	from	one	another	to	preclude	caking.	A	repulsive	barrier
termed	the	primary	maximum,	separates	the	secondary	minimum	from	the	primary	minimum.	The	magnitude	of	the	repulsive	forces	at	the	primary	maximum	determines	whether	a	flocculated	system	will	remain	flocculated.	If	the	thermal	energy	in	the	system	is	similar	to,	or	greater	than,	the	repulsive	barrier,	the	particles	in	the	system	can	move
closer	together	(0.5	–	2.0	nm)	and	encounter	strong	attraction	due	to	the	primary	minimum.	The	strong	attraction	in	the	primary	minimum	gives	rise	to	the	particle	interaction	termed	coagulation.	Closed	aggregates,	or	coagula,	is	characterized	by	a	tight	packing	and	is	not	easily	redispersed.	Upon	sedimentation,	the	aggregates	tend	to	form	a	single
large	film-bonded	aggregate,	which	is	difficult,	if	not	impossible,	to	redisperse.	Deflocculated	suspensions	Whether	a	suspension	is	flocculated	or	deflocculated	depends	on	the	relative	magnitudes	of	the	electrostatic	forces	of	repulsion	and	the	forces	of	attraction	between	the	particles.	At	low	electrolyte	concentration,	the	electrical	repulsive	force
predominates	and	particle	interactions	are	maximized.	The	individual	particles	are	dispersed	as	discrete	entities,	resulting	in	a	smooth-looking	suspension,	called	deflocculated	or	peptized	suspension.	Compared	with	the	flocculated	suspension,	this	suspension	sediment	slowly	and	attains	the	lowest	possible	sediment	height.	The	interparticle
interaction	in	such	compact	sediments	is	relatively	high	because	the	interparticle	distances	are	small,	leading	to	the	undesirable	phenomenon	of	caking,	a	tightly	packed	sediment	that	was	almost	impossible	to	resuspend	even	with	vigorous	shaking.	Caking	can	be	minimized	by	utilizing	open	network	aggregate	(floccule)	suspension-type,	as	the
particles	cannot	sediment	to	a	close	proximity	because	of	the	rigidity	of	the	aggregate.	
From	a	practical	point	of	view,	since	fully	aggregated	suspension	are	often	unsightly,	partial	aggregation	is	often	a	desired	objective,	as	it	resists	caking	and	imparts	aesthetic	qualities	to	a	suspension	formulation.	A	pharmaceutical	suspension	must	be	redispersible	on	only	mild	agitation	to	ensure	dosage	uniformity.	
Differences	between	flocculated	and	deflocculated	suspensions	The	differences	between	flocculated	and	deflocculated	suspensions	are	summarized	below	Flocculated	suspensions	Deflocculated	suspensions	1.	The	particles	of	dispersed	phase	aggregate	and	form	a	loose	networklike	structure.	The	particles	of	the	dispersed	phase	remain	as	separate
entities.	2.	Sedimentation	rate	is	high.	Sedimentation	rate	is	low.	3.	Sediment	formed	is	loosely	packed	and	does	not	form	a	hard	cake.	Sediments	formed	is	tightly	packed	and	a	hard	cake	is	formed.	4.	Sediment	can	be	easily	redispersed	on	shaking.	It	is	difficult	to	redisperse	the	sediment	on	shaking	5.	Lack	of	elegance	since	the	particles	of	the
dispersed	phase	tend	to	separate	from	the	dispersion	medium	Elegant	because	of	the	uniform	appearance	of	the	suspension.	

Differences	between	flocculated	and	deflocculated	Suspensions	Read	more	on	classifications	of	suspensions	Flocculated	suspensions	Flocculation	refers	to	the	formation	of	a	loose	aggregation	of	discrete	particles	held	together	in	a	network	like	structure	by	physical	adsorption	of	macromolecules	when	the	longer-range	van	der	Walls	forces	of
attraction	exceed	the	shorter-range	forces	of	repulsion.	Particles,	therefore,	experience	attraction	at	significant	interparticle	distances	(10	–	20	nm)	and	form	an	open	network	of	aggregated	particles	known	as	floccules.	Such	a	suspension	is	called	flocculated	suspension.	In	this	suspension	type,	the	structure	of	the	aggregates	is	quite	rigid;	hence	they
settle	quickly	to	form	a	high	sediment	height	and	are	easily	redispersible	because	the	particles	constituting	individual	aggregates	are	sufficiently	far	apart	from	one	another	to	preclude	caking.	A	repulsive	barrier	termed	the	primary	maximum,	separates	the	secondary	minimum	from	the	primary	minimum.	The	magnitude	of	the	repulsive	forces	at	the
primary	maximum	determines	whether	a	flocculated	system	will	remain	flocculated.	If	the	thermal	energy	in	the	system	is	similar	to,	or	greater	than,	the	repulsive	barrier,	the	particles	in	the	system	can	move	closer	together	(0.5	–	2.0	nm)	and	encounter	strong	attraction	due	to	the	primary	minimum.	The	strong	attraction	in	the	primary	minimum
gives	rise	to	the	particle	interaction	termed	coagulation.	Closed	aggregates,	or	coagula,	is	characterized	by	a	tight	packing	and	is	not	easily	redispersed.	Upon	sedimentation,	the	aggregates	tend	to	form	a	single	large	film-bonded	aggregate,	which	is	difficult,	if	not	impossible,	to	redisperse.	Deflocculated	suspensions	Whether	a	suspension	is
flocculated	or	deflocculated	depends	on	the	relative	magnitudes	of	the	electrostatic	forces	of	repulsion	and	the	forces	of	attraction	between	the	particles.	At	low	electrolyte	concentration,	the	electrical	repulsive	force	predominates	and	particle	interactions	are	maximized.	The	individual	particles	are	dispersed	as	discrete	entities,	resulting	in	a	smooth-
looking	suspension,	called	deflocculated	or	peptized	suspension.	Compared	with	the	flocculated	suspension,	this	suspension	sediment	slowly	and	attains	the	lowest	possible	sediment	height.	The	interparticle	interaction	in	such	compact	sediments	is	relatively	high	because	the	interparticle	distances	are	small,	leading	to	the	undesirable	phenomenon	of
caking,	a	tightly	packed	sediment	that	was	almost	impossible	to	resuspend	even	with	vigorous	shaking.	Caking	can	be	minimized	by	utilizing	open	network	aggregate	(floccule)	suspension-type,	as	the	particles	cannot	sediment	to	a	close	proximity	because	of	the	rigidity	of	the	aggregate.	From	a	practical	point	of	view,	since	fully	aggregated
suspension	are	often	unsightly,	partial	aggregation	is	often	a	desired	objective,	as	it	resists	caking	and	imparts	aesthetic	qualities	to	a	suspension	formulation.	A	pharmaceutical	suspension	must	be	redispersible	on	only	mild	agitation	to	ensure	dosage	uniformity.	Differences	between	flocculated	and	deflocculated	suspensions	The	differences	between
flocculated	and	deflocculated	suspensions	are	summarized	below	Flocculated	suspensions	Deflocculated	suspensions	1.	The	particles	of	dispersed	phase	aggregate	and	form	a	loose	networklike	structure.	The	particles	of	the	dispersed	phase	remain	as	separate	entities.	2.	Sedimentation	rate	is	high.	Sedimentation	rate	is	low.	
3.	Sediment	formed	is	loosely	packed	and	does	not	form	a	hard	cake.	Sediments	formed	is	tightly	packed	and	a	hard	cake	is	formed.	4.	Sediment	can	be	easily	redispersed	on	shaking.	It	is	difficult	to	redisperse	the	sediment	on	shaking	5.	Lack	of	elegance	since	the	particles	of	the	dispersed	phase	tend	to	separate	from	the	dispersion	medium	Elegant
because	of	the	uniform	appearance	of	the	suspension.	References	Jain,	G.,	Khar,	R.	
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closer	together	(0.5	–	2.0	nm)	and	encounter	strong	attraction	due	to	the	primary	minimum.	The	strong	attraction	in	the	primary	minimum	gives	rise	to	the	particle	interaction	termed	coagulation.	Closed	aggregates,	or	coagula,	is	characterized	by	a	tight	packing	and	is	not	easily	redispersed.	Upon	sedimentation,	the	aggregates	tend	to	form	a	single
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