Jet status and workfest goals

Rosi Reed Dennis Perepelitsa

Outline

- Measuring Jet Quenching with sPHENIX
- Jets in HI physics
- HCal Clustering
- EMCal Clustering
- Workfest Tasks/Goals/Requirements

Jet Quenching at sPHENIX Quick Summary

Measure precisely final state jets (Calorimetry) and jet structure (Tracking)

- Determine response of jet to the medium
- Response of the medium to the jet

Difficulties

 Underlying Event yields combinatorial jets, smears jet kinematics

Jet Reconstruction Methodology

- Calibrate calorimeter towers
- Cluster calorimeter based objects
 - EMCal vs HCal
 - Outlook to Particle Flow
- Use jet finding algorithm on clustered objects
- Remove background contribution (iterative w/ previous state
- Unfold correct for issues of JES/JER
- Correlate Calo based jets with tracking
 - Reduces autocorrelations between measurement of the jet/jet structure

HI Jet reconstruction (1/4)

- Iterative algorithm to determine & subtract UE background based on ATLAS, described by sPHENIX collaborators in nucl-ex/1203.1353
 - Historical proof of principle for jet measurements at sPHENIX & "default" approach
 - Makes initial guess about jets to exclude them from background determination, then iteratively updates these guesses (& the resulting background estimate)
 - Separate UE estimate in each of 3 calo layers & η strip + global Ψ_2 & v_2^{calo} estimate

HI Jet reconstruction (2/4)

- For visual example of algorithm behavior step-by-step for a jet event in HI, see <u>March '19 sPHENIX Asia Mtg</u> slides
- Implementation in coresoftware/offline/packages/jetbackground
 - Set with "do_HIjetreco" and parameters configured in "G4_HIJetReco.C"
- Below: "EM"-scale p_T response for jets in p+p events (*left*) and embedded into 0-20% sHijing Au+Au events (*right*), different jet R values in different colors
 - Subtraction algorithm estimates approximately correct UE level on average

HI Jet reconstruction (3/4)

- Deconvolution of p+p-like component from Au+Au res. (right)
 - Test of factorization of p+p jet response ⊗ UE in our reco.
 - Identical, i.e. sensitivity of to fragmentation, in -> implications calibration strategies (see later slides)

$$rac{p_{
m T}}{r} = rac{n}{p_{
m T}} \oplus rac{s}{\sqrt{p_{
m T}}} \oplus c$$
 $|$
Noise Stochastic Constant

HI Jet reconstruction (4/4)

- Left: can optionally configure "Constituent Subtraction" in G4_HIJetReco.C (UE estimate identical, just accounted for differently), to enable, e.g. ungroomed jet mass reconstruction
- Right: if flow-aware UE determination/subtraction is set in G4_HIJetReco.C, can test jet response vs. angle to true reaction plane
 - In active development & testing, see later slides on EP reco plans

Rosi Reed - sPHENIX Workfest

Cluster reconstruction in EMCal (1/2)

4 GeV π0

8 GeV π0

Two fully separated clusters

Two sub-clusters sharing energy of middle towers

One (in this case inseparable) cluster

- EMCal cluster reconstruction taken from PHENIX, imported by A. Bazilevsky
 - Heavy lifting happens in coresoftware/offline/packages/CaloReco/BEmcRec.cc
 - Set with "do_cemc_cluster" & configured in G4_CEmc_Spacal.C
 - Not the unique approach, but historically "default" one with most activity
- Grouping of contiguous energy deposits into initial clusters
 - Splitting of clusters according to # of local maxima in energy profile
 - Energy sharing multiple clusters partially "own" a given EMCal tower, with fractions following expectations from γ shower shape (determined from MC)

Cluster reconstruction in EMCal (2/2)

- Recent functionality in HI events: CEMC w/ original segmentation, corrected for CEMC-layer UE determined during HI jet reco stage
 - Needed since impact of HI UE larger in sPHENIX given larger EMCal towers
 - Similar to current ATLAS approach (integrate UE sub for jets & e/γ)
- Run cluster reco on subtracted-CEMC tower input
 - This reco still in private development/testing ask Dennis & Francesco for a copy!

- Examples of response (w/o position-dep. calibration) using clusters in unsubtracted EMCal in HI events, subtracted EMCal in HI, single photon
 - more discussion in <u>Jul '19 Collaboration Meeting</u>

Cluster reconstruction in HCal (1/3)

- Newly implemented "3-D topological" cluster reconstruction
 - coresoftware/offline/packages/CaloReco/RawClusterBuilderTopo.cc
 - Set with "do_topoCluster" & configured in G4_TopoClusterReco.C
- Follows topoCluster algorithm as used in ATLAS (hep-ph/1603.02934)
 - ATLAS also has longitudinally segmented 0.1x0.1 HCal where sampling fraction varies with depth!
 - Build cluster outward in all three dimensions, with configurable significance thresholds (w.r.t. expected noise in each layer) for:
 - Seeding a clustering
 - Iterative Growing
 - Fixing the Perimeter

Cluster reconstruction in HCal (2/3)

- Algorithm intended to:
 - Respect non-uniform shapes of hadronic showers
 - Still provide good separation for nearby showers
- Can better calibrate E at a cluster-by-cluster level by including IHCal + OHCal
- Necessary step towards Particle Flow implementation

Particle flow reconstructs all stable particle in the event: $h^{+/-}$, γ , h^0 , e, μ

Improves resolution, avoids non-linearity/Decreases sensitivity to the fragmentation pattern of jets

Cluster reconstruction in HCal (3/3)

Template algorithm: 3 & 4 small clusters centered on local maxima of

main pieces

- Previous algorithms in sPHENIX code base not well-suited for HCal clusters
- TopoClusters better respect "1 particle" ~ "1 cluster" paradigm
- More information in 13 Dec 2019 GM
- Testing & further work on cluster splitting (& leading towards PFlow jet reco) — Dennis

Graph algorithm: 8 & 1 clusters in the two layers (all contiguous towers

cluster which spans IHCal + OHCal, + one satellite cluster in OHCal at the indicated position

From Methodology to Implementation

- Several task are need to improve the quality of sPHENIX jet measurements
 - Event Plane Finder
 - HCal
 - EMCal
 - Statistics
- Also some tasks need volunteers! Please sign up!

Event Plane Finder

- Put the EpFinder output on the node tree
 - Central barrel is the default with options to also calculate the EP using the fEMC
- Generate a set of calibration files for the different detector types
 - Average user wouldn't have to run 3x to get calibrated output
 J. Lajoie

Calibration Goals By End of Workfest

- What is current uncertainty on on key jet observables due to the effect of calibrations?
 - Including HCal non-linearity
- How to initially calibrate, monitor and datacalibrate the HCal?
 - Current method: how good?
 - Data MIPs :
 - Statistics per week
 - Response
 - Isolated charge hadron showers :
 - Properties or response
 - Statistics per week

Calibration Goals By End of Workfest

- Do we need further test beam studies?
 - How much better will knowing EM Scale of the HCal will improve our energy scale?
- J/ ψ for EMCal Calibration?
- Is there a case for 500 GeV p+p calibration?
 - At \sqrt{s} = 500 GeV calibration run ~5-10 x shorter
 - How well can calibration @ 500 be translated to 200 GeV?
 - Increased pile-up?

JES at $\sqrt{s} = 200 \text{ vs } 500 \text{ GeV}$

 How to translate into improved jet observables? (Use Dennis's method from IHCal studies?)

 $\sqrt{s} = 500 \text{ GeV}$

10 pb⁻¹

100 pb⁻¹

500 pb⁻¹ 1000 pb⁻¹

HCal Calibration Goals By End of Workfest

- Determine statistics needed for gamma-jet calibration using full jet reco (1st results by Aaron/Songkyo)
 - What further studies are needed?
 - What further needed to make case for 500 GeV
- Get Fernando's code/Songkyo's code running to better quantify effects of nonlinearities/decalibration on key jet observables
 - Including realistic decalibration
- Determine Data MIP response, performance, and available statistics for data-based calibration and monitoring (Justin/Megan)
 - Determining potential MIP to Hcal EMScale mapping

HCal Calibration Goals By End of Workfest

- For Isolated Charge Track Shower:
 - Get Dennis's new "TopoCluster" code running
 - Monitor statistics/shower properties for HCAL relative calibration
- Lower priority tasks:
 - Non-uniformities in HCal as a function of position
 - Redo non-uniformities plot with recent tracking configuration

EMCal Calibration Tasks/Goals

- Simulate close to a full simulation test of full decalibration/re-calibration from low E π^0 's (relative calibration) + $\eta/J/\psi$ (absolute calibration) (Bing Xia)
- Determine EM Photon Energy scale uncertainty at highest p_T
- Correct position dependence of response

Volunteer Task #1 Validate the next Geant4 version, v4.10.05

- Preparing the next Geant4 version (v4.10.05) currently under evaluation as "play" builds
 - GEANT 10.06 is on the near horizon
- Before switching to that version, we need to check stability of calorimeter/jet performance, e.g. sampling fraction
- If needed update calibration, e.g. the EM energy scale calibration.
- Chris has prepared high statistics sample to help check the performance difference in detail.
- Need volunteers to look into them.

Volunteer Task #2 Weekly verification using test beam data

 Currently only check a reference simulation vs new software builds:

https://web.racf.bnl.gov/jenkins-sphenix/job/sPHENIX/job/test-calo-single-qa/QA 20Report/

It would be nice to check plots like this weekly:

 Need a volunteer familiar with the test beam analysis to help import the code as weekly check setup.

Rosi Reed - sPHENIX Workfest

Conclusions

- Jet finding and Calorimeter clustering techniques are robust within sPHENIX
 - Particle Flow
 - Improved Calibration
- Key questions over necessary data sets and measurements required for calibration are still being answered
- Mapping improvements in energy scales/ calibrations to jet observables is not trivial