Feasibility studies on Level 1 Electron Trigger with Pixels

Junho Kim

Pixel trigger meeting, 13 Nov 2018

Phase 2 Pixel detector and Electromagnetic calorimeters

Electromagnetic calorimeter :

- Expected to have improved resolution of L1 e/gamma objects from the upgraded calorimeters
 - Crystal level information available for the barrel calorimeter at L1
 - New High Granularity endcap Calorimeter will be installed
- Smaller pixels and the extended η coverage up to 4.
- We study the feasibility of the L1 pixel electron trigger matching the L1 e/gamma objects from these upgraded calorimeters with the clusterized pixel hits

L1 pixel trigger strategy for electron(PiXTRK algorithm)

- The electron identification strategy:
 - Do pixel-EM calorimeter matching at Level 1 as in High Level Trigger(HLT) in a simplified way
 - Use the L1 EM calorimeter as a seed
 - Find 3 pixels within $\Delta \phi(L1 \text{ e/}\gamma, \text{ pixel})$ window
 - Match the pixel segments with the L1 EM cluster in $\Delta \phi$ and $\Delta \eta$ windows
 - Require $\Delta \phi$ and $\Delta \eta$ windows on the pixel segments

Pixel combinations for each η region

 Four pixel layer/disk combinations selected for each η regions considering the efficiency at least to have three matched pixel hits w.r.t. to L1 E/gamma objects

Example of signal windows ($\Delta \phi$) for $|\eta| < 0.8$

 In each distribution, median points are fitted as a function of L1 E/gamma E_T, and open signal windows from the median fit functions

Efficiency and rate with 200 PU (comparison to L1 track)

Efficiency

Rate

- > 90% efficiency for $|\eta|$ up to 2.7
- ~7 reduction factor compared to only calorimeter used
- Higher efficiency (~5%) and comparable reduction power compared to L1 track with isolation
- Additional factor of ~2 reduction available from the pixel isolation (done by Jongho)

Bremsstrahlung effects

Relative energy loss by brem

- Energy loss due to the bremsstrahlung is calculated using the Geant4 information in CMSSW
 - Energy loss ratio is calculated using the generated energy (initial energy) and the energy after the full simulation
- Efficiency is measured as a function of the energy loss ratio for generated electron with $p_T > 20$ and $|\eta| < 2.5$
 - For the electrons with soft brem (or nearly no brem), the same efficiency of both algorithm ~96% seen
 - However, for the electrons with hard brem, the inefficiency of L1 Track matching rapidly increases
 - ~10% higher efficiency with pixel for electrons with 80% energy loss