Helplng C/C++ Packages WARWICK
be Relocatable

Ben Morgan

Copy/Link/Move

/A/Prefix _~—— T /Another/Dir
—— bin —— bin
L L
—— include —— include
L rsf.h L rsf.h
___ 1ib — 1ib
—— cmake —— cmake
L rsf L rsf
L — rsf-config.cmake L — rsf-config.cmake
— pkgconfig — pkgconfig
rsft.pc rst.pc
—— share —— share
L rsf L rsf
L rsf.json L rsf.json

$ /A/Prefix/bin/rsf.exe
rsf.json =

{“foo” :

$ /Another/Dir/bin/rsf.exe
“bar”} rsf.json = {“foo” : “bar”}

Package can be moved across

What iS Rel()catab”rty? filesystem and be used with no

changes to itself or environment
2

—— bin
L

—— include
L rsf.h

—— 1ib
—— cmake
L rsf

L rsf-config.cmake

pkgconfig
L — rsf.pc

—— share
L rsf

L rsf.json

Relocatability ~ Self-Location
+ Relative Paths

Path to rsf.json
Dir holding rsf.exe
|
../share/rsft

A file needs to know where it
IS, and the relative path from
that to what it needs.

std: :string getPathFromkExeToRSFJson()

bin
L
include
L— rsf.h
lib
—— cmake

L rsf

L rsf-config.cmake

librsf.so: DT_NEEDED/DT_RUNPATH

Location of rsf.h, librsf.so

— pkgconfig
rsft.pc

std: :strin etPathFromLibToRSFJson
share J 9 O

L rsf
L rsf.json

“File Introspection” covers

Self- LocatiOn Needs both scripts, binaries, and

executable format

bin

include

L— rsf.h

11ib

—— cmake
L rsf

L rsf-config.cmake

pkgconfig
L — rsf.pc

share
L rsf

L rsf.json

What About Dependencies?

| #1include <boost/filesystem.hpp>

Location of rsf.h, librsf.so
Location of Boost

libboost_filesystem.so

Non-trivial packages use/
expose others. Cannot rely on

relative paths anymore...
5

/Install/Prefix

bin #define JSONPATH “/Install/Prefix/share/rsf”
!_ DT_RUNPATH: /Install/Prefix/lib
—— 1nclude
L rsf.h
— 11ib set(rsf_INCLUDE_DIR “/Install/Prefix/include”)
—— cmake
L rsf
L rsf-config.cmake
— pkgconfig
rsft.pc
—— share
L rsf
L rsf.json

Typically by hardcoding

Brea king RelOcata bility absolute paths in binaries,

scripts and RPATHS.

Requirements for Relocatability

 How can a C/C++ program/library find its filesystem
location at runtime?

* How can scripts for CMake/PkgConfig find their
location when used?

 How to handle external dependencies?
* How to fix existing non-relocatable packages?

 We have, or know, solutions to some already!

VV

— hin
— 1include Linux RPATH:
L rsf.h $ORIGIN/../1lib
lib
B fEkﬁsf mac0S RPATH:
L rsf-config.cmake @executable_path/../lib
— pkgconfig
rsft.pc
_ share /full/path/to/1libboost_filesystem.so
L— rsf
L rsf.json

Internal: $0RIGIN etc

RPATH/RUNPATH et al. external: Full RUN/RPATH

Packaging: patchelf updat8e

/New/Prefix

___ bin #define JSONPATH “/0ld/Prefix/share/rsf”
L
B]lfllrj_gﬁ h #define JSONPATH “/New/Prefix/share/rsf”
lib
—— cmake
L— rsf
L rsf-config.cmake
pkgC'(zI;'_l‘::ll.gC set(rsf_INCLUDE_DIR “/0ld/Prefix/include”)
—— share
L— rsf
L rsf, json set(rsf_INCLUDE_DIR “/New/Prefix/include”)

Spack can patch paths in text

AbSOIUte Path PatChing files. Conda can also patch

paths in binaries if New < Old
9

Enabling Relocatability in our Packages

 How can a C/C++ program/library find its filesystem
location at runtime?

« Caveat: very basic usage, and use case dependent!

e How can scripts for CMake/PkgConfig find their
location when used, how to refind external libraries?

» Caveat: “Modern” CMake has a nominally recommended way to

do this, but may want a balance between config management
(CMAKE_PREFIX_PATH) and full paths in a development

environment.
\VAVERE.

argv[0]?

* Not guaranteed to provide a full or relative path to the
program

e Can be arbitrary, or name of first found in PATH
e Might also be symlink

» Can use a series of checks to resolve these, assuming
no program/system changes to PWD, PATH or links

W

Binreloc for Programs

e Set of C functions that
locate executable via:

e /proc on Linux/BSD

« NSGetExecutablePath()
on macOS

* Windows in principal by
GetModuleFileName()

* Reliably returns abs path,
but may not resolve
softlinks on all platforms!

#include <iostream>
#include "RSFSimple_binreloc.h"

int main(int argc, charx argvI[]l) {

// Initialize binreloc system and error check
BrInitError err;
int brOK = br_init(&err);
if (broK !'= 1) {
return 1;

}

// Find ourself.

charx myPath = br find exe("")'
std::clog << "br_find_exe = " << myPath << std::endl;
free(myPath);

// What the system called us as...
std::clog << "argv[0] =" << argv[0] << std::endl;

// Find the directory we are in
charx myDir = br_find_exe_dir("");

std::clog << "br_find_exe_dir = " << myDir << std::enc

free(myDir);

return 0;

\VAVEEE:

Binreloc for Libraries

e Binreloc also works for
libraries, unlike argv[0] in
the general case.

« Uses /proc/self/maps
or DL_1nfo to locate file
that supplied a known
symbol.

* However, only works
for dynamic libraries!

#include <boost/filesystem.hpp>
namespace fs = boost::filesystem;

namespace {
void initBinReloc() £
BrInitError err;
int initOK = br_init_lib(&err);
if(initoK !'= 1) {
throw std::runtime_error("binreloc init failed”);
}
}
}

namespace rsf {

std::string getLibraryDir() A
initBinReloc();
charx 1ibDir = br_find_exe_dir("");
fs::path rawLibDir{libDir};
free(libDir);
auto canonicalLibDir = fs::canonical(rawLibDir);
return canonicallLibDir.string();

}

std::string getResourceRootDir() {
fs::path basePath{getLibraryDir()};
basePath /= "../share/rsf"”;
auto absPath = fs::canonical(basePath);
return absPath.string();

\VAVEEE.

Aside on Frameworks/Other Languages...

e ... which make this task a lot easier!

« Qt5: QCoreApplication: :applicationDirPath()
e Poco: Poco::Util::Application()

* Python has __file__, setuptools

e Rusthas std::env::current_exe

e Go has 0os.Executable

14

Summary: Self-Location in C/C++ is Tricky...

* No perfect solution, and dependent on whether you
are writing a program or a library

e Simple processing and checks of argv [0] may be
sufficient for simple programs

 Binreloc potentially more reliable, though softlinks
may/may not be resolved on all platforms.

 Binreloc only known solution for dynamic libraries

VV

15

Relocating CMake/PkgConfig Files

* The files installed to help clients of a package link to it
from their build scripts

e find_package(Foo ..)
e pkg—config ——cflags ——Llibs Foo
* These can have hard coded paths as well, e.g.

eset(Foo_ _INCLUDE_DIR “/abs/path/to/Foo/include”)

prefix=/abs/path/to/Foo

AVaAVA

16

Directory of this file when pkg-config runs

\ Relative paths calculated

prefix=${pcfiledir}/../.. by build system
libdir=${prefix};/1lib “r””” / /

includedir=${prefix}/include

Name: @PROJECT_NAMEQ@
Version: @PROJECT_VERSION@
Description: "Description of @PROJECT_NAME@"

Requires: boost-filesystem == @Boost VERSION_STRING@

Libs: —-L${libdir} -1Resourceful
Cflags: -I${iincludedir}

Use pkg—contfig to locate
paths to dependencies

Handing off dependency

Relocatable PkgConfig files ocation to pkg-config implies
a correct PKG_CONFIG_PATH

Relocating CMake -Config Files

* Couple of important rules here:

o If you're the package author, write FooConfig.cmake, NOT
FindFoo.cmake! FindFoo.cmake only for third-party packages that
don’t/won’t supply FooConfig.cmake

 Even if you don’t build with CMake you can still create a
FooConfig.cmake for your package (and likewise pkg—config in
all cases)

e Don‘tuse find _{path, library} in FooConfig.cmake. These are
only for use in FindFoo.cmake, a FooConfig.cmake already knows

where everything is
\/\/ »

add_library(rsf SHARED rsf.h rsf.cc)

target_include_directories(rsf PUBLIC
$<BUILD INTERFACE:${PROJECT_SOURCE_DIR}>
$<INSTALL_INTERFACE:${CMAKE_ INSTALL_INCLUDEDIR}>)

target_link_libraries(rsf PUBLIC Boost::filesystem)

add _executable(rsf.exe rsf.exe.cc)
target_link_libraries(rsf.exe PRIVATE rsf)

install(TARGETS rsf rsf.exe
EXPORT rsfTargets
RUNTIME DESTINATION ${CMAKE_ INSTALL_ BINDIR}
LIBRARY DESTINATION ${CMAKE_INSTALL LIBDIR})

Modern CMake for @ Attach build/use requirements

to Targets, using relative

RElocatability paths for use/install locations

19

include(CMakePackageConfigHelpers)

Version compatibility filefile
write_basic_package_version_file(rsfConfigVersion.cmake
COMPATIBILITY SameMajorVersion)

Generate the -Config file
configure_package_config_file(rsfConfig.cmake.in rsfConfig.cmake
INSTALL_DESTINATION "${CMAKE_INSTALL_LIBDIR}/cmake/rsf")

Install it

install(FILES
${CMAKE_CURRENT_BINARY_DIR}/rsfConfigVersion.cmake
${CMAKE_CURRENT_BINARY_DIR}/rsfConfig.cmake
DESTINATION "${CMAKE_ INSTALL_ LIBDIR}/cmake/rsf")

An exports file that will define imported targets for use by clients
install(EXPORT rsfTargets

DESTINATION "${CMAKE_INSTALL_LIBDIR}/cmake/rsf"

Namespace is useful because it leads to strong guarantees on

existence and location of what we end up linking to

NAMESPACE rsf::)

Using Helper Module for By exporting the targets,

CMake generates imported

PaCkage CO nflg flle targets for use by clients

20

CMake will expand this to with macros to assist 1in
self-locating paths relative to this file
@PACKAGE_INIT@

Refind needed boost dependency (the Boost::filesystem target)
find_dependency(Boost @Boost MAJOR_VERSION@.@Boost MINOR_VERSIONQ@)

Include the exported targets file
CMAKE_CURRENT_LIST DIR 1is our self-location variable
include("${CMAKE_CURRENT _LIST_DIR}/rsfTargets.cmake")

. Not a lot! See the CMake
The Template rsfConfig.cmake ~ Documentation for more

detalls

21

Compute the installation prefix relative to this file.
get_filename_component(_IMPORT_PREFIX "${CMAKE_CURRENT_LIST_FILE}" PATH)
get_filename_component(_IMPORT_PREFIX "${_IMPORT_PREFIX}" PATH)
get_filename_component(_IMPORT_PREFIX "${_IMPORT_PREFIX}" PATH)
get_filename_component(_IMPORT_PREFIX "${ IMPORT_PREFIX}'" PATH)
if(_IMPORT_PREFIX STREQUAL "/")

set(_IMPORT_PREFIX "")
endif()

Create imported target rsf::rsf
add_library(rsf::rsf SHARED IMPORTED)

set_target_properties(rsf::rsf PROPERTIES
INTERFACE_INCLUDE_DIRECTORIES "${ IMPORT_PREFIX}/include"
INTERFACE_LINK_LIBRARIES "Boost::filesystem"

)

Create imported target rsf::rsf.exe
add_executable(rsf::rsf.exe IMPORTED)

Load information for each installed configuration.
get_filename_component(_DIR "${CMAKE_CURRENT_LIST_FILE}" PATH)
file(GLOB CONFIG_FILES "${ DIR}/rsfTargets—x.cmake")
foreach(f ${CONFIG_FILES})

include(${f})
endforeach()

Recreates targets, using all

Contents of rsfTargets.cmake relative paths. Dependencies

via targets...

22

Import target "rsf::rsf" for configuration ""
set_property(TARGET rsf::rsf APPEND PROPERTY IMPORTED_CONFIGURATIONS NOCONFIG)
set_target_properties(rsf::rsf PROPERTIES
IMPORTED_LOCATION_NOCONFIG "${ IMPORT_PREFIX}/lib/librsf.dylib"
IMPORTED_SONAME_NOCONFIG "@rpath/librsf.dylib"
)

List (APPEND _IMPORT_CHECK_TARGETS rsf::rsf)
List (APPEND _IMPORT_CHECK_FILES_FOR_rsf::rsf "${_IMPORT_PREFIX}/lib/librsf.dylib")

Import target "rsf::rsf.exe" for configuration ""
set_property(TARGET rsf::rsf.exe APPEND PROPERTY IMPORTED_CONFIGURATIONS NOCONFIG)
set_target_properties(rsf::rsf.exe PROPERTIES

IMPORTED_LOCATION_NOCONFIG "${_ IMPORT_PREFIX}/bin/rsf.exe"

)

List (APPEND _IMPORT_CHECK_TARGETS rsf::rsf.exe)
List (APPEND _IMPORT_CHECK_FILES_FOR_rsf::rsf.exe "${_IMPORT_PREFIX}/bin/rsf.exe")

One locations file per build

Locating the binaries mode. Sets target location

and checks files exist.

23

Modern CMake and Relocatability

» Use modern target-based approach to define build/use
requirements for your programs and libraries

» Always use relative (to CMAKE_INSTALL_PREFIX) install
paths to enable automatic generation of use time paths
based on location of the -Config file.

« Export use-time targets rather than set _LIBRARIES like
variables

* Only link to external dependencies via Imported Targets,

refind them at use time in your -Config file.

24

Configuration/Environment Management

e There's an important caveat with the techniques
presented for CMake/PkgConfig

e They both hand off responsibility for locating external

dependencies to the tools, and hence rely on a
correctly set CMAKE_PREFIX_PATH and
PKG_CONFIG_PATH

* Most package managers and development
environments seem to know this, but it's something to

keep in mind.

25

Summary

 Creating fully relocatable packages requires both
application coding and build scripting

» Core requirement is scripts and binaries being able
to locate themselves on the filesystem at runtime

e In C/C++, argv[0] and/or Binreloc can enable this, with
some traps and pitfalls

* For CMake/PkgConfig, self-location is straightforward,
external dependencies handled through indirection

VV

26

Discussion
Example Code: https.//qithub.com/drbenmorgan/
Resourceful

27

https://github.com/drbenmorgan/Resourceful
https://github.com/drbenmorgan/Resourceful

