Pickup ions in the outer solar system

A.J. Coates ${ }^{1,2}$

1. Mullard Space Science Laboratory, University College London, UK
2. Centre for Planetary Sciences at UCL/Birkbeck, London, UK With thanks to

Rosetta RPC team
Cassini CAPS team

What are pickup ions?

- Result of interaction of flowing plasma with neutral particles
- Neutrals become ionized, by sunlight, impact or charge exchange
- They interact with the flowing plasma and are 'picked up'

Summary of loss rates (neutrals, ions) for solar system objects

Ion pickup process

Ion pickup process velocity space

Solar wind, field aligned (SWB) frame:

$$
\mathbf{v}_{\text {ring }}=\left(0,0, v_{\| \|}\right), v_{\|}=v_{.} \cdot B / B
$$

$v_{\text {shell }}=(0,0,0)$
Bispherical distribution seen - centred on upstream, downstream propagating waves, at $+/-\mathrm{v}_{\text {wave }}$ following Galeev \& Sagdeev, 1988)

Bulk velocity now ($0,0, \mathrm{v}_{\text {bulk|| }}$)
(Coates et al 1990)

Stages in ion pickup process

Adapted from Coates, AGU Geoph. Mon. 222, 2016

Stage in process	Timescale	Seen at
1. Implantation	\ll gyroperiod (f_{ci})	C
2. Nongyrotropic ring	<gyroperiod	C, Me, Mo, R, D
3. Ring	\sim gyroperiod	C, Ma, Mo, V, lo, E, T, I, R, D
4. (Bispherical) shell	~ 10 gyroperiods	C, Io?, E?, I?
5. Acceleration, shell filling	~ 100 gyroperiods	C
6. Maxwellian	$?$	$?$

C=Comets, Me=Mercury, Ma=Mars, Mo=Moon, V=Venus, lo=lo, E=Enceladus, T=Titan, R=Rhea, D=Dione, I=Interstellar

1 Cl

Stage 1: implanted ions

Time UT (2 March, 2010)

Rhea's O_{2} and CO_{2} atmosphere from INMS and CAPS
Teolis et al., Science, Dec 2010

In-situ neutral atmosphere measurements (INMS)

Negative and positive ions picked up from atmosphere pinpoint near-surface source (CAP

ITCL

Stage 1: implanted ions

Dione's oxygen exosphere

Tokar et al., Geophys Res Lett., Feb 2012

Icy Dione is within Saturn's trapped radiation belts-oxygen forms and is recycled via the surface

Process occurs at Dione, Rhea and Saturn's main rings, also at Ganymede, Europa and Callisto in Jupiter's - targets for ESA's proposed JUICE (JUpiter ICy moons Explorer) mission for launch in 2022

Stage 1: implanted ions

Negative pickup ions from Dione Nordheim et al., 2020

Stage 1: implanted ions

Stage 1: implanted ions

Loss rate due to pickup 3.3×10^{23} ions s ${ }^{-1}$.
c.f. (4.2, $0.96,2.3) 10^{24}$ ions s-1 from the ionosphere (Coates et al., 2013)

Stage 2: nongyrotropic distribution

Grigg-Skjellerup (Johnstone et al 93, Coates et al 93)

Wave period 61.4s, water group gyrofrequency as $\alpha \sim 90^{\circ}$ (Neubauer et al, 1992)

Stage 2: nongyrotropic distribution

Water group ion nongyrotropy near GS

Stage 3: ring distribution

 Enceladus atmosphere

Stage 3: ring distribution

Water group ions near Enceladus,Tokar et al, GRL 2008

Inner magnetosphere dominated by water group ions from abundant neutrals, Young et al 2005

1 ICL

Velocity space sketch for classical pickup and 'self-pickup' (Saito et al., 2010)
Pickup ions from reflected neutralss
Injection point of pickup ions at $\mathbf{-} \mathbf{v}_{\mathbf{s w}}$

Classical pickup:

$\mathrm{E}_{\text {max, ring }}=4 \mathrm{~m}_{\mathrm{amu}} \mathrm{E}_{\mathrm{sw}} \sin ^{2} \theta_{\mathrm{vB}}$
$E_{\text {max }, \text { shell }}=4 m_{a m u} E_{s w}$

Self pickup:

$E_{m a x, \text { ring }}=9 m_{a m u} E_{s w} \sin ^{2} \theta_{v B}$
$E_{\text {max }, \text { shell }}=9 m_{a m u} E_{s w}$

Coates, 2017, adapted from Coates et al., 1989

Stage 3 - rings,
Stage 4 - Bispherical shells,
Stage 5 - acceleration - comet Halley

Halley (Johnstone et al, 86)

Expected and new boundaries (e.g. Reme et al, 86)

Summary and conclusions

Plasma and magnetic field measurements show importance of pickup ions
Pickup process has different stages at moons, in magnetospheres and at weak, medium and strong comets Key source for outer planet magnetospheres
Probes of composition, indications of escape, plasma dynamics Expect similar signatures from JUICE at Europa, Callisto \& Ganymede

