Forces nucléaires effectives : l'onde D, extension du modèle de Skyrme

P. Becker

Institut de Physique Nucléaire de Lyon

19 Novembre 2014 Rencontres Jeunes Chercheurs Strasbourg

Contexte de l'onde D

Étude microscopique de la matière nucléaire

- Physique nucléaire de basse énergie
 - \rightarrow Structure nucléaire.
- Problème à N-corps
- Théorie de champ moyen
- Emploi de forces effectives phénoménologiques (interaction de Skyrme)
- Méthode de la fonctionnelle de la densité de l'énergie nucléaire.

Sommaire

- Pseudo-potentiel de Skyrme et onde D
 - Pseudo-potentiel de Skyrme
 - Extension avec onde D
- 2 Ajustement des canaux nucléaires avec l'onde D
 - Ajustement des équations d'états des canaux nucléaires
 - Ajustement de l'équation d'état globale
- 3 Equation du champ moyen en symétrie sphérique
 - Contexte
 - Équation différentielle de champ moyen

Introduction

- Forces nucléaires effectives
- Pseudo-potentiel de Skyrme
 - portée nulle
 - termes en gradients (ordre 2) -> simuler portée finie
 - autres termes phénoménologiques (onde D, tenseur, 3 et 4 corps)
- Transformé par Vautherin et Brink -> utilisation pratique
- Collaboration UNEDF -> extension indispensable
- Une proposition: nouvelle onde D

Pseudo-potentiel de Skyrme Extension avec onde D

Sommaire

Pseudo-potentiel de Skyrme et onde D

- Pseudo-potentiel de Skyrme
- Extension avec onde D
- 2 Ajustement des canaux nucléaires avec l'onde D
 - Ajustement des équations d'états des canaux nucléaires
 - Ajustement de l'équation d'état globale
- 3 Equation du champ moyen en symétrie sphérique
 - Contexte
 - Équation différentielle de champ moyen

Pseudo-potentiel de Skyrme Extension avec onde D

Pseudo-potentiel standard

$$v(\mathbf{r}_{1}, \mathbf{r}_{2})_{Skyrme} = \frac{t_{0} (1 + x_{0} P_{\sigma}) \delta(\mathbf{r})}{+ \frac{1}{2} t_{1} (1 + x_{1} P_{\sigma}) \left[\mathbf{k}'^{2} \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{k}^{2}\right]} \\+ \frac{1}{2} (1 + x_{2} P_{\sigma}) \mathbf{k}' \cdot \delta(\mathbf{r}) \mathbf{k}$$
(2)
$$+ \frac{1}{6} t_{3} (1 + x_{3} P_{\sigma}) \rho^{\alpha}(R) \delta(\mathbf{r})$$
(3)
$$+ i W_{0} \sigma \cdot \left[\mathbf{k}' \times \delta(\mathbf{r}) \mathbf{k}\right]$$
(4)

- de portée nulle
- Propriétés:
- non-relativiste
- 10 paramètres

Pseudo-potentiel de Skyrme Extension avec onde D

Pseudo-potentiel standard

$$v(\mathbf{r}_{1}, \mathbf{r}_{2})_{Skyrme} = \frac{t_{0} (1 + x_{0} P_{\sigma}) \delta(\mathbf{r})}{+ \frac{1}{2} t_{1} (1 + x_{1} P_{\sigma}) \left[\mathbf{k}'^{2} \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{k}^{2}\right]} \\+ \frac{1}{2} (1 + x_{2} P_{\sigma}) \mathbf{k}' \cdot \delta(\mathbf{r}) \mathbf{k}$$
(2)
$$+ \frac{1}{6} t_{3} (1 + x_{3} P_{\sigma}) \rho^{\alpha}(R) \delta(\mathbf{r})$$
(3)
$$+ i W_{0} \sigma \cdot \left[\mathbf{k}' \times \delta(\mathbf{r}) \mathbf{k}\right]$$
(4)

- de portée nulle
- Propriétés:
- non-relativiste
- 10 paramètres

Pseudo-potentiel de Skyrme Extension avec onde D

Pseudo-potentiel standard

$$v(\mathbf{r}_{1}, \mathbf{r}_{2})_{Skyrme} = \frac{t_{0} (1 + x_{0} P_{\sigma}) \delta(\mathbf{r})}{+ \frac{1}{2} t_{1} (1 + x_{1} P_{\sigma}) \left[\mathbf{k}'^{2} \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{k}^{2}\right]}{+ t_{2} (1 + x_{2} P_{\sigma}) \mathbf{k}' \cdot \delta(\mathbf{r}) \mathbf{k}}$$
(2)
$$+ \frac{1}{6} t_{3} (1 + x_{3} P_{\sigma}) \rho^{\alpha}(R) \delta(\mathbf{r})$$
(3)
$$+ i W_{0} \sigma \cdot \left[\mathbf{k}' \times \delta(\mathbf{r}) \mathbf{k}\right]$$
(4)

- de portée nulle
- Propriétés:
- non-relativiste
- 10 paramètres

Pseudo-potentiel de Skyrme Extension avec onde D

Pseudo-potentiel standard

$$v(\mathbf{r}_{1}, \mathbf{r}_{2})_{Skyrme} = \frac{t_{0} (1 + x_{0} P_{\sigma}) \delta(\mathbf{r})}{+ \frac{1}{2} t_{1} (1 + x_{1} P_{\sigma}) \left[\mathbf{k}'^{2} \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{k}^{2}\right]}{+ \frac{1}{2} (1 + x_{2} P_{\sigma}) \mathbf{k}' \cdot \delta(\mathbf{r}) \mathbf{k}}$$
(2)
$$+ \frac{1}{6} t_{3} (1 + x_{3} P_{\sigma}) \rho^{\alpha}(R) \delta(\mathbf{r})$$
(3)
$$+ i W_{0} \sigma \cdot \left[\mathbf{k}' \times \delta(\mathbf{r}) \mathbf{k}\right]$$
(4)

- de portée nulle
- Propriétés:
- non-relativiste
- 10 paramètres

Pseudo-potentiel de Skyrme Extension avec onde D

Pseudo-potentiel standard

$$v(\mathbf{r_1}, \mathbf{r_2})_{Skyrme} = \frac{t_0 (1 + x_0 P_\sigma) \delta(\mathbf{r})}{+ \frac{1}{2} t_1 (1 + x_1 P_\sigma) \left[\mathbf{k'}^2 \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{k}^2 \right]}$$

$$+ \frac{t_2 (1 + x_2 P_\sigma) \mathbf{k'} \cdot \delta(\mathbf{r}) \mathbf{k}}{+ \frac{1}{6} t_3 (1 + x_3 P_\sigma) \rho^\alpha(R) \delta(\mathbf{r})}$$
(2)
$$+ i W_0 \sigma \cdot \left[\mathbf{k'} \times \delta(\mathbf{r}) \mathbf{k} \right]$$
(4)

- de portée nulle
- Propriétés:
- non-relativiste
- 10 paramètres

Pseudo-potentiel de Skyrme Extension avec onde D

Pseudo-potentiel standard

$$v(\mathbf{r_1}, \mathbf{r_2})_{Skyrme} = \frac{t_0 (1 + x_0 P_\sigma) \delta(\mathbf{r})}{+ \frac{1}{2} t_1 (1 + x_1 P_\sigma) \left[\mathbf{k'}^2 \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{k}^2 \right]}$$

$$+ \frac{t_2 (1 + x_2 P_\sigma) \mathbf{k'} \cdot \delta(\mathbf{r}) \mathbf{k}$$
(2)
$$+ \frac{1}{6} t_3 (1 + x_3 P_\sigma) \rho^\alpha(R) \delta(\mathbf{r})$$
(3)
$$+ i W_0 \sigma \cdot \left[\mathbf{k'} \times \delta(\mathbf{r}) \mathbf{k} \right]$$
(4)

- de portée nulle
- Propriétés:
- non-relativiste
- 10 paramètres

Pseudo-potentiel de Skyrme Extension avec onde D

Pseudo-potentiel standard

$$v(\mathbf{r}_{1}, \mathbf{r}_{2})_{Skyrme} = \frac{t_{0} (1 + x_{0} P_{\sigma}) \delta(\mathbf{r})}{+ \frac{1}{2} t_{1} (1 + x_{1} P_{\sigma}) \left[\mathbf{k}'^{2} \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{k}^{2}\right]}{+ \frac{1}{2} (1 + x_{2} P_{\sigma}) \mathbf{k}' \cdot \delta(\mathbf{r}) \mathbf{k}}$$
(2)
$$+ \frac{1}{6} t_{3} (1 + x_{3} P_{\sigma}) \rho^{\alpha}(R) \delta(\mathbf{r})$$
(3)
$$+ i W_{0} \sigma \cdot \left[\mathbf{k}' \times \delta(\mathbf{r}) \mathbf{k}\right]$$
(4)

- de portée nulle
- Propriétés:
- non-relativiste
- 10 paramètres

Pseudo-potentiel de Skyrme Extension avec onde D

Pseudo-potentiel standard

$$v(\mathbf{r}_{1}, \mathbf{r}_{2})_{Skyrme} = \frac{t_{0} (1 + x_{0} P_{\sigma}) \delta(\mathbf{r})}{+ \frac{1}{2} t_{1} (1 + x_{1} P_{\sigma}) \left[\mathbf{k}'^{2} \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{k}^{2}\right]} \\+ \frac{1}{2} (1 + x_{2} P_{\sigma}) \mathbf{k}' \cdot \delta(\mathbf{r}) \mathbf{k}$$
(2)
$$+ \frac{1}{6} t_{3} (1 + x_{3} P_{\sigma}) \rho^{\alpha}(R) \delta(\mathbf{r})$$
(3)
$$+ i W_{0} \sigma \cdot \left[\mathbf{k}' \times \delta(\mathbf{r}) \mathbf{k}\right]$$
(4)

- de portée nulle
- Propriétés:
- non-relativiste
- 10 paramètres

Pseudo-potentiel de Skyrme Extension avec onde D

Pseudo-potentiel standard

$$v(\mathbf{r}_{1}, \mathbf{r}_{2})_{Skyrme} = \frac{t_{0} (1 + x_{0} P_{\sigma}) \delta(\mathbf{r})}{+ \frac{1}{2} t_{1} (1 + x_{1} P_{\sigma}) \left[\mathbf{k}'^{2} \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{k}^{2}\right]} \\+ \frac{1}{2} (1 + x_{2} P_{\sigma}) \mathbf{k}' \cdot \delta(\mathbf{r}) \mathbf{k}$$
(2)
$$+ \frac{1}{6} t_{3} (1 + x_{3} P_{\sigma}) \rho^{\alpha}(R) \delta(\mathbf{r})$$
(3)
$$+ i W_{0} \sigma \cdot \left[\mathbf{k}' \times \delta(\mathbf{r}) \mathbf{k}\right]$$
(4)

- de portée nulle
- Propriétés:
- non-relativiste
- 10 paramètres

Pseudo-potentiel de Skyrme Extension avec onde D

Pseudo-potentiel standard

Interaction standard de Skyrme: (version Vautherin et Brink)

$$v(\mathbf{r}_{1}, \mathbf{r}_{2})_{Skyrme} = t_{0} (1 + x_{0} P_{\sigma}) \delta(\mathbf{r})$$
(1)
+ $\frac{1}{2} t_{1} (1 + x_{1} P_{\sigma}) \left[\mathbf{k}'^{2} \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{k}^{2} \right]$
+ $t_{2} (1 + x_{2} P_{\sigma}) \mathbf{k}' \cdot \delta(\mathbf{r}) \mathbf{k}$ (2)
+ $\frac{1}{6} t_{3} (1 + x_{3} P_{\sigma}) \rho^{\alpha}(R) \delta(\mathbf{r})$ (3)
+ $i W_{0} \sigma \cdot \left[\mathbf{k}' \times \delta(\mathbf{r}) \mathbf{k} \right]$ (4)

de portée nulle

Propriétés:

- non-relativiste
 - 10 paramètres

Pseudo-potentiel de Skyrme et onde D

Ajustement des canaux nucléaires avec l'onde D Equation du champ moyen en symétrie sphérique Conclusion

Pseudo-potentiel de Skyrme Extension avec onde D

Pseudo-potentiel avec onde D

$$\begin{aligned} \mathbf{v}(\mathbf{r}_{1},\mathbf{r}_{2})_{Sk} &= t_{0} \left(1+x_{0} P_{\sigma}\right) + \frac{1}{2} t_{1} \left(1+x_{1} P_{\sigma}\right) \left[\mathbf{k}'^{2}+\mathbf{k}^{2}\right] \\ &+ t_{2} \left(1+x_{2} P_{\sigma}\right) \mathbf{k}' \cdot \mathbf{k} + \frac{1}{6} t_{3} \left(1+x_{3} P_{\sigma}\right) \rho^{\alpha}(R) \\ &+ i W_{0} \sigma \cdot \left[\mathbf{k}' \times \mathbf{k}\right] \\ &+ \frac{1}{4} t_{1}^{(4)} (1+x_{1}^{(4)} P_{\sigma}) \left[(\mathbf{k}^{2}+\mathbf{k}'^{2})^{2}+4(\mathbf{k}' \cdot \mathbf{k})^{2}\right] \\ &+ t_{2}^{(4)} (1+x_{2}^{(4)} P_{\sigma})(\mathbf{k}' \cdot \mathbf{k})(\mathbf{k}^{2}+\mathbf{k}'^{2}) \end{aligned}$$
(5)

 Apparaît naturellement
 Analogie avec termes standard

Invariance de jauge14 paramètres

Pseudo-potentiel de Skyrme et onde D

Ajustement des canaux nucléaires avec l'onde D Equation du champ moyen en symétrie sphérique Conclusion

Pseudo-potentiel de Skyrme Extension avec onde D

Pseudo-potentiel avec onde D

$$\begin{aligned} \mathbf{v}(\mathbf{r}_{1},\mathbf{r}_{2})_{Sk} &= t_{0} \left(1+x_{0} P_{\sigma}\right) + \frac{1}{2} t_{1} \left(1+x_{1} P_{\sigma}\right) \left[\mathbf{k}'^{2}+\mathbf{k}^{2}\right] \\ &+ t_{2} \left(1+x_{2} P_{\sigma}\right) \mathbf{k}' \cdot \mathbf{k} + \frac{1}{6} t_{3} \left(1+x_{3} P_{\sigma}\right) \rho^{\alpha}(R) \\ &+ i W_{0} \sigma \cdot \left[\mathbf{k}' \times \mathbf{k}\right] \\ &+ \frac{1}{4} t_{1}^{(4)} (1+x_{1}^{(4)} P_{\sigma}) \left[(\mathbf{k}^{2}+\mathbf{k}'^{2})^{2}+4(\mathbf{k}' \cdot \mathbf{k})^{2}\right] \\ &+ t_{2}^{(4)} (1+x_{2}^{(4)} P_{\sigma})(\mathbf{k}' \cdot \mathbf{k})(\mathbf{k}^{2}+\mathbf{k}'^{2}) \end{aligned}$$
(5)

 Apparaît naturellement
 Analogie avec termes standard

Invariance de jauge14 paramètres

Pseudo-potentiel de Skyrme et onde D

Ajustement des canaux nucléaires avec l'onde D Equation du champ moyen en symétrie sphérique Conclusion

Pseudo-potentiel de Skyrme Extension avec onde D

Pseudo-potentiel avec onde D

$$\begin{aligned} \mathbf{v}(\mathbf{r}_{1},\mathbf{r}_{2})_{Sk} &= t_{0} \left(1+x_{0} P_{\sigma}\right) + \frac{1}{2} t_{1} \left(1+x_{1} P_{\sigma}\right) \left[\mathbf{k}'^{2}+\mathbf{k}^{2}\right] \\ &+ t_{2} \left(1+x_{2} P_{\sigma}\right) \mathbf{k}' \cdot \mathbf{k} + \frac{1}{6} t_{3} \left(1+x_{3} P_{\sigma}\right) \rho^{\alpha}(R) \\ &+ i W_{0} \sigma \cdot \left[\mathbf{k}' \times \mathbf{k}\right] \\ &+ \frac{1}{4} t_{1}^{(4)} \left(1+x_{1}^{(4)} P_{\sigma}\right) \left[(\mathbf{k}^{2}+\mathbf{k}'^{2})^{2}+4(\mathbf{k}' \cdot \mathbf{k})^{2}\right] \\ &+ t_{2}^{(4)} \left(1+x_{2}^{(4)} P_{\sigma}\right) (\mathbf{k}' \cdot \mathbf{k}) (\mathbf{k}^{2}+\mathbf{k}'^{2}) \end{aligned}$$
(5)

- Apparaît naturellement
- Analogie avec termes standard

- Invariance de jauge
- 14 paramètres

Pseudo-potentiel de Skyrme Extension avec onde D

Où est l'onde D?

Un terme comme $(\mathbf{k}' \cdot \mathbf{k})^2$ de l'équation précédente fait apparaitre un cos² $\omega_{kk'}$. On utilise:

$$P_{l}(\cos \omega_{12}) = \frac{4\pi}{2\ell + 1} \sum_{m} Y_{\ell m}^{*}(\Omega_{1}) Y_{\ell m}(\Omega_{2})$$
(6)

Contribution en moment orbital $\ell=2$:

$$\cos^{2}(\omega_{kk'}) = \frac{2}{3}P_{2}(\cos \omega_{kk'}) + \frac{1}{3}$$
$$= \frac{8\pi}{15}\sum_{m}Y_{2m}^{*}(\Omega_{1})Y_{2m}(\Omega_{2}) + \frac{1}{3}$$
(7)

Ajustement des équations d'états des canaux nucléaires Ajustement de l'équation d'état globale

Sommaire

- Pseudo-potentiel de Skyrme et onde D
 Pseudo-potentiel de Skyrme
 Extension avec onde D
 - Extension avec onde D
- Ajustement des canaux nucléaires avec l'onde D
 - Ajustement des équations d'états des canaux nucléaires
 - Ajustement de l'équation d'état globale
- 3 Equation du champ moyen en symétrie sphérique
 - Contexte
 - Équation différentielle de champ moyen

Ajustement des équations d'états des canaux nucléaires Ajustement de l'équation d'état globale

Equations d'états des canaux nucléaires:

$$E/A(S = 0, T = 0) = \frac{3}{160}(1 - x_2) t_2 \rho k_f^2 + \frac{9}{560}(1 - x_2^{(4)}) t_2^{(4)} \rho k_f^4$$

$$E/A(S = 0, T = 1) = 3 \left[t_0(1 - x_0) \frac{\rho}{16} + \frac{t_3}{96}(1 - x_3)\rho^{\alpha+1} + \frac{3}{160}t_1(1 - x_1)\rho k_f^2 + \frac{9}{560}t_1^{(4)}(1 - x_1^{(4)})\rho k_f^4 \right]$$

$$E/A(S = 1, T = 0) = 3 \left[t_0(1 + x_0) \frac{\rho}{16} + \frac{t_3}{96}(1 + x_3)\rho^{\alpha+1} + \frac{3}{160}t_1(1 + x_1)\rho k_f^2 + \frac{9}{560}t_1^{(4)}(1 + x_1^{(4)})\rho k_f^4 \right]$$

$$E/A(S = 1, T = 1) = 9 \left[\frac{3}{160}(1 + x_2) t_2 \rho k_f^2 + \frac{9}{560}(1 + x_2^{(4)}) t_2^{(4)} \rho k_f^4 \right]$$

On constate une symétrie entre les canaux:

- (S=0, T=0) et (S=1, T=1) composés d'ondes impaires.
- (S=0, T=1) et (S=1, T=0) composés d'ondes paires.

Ajustement des équations d'états des canaux nucléaires Ajustement de l'équation d'état globale

Ajustement des équations d'états des canaux

Ajustement des équations d'états des canaux nucléaires Ajustement de l'équation d'état globale

Ajustement de l'équation d'état globale

Equation d'état globale (N2LO) :

$$\frac{E}{A} = \frac{3}{5} \frac{\hbar^2}{2m} k_F^2 + \frac{3}{8} t_0 \rho + \frac{1}{16} t_3 \rho^{1+\alpha} \\
+ \frac{3}{80} [3t_1 + (5 + 4x_2)t_2] \rho k_F^2 \\
+ \frac{9}{280} [3t_1^{(4)} + (5 + 4x_2^{(4)})t_2^{(4)}] \rho k_F^2$$

Conclusion :

- Interaction standard NLO de Skyrme limitée
- Interaction avec onde D décrit toutes les équations d'états -> Nouvelle flexibilité
- Possibilité de décrire canaux nucléaire + contraintes expérimentales ?

Ajustement des équations d'états des canaux nucléaires Ajustement de l'équation d'état globale

Justification de l'onde D

Ajustement des équations d'états des canaux nucléaires Ajustement de l'équation d'état globale

Justification de l'onde D

Contexte Équation différentielle de champ moyen

Sommaire

- 1 Pseudo-potentiel de Skyrme et onde D
 - Pseudo-potentiel de Skyrme
 - Extension avec onde D
- 2 Ajustement des canaux nucléaires avec l'onde D
 - Ajustement des équations d'états des canaux nucléaires
 - Ajustement de l'équation d'état globale
- 3 Equation du champ moyen en symétrie sphérique
 - Contexte
 - Équation différentielle de champ moyen

Contexte Équation différentielle de champ moyen

Equation du champ moyen

But: Incorporer notre onde D dans des processus d'ajustement.

- Utilisation de la fonctionnelle dérivant de notre pseudo-potentiel.
- On cherche $\hat{h}_q(\mathbf{r})$

$$\hat{h}_q(\mathbf{r}) \psi_i(\mathbf{r}) = \varepsilon_i \psi_i(\mathbf{r}).$$
 (8)

Hypothèse de symétrie sphérique (noyaux magiques)

$$\psi_{n\ell jmq}(\mathbf{r}) = \frac{1}{r} R_{n\ell jq}(r) \ \Omega_{\ell jm}(\hat{r}) \quad ,$$
 (9)

Contexte Équation différentielle de champ moyen

Equation du champ moyen

On obtient finalement:

$$A_4 R_{n\ell j}^{(4)} + A_3 R_{n\ell j}^{(3)} + A_2 R_{n\ell j}^{(2)} + A_1 R_{n\ell j}^{(1)} + A_0 R_{n\ell j} = \epsilon_{n\ell j} R_{n\ell j} .$$
(10)

Equation différentielle du quatrième ordre. Coefficients A_i dépendant des densités $\rho_q(\mathbf{r})$ et $\tau_q(\mathbf{r})$.

Par exemple,
$$A_1 = -C_{-}^{\tau} \rho_0^{(1)} - 2C_{1}^{\tau} \rho_0^{(1)} + \frac{1}{4} C_{-}^{(4)M\rho} \left[3\tau_{0R}^{(1)} + \tau_{0C}^{(1)} - \rho_0^{(3)} \right] + \frac{1}{2} C_{1}^{(4)M\rho} \left[3\tau_{qR}^{(1)} + \tau_{qC}^{(1)} - \rho_{q}^{(3)} \right] + \frac{\ell(\ell+1)}{r^2} \left[\frac{1}{4} C_{-}^{(4)M\rho} \left(\rho_0^{(1)} - 2\frac{\rho_0}{r} \right) + \frac{1}{2} C_{1}^{(4)M\rho} \left(\rho_{q}^{(1)} - 2\frac{\rho_q}{r} \right) \right]$$
(11)

La résoudre \rightarrow calculs dans les noyaux et ajustements

Contexte Équation différentielle de champ moyen

Masse effective

On obtient la masse effective par la formule:

$$\frac{1}{m^*(k)} = \frac{1}{k} \frac{dU(k)}{dk} ,$$
 (12)

U étant le potentiel de champ moyen. Ainsi, on obtient une masse effective:

$$\left(\frac{m}{m^*}\right) = 1 + \frac{2m}{\hbar^2} \rho_0 \left[\frac{1}{16}(3t_1 + t_2(5 + 4x_2)) + \frac{1}{16}(k_F^2 + k^2)(3t_1^{(4)} + t_2^{(4)}(5 + 4x_2^{(4)}))\right]$$
(13)

Plus simplement,

$$\left(\frac{m}{m^*}\right) = 1 + \frac{2m}{\hbar^2} \rho_0 \left[C_0^{\tau} + \frac{1}{2} k_F^2 C_0^{(4)M\rho}\right] \quad . \tag{14}$$

Avec la relation,

$$\rho = \frac{2}{3\pi^2} k_F^3,$$
 (15)

Conclusion

- L'onde D est une extension possible au pseudo-potentiel de Skyrme.
- Elle permet à la fois de reproduire l'équation d'état des canaux nucléaires et l'équation d'état totale, contrairement à l'interaction standard.
- L'équation de champ moyen associée a été déterminée.

Perspectives

- Résoudre l'équation du champ moyen.
- Examiner la masse effective
- Envisager d'ajouter à cette onde D une force à 3 corps plus réaliste
- Méthode de la réponse linéaire

Pour aller plus loin (Published in Journal of Physics G)

Tools for incorporating a D-wave contribution in Skyrme energy density functionals

P. Becker, D. Davesne, J. Meyer

Université de Lyon, F-69622 Lyon, France, Université Lyon 1, Villeurbanne; CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon

A. Pastore

Institut d'Astronomie et d'Astrophysique, CP 226, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium

J. Navarro

IFIC (CSIC-Universidad de Valencia), Apartado Postal 22085, E-46.071-Valencia, Spain

Abstract. The possibility of adding a D-wave term to the standard Skyrme effective interaction has been widely considered in the past. Such a term has been shown to appear in the next-to-next-to-leading order of the Skyrme pseudo-potential. The aim of the present article is to provide the necessary tools to incorporate this term in a fitting procedure: first, a mean-field equation written in spherical symmetry in order to describe spherical nuclei and second, the response function to detect unphysical instabilities. With these tools it will be possible to build a new fitting procedure to determine the coupling constants of the new functional.