LSST-DESC Calibration Workshop '18

Slitless spectro-photometry

Yannick Copin – Institut de physique nucléaire de Lyon – Université de Lyon

Disclaimer

- 1st time around, hi!
- No specific info. on AuxTel spectrograph properties nor observing modes
- Experience in groundbased *integral field* spectro-photometry (SNfactory/SNIFS) and space-born slitless spectrography (Euclid/NISP-S)

Modeling slitless spectroscopy

Oct. 2018

Slitless spectroscopy

Slitless spectroscopy

Advantages

- Large FoV and high multiplexing
- Simple to build and to use

Drawbacks

- Cross-contamination: overlap of different objects (potentially at different orders)
 - Mitigation: multi-PA observations & decont. model
- Self-contamination: mixing of spatial and spectral information
 - Spectral resolution is dependent of source size/seeing conditions
- High background level

Traditional approach

Standard "aXe-like" (Kümmel+09)

- Empirical modeling of the spectral trace
 - Cross-dispersion: geometric distortions
 - Along dispersion: wavelength solution
- Decontamination from neighbor sources
- Cross-dispersion integration \rightarrow 1D spectrum
 - Potentially x-disp. profile weighted ("optimal extraction")
- Multi-PA spectra are averaged a posteriori
 - ▶ But see LINEAR (Ryan+18) for 1st steps toward a forward model
- No handling of self-confusion
 - Spectral resolution is degenerate with source size (extent/PSF/seeing)
 - Correct for point sources observed in space, suboptimal otherwise

Intrinsic & observable flux

• Source is characterized by intrinsic flux distribution $C(\mathbf{r}, \lambda)$

- E.g. a star: $C(\mathbf{r}, \lambda) = S(\lambda) \times \delta(\mathbf{r} \mathbf{r}_0)$
- Separable source: $C(\mathbf{r}, \lambda) = S(\lambda) \times F(\mathbf{r})$
- Atmosphere + Instrument is characterized by Impulse Response Function (supposed stationary)
 - mapping from intrinsic coords to obs. coords (astrometry, λ -calib)
 - spread around mean position
 - may include transmission
- *Observable* flux $O(\mathbf{r}, \lambda) \equiv (C \otimes P)(\mathbf{r}, \lambda)$
 - Only if you have an Integral Field Spectrograph!

Direct imaging

IRF can be decomposed in two components

- a centered shape component P_0 (aka PSF/LSF)
- an offset component P_{Δ}
 - usually ignored by *ad hoc* registration of the PSF

Direct imaging (photometry)

- $P_0 = PSF, P_{\Delta} \approx \delta(\mathbf{r})$
 - \blacktriangleright but chromatic aberrations & ADR correspond to a non-trivial P_{Δ}
- Broadband image: $I(\mathbf{r}) = \int d\lambda O(\mathbf{r}, \lambda)$
 - ► $\approx (\overline{C} \otimes \overline{P}_0)(\mathbf{r})$ for a weakly chromatic separable source

Dispersed imaging

Slitless spectroscopy

- P₀ = Point/Line Spread Function
- $P_{\Delta}(\mathbf{r}, \lambda) = \delta(\mathbf{r} \Delta(\lambda))$ where $\Delta(\lambda)$ is the dispersion law
- Dispersed image: $I(\mathbf{r}) = \int d\lambda \ (C \otimes P_0)(\mathbf{r} \Delta(\lambda), \lambda)$
- In spatial Fourier domain:
 i(1) â(1) în (1)

 $\hat{\mathbf{I}}(\mathbf{k}) = \int d\lambda \ \hat{\mathbf{C}}(\mathbf{k}, \lambda) \ \hat{\mathbf{P}}_{0}(\mathbf{k}, \lambda) \ e^{-i2\pi \mathbf{k} \cdot \boldsymbol{\Delta}(\lambda)}$

 Under the separability assumption and a weakly chromatic PSF

 $\hat{\mathbf{I}}(\mathbf{k}) \approx \hat{\mathbf{F}}(\mathbf{k}) \hat{\mathbf{P}}_{0}(\mathbf{k}) \int d\lambda \ S(\lambda) \ e^{-i2\pi \ \mathbf{k} \cdot \boldsymbol{\Delta}(\lambda)}$

• Almost the Fourier Transform of $S(\lambda)$!

Dispersed image modeling

• $\hat{\mathbf{l}}(\mathbf{k}) = \int d\lambda \ \hat{\mathbf{C}}(\mathbf{k}, \lambda) \ \hat{\mathbf{P}}_0(\mathbf{k}, \lambda) \ e^{-i2\pi \mathbf{k} \cdot \Delta(\lambda)} \approx \ \hat{\mathbf{F}}(\mathbf{k}) \ \hat{\mathbf{P}}_0(\mathbf{k}) \int d\lambda \ \mathbf{S}(\lambda) \ e^{-i2\pi \mathbf{k} \cdot \Delta(\lambda)}$

I = dispersed image, $F \otimes \overline{P}_0 \approx$ broadband image

S = spectrum, Δ = dispersion law

Different approaches

- Efficient simulation (for all dispersion orders)
- Backward extraction of $S(\lambda)$
 - Assume dispersion law $\Delta(\lambda)$ and broadband image $F \otimes \overline{P}_0$
 - Estimate $S(\lambda)$ from Wiener-Hunt deconvolution
- Forward model of dispersed image I(r), e.g.
 - Calibration of dispersion law $\Delta(\lambda)$, of transmission T(λ)
 - Simple galaxy model: $S(\lambda)$ = template + redshift
 - More complex model, e.g. galaxy kinematics (Outini+18, in prep.)

LSST-DESC Calibration Workshop

Outini & Copin 2018, in prep.

Galaxy r=1.0", i=60.0 [deg], PA=0.0 [deg] Instrument TEST ideal [D=0.2 A/px]

Outini & Copin 2018, in prep.

#1134 GLASS - G102 (24 A/px)

Cold disk, velocity curve: $v(r) = v_0 \tanh(w_0 r / v_0)$ $v_0 \sin i = 205 \pm 24 \text{ km.s}^{-1}$ $w_0 \sin i = 232 \pm 25 \text{ km.s}^{-1}$.arcsec⁻¹

14

Dispersed imaging of stars

• Point sources are easier: $C(\mathbf{r}, \lambda) = \delta(\mathbf{r}) \times S(\lambda)$

- $\mathbf{I}(\mathbf{r}) = \mathsf{T}\mathsf{F}^{-1}(\int d\lambda \, \hat{P}_0(\mathbf{k}, \lambda) \, \mathsf{S}(\lambda) \, e^{-i2\pi \, \mathbf{k} \cdot \boldsymbol{\Delta}(\lambda)})$
- Simultaneous fit of dispersed image I(r)
 - ► spectral trace: dispersion law $\Delta(\lambda)$
 - ▶ spectral shape: instrumental PSF and seeing P₀
 - ► flux: $S = T \times S^*$ where T = transmission, $S^* =$ ref. flux
- Spectro-photometry will derive from proper modeling of these different components
 - ► Dispersed imaging is *closer* to "imaging" than "spectroscopy"
 - Most tools are readily available from photometry

The (not so difficult?) path to slitless spectro-photometry

Instrumental mode

• Dispersion law $\Delta(\lambda)$ as a function of position in FP

- Effective geometrical model
- Instrumental PSF as a function of position in FP
 - Can be derived from 1st principles (WF propagation)
 - or adjusted empirically
 - More naturally expressed in Fourier domain

http://spectrogrism.readthedocs.org

Atmospheric Differential Refraction

LSST-DESC Calibration V

Instantaneous ADR:

- distortion of spectral trace
- distortion of wave. solution
- Integrated ADR $(t_{exp} > 0)$
 - widening of spectral trace
 - spectral res. degradation
 - flux-weighted time-average
 - same formalism w/ $\Delta_{ADR}(\lambda, t)$

Seeing (atmospheric PSF)

Historical SNIFS PSF (Buton09)

- Gaussian for the core
- Moffat for the wings
- Correlated parameters
- Observed PSF has more wings than plain Kolmogorov profile
 - $n_{eff} \sim 4.5/3$ rather than 5/3
 - Chrom. dependency is OK
- Current development (see also Xin+18):
 - Seeing: Kolmogorov/von Kármán profile
 - Instrument: eff. profile (K \otimes G)
 - Guiding: Gaussian

Atmospheric transmission

You know better than me

- Multi-component expansion
- Constraints from external probes
- •What is a photometric night? At which level? Over which time-scale?

Reference spectra

- Recalibration of the spectro-photometric standard stars (S*)
 - Intrinsic consistency wrt/within Calspec: "standard star network"
 - Absolute flux/color calibration (e.g. StarDice, SCALA: Lombardo+17)
- Work in Progress in SNfactory
 - 14 years of repeated observations of 70 stars
 - spectro-photometry at mmag-scale

Conclusions

- Slitless spectro-photometry is within reach
- Good understanding of dispersed image
 - Self-confusion is properly handled for punctual sources
 - Assuming proper cross-contamination
 - flexibility in dispersion orientation and/or multi-PA observations
 - multi-order decontamination
- Appropriate models of the different components
 - spectral trace: dispersion law $\Delta(\lambda)$
 - spectral shape: instrumental PSF and seeing P₀
 - flux: $S = T \times S^*$ where T = transmission, $S^* = ref$. flux