Caustic-Crossing Events + Highly Magnified Stars

Patrick Kelly
University of Minnesota

Blue supergiant star "Icarus"
Blue supergiant star "Warhol"

Small Source Size \longrightarrow Possibility of Extreme Magnification

What happens when a star crosses a caustic?

Typical transverse velocity of $\sim 1000 \mathrm{~km} / \mathrm{s}$

Fig. 2.-Magnification of a star with uniform surface brightness as a function of the time since the center of the star crossed the caustic. Magnification of a point source at the center of the star is also shown. Characteristic time τ_{ev} is given in eq. (12). In 50% of the cases this curve should occur in the reverse order in time.

Miralda-Escude 91

Event Close to Critical Curve

Discovered in late April 2016 "RefsdalRedux" program to search for SN reappearance

Event Close to Critical Curve

Discovered in late April 2016 "RefsdalRedux" program to search for SN reappearance

Event Close to Critical Curve

Discovered in late April 2016 "RefsdalRedux" program to search for SN reappearance

Event Close to Critical Curve

Discovered in late April 2016 "RefsdalRedux" program to search for SN reappearance

Follow-up GO-I4I99, I4528, and I4872 (PI: Kelly), and I4208 (PI: Rodney)

Zitrin et al. (dashed red), Oguri et al. GLAFIC (solid blue), and Keeton et al. (dashed black)

Mid-to-Late B-type Star

- No change in SED
- Magnified by ~2000x near peak
- Hotter than H-rich transients
- Light curve unlike stellar explosions
- Blue super (hyper?)
 giant similar to Refsdal progenitor

LS1 / Lev 2016A

2014

LS1 / Lev 2016A

October 302016
Lev 2016B

Colors of LS1 / Lev 16A and Lev 16B are consistent with each other \rightarrow simulations show parity should yield differing behavior

Found even a third possible microlensing event

Icarus' light curve matches simulation of microlensing

2015
2016

Stars+Remnants+Dark Matter

The potential of a galaxy cluster acts to exaggerate the Einstein radii of objects in its intracluster medium by factors of up to ~ 100 near its critical curves (Diego et al., 2018; Venumadhav et al., 2017)

Diego+18

Adding Microlenses

Diego+18

Constraints on Abundance of Primordial Black Holes from Icarus

Probability of Events in MACS J1149 Containing Icarus

 at $z=1.49$ Depends on Stellar Luminosity Function

Luminosity Function Power-Law Index α

For bottom-heavy IMF, much higher frequency of microlensing peaks

Chabrier - Milky-Way like

Salpeter - "bottom heavy"

LSI light curve probes the stars making up the intracluster medium, which may have been stripped from cluster members

Outcomes of massive stellar evolution

- Intracluster stellar population formed at high redshift
- Remnant population (NS + BH) mass function
- Mass loss rate
- Which SN explosions are successful?
Neutrino mechanism

Mass Functions for Different Models of Massive Stellar Evolution

Massive Stellar Evolution Models

Primordial Black Hole Abundance

Evidence for Theories of the Stellar Initial-Final Mass Function

	$\begin{gathered} -7.50>M_{V}>-9.50 \\ 150 \text { Best Matches }(406 \mathrm{yr}) \end{gathered}$						$\begin{gathered} -7.50>M_{V}>-8.50 \\ 150 \text { Best Matches }(406 \mathrm{yr}) \end{gathered}$					
	$\left\langle\chi^{2}\right\rangle$	Σ	Model	PBH	T	IMF	$\left\langle\chi^{2}\right\rangle$	Σ	Model	PBH	T	IMF
Best	Low Stellar-Mass Density											
	356.0	L	Fryer12		B	Cha	416.3	L	Fryer12		B	Cha
	366.5	L	Woosley02		B	Cha	462.1	L	Spera15		S	Cha
	372.4	L	Spera15		B	Cha	464.0	L	Woosley02		S	Cha
	383.6	L	Woosley02		S	Cha	488.9	L	Spera15	3%	S	Cha
	392.4	L	Spera15		S	Cha	516.5	L	Woosley02		B	Cha
	403.0	L	Fryer12		S	Cha	534.0	L	Spera15		B	Cha
	406.8	L	Spera15	1\%	S	Cha	560.6	L	Fryer12		S	Cha
Worst	462.4	L	Spera15	3%	S	Cha	567.2	L	Spera15	1\%	S	Cha
	High Stellar-Mass Density											
Best	347.4	H	Spera15		B	Sal	412.1	H	Spera15		B	Sal
Worst	367.8	H	Spera15		B	Cha	508.3	H	Spera15		B	Cha

LSI light curve probes the stars making up the intracluster medium, which may have been stripped from cluster members

Spock Events in MACS J0416

Rodney+18

Complexity of Critical Curve

Warhol: An Newly Discovered Highly Magnified Star

Wenlei Chen, P. Kelly, .. (20I9) \&

Kaurov et al. (20।9)
Redshift $\mathrm{z}=0.94$

Two Images of Star Always Seen

Published Detections of Caustic-Crossing Events to Date

Name	Redshift	Peak AB Magnitude	Reference
Icarus	1.49	F125W ≈ 25.5	Kelly et al. 2018
Iapyx	1.49	F125W ≈ 25.5	Kelly et al. 2018
Spock SE	1.04	F125W ≈ 27.6	Rodney et al. 2018
Spock NW	1.04	F814W ≈ 26.6	Rodney et al. 2018
Warhol	0.94	F125W ≈ 26.3	Chen et al. 2019; Kaurov et al. 2019

Liang Dai \& Jordi Miralda-Escude 2020

Means to Detect Presence of Axion Mini-Halos at Maximum

Figure 7. Perturbed light curves (colored curves) compared to smooth light curve (dashed black curve) around the time of a microlensing peak event. Each panel shows four random realizations of convergence fluctuations (one color for each). (a) Default case as in Figure 6. (b) A more compact source star with $R_{S}=30 R_{\odot}$. (c) Power spectrum P_{κ} enhanced by a factor of four. (d) $\tilde{d}=|\tilde{\boldsymbol{d}}|$ decreased by a factor of two.

Use Pairs of Images to Constrain Location of the Critical Curve

$\boldsymbol{\Lambda}$-CDM Subhalos

"Astrometric distortions" carry imprint of poorly understood dark matter halo mass function (Dai+18). Could also identify ultra-light bosons as DM.

Famous arc in Abell 370 (Dai+18)

Distortion due to subhalo
"Subhalos of masses in the range of $10^{6}-10^{8} M \odot$ with the abundance predicted in the cold dark matter theory should typically imprint astrometric distortions at the level of 20-80 mas."

How Can We Find More Magnified Stars?

Near the critical curve (of a fold caustic), the average magnification $\bar{\mu}$ goes as,

$$
\bar{\mu} \propto 1 / \sqrt{R}
$$

where R is the separation of the star from the critical curve in the source plane. In consequence, the area with magnification exceeding μ is

$$
A(>\mu) \propto 1 / \mu^{2}
$$

So, more or less, improving sensitivity by factor of say five, would yield $\sim 25 x$ more highly magnified stars.

Flashlights Multi-Year Program with the Hubble Space Telescope

Should detect many highly magnified stars to look-back times of ~ 10 Gyrs

The deepest observations ever taken of galaxy-cluster fields by a significant factor (~ 5) - strategy is to take very deep observation in as short a period as possible

A total of 192 HST orbits a "Large" program

Flashlights Multi-Year Program with the Hubble Space Telescope

~ 5-sigma limiting magnitude of $\sim 31 \mathrm{AB}$ from long-pass filters

Expect dozens of microlensing events to threesigma with dependence on abundance of primoridal black holes at 1-2\% level

Identify pairs of highly magnified stars to constrain critical curve locations

Identify the signature of ultra-light dark matter

UV sensitivity to hot, OB stars

Flashlights Rate of Events Sensitive to the Initial Mass Function of Stars

James Webb Space Telescope (JWST)

6.5 m
0.6-28 $\mu \mathrm{m}$

Launch in October - fingers crossed!

Sensitivity to red supergiants

Complements HST's blue sensitivity

Pop III stars + BH accretion disks

Pop III may contribute significantly to near-IR EBL

Monitor 3-30 clusters for a decade to 29 AB to detect caustic crossing

Windhorst+18

Caustic-Crossing Events + Highly Magnified Stars

- A handful of events have been discovered using $H S T$
- Deeper observations with $H S T+J W S T$ should yield much larger samples of dozens + begin to realize promise
- Nature of dark matter - PBH's, axions, subhalos
- Properties of intracluster stars - IMF, massive stellar evolution
- Properties of high-redshift stars - IMF, stellar luminosity function

