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Renormalisation and locality

Data

a (locality) algebra (A,>A ,mA ) (Feynman graphs, trees, cones)

an algebra of meromorphic germs at zero (M, ·) e.g.: 1-variable
meromorphic germs in A. Connes and D. Kreimer’s ABF approach (1998)

HereM =M(C∞) is the algebra of multi-variable meromorphic germs at
zero with linear poles.

a (locality) morphism Φ : (A,>A ,mA ) −→ (M, ·) (Feynman integrals, branched zeta functions,

conical zeta functions).

Φ is partially multiplicative: a1 >A a2 =⇒ Φ (mA (a1, a2)) = Φ(a1) ·Φ(a2).

Our task
Build a (locality) character Φren : (A,>A ,mA ) −→ (C, ·)

a1 >A a2 =⇒ Φren (mA (a1, a2)) = Φren(a1) ·Φren(a2).
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Warmup 1: Separating the holomorphic from the
polar part

To build Φren, one first needs to separate the holomorphic part Φ+ from the polar
part Φ− of Φ

In one variable, by means of an algebraic Birkhoff factorisation (ABF)
following D. Kreimer and A. Connes;

In several variables, we splitM(C∞) =M =M+⊕M− into a holomorphic
and polar part and then project ontoM+ (Multivariable minimal substraction
scheme).

Laurent expansions in one variable: In a neighbourhood of a point z0 ∈ C, a nonzero meromorphic function f is the sum of a Laurent
series with at most finite principal part (the terms with negative index values):

f(z) =
∑

k≥−n

ak (z − z0)k =
−1∑

k=−n

ak (z − z0)k

︸                 ︷︷                 ︸
polar part

+ h(z − z0)︸      ︷︷      ︸
h holomorphic at zero

= π−(f) + π+(f),

where n is an integer, and a−n , 0. If n > 0, f has a pole of order n, and if n ≤ 0, f has a zero of order |n|.

Our aim
We want to generalise Laurent expansions to meromorphic germs in several
variables, so onM(C∞), we need a separating device on the underlying
spaces V = Ck to distinguish the polar part from the holomorphic part.
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Warmup 2: Orthogonality as a separating device
Let V be a (resp. topological) vector space and G(V) be the set of all (closed)
linear subspaces of V . A (complete, in which case (V ,Q) is a Hilbert space) inner product Q on
V defines

a symmetric binary relation on G(V)

U⊥Q W ⇐⇒ Q(u,w) = 0 ∀(u,w) ∈ U ×W ,

which separates U and W ;

a complementation on G(V) with U⊥ := {W ∈ G(V), Q(u,w) = 0 ∀(u,w) ∈ U ×W }, which is closed:

ΨQ : G(V) −→ G(V)

U 7−→ U⊥

A driving thread: the two are related by

U⊥Q W ⇔ W⊂U⊥(⇔ W ∈ ↓U⊥) and ΨQ(U) = maxU⊥.

Orthogonal complements are useful to separate polar parts from holomorphic parts of meromorphic germs.

Relative complement maps are also used to

define coproducts ∆x =
∑

y≤x x ⊗ x\y from a (relative) complementation on a poset (X ,≤) (Feynman diagrams, rooted trees)

to prove Euler-Maclaurin formulae on convex polytopes [Garoufalidis, Pommersheim (2010)], [Berline, Vergne (2007)].
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Our aim today

Question
which symmetric binary relations define a reasonable complement map?

We want to generalise
the 1-1 correspondence on (G(V),Q)

⊥Q ←→ ΨQ

to a 1-1 correspondence on a class of locality lattices (L ,>)

> ←→ Ψ>

with ”orthocomplementations” Ψ>.

We expect that:

U>W ⇔ W ∈ ↓U> and Ψ>(U) = maxU>.
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Part I.

Orthogonality in Laurent expansions
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Meromorphic germs in several variables

Meromorphic germs with linear poles

M(Ck ) 3 f =
h(`1,··· ,`n)

Ls1
1 ···L

sn
n

, h holomorphic germ, si ∈ Z≥0,

`i : Ck → C, Lj : Ck → C linear forms with real coefficients (lie in
L(Ck )).

Example: (z1, z2) 7−→ z1−z2
z1+z2

.

Independence of meromorphic germs and orthogonality
Dependence set Dep(f) := 〈`1, · · · , `m, L1, · · · , Ln〉.

An inner product Q on Rk induces one on L(Ck ) and the symmetric
binary relation

f1 ⊥Q f2 ⇐⇒ Dep(f1) ⊥Q Dep(f2),

separates two meromorphic germs.

(z1 − z2) ⊥Q (z1 + z2) with Q : canonical inner product on R2.
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Polar germs and cones

Polar germs

A Q-polar germ inM(Ck ) : S :=
h(`1,··· ,`m)

Ls1
1 ···L

sn
n
, such that

h is holomorphic at zero i.e. h ∈ M+(Ck );

`1 , · · · , `m , L1 , · · · , Ln are linearly independent and 〈`1, · · · , `m〉 ⊥
Q 〈L1, · · · , Ln〉.

Polar germs generate the subspaceM−Q(Ck ) ⊂ M(Ck ).

Supporting cones

supporting cone in Rk of the germ S : C(S) := Σm
i=1R+Li ;

A family of cones is properly positioned if the cones meet along faces and
their union does not contain any nontrivial subspace;

A family S j , j ∈ J of polar germs whose supporting cones form a family of
properly positioned cones is called properly positioned.
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Decomposition of meromorphic germs

The inner product Q and the orthocomplementation ΨQ play a central role in the
following decomposition.

Theorem
(L. Guo, S.P., B. Zhang PJM 2020)Given a meromorphic germ f ∈ M(Ck ), there

exists a finite set of polar germsM−Q(Ck ) 3

S =
hj

L
sj1
j1 ···L

sjnj
jnj


j∈J

i) that are properly positioned ;ii) whose denominators are pairwise not proportional ; iii) and a holomorphic germ h,

such that the following Laurent expansion holds

f =

∑
j∈J

Sj

 ⊕Q h =: LC(f).

Here, C = {(C(Sj)), j ∈ J}, is a properly positioned family of simplicial cones.

Warning: The holomorphic germ h is unique yet the decomposition is not
unique: 1

L1L2
= 1

L1(L1+L2)
+ 1

L2(L1+L2)
.
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Part II

Orthogonality as a locality relation
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Orthogonality and locality

Locality on the poset of vector spaces

Given a (resp. topological) vector space V , let G(V) denote the set of finite
dimensional (resp. closed) linear subspaces of V ,

equipped with the partial
order ”to be a (resp. closed) linear subspace of” denoted by �.

Given a Hilbert (finite or infinite dimensional) vector space (V ,Q), the binary
relation U>W ⇐⇒ U ⊥Q W defines a locality relation on the poset G(V).

Orthogonality as a separating device

(Recall) Dependence set Dep(f) := 〈`1, · · · , `m, L1, · · · , Ln〉, `i , Lj ∈ L(Ck ).

An inner product Q on Rk induces one on L(Ck ) and we set
f1 ⊥Q f2 ⇐⇒ Dep(f1) ⊥Q Dep(f2),

which separates the functions according to the variables they depend on.

(z1 − z2) ⊥Q (z1 + z2) with Q : canonical inner product on R2.
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Part III

The lattice G(V)
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The poset (G(V),�) is a (non distributive) bounded lattice

A lattice is a poset (L ,≤), with a join (a, b) 7→ a ∨ b, and a meet (a, b) 7→ a ∧ b.

∨ : L × L → L and ∧ : L × L → L are associative and monotone with respect
to the order: (a1 ≤ b1 and a2 ≤ b2) =⇒ (a1 ∧ a2 ≤ b1 ∧ b2 and a1 ∨ a2 ≤ b1 ∨ b2) .

A lattice (L ,≤,∧,∨) is bounded from above (resp. from below)) if it has a
greatest element 1 (resp. a least element 0), which satisfies x ≤ 1 (resp.
0 ≤ x) for any x ∈ L . A lattice (L ,≤, 0, 1) bounded from below and from above is called bounded.

A lattice is distributive if ∧ and ∨ are distributive w.r. to each other:
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) or equivalently a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),

or equivalently if the cancellation law holds: (a ∧ c = b ∧ c and a ∨ c = b ∨ c) ⇐⇒ a = b

Examples
The power set (P(X),⊆) is a distributive lattice for the union ∪ and the intersection ∩ bounded by 1 = X and 0 = ∅.

N can be equipped with the partial order a |b ⇐⇒ ∃k ∈ N, b = a k . Then a∧b corresponds to the largest common divisor of a
and b whereas a∨b is the smallest common multiple of a and b. With these two operations, (N, |,∧,∨) is a distributive lattice. It
is bounded from below by 1 but not bounded from above.

Given a finite dimensional vector space V , (G(V),�) is a non distributive lattice equipped with the sum ∨ = + and the
intersection ∧ = ∩ as lattice operations. It is bounded by 0 = {0} and 1 = V .

In a lattice (L ,≤), the set ↓ a := {b ≤ a, b ∈ L} is a sub-lattice (even a lattice ideal) of L .
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(G(V), 〈·, ·〉) is an orthomodular lattice

Orthomodular lattices

A bounded lattice (L ,≤, 0, 1) is complemented if ∀a ∈ L , ∃b ∈ L , a ⊕ b = 1
(here a⊕b = c means a ∨ b = c and a ∧ b = 0).

An orthocomplemented lattice is a complemented lattice equipped with
an orthocomplement map Ψ : L → L such that

1 (separating ) a ∧Ψ(a) = 0 (Note: (1)+(2)+(3)⇒ a ⊕Ψ(a) = 1);
2 (antitone) b ≤ a =⇒ Ψ(a) ≤ Ψ(b) (Note: Ψ(0) = 1);
3 (involutive) Ψ2 = Id.

An orthomodular lattice is an orthocomplemented lattice with relative
complements

(orthomodular law) b ≤ a =⇒ a = b ⊕ (Ψ(b) ∧ a).

Examples
1 (P(X),⊆,∩,∪,Ψ) with Ψ : X ⊇ A 7→ X \ A is an orthomodular lattice;

2 When V is finite dimensional, the lattice (G(V),�,∩,+) is a complemented lattice.

3 Given a Euclidean vector space (V , 〈·, ·〉), the map Ψ〈·,·〉 : W 7−→ W⊥ := {v ∈ V , 〈v ,w〉 = 0∀w ∈ W } defines an
orthocomplement map on G(V). (G(V),�,∩,+, ψ〈·,·〉) is an orthomodular lattice.
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Examples
1 (P(X),⊆,∩,∪,Ψ) with Ψ : X ⊇ A 7→ X \ A is an orthomodular lattice;

2 When V is finite dimensional, the lattice (G(V),�,∩,+) is a complemented lattice.

3 Given a Euclidean vector space (V , 〈·, ·〉), the map Ψ〈·,·〉 : W 7−→ W⊥ := {v ∈ V , 〈v ,w〉 = 0∀w ∈ W } defines an
orthocomplement map on G(V). (G(V),�,∩,+, ψ〈·,·〉) is an orthomodular lattice.
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Part IV

Locality on the lattice G(V)
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Locality relations on posets

Locality on sets

A locality relation > on a set P is a symmetric binary relation > ∈ P × P
and we write a>b for (a, b) ∈ >.

a> := {b ∈ P, b>a} is the polar set of a ∈ P. Note that a ∈ (a>)>.

Locality (weak degenerate relations) on posets (G. Cattaneo, A.
Mani (74), M. Szymanska (78))
A locality relation (or weak degenerate orthogonality) on a poset (P,≤) is a locality relation >
on the set P which satisfies one of the following equivalent compatibility
condition with the partial order

(i) (a 7→ a> is antitone) a ≤ b =⇒ b> ⊆ a> (called a Galois connection on P × P(P))

(ii) (absorbing) if a ≤ b then c>b =⇒ c>a ∀c ∈ P (i.e. c> is a poset ideal),

↓a ⊂ (a>)> .

We call (P,≤,>) a (or weak degenerate orthogonal) locality poset.
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Locality relation on lattices

A locality relation on a lattice (L ,≤) is a locality relation > on the poset (L ,≤)
which satisfies one of the two equivalent conditions:

Compatibility of > with the operations: ∀a, bj ∈ L , j ∈ {1, 2}
(a > bj , ∀j ∈ {1, 2}) =⇒ (a > (b1 ∨ b2)) (that a > (b1 ∧ b2) follows from the poset ideal condition),

or
a> is a sublattice (or a lattice ideal) of L for any a in L .

Example
The poset P(X) is a locality lattice for A>B ⇔ A ∩ B = ∅.

Counterexample
The power set (P(X),⊆) equipped with A>B ⇐⇒ A ∪ B = X is not a locality poset. Indeed, let X := {1, 2, 3}, A = {2}, B = {2, 3} and
C = {1}. Then A ⊆ B and C>B, yet C is not independent of A.

Example
Given a Hilbert (finite or infinite dimensional) vector space (V ,Q), the locality relation U ⊥Q W defines a lattice locality relation.
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⊥Q is a separating locality relation on G(V)

A locality relation > on a lattice (L ,≤, 0) with a bottom element 0, is called
separating if for any a ∈ L we have

1 0> = L (from which it will follow that L> = {0} and a> = L =⇒ a = 0) ;

2 a>b =⇒ a ∧ b = 0 (or equivalently (non degeneracy) a > a =⇒ a = 0).

3 (completeness) the set a> admits a maximal element max(a>) for any a ∈ L .

In this case, we say that (L ,≤, 0,>) is a separated locality (or complete
orthogonality poset) lattice. Recall that ↓a ⊂ (a>)> since > is a locality relation on
the poset (L ,≤). If moreover,

↓a = (a>)> or equivalently, if max
(
(a>)>

)
= a for any a ∈ L ,

we call the relation strongly separating and the lattice strongly separated.

Example
Given a Hilbert (finite or infinite dimensional) vector space (V , 〈·, ·〉), the poset G(V) is a strongly separated locality lattice for
W1>W1 ⇐⇒ W1⊥

Q W2 . For three subspaces W ,U1 ,U2 in V we have
(
∀W ⊆ V , W ⊥Q U1 ⇒ W ⊥Q U2

)
=⇒ U2 � U1 .
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Part V

Locality versus complements
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From locality to complements and back

Main result (P. Clavier, L.Guo, S.P., B. Zhang (2020), G. Cattaneo,
A. Mania (74!))
Let L be a bounded lattice.There is a one-to-one correspondence

orthocomplementations ←→ strongly separating locality relations

The map F : >7→Ψ> which to a strong locality relation > assigns an
orthocomplement map Ψ> on L : Ψ>(a) := max(a>) and the map G : Ψ7→>Ψ,
which to an orthocomplement map Ψ assigns a locality relation
> := >Ψ : a>b ⇐⇒ b ≤ Ψ(a), are inverse to each other.

Corollary
If the lattice is ⊕-modular, this yields a one-to-one correspondence

orthomodular orthocomplementations ←→ strongly separating locality relations.

Example: L = G(V)
This generalises the correspondence orthogonality←→ orthogonal complement on vector spaces.
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Locality on lattices versus locality on vector spaces

Locality relations on vector spaces

A vector space locality relation > on a linear space V is a set locality
relation > on V such that the polar set U> of any subset U is a linear
subspace.
The vector space locality > is

1 non-degenerate if for any v ∈ V , v>v =⇒ v = 0 (this implies V> = {0}).
2 strongly non-degenerate if it is non-degenerate and U> = {0} ⇒ U = V

for any subspace U of V .

Vector spaces versus lattices
Vector space locality relation on V Lattice locality relation on G(V): W1>W2 ⇐⇒ w1>w2 ∀wi ∈ Wi , i ∈ {1, 2}. Lattice locality

relation on G(V) Vector space locality relation on V :w1>w2 ⇐⇒ 〈w1〉>〈w2〉.

One to one correspondence
Lattice (resp.strongly separating) locality relation on G(V)

←→ Vector space (resp.strongly non-degenerate) locality relation on V
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Orthocomplements versus locality on vector spaces

Corollary
A locality vector space (V ,>) is strongly non-degenerate if, and only if
(G(V),>) is orthocomplemented.

Explicitly,

(1) Given a strongly regular locality relation on a vector space (V ,>), then Ψ> is
an orthocomplement on G(V).It is the unique map Ψ : G(V)→ G(V)
such that for any W ∈ G(V): (i) Ψ(W) ∈ W> and (ii) V = W ⊕Ψ(W).

(2) Conversely, if Ψ> defines an orthocomplement map on G(V) then the
locality relation

v1>v2 ⇐⇒ v1 ∈ Ψ>(〈v2〉) induces a strongly regular locality relation on V.

Example
On a Hilbert space (V , 〈·, ·〉) this amounts to the correspondence we started from

⊥ ←→ (Ψ⊥ : U 7→ U⊥) .
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Example beyond orthogonality

Take V := R2,

G(R2) = {{0},R2} ∪ {Uθ := R e iθ | θ ∈ [0, π)}.

Any disjoint union [0, π) = I′ t I′′ and bijection I′ → I′′ gives rise to an
involutive map ψ : [0, π)→ [0, π) with ψ(I′) = I′′ and an orthocomplement
map

Ψ : Uθ 7−→ Uψ(θ)

on G(R2).

Back to the orthogonal complement
Any bijection ψ : [0, π/2)→ [π/2, π) induces an involution
ψ : [0, π)→ [0, π), e.g.

ψ(θ) = π − θ, θ ∈ [0, π)

yields back Ψ⊥ for the canonical inner product.
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Openings

generalise to orthocomplements beyond ⊥Q the Laurent expansions
for multi-variable meromorphic germs with linear poles built in [L.
Guo, S.P., B. Zhang, to appear in PJM].

study the Galois group of transformations of multi-variable
meromorphic germs with linear poles which stablise holomorphic
germs at zero.
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Extra material

Modularity
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The poset (G(V),�) is a (⊕-) modular lattice

Modular lattices (conditional distributivity)
A lattice (L ,≤,∧,∨) is modular if a ≥ c ⇒ (a ∧ b) ∨ c = a ∧ (b ∨ c), for any a,
b , c in L

or equivalently if it obeys the following modular cancellation law:
(a ≤ b , a ∧ c = b ∧ c and a ∨ c = b ∨ c)⇒ a = b .
Examples and counterexample: The lattices (P(X),⊆), (G(V),�) and (N, |) are modular.The pentagon lattice L = {0, b1 , b2 , c, 1}

with partial order defined by 0 ≤ b1 < b2 ≤ 1 and 0 ≤ c ≤ 1 with bi and c incomparable, is not modular. We have b1 ≤ b2 ,

b1 ∧ c = b2 ∧ c = 0 b1 ∨ c = b2 ∨ c = 1 but b1 , b2 .

⊕-modular lattices
A lattice L which is bounded from below by 0 (here a⊕b = c means a ∨ b = c and a ∧ b = 0).

is ⊕-distributive if a ∧ (b⊕c) = a ∧ b = b ∧ (a⊕c),if a ∧ c = b ∧ c = 0

satisfies the ⊕-cancellation law if a⊕c = b⊕c ⇒ a = b, if a ∧ c = b ∧ c = 0

is ⊕-modular if (a ≤ b and a⊕c = b⊕c)⇒ a = b, ∀a, b , c ∈ L ,

Example: Modularity⇒ ⊕-modularity so G(V) is ⊕ modular but it does not satisfy the ⊕-distributivity condition.

Remark: ⊕-modularity (resp. ⊕-cancellation) combined with sectional completeness implies modularity.
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Special lattices

Distributivity and modularity are hereditary properties.

1

a b c

0 diamond lattice

1

b2

b1

c

0 pentagon lattice

The diamond lattice is modular and the pentagon lattice is not modular. They are both non distributive, non ⊕ distributive, non ⊕-modular
and have no orthocomplementation.

1

b3

b2

b1

c2

c1

0 extended pentagon lattice

The extended pentagon lattice ⊕-modular but not modular.
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