complementations renormalisation

locality

Sylvie Paycha
joint work with Pierre Clavier, Li Guo and Bin Zhang

Bures sur Yvette, November 17th 2020

$$
\begin{aligned}
& \text { HAPPY } \\
& \text { BIT HAY } \\
& \text { DIR ! }
\end{aligned}
$$

Introduction

Motivations

and locality

and locality

- a (locality) algebra $\left(\mathcal{A}, \top_{A}, m_{A}\right)$ (Feynman graphs, tres, cones)

and locality

- a (locality) algebra $\left(\mathcal{A}, \top_{A}, m_{A}\right)$ (Feynman graphs, trees, cones)
- an algebra of meromorphic germs at zero ($\mathcal{M}, \cdot)$ e.g.: 1 -variable meromorphic germs in A. Connes and D. Kreimer's ABF approach (1998)

and locality

- a (locality) algebra $\left(\mathcal{A}, \top_{A}, m_{A}\right)$ (Feynman graphs, trees, cones)
- an algebra of meromorphic germs at zero (\mathcal{M}, \cdot) e.g.: 1-variable meromorphic germs in A. Connes and D. Kreimer's ABF approach (1998)
- Here $\mathcal{M}=\mathcal{M}\left(\mathbb{C}^{\infty}\right)$ is the algebra of multi-variable meromorphic germs at zero with linear poles.

and locality

- a (locality) algebra $\left(\mathcal{A}, \top_{A}, m_{A}\right)$ (Feynman graphs, tres, cones)
- an algebra of meromorphic germs at zero ($\mathcal{M}, \cdot)$ e.g.: 1 -variable meromorphic germs in A. Connes and D. Kreimer's ABF approach (1998)
- Here $\mathcal{M}=\mathcal{M}\left(\mathbb{C}^{\infty}\right)$ is the algebra of multi-variable meromorphic germs at zero with linear poles.
- a (locality) morphism $\Phi:\left(\mathcal{A}, \top_{A}, m_{A}\right) \longrightarrow(\mathcal{M}, \cdot)_{\text {(Feynman integrals, branched zeta tunctions, }}$ conical zeta functions).

and locality

- a (locality) algebra $\left(\mathcal{A}, \top_{A}, m_{A}\right)$ (Feynman graphs, tres, cones)
- an algebra of meromorphic germs at zero ($\mathcal{M}, \cdot)$ e.g.: 1 -variable meromorphic germs in A. Connes and D. Kreimer's ABF approach (1998)
- Here $\mathcal{M}=\mathcal{M}\left(\mathbb{C}^{\infty}\right)$ is the algebra of multi-variable meromorphic germs at zero with linear poles.
- a (locality) morphism $\Phi:\left(\mathcal{A}, \top_{A}, m_{A}\right) \longrightarrow(\mathcal{M}, \cdot)_{\text {(Feynman integrals, branched zeta functions, }}$ conical zeta functions).
Φ is partially multiplicative: $a_{1} \top_{A} a_{2} \Longrightarrow \Phi\left(m_{A}\left(a_{1}, a_{2}\right)\right)=\Phi\left(a_{1}\right) \cdot \Phi\left(a_{2}\right)$.

and locality

- a (locality) algebra $\left(\mathcal{A}, \top_{A}, m_{A}\right)$ (Feynman graphs, trees, cones)
- an algebra of meromorphic germs at zero ($\mathcal{M}, \cdot)$ e.g.: 1 -variable meromorphic germs in A. Connes and D. Kreimer's ABF approach (1998)
- Here $\mathcal{M}=\mathcal{M}\left(\mathbb{C}^{\infty}\right)$ is the algebra of multi-variable meromorphic germs at zero with linear poles.
- a (locality) morphism $\Phi:\left(\mathcal{A}, \top_{A}, m_{A}\right) \longrightarrow(\mathcal{M}, \cdot)_{\text {(Feynman integrals, branched zeta functions, }}$ conical zeta functions).
Φ is partially multiplicative: $a_{1} T_{A} a_{2} \Longrightarrow \Phi\left(m_{A}\left(a_{1}, a_{2}\right)\right)=\Phi\left(a_{1}\right) \cdot \Phi\left(a_{2}\right)$.

Our task

Build a (locality) character $\Phi^{\text {ren }}:\left(\mathcal{A}, \top_{A}, m_{A}\right) \longrightarrow(\mathbb{C}, \cdot)$

$$
a_{1} \top_{A} a_{2} \Longrightarrow \Phi^{\mathrm{ren}}\left(m_{A}\left(a_{1}, a_{2}\right)\right)=\Phi^{\mathrm{ren}}\left(a_{1}\right) \cdot \Phi^{\mathrm{ren}}\left(a_{2}\right)
$$

and locality

- a (locality) algebra $\left(\mathcal{A}, \top_{A}, m_{A}\right)$ (Feynman graphs, trees, cones)
- an algebra of meromorphic germs at zero ($\mathcal{M}, \cdot)$ e.g.: 1 -variable meromorphic germs in A. Connes and D. Kreimer's ABF approach (1998)
- Here $\mathcal{M}=\mathcal{M}\left(\mathbb{C}^{\infty}\right)$ is the algebra of multi-variable meromorphic germs at zero with linear poles.
- a (locality) morphism $\Phi:\left(\mathcal{A}, \top_{A}, m_{A}\right) \longrightarrow(\mathcal{M}, \cdot)_{\text {(Feynman integrals, branched zeta functions, }}$ conical zeta functions).
Φ is partially multiplicative: $a_{1} T_{A} a_{2} \Longrightarrow \Phi\left(m_{A}\left(a_{1}, a_{2}\right)\right)=\Phi\left(a_{1}\right) \cdot \Phi\left(a_{2}\right)$.

Our task

Build a (locality) character $\Phi^{\text {ren }}:\left(\mathcal{A}, \top_{A}, m_{A}\right) \longrightarrow(\mathbb{C}, \cdot)$

$$
a_{1} \top_{A} a_{2} \Longrightarrow \Phi^{\mathrm{ren}}\left(m_{A}\left(a_{1}, a_{2}\right)\right)=\Phi^{\mathrm{ren}}\left(a_{1}\right) \cdot \Phi^{\mathrm{ren}}\left(a_{2}\right)
$$

Warmup 1: Separating

Warmup 1: Separating

To build $\phi^{\text {ren }}$, one first needs to separate the holomorphic part Φ_{+}from the polar part Φ_{-}of Φ

- In one variable, by means of an algebraic Birkhoff factorisation (ABF) following D. Kreimer and A. Connes;

Warmup 1: Separating

To build $\phi^{\text {ren }}$, one first needs to separate the holomorphic part Φ_{+}from the polar part Φ_{-}of Φ

- In one variable, by means of an algebraic Birkhoff factorisation (ABF) following D. Kreimer and A. Connes;
- In several variables, we split $\mathcal{M}\left(\mathbb{C}^{\infty}\right)=\mathcal{M}=\mathcal{M}_{+} \oplus \mathcal{M}_{-}$into a holomorphic and polar part and then project onto \mathcal{M}_{+}(Multivariable minimal substraction scheme).

Warmup 1: Separating

To build $\phi^{\text {ren }}$, one first needs to separate the holomorphic part Φ_{+}from the polar part Φ_{-}of Φ

- In one variable, by means of an algebraic Birkhoff factorisation (ABF) following D. Kreimer and A. Connes;
- In several variables, we split $\mathcal{M}\left(\mathbb{C}^{\infty}\right)=\mathcal{M}=\mathcal{M}_{+} \oplus \mathcal{M}_{-}$into a holomorphic and polar part and then project onto \mathcal{M}_{+}(Multivariable minimal substraction scheme).
Laurent expansions in one variable: In a neighbourhood of a point $z_{0} \in \mathbb{C}$, a nonzero meromorphic function f is the sum of a Laurent series with at most finite principal part (the terms with negative index values):

Warmup 1: Separating

To build $\phi^{\text {ren }}$, one first needs to separate the holomorphic part Φ_{+}from the polar part Φ_{-}of Φ

- In one variable, by means of an algebraic Birkhoff factorisation (ABF) following D. Kreimer and A. Connes;
- In several variables, we split $\mathcal{M}\left(\mathbb{C}^{\infty}\right)=\mathcal{M}=\mathcal{M}_{+} \oplus \mathcal{M}_{-}$into a holomorphic and polar part and then project onto \mathcal{M}_{+}(Multivariable minimal substraction scheme).
Laurent expansions in one variable: In a neighbourhood of a point $z_{0} \in \mathbb{C}$, a nonzero meromorphic function f is the sum of a Laurent series with at most finite principal part (the terms with negative index values):

$$
f(z)=\sum_{k \geq-n} a_{k}\left(z-z_{0}\right)^{k}=\underbrace{\sum_{k=-n}^{-1} a_{k}\left(z-z_{0}\right)^{k}}_{\text {polar part }}+\underbrace{h\left(z-z_{0}\right)}_{h \text { holomorphic at zero }}=\pi_{-}(f)+\pi_{+}(f)
$$

where n is an integer, and $a_{-n} \neq 0$. If $n>0, f$ has a pole of order n, and if $n \leq 0, f$ has a zero of order $|n|$.

Warmup 1: Separating

To build $\phi^{\text {ren }}$, one first needs to separate the holomorphic part Φ_{+}from the polar part Φ_{-}of Φ

- In one variable, by means of an algebraic Birkhoff factorisation (ABF) following D. Kreimer and A. Connes;
- In several variables, we split $\mathcal{M}\left(\mathbb{C}^{\infty}\right)=\mathcal{M}=\mathcal{M}_{+} \oplus \mathcal{M}_{-}$into a holomorphic and polar part and then project onto \mathcal{M}_{+}(Multivariable minimal substraction scheme).
Laurent expansions in one variable: In a neighbourhood of a point $z_{0} \in \mathbb{C}$, a nonzero meromorphic function f is the sum of a Laurent series with at most finite principal part (the terms with negative index values):

$$
f(z)=\sum_{k \geq-n} a_{k}\left(z-z_{0}\right)^{k}=\underbrace{\sum_{k=-n}^{-1} a_{k}\left(z-z_{0}\right)^{k}}_{\text {polar part }}+\underbrace{h\left(z-z_{0}\right)}_{\text {h holomorphic at zero }}=\pi_{-}(f)+\pi_{+}(f),
$$

where n is an integer, and $a_{-n} \neq 0$. If $n>0, f$ has a pole of order n, and if $n \leq 0, f$ has a zero of order $|n|$.

Our aim

We want to generalise Laurent expansions to meromorphic germs in several variables, so on $\mathcal{M}\left(\mathbb{C}^{\infty}\right)$, we need a separating device on the underlying spaces $V=\mathbb{C}^{k}$ to distinguish the polar part from the holomorphic part.

Warmup 2: Orthogonality separating

Let V be a (resp. topological) vector space and $G(V)$ be the set of all (closed) linear subspaces of V. A (complete, in which case (V, Q) is a Hilbert space) inner product Q on V defines

Warmup 2: Orthogonality separating

Let V be a (resp. topological) vector space and $G(V)$ be the set of all (closed) linear subspaces of V. A (complete, in which case (V, Q) is a Hilbert space) inner product Q on V defines

- a symmetric binary relation on $G(V)$

$$
U_{\perp}{ }^{Q} W \Longleftrightarrow Q(u, w)=0 \quad \forall(u, w) \in U \times W
$$

which separates U and W;

Warmup 2: Orthogonality
 separating

Let V be a (resp. topological) vector space and $G(V)$ be the set of all (closed) linear subspaces of V. A (complete, in which case (V, Q) is a Hilbert space) inner product Q on V defines

- a symmetric binary relation on $G(V)$

$$
U_{\perp}{ }^{Q} W \Longleftrightarrow Q(u, w)=0 \quad \forall(u, w) \in U \times W
$$

which separates U and W;
(1) a complementation on $G(V)$ with $U^{-}:=\{W \in G(V), \quad Q(u, w)=0 \quad \forall(u, w) \in U \times W\}$, which is closed:

$$
\begin{aligned}
\Psi^{Q}: G(V) & \longrightarrow G(V) \\
U & \longmapsto U^{+}
\end{aligned}
$$

Warmup 2: Orthogonality separating

Let V be a (resp. topological) vector space and $G(V)$ be the set of all (closed) linear subspaces of V. A (complete, in which case (V, Q) is a Hilbert space) inner product Q on V defines

- a symmetric binary relation on $G(V)$

$$
U_{\perp}{ }^{Q} W \Longleftrightarrow Q(u, w)=0 \quad \forall(u, w) \in U \times W
$$

which separates U and W;

- a complementation on $G(V)$ with $U^{\perp}:=\{W \in G(V), \quad Q(u, w)=0 \quad \forall(u, w) \in U \times W\}$, which is closed:

$$
\begin{aligned}
\Psi^{Q}: G(V) & \longrightarrow G(V) \\
U & \longmapsto U^{+}
\end{aligned}
$$

the two are related by

$$
U \perp^{Q} W \Leftrightarrow W \subset U^{\perp}\left(\Leftrightarrow W \in \downarrow U^{\perp}\right) \text { and } \quad \Psi^{Q}(U)=\max U^{\perp} .
$$

Warmup 2: Orthogonality
 separating

Let V be a (resp. topological) vector space and $G(V)$ be the set of all (closed) linear subspaces of V. A (complete, in which case (V, Q) is a Hilbert space) inner product Q on V defines

- a symmetric binary relation on $G(V)$

$$
U_{\perp}{ }^{Q} W \Longleftrightarrow Q(u, w)=0 \quad \forall(u, w) \in U \times W
$$

which separates U and W;
(-) a complementation on $G(V)$ with $U^{-}:=\{W \in G(V), \quad Q(u, w)=0 \quad \forall(u, w) \in U \times W\}$, which is closed:

$$
\begin{aligned}
\psi^{Q}: G(V) & \longrightarrow G(V) \\
U & \longmapsto U^{+}
\end{aligned}
$$

the two are related by

$$
U \perp^{Q} W \Leftrightarrow W \subset U^{\perp}\left(\Leftrightarrow W \in \downarrow U^{\perp}\right) \text { and } \quad \psi^{Q}(U)=\max U^{\perp} .
$$

Orthogonal complements are useful to separate polar parts from holomorphic parts of meromorphic germs.

Warmup 2: Orthogonality
 separating

Let V be a (resp. topological) vector space and $G(V)$ be the set of all (closed) linear subspaces of V. A (complete, in which case (V, Q) is a Hilbert space) inner product Q on V defines

- a symmetric binary relation on $G(V)$

$$
U_{\perp}{ }^{Q} W \Longleftrightarrow Q(u, w)=0 \quad \forall(u, w) \in U \times W,
$$

which separates U and W;
(-) a complementation on $G(V)$ with $U^{-}:=\{W \in G(V), \quad Q(u, w)=0 \quad \forall(u, w) \in U \times W\}$, which is closed:

$$
\begin{aligned}
\Psi^{Q}: G(V) & \longrightarrow G(V) \\
U & \longmapsto U^{+}
\end{aligned}
$$

the two are related by

$$
U \perp^{Q} W \Leftrightarrow W \subset U^{\perp}\left(\Leftrightarrow W \in \downarrow U^{\perp}\right) \text { and } \quad \Psi^{Q}(U)=\max U^{\perp} .
$$

Orthogonal complements are useful to separate polar parts from holomorphic parts of meromorphic germs.

Relative complement maps are also used to

- define coproducts $\Delta x=\sum_{y \leq x} x \otimes x \backslash y$ from a (relative) complementation on a poset (X, \leq) (Feynman diagrams, rooted trees)

Warmup 2: Orthogonality
 separating

Let V be a (resp. topological) vector space and $G(V)$ be the set of all (closed) linear subspaces of V. A (complete, in which case (V, Q) is a Hilbert space) inner product Q on V defines

- a symmetric binary relation on $G(V)$

$$
U_{\perp}{ }^{Q} W \Longleftrightarrow Q(u, w)=0 \quad \forall(u, w) \in U \times W
$$

which separates U and W;

- a complementation on $G(V)$ with $U^{\perp}:=\{W \in G(V), \quad Q(u, w)=0 \quad \forall(u, w) \in U \times W\}$, which is closed:

$$
\begin{aligned}
\Psi^{Q}: G(V) & \longrightarrow G(V) \\
U & \longmapsto U^{+}
\end{aligned}
$$

the two are related by

$$
U \perp^{Q} W \Leftrightarrow W \subset U^{\perp}\left(\Leftrightarrow W \in \downarrow U^{\perp}\right) \text { and } \quad \psi^{Q}(U)=\max U^{\perp} .
$$

Orthogonal complements are useful to separate polar parts from holomorphic parts of meromorphic germs.

Relative complement maps are also used to

- define coproducts $\Delta x=\sum_{y \leq x} x \otimes x \backslash y$ from a (relative) complementation on a poset (X, \leq) (Feynman diagrams, rooted trees)
- to prove Euler-Maclaurin formulae on convex polytopes [Garoufalidis, Pommersheim (2010)], [Berline, Vergne (2007)].

Our aim today

Question

which symmetric binary relations define a reasonable complement map?

Our aim today

Question

which symmetric binary relations define a reasonable complement map?
the 1-1 correspondence on $(G(V), Q)$

Our aim today

Question

which symmetric binary relations define a reasonable complement map?
the 1-1 correspondence on $(G(V), Q)$

to a 1-1 correspondence on a class of locality lattices (L, T)

$$
\top \longleftrightarrow \psi^{\top}
$$

with "orthocomplementations" ψ^{\top}.

$$
U \top W \Leftrightarrow W \in \downarrow U^{\top} \quad \text { and } \quad \psi^{\top}(U)=\max U^{\top} .
$$

Part I.

Orthogonality in Laurent expansions

$4 \square>4$ 司 1 引

with linear poles

- $\mathcal{M}\left(\mathbb{C}^{k}\right) \ni f=\frac{h\left(\ell_{1}, \cdots, \ell_{n}\right)}{L_{1}^{s_{1} \cdots L_{n}^{s_{n}}}}, h$ holomorphic germ, $s_{i} \in \mathbb{Z}_{\geq 0}$,

with linear poles

- $\mathcal{M}\left(\mathbb{C}^{k}\right) \ni f=\frac{h\left(\ell_{1}, \cdots, \ell_{n}\right)}{L_{1}^{s_{1}} \ldots L_{n}^{s_{n}}}, h$ holomorphic germ, $s_{i} \in \mathbb{Z}_{\geq 0}$,
- $\ell_{i}: \mathbb{C}^{k} \rightarrow \mathbb{C}, L_{j}: \mathbb{C}^{k} \rightarrow \mathbb{C}$ linear forms with real coefficients (lie in $\left.\mathcal{L}\left(\mathbb{C}^{k}\right)\right)$.

with linear poles

- $\mathcal{M}\left(\mathbb{C}^{k}\right) \ni f=\frac{h\left(\ell_{1}, \cdots, \ell_{n}\right)}{L_{1}^{s_{1}} \ldots L_{n}^{s_{n}}}, h$ holomorphic germ, $s_{i} \in \mathbb{Z}_{\geq 0}$,
- $\ell_{i}: \mathbb{C}^{k} \rightarrow \mathbb{C}, L_{j}: \mathbb{C}^{k} \rightarrow \mathbb{C}$ linear forms with real coefficients (lie in $\left.\mathcal{L}\left(\mathbb{C}^{k}\right)\right)$.
- Example: $\left(z_{1}, z_{2}\right) \longmapsto \frac{z_{1}-z_{2}}{z_{1}+z_{2}}$.

with linear poles

- $\mathcal{M}\left(\mathbb{C}^{k}\right) \ni f=\frac{h\left(\ell_{1}, \cdots, \ell_{n}\right)}{L_{1}^{s_{1}} \ldots L_{n}^{s_{n}}}, h$ holomorphic germ, $s_{i} \in \mathbb{Z}_{\geq 0}$,
- $\ell_{i}: \mathbb{C}^{k} \rightarrow \mathbb{C}, L_{j}: \mathbb{C}^{k} \rightarrow \mathbb{C}$ linear forms with real coefficients (lie in $\left.\mathcal{L}\left(\mathbb{C}^{k}\right)\right)$.
- Example: $\left(z_{1}, z_{2}\right) \longmapsto \frac{z_{1}-z_{2}}{z_{1}+z_{2}}$.

Independence of
 and orthogonality

with linear poles

- $\mathcal{M}\left(\mathbb{C}^{k}\right) \ni f=\frac{h\left(\ell_{1}, \cdots, \ell_{n}\right)}{L_{1}^{s_{1}} \ldots L_{n}^{s_{n}}}, h$ holomorphic germ, $s_{i} \in \mathbb{Z}_{\geq 0}$,
- $\ell_{i}: \mathbb{C}^{k} \rightarrow \mathbb{C}, L_{j}: \mathbb{C}^{k} \rightarrow \mathbb{C}$ linear forms with real coefficients (lie in $\left.\mathcal{L}\left(\mathbb{C}^{k}\right)\right)$.
- Example: $\left(z_{1}, z_{2}\right) \longmapsto \frac{z_{1}-z_{2}}{z_{1}+z_{2}}$.

Independence of
 and orthogonality

- Dependence set $\operatorname{Dep}(f):=\left\langle\ell_{1}, \cdots, \ell_{m}, L_{1}, \cdots, L_{n}\right\rangle$.

with linear poles

- $\mathcal{M}\left(\mathbb{C}^{k}\right) \ni f=\frac{h\left(\ell_{1}, \cdots, \ell_{n}\right)}{L_{1}^{s_{1}} \ldots L_{n}^{s_{n}}}, h$ holomorphic germ, $s_{i} \in \mathbb{Z}_{\geq 0}$,
- $\ell_{i}: \mathbb{C}^{k} \rightarrow \mathbb{C}, L_{j}: \mathbb{C}^{k} \rightarrow \mathbb{C}$ linear forms with real coefficients (lie in $\left.\mathcal{L}\left(\mathbb{C}^{k}\right)\right)$.
- Example: $\left(z_{1}, z_{2}\right) \longmapsto \frac{z_{1}-z_{2}}{z_{1}+z_{2}}$.

Independence of
 and orthogonality

- Dependence set $\operatorname{Dep}(f):=\left\langle\ell_{1}, \cdots, \ell_{m}, L_{1}, \cdots, L_{n}\right\rangle$.
- An inner product Q on \mathbb{R}^{k} induces one on $\mathcal{L}\left(\mathbb{C}^{k}\right)$ and the symmetric binary relation

$$
f_{1} \perp^{Q} f_{2} \Longleftrightarrow \operatorname{Dep}\left(f_{1}\right) \perp^{Q} \operatorname{Dep}\left(f_{2}\right)
$$

with linear poles

- $\mathcal{M}\left(\mathbb{C}^{k}\right) \ni f=\frac{h\left(\ell_{1}, \cdots, \ell_{n}\right)}{L_{1}^{s_{1}} \ldots L_{n}^{s_{n}}}, h$ holomorphic germ, $s_{i} \in \mathbb{Z}_{\geq 0}$,
- $\ell_{i}: \mathbb{C}^{k} \rightarrow \mathbb{C}, L_{j}: \mathbb{C}^{k} \rightarrow \mathbb{C}$ linear forms with real coefficients (lie in $\left.\mathcal{L}\left(\mathbb{C}^{k}\right)\right)$.
- Example: $\left(z_{1}, z_{2}\right) \longmapsto \frac{z_{1}-z_{2}}{z_{1}+z_{2}}$.

Independence of
 and orthogonality

- Dependence set $\operatorname{Dep}(f):=\left\langle\ell_{1}, \cdots, \ell_{m}, L_{1}, \cdots, L_{n}\right\rangle$.
- An inner product Q on \mathbb{R}^{k} induces one on $\mathcal{L}\left(\mathbb{C}^{k}\right)$ and the symmetric binary relation

$$
f_{1} \perp^{Q} f_{2} \Longleftrightarrow \operatorname{Dep}\left(f_{1}\right) \perp^{Q} \operatorname{Dep}\left(f_{2}\right)
$$

separates two meromorphic germs.

- $\left(z_{1}-z_{2}\right) \perp^{Q}\left(z_{1}+z_{2}\right)$ with Q : canonical inner product on \mathbb{R}^{2}.

Polar germs

A Q-polar germ in $\mathcal{M}\left(\mathbb{C}^{k}\right): \quad S:=\frac{h\left(\ell_{1}, \cdots, \ell_{m}\right)}{L_{1}^{s_{1}} \ldots L_{n}^{s_{n}}}$, such that

Polar germs

A Q-polar germ in $\mathcal{M}\left(\mathbb{C}^{k}\right): \quad S:=\frac{h\left(\ell_{1}, \cdots, \ell_{m}\right)}{L_{1}^{s_{1}} \ldots L_{n}^{s_{n}}}$, such that

- h is holomorphic at zero i.e. $h \in \mathcal{M}_{+}\left(\mathbb{C}^{k}\right)$;

A Q-polar germ in $\mathcal{M}\left(\mathbb{C}^{k}\right): \quad S:=\frac{h\left(\ell_{1}, \cdots, \ell_{m}\right)}{L_{1}^{s_{1} \ldots L_{n}^{s n}}}$, such that

- h is holomorphic at zero i.e. $h \in \mathcal{M}_{+}\left(\mathbb{C}^{k}\right)$;
- $\ell_{1}, \cdots, \ell_{m}, L_{1}, \cdots, L_{n}$ are linearly independent

A Q-polar germ in $\mathcal{M}\left(\mathbb{C}^{k}\right): \quad S:=\frac{h\left(\ell_{1}, \cdots, \ell_{m}\right)}{L_{1}^{s_{1} \ldots L_{n}^{s n}}}$, such that

- h is holomorphic at zero i.e. $h \in \mathcal{M}_{+}\left(\mathbb{C}^{k}\right)$;
- $\ell_{1}, \cdots, \ell_{m}, L_{1}, \cdots, L_{n}$ are linearly independent and $\left\langle\ell_{1}, \cdots, \ell_{m}\right\rangle \perp^{Q}\left\langle L_{1}, \cdots, L_{n}\right\rangle$.

Polar

A Q-polar germ in $\mathcal{M}\left(\mathbb{C}^{k}\right): \quad S:=\frac{h\left(\ell_{1}, \cdots, \ell_{m}\right)}{L_{1}^{1, \ldots \ldots L_{n}^{n}}}$, such that

- h is holomorphic at zero i.e. $h \in \mathcal{M}_{+}\left(\mathbb{C}^{k}\right)$;
- $\ell_{1}, \cdots, \ell_{m}, L_{1}, \cdots, L_{n}$ are linearly independent and $\left\langle\ell_{1}, \cdots, \ell_{m}\right\rangle \perp^{Q}\left\langle L_{1}, \cdots, L_{n}\right\rangle$.

Polar germs generate the subspace $\mathcal{M}_{-}{ }^{Q}\left(\mathbb{C}^{k}\right) \subset \mathcal{M}\left(\mathbb{C}^{k}\right)$.

- supporting cone in \mathbb{R}^{k} of the germ $S: C(S):=\sum_{i=1}^{m} \mathbb{R}_{+} L_{i}$;

Polar

A Q-polar germ in $\mathcal{M}\left(\mathbb{C}^{k}\right): \quad S:=\frac{h\left(\ell_{1}, \cdots, \ell_{m}\right)}{L_{1}^{\text {s. }} \ldots L_{n}^{n}}$, such that

- h is holomorphic at zero i.e. $h \in \mathcal{M}_{+}\left(\mathbb{C}^{k}\right)$;
- $\ell_{1}, \cdots, \ell_{m}, L_{1}, \cdots, L_{n}$ are linearly independent and $\left\langle\ell_{1}, \cdots, \ell_{m}\right\rangle \perp^{Q}\left\langle L_{1}, \cdots, L_{n}\right\rangle$.

Polar germs generate the subspace $\mathcal{M}_{-}{ }^{Q}\left(\mathbb{C}^{k}\right) \subset \mathcal{M}\left(\mathbb{C}^{k}\right)$.

- supporting cone in \mathbb{R}^{k} of the germ $S: C(S):=\sum_{i=1}^{m} \mathbb{R}_{+} L_{i}$;
- A family of cones is properly positioned if the cones meet along faces and their union does not contain any nontrivial subspace;

A Q-polar germ in $\mathcal{M}\left(\mathbb{C}^{k}\right): \quad S:=\frac{h\left(\ell_{1}, \cdots, \ell_{m}\right)}{L_{1}^{s} \ldots L_{n}^{s n}}$, such that

- h is holomorphic at zero i.e. $h \in \mathcal{M}_{+}\left(\mathbb{C}^{k}\right)$;
- $\ell_{1}, \cdots, \ell_{m}, L_{1}, \cdots, L_{n}$ are linearly independent and $\left\langle\ell_{1}, \cdots, \ell_{m}\right\rangle \perp^{Q}\left\langle L_{1}, \cdots, L_{n}\right\rangle$.

Polar germs generate the subspace $\mathcal{M}_{-}^{Q}\left(\mathbb{C}^{k}\right) \subset \mathcal{M}\left(\mathbb{C}^{k}\right)$.

- supporting cone in \mathbb{R}^{k} of the germ $S: C(S):=\sum_{i=1}^{m} \mathbb{R}_{+} L_{i}$;
- A family of cones is properly positioned if the cones meet along faces and their union does not contain any nontrivial subspace;
- A family $S_{j}, j \in J$ of polar germs whose supporting cones form a family of properly positioned cones is called properly positioned.

A Q-polar germ in $\mathcal{M}\left(\mathbb{C}^{k}\right): \quad S:=\frac{h\left(\ell_{1}, \cdots, \ell_{m}\right)}{L_{1}^{s} \ldots L_{n}^{s n}}$, such that

- h is holomorphic at zero i.e. $h \in \mathcal{M}_{+}\left(\mathbb{C}^{k}\right)$;
- $\ell_{1}, \cdots, \ell_{m}, L_{1}, \cdots, L_{n}$ are linearly independent and $\left\langle\ell_{1}, \cdots, \ell_{m}\right\rangle \perp^{Q}\left\langle L_{1}, \cdots, L_{n}\right\rangle$.

Polar germs generate the subspace $\mathcal{M}_{-}^{Q}\left(\mathbb{C}^{k}\right) \subset \mathcal{M}\left(\mathbb{C}^{k}\right)$.

- supporting cone in \mathbb{R}^{k} of the germ $S: C(S):=\sum_{i=1}^{m} \mathbb{R}_{+} L_{i}$;
- A family of cones is properly positioned if the cones meet along faces and their union does not contain any nontrivial subspace;
- A family $S_{j}, j \in J$ of polar germs whose supporting cones form a family of properly positioned cones is called properly positioned.

The inner product Q and the orthocomplementation ψ^{Q} play a central role in the following decomposition.

The inner product Q and the orthocomplementation ψ^{Q} play a central role in the following decomposition.

Theorem
(L. Guo, S.P., B. Zhang PJM 2020)

The inner product Q and the orthocomplementation ψ^{Q} play a central role in the following decomposition.

Theorem

(L. Guo, S.P., B. Zhang PJM 2020)Given a meromorphic germ $f \in \mathcal{M}\left(\mathbb{C}^{k}\right)$, there exists a finite set of polar germs $\mathcal{M}_{-}^{Q}\left(\mathbb{C}^{k}\right) \ni\left\{S=\frac{h_{j}}{L_{j 1}^{s j_{1}} \ldots L_{j n_{j}}^{s m_{j}}}\right\}_{j \in J}$

The inner product Q and the orthocomplementation ψ^{Q} play a central role in the following decomposition.

Theorem

(L. Guo, S.P., B. Zhang PJM 2020)Given a meromorphic germ $f \in \mathcal{M}\left(\mathbb{C}^{k}\right)$, there exists a finite set of polar germs $\mathcal{M}_{-}^{Q}\left(\mathbb{C}^{\kappa}\right) \ni\left\{S=\frac{h_{j}}{L_{j 1}^{s j_{1}} \ldots L_{i m_{j}}^{s m_{j}}}\right\}_{j \in J}$
i) that are properly positioned ;

The inner product Q and the orthocomplementation ψ^{Q} play a central role in the following decomposition.

Theorem

(L. Guo, S.P., B. Zhang PJM 2020)Given a meromorphic germ $f \in \mathcal{M}\left(\mathbb{C}^{k}\right)$, there exists a finite set of polar germs $\mathcal{M}_{-}^{Q}\left(\mathbb{C}^{\kappa}\right) \ni\left\{S=\frac{h_{j}}{L_{j 1}^{s s_{1}} \ldots L_{i_{j}}^{s m_{j}}}\right\}_{j \in J}$
i) that are properly positioned ;ii) whose denominators are pairwise not proportional ;

The inner product Q and the orthocomplementation ψ^{Q} play a central role in the following decomposition.

Theorem

(L. Guo, S.P., B. Zhang PJM 2020)Given a meromorphic germ $f \in \mathcal{M}\left(\mathbb{C}^{k}\right)$, there exists a finite set of polar germs $\mathcal{M}_{-}^{Q}\left(\mathbb{C}^{\kappa}\right) \ni\left\{S=\frac{h_{j}}{L_{j i}^{s_{1} \ldots L_{m_{i}}^{s_{j} m_{j}}}}\right\}_{j \in J}$
i) that are properly positioned ;ii) whose denominators are pairwise not proportional ; iii) and a holomorphic germ h,

The inner product Q and the orthocomplementation ψ^{Q} play a central role in the following decomposition.

Theorem

(L. Guo, S.P., B. Zhang PJM 2020)Given a meromorphic germ $f \in \mathcal{M}\left(\mathbb{C}^{k}\right)$, there exists a finite set of polar germs $\mathcal{M}_{-}^{Q}\left(\mathbb{C}^{\kappa}\right) \ni\left\{S=\frac{h_{j}}{L_{j 1}^{s_{1} \ldots L_{i m_{j}}^{s m_{j}}}}\right\}_{j \in J}$
i) that are properly positioned ;ii) whose denominators are pairwise not proportional ; iii) and a holomorphic germ h, such that the following Laurent expansion holds

$$
f=\left[\sum_{j \in J} S_{j}\right] \oplus^{Q} h=: \mathscr{L}_{C}(f) .
$$

Here, $C=\left\{\left(C\left(S_{j}\right)\right), j \in J\right\}$, is a properly positioned family of simplicial cones.

The inner product Q and the orthocomplementation ψ^{Q} play a central role in the following decomposition.

Theorem

(L. Guo, S.P., B. Zhang PJM 2020)Given a meromorphic germ $f \in \mathcal{M}\left(\mathbb{C}^{k}\right)$, there exists a finite set of polar germs $\mathcal{M}_{-}^{Q}\left(\mathbb{C}^{k}\right) \ni\left\{S=\frac{h_{j}}{L_{j i 1}^{s_{1} \ldots L_{m_{j}}^{s m_{j}}}}\right\}_{j \in J}$
i) that are properly positioned ;ii) whose denominators are pairwise not proportional ; iii) and a holomorphic germ h, such that the following Laurent expansion holds

$$
f=\left[\sum_{j \in J} S_{j}\right] \oplus^{Q} h=: \mathscr{L}_{C}(f) .
$$

Here, $C=\left\{\left(C\left(S_{j}\right)\right), j \in J\right\}$, is a properly positioned family of simplicial cones.
Warning: The holomorphic germ h is unique yet the decomposition is not unique: $\frac{1}{L_{1} L_{2}}=\frac{1}{L_{1}\left(L_{1}+L_{2}\right)}+\frac{1}{L_{2}\left(L_{1}+L_{2}\right)}$.

Part II

Orthogonality as a locality relation

- Given a (resp. topological) vector space V, let $G(V)$ denote the set of finite dimensional (resp. closed) linear subspaces of V,
- Given a (resp. topological) vector space V, let $G(V)$ denote the set of finite dimensional (resp. closed) linear subspaces of V, equipped with the partial order "to be a (resp. closed) linear subspace of" denoted by \leq.
- Given a (resp. topological) vector space V, let $G(V)$ denote the set of finite dimensional (resp. closed) linear subspaces of V, equipped with the partial order "to be a (resp. closed) linear subspace of" denoted by \leq.
- Given a Hilbert (finite or infinite dimensional) vector space (V, Q), the binary relation $U T W \Longleftrightarrow U \perp^{Q} W$ defines a locality relation on the poset $G(V)$.
- Given a (resp. topological) vector space V, let $G(V)$ denote the set of finite dimensional (resp. closed) linear subspaces of V, equipped with the partial order "to be a (resp. closed) linear subspace of" denoted by \leq.
- Given a Hilbert (finite or infinite dimensional) vector space (V, Q), the binary relation $U T W \Longleftrightarrow U \perp^{Q} W$ defines a locality relation on the poset $G(V)$.

Orthogonality as a separating device

- (Recall) Dependence set $\operatorname{Dep}(f):=\left\langle\ell_{1}, \cdots, \ell_{m}, L_{1}, \cdots, L_{n}\right\rangle, \ell_{i}, L_{j} \in \mathcal{L}\left(\mathbb{C}^{k}\right)$.
- Given a (resp. topological) vector space V, let $G(V)$ denote the set of finite dimensional (resp. closed) linear subspaces of V, equipped with the partial order "to be a (resp. closed) linear subspace of" denoted by \leq.
- Given a Hilbert (finite or infinite dimensional) vector space (V, Q), the binary relation $U T W \Longleftrightarrow U \perp^{Q} W$ defines a locality relation on the poset $G(V)$.

Orthogonality as a separating device

- (Recall) Dependence set $\operatorname{Dep}(f):=\left\langle\ell_{1}, \cdots, \ell_{m}, L_{1}, \cdots, L_{n}\right\rangle, \ell_{i}, L_{j} \in \mathcal{L}\left(\mathbb{C}^{k}\right)$.
- An inner product Q on \mathbb{R}^{k} induces one on $\mathcal{L}\left(\mathbb{C}^{k}\right)$ and we set

$$
f_{1} \perp^{Q} f_{2} \Longleftrightarrow \operatorname{Dep}\left(f_{1}\right) \perp^{Q} \operatorname{Dep}\left(f_{2}\right),
$$

which separates the functions according to the variables they depend on.

- Given a (resp. topological) vector space V, let $G(V)$ denote the set of finite dimensional (resp. closed) linear subspaces of V, equipped with the partial order "to be a (resp. closed) linear subspace of" denoted by \leq.
- Given a Hilbert (finite or infinite dimensional) vector space (V, Q), the binary relation $U T W \Longleftrightarrow U \perp^{Q} W$ defines a locality relation on the poset $G(V)$.

Orthogonality as a separating device

- (Recall) Dependence set $\operatorname{Dep}(f):=\left\langle\ell_{1}, \cdots, \ell_{m}, L_{1}, \cdots, L_{n}\right\rangle, \ell_{i}, L_{j} \in \mathcal{L}\left(\mathbb{C}^{k}\right)$.
- An inner product Q on \mathbb{R}^{k} induces one on $\mathcal{L}\left(\mathbb{C}^{k}\right)$ and we set

$$
f_{1} \perp^{Q} f_{2} \Longleftrightarrow \operatorname{Dep}\left(f_{1}\right) \perp^{Q} \operatorname{Dep}\left(f_{2}\right),
$$

which separates the functions according to the variables they depend on.

- $\left(z_{1}-z_{2}\right) \perp^{Q}\left(z_{1}+z_{2}\right)$ with Q : canonical inner product on \mathbb{R}^{2}.

Part III

The lattice $G(V)$

- A lattice is a poset (L, \leq), with a join $(a, b) \mapsto a \vee b$, and a meet $(a, b) \mapsto a \wedge b$.
- A lattice is a poset (L, \leq), with a join $(a, b) \mapsto a \vee b$, and a meet $(a, b) \mapsto a \wedge b$.
- $\vee: L \times L \rightarrow L$ and $\wedge: L \times L \rightarrow L$ are associative and monotone with respect to the order: $\left(a_{1} \leq b_{1}\right.$ and $\left.a_{2} \leq b_{2}\right) \Longrightarrow\left(a_{1} \wedge a_{2} \leq b_{1} \wedge b_{2}\right.$ and $\left.a_{1} \vee a_{2} \leq b_{1} \vee b_{2}\right)$.
- A lattice is a poset (L, \leq), with a join $(a, b) \mapsto a \vee b$, and a meet $(a, b) \mapsto a \wedge b$.
- $\vee: L \times L \rightarrow L$ and $\wedge: L \times L \rightarrow L$ are associative and monotone with respect to the order: $\left(a_{1} \leq b_{1}\right.$ and $\left.a_{2} \leq b_{2}\right) \Longrightarrow\left(a_{1} \wedge a_{2} \leq b_{1} \wedge b_{2}\right.$ and $\left.a_{1} \vee a_{2} \leq b_{1} \vee b_{2}\right)$.
- A lattice (L, \leq, \wedge, \vee) is bounded from above (resp. from below)) if it has a greatest element 1 (resp. a least element 0), which satisfies $x \leq 1$ (resp. $0 \leq x$) for any $x \in L$. Alaticice ($L, \leq, 0,1$) bounded from below and from above is called bounded.
- A lattice is a poset (L, \leq), with a join $(a, b) \mapsto a \vee b$, and a meet $(a, b) \mapsto a \wedge b$.
- $\vee: L \times L \rightarrow L$ and $\wedge: L \times L \rightarrow L$ are associative and monotone with respect to the order: $\left(a_{1} \leq b_{1}\right.$ and $\left.a_{2} \leq b_{2}\right) \Longrightarrow\left(a_{1} \wedge a_{2} \leq b_{1} \wedge b_{2}\right.$ and $\left.a_{1} \vee a_{2} \leq b_{1} \vee b_{2}\right)$.
- A lattice (L, \leq, \wedge, \vee) is bounded from above (resp. from below)) if it has a greatest element 1 (resp. a least element 0), which satisfies $x \leq 1$ (resp. $0 \leq x$) for any $x \in L$. A lattice ($L, \leq, 0,1$) bounded from below and from above is called bounded.
- A lattice is distributive if \wedge and \vee are distributive w.r. to each other: $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$ or equivalently $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$,
- A lattice is a poset (L, \leq), with a join $(a, b) \mapsto a \vee b$, and a meet $(a, b) \mapsto a \wedge b$.
- $\vee: L \times L \rightarrow L$ and $\wedge: L \times L \rightarrow L$ are associative and monotone with respect to the order: $\left(a_{1} \leq b_{1}\right.$ and $\left.a_{2} \leq b_{2}\right) \Longrightarrow\left(a_{1} \wedge a_{2} \leq b_{1} \wedge b_{2}\right.$ and $\left.a_{1} \vee a_{2} \leq b_{1} \vee b_{2}\right)$.
- A lattice (L, \leq, \wedge, \vee) is bounded from above (resp. from below)) if it has a greatest element 1 (resp. a least element 0), which satisfies $x \leq 1$ (resp. $0 \leq x$) for any $x \in L$. Alaticice ($L, \leq, 0,1$) bounded from below and from above is called bounded.
- A lattice is distributive if \wedge and \vee are distributive w.r. to each other: $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$ or equivalentiy $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$,
or equivalently if the cancellation law holds:
$a \wedge c=b \wedge c$ and $a \vee c=b \vee c) \Longleftrightarrow a=b$

Examples

- The power set $(\mathcal{P}(X), \subseteq)$ is a distributive lattice for the union \cup and the intersection \cap bounded by $1=X$ and $0=\emptyset$.
- A lattice is a poset (L, \leq), with a join $(a, b) \mapsto a \vee b$, and a meet $(a, b) \mapsto a \wedge b$.
- $\vee: L \times L \rightarrow L$ and $\wedge: L \times L \rightarrow L$ are associative and monotone with respect to the order: $\left(a_{1} \leq b_{1}\right.$ and $\left.a_{2} \leq b_{2}\right) \Rightarrow\left(a_{1} \wedge a_{2} \leq b_{1} \wedge b_{2}\right.$ and $\left.a_{1} \vee a_{2} \leq b_{1} \vee b_{2}\right)$.
- A lattice (L, \leq, \wedge, \vee) is bounded from above (resp. from below)) if it has a greatest element 1 (resp. a least element 0), which satisfies $x \leq 1$ (resp. $0 \leq x$) for any $x \in L$. Alaticice ($L, \leq, 0,1$) bounded from below and from above is called bounded.
- A lattice is distributive if \wedge and \vee are distributive w.r. to each other: $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$ or equivalenty $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$, or equivalently if the cancellation law holds: $(a \wedge c=b \wedge c$ and $a \vee c=b \vee c) \Longleftrightarrow a=b$

Examples

- The power set $(\mathcal{P}(X), \subsetneq)$ is a distributive lattice for the union \cup and the intersection \cap bounded by $1=X$ and $0=\emptyset$.
- \mathbb{N} can be equipped with the partial order $a \mid b \Longleftrightarrow \exists k \in \mathbb{N}, b=a k$. Then $a \wedge b$ corresponds to the largest common divisor of a and b whereas $a \vee b$ is the smallest common multiple of a and b. With these two operations, $(\mathbb{N}, \mid, \wedge, v)$ is a distributive lattice. It is bounded from below by 1 but not bounded from above.
- A lattice is a poset (L, \leq), with a join $(a, b) \mapsto a \vee b$, and a meet $(a, b) \mapsto a \wedge b$.
- $\vee: L \times L \rightarrow L$ and $\wedge: L \times L \rightarrow L$ are associative and monotone with respect to the order: $\left(a_{1} \leq b_{1}\right.$ and $\left.a_{2} \leq b_{2}\right) \Rightarrow\left(a_{1} \wedge a_{2} \leq b_{1} \wedge b_{2}\right.$ and $\left.a_{1} \vee a_{2} \leq b_{1} \vee b_{2}\right)$.
- A lattice (L, \leq, \wedge, \vee) is bounded from above (resp. from below)) if it has a greatest element 1 (resp. a least element 0), which satisfies $x \leq 1$ (resp. $0 \leq x$) for any $x \in L$. Alatice ($L, \leq, 0,1$) bounded from below and from above is called bounded.
- A lattice is distributive if \wedge and \vee are distributive w.r. to each other: $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$ or equivalenty $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$, or equivalently if the cancellation law holds: $(a \wedge c=b \wedge c$ and $a \vee c=b \vee c) \Longleftrightarrow a=b$

Examples

- The power set $(\mathcal{P}(X), \subsetneq)$ is a distributive lattice for the union \cup and the intersection \cap bounded by $1=X$ and $0=\emptyset$.
- \mathbb{N} can be equipped with the partial order $a \mid b \Longleftrightarrow \exists k \in \mathbb{N}, b=a k$. Then $a \wedge b$ corresponds to the largest common divisor of a and b whereas $a \vee b$ is the smallest common multiple of a and b. With these two operations, $(\mathbb{N}, \mid, \wedge, v)$ is a distributive lattice. It is bounded from below by 1 but not bounded from above.
- Given a finite dimensional vector space $V,(G(V), \leq)$ is a non distributive lattice equipped with the sum $V=+$ and the intersection $\wedge=\cap$ as lattice operations. It is bounded by $0=\{0\}$ and $1=V$.
- In a lattice (L, \leq), the set $\downarrow a:=\{b \leq a, b \in L\}$ is a sub-lattice (even a lattice ideal) of L.

orthomodular

Orthomodular lattices

- A bounded lattice $(L, \leq, 0,1)$ is complemented if $\forall a \in L, \exists b \in L, a \oplus b=1$ (here $a \oplus b=c$ means $a \vee b=c$ and $a \wedge b=0$).

orthomodular

Orthomodular lattices

- A bounded lattice $(L, \leq, 0,1)$ is complemented if $\forall a \in L, \exists b \in L, a \oplus b=1$ (here $a \oplus b=c$ means $a \vee b=c$ and $a \wedge b=0$).
- An orthocomplemented lattice is a complemented lattice equipped with an orthocomplement map $\psi: L \rightarrow L$ such that

orthomodular

Orthomodular lattices

- A bounded lattice $(L, \leq, 0,1)$ is complemented if $\forall a \in L, \exists b \in L, a \oplus b=1$ (here $a \oplus b=c$ means $a \vee b=c$ and $a \wedge b=0$).
- An orthocomplemented lattice is a complemented lattice equipped with an orthocomplement map $\psi: L \rightarrow L$ such that
(1) (separating) $a \wedge \psi(a)=0 \quad$ (Note: (1)+(2)+(3) $\Rightarrow a \oplus \psi(a)=1$);
(2) (antitone) $b \leq a \Longrightarrow \psi(a) \leq \psi(b) \quad$ (Note: $\psi(0)=1)$;
(8) (involutive) $\psi^{2}=\mathrm{Id}$.

orthomodular

Orthomodular lattices

- A bounded lattice $(L, \leq, 0,1)$ is complemented if $\forall a \in L, \exists b \in L, a \oplus b=1$ (here $a \oplus b=c$ means $a \vee b=c$ and $a \wedge b=0$).
- An orthocomplemented lattice is a complemented lattice equipped with an orthocomplement map $\psi: L \rightarrow L$ such that
(1) (separating) $a \wedge \psi(a)=0 \quad$ (Note: (1)+(2)+(3) $\Rightarrow a \oplus \psi(a)=1$);
(2) (antitone) $b \leq a \Longrightarrow \psi(a) \leq \psi(b) \quad$ (Note: $\psi(0)=1$);
(3) (involutive) $\psi^{2}=\mathrm{Id}$.
- An orthomodular lattice is an orthocomplemented lattice with relative complements
(orthomodular law) $b \leq a \Longrightarrow a=b \oplus(\Psi(b) \wedge a)$.

orthomodular

Orthomodular lattices

- A bounded lattice $(L, \leq, 0,1)$ is complemented if $\forall a \in L, \exists b \in L, a \oplus b=1$ (here $a \oplus b=c$ means $a \vee b=c$ and $a \wedge b=0$).
- An orthocomplemented lattice is a complemented lattice equipped with an orthocomplement map $\psi: L \rightarrow L$ such that
(1) (separating) $a \wedge \psi(a)=0 \quad$ (Note: (1)+(2)+(3) $\Rightarrow a \oplus \psi(a)=1$);
(2) (antitone) $b \leq a \Longrightarrow \psi(a) \leq \psi(b) \quad$ (Note: $\psi(0)=1)$;
(3) (involutive) $\psi^{2}=$ Id.
- An orthomodular lattice is an orthocomplemented lattice with relative complements
(orthomodular law) $b \leq a \Longrightarrow a=b \oplus(\psi(b) \wedge a)$.

Examples

(9) $(\mathcal{P}(X), \subseteq, \cap, \cup, \psi)$ with $\psi: X \supseteq A \mapsto X \backslash A$ is an orthomodular lattice;

orthomodular

Orthomodular lattices

- A bounded lattice $(L, \leq, 0,1)$ is complemented if $\forall a \in L, \exists b \in L, a \oplus b=1$ (here $a \oplus b=c$ means $a \vee b=c$ and $a \wedge b=0$).
- An orthocomplemented lattice is a complemented lattice equipped with an orthocomplement map $\psi: L \rightarrow L$ such that
(1) (separating) $a \wedge \psi(a)=0 \quad$ (Note: (1)+(2)+(3) $\Rightarrow a \oplus \psi(a)=1$);
(2) (antitone) $b \leq a \Longrightarrow \psi(a) \leq \psi(b) \quad$ (Note: $\psi(0)=1$);
(3) (involutive) $\psi^{2}=\mathrm{Id}$.
- An orthomodular lattice is an orthocomplemented lattice with relative complements
(orthomodular law) $b \leq a \Longrightarrow a=b \oplus(\Psi(b) \wedge a)$.

Examples

$(\mathcal{P}(X), \subsetneq, \cap, \cup, \Psi)$ with $\psi: X \supseteq A \mapsto X \backslash A$ is an orthomodular lattice;(2) When V is finite dimensional, the lattice $(G(V), \leq, \cap,+)$ is a complemented lattice.

orthomodular

Orthomodular lattices

- A bounded lattice $(L, \leq, 0,1)$ is complemented if $\forall a \in L, \exists b \in L, a \oplus b=1$ (here $a \oplus b=c$ means $a \vee b=c$ and $a \wedge b=0$).
- An orthocomplemented lattice is a complemented lattice equipped with an orthocomplement map $\psi: L \rightarrow L$ such that
(1) (separating) $a \wedge \psi(a)=0 \quad$ (Note: (1)+(2)+(3) $\Rightarrow a \oplus \psi(a)=1$);
(2) (antitone) $b \leq a \Longrightarrow \psi(a) \leq \psi(b) \quad$ (Note: $\psi(0)=1)$;
(3) (involutive) $\psi^{2}=\mathrm{Id}$.
- An orthomodular lattice is an orthocomplemented lattice with relative complements
(orthomodular law) $b \leq a \Longrightarrow a=b \oplus(\psi(b) \wedge a)$.

Examples

1
3
3
$(\mathcal{P}(X), \subseteq, \cap, \cup, \Psi)$ with $\psi: X \supseteq A \mapsto X \backslash A$ is an orthomodular lattice;
When V is finite dimensional, the lattice $(G(V), \leq, \cap,+)$ is a complemented lattice.
3 Given a Euclidean vector space $(V,\langle\cdot, \cdot\rangle)$, the map $\psi_{\langle\cdot \cdot\rangle}: W \longmapsto W^{\perp}:=\{v \in V,\langle v, w\rangle=0 \forall w \in W\}$ defines an orthocomplement map on $G(V)$. $(G(V), \leq, \cap,+, \psi(\langle\rangle$,$) is an orthomodular lattice.$

Part IV

Locality on the lattice $G(V)$

Locality

Locality on sets

- A locality relation T on a set P is a symmetric binary relation $T \in P \times P$ and we write $a \top b$ for $(a, b) \in T$.

Locality

Locality on sets

- A locality relation T on a set P is a symmetric binary relation $T \in P \times P$ and we write $a \top b$ for $(a, b) \in T$.
- $a^{\top}:=\{b \in P, \quad b T a\}$ is the polar set of $a \in P$.

Locality

Locality on sets

- A locality relation T on a set P is a symmetric binary relation $T \in P \times P$ and we write $a \top b$ for $(a, b) \in T$.
- $a^{\top}:=\{b \in P, \quad b \top a\}$ is the polar set of $a \in P$. Note that $a \in\left(a^{\top}\right)^{\top}$.

Locality

Locality on sets

- A locality relation T on a set P is a symmetric binary relation $T \in P \times P$ and we write $a \top b$ for $(a, b) \in T$.
- $a^{\top}:=\{b \in P, \quad b \top a\}$ is the polar set of $a \in P$. Note that $a \in\left(a^{\top}\right)^{\top}$.

Locality (weak degenerate relations) Mani (74), M. Szymanska (78))

(G. Cattaneo, A.

A locality relation (or weak degenerate orthogonality) on a poset (P, \leq) is a locality relation T on the set P which satisfies one of the following equivalent compatibility condition with the partial order

Locality

Locality on sets

- A locality relation T on a set P is a symmetric binary relation $T \in P \times P$ and we write $a \backslash b$ for $(a, b) \in T$.
- $a^{\top}:=\{b \in P, \quad b \top a\}$ is the polar set of $a \in P$. Note that $a \in\left(a^{\top}\right)^{\top}$.

Locality (weak degenerate relations) Mani (74), M. Szymanska (78))

(G. Cattaneo, A.

A locality relation (or weak degenerate orthogonality) on a poset (P, \leq) is a locality relation T on the set P which satisfies one of the following equivalent compatibility condition with the partial order
(i) ($a \mapsto a^{\top}$ is antitone) $a \leq b \Longrightarrow b^{\top} \subseteq a^{\top} \quad$ (called a Galois connection on $P \times \mathcal{P}(P)$)

Locality

Locality on sets

- A locality relation T on a set P is a symmetric binary relation $T \in P \times P$ and we write $a \top b$ for $(a, b) \in T$.
- $a^{\top}:=\{b \in P, \quad b \top a\}$ is the polar set of $a \in P$. Note that $a \in\left(a^{\top}\right)^{\top}$.

Locality (weak degenerate relations) Mani (74), M. Szymanska (78))

(G. Cattaneo, A.

A locality relation (or weak degenerate orthogonality) on a poset (P, \leq) is a locality relation T on the set P which satisfies one of the following equivalent compatibility condition with the partial order

- (i) $\left(a \mapsto a^{\top}\right.$ is antitone) $a \leq b \Longrightarrow b^{\top} \subseteq a^{\top} \quad$ (called a Galois connection on $P \times \mathcal{P}(P)$)
- (ii) (absorbing) if $a \leq b$ then $c T b \Longrightarrow c T a \quad \forall c \in P$ (i.e. c^{\top} is a poset ideal),
- $\downarrow a \subset\left(a^{\top}\right)^{\top}$.

Locality

Locality on sets

- A locality relation T on a set P is a symmetric binary relation $T \in P \times P$ and we write $a \top b$ for $(a, b) \in T$.
- $a^{\top}:=\{b \in P, \quad b \top a\}$ is the polar set of $a \in P$. Note that $a \in\left(a^{\top}\right)^{\top}$.

Locality (weak degenerate relations) Mani (74), M. Szymanska (78))

(G. Cattaneo, A.

A locality relation (or weak degenerate orthogonality) on a poset (P, \leq) is a locality relation T on the set P which satisfies one of the following equivalent compatibility condition with the partial order

- (i) $\left(a \mapsto a^{\top}\right.$ is antitone) $a \leq b \Longrightarrow b^{\top} \subseteq a^{\top} \quad$ (called a Galois connection on $P \times \mathcal{P}(P)$)
- (ii) (absorbing) if $a \leq b$ then $c T b \Longrightarrow c T a \quad \forall c \in P \quad$ (i.e. c^{\top} is a poset ideal),
- $\downarrow a \subset\left(a^{\top}\right)^{\top}$.

We call (P, \leq, \top) a (or weak degenerate orthogonal) locality poset.

Locality relation on

A locality relation on a lattice (L, \leq) is a locality relation T on the poset (L, \leq) which satisfies one of the two equivalent conditions:

Locality relation on

A locality relation on a lattice (L, \leq) is a locality relation T on the poset (L, \leq) which satisfies one of the two equivalent conditions:

Compatibility of T with the operations: $\forall a, b_{j} \in L, j \in\{1,2\}$

Locality relation on

A locality relation on a lattice (L, \leq) is a locality relation T on the poset (L, \leq) which satisfies one of the two equivalent conditions:

Compatibility of T with the operations: $\forall a, b_{j} \in L, j \in\{1,2\}$
$\left(a \subset b_{j}, \forall j \in\{1,2\}\right) \Longrightarrow\left(a \top\left(b_{1} \vee b_{2}\right)\right)$ (that $a \top\left(b_{1} \wedge b_{2}\right)$ follows from the poset ideal condition),

Locality relation on

A locality relation on a lattice (L, \leq) is a locality relation T on the poset (L, \leq) which satisfies one of the two equivalent conditions:

Compatibility of T with the operations: $\forall a, b_{j} \in L, j \in\{1,2\}$
$\left(a \subset b_{j}, \forall j \in\{1,2\}\right) \Longrightarrow\left(a \subset\left(b_{1} \vee b_{2}\right)\right)$ (that $a \top\left(b_{1} \wedge b_{2}\right)$ follows from the poset ideal condition), or
$a^{\top} \quad$ is a sublattice (or a lattice ideal) of L for any a in L.

Locality relation on

A locality relation on a lattice (L, \leq) is a locality relation T on the poset (L, \leq) which satisfies one of the two equivalent conditions:

Compatibility of T with the operations: $\forall a, b_{j} \in L, j \in\{1,2\}$
$\left(a \subset b_{j}, \forall j \in\{1,2\}\right) \Longrightarrow\left(a \top\left(b_{1} \vee b_{2}\right)\right)$ (that $a \rightarrow\left(b_{1} \wedge b_{2}\right)$ follows from the poset ideal condition), or
$a^{\top} \quad$ is a sublattice (or a lattice ideal) of L for any a in L.

Example

The poset $\mathcal{P}(X)$ is a locality lattice for $A \top B \Leftrightarrow A \cap B=\emptyset$.

Locality relation on

A locality relation on a lattice (L, \leq) is a locality relation T on the poset (L, \leq) which satisfies one of the two equivalent conditions:

Compatibility of T with the operations: $\forall a, b_{j} \in L, j \in\{1,2\}$
$\left(a \subset b_{j}, \forall j \in\{1,2\}\right) \Longrightarrow\left(a \subset\left(b_{1} \vee b_{2}\right)\right)$ (that $a \top\left(b_{1} \wedge b_{2}\right)$ follows from the poset ideal condition), or
$a^{\top} \quad$ is a sublattice (or a lattice ideal) of L for any a in L.

Example

The poset $\mathcal{P}(X)$ is a locality lattice for $A \top B \Leftrightarrow A \cap B=\emptyset$.

Counterexample

The power set $(\mathcal{P}(X), \subseteq)$ equipped with $A \top B \Longleftrightarrow A \cup B=X$ is not a locality poset. Indeed, let $X:=\{1,2,3\}, A=\{2\}, B=\{2,3\}$ and $C=\{1\}$. Then $A \subseteq B$ and $C \top B$, yet C is not independent of A.

Locality relation on

A locality relation on a lattice (L, \leq) is a locality relation T on the poset (L, \leq) which satisfies one of the two equivalent conditions:

Compatibility of T with the operations: $\forall a, b_{j} \in L, j \in\{1,2\}$
$\left(a \subset b_{j}, \forall j \in\{1,2\}\right) \Longrightarrow\left(a \subset\left(b_{1} \vee b_{2}\right)\right)$ (that $a \top\left(b_{1} \wedge b_{2}\right)$ follows from the poset ideal condition), or
$a^{\top} \quad$ is a sublattice (or a lattice ideal) of L for any a in L.

Example

The poset $\mathcal{P}(X)$ is a locality lattice for $A \top B \Leftrightarrow A \cap B=\emptyset$.

Counterexample

The power set $(\mathcal{P}(X), \subseteq)$ equipped with $A T B \Longleftrightarrow A \cup B=X$ is not a locality poset. Indeed, let $X:=\{1,2,3\}, A=\{2\}, B=\{2,3\}$ and $C=\{1\}$. Then $A \subseteq B$ and $C \top B$, yet C is not independent of A.

Example

Given a Hilbert (finite or infinite dimensional) vector space (V, Q), the locality relation $U \perp^{Q} W$ defines a lattice locality relation.

is a separating locality relation on

A locality relation \top on a lattice $(L, \leq, 0)$ with a bottom element 0 , is called separating if for any $a \in L$ we have

is a separating locality relation on

A locality relation \top on a lattice $(L, \leq, 0)$ with a bottom element 0 , is called separating if for any $a \in L$ we have
(1) $0^{\top}=L$ (from which it will follow that $L^{\top}=\{0\}$ and $a^{\top}=L \Longrightarrow a=0$);
(2) $a \subset b \Longrightarrow a \wedge b=0$ (or equivalently (non degeneracy) $a \subset a \Longrightarrow a=0$).

is a separating locality relation on

A locality relation \top on a lattice $(L, \leq, 0)$ with a bottom element 0 , is called separating if for any $a \in L$ we have
(1) $0^{\top}=L$ (from which it will follow that $L^{\top}=(0)$ and $a^{\top}=L \Rightarrow a=0$);
(2) $a \backslash b \Longrightarrow a \wedge b=0$ (or equivalently (non degeneracy) $a \subset a \Longrightarrow a=0$).
(3) (completeness) the set a^{\top} admits a maximal element $\max \left(a^{\top}\right)$ for any $a \in L$. In this case, we say that $(L, \leq, 0, T)$ is a separated locality (or complete orthogonality poset) lattice. Recall that $\downarrow a \subset\left(a^{\top}\right)^{\top}$ since T is a locality relation on the poset (L, \leq). If moreover,

- $\downarrow a=\left(a^{\top}\right)^{\top}$ or equivalently, if $\max \left(\left(a^{\top}\right)^{\top}\right)=a$ for any $a \in L$,
we call the relation strongly separating and the lattice strongly separated.

Example

Given a Hilbert (finite or infinite dimensional) vector space ($V,\langle\cdot, \cdot\rangle$), the poset $G(V)$ is a strongly separated locality lattice for $W_{1} \top W_{1} \Longleftrightarrow W_{1} \perp^{Q} W_{2}$. For three subspaces W, U_{1}, U_{2} in V we have $\left(\forall W \subseteq V, W \perp^{Q} U_{1} \Rightarrow W \perp^{Q} U_{2}\right) \Longrightarrow U_{2} \leq U_{1}$.

Part V

Locality versus complements

From locality to complements and back

Main result (P. Clavier, L.Guo, S.P., B. Zhang (2020), G. Cattaneo, A. Mania (74!))

Let L be a bounded lattice. There is a one-to-one correspondence
orthocomplementations \longleftrightarrow strongly separating locality relations

From locality to complements and back

Main result (P. Clavier, L.Guo, S.P., B. Zhang (2020), G. Cattaneo, A. Mania (74!))

Let L be a bounded lattice. There is a one-to-one correspondence

orthocomplementations \longleftrightarrow strongly separating locality relations

The map $F: T \mapsto \Psi^{\top}$ which to a strong locality relation T assigns an orthocomplement map ψ^{\top} on $L: \psi^{\top}(a):=\max \left(a^{\top}\right)$

From locality to complements and back

Main result (P. Clavier, L.Guo, S.P., B. Zhang (2020), G. Cattaneo, A. Mania (74!))

Let L be a bounded lattice.There is a one-to-one correspondence

orthocomplementations \longleftrightarrow strongly separating locality relations

The map $F: T \mapsto \Psi^{\top}$ which to a strong locality relation \top assigns an orthocomplement map ψ^{\top} on $L: \psi^{\top}(a):=\max \left(a^{\top}\right)$ and the map $G: \psi_{\mapsto} \top^{\top}$, which to an orthocomplement map ψ assigns a locality relation $\top:=\top_{\psi}: a \top b \Longleftrightarrow b \leq \psi(a)$, are inverse to each other.

From locality to complements and back

Main result (P. Clavier, L.Guo, S.P., B. Zhang (2020), G. Cattaneo, A. Mania (74!))

Let L be a bounded lattice. There is a one-to-one correspondence

orthocomplementations \longleftrightarrow strongly separating locality relations

The map $F: T \mapsto \Psi^{\top}$ which to a strong locality relation T assigns an orthocomplement map ψ^{\top} on $L: \psi^{\top}(a):=\max \left(a^{\top}\right)$ and the map $G: \psi_{\mapsto} \top^{\psi}$, which to an orthocomplement map ψ assigns a locality relation $\top:=T_{\psi}: a \top b \Longleftrightarrow b \leq \psi(a)$, are inverse to each other.

Corollary

If the lattice is \oplus-modular, this yields a one-to-one correspondence

From locality to complements and back

Main result (P. Clavier, L.Guo, S.P., B. Zhang (2020), G. Cattaneo, A. Mania (74!))

Let L be a bounded lattice. There is a one-to-one correspondence

orthocomplementations \longleftrightarrow strongly separating locality relations

The map $F: T \mapsto \Psi^{\top}$ which to a strong locality relation T assigns an orthocomplement map ψ^{\top} on $L: \psi^{\top}(a):=\max \left(a^{\top}\right)$ and the map $G: \psi_{\mapsto} \top^{\psi}$, which to an orthocomplement map ψ assigns a locality relation $\top:=\top_{\psi}: a \top b \Longleftrightarrow b \leq \psi(a)$, are inverse to each other.

Corollary

If the lattice is \oplus-modular, this yields a one-to-one correspondence

Example:

This generalises the correspondence orthogonality \longleftrightarrow orthogonal complement on vector spaces.

Locality on
 versus locality on

Locality relations on

Locality on
 versus locality on

Locality relations on

- A vector space locality relation T on a linear space V is a set locality relation T on V such that

Locality on
 versus locality on

Locality relations on

- A vector space locality relation T on a linear space V is a set locality relation \top on V such that the polar set U^{\top} of any subset U is a linear subspace.

Locality on
 versus locality on

Locality relations on

- A vector space locality relation T on a linear space V is a set locality relation T on V such that the polar set U^{\top} of any subset U is a linear subspace.
- The vector space locality T is
(1) non-degenerate

Locality on

versus locality on

Locality relations on

- A vector space locality relation T on a linear space V is a set locality relation \top on V such that the polar set U^{\top} of any subset U is a linear subspace.
- The vector space locality T is
(1) non-degenerate if for any $\boldsymbol{v} \in \boldsymbol{V}, \boldsymbol{v} \top \boldsymbol{v} \Longrightarrow \boldsymbol{v}=0$ (this implies $\left.\boldsymbol{V}^{\top}=\{0\rangle\right)$.

Locality on

versus locality on

Locality relations on

- A vector space locality relation T on a linear space V is a set locality relation \top on V such that the polar set U^{\top} of any subset U is a linear subspace.
- The vector space locality T is
(1) non-degenerate if for any $v \in V, V \top V \Longrightarrow v=0$ (this implies $v=(0))$.
(2) strongly non-degenerate

Locality on

versus locality on

Locality relations on

- A vector space locality relation T on a linear space V is a set locality relation \top on V such that the polar set U^{\top} of any subset U is a linear subspace.
- The vector space locality T is
(1) non-degenerate if for any $v \in V, \boldsymbol{v} \top \boldsymbol{V} \Longrightarrow \boldsymbol{v}=0$ (this implies $\left.v^{\top}=(0)\right\rangle$.
(2) strongly non-degenerate if it is non-degenerate and $U=\{0\} \Rightarrow U=V$ for any subspace U of V.

versus

Locality on

versus locality on

Locality relations on

- A vector space locality relation T on a linear space V is a set locality relation \top on V such that the polar set U^{\top} of any subset U is a linear subspace.
- The vector space locality T is
(1) non-degenerate if for any $v \in V, \boldsymbol{v} \top \boldsymbol{V} \Longrightarrow \boldsymbol{v}=0$ (nhis implies $\left.v^{\top}=(0)\right\rangle$.
(2) strongly non-degenerate if it is non-degenerate and $U=\{0\} \Rightarrow U=V$ for any subspace U of V.

versus

Vector space locality relation on $V \leadsto$ Lattice locality relation on $G(V)$:

Locality on

versus locality on

Locality relations on

- A vector space locality relation T on a linear space V is a set locality relation \top on V such that the polar set U^{\top} of any subset U is a linear subspace.
- The vector space locality T is
(1) non-degenerate if for any $v \in V, \boldsymbol{v} \top \boldsymbol{V} \Longrightarrow \boldsymbol{v}=0$ (nhis implies $\left.v^{\top}=(0)\right\rangle$.
(2) strongly non-degenerate if it is non-degenerate and $U=\{0\} \Rightarrow U=V$ for any subspace U of V.

versus

Vector space locality relation on $V \rightsquigarrow$ Lattice locality relation on $G(V): W_{1} \top W_{2} \Longleftrightarrow w_{1} \top w_{2} \quad \forall w_{i} \in W_{i}, i \in\{1,2\}$.

Locality on

versus locality on

Locality relations on

- A vector space locality relation T on a linear space V is a set locality relation \top on V such that the polar set U^{\top} of any subset U is a linear subspace.
- The vector space locality T is
(1) non-degenerate if for any $v \in V, \boldsymbol{v} \top \boldsymbol{v} \Longrightarrow \boldsymbol{v}=0$ (nhis implies $\left.v^{\top}=(0)\right\rangle$.
(2) strongly non-degenerate if it is non-degenerate and $U=\{0\} \Rightarrow U=V$ for any subspace U of V.

versus

Vector space locality relation on $V \leadsto$ Lattice locality relation on $G(V)$: $W_{1} \top W_{2} \Longleftrightarrow w_{1} \top w_{2} \quad \forall w_{i} \in W_{i}, i \in\{1,2\}$. Lattice locality relation on $G(V) \rightsquigarrow$ Vector space locality relation on V :

Locality on

versus locality on

Locality relations on

- A vector space locality relation T on a linear space V is a set locality relation \top on V such that the polar set U^{\top} of any subset U is a linear subspace.
- The vector space locality T is
(1) non-degenerate if for any $v \in V, \boldsymbol{v} \top \boldsymbol{v} \Longrightarrow \boldsymbol{v}=0$ (nhis implies $\left.v^{\top}=(0)\right\rangle$.
(2) strongly non-degenerate if it is non-degenerate and $U=\{0\} \Rightarrow U=V$ for any subspace U of V.

versus

Vector space locality relation on $V \leadsto$ Lattice locality relation on $G(V)$: $W_{1} \top W_{2} \Longleftrightarrow w_{1} \top w_{2} \quad \forall w_{i} \in W_{i}, i \in\{1,2\}$. Lattice locality relation on $G(V) w$ Vector space locality relation on $V: w_{1} T w_{2} \Longleftrightarrow\left\langle w_{1}\right\rangle T\left\langle w_{2}\right\rangle$.

Locality on

versus locality on

Locality relations on

- A vector space locality relation T on a linear space V is a set locality relation T on V such that the polar set U^{\top} of any subset U is a linear subspace.
- The vector space locality T is
(1) non-degenerate if for any $v \in V, V \top V \Longrightarrow v=0$ (this impies $\left.v^{\top}=(0)\right\rangle$.
(2) strongly non-degenerate if it is non-degenerate and $U=\{0\} \Rightarrow U=V$ for any subspace U of V.

versus

Vector space locality relation on $V \leadsto$ Lattice locality relation on $G(V)$: $W_{1} \top W_{2} \Longleftrightarrow w_{1} \top w_{2} \quad \forall w_{i} \in W_{i}, i \in\{1,2\}$. Lattice locality relation on $G(V) \rightsquigarrow$ Vector space locality relation on $V: w_{1} T W_{2} \Longleftrightarrow\left\langle w_{1}\right\rangle T\left\langle w_{2}\right\rangle$.

Locality on

versus locality on

Locality relations on

- A vector space locality relation T on a linear space V is a set locality relation \top on V such that the polar set U^{\top} of any subset U is a linear subspace.
- The vector space locality T is
(1) non-degenerate if for any $v \in V, V \top V \Longrightarrow v=0$ (this impies $\left.v^{\top}=(0)\right\rangle$.
(2) strongly non-degenerate if it is non-degenerate and $U=\{0\} \Rightarrow U=V$ for any subspace U of V.

versus

Vector space locality relation on $V \leadsto$ Lattice locality relation on $G(V): W_{1} \top W_{2} \Longleftrightarrow w_{1} \top w_{2} \quad \forall w_{i} \in W_{i}, i \in\{1,2\}$. Lattice locality relation on $G(V) \rightsquigarrow$ Vector space locality relation on $V: w_{1} T W_{2} \Longleftrightarrow\left\langle w_{1}\right\rangle T\left\langle w_{2}\right\rangle$.

Lattice (resp.strongly separating) locality relation on $G(V)$

Locality on

versus locality on

Locality relations on

- A vector space locality relation T on a linear space V is a set locality relation \top on V such that the polar set U^{\top} of any subset U is a linear subspace.
- The vector space locality T is
(1) non-degenerate if for any $v \in V, V \top V \Longrightarrow v=0$ (this impies $\left.v^{\top}=(0)\right\rangle$.
(2) strongly non-degenerate if it is non-degenerate and $U=\{0\} \Rightarrow U=V$ for any subspace U of V.

versus

```
Vector space locality relation on Vm}\mathrm{ Lattice locality relation on }G(V):\mp@subsup{W}{1}{}\top\mp@subsup{W}{2}{}\Longleftrightarrow\mp@subsup{w}{1}{}\top\mp@subsup{W}{2}{}\quad\forall\mp@subsup{w}{i}{}\in\mp@subsup{W}{i}{},i\in{1,2}. Lattice locality
relation on G(V) m-> Vector space locality relation on V:\mp@subsup{w}{1}{}T\mp@subsup{W}{2}{}\Longleftrightarrow\langle\mp@subsup{w}{1}{}\rangleT\langle\mp@subsup{w}{2}{}\rangle.
```

Lattice (resp.strongly separating) locality relation on $G(V)$ \longleftrightarrow Vector space (resp.strongly non-degenerate) locality relation on V

Orthocomplements versus locality on

Corollary

A locality vector space (V, T) is strongly non-degenerate if, and only if $(G(V), T)$ is orthocomplemented.

Orthocomplements versus locality on

Corollary

A locality vector space (V, T) is strongly non-degenerate if, and only if $(G(V), T)$ is orthocomplemented. Explicitly,
(1) Given a strongly regular locality relation on a vector space (V, T), then ψ^{\top} is an orthocomplement on $G(V)$.

Orthocomplements versus locality on

Corollary

A locality vector space (V, T) is strongly non-degenerate if, and only if $(G(V), T)$ is orthocomplemented. Explicitly,
(1) Given a strongly regular locality relation on a vector space (V, T), then ψ^{\top} is an orthocomplement on $G(V)$.It is the unique map $\psi: G(V) \rightarrow G(V)$ such that for any $W \in G(V)$:

Orthocomplements versus locality on

Corollary

A locality vector space (V, T) is strongly non-degenerate if, and only if $(G(V), T)$ is orthocomplemented. Explicitly,
(1) Given a strongly regular locality relation on a vector space (V, T), then ψ^{\top} is an orthocomplement on $G(V)$.It is the unique map $\psi: G(V) \rightarrow G(V)$ such that for any $W \in G(V):(i) \psi(W) \in W^{\top}$ and (ii) $V=W \oplus \psi(W)$.
(2) Conversely, if Ψ^{\top} defines an orthocomplement map on $G(V)$ then the locality relation
$v_{1} \top v_{2} \Longleftrightarrow v_{1} \in \psi^{\top}\left(\left\langle v_{2}\right\rangle\right)$ induces a strongly regular locality relation on V.

Orthocomplements versus locality on

Corollary

A locality vector space (V, T) is strongly non-degenerate if, and only if $(G(V), T)$ is orthocomplemented. Explicitly,
(1) Given a strongly regular locality relation on a vector space (V, T), then ψ^{\top} is an orthocomplement on $G(V)$.It is the unique map $\psi: G(V) \rightarrow G(V)$ such that for any $W \in G(V):(i) \psi(W) \in W^{\top}$ and (ii) $V=W \oplus \psi(W)$.
(2) Conversely, if Ψ^{\top} defines an orthocomplement map on $G(V)$ then the locality relation
$v_{1} \top v_{2} \Longleftrightarrow v_{1} \in \psi^{\top}\left(\left\langle v_{2}\right\rangle\right)$ induces a strongly regular locality relation on V.

Example

On a Hilbert space ($V,\langle\cdot, \cdot\rangle$) this amounts to the correspondence we started from

$$
\perp \quad \longleftrightarrow \quad\left(\Psi^{\perp}: U \mapsto U^{\perp}\right)
$$

Example beyond orthogonality

Take $V:=\mathbb{R}^{2}$,

$$
G\left(\mathbb{R}^{2}\right)=\left\{\{0\}, \mathbb{R}^{2}\right\} \cup\left\{U_{\theta}:=\mathbb{R} e^{i \theta} \mid \theta \in[0, \pi)\right\}
$$

Example beyond orthogonality

Take $V:=\mathbb{R}^{2}$,

$$
G\left(\mathbb{R}^{2}\right)=\left\{\{0\}, \mathbb{R}^{2}\right\} \cup\left\{U_{\theta}:=\mathbb{R} e^{i \theta} \mid \theta \in[0, \pi)\right\}
$$

Any disjoint union $[0, \pi)=l^{\prime} \sqcup l^{\prime \prime}$ and bijection $l^{\prime} \rightarrow l^{\prime \prime}$ gives rise to an involutive map $\psi:[0, \pi) \rightarrow[0, \pi)$ with $\psi\left(l^{\prime}\right)=l^{\prime \prime}$ and an orthocomplement map

Example beyond orthogonality

Take $V:=\mathbb{R}^{2}$,

$$
G\left(\mathbb{R}^{2}\right)=\left\{\{0\}, \mathbb{R}^{2}\right\} \cup\left\{U_{\theta}:=\mathbb{R} e^{i \theta} \mid \theta \in[0, \pi)\right\}
$$

Any disjoint union $[0, \pi)=l^{\prime} \sqcup l^{\prime \prime}$ and bijection $l^{\prime} \rightarrow l^{\prime \prime}$ gives rise to an involutive map $\psi:[0, \pi) \rightarrow[0, \pi)$ with $\psi\left(l^{\prime}\right)=l^{\prime \prime}$ and an orthocomplement map

$$
\psi: U_{\theta} \longmapsto U_{\psi(\theta)}
$$

on $G\left(\mathbb{R}^{2}\right)$.

Example beyond orthogonality

Take $V:=\mathbb{R}^{2}$,

$$
G\left(\mathbb{R}^{2}\right)=\left\{\{0\}, \mathbb{R}^{2}\right\} \cup\left\{U_{\theta}:=\mathbb{R} e^{i \theta} \mid \theta \in[0, \pi)\right\}
$$

Any disjoint union $[0, \pi)=l^{\prime} \sqcup l^{\prime \prime}$ and bijection $l^{\prime} \rightarrow l^{\prime \prime}$ gives rise to an involutive map $\psi:[0, \pi) \rightarrow[0, \pi)$ with $\psi\left(l^{\prime}\right)=l^{\prime \prime}$ and an orthocomplement map

$$
\psi: U_{\theta} \longmapsto U_{\psi(\theta)}
$$

on $G\left(\mathbb{R}^{2}\right)$.
Back to the orthogonal complement

Example beyond orthogonality

Take $V:=\mathbb{R}^{2}$,

$$
G\left(\mathbb{R}^{2}\right)=\left\{\{0\}, \mathbb{R}^{2}\right\} \cup\left\{U_{\theta}:=\mathbb{R} e^{i \theta} \mid \theta \in[0, \pi)\right\}
$$

Any disjoint union $[0, \pi)=l^{\prime} \sqcup l^{\prime \prime}$ and bijection $l^{\prime} \rightarrow l^{\prime \prime}$ gives rise to an involutive map $\psi:[0, \pi) \rightarrow[0, \pi)$ with $\psi\left(l^{\prime}\right)=l^{\prime \prime}$ and an orthocomplement map

$$
\psi: U_{\theta} \longmapsto U_{\psi(\theta)}
$$

on $G\left(\mathbb{R}^{2}\right)$.

Back to the orthogonal complement

Any bijection $\psi:[0, \pi / 2) \rightarrow[\pi / 2, \pi)$ induces an involution
$\psi:[0, \pi) \rightarrow[0, \pi)$, e.g.

Example beyond orthogonality

Take $V:=\mathbb{R}^{2}$,

$$
G\left(\mathbb{R}^{2}\right)=\left\{\{0\}, \mathbb{R}^{2}\right\} \cup\left\{U_{\theta}:=\mathbb{R} e^{i \theta} \mid \theta \in[0, \pi)\right\}
$$

Any disjoint union $[0, \pi)=l^{\prime} \sqcup l^{\prime \prime}$ and bijection $l^{\prime} \rightarrow l^{\prime \prime}$ gives rise to an involutive map $\psi:[0, \pi) \rightarrow[0, \pi)$ with $\psi\left(l^{\prime}\right)=l^{\prime \prime}$ and an orthocomplement map

$$
\psi: U_{\theta} \longmapsto U_{\psi(\theta)}
$$

on $G\left(\mathbb{R}^{2}\right)$.

Back to the orthogonal complement

Any bijection $\psi:[0, \pi / 2) \rightarrow[\pi / 2, \pi)$ induces an involution $\psi:[0, \pi) \rightarrow[0, \pi)$, e.g.

$$
\psi(\theta)=\pi-\theta, \quad \theta \in[0, \pi)
$$

yields back ψ^{\perp} for the canonical inner product.

- generalise to orthocomplements beyond \perp^{Q} the Laurent expansions for multi-variable meromorphic germs with linear poles built in [L. Guo, S.P., B. Zhang, to appear in PJM].
- generalise to orthocomplements beyond \perp^{Q} the Laurent expansions for multi-variable meromorphic germs with linear poles built in [L. Guo, S.P., B. Zhang, to appear in PJM].
- study the Galois group of transformations of multi-variable meromorphic germs with linear poles which stablise holomorphic germs at zero.

THANK YOU FOR YOUR ATTENTION!

P. Clavier, L. Guo, B. Zhang and S. P., An algebraic formulation of the locality principle in renormalisation, European Journal of Mathematics, Volume 5 (2019) 356-394
R. Clavier, L. Guo, B. Zhang and S. P., Renormalisation via locality morphisms, Revista Colombiana de Matemáticas, Volume 53 (2019) 113-141
P. Clavier, L. Guo, B. Zhang and S. P., Renormalisation and locality: branched zeta values, in "Algebraic Combinatorics, Resurgence, Moulds and Applications (Carma)" Vol. 2 ,Eds. F. Chapoton, F. Fauvet, C. Malvenuto, J.-Y. Thibon, Irma Lectures in Mathematics and Theoretical Physics 32, European Math. Soc. p. 85-132 (2020).
國 P. Clavier, L. Guo, B. Zhang and S. P., Locality and renormalisation: universal properties and integrals on trees, Journal of Mathematical Physics61, 022301 (2020)
L. Guo, B. Zhang and S. P., Renormalisation and the Euler-Maclaurin formula on cones, Duke Math J., 166 (3) (2017) 537-571.
(L. Guo, B. Zhang and S. P., A conical approach to Laurent expansions for multivariate meromorphic germs with linear poles, to appear in the Pacific Journal of Mathematics.

Extra material

Modularity

($\oplus-$) modular

Modular lattices (conditional distributivity)
 A lattice (L, \leq, \wedge, \vee) is modular if $a \geq c \Rightarrow(a \wedge b) \vee c=a \wedge(b \vee c)$, for any a, b, c in L

(ఉ-) modular

Modular lattices (conditional distributivity)

A lattice (L, \leq, \wedge, \vee) is modular if $a \geq c \Rightarrow(a \wedge b) \vee c=a \wedge(b \vee c)$, for any a, b, c in L or equivalently if it obeys the following modular cancellation law: $(a \leq b, a \wedge c=b \wedge c$ and $a \vee c=b \vee c) \Rightarrow a=b$.

($\oplus-$) modular

Modular lattices (conditional distributivity)

A lattice (L, \leq, \wedge, \vee) is modular if $a \geq c \Rightarrow(a \wedge b) \vee c=a \wedge(b \vee c)$, for any a, b, c in L or equivalently if it obeys the following modular cancellation law: $(a \leq b, a \wedge c=b \wedge c$ and $a \vee c=b \vee c) \Rightarrow a=b$.

Examples and counterexample: The lattices $(\mathcal{P}(X), \subseteq),(G(V), \leq)$ and (\mathbb{N}, \mid) are modular.

($\oplus-$) modular

Modular lattices (conditional distributivity)

A lattice (L, \leq, \wedge, \vee) is modular if $a \geq c \Rightarrow(a \wedge b) \vee c=a \wedge(b \vee c)$, for any a, b, c in L or equivalently if it obeys the following modular cancellation law: $(a \leq b, a \wedge c=b \wedge c$ and $a \vee c=b \vee c) \Rightarrow a=b$.

Examples and counterexample: The lattices $(\mathcal{P}(X), \subseteq),(G(V), \leq)$ and (\mathbb{N}, \mid) are modular. The pentagon lattice $L=\left\{0, b_{1}, b_{2}, c, 1\right\}$
with partial order defined by $0 \leq b_{1}<b_{2} \leq 1$ and $0 \leq c \leq 1$ with b_{i} and c incomparable, is not modular. We have $b_{1} \leq b_{2}$,
$b_{1} \wedge c=b_{2} \wedge c=0 b_{1} \vee c=b_{2} \vee c=1$ but $b_{1} \neq b_{2}$.

($\oplus-$) modular

Modular lattices (conditional distributivity)

A lattice (L, \leq, \wedge, \vee) is modular if $a \geq c \Rightarrow(a \wedge b) \vee c=a \wedge(b \vee c)$, for any a, b, c in L or equivalently if it obeys the following modular cancellation law:
$(a \leq b, a \wedge c=b \wedge c$ and $a \vee c=b \vee c) \Rightarrow a=b$.
Examples and counterexample: The lattices $(\mathcal{P}(X), \subseteq),(G(V), \leq)$ and (\mathbb{N}, \mid) are modular. The pentagon lattice $L=\left\{0, b_{1}, b_{2}, c, 1\right\}$ with partial order defined by $0 \leq b_{1}<b_{2} \leq 1$ and $0 \leq c \leq 1$ with b_{i} and c incomparable, is not modular. We have $b_{1} \leq b_{2}$, $b_{1} \wedge c=b_{2} \wedge c=0 b_{1} \vee c=b_{2} \vee c=1$ but $b_{1} \neq b_{2}$.

\oplus-modular lattices

A lattice L which is bounded from below by $0($ here $a \oplus b=c$ means $a \vee b=c$ and $a \wedge b=0$).

($\oplus-$) modular

Modular lattices (conditional distributivity)

A lattice (L, \leq, \wedge, \vee) is modular if $a \geq c \Rightarrow(a \wedge b) \vee c=a \wedge(b \vee c)$, for any a, b, c in L or equivalently if it obeys the following modular cancellation law:
$(a \leq b, a \wedge c=b \wedge c$ and $a \vee c=b \vee c) \Rightarrow a=b$.
Examples and counterexample: The lattices $(\mathcal{P}(X), \subseteq),(G(V), \leq)$ and (\mathbb{N}, \mid) are modular. The pentagon lattice $L=\left\{0, b_{1}, b_{2}, c, 1\right\}$ with partial order defined by $0 \leq b_{1}<b_{2} \leq 1$ and $0 \leq c \leq 1$ with b_{i} and c incomparable, is not modular. We have $b_{1} \leq b_{2}$, $b_{1} \wedge c=b_{2} \wedge c=0 b_{1} \vee c=b_{2} \vee c=1$ but $b_{1} \neq b_{2}$.

\oplus-modular lattices

A lattice L which is bounded from below by 0 (here $a \oplus b=c$ means $a \vee b=c$ and $a \wedge b=0$).

- is \oplus-distributive if $a \wedge(b \oplus c)=a \wedge b=b \wedge(a \oplus c)$,if $a \wedge c=b \wedge c=0$

($\oplus-$) modular

Modular lattices (conditional distributivity)

A lattice (L, \leq, \wedge, \vee) is modular if $a \geq c \Rightarrow(a \wedge b) \vee c=a \wedge(b \vee c)$, for any a, b, c in L or equivalently if it obeys the following modular cancellation law:
$(a \leq b, a \wedge c=b \wedge c$ and $a \vee c=b \vee c) \Rightarrow a=b$.
Examples and counterexample: The lattices $(\mathcal{P}(X), \subseteq),(G(V), \leq)$ and (\mathbb{N}, \mid) are modular. The pentagon lattice $L=\left\{0, b_{1}, b_{2}, c, 1\right\}$ with partial order defined by $0 \leq b_{1}<b_{2} \leq 1$ and $0 \leq c \leq 1$ with b_{i} and c incomparable, is not modular. We have $b_{1} \leq b_{2}$, $b_{1} \wedge c=b_{2} \wedge c=0 b_{1} \vee c=b_{2} \vee c=1$ but $b_{1} \neq b_{2}$.

\oplus-modular lattices

A lattice L which is bounded from below by 0 (here $a \oplus b=c$ means $a \vee b=c$ and $a \wedge b=0$).

- is \oplus-distributive if $a \wedge(b \oplus c)=a \wedge b=b \wedge(a \oplus c)$,fif $a \wedge c=b \wedge c=0$
- satisfies the \oplus-cancellation law if $a \oplus c=b \oplus c \Rightarrow a=b$, if $a \wedge c=b \wedge c=0$

($\oplus-$) modular

Modular lattices (conditional distributivity)

A lattice (L, \leq, \wedge, \vee) is modular if $a \geq c \Rightarrow(a \wedge b) \vee c=a \wedge(b \vee c)$, for any a, b, c in L or equivalently if it obeys the following modular cancellation law:
$(a \leq b, a \wedge c=b \wedge c$ and $a \vee c=b \vee c) \Rightarrow a=b$.
Examples and counterexample: The lattices $(\mathcal{P}(X), \subseteq),(G(V), \leq)$ and (\mathbb{N}, \mid) are modular. The pentagon lattice $L=\left\{0, b_{1}, b_{2}, c, 1\right\}$
with partial order defined by $0 \leq b_{1}<b_{2} \leq 1$ and $0 \leq c \leq 1$ with b_{i} and c incomparable, is not modular. We have $b_{1} \leq b_{2}$,
$b_{1} \wedge c=b_{2} \wedge c=0 b_{1} \vee c=b_{2} \vee c=1$ but $b_{1} \neq b_{2}$.

\oplus-modular lattices

A lattice L which is bounded from below by 0 (here $a \oplus b=c$ means $a \vee b=c$ and $a \wedge b=0$).

- is \oplus-distributive if $a \wedge(b \oplus c)=a \wedge b=b \wedge(a \oplus c)$, if $a \wedge c=b \wedge c=0$
- satisfies the \oplus-cancellation law if $a \oplus c=b \oplus c \Rightarrow a=b$, if $a \wedge c=b \wedge c=0$
- is \oplus-modular if $(a \leq b$ and $a \oplus c=b \oplus c) \Rightarrow a=b, \quad \forall a, b, c \in L$,

($\oplus-$) modular

Modular lattices (conditional distributivity)

A lattice (L, \leq, \wedge, \vee) is modular if $a \geq c \Rightarrow(a \wedge b) \vee c=a \wedge(b \vee c)$, for any a, b, c in L or equivalently if it obeys the following modular cancellation law:
$(a \leq b, a \wedge c=b \wedge c$ and $a \vee c=b \vee c) \Rightarrow a=b$.
Examples and counterexample: The lattices $(\mathcal{P}(X), \subseteq),(G(V), \leq)$ and (\mathbb{N}, \mid) are modular. The pentagon lattice $L=\left\{0, b_{1}, b_{2}, c, 1\right\}$ with partial order defined by $0 \leq b_{1}<b_{2} \leq 1$ and $0 \leq c \leq 1$ with b_{i} and c incomparable, is not modular. We have $b_{1} \leq b_{2}$, $b_{1} \wedge c=b_{2} \wedge c=0 b_{1} \vee c=b_{2} \vee c=1$ but $b_{1} \neq b_{2}$.

\oplus-modular lattices

A lattice L which is bounded from below by 0 (here $a \oplus b=c$ means $a \vee b=c$ and $a \wedge b=0$).

- is \oplus-distributive if $a \wedge(b \oplus c)=a \wedge b=b \wedge(a \oplus c)$, if $a \wedge c=b \wedge c=0$
- satisfies the \oplus-cancellation law if $a \oplus c=b \oplus c \Rightarrow a=b$, if $a \wedge c=b \wedge c=0$
- is \oplus-modular if $(a \leq b$ and $a \oplus c=b \oplus c) \Rightarrow a=b, \quad \forall a, b, c \in L$,

Example: Modularity $\Rightarrow \oplus$-modularity so $G(V)$ is \oplus modular but it does not satisfy the \oplus-distributivity condition.

($\oplus-$) modular

Modular lattices (conditional distributivity)

A lattice (L, \leq, \wedge, \vee) is modular if $a \geq c \Rightarrow(a \wedge b) \vee c=a \wedge(b \vee c)$, for any a, b, c in L or equivalently if it obeys the following modular cancellation law:
$(a \leq b, a \wedge c=b \wedge c$ and $a \vee c=b \vee c) \Rightarrow a=b$.
Examples and counterexample: The lattices $(\mathcal{P}(X), \subseteq),(G(V), \leq)$ and (\mathbb{N}, \mid) are modular. The pentagon lattice $L=\left\{0, b_{1}, b_{2}, c, 1\right\}$ with partial order defined by $0 \leq b_{1}<b_{2} \leq 1$ and $0 \leq c \leq 1$ with b_{i} and c incomparable, is not modular. We have $b_{1} \leq b_{2}$, $b_{1} \wedge c=b_{2} \wedge c=0 b_{1} \vee c=b_{2} \vee c=1$ but $b_{1} \neq b_{2}$.

\oplus-modular lattices

A lattice L which is bounded from below by 0 (here $a \oplus b=c$ means $a \vee b=c$ and $a \wedge b=0$).

- is \oplus-distributive if $a \wedge(b \oplus c)=a \wedge b=b \wedge(a \oplus c)$, if $a \wedge c=b \wedge c=0$
- satisfies the \oplus-cancellation law if $a \oplus c=b \oplus c \Rightarrow a=b$, if $a \wedge c=b \wedge c=0$
- is \oplus-modular if $(a \leq b$ and $a \oplus c=b \oplus c) \Rightarrow a=b, \quad \forall a, b, c \in L$,

Example: Modularity $\Rightarrow \oplus$-modularity so $G(V)$ is \oplus modular but it does not satisfy the \oplus-distributivity condition.
Remark: \oplus-modularity (resp. \oplus-cancellation) combined with sectional completeness implies modularity.

Special lattices

Distributivity and modularity are hereditary properties.

The diamond lattice is modular and the pentagon lattice is not modular. They are both non distributive, non \oplus distributive, non \oplus-modular and have no orthocomplementation.

extended pentagon lattice

The extended pentagon lattice \oplus-modular but not modular.

