Distinguishing muon LFV effective couplings using $\mu^-e^- \rightarrow e^-e^-$ in a muonic atom

Joe Sato (Saitama University)

M. Koike, Y. Kuno, JS, & M. Yamanaka, Phys. Rev. Lett. **105**, 121601 (2010).
Y.Uesaka, Y. Kuno, JS, T. Sato & M. Yamanaka, Phys. Rev. D **93**, 076006 (2016).
Y.Uesaka, Y. Kuno, JS, T. Sato & M. Yamanaka, Phys. Rev. D **97**, 015017 (2018).
Y. Kuno, JS, T. Sato, Y.Uesaka & M. Yamanaka, in preparation

Contents

1. Introduction

- Charged Lepton Flavor Violation (CLFV)
- CLFV searches using muon
- > $\mu^-e^- \rightarrow e^-e^-$ in a muonic atom
- 2. Transition probability of $\mu^-e^- \rightarrow e^-e^-$
 - Effective CLFV interactions
 - Distortion of scattering electrons & Relativity of bound leptons
 - Difference between contact & photonic processes
- 3. Distinguishment of CLFV interaction
 - Atomic # dependence of decay rates
 - Energy-angular distribution of emitted electrons
 - Asymmetry of emitted electrons by polarizing muon
- 4. Summary

Contents

1. Introduction

- Charged Lepton Flavor Violation (CLFV)
- CLFV searches using muon
- > $\mu^-e^- \rightarrow e^-e^-$ in a muonic atom
- 2. Transition probability of $\mu^-e^- \rightarrow e^-e^-$
 - Effective CLFV interactions
 - Distortion of scattering electrons & Relativity of bound leptons
 - Difference between contact & photonic processes
- 3. Distinguishment of CLFV interaction
 - Atomic # dependence of decay rates
 - Energy-angular distribution of emitted electrons
 - Asymmetry of emitted electrons by polarizing muon
- 4. Summary

Charged Lepton Flavor Violation (CLFV)

- A probe for new physics -

- Iepton flavor violation for charged lepton = CLFV
- forbidden in SM
- contribution of lepton mixing \rightarrow very small

 $Br(\mu \to e\gamma) \lesssim 10^{-54}$

cf. current experimental upper limit $Br < 4.2 \times 10^{-13}$

cannot be observed by current technology

enhanced in many theories beyond SM

 ✓ Searches for CLFV can access high energy physics with little SM backgrounds.

CLFV searches in muon rare decay

current bounds

L. Calibbi & G. Signorelli, arXiv:1709.00294 [hep-ph].

Reaction	Present limit	C.L.	Experiment	Year
$\mu^+ \to e^+ \gamma$	$< 4.2 \times 10^{-13}$	90%	MEG at PSI	2016
$\mu^+ \to e^+ e^- e^+$	$< 1.0 \times 10^{-12}$	90%	SINDRUM	1988
$\mu^{-}\mathrm{Ti} \rightarrow e^{-}\mathrm{Ti}$	$< 6.1 \times 10^{-13}$	90%	SINDRUM II	1998
$\mu^- \mathrm{Pb} \to e^- \mathrm{Pb}$	$< 4.6 \times 10^{-11}$	90%	SINDRUM II	1996
$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}$	$< 7.0 \times 10^{-13}$	90%	SINDRUM II	2006
μ^- - e^- conversion	μ-	e- 🗸	CLFV search usir	ng μ -atom
	Q N		exploring μeqq int	teraction

New experiments for " $\mu^- - e^-$ conversion" are planned with higher sensitivity than previous ones. (COMET, DeeMe @ J-PARC, Mu2e @ Fermilab)

$\mu^-e^- \rightarrow e^-e^-$ in a muonic atom M. Koike, Y. Kuno, J. Sato, & M. Yamanaka, Phys. Rev. Lett. 105, 121601 (2010). **New CLFV search** using muonic atoms E_1 +Zeproposal in **COMET** R. Abramishvili et al., **COMET Phase-I Technical Design Report** (2016). E_2 **Features** • clear signal : $E_1 + E_2 \simeq m_\mu + m_e - B_\mu - B_e$ 2 CLFV mechanisms \checkmark contact (μeee vertex) γ^* \checkmark photonic ($\mu e \gamma$ vertex) (similar to $\mu^+ \rightarrow e^+ e^+ e^-$) • atomic # Z : large \Rightarrow decay rate Γ : large ($\Gamma \propto (Z-1)^3$)

Comparison to other muonic CLFV

(Rough) Estimation of decay rate
Suppose nuclear Coulomb potential is weak,

$$\Gamma = \sigma v_{rel} \int dV \rho_{\mu} \rho_{e^{\perp}}$$

$$\Gamma = \sigma v_{rel} \int dV \rho_{\mu} \rho_{e^{\perp}}$$

$$\Gamma = \sigma v_{rel} \int dV \rho_{\mu} \rho_{e^{\perp}}$$

$$\Gamma = \sigma v_{rel} \int dV \rho_{\mu} \rho_{e^{\perp}}$$
(sum of two 1s e^{-s})
Phys. Rev. Lett. 105,121601 (2010).
 σ : cross section of $\mu^{-}e^{-} \rightarrow e^{-}e^{-}$
(free particles')
 v_{rel} : relative velocity of $\mu^{-} \& e^{-}$
(free particles')
$$\psi_{1S}^{e}(\vec{r}) = \sqrt{\frac{(m_{e}(Z-1)\alpha)^{3}}{\pi}} \exp(-m_{e}(Z-1)\alpha|\vec{r}|)$$
: wave function of 1s bound electron (non-relativistic)
$$\prod \propto (Z-1)^{3}$$

(the same Z dependence in the both contact & photonic cases)

Branching ratio of CLFV decay

How many muonic atoms decay with CLFV, <u>compared to created #</u>? $\Gamma \propto (Z-1)^3$ $BR(\mu^- e^- \to e^- e^-) \equiv \tilde{\tau}_{\mu} \Gamma(\mu^- e^- \to e^- e^-)$ due to existence prob. of bound e^- at the origin cf. 2.2µs for a muonic H (Z = 1) $\tilde{\tau}_u$: lifetime of a muonic atom 80ns for a muonic Pb (Z = 82) BR with CLFV coupling fixed on allowed maximum 10-15 e.g. BR < 5.0×10^{-19} for Pb (Z = 82) Br ($\mu \rightarrow 3e$, Photonic) < 1.0×10⁻¹² e_e 10-16 ↑ Br $(\mu^+ \rightarrow e^+ \gamma) < 1.2 \times 10^{-11}$ if contact process is dominant 10-17 Branching Ratio to μ^{-e-} 10⁻¹⁸ →3e, 4Fermi) < 1.0×10 10⁻¹⁹ \triangleright BR increases with atomic # Z. Br $(\mu^+ \to e^+ \gamma) < 1.7 \times 10^{-13}$ 10-20 10-21 10-22 R Using muonic atoms with large Z 10^{-23} 10 2080 30 4070 90 50 60 is favored to search for $\mu^-e^- \rightarrow e^-e^-$. Atomic Number

Phys. Rev. Lett. 105,121601 (2010).

To improve calculation for decay rate

✓ previous formula of CLFV decay rate by Koike et al.

Note

$$\Gamma_{\mu^- e^- \to e^- e^-} = 2\sigma v_{\rm rel} |\psi^e_{1S}(0)|^2 \propto (Z-1)^3$$

 \succ "Z dependence" comes from only $|\psi_{1S}^e(0)|^2$ (always Γ ∝ (Z − 1)³)

 \succ emitted e^- s are expected to be back-to-back with equal energies

More quantitative estimation is needed ! (important for large Z)

Contents

1. Introduction

- Charged Lepton Flavor Violation (CLFV)
- CLFV searches using muon
- $ightarrow \mu^- e^-
 ightarrow e^- e^-$ in a muonic atom

2. Transition probability of $\mu^-e^- \rightarrow e^-e^-$

- Effective CLFV interactions
- Distortion of scattering electrons & Relativity of bound leptons
- Difference between contact & photonic processes

3. Distinguishment of CLFV interaction

- Atomic # dependence of decay rates
- Energy-angular distribution of emitted electrons
- Asymmetry of emitted electrons by polarizing muon
- 4. Summary

Our formulation for decay rate

$$\begin{split} \Gamma &= \sum_{f} \sum_{\overline{\iota}} (2\pi) \delta(E_{f} - E_{i}) \left| \left\langle \psi_{e}^{\boldsymbol{p}_{1}, \boldsymbol{s}_{1}} \psi_{e}^{\boldsymbol{p}_{2}, \boldsymbol{s}_{2}} \right| H \left| \psi_{\mu}^{1s, \boldsymbol{s}_{\mu}} \psi_{e}^{1s, \boldsymbol{s}_{e}} \right\rangle \right|^{2} \\ \text{use partial wave expansion to express the distortion} \\ \psi_{e}^{\boldsymbol{p}, \boldsymbol{s}} &= \sum_{\kappa, \mu, m} 4\pi \, i^{l_{\kappa}}(l_{\kappa}, m, 1/2, \boldsymbol{s}|\boldsymbol{j}_{\kappa}, \mu) Y_{l_{\kappa}, m}^{*}(\hat{p}) e^{-i\delta_{\kappa}} \psi_{p}^{\kappa, \mu} \\ \kappa : \text{ index of angular momentum} \\ \text{get radial functions by solving "Dirac eq. with } \phi$$
" numerically
$$\begin{aligned} \frac{dg_{\kappa}(r)}{dr} + \frac{1+\kappa}{r} g_{\kappa}(r) - (E+m+e\phi(r))f_{\kappa}(r) = 0 \\ \frac{df_{\kappa}(r)}{dr} + \frac{1-\kappa}{r} f_{\kappa}(r) + (E-m+e\phi(r))g_{\kappa}(r) = 0 \end{aligned} \qquad \phi$$
 : nuclear Coulomb potential
$$\psi(r) = \begin{pmatrix} g_{\kappa}(r)\chi_{\mu}^{\mu}(\hat{r}) \\ if_{\kappa}(r)\chi_{-\kappa}^{\mu}(\hat{r}) \end{pmatrix} \end{split}$$

• overlap of bound μ^- , bound e^- , and two scattering e^- s

Upper limits of BR (contact process)

Upper limits of BR (photonic process)

Effect of distortion

Contents

1. Introduction

- Charged Lepton Flavor Violation (CLFV)
- CLFV searches using muon
- > $\mu^-e^- \rightarrow e^-e^-$ in a muonic atom
- 2. Transition probability of $\mu^-e^- \rightarrow e^-e^-$
 - Effective CLFV interactions
 - Distortion of scattering electrons & Relativity of bound leptons
 - Difference between contact & photonic processes

3. Distinguishment of CLFV interaction

- Atomic # dependence of decay rates
- Energy-angular distribution of emitted electrons
- Asymmetry of emitted electrons by polarizing muon
- 4. Summary

Distinguishing method 1

~ atomic # dependence of decay rates ~

Z dependence of Γ

 \succ The Z dependences are different among interactions.

That of contact process is strongly increasing, while that of photonic process is moderately increasing.

Distinguishing method 2

~ energy and angular distributions ~

The distributions are (a little) different among interactions.

Model distinguishing power

> We can distinguish "contact" or "photonic".

Can we distinguish "left" or "right" ?

e.g. $g_1(\overline{e_L}\mu_R)(\overline{e_L}e_R) \& g_2(\overline{e_R}\mu_L)(\overline{e_R}e_L)$

Distinguishing method 3

Measurement of angular distribution asymmetry

Determination of dominant interaction !?

cf : $\mu^+ \rightarrow e^+ \gamma$, $\mu^+ \rightarrow e^+ e^+ e^-$ with polarized muon

Y. Kuno & Y. Okada, Phys. Rev. Lett. 77, 434 (1996).

Y. Okada, K. Okumura & Y. Shimizu, Phys. Rev. D 61, 094001 (2000).

$$\frac{\mathrm{d}^{5}\Gamma}{\mathrm{d}E_{1}\mathrm{d}\Omega_{1}\mathrm{d}\Omega_{2}} \propto \left\{1 + F_{1}\vec{P}\cdot\hat{p}_{1} + F_{2}\vec{P}\cdot\hat{p}_{2} + F_{D}\vec{P}\cdot\hat{p}_{1}\times\hat{p}_{2}\right\}$$

> Final state is determined by 4 parameters, say, $(E_1, \theta_1, \theta_2, \theta_{12})$

2 are fixed for examples

 θ_1 : angle between P, p_1 θ_2 : P, p_2 θ_{12} : p_1, p_2

 $Asym. = [F(E_1, E_2, c_{12}) + F(E_2, E_1, c_{12})]\cos(\theta_{12}/2)$ $= F_S(E_1, E_2, c_{12})$

 F_{S}

Asym. = $[F(E_1, E_2, c_{12}) - F(E_2, E_1, c_{12})]\sin(\theta_{12}/2)$ = $F_A(E_1, E_2, c_{12})$

 F_A

In all cases there is asymmetry

- Relativistic treatment is important
 - g_1 type

In non-relativistic limit, exactly 0

Even if relativistic, if nuclear is point like the asymmetry is 0

: asymmetry $\propto \int dr [g_{\mu}(r)f_{e}(r) - f_{\mu}(r)g_{e}(r)]j_{1}(pr)$

- Distortion is very important
- g₅ type

In any case , non-zero

- Shape of Assymetry can determine the interaction !?

Contents

1. Introduction

- Charged Lepton Flavor Violation (CLFV)
- CLFV searches using muon
- > $\mu^-e^- \rightarrow e^-e^-$ in a muonic atom
- 2. Transition probability of $\mu^-e^- \rightarrow e^-e^-$
 - Effective CLFV interactions
 - Distortion of scattering electrons & Relativity of bound leptons
 - Difference between contact & photonic processes
- 3. Distinguishment of CLFV interaction
 - Atomic # dependence of decay rates
 - Energy-angular distribution of emitted electrons
 - > Asymmetry of emitted electrons by polarizing muon

4. Summary

Summary

- $\mu^-e^- \rightarrow e^-e^-$ process in a muonic atom
 - ✓ interesting candidate for CLFV search
 - ✓ Our finding
 - <u>Distortion</u> of emitted electrons
 - <u>Relativistic treatment</u> of a bound electron

are important in calculating decay rates.

Distortion makes difference between 2 processes.

- contact process : decay rate Enhanced (7 times Γ_0 in Z = 82)
- photonic process: decay rate suppressed (1/4 times Γ_0 in Z = 82)
- How to discriminate interactions, found by this analyses
 - \checkmark atomic # dependence of the decay rate
 - $\checkmark\,$ energy and angular distributions of emitted electrons
 - \checkmark asymmetry of electron emission by polarized muon

BACKUP

Coulomb prevents the contact process?

Use the simple Hamiltonian (a muon & an electron in nuclear potential)

$$H = -\sum_{i=\mu,e} \frac{\nabla_i^2}{2m_e} - \sum_{i=\mu,e} \frac{Z\alpha}{|r_i|} + \frac{\alpha}{|r_\mu - r_e|}$$

Assume that the form of the wave function is

$$\psi_{a,b}^{Z_{\mu},Z_{e}}(\boldsymbol{r}_{\mu},\boldsymbol{r}_{e}) = N_{a,b}^{Z_{\mu},Z_{e}} \exp\left(-m_{\mu}Z_{\mu}\alpha|\boldsymbol{r}_{\mu}|\right) \exp\left(-m_{e}Z_{e}\alpha|\boldsymbol{r}_{e}|\right) \times \left\{1 - b\exp\left(-a|\boldsymbol{r}_{\mu}-\boldsymbol{r}_{e}|\right)\right\}$$

find the parameter set to minimize the energy

• $Z_{\mu} \simeq Z$ • $b \simeq 0$ • $Z_e \simeq Z - 1$

We can safely neglect the additional factor.

Radial wave function (bound e^{-}) ²⁰⁸Pb case Z = 81(considering μ^- screening) $g_e^{1s}(r)$ $[MeV^{1/2}]$ 1 0.8 B_e(MeV) Туре 9.88×10^{-2} **Relativistic** 0.6 Non- 8.93×10^{-2} 0.4 relativistic 0.2 0 *r* [fm] 500 1000 1500 2000 3000 0 2500

Relativity enhances the value near the origin.

Radial wave function (scattering e^-)

Radial wave function (bound μ^-)

²⁰⁸Pb case Z = 82

 \checkmark It is important to consider finite nuclear charge radius.

Effect of finite size of muon wave

Momentum fluctuation of bound muon

Discriminating method 2

(due to Pauli principle)

Contribution from all bound *e*⁻s

normalize the contribution of $1S e^-$ to 1

contact (g_1)

1S	2S	2P	3S	3P	3D	4S	Total
1	0.17	6.2×10^{-3}	5.1×10^{-2}	3.1×10^{-3}	2.3×10^{-9}	2.1×10^{-2}	1.25

photonic (g_L)

1S	2S	2P	3S	3P	3D	4S	Total
1	0.15	7.3×10^{-3}	4.3×10^{-2}	2.6×10^{-3}	2.4×10^{-5}	1.8×10^{-2}	1.21

• it is sufficient to consider about *S* electrons for both cases

非対称度の測定

 $\frac{\mathrm{d}^{5}\Gamma}{\mathrm{d}E_{1}\mathrm{d}\Omega_{1}\mathrm{d}\Omega_{2}} = \frac{1}{8\pi^{2}} \frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}E_{1}\mathrm{d}c_{12}} \left\{ 1 + F(E_{1}, E_{2}, c_{12})\vec{P} \cdot \hat{p}_{1} + F(E_{2}, E_{1}, c_{12})\vec{P} \cdot \hat{p}_{2} \right\}$

※終状態のkinematicsを決めるパラメータは4つ ($E_1, \theta_1, \theta_2, \theta_{12}$) $\theta_1: P - p_1$ の角度
2つを固定して図を作成 $\theta_2: P - p_2$ $\theta_{12}: p_1 - p_2$

例: $\theta_1 = \theta_2 = \theta_{12}/2$

 $Asym. = [F(E_1, E_2, c_{12}) + F(E_2, E_1, c_{12})]\cos(\theta_{12}/2) \ (= F_S(E_1, E_2, c_{12}))$

 $F_S(E_1, E_2, c_{12})$

$F_A(E_1, E_2, c_{12})$

