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INTRODUCTION

Tropical forests typically exhibit accentuated 
vertical stratification of vegetation due to 
the variety of strategies adopted by plants to 
maximise light absorption (Lieberman et al. 
1995, Richards 1996, Ishii et al. 2004, Laurans 
et al. 2014). Such stratification is highlighted as 
one of the explanations of why tropical forest 
diversity is high, relative to other ecosystems with 
similar resource demands (Kohyama & Takada 
2009, Gravel et al. 2010). The higher the canopy 
level a plant occupies the less interference of light 
absorption there will be (Kohyama & Takada 
2009). Therefore, stratification creates a gradient 
of luminosity and resource restriction, which 
might limit the growth and reproduction of 
understorey plants (Roth 1984, Chazdon 1986a, 
Zavala et al. 2007). 
 Most of the neotropical palms (Arecaceae) 
have adaptations in physiology, architecture, 
phenology and morphology to tolerate shading, 
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which permits their establishment in the 
forest understory (Chazdon 1986a, 1986b, de 
Granville 1992, Valladares & Niinemets 2008). 
Furthermore, Arecaceae is considered important 
for forest structure as well as supplying food 
for fauna (Scariot 1999, Aguirre & Dirzo 2008, 
Aguiar & Tabarelli 2010). In spite of their 
importance, studies addressing the trade-off 
in palm growth and reproduction to deal with 
luminosity limitations are scarce (Kimura & 
Simbolon 2002, Rodríguez-Buriticá et al. 2005). 
Research regarding palm allometry has mostly 
focused on the architectural behavior of their 
vegetative structures, photosynthetic responses 
and leaf demography (Chazdon 1985, Chazdon 
1986a, Enright 1992, Takahashi & Kohyama 
1997, Gatti et al. 2011, Sampaio & Scariot 2008, 
Sylvester & Avalos 2013). Many of these studies 
either utilise models created for dicotyledonous 
plants  or are specific to a single species (Malhi 
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et al. 2004, Phillips et al. 2009). However, due 
to their monopodial growth and absence of 
secondary growth, palms constitute a group with 
very distinct strategies when compared with trees 
(Tomlinson 2006). In this study, it was aimed to 
elucidate the growth and reproduction strategies 
based on allometric relationships under different 
light conditions of the understory palm, Geonoma 
schottiana, within a semi-deciduous Atlantic forest 
in Brazil. The hypotheses state that 1) larger 
palms, either in height or crown diameter, will 
produce more infructescences and consequently 
more fruit, and 2) individuals with access to 
higher levels of luminosity will produce more 
fruit.  

MATERIALS AND METHODS

Study site

The study was carried out in a semi-deciduous 
montane Atlantic forest at Parque Ecológico 
Quedas do Rio Bonito, located in the range 
of Bocaina Hill complex in the municipality 
of Lavras (21° 19' S, 44° 59' W). At this site the 
altitude ranges between 950 and 1200 meters.  
The climate, according to the Köppen System, 
is a transition between Cwb (dry winter oceanic 
climate) and Cwa (dry winter humid subtropical), 
that is, temperate with dry winters. The annual 
mean precipitation is 1,460 mm and the mean 
annual temperature is 20.4 °C.

Study species
 
The genus Geonoma (subfamily Arecoideae, tribe 
Geonomeae) encompasses around 50 species, 
widely distributed throughout America (Ostrorog 
& Barbosa 2009). Geonoma schottiana, similar to 
other species from this genus, is an understorey 
palm associated with wet soils, with a range from 
the Atlantic forest domain to the Gallery forests 
of central Brazil (Chazdon 1991, Oliveira-Filho 
& Ratter 1995). Its fruiting capacity throughout 
the year, plus the production of more than 
one infructescence at a time makes this palm 
a key species in many communities through 
its provision of food for fauna (Scariot 1999, 
Sampaio & Scariot 2008). Similar to other species 
of this genus, such as G. undata and G. brevispatha, 
birds are the most common method by which the 
fruits of G. schottiana are dispersed (Wenny 2005, 
Ostrorog & Barbosa 2009). 

Data collection

Field work was conducted over a period of 
two weeks in May, during the dry season in 
southeast of Brazil. A total of 25 fruiting 
individuals, higher than two meters, were 
identified, from which the following data was 
collected: total height of the palm (from the 
base of the stem to the top of the youngest 
expanding leaf), crown depth (from the base of 
the crown to the top of the youngest expanding 
leaf), crown diameter (the largest and the 
smallest, visually defined using a measuring 
tape), and canopy height. From each individual 
palm, one infructescence with green fruits was 
randomly collected. Infructescences of green 
fruits were chosen since these were less likely 
to have lost fruits and would therefore more 
accurately represent the maximum yield of the 
palms. Each infructescence was immediately 
stored in an individual plastic bag to avoid loss 
of fruits during transportation to the Federal 
University of Lavras, for counting. 
 A spherical densiometer was used to estimate 
the percentage of canopy opening (Baudry et al. 
2014). Measurements were taken immediately, 
surrounding the crown of each individual 
palm, which was then used to represent the 
quantity of light available to each individual. The 
densiometer was used to estimate the percentage 
of crown openness beneath each individual, 
close to the base of the stipe. This represents the 
fraction of luminosity that is not intercepted by 
the individual’s crown. All measurements were 
taken by a single observer at a height of 130 cm 
from the ground.
 The degree of forest stratification was 
estimated visually in the field by a single person, 
who assessed the degree of vertical stratification 
according to a scale of 4 categories, considering 
the layers of plant species composing different 
strata of the forest. Category 1 represented 
an environment with the lowest degree of 
stratification, with the forest consisting of just 
one layer of plant species.  Category 2 comprised 
two to three layers, and category 3, four layers.  
Category 4 was reserved for the highest degree 
of stratification of the forest, consisting of at least 
five layers. 
 To further investigate the relationship 
between crown parameters, luminosity and fruit 
production, the two crown diameters (larger 
and smaller) and the crown depth were used to 
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calculate an additional predictor variable, crown 
volume. For this, first used were the two crown 
diameters to calculate the ellipse (A):
 
 A = π  a  b (1)

where a is the larger crown diameter and b the 
smaller one. This was then multiplied by the 
crown depth to provide the crown volume. 
 Photos of the leaves in initial and mature 
ontogenetic stage, and also of an inflorescence 
and of an infructescence with green fruits, are 
shown in Appendix 1. 

Data analysis
 
First, the correlation among the independent 
variables (canopy opening, canopy height, crown 
depth, crown openness, crown volume, crown 
diameter, stratification and total height of palm) 
were tested by applying Pearson correlation 
tests (r) and variance inflation factor (vif) in 
order to check for multicollinearity. For this, 
Pearson’s coefficient was calculated using the 
R library Performance Analytics (Peterson and 
Carl 2014). For the Pearson tests the threshold 
(< 0.7) was considered, described by Dormann et 
al. (2013) as the cutoff. If the correlation among 
the predictors significantly exceeds this threshold 
(0.7), collinearity begins to severely distort model 
estimation and subsequent prediction (Dormann 
et al. 2013). The variance inflation factor was 
computed using the function vif of the package 
companion to applied regression (car) version 
2.1-4 (Fox & Weisberg 2011), considering vif < 5 
as the threshold (Kline 2011, Allison 1999, Zuur 
et al. 2010). Significant collinearity above the 
threshold of the Pearson tests (r > 0.70, Appendix 
2) and vif (>10) was found between larger and 
smaller crown diameter and between crown 
volume and larger crown diameter. Thus, to avoid 
predictors with severe collinearity within a model, 
two separate global models were constructed: i) a 
model with larger crown diameter and ii) another 
model with crown volume replacing larger 
crown diameter. The smaller crown diameter 
was not included in either model. The linear 
relationship was also pre-tested among the target 
and predictor variables using local maximum 
(LM) models, with cumulative residual processes 
(cumres) function of the package goodness-of-fit 
(gof) 0.9.1, to perform Kolmogorov-Smirnov and 
Cramér-Von Mises (CvM) tests, considering p < 

0.05 as the significance criteria (Lin et al. 2002, 
Holst 2014). These LM models contained the 
same complete set of predictors included in the 
two global models described below. It was found 
that all relationships among the dependent and 
independent variables were linear (p > 0.05), for 
both tests.
 Following the above procedures, two global 
models (fruit model and infructescence model), 
including the dependent and independent 
variables, were constructed using generalised 
linear model (GLM). These global models were 
then submitted to selection following Akaike 
criterion (Second-Order Akaike Information 
Criterion) using the function dredge of the 
package MuMIn (Barton 2016). The first 
global model had the number of fruits as the 
target variable, and the second the number of 
infructescences. These two global models were 
tested using two arrays of predictors to avoid 
multicollinearity, since some of the variables 
were highly correlated (Appendix 2). The first 
array of predictors were crown openness, canopy 
opening, stratification, canopy height, total 
height of the palm, crown diameter and crown 
depth. The larger crown diameter was used and 
smaller crown diameter was rejected, as these 
two variables were highly correlated. The second 
array included predictors used in the first one, 
but replacing crown diameter with crown volume.
 The first model, with the number of fruits 
as the dependent variable, was computed using 
Negative Binomial distribution of the package 
MASS, since both Poisson and Quasipoisson 
models showed overdispersion (Venables & 
Ripley 2002, O’Hara & Kotze 2010). In the second 
model, with the number of infructescences as 
the dependent variable, Poisson distribution 
was used, since there was neither under nor 
overdispersion in the models. The model with 
the lower value of AICc (Akaike value) and a 
delta value less than 2 was selected as the best 
model (Burnham & Anderson 2002). In addition, 
it was taken into account the models with the 
second lowest values of AICc, and delta lower 
than two, by considering these models and the 
best ones as equally parsimonious (Burnham et 
al. 2011). The significance of the models with 
Negative Binomial and Poisson distribution was 
calculated by computing an analysis of deviance 
table (type II tests) with the function Anova from 
the package car (Fox & Weisberg 2011, Appendix 
3 & 4). This Anova works reliably for both types 
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of models and is not hierarchical, allowing all 
predictors to have the same chance of being 
significantly related to the dependent variable. 
The (pseudo) R-squared based on Zhang’s v 
were computed for these best models (Negative 
Binomial and Poisson) using the function rsq 
of the package rsq (Zhang 2017, 2018). The 
(pseudo) R-squared works as goodness-of-fit 
measure for Poisson models, which explains 
the proportion of variation in the dependent 
variable explained by the predictors included in 
the model (Heinzl & Mittlboeck 2003).

RESULTS

The first global model submitted to Akaike 
criterion included the number of fruits as 
the dependent variable, and the second, the 
number of infructescences (Table 1). These 
models included larger crown diameter as an 
independent variable but not crown volume. 
The findings showed a significant increment 
in the number of fruits as the crown depth 
increased (Table 1, Figure 1a, Appendix 3). The 
number of fruits also increased significantly 
with canopy opening (Table 1, Figure 1b, 
Appendix 3). The number of infructescences 
only showed a significant positive relationship 
with the total height of the palm (Table 1, Figure 

1c, Table Appendix 3). That is, as the height 
of the palm increases, so does the number 
of infructescences. When crown volume was 
included as an independent variable (Table 2, 
Appendix 4), results indicated that it did not have 
a significant influence on the production of fruits 
and infructescences. However, the significant 
relationships of canopy opening and crown 
depth with number of fruits and total height with 
infructescences remained when crown volume 
was included in the models (Table 2, Appendix 4). 
All models with the number of infructescences as 
dependent variable presented higher proportion 
of variation explained (pseudo) R-squared than 
the models with number of fruits as dependent 
variables (Tables 1 & 2). 

DISCUSSION 

The obser ved relationship between fruit 
production and the increase of the percentage of 
canopy opening (Figure 1b) was expected, since 
light interception is essential for plant growth 
and reproduction (Chazdon 1986a, Freitas et al. 
2016). Understorey  species, such as G. schottiana, 
represent an example of plants prevailing in 
low light conditions, and despite their ability 
to thrive in this environment, the growth and 
reproductive success of this species remains 

Table 1  The best models selected following the Akaike criterion regarding relationships of 
dependent variables (number of fruits and number of infructescences) with  independent 
variables (crown openness, canopy openness, canopy height, stratification, total height, 
larger crown diameter and crown depth)

Fruit-1st Fruit-2nd Infructescence-1st Infructescence-2nd

Intercept 1 5.23 - 0.66 -
Intercept 2 - 5.54 - 1.56
Crown openness
Canopy openness 0.03 0.03
Stratification
Canopy heigth -0.02
Total height 0.16 0.14
Crown diameter
Crown depth 0.75 0.78 -0.51
R² 0.12 0.15 0.37 0.51
df 4 5 2 3
AICc 357.3 349.2 96.6 97
Delta 0.01 1.98 0.02 0.4
Weight 0.27 0.67 0.14 0.12

Infructescence = number of infructescences, Fruit-1st & -2nd and Infructescence-1st & -2nd are, respectively, the two 
best models for each dependent variable; Intercept 1 & 2 regards to the intercepts in the two best models of each 
dependent variable; R² = (pseudo)-squared based on Zhang’s v, df = degrees of freedom, AICc = Akaike value
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heavily influenced by light availability (Chazdon 
& Fetcher 1984, Chazdon 1991, Montgomery 
2004, Valladares & Niinemets 2008). The findings 
regarding the relationships between number of 
fruits and crown depth, and between the number 

of infructescences and total height (Figures 
1a & c, respectively) exemplify a well-known 
correlation between size and reproduction, 
where the larger the size of the individual, the 
greater the investment in reproductive structures 

Figure 1 a) Relationship between number of fruits and crown depth, b) relationship between number of 
fruits and canopy openness and c) relationship between number of infructescences and total height 
of the palm

Table 2 The best models selected following the Akaike criterion regarding the relationships 
of the dependent variables (number of fruits and number of infructescences) 
with crown volume included among the predictors replacing crown diameter

Fruit-1st Fruit-2nd Infructescence-1st Infructescence-2nd

Intercept 1 5.23 - 0.66 -
Intercept 2 - 5.34 - 1.56
Crown openness 
Canopy openness 0.03 0.03
Stratification
Canopy height
Total height 0.16 0.14
Crown depth 0.75 0.85
Crown volume -0.006 -0.51
R² 0.12 0.14 0.37 0.41
df 4 5 2 3
AICc 357.20 350.30 96.60 97.10
Delta 0.01 1.99 0.02 0.40
Weight 0.27 0.07 0.14 0.11

Infructescence = number of infructescences; Fruit-1st & -2nd and Infructescence-1st & -2nd are, 
respectively, the two best models for each dependent variable; Intercept 1 & 2 regards to the intercepts 
in the two best models of each dependent variable; R² = (pseudo)-squared based on Zhang’s v, df = 
degrees of freedom, AICc = Akaike value
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(Piñero & Sarukhán 1982, Enright 1992, Barot 
et al. 2005, Andrade et al. 2007, Bonser & 
Aarssen 2008, Weiner et al. 2009, Sylvester & 
Avalos 2013). Nevertheless, it is important to 
consider that increasing leaf production and, 
consequently, creating leaf overlap (represented 
by crown depth in our case) has the potential 
to introduce self-shading, limiting the benefit 
of increasing leaf production (Alvarez-Clare 
& Avalos 2007). However, the entirely pinnate 
leaf of the individuals of Geonoma schottiana 
ameliorates this shading (Uhl et al. 2008). 
 The strategy regarding the increase in crown 
depth increasing fitness (increased production 
of infructescences and fruits) is in accordance 
with the architectural model of Corner fitted by 
Hallé et al. (1978). This model describes plants 
with only one stipe, without lateral ramification, 
which limits the optimisation of light absorption 
in the horizontal plane. Thus, it was expect to 
find larger crowns in sites with smaller canopy 
opening as a result of a horizontal strategy to 
make more efficient use of the available light 
(Fontes 1999). However, this study found no 
evidence of a significant relationship between 
larger crown diameter and the dependent 
variables (number of infructescences and fruits), 
likely because there was little variation in leaf 
length of our sampled individuals of Geonoma 
schottiana. Therefore, the results did not indicate 
a significant relationship between crown diameter 
and light availability, similar to the absence of 
correlation between total height of the plant and 
crown diameter, which are well-known explored 
relationships in various allometric studies (King 
1996, 1990, Alves & Santos 2002, Duque et al. 
2017). This divergence in the fitting of allometric 
models to understorey palms is unsurprising since 
a relatively low number of articles specific to this 
subject have been published, thus emphasising 

the importance of this study. It also suggests that 
the allometry of palms is very different to that 
of trees since they have monopodial growth and 
no secondary growth (Schatz et al. 1985, Rich 
1986, Rich et al. 1986, Tomlinson 1990, Alves et 
al. 2004, Tomlinson 2006, Goodman et al. 2013). 
 The relationships presented in this study 
(Figures 1a, b, c) demonstrate strategies of the 
occupation of space and resource allocation  
which are underpinned by phenotypic 
differences, since individuals of the same species 
present different behaviors under different 
environmental conditions (e.g. distinct levels 
of stratification and light), either for vegetative 
growth or for reproduction (Thomas & Bazzaz 
1999, Svenning 1999, Souza & Martins 2004, 
Weiner et al. 2009, Eiserhardt et al. 2011).
 The study did not find any significant 
correlation between crown depth and canopy 
opening.  This may be explained by the semi-
deciduous nature of the forest.  The variations 
in luminosity in the understorey are seasonal, 
occurring in the dry period, which has an 
average duration of six months. Individuals 
located under canopy species with perennial 
leaves, as opposed to deciduous or semi-
deciduous, which are likely to experience 
lower levels of luminosity and thus develop 
deeper crowns. The relationship between 
crown depth and reproductive vigor (fitness) 
may be masked since the data was collected 
during the rainy season, a period in which the 
deciduous and semi-deciduous are in full leaf 
(Oliveira-Filho 2009). To further understand 
the mechanism of controlling the proportion 
of resources committed to reproduction versus 
vegetative growth, it is proposed that further 
data collection and analysis of the seasonal state 
(deciduous or perennial) of the surrounding 
vegetation is required. This will enable to 

Figure 2  A diagram demonstrating crown behavior in Geonoma schottiana under different light conditions, 
where x represents the crown diameter and y and z are the distinct crown depths 

y

x

z
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determine how seasonal variations in luminosity 
might affect reproductive vigor in understory 
palms.  
 This study is the first research on relationships 
between allometry and reproduction of G. 
schottiana in Atlantic semideciduous forest. The 
findings in this study expanded the knowledge 
regarding allometric relationships of palms. 
The findings concluded that the fitness (i.e. 
production of fruits and infructescences) of 
the understorey palm G. schottiana is greatly 
influenced by the size of the individual (crown 
depth and total height) and canopy opening.  
Nevertheless, further work is required to refine 
models of palm allometry, since the highly 
specialised growth traits of palms do not fit the 
well-established models used for dicotyledons. 
Therefore, the study underlines the importance 
of further research defining the allometric 
behaviour of palm trees, in order to better 
understand the mechanisms and strategies of 
growth and reproduction of palms, allowing 
to make inferences about their competitive 
capacity and their capacity to adapt to changing 
environments. 
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Appendixes

Appendix 1  Photos of a Geonoma schottiana seedling (a), a mature leaf frond (b), an inflorescence (c) and 
an infructescence with green fruits (d)

Appendix 2  Pearson correlation coefficients (r) of the independent variables used in the final models 
(number of fruits and infructescences) 

Crown
diameter 

L

Crown
diameter 

S

Crown
depth

Total
height

Canopy
height

Stratification Crown
openness

Canopy
openness

Crown
volume

Crown diameter L 1 0.74 0.05 0.06 0.05 -0.13 0.16 0.10 0.77

Crown diameter S 0.74 1 0.01 0.03 0.04 -0.3 -0.06 0.04 0.66

Crown depth 0.05 0.01 1 -0.24 -0.09 -0.2 -0.06 0.16 0.39

Total height 0.06 0.03 -0.24 1 -0.21 -0.04 0.34 -0.05 -0.24

Canopy height 0.05 0.04 -0.09 -0.21 1 -0.04 -0.05 -0.28 0.25

Stratification -0.13 -0.3 -0.2 -0.04 -0.04 1 0.02 0.16 -0.19

Crown openness 0.16 -0.06 -0.06 0.34 -0.05 0.02 1 0.56 0.13

Canopy openness 0.10 0.04 0.16 -0.05 -0.28 0.16 0.56 1 0.05

Crown volume 0.77 0.66 0.39 -0.24 0.25 -0.19 0.13 0.05 1

Crown diam L = larger crown diameter, Crown diam S = smaller crown diameter, Total height = total height of the palm
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Appendix 3  The significance of the relationships among the variables of the final 
models in table 1 of the main text computed by the function Anova of 
the package companion to applied regression (car)

 
LR-Chisq Pr ( > Chisq)

Fruit model

¹ Canopy openness 12.56 0.0003

¹ Crown depth 6.17 0.0010

² Canopy openness 13.36 0.0010

² Crown depth 6.75 0.0090

² Canopy height 0.64 0.4210

Infructescence 
model

¹ Total height 8.07 0.0040

² Total height 5.88 0.0110

² Crown Depth 2.22 0.1350

¹ & 2 indicate the two best models following Akaike Criterion (lower AICc and delta < 2); LR = 
likelihood ratio, Pr = probability, Chisq = Chi-square

Appendix 4  The significance of the relationships among the variables of the 
final models in table 2 of the main text computed by the function 
Anova of the package companion to applied regression (car)

LR-Chisq Pr ( > Chisq)

Fruit model

¹ Canopy openness 12.56 0.0003
¹ Crown depth 6.17 0.0010
² Canopy openness 13.36 0.0002
² Crown depth 7.06 0.0071
² Crown volume 0.73 0.3910

Infructescence model
¹ Total height 8.07 0.0040
² Total height 5.88 0.0100
² Crown Depth 2.22 0.1351

¹ & 2 indicate the two best models following Akaike Criterion (lower AICc and delta < 2); 
LR = likelihood ratio, Pr = probability, Chisq = Chi-square


