An Introduction to Acid-Base Testing

Paul H. Jaffe, DVM Professional Services Veterinarian

Better 📥 Better

Outline

- Acid-Base in Practice
 - Common conditions
 - Benefits of use
 - Sample handling
 - Cases
- Conclusions

Emergency & Critical Care Evaluation and Monitoring

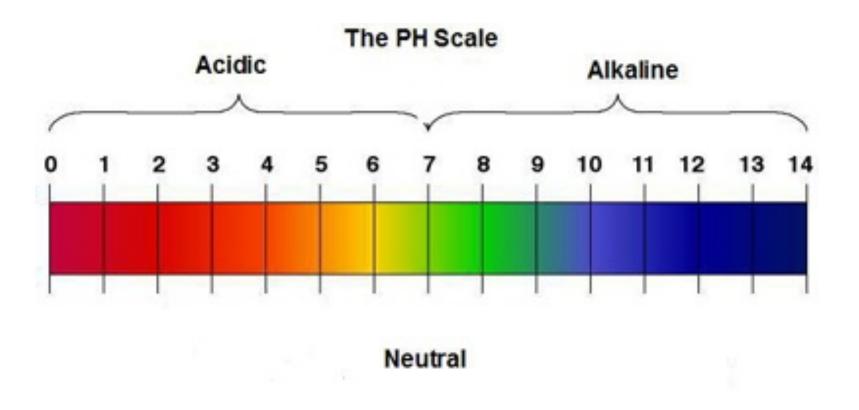
Immediate patient-side results

Acid-base status

- pH, HCO₃, pCO₂, AG, BE, TCO₂ **Oxygen carrying capacity**- pO₂, sO₂, Hgb, HCT **Electrolytes**- Na+, K+, CI-

Other important values

- iCa, Glu, BUN, CRE, Lactate



More cutoress in CuteStuff.co

Your portable lab solution

Acid-Base Testing

Shattering the Myths!!

Application

You will be amazed as to how many patients you will see each day that will benefit from acid-base analysis.

Do you routinely see any of these conditions in your practice?

- Vomiting / Diarrhea
- Diabetes
- Renal insufficiency
- Procedures requiring anesthesia or fluid therapy
- Toxicity ingestion (ethylene glycol, medications etc)



Benefits of Acid-Base Monitoring

Aggressive vs. conservative treatment

- Hospitalization or outpatient
- Respiratory status
 - -O₂ supplementation
 - Mechanical ventilation
- Fluids
 - -Route, type, additives
- Length of therapy
 - normalized chemistry values
 - abnormal pH/electrolytes

Response to therapy

Arterial vs. Venous Sampling

Arterial: Respiratory

- Oxygenation
- Ventilation
- Verify pulse-ox

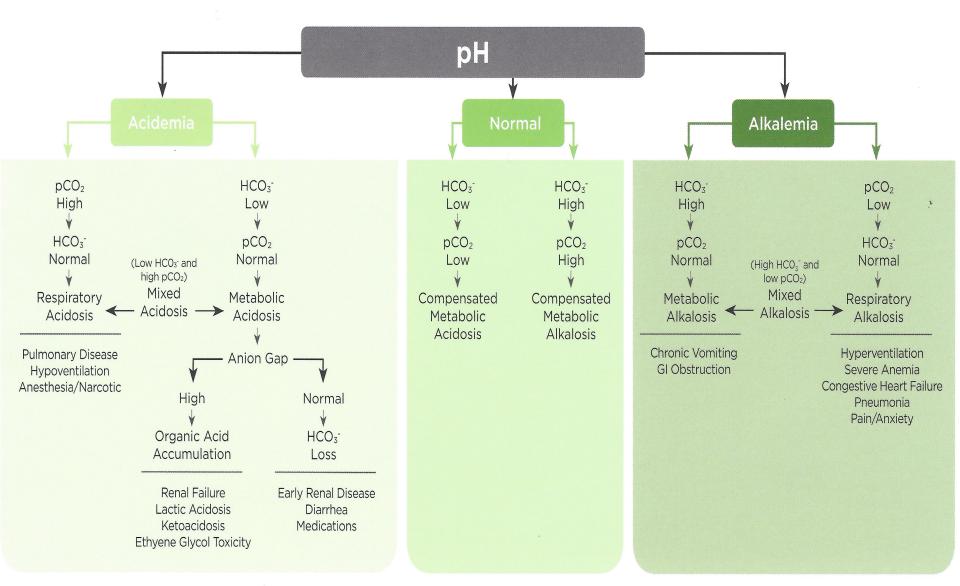
Venous: Acid-Base

- Chemistry
- Hematology

**Always include electrolytes!

Waddell, 2012, NAVC Clinician's brief

Normal Values	Arterial	Venous
Canine		
рН	7.35- 7.45	7.35-7.45
PO ₂ (mmHg)	90-100	30-42
PCO ₂ (mmHg)	35-45	40-50
HCO ₃ (mmol/L)	20-24	20-24
Feline		
рН	7.34 +/- 0.1	7.30+/-0.08
PO ₂ (mmHg)	102.9 +/- 15	38.6+/-11
PCO ₂ (mmHg)	33.6+/- 7	41.8 +/- 9
HCO ₃ (mmol/L)	17.5+/-3	19.4 +/- 4



iST	AT ranges	Dog	Cat
рН		7.35-7.45	7.25-7.40
pCO ₂	(mmHg)	35-38	33-51
HCO ₃	(mmol/L)	15-23	13-25
TCO ₂	(mmol/L)	17-25	16-25
AG	(mmol/L)	8-25	10-27

Acid-Base Diagnostic Chart

Common Disease States Where Acid-Base Analysis Is Beneficial

 DIARRHEA Loss of sodium bicarbonate (Na*HCO3*) Electrolyte abnormalities Potential loss of free body water 	 RENAL FAILURE Loss of sodium bicarbonate (Na*HCO3*) Hydrogen (H*) retention Electrolyte abnormalities BUN and Creatinine (plus others) buildup and act as toxins Lactate elevation with anemia 	DIABETIC KETOACIDOSIS (COMPLICATED DIAGETES MELLITUS) • Ketoacids • Electrolyte abnormalities • Elevated anion gap	VOMITING OR UPPER GLOBSTRUCTION - Loss of H*CF (hydrochloric acid) - Loss of K* (usually K*CF) - Electrolyte abnormalities - Potential loss of free body water - Lactate elevation with gastric torsion (GDV)
(DEPENDING ON SPECIES)	BASE ABNORMALITIES pH < 7.35 entation in veterinary patients – metabo	lic acidosis	EXPECTED ACID-BASE ABNORMALITIES pH > 7.45 (DEPENDING ON SPECIES) • Metabolic alkalosis
CARTRIDGE CHOICES CG4+: Acid-base, lactate CG8+: Acid-base, HCT, electrolytes, acidosis often elevates ICa* EC8+: Acid-base, HCT, electrolytes, best if high Anion Gap expected		CARTRIDGE CHOICES CG4+: Acid-base, lactate especially helpful with emergency or GDV CG8+: Acid-base, HCT, electrolytes, alkalosis can affect iCa* EC8+: Acid-base, HCT, electrolytes (especially CP)	
Normosol, Ringer's Fluids without lac	- COMMONLY USED and Lactated Ringer's often best to con tate indicated for elevated lactate levels pH < 7.25) consider bicarbonate therap	or hepatic disease	FLUID THERAPY - COMMONLY USED • Saline (Na*CP): 0.45% vs. 0.9% based on hydration status and electrolyte levels • K*CP supplementation common for vomiting patients (due to loss of K*) • Low K* dictates addition to fluids

Review a real case!!

Patient: 7 month old SF Labrador Retriever

History / Physical exam:

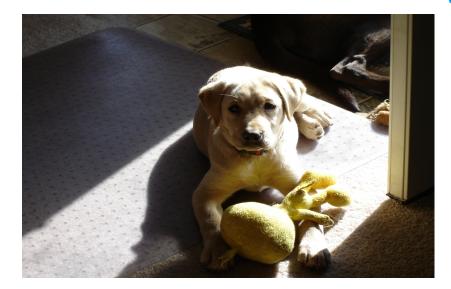
- Frequent diarrhea for 2 days
- Vomited a couple times
- Not eating well
- TPR is WNL
- Slightly dehydrated
- Depressed
- Abdominal palpation: a bit gassy

Owner reports she carried home a decomposing opossum a few days ago.

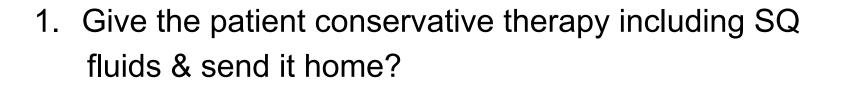
CBC Abnormalities

Chemistry Abnormalities

Test	Findings	Normal
Amylase ↑	1810	200-1200 IU/L
BUN ↑	30 12	7-25 mg/dl 2.5-8.9mmolurea/L
TP ↑	8.5 g/dl 85 g/L	5.4-8.2 g/dl 54-82 g/L
Glucose ↑	117 mg/dl 6.5 mmol/L	60-110 mg/dl 3.3-6.1 mmol/L



Initial Assessment


depressed juvenile K9 mild dehydration mild azotemia

So....what do you do?

- 2. Hospitalize the patient & administer IV fluids?
- 3. Check the Acid/Base status to see how sick the patient really is?

Acid-Base Review

- Why is it needed?
- Henderson-Hasselbalch
- The 4 classic acid-base disturbances

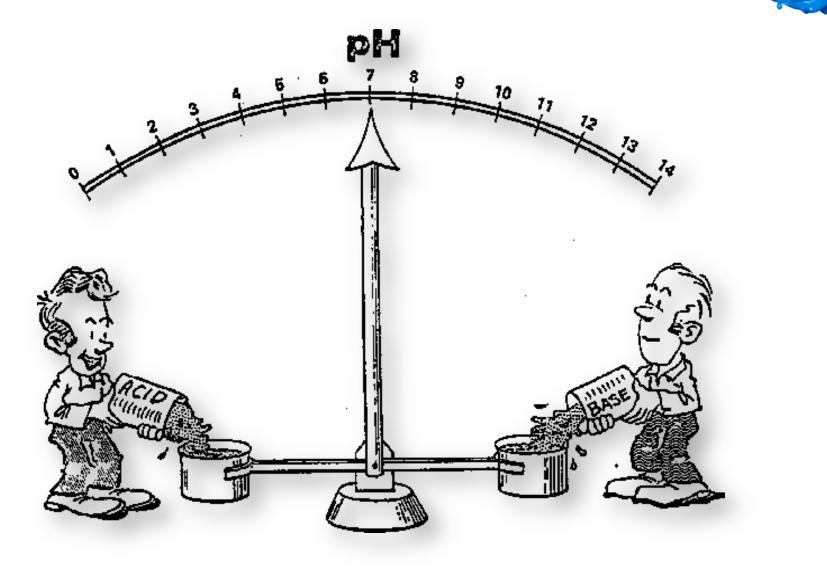
Why do we become concerned with pH?

Maintaining proper pH is vitally important... Just as important as electrolytes!!!

- Intracellular processes (enzymes) work optimally within narrow pH
- Proper electrolyte balance between cells & body fluids
- Oxygen delivery to tissues (O_2 -Hb affinity)
- Myocardial contractility & hence blood pressure is decreased with low pH
 - Arrhythmias may result (VPC's)

pH and Acid-Base

рΗ


- Measure of hydrogen ions in solution
- A measure of the acidity or alkalinity of the solution
 Acid
- Can donate a hydrogen (H+) ion to a base
- When dissolved in water (blood is mostly water) will create a pH < 7

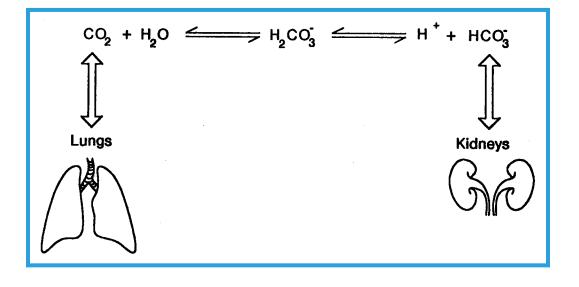
Base

- Can accept a H+ ion
- When dissolved in water will create a pH >7

Acid and Base pH (7.35-7.45)

Physiologic Acid-Base Regulation

Henderson-Hasselbalch



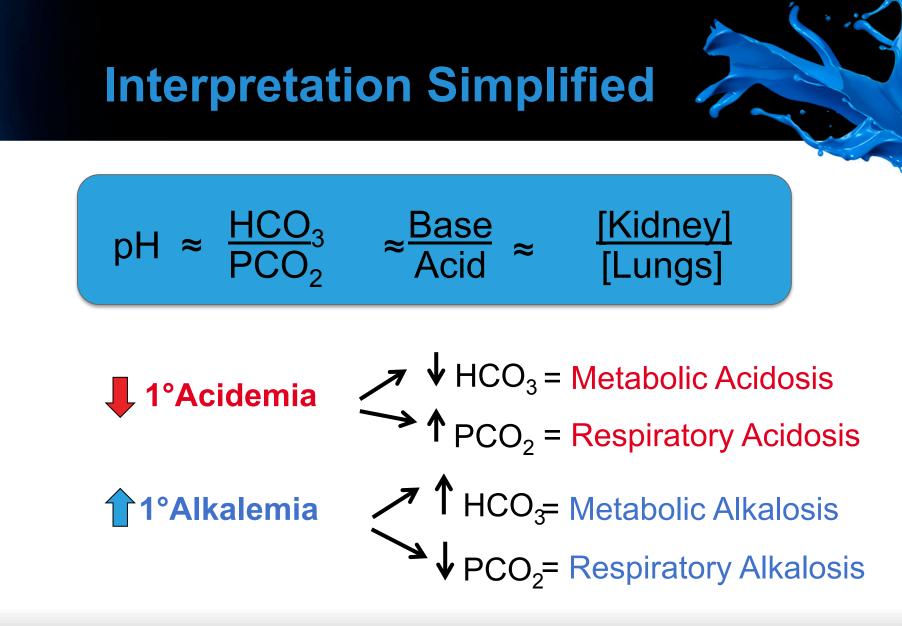
pH
$$\approx \frac{[HCO_3]}{[PCO_2]} \approx \frac{[Base]}{[Acid]}$$

Physiologic Acid-Base Regulation

- Kidneys (metabolic)
 - $-HCO_3$
 - Slow response (days)
- Lungs (respiratory)
 - $-CO_2$
 - Quick response (minutes to hours)

Compensation is an active physiologic process and overcompensation does not occur

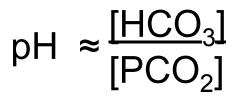
What do you need to know regarding acid-base?


Is the pH of my patient abnormal?

- -Low pH (<7.35) \implies Acidotic
- −High pH (>7.45) → Alkalotic

What is the cause of the abnormality?

- Respiratory (Heart/Lung) pCO2
- Metabolic (Mostly Kidney or Gastrointestinal) HCO3 $\uparrow \psi$
- -Mixed



What else do you need to know?

- How severe is the abnormality?
- Do I need to treat the abnormality?
- How do I treat the abnormality?
- Is there compensation?
 - The body's way to help bring pH back to normal

Anion Gap

Anion gap: amount of unmeasured anions in blood (Na + K + UC) = (Cl + HCO3 + UA) AG = UA - UC

Used to further describe metabolic acidosis and help determine the cause.

Increased Anion Gap	Decreased Anion Gap
Uremic acids	Uncommon
Lactic acid	Hypoalbuminemia
Ketoacids	Hemodilution
Toxins	

Base Excess or Base Deficit

The amount of acid or base needed to return the pH to 7.40

Used in treatment of acidosis = amount of base to administer

BE < -5 is a Base Deficit Acidosis

BE > 5 is a Base Excess Alkalosis

Sodium bicarbonate therapy

When?

 $-pH \le 7.1$ *if respiratory function normal

(impacts myocardial contractility)

What?

 $-mEq NaHCO_3 = (Normal - measured HCO_3 \times 0.3 \times kg)$

How?

-1/2 dose slow IV (20 min), remainder at maintenance IVF rate if needed

Goal of therapy: Increase the pH just enough to get out of the danger zone (i.e. pH 7.2), NOT to return the pH to normal

8.4% NaHCO₃= 1mEq/ml

Calcium: Ca

An electrolyte important for bone formation, skeletal muscle and heart muscle tone, nerve and muscle activity, biochemical processes in the cells, and coagulation.

Hypocalcemia	Hypercalcemia
Kidney failure	Kidney failure
Milk fever/ Eclampsia	Cancer
Hypoparathyroidism	Hyperparathyroidism
Pancreatitis, PLE, ethylene glycol poisoning	Toxicity – grapes/plants/ rodenticide

Ionized Ca : iCa

iCa: active form of body calcium (50% of Ca in body ionized) and is the most important indicator of calcium levels.

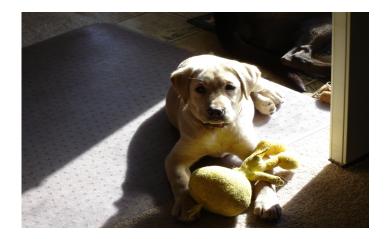
Signs of Low iCa Dogs < 1.12; Cats < 1.20 mmol/L	Signs of High iCa Dogs > 1.40; Cats > 1.32 mmol/L
Restless, panting, lethargy	Weakness, coma
PU/PD, anorexia,	PU/PD, anorexia, constipation
Tachycardia	Bradycardia, heart block
Tremors, seizures, stiff gait	Ataxia, muscle twitching, seizures

Lactate

Lactate assesses

- systemic perfusion
- 0₂ delivery & consumption

Lactate elevates with peripheral tissue hypoperfusion in various conditions			
Sustained heavy exercise	DKA		
Asthma	Sepsis		
Anemia	Organ failure (liver/kidney)		
Trauma	GDV		


High levels pre and post treatment can indicate a poor prognosis (poor tissue perfusion)

Back to our case...

Puppy with dietary indiscretion

- depressed
- mild dehydration
- increased amylase
- mild azotemia

Check the acid-base status!

Acute Vomiting and Diarrhea

Test	Value	Range
рН	7.30 (L)	7.35-7.45
pCO ₂	33 (L)	35-38
HCO ₃	12 (L)	15-23
TCO ₂	16 (L)	17-25
AG	15	8-25
BE	-5	-5 to +5

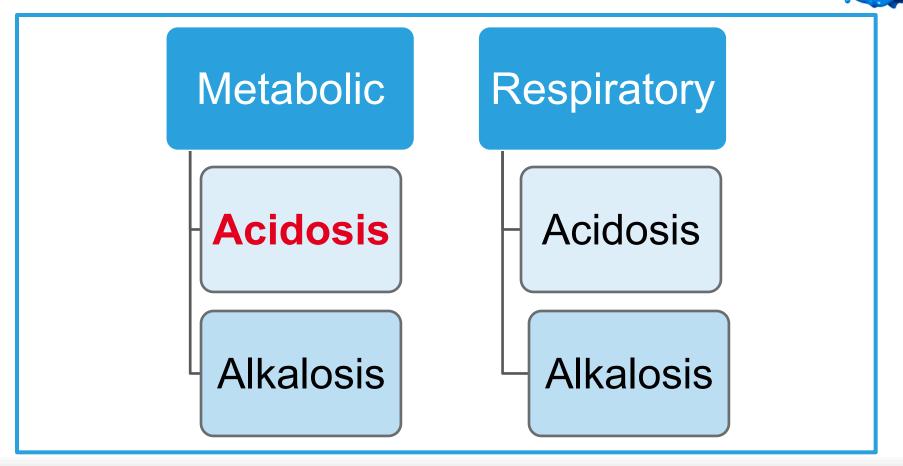
		[HCO ₃]
рН	≈	[<u>HCO₃]</u> [PCO ₂]

 HCO_3 = Metabolic Acidosis

Treatment

Hospitalization Further diagnostics

- Fecal
- Abdominal radiographs/Ultrasound


Fluids: LRS, Normosol, or Plasmalyte Alkalinizing solution is key

Monitor acid-base and electrolytes **Outcome:** IV fluids for 3 days & went home

Classic Acid-Base Disturbances

+/- compensation

Metabolic Acidosis PH = [HCO₃] [PCO₂]

Causes:

- Vomiting
- Loss of duodenal & pancreatic secretions (NaHCO₃)
- Diarrhea
- Loss of Bicarbonate (NaHCO₃)
- Renal Failure/Insufficiency
- Loss of Bicarbonate (NaHCO₃)
- Hydrogen (H+) retention
- Electrolyte abnormalities
- Diabetic Ketoacidosis
- -Ketones = \uparrow acid

Physical Symptoms of Acidosis

Decrease in normal homeostatic chemical reactions

- Respiratory System:
 - Hyperventilation
- Cardiovascular System
 Cardiac Arrhythmias
- Gastrointestinal System
 Nausea, Vomiting, Diarrhea
- Musculoskeletal System – Weakness
- General Stability
 Dehydration & Shock

Case #2

Patient: 9 yr. old. SF German Shepherd

History / Physical exam:

- Vomiting on/off 3 weeks & not eating well
- Seems to be drinking more than usual
- QAR
- 5% dehydrated
- Pale mm

Primary Diagnostics: CBC/Chemistry and radiographs

CBC	HGB	10.6 106	12-18 g/dl 120-180g/L
	НСТ	34	37-55 %

Chemistry

BUN	102 50	7-25 mg/dl 2.5-8.9mmol urea/L
CR	7.5 150	0.3-1.4 mg/dl 27-124umol/L
Phos	8 3	2.9-6.6 mg/dl 0.94-2.13mmol/L
Са	13 4	8.6-11.8 mg/dl 2.15-2.95 mmol/L
TP	8.6 86	5.4-8.2 g/dl 54-82 g/L

Test	Value	Reference Range
рН	7.29	7.35-7.45
pCO ₂	32	35-38
HCO3-	11	15-23
iCa	1.3	1.12-1.40
Na	136	138-160
K	3.2	3.7-5.8
CI	110	112-129
AG	35	8-25

рН = .	Acidemia
--------	----------

 HCO_3 = Metabolic acidosis

pCO₂ = Respiratory compensation

AG = Uremic toxins

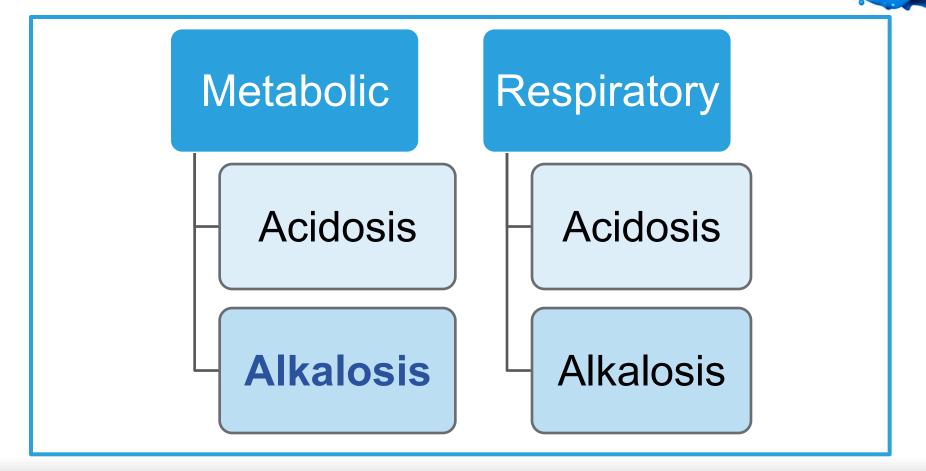
Case #2 - Treatment

Address dehydration and electrolyte imbalances **Replacement and Maintenance crystalloid fluids**

- Alkalinizing
 - Lactated Ringers, Normosol, Plasmalyte

Add Potassium to maintenance fluids.

Monitor acid-base, electrolytes


Outcome:

Continues to have kidney disease but went home eating and hydrated.

Classic Acid-Base Disturbances

+/- compensation

Metabolic Alkalosis ↑pH ≈ [HCO₃] [PCO₂]

Causes

- Loss of Acid
 - Vomiting (HCI)
 - » GI obstruction (pyloric)
 - Medications (i.e. furosemide)

Patient: 5 yr. old. CM Westie

History / Physical exam:

Vomiting for 3 weeks & not eating well QAR 5% dehydrated

Pale mm

Primary Diagnostics: CBC/Chemistry

CBC - WNL

Chemistry

BUN	38 13	7-25 mg/dl 2.5-8.9 mmol urea/L
Ca	13.0 4	8.6-11.8 mg/dl 2.15-2.95 mmol/L
TP	8.6 86	5.4-8.2 g/dl 54-82 g/L

 $[HCO_3]$ pН "

Test	Value		Reference Range
рН	7.56	н	7.23-7.45
pCO ₂	42	н	35-38
HCO ₃ -	39	н	15-23
TCO ₂	26	н	17-25
Na	133	L	139-150
K	2.5	L	3.4-4.9

L

Ν

106-127

1.12-1.40

85

1.25

CI

iCa

Case #4

pH =	Alkalemia
HCO ₃ =	Metabolic Alkalosis
pCO ₂ =	Respiratory
_	compensation

Why isn't respiratory compensation more effective?

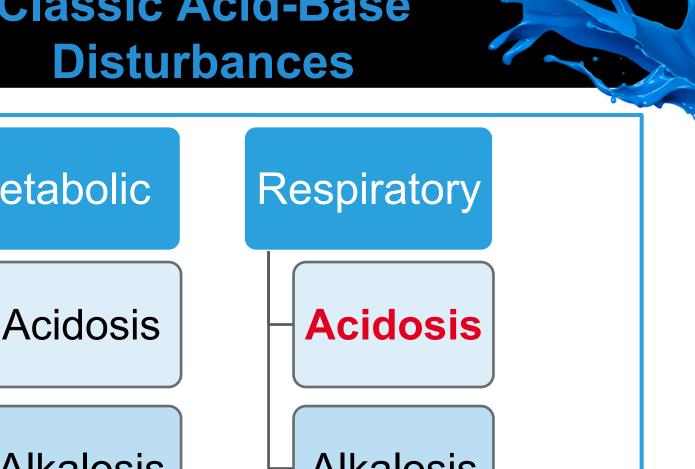
Case #4 - Treatment

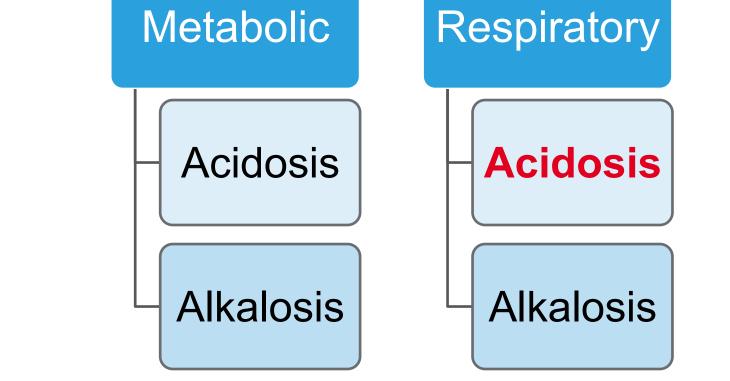
Identify and correct cause of vomiting (if possible) – Further diagnostics – radiographs, ultrasound

Replace electrolyte deficiencies with **acidifying** solution – 0.9% NaCl

- Supplemental K⁺

Resectable


Monitor acid-base, electrolytes


Outcome: Gastric mass

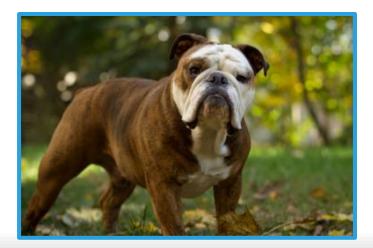
Classic Acid-Base Disturbances

+/- compensation

Respiratory Acidosis ↓pH ≈

- Anesthesia
- Respiratory disease
 - Infectious (pneumonia)
 - Trauma
 - Neoplasia
 - Decreased tidal volume
 - » GDV
 - » Pneumothorax
 - Brachycephalic Syndrome

Patient


-5 y/o MC bulldog presents for large dermal mass removal

PE

- Excited, panting
- Moderate to severe inspiratory stertor
- Mild mm cyanosis

CBC/Chemistry

Normal

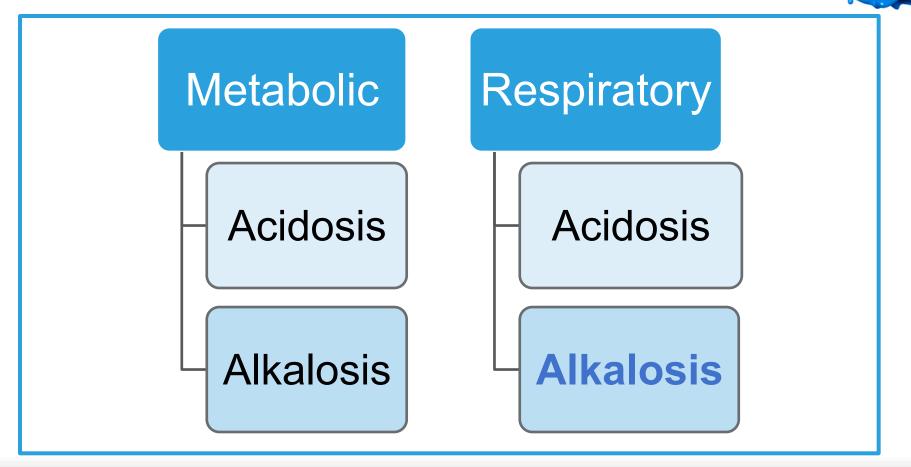
Case #5

Test	Value	Reference Range
рН	7.21	7.35-7.45
pCO ₂	54.5	35-38
HCO ₃ -	20.7	15-23
Lac	0.6	0.6-2.9
TCO ₂	24	17-25
BE	-5	-5-0

- $pCO_2 = Respiratory acidosis$
- $HCO_3 = No compensation$

Why is there no metabolic compensation?

What does this say about ventilation?



Case #5 - Treatment

- Pre-oxygenate prior to induction & upon recovery
- Delay extubation
- Increased care in the use of drugs to minimize respiratory depression
- Consistent monitoring before, during & after surgery
 - Stable patients while under anesthesia: check acid-base status hourly
 - Unstable patients: check acid-base more often

Classic Acid-Base Disturbances

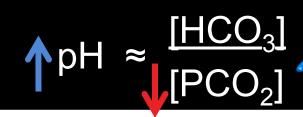
+/- compensation

Respiratory Alkalosis

- Hyperventilation
 - Stress
 - Pain
 - Fear
 - latrogenic (anesthesia)
- Increased Intracranial Pressure
 - Traumatic
 - Neoplastic
- Hypoxia
 - Anemia
 - Primary CNS disease
 - Sepsis

pH ≈
$$\frac{[HCO_3]}{[PCO_2]}$$

Patient and History


- 4 yr old FS Cat
- Hit by a car 30 minutes prior to presentation Had been healthy until that time

PE

- Mild hypothermia, moderate tachycardia & dyspnea Multiple lacerations Fractured right femur
- Next diagnostic steps: Bloodwork and radiographs

Test	Value	Reference Range	pH = Alkalemia
рН	7.5	7.25-7.4	$PCO_2 = Respiratory Alkalosis$
pCO ₂	30.6	33-51	$HCO_3 = No$ compensation
HCO ₃ -	22	13-25	Lactate = Increased
Lac	4.0	0.5-2.7	

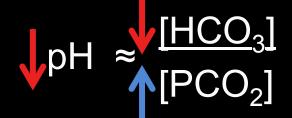
What does an increase in lactate mean?

Case #6 -Treatment

- Stabilize patient
 - Analgesia
 - IV fluids
 - Plasmalyte or Normosol
 - O₂ supplementation
 - Fracture stabilization
- Monitor lactate and acid-base levels
- Outcome: Fracture repair and went home

Case #7 - Advanced

Patient: 2 y.o. CM DSH History: Blocked urethra 3 days ago Oliguric Severely obtunded


Primary Diagnostics:

Acid/ Base analysis and electrolytes

AG

Test	Value	Reference Range
рН	7.04	7.25-7.4
pCO ₂	52.8	33-51
HCO ₃ -	9.9	13-25
Na	132	139-150
K	8.5	2.9-4.2
CI	108	112-129
AG	38	10-27

рН =	Acidemia
------	----------

- HCO_3 = Metabolic acidosis
- $pCO_2 = Respiratory acidosis$
 - Uremic toxins, lactic acids, ketoacids

Why no respiratory compensation???

Case #7 - Treatment

Establish urine flow

Maintenance crystalloid fluids

- Alkalinizing
 - Lactated Ringers, Normosol, Plasmalyte

Decrease potassium

– Urine flow

-+/- Insulin, calcium gluconate

Monitor acid-base, electrolytes

Outcome:

Full recovery

Emergency & Critical Care Evaluation and Monitoring

Immediate patient-side results in life-threatening situations

- Acid-base status
 - -pH, HCO₃, pCO₂, AG, BE, TCO₂
- Oxygen carrying capacity
 - -pO₂, sO₂, Hgb, HCT
- Electrolytes
 - -Na+, K+, Cl-
- Other important values
 - -iCa, Glu, BUN, CRE, Lactate

Hore citoriess at CuteStuff.co

Your portable lab solution

When Acid-Base/Blood Gas Analysis is Important

- Vomiting & diarrhea
- Renal disease
- Diabetes mellitus
- Respiratory disease
- Cardiac disease
- While under anesthesia

Resources**

Ateca, L.B., Domrowski, S.C., & Silverstein, D.C. (2015). Survival analysis of critically ill dogs with hypotension with or without hyperlactatemia: 67 cases (2006-2011). *J Am Vet Med Assoc. 246*(1), 100-4.

Boysen, S.R. and Dorval, P. (2014) Effects of rapid intravenous 100% L-isomer lactated Ringer's administration on plasma lactate concentrations in healthy dogs. *J Vet Emerg and Crit Care*. *24*(5), 571–577.

Kogika, M. M., Lustoza, M. D., Notomi, M. K., Wirthl, V. A., Mirandola, R. M., & Hagiwara, M. K. (2006). Serum ionized calcium in dogs with chronic renal failure and metabolic acidosis. *Vet Clin Path*. *35*(4), 441-445.

Mooney, E., Raw, C., & Hughes, D. (2014). Plasma lactate concentration as a prognostic biomarker in dogs with gastric dilation and volvulus. *Top Companion Anim Med*. *29*(3), 71-6.

Resources**

Waddell, L.S. (2012, January). Management tree: Pulmonology/Critical Care Medicine: Blood gas analysis. *NAVC Clinician's Brief*. 18-19.

Zacher, L.A., Berg, J., Shaw, S.P., &Kudej, R.K. (2010). Association between outcome and changes in plasma lactate concentration during presurgical treatment in dogs with gastric dilatation-volvulus: 64 cases (2002-2008). *J Am Vet Med Assoc. 236*(8), 892-7.

Questions?

