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� Clinical diagnostic utility of transcranial magnetic stimulation (TMS) has been established in neuro-
logical disorders.

� Paired-pulse TMS exhibits utility in neurodegenerative, movement, episodic, and functional disorders.
� TMS-EEG provides novel parameter (cortical excitability, effective connectivity, response complexity)
for neurological diseases.
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The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V,
Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation:
report of an IFCN committee. Clin Neurophysiol 2008;119(3):504–32) on clinical diagnostic utility of
transcranial magnetic stimulation (TMS) in neurological diseases. Most TMSmeasures rely on stimulation
of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating
conventional amplitude-based and threshold tracking, have established clinical utility in neurodegener-
ative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperex-
citability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are
of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent
inhibition, related to central cholinergic transmission, is reduced in Alzheimer’s disease. The triple stim-
ulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper
motor neuron involvement. The recording of motor evoked potentials can be used to perform functional
mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical
resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function,
especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve pal-
sies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple
sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and
disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-
thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel
method to measure parameters altered in neurological disorders, including cortical excitability, effective
connectivity, and response complexity.
� 2023 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Transcranial magnetic stimulation (TMS) is a non-invasive tech-
nique for stimulating the human brain, first described in the 1980 s
(Barker et al., 1985). The TMS stimulator passes a large, brief cur-
rent through a coil, generating a strong time-varying electromag-
netic field perpendicular to the transducing coil positioned over
the scalp (Siebner et al., 2022). The magnetic field, which pene-
trates the scalp and skull, and is not attenuated by tissues sur-
rounding the brain, induces an electric field in the underlying
brain tissue. When stimulating the primary motor cortex (M1),
the induced electric field transsynaptically activates cortical out-
put cells (pyramidal neurons) resulting in descending corticospinal
volleys, which are reflected in a motor evoked potential (MEP)
(Rossini et al., 2015). Cortical TMS effects are dependent on
whether a focal (figure of eight) or non-focal (circular) coils are
used, pulse waveform (monophasic vs biphasic), number of pulses
(e.g. paired-pulse), strength of stimulation (subthreshold vs
threshold) and direction of induced cortical currents, which result
in activation of distinct neuronal elements (Corp et al., 2021, Di
Lazzaro et al., 2002b, Di Lazzaro et al., 1999b, Di Lazzaro et al.,
2012, Di Lazzaro and Rothwell, 2014, Rossini et al., 1994, Rossini
et al., 2015, Rossini et al., 2019, Siebner et al., 2022, Sommer
et al., 2018).

The clinical diagnostic utility of TMS techniques have been
reported across and expanding range of neurological diseases,
including neurodegenerative, inflammatory, or lesional brain or
spinal disorders, as well as clinical utility in investigating central
pathophysiology in chronic pain, movement, episodic (epilepsy),
and structural brain (stroke) disorders (Chen et al., 2008, Di
Lazzaro et al., 2021, Rossi et al., 2021, Smith and Stinear, 2016,
Vucic et al., 2013b). Since the last IFCN committee report (Chen
et al., 2008), there have been significant advances in clinical appli-
cations of TMS in neurological diseases, leading to greater under-
standing of pathophysiology and development of novel
diagnostic approaches. Threshold tracking TMS has emerged as a
potential diagnostic technique for amyotrophic lateral sclerosis
(Menon et al., 2015), while single and paired-pulse TMS (constant
stimulus) techniques, as well as TMS-EEG, have yielded novel
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diagnostic and prognostic cortical biomarkers (Corp et al., 2021,
de Goede et al., 2016, Di Lazzaro et al., 2021, Keser et al., 2022).
TMS mapping of motor cortex representation based on image-
guided navigated procedure of MEP recording is now an essential
technique in the preoperative evaluation of brain tumor surgery
to improve postoperative functional outcome. Consequently, the
review will discuss advances in clinical utility of different TMS
techniques, including single, paired, and triple pulse TMS, as well
as TMS-EEG. The utility of repetitive TMS and other plasticity
inducing techniques (such as paired-associative stimulation) will
not be discussed and the reader is directed to dedicated reviews
on the topic (Antal et al., 2022, Di Lazzaro et al., 2021, Gogulski
et al., 2022, Harmelech et al., 2023, Lefaucheur et al., 2014,
Motolese et al., 2022, Somaa et al., 2022, van den Bos et al.,
2022). The first section will provide an update on specific TMS
techniques, including threshold tracking TMS and TMS-EEG. The
second section will discuss the application of the TMS techniques
in neurological disease with an emphasis on clinical diagnostic
utility.
2. TMS techniques and outcome measures

2.1. Measures of corticospinal projection

Motor threshold (MT) has been traditionally defined as the low-
est TMS stimulation intensity capable of eliciting a small motor
evoked potential (MEP). Rest MT (RMT) typically refers to the low-
est intensity required to elicit an MEP amplitude � 50 lV with tar-
get muscle at rest in at least 5 of 10 trials (Rossini et al., 1994,
Rossini et al., 2015, Rothwell et al., 1999), while active MT (AMT)
is defined as lowest intensity required to elicit an MEP
amplitude � 200 lV during slight isometric tonic muscle contrac-
tion. RMT is always higher than AMT. With the threshold tracking
method, RMT is defined as stimulus intensity required to generate
and maintain an MEP amplitude of 0.2 mV (±20%), a target that lies
in the middle of the steepest portion of the TMS input–output (IO)
curve (Fisher et al., 2002, Vucic et al., 2006). Adaptive methodol-
ogy, which uses a S-shaped metric function to model the proba-
bilistic nature of MT and the relationship between TMS intensity
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and MEP amplitude (Awiszus, 2003, Rossini et al., 2015), is an
alternative method of measuring MT. The mean difference
between the adaptive and ‘‘constant stimulus” traditional methods
was � 2.3% of maximal stimulator output using AMT, being higher
in the former (Silbert et al., 2013).

MT indicates the excitability of a central core of neurons that
represent the target muscle in the primary motor cortex (M1)
and excitability of brainstem or spinal cord motor neurons. MT is
lower in intrinsic hand muscles compared to proximal arm, truncal
or lower limb muscles (Chen et al., 1998), reflecting difference in
the strength of corticospinal projections. Voltage gated sodium
channel blockers, such as phenytoin and carbamazepine, which
reduce membrane excitability, increase MT (Chen R. et al., 1997,
Ziemann et al., 1996a). Motor thresholds are decreased after
administration of ketamine, an NMDA receptor antagonist, that
simultaneously activates glutamatergic neurotransmission at
AMPA and kainite non-NMDA receptors (Di Lazzaro et al., 2003).
These pharmacological findings suggest that MT reflects mem-
brane excitability of corticospinal neurons and short-lasting gluta-
matergic AMPA transmission. The lowest threshold for the hand
motor hotspot with a figure-of-eight coil is obtained by placing
the handle about 45 degrees to the sagittal line to induce
posterior-anterior directed currents in the brain. For the leg motor
area, the coil is placed with the handle at 90 degrees to the sagittal
line with the center of coil close to Cz (Groppa et al., 2012). Motor
thresholds are higher in older adults (Bashir et al., 2014), but com-
parable between male and females and between dominant and
non-dominant limbs (Livingston et al., 2010).

2.1.1. Input-output curve, MEP amplitude, and MEP mapping
The magnetic input–output (IO) curve and MEP amplitude

assess neurons that are less excitable or spatially distant from
the center of target muscle representation in the M1 (Chen, 2000,
Hallett et al., 1999). The gradient of the sigmoidal IO curve is deter-
mined by the degree of activation of corticospinal neurons as well
as the strength of corticospinal projections onto the target muscle.
Muscles with lower MT, such as intrinsic hand muscles, exhibit
steeper IO curves (Chen et al., 1998), as do younger adults with
no gender effects (Pitcher et al., 2003). IO curve gradients are stee-
per in the non-dominant compared to the dominant hemisphere
(Daligadu et al., 2013), suggesting that the non-dominant hemi-
sphere may have a higher level of excitation or a lower level of
inhibition. The slope of the IO curve is increased by drugs that
increase adrenergic transmission and decreased by sodium and
calcium channel blockers as well as agents that enhance GABAergic
effects (Ziemann et al., 2015). It should be stressed that the MEP
amplitude is significantly smaller than the maximal compound
muscle action potential amplitude (Rosler et al., 2002). This is
related to desynchronization of descending corticospinal volleys
resulting in phase cancellation and asynchronous recruitment of
spinal or bulbar motor neurons.

Marked trial-to-trial variability of MEP amplitude with constant
TMS intensity is a well-known phenomenon (Kiers et al., 1993).
The physiological mechanisms underlying MEP variability include:
(i) fluctuation of neuronal excitability at cortical and spinal cord
levels (Rossini et al., 2015), (ii) timing of TMS stimulus application
in relation to the peaks or troughs of specific cortical oscillatory
states (Metsomaa et al., 2021), and (iii) activation of target muscle
(Darling et al., 2006). Specifically, TMS delivered during the trough
and rising phase of the l rhythm generates larger MEPs, while TMS
at peak and the falling phase of l rhythm elicits smaller MEPs
(Wischnewski et al., 2022, Zrenner et al., 2018). MEP variability
may be reduced, and amplitude increased when TMS is triggered
at the optimal phase of individualized b oscillation (Torrecillos
et al., 2020). The MEP variability prompted the development of
the threshold tracking technique which relies on TMS intensity
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rather than MEP amplitude as an outcome measure (Vucic et al.,
2006).

TMS mapping can be used for probing cortical motor represen-
tation and enabling delineation of somatotopy of different muscle
groups. Although different mapping protocols have been utilized,
these are often used to locate the center of gravity (COG)
(Wassermann et al., 1992). The most basic method includes apply-
ing a 1 cm grid on the scalp and stimulating each point on the grid
with TMS intensity at 110 � 120% RMT [landmark-guided map-
ping] (Sondergaard et al., 2021a). The mapping procedure starts
from the selected muscle motor hotspot and moves in either
anterior-posterior or medial–lateral direction at each marking on
the grid until no MEP can be obtained, indicating the edge of the
map. The coil is subsequently moved to identify borders of the
map. Usually, 10–20 trials per site are recorded (Classen et al.,
1998). Although more sampling trials per site provide more precise
COG measurement, it is more time consuming (Classen et al.,
1998). The COG is calculated from the amplitude weighted average
of the MEP amplitude at each stimulation site, or the MEP ampli-
tude at a site can be presented as the ratio to the averaged MEP size
of the whole mapping area (Ngomo et al., 2012).

At present, conventional cortical mapping methods based on
anatomical landmarks are outdated, due to the development of
image-guided navigation tools. Navigation is based on a frameless
stereotaxic system dedicated to TMS, co-registration of the coil
positioning on the scalp and individual brain imaging (MRI or
fMRI) of the subject (Lefaucheur, 2010) This is the best way to
ensure the accuracy of coil placement and the reliability and
repeatability of cortical mapping with reduced variability between
sessions (Gugino et al., 2001). Navigation systems have the advan-
tage of providing real-time feedback and demonstrate the location
of the sites of cortical stimulation producing MEPs relative to clas-
sical anatomical structures, such as the motor hand knob, central
sulcus or other gyral features (Jonker et al., 2019). Presurgical nav-
igated TMS mapping procedures are now largely used in clinical
practice to delineate eloquent cortical regions and preserve motor
or language functions from deleterious lesions secondary to brain
tumor resection or epilepsy surgery (Lefaucheur and Picht, 2016).
Robotic-assisted TMS may lead to further improve coil handling
and mapping procedure accuracy in combination with navigation
(Ginhoux et al., 2013, Harquel et al., 2016).

2.1.2. Central motor conduction time
Central motor conduction time (CMCT) includes the excitation

time of motor cortical neurons, conduction via the corticospinal
tract and time to excite spinal motor neurons to threshold. CMCT
is measured as the difference between MEP latency and spinal
motor neuron latency to the target muscle, known as the periph-
eral motor conduction time (PMCT). The PMCT can be estimated
using the F-wave method as reflected by the following formula
(F + M�1)/2, where F represents the shortest F-wave latency, M
is the distal motor latency and 1 ms represents the turnaround
time for spinal motor neurons activated antidromically (Mills,
1999). It has also been suggested that the longest F-wave latency
may be used (Olivier et al., 2002). Alternatively, PMCT may be esti-
mated by subtracting the MEP or compounding muscle action
potential onset latencies, induced by magnetic or electrical stimu-
lation respectively over the vertebral columns, from the cortical
MEP latency (Mills and Murray, 1986). The latter method excites
the spinal nerves at the spinal foramen and has the advantage of
being recordable formmost muscle. As for the latter method, CMCT
may be overestimated, especially when recoding from lower limb
muscles, since the conduction time in proximal nerve root segment
between spinal cord and exit foramen is included. To overcome
this overestimation, we should use cortico-conus conduction time
(CCCT) for leg muscles (Matsumoto et al., 2010a).
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To obtain the shortest CMCT, the target muscle should be acti-
vated at � 10% to 20% of maximum background force (Mills, 1999).
The active MEP latency is 1.5-to-2.5 ms shorter than rest MEP
latency (Mano et al., 1992), termed ‘‘latency jump”, and is more
prominent in children (Caramia et al., 1993). It is recommended
to superimpose at least five responses and measure the shortest
latency. Contraction of homologous contralateral muscles is an
option for patients unable to produce adequate target muscle con-
traction (Mariorenzi et al., 1991).

Age is weakly correlated with CMCT in adults (Claus, 1990,
Mano et al., 1992, Matsumoto et al., 2012, Mills and Nithi,
1997b). Immaturity of the corticospinal system, as in preterm
and term babies, results in longer CMCT (Eyre, 2007). When mea-
sured from the lower limbs, CMCT correlates with height, although
this correlation is not evident in upper limb CMCT (Matsumoto
et al., 2012, Rossini et al., 1987, Wochnik-Dyjas et al., 1997). Addi-
tionally, upper limb CMCT is not influenced by gender or hand
dominance, and there are no significant side-to-side differences
(Livingston et al., 2010, Toleikis et al., 1991). In contrast, lower
limb CMCT is marginally shorter in women, even allowing for dif-
ferences in height (Toleikis et al., 1991).

2.1.3. Cortical silent period
The cortical silent period (CSP) refers to electrical silence of

background electromyography (EMG) activity in a contracting
muscle following suprathreshold TMS of M1 and varies from 50-
to-300 ms (Cantello et al., 1992). The CSP duration increases with
stimulation intensity, but is not related to size of the preceding
MEP response (Triggs et al., 1992) or strength of target muscle con-
traction (Inghilleri et al., 1993, Kimiskidis et al., 2005). Low levels
of muscle contraction are suggested to avoid muscle fatigue that
may inadvertently prolong the CSP duration (Hunter et al., 2006).
The CSP duration is longer with anterior-to-posterior compared
to posterior-to-anterior directed currents (Orth and Rothwell,
2004). Moreover, the CSP can be elicited with subthreshold TMS
intensity without a preceding MEP (Trompetto et al., 2001), sug-
gesting that CSP is not directly related to MEP generation.

The CSP can be recorded in different muscles such as lower limb
(Ziemann et al., 1993), facial (Werhahn et al., 1995), diaphragm
(Lefaucheur and Lofaso, 2002) and sphincter muscles
(Lefaucheur, 2005), although the duration is longest when
recorded from intrinsic hand muscles. The first 50 ms of CSP
involves spinal inhibitory circuits (Fuhr et al., 1991, Pierrot-
Deseilligny and Burke, 2012, Rossini et al., 2015), while the later
parts of the CSP are of cortical origin mediated by GABAergic neu-
rotransmission acting via GABAB receptors (Classen and Benecke,
1995, Stetkarova and Kofler, 2013). The non-dominant hand exhi-
bits longer CSP duration than the dominant hand, suggesting that
circuits underlying CSP generation are less excitable in the domi-
nant hemisphere (Priori et al., 1999). Although most of studies
revealed reduced CSP in older adults (Davidson and Tremblay,
2013, Oliviero et al., 2006, Sale and Semmler, 2005), some studies
reported a comparable CSP duration between young or older adults
(Fujiyama et al., 2012, Hunter et al., 2008). CSP duration is not
affected by gender (Shibuya et al., 2016a).

Ipsilateral inhibition (ipsilateral silent period, iSP) induced by
motor cortex stimulation can be measured by interruption of ongo-
ing voluntary EMG activity in muscles ipsilateral to cortical TMS
(Chen et al., 2008). The iSP reflects transcallosal inhibition
(Meyer et al., 1995), although non-callosal pathways caudal to
the corpus callosum may also contribute (Compta et al., 2006).
The iSP usually begins 30 � 40 ms after a TMS and lasts for 20-
to-25 ms (Meyer et al., 1995). Although iSP duration could be a
simple measure of the iSP response, the recommended measure-
ment is to normalize the area of the rectified trace between onset
and offset of the iSP to the pre-stimulus mean baseline EMG level
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(Kuo et al., 2017). To attain the largest iSP response, at least 60% of
maximal TMS output may be required (Meyer et al., 1995). To
avoid muscle fatigue, its recommend that participants either sus-
tain a low-level contraction (15–20% maximum voluntary contrac-
tion) for the entire duration of the trial, or perform short, near-
maximal contraction bursts with standard inter-trial rest intervals
between each subsequent stimuli (Hupfeld et al., 2020). The latter
option may function better in older populations who are more sus-
ceptible to muscle fatigue. The iSP onset, end latency and transcal-
losal time, as well as area, is increased in older adults (Davidson
and Tremblay, 2013, Petitjean and Ko, 2013), suggesting that tran-
scallosal inhibition declines with age. In contrast, the extent of
muscle contraction, direction of TMS induced current, or limb
dominance do not appreciably affect the iSP (Chen et al., 2003,
Davidson and Tremblay, 2013, Hunter et al., 2006, Kuo et al., 2017).

2.2. Measures of cortical inhibition and facilitation

2.2.1. Short interval intracortical inhibition
SICI was first described in 1993 and is the most frequently used

paired-pulse TMS paradigm to evaluate motor cortex excitability
(Kujirai et al., 1993). Primary motor cortex (M1) stimulation with
a subthreshold conditioning stimulus (CS) followed by
suprathreshold test stimulus (TS) at inter-stimulus intervals (ISI)
of 1-to-6 ms decreases MEP amplitude compared to TS alone, ter-
med the ‘‘constant stimulus” method (Kujirai et al., 1993). Subse-
quently, a threshold tracking paired-pulse TMS technique was
developed, whereby a fixed MEP amplitude (0.2 mV ± 20%) was
tracked by a test stimulus (TS), with ISIs increased in a sequential
ascending order (Vucic et al., 2006). SICI is heralded by a greater
conditioned-test stimulus intensity required to generate and main-
tain a target MEP response, developing between ISIs of 1-to-7 ms
[Fig. 1] (Awiszus et al., 1999, Fisher et al., 2002, Vucic et al.,
2006). Two maximum phases of inhibition have been described,
occurring at ISIs of about 1 and 2.5-to-3 ms (Fisher et al., 2002,
Hanajima et al., 2003, Roshan et al., 2003, Vucic et al., 2006). The
inter-session reliability and reproducibility of mean SICI (between
ISIs 1-to-7 ms), as reflected by a low intraclass correlation coeffi-
cient (ICC), was established (Matamala et al., 2018), suggesting a
potential clinical diagnostic utility. Recently, a threshold tracking
TMS paradigm was developed with ISIs delivered in a pseudo-
random fashion, with 10 stimuli at each ISI level (Tankisi et al.,
2021), and was shown to exhibit comparable reliability and repro-
ducibility as the ‘‘constant stimulus” method (Nielsen et al., 2021).

A cortical origin of SICI was suggested by epidural recordings,
whereby the subthreshold CS suppressed recruitment of late I
waves (especially I3 waves) elicited by the TS (Di Lazzaro and
Rothwell, 2014). Pharmacological studies have suggested that inhi-
bitory interneuronal circuits acting, via GABAA receptors, mediate
the second phase of SICI at ISIs 2.5-to-3 ms (Di Lazzaro et al.,
2007a, Ziemann et al., 1996a, Ziemann et al., 2015). Increased axo-
nal refractoriness or synaptic mechanisms have been proposed as
underlying physiological mechanisms mediating SICI at ISI 1 ms
(Chen, 2004, Fisher et al., 2002, Hanajima et al., 2003, Vucic
et al., 2011a, Vucic et al., 2009), as well as shunting inhibition by
opening channels in proximal dendrites targeted by incoming
afferents (Paulus and Rothwell, 2016).

SICI is a general inhibitory effect which is evident in different
muscles, including proximal arm (Abbruzzese et al., 1999), facial
(Paradiso et al., 2005), lower limb (Chen et al., 1998, Menon
et al., 2018) muscles, as well as the trapezius (Menon et al.,
2018), diaphragm (Demoule et al., 2003) and sphincter muscles
(Lefaucheur, 2005). While SICI appears not be to be influenced by
handedness or hemispheric laterality (Cahn et al., 2003,
Dharmadasa et al., 2019, Menon et al., 2019), some have reported
a reduction of SICI in the dominant hemisphere in right handed



Fig. 1. Principles of single and paired-pulse TMS. (A) Transcranial magnetic stimulation using a figure of eight coil and applied over the primary motor cortex (M1), elicits a
motor evoked potential (MEP, red potential in inset) from a target muscle. (B) Candidate descending corticomotoneuronal pathways from the precentral gyrus that contribute
to the MEP response. Direct neuronal activation most likely occurs in the lip/rim regions of the motor hand knob. Activation spreads to the rostral and caudal parts of the M1,
via cortico-cortical synaptic transmission, potentially contributing to indirect waves; (I-waves). There is a greater preponderance of fast-conducting monosynaptic cortico-
motoneuronal neurons in the caudal M1 (BA4p) compared to the rostral M1 (BA4a) is highlighted. The exact transition between rostral M1 and caudal dorsal premotor cortex
(PMd) in the lip/rim region of the gyrus is gradual and varies across subjects. Additional corticospinal pathways may be activated by TMS via excitation of postcentral primary
somatosensory cortex (S1) and its cortico-cortical projections to rostral/caudal M1. (C) For threshold tracking TMS, a target of 0.2 mV (±20%) is selected which lies in the
steepest portion of the stimulus response curve. As such, if the MEP response is larger than the tracking target (potential-1) the subsequent stimulus intensity is reduced,
while if the MEP response is smaller than the tracking target (potential-2), the subsequent stimulus intensity is reduced. (D) The paired pulse paradigm is illustrated. Channel
1 records an unconditioned test stimulus, defined as TMS intensity required to generate and maintain the tracking target, which signifies the resting motor threshold (RMT)
when using the threshold tracking technique. Channel 2 monitors the subthreshold conditioning stimulus (does not generate MEP) and channel 3 records the conditioned-
test stimulus at interstimulus intervals of 1–30 ms. (E) When utilizing the threshold tracking TMS technique, short interval intracortical inhibition (SICI) is represented as
increased conditioned-test stimulus intensity required to generate and maintain the tracking target, developed between 1–7 ms. Intracortical facilitation is represented as
reduced conditioned-test stimulus intensity. In amyotrophic lateral sclerosis (ALS) patients SICI is reduced and ICF increased, signifying cortical hyperexcitability.
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subjects (Hammond et al., 2004, Ilic et al., 2004). Given that a
recent study suggested that brain derived neurotrophic factor
(BDNF) polymorphism might influence interhemispheric balance
of SICI, the discrepancies across different studies may be explained
by variations of BDNF polymorphism in the studied populations
(Dubbioso et al., 2022b). Additionally, male and female subjects
exhibit comparable SICI values (Cahn et al., 2003, Hermsen et al.,
2016).

SICI critically depends on the CS and TS intensities, being absent
when the TS intensity is < 110% RMT (Garry and Thomson, 2009)
and increases with higher TS intensities (Daskalakis et al., 2004,
Roshan et al., 2003, Sanger et al., 2001). At low CS intensities, SICI
is reduced or absent and increases as the CS intensity is increased,
but then diminishes at even higher CS intensities and becoming
facilitatory when CS is close to RMT, resulting in a U-shaped curve
response (Chen et al., 1998, Peurala et al., 2008, Vucic et al., 2009).
SICI may be reduced immediately after contraction of target mus-
cle and is influenced by coil type (Dharmadasa et al., 2019, Menon
et al., 2018, Van den Bos et al., 2018, Vucic et al., 2011a). Preferen-
tial recruitment of interneuronal circuits generating I3 waves was
correlated with higher SICI values (Hanajima et al., 1998,
Higashihara et al., 2020). At a physiological level, SICI may serve
to focus output from motor cortex to enable selective activation
of specific muscles and prevent unwanted activation of other mus-
cles (Rosenkranz and Rothwell, 2004, Stinear and Byblow, 2003,
Zoghi et al., 2003).

2.2.2. Intracortical facilitation
Intracortical facilitation (ICF) is elicited with a similar paradigm

as SICI, except the ISI is between 8–30 ms, with the most promi-
nent facilitation evident from 10-15 ms (Kujirai et al., 1993,
Vucic et al., 2006). ICF is not a rebound disinhibition of SICI as its
threshold is slightly higher (Chen et al., 1998, Ziemann et al.,
1996b). Since ICF can be produced by subthreshold CS that does
not evoke descending corticospinal volleys, ICF likely occurs at a
cortical level. Epidural spinal recordings did not show changes in
amplitude or number of D-wave or I-waves with ICF (Di Lazzaro
et al., 2006b), suggesting that ICF may be either mediated by corti-
cal circuits other than those generating I-waves, or yet to be dis-
covered physiological mechanisms operating at a spinal level
(Chen et al., 2008, Di Lazzaro and Rothwell, 2014). Administration
of NMDA receptor antagonist dextromethorphan reduced ICF
(Ziemann et al., 1998a), while chronic administration of the sero-
tonin re-uptake inhibitor paroxetine enhanced ICF (Gerdelat-Mas
et al., 2005), suggesting the involvement of glutamatergic and
serotonergic neurotransmission in generating ICF. Sodium channel
blockers, age and gender did not appreciably impact ICF (Bhandari
et al., 2016, Chen R. et al., 1997, Shibuya et al., 2016a). While one
study reported greater ICF in the dominant hemisphere (Civardi
et al., 2000), others have not reported hemispheric asymmetry
(Lefaucheur et al., 2008).

2.2.3. Short interval intracortical facilitation
Short interval intracortical facilitation (SICF) is recorded by

using a paired-pulse paradigm whereby a suprathreshold first
stimulus (S1) and subthreshold or threshold second stimulus (S2)
is delivered at short ISIs leading to an increase in the
conditioning-test MEP amplitude (Chen and Garg, 2000, Ziemann
et al., 1998b). Alternatively, both S1 and S2 stimuli may be set to
motor thresholds also resulting in conditioning-test MEP facilita-
tion (Tokimura et al., 1996). Using this constant stimulus method,
three SICF facilitation peaks have been identified at discrete ISIs:
1.1–1.5, 2.3–3.0, and 4.1–4.5 ms (labeled as SICF-1, SICF-2 and
SICF-3). Recently, a threshold tracking paradigm was developed
whereby S1 and S2 were set to threshold, and SICF was reflected
by reduction in test stimulus intensity required to generate and
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maintain a target MEP response of 0.2 mV (±20%) (Van den Bos
et al., 2018). As with the constant stimulus method, SICF developed
between ISIs of 1–5 ms, with two peaks evident at ISI 1.5 and 3 ms.
Voluntary target muscle contraction, handedness and age do not
affect SICF (Bäumer et al., 2007, Chen et al., 2008, Ilic et al., 2004,
Van den Bos et al., 2018), although assessment with a figure-of-
eight coil compared to circular coil and lower tracking targets
(0.2 vs 1.0 mV) increase SICF (Van den Bos et al., 2018).

The precise physiological mechanisms mediating SICF remain to
be fully elucidated.

It has been proposed that facilitatory interactions of I-waves at
a motor cortical level form the basis of SICF (Ziemann et al., 2015,
Ziemann et al., 1998c). TMS modelling studies of induced I-waves
suggested that the suprathreshold S1 stimulus leads to subliminal
depolarization of a subpopulation of cortical neurons (Rusu et al.,
2014). A subsequent subthreshold stimulus (S2) applied at short
ISIs causes the subliminally depolarized neurons to reach thresh-
old, thereby generating an MEP potential and resulting in facilita-
tion (Hanajima et al., 2002). Support for a cortical origin was
suggested by the observed periodicity of SICF peaks, which occur
at 1.5 ms (�660 Hz), being consistent with I-wave frequency
(Amassian et al., 1987). Pharmaco-TMS studies have provided
additional support for a cortical origin, documenting a modulating
effect on SICF by a variety of neurotransmitter systems (Ilic et al.,
2003, Ilic et al., 2002, Korchounov and Ziemann, 2011, Ziemann
et al., 2015), all of which are involved in the neuronal circuitry
underlying I-wave generation (Di Lazzaro and Ziemann, 2013).
The facilitating effects of SICI on SICF (Wagle-Shukla et al., 2009)
provided additional evidence for importance of cortical neuronal
circuitry in SICF via disynaptic inhibition. TMS intensities and
paired-pulse intervals for SICF overlap with SICI, and recruitment
of SICF may explain the reduction of SICI at high CS intensities
(Ni et al., 2013, Peurala et al., 2008). Therefore, it has been sug-
gested the CS intensity for SICI be kept below AMT and the ISI
occur at the trough of SICF to minimize the influence of SICF on SICI
(Rossini et al., 2015).
2.2.4. Long interval intracortical inhibition
Long-interval intracortical inhibition (LICI) is typically elicited

by a suprathreshold CS followed by a suprathreshold TS at ISI from
50 to 200 ms (Valls-Sole et al., 1992, Vucic et al., 2006,
Wassermann et al., 1996). Evidence that LICI occurs at a cortical
level includes; (i) finding of no change in spinal excitability at more
than 50 ms after suprathreshold TMS (Fuhr et al., 1991), (ii)
absence of LICI with paired transcranial electrical stimulation
(Inghilleri et al., 1993), and (iii) epidural recordings disclosing
marked reduction of descending corticospinal test volleys (Chen
et al., 1999b, Di Lazzaro et al., 2002a, Nakamura et al., 1997). With
reduction of CS intensity to subthreshold levels, facilitation may be
observed (Chen et al., 1998, Vallence et al., 2014). LICI appears to
be mediated by GABAB post-synaptic receptors (McDonnell et al.,
2006) and may be enhanced by GABAB receptor agonists (ba-
clofen), GABA analogs (vigabatrin) and GABA uptake inhibitor (ti-
agabine) (McDonnell et al., 2006, Pierantozzi et al., 2004a,
Ziemann et al., 2015). There is evidence that LICI at ISI 100 ms is
more prominent in the dominant hemisphere in younger adults
(Hammond and Garvey, 2006) and this asymmetry decreases with
age (Vallence et al., 2017). LICI is reduced with increasing TS inten-
sity (Sanger et al., 2001) and is not substantially affected by target
muscle contraction (Chen R. et al., 1997). Late cortical disinhibition
following LICI has been described, which represent a period of late
facilitation after LICI (Cash et al., 2010, Caux-Dedeystère et al.,
2014). Using a triple pulse stimulation paradigm, LICI inhibits SICI,
likely through the pre-synaptic GABAB receptor mediated inhibi-
tion (Ni et al., 2011).
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2.2.5. Interhemispheric inhibition and interhemispheric facilitation
Interhemispheric inhibition (IHI) is typically recorded by deliv-

ering a suprathreshold CS to M1 in one hemisphere followed by a
suprathreshold TS to the opposite M1 (Ferbert et al., 1992, van den
Bos et al., 2021). Two types of IHI have been described: short-
latency IHI (SIHI) between ISI 6-to-11 ms (maximum at ISI � 9.6
ms), and long-latency IHI (LIHI) between ISIs 20-to-50 ms (Chen
et al., 2003, Ni et al., 2020). SIHI and LIHI are more prominent in
distal than proximal muscles (Perez and Cohen, 2009, Rossini
et al., 2015). Higher CS intensities elicit IHIs at longer ISIs [>
50 ms] (Ferbert et al., 1992). Cervical epidural recordings showed
that IHI occurs at a cortical level since it was associated with
reduction of later I-waves (particularly I3) (Di Lazzaro et al.,
1999c). At a physiological level, CS exerts an inhibitory effect via
activation of excitatory transcallosal fibers that activate GABAergic
inhibitory circuits in the opposite motor cortex and thereby lead to
inhibition of the MEP response evoked by a TS (Irlbacher et al.,
2007, Reis et al., 2008).

SIHI can be elicited from the premotor cortex with subthreshold
test stimuli that are medially directed (Mochizuki et al., 2004) or
suprathreshold test stimuli with anteriorly directed currents
(Bäumer et al., 2007). LIHI can be elicited by conditioning stimula-
tion of the contralateral somatosensory cortex (Iwata et al., 2016,
Ni et al., 2009). Handedness or hemispherical dominance may
affect IHI, with stronger inhibition when the conditioning stimula-
tion is applied over the dominant hemisphere (Bäumer et al., 2007,
Netz et al., 1995). This, however, is not a universal finding (De
Gennaro et al., 2004), and could be related to use of different stim-
ulation coils and induced current directions.

Interhemispheric facilitation (IHF) may be elicited by applying
the CS over the M1 (at ISIs 3-to-6 ms) or premotor cortex (ISIs 6-
to-8 ms) ipsilateral to the target muscle, followed by a TS delivered
to the contralateral M1 (Bäumer et al., 2006, Hanajima et al., 2001).
IHF can be elicited either during active muscle contraction or at
rest, with CS set to subthreshold (target muscle at rest) or
suprathreshold (target muscle is active) (Bäumer et al., 2006,
Hanajima et al., 2001) intensities. The magnitude and latency dis-
tribution of IHF correlates with IHI (Ni et al., 2020). Magnetic
(lateral-medial direction) and anodal electrical stimulation may
generate IHF, suggesting that activation of corticospinal neurons
and subsequent transmission through the corpus callosum is a
likely mechanism (Hanajima et al., 2001). The facilitatory effects
are also related to I3 wave recruitment, suggesting a role for
interneuronal circuits (Hanajima et al., 2001). Long-latency IHF
(at ISIs > 80 ms) has also been reported with suprathreshold CS
delivered to M1 or subthreshold CS to dorsal premotor cortex or
supplementary motor area (Fiori et al., 2017).
2.2.6. Short latency afferent inhibition
Afferent input from cutaneous or mixed nerves innervating the

hand may decrease cortical excitability if delivered prior to TMS
applied over the contralateral motor cortex, termed short-latency
afferent inhibition (SAI). MEP amplitude is reduced when electrical
stimulation of the median nerve at the wrist is delivered 18-to-
28 ms before a TMS stimulus (Ni et al., 2011, Tokimura et al.,
2000). The ISI is slightly longer for digital cutaneous nerve stimu-
lation to account for conduction time from the digit to wrist. For
example, MEP amplitude of intrinsic hand muscles is reduced
when preceded by digital nerve stimulation of the index finger
20–50 ms before TMS (Tamburin et al., 2005). SAI in the abductor
digit minimi muscle can be elicited when stimulation from the 5th
digit preceded TMS by 20 to 45 ms (Tamburin et al., 2001). Mixed
nerve stimulation activates muscle afferents, joint and cutaneous
mechanoreceptors, whereas digital stimulation only activated
cutaneous fibers (Turco et al., 2018b).
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Maximum SAI occurs at ISIs of � N20 latency plus 2 ms,
or � 20–22 ms for median nerve stimulation at wrist
and � 25 ms for digit stimulation (Bikmullina et al., 2009,
Rossini et al., 2015). SAI reaches maximal level at a stimulating
intensity that recruits all the sensory afferents as reflected by the
sensory nerve action potential amplitude (3 times the sensory per-
ception threshold for digital nerve stimulation, or 1.2 times motor
threshold for mixed nerve stimulation) (Bailey et al., 2016, Turco
et al., 2018b). SAI is mediated by cortical mechanisms since epidu-
ral recordings disclosed suppression of I2 and I3 waves (Tokimura
et al., 1996), and appears unrelated to alterations in spinal cord
excitability (Delwaide and Olivier, 1990). Importantly, anterior-
posterior directed currents leads to less SAI than posterior-
anterior directed TS (Ni et al., 2010), suggesting that specific
interneuronal circuits generating later I-waves exhibit different
sensitivity to SAI. Mixed nerve SAI is reduced during movement
or just before movement begins (Asmussen et al., 2013), indicating
a modulating effect of motor cortex on afferent inputs. Addition-
ally, SAI is enhanced by cholinergic transmission (Di Lazzaro
et al., 2005, Di Lazzaro et al., 2000, Fujiki et al., 2006) and reduced
by GABAergic transmission (Di Lazzaro et al., 2007a, Teo et al.,
2009). Higher test MEP amplitude is associated with lower SAI
(Ni et al., 2011), although this is not a universal finding (Toepp
et al., 2021). Intersession test–retest reliability is high, and SAI is
not affected by age, gender, or time of day. However, some normal
subjects still showed fluctuation between inhibitory and facilita-
tory responses (Toepp et al., 2021).

2.2.7. Long latency afferent inhibition
When a peripheral nerve afferent stimulation is

applied � 200 ms before a contralateral TMS to the motor cortex,
the MEP amplitude is reduced and is termed long-latency afferent
inhibition (LAI) (Chen et al., 1999a). Peripheral nerve stimulation
may be from a mixed or pure sensory nerve. The response is typi-
cally recorded form an intrinsic hand muscle. With cutaneous
nerve stimulation (typically digit 3), the ISI range of LAI is � 200
to 600 ms when recording from the abductor pollicis brevis
(Chen et al., 1999a). Mixed and cutaneous nerve stimulations lead
to LAIs of similar magnitude (Abbruzzese et al., 2001, Turco et al.,
2017). The stimulation intensity required to achieve maximal LAI
magnitude is � 50% of maximum sensory nerve action potential
amplitude, representing an intensity of two times sensory percep-
tion threshold for digital nerves or motor threshold for mixed
nerves. Given the long interval between peripheral stimulation
and a subsequent TMS pulse, the afferent input may be relayed
through the basal ganglia-thalamocortical loop to the contralateral
primary somatosensory cortex, posterior parietal cortex and sec-
ondary somatosensory cortex before arriving at the motor cortex
(Allison et al., 1989, Kawamura et al., 1996, Sailer et al., 2003,
Turco et al., 2017). There is evidence that LAI is modulated by
GABAA receptor mediated circuits (Turco et al., 2018a). Similar to
SAI, age and gender does not affect LAI (Toepp et al., 2021).

2.2.8. Cerebellar inhibition
The modulatory effects of cerebellar stimulation on the con-

tralateral motor, termed cerebellum-to-motor cortex inhibition
(CBI), was first studied by high-voltage electrical stimulation
(Groiss and Ugawa, 2013, Ugawa et al., 1991a) and later by dou-
ble cone magnetic stimulation (Fernandez et al., 2018a, Mooney
et al., 2022, Rurak et al., 2022, Spampinato et al., 2020, Ugawa
et al., 1995b). Magnetic cerebellar stimulation is most reliably eli-
cited by using a double cone coil, positioned over the midpoint on
a line between inion and external auditory meatus (Ugawa et al.,
1995b, Werhahn et al., 1996) or 3–5 cm lateral and 0 or 2 cm
above the inion (Fernandez et al., 2018a), with upward induced
current in the cerebellar cortex (Reis et al., 2008). The cerebellar
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conditioning stimulation intensity is set at 5–10% below AMT for
foramen magnum double cone stimulation (Ugawa et al., 1995b,
Werhahn et al., 1996). To activate cerebellar Purkinje cells, the
intensity of cerebellar CS is usually high and may cause discom-
fort. The double cone coil provides the most consistent CBI
results, with no further increase in inhibition when CS intensity
exceeds 60% of maximum stimulator output [MSO] (Fernandez
et al., 2018b). Figure-of-eight coils do not elicit an adequate and
consistent CBI response, and therefore are not recommended
(Fernandez et al., 2018b, Ugawa et al., 1995b, Werhahn et al.,
1996). Suppression is not observed with electrical test stimulation
applied to the primary motor cortex, suggesting that interactions
occur at the cortical level.

Cerebellar stimulation suppresses the MEP response at ISIs of
5–8 ms mediated by cerebellar activation and spinal inhibitory
processes (ISI 7–8 ms) (Fernandez et al., 2018a, Werhahn et al.,
1996). Underscoring the importance of cerebellar activation are
findings that CBI was absent in patients with cerebellar degenera-
tion (Ugawa et al., 1997). Activation of Purkinje cells, located in the
cerebellar posterior lobules V-VIII and � 30 mm below the scalp,
mediate development of CBI (Hardwick et al., 2014). Purkinje cell
activation reduces the tonic facilitatory drive from dentate nucleus
to contralateral M1 through the dentate-thalamo-cortical path-
ways (Pinto A. D. and Chen R., 2001, Ugawa et al., 1997). Cerebellar
inhibition is more prominent with smaller (�0.5 mV) than larger
test MEP amplitudes (�2 mV), a finding related to either predom-
inant I1 wave modulation, or projection of dentate-thalamo-
cortical fibers to the core of cortical hand muscle representation
area (Pinto Andrew D and Chen Robert, 2001, Reis et al., 2008).
Cerebellar inhibition may modulate premotor cortex excitability
with maximal inhibition at ISI of 7 ms when the TS induced cur-
rents are directed anterior-posteriorly in the motor cortex
(Spampinato et al., 2020).

It should be stressed that two independent cerebello-M1 path-
ways may contribute to CBI (Spampinato et al., 2020). Specifically,
one cerebello-M1 pathway (assessed by posterior-anterior direc-
ted currents) targets excitability of M1 layer 5 pyramidal neurons
in the rostral lip, while the other pathway (activated by anterior-
posterior directed currents) targets excitability of neurons in the
premotor cortex that project onto M1. Assessment of these path-
ways should be considered in pathophysiological studies. Of rele-
vance, CBI may reduce SICI and increase ICF, suggesting an effect
on inhibitory and facilitatory cortical circuits (Daskalakis et al.,
2004). Factors such as age influence CBI, with the magnitude of
cerebellar inhibition being smaller in older adults, a finding
potentially mediated by an age-related loss of Purkinje cells
(Rurak et al., 2022). Others have reported the converse and
argued that the increase in CBI in older adults was a compen-
satory mechanism to support age-related motor function decline
(Mooney et al., 2022). The discordant findings may be related to
use of different coil types with figure-of-eight coil used by the
former (Rurak et al., 2022) and double-cone coil in latter study
(Mooney et al., 2022). At a physiological level, the pathways
assessed by CBI seem to be important for gait performance,
whereby greater CBI is associated with a faster 10-meter walking
time (Rurak et al., 2022). This finding was attributed to impor-
tance of rhythmic upper limb movement in gait control (Ortega
et al., 2008).

Inadvertent stimulation of CSTs by the CS may confound CBI by
three potential mechanisms: (i) collision of antidromic CST with
descending M1 volleys; (ii) activation of CST collaterals which acti-
vate cortical inhibitory neurons; and (iii) depolarization of spinal
motor neurons by descending CST volleys (Fisher et al., 2009,
Ugawa et al., 1994a). The intensity of cerebellar stimulation should
always be adjusted relative to CST activation with foramen mag-
num level stimulation.
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2.3. Triple stimulation technique

2.3.1. TST methodology
The triple stimulation technique (TST) is a collision method,

first designed to measure conduction blocks in peripheral nerves
and was subsequently adapted to study the corticospinal conduc-
tion (Magistris et al., 1999). The TST circumvents problems
encountered with TMS. Namely, MEP response are variable in size
and smaller than CMAP responses, a phenomenon related to cen-
tral desynchronization, and thereby precluding a reliable quantita-
tive evaluation of central motor conduction based on MEP
amplitude. The desynchronization of descending volleys leads to
phase cancellation of motor unit potentials, accounting for the
MEP variability and smaller amplitude, even when facilitated with
background muscle contractions, when compared to CMAP ampli-
tudes (Magistris et al., 1999, Magistris et al., 1998, Rosler et al.,
2002).

The triple stimulation technique (TST) corrects the desynchro-
nization of descending corticospinal volleys and quantify central
motor conduction (Magistris et al., 1999, Magistris et al., 1998,
Z’Graggen et al., 2005). The proof of concept comes from the resul-
tant MEP amplitude, which corresponds more closely to CMAP
amplitudes, with the excitation of entire motor neuron pool inner-
vating the target muscle in healthy subjects (Buhler et al., 2001,
Magistris et al., 1998). Triple stimulation technique has become
an established tool in clinical practice and research, contributing
to a better understanding of motor cortex physiology. When com-
bined with paired pulse stimulation protocols, TST may exclude a
role for desynchronization in mediating intracortical inhibition
and facilitation (Caranzano et al., 2017).

The principle of TST is explained in Fig. 2. TST consists of three
successive stimuli with pre-defined delays. The TMS pulse (1st
stimulus) is delivered over the motor cortex, followed by two
supra-maximal electrical stimuli delivered to the nerve innervat-
ing a target muscle. The first electrical stimulus is delivered distally
(2nd stimulus) while the second electrical stimulus is applied
proximally (3rd stimulus) with at Erb’s point or sciatic nerve at
the gluteal fold. In healthy subjects, the descending discharges
from TMS collides with antidromic discharges elicited by the 2nd
stimulus leading to cancellation. The 3rd stimulus elicits syn-
chronous discharges resulting in a supramaximal CMAP. In central
motor dysfunction, the TMS induced descending discharges fail to
reach the peripheral axon, either totally or partly, resulting in a
paucity of collision with the 2nd stimulus. Consequently, descend-
ing discharges from the 3rd stimulus collide with antidromic dis-
charges from the 2nd stimulus resulting in smaller CMAP
responses. Commercially available software is available which sets
the interstimulus intervals between the three stimuli, ensuring
optimal collision, and thereby facilitation the translation of TST
into clinical practice.

The TST response is compared to that of a control curve
obtained by triple stimulation performed on the peripheral nerve
[Erb’s point (1st stimulus)-to-wrist (2nd stimulus)-to Erb’s point
(3rd stimulus)] paradigm. The proportion of spinal motor neuron
pool of the target muscle discharged by TMS is quantified by the
amplitude ratio of the TST test to the TST control curves. A TST
amplitude ratio > 93% can always be obtained in healthy subjects
and TST exhibits good test-to-test reliability (Buhler et al., 2001,
Humm et al., 2004b, Magistris and Rösler, 2003, Magistris et al.,
1999, Magistris et al., 1998). Modified TST protocols correcting
for volume conduction of adjacent hand muscles (Ziemann et al.,
2004) and an extended TST protocol including a fourth (quadruple)
and a fifth (quintuple) stimulus have also been described, enabling
a more precise estimate of the number of repetitive spinal motor
neuron discharges (Z’Graggen et al., 2005), although these tech-
niques are yet to be applied in clinical practice.



Fig. 2. The triple stimulation test (TST) principle. On the left, a schematic diagram of the motor tract is simplified to four corticospinal axons with monosynaptic
connections to four peripheral axons (a simplification which does not account for the complexity of corticospinal connections); horizontal lines represent the muscle fibres of
the four motor units. Recordings are shown on the right: (A) TST test, (B) TST control, (C) response to a single stimulus at wrist and (D) superimposition of recordings A, B and
C. In this example a submaximal transcranial stimulus excites 75% of the axons (three axons out of four). Desynchronization of the three action potentials is assumed to occur
within the corticospinal tract (or possibly at the spinal cell level). (A, 1) Transcranial stimulation excites three out of four axons. (A, 2) After a delay, a maximal stimulus
applied to the wrist evokes the first negative (upward) deflection in the TST test trace; this response is followed by that of the multiple-discharge volleys (not figured on the
left scheme). (A, 3) After a delay, a maximal stimulus is applied to Erb’s point; (A, 4) a synchronized response from the three axons excited initially by the transcranial
stimulus is recorded as the second large deflection of TST test trace. (B, 1) A maximal stimulus is applied to Erb’s point; (B, 2) after a delay, a maximal stimulus applied to the
wrist evokes the first deflection of TST control trace; (B, 3) after a delay, a maximal stimulus is applied to Erb’s point; (B, 4) a synchronized response from the four axons is
recorded as the second deflection of TST control trace. (C) The response evoked by stimulating the wrist serves as a baseline for measurement of the amplitude and area of the
second deflection of the TST curves. (D) On the superimposed traces, the smaller size of the second deflection of the TST test trace, compared with that of the TST control trace,
demonstrates that not all spinal axons of the target muscle were excited by transcranial stimulation (in this example both amplitude and area ratios should be 75% if the four
individual MUPs have identical sizes). Calibrations: 2 mV and 5 ms. (Figure from Magistris, M. R., K. M. Rosler, A. Truffert and J. P. Myers (1998). ‘‘Transcranial stimulation excites
virtually all motor neurons supplying the target muscle. A demonstration and a method improving the study of motor evoked potentials.” Brain 121: 437–450 (with kind permission of
the authors and Oxford University Press (Magistris et al., 1998a).).
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2.3.2. Clinical utility of TST
TST enables precise quantification of central and peripheral

conduction deficits that result from reduced excitability, loss of
cortical motor neurons, conduction block in the corticospinal tracts
or proximal peripheral motor nerve segments. TST is two to three
times more sensitive than standard TMS and may detect even
minor deficits (Buhler et al., 2001, Magistris et al., 1999,
Magistris et al., 1998). In central demyelinating diseases, TST
may quantify temperature-dependent conduction blocks underly-
ing the Uhthoff phenomenon (Humm et al., 2004b). Additionally,
TST appears to be reliable in monitoring disease course and effects
of therapeutic interventions in multiple sclerosis (Hofstadt-van Oy
et al., 2015). Compared to conventional MEP, the TST correlates
better with the clinical performance and global disability in
patients with multiple sclerosis (Giffroy et al., 2019).

Separately, TST has been proven sensitive in detecting loss of
corticomotor neurons in amyotrophic lateral sclerosis, even at a
subclinical stage, and in distinguishing central from lower motor
neuron degeneration. TST complements the standard neurophysio-
logical evaluation and improves diagnostic accuracy in ALS
(Grapperon et al., 2021, Kleine et al., 2010, Komissarow et al.,
2004, Rösler et al., 2000, Wang et al., 2019).

In disorders of the peripheral nervous system, particularly mul-
tifocal motor neuropathy with proximal conduction block (MMN),
TST may differentiate conduction block from temporal dispersion
in proximal nerve segments and increases the sensitivity for
detecting proximal conduction block from 60% to 90% compared
to standard neurophysiological studies (Attarian et al., 2005,
Deroide et al., 2007). When combined with neuroimaging (MRI),
TST increases the sensitivity for detecting brachial plexus pathol-
ogy, thereby providing further support for diagnosis of MMN
(Corazza et al., 2020). Of relevance, TST may also detect proximal
conduction blocks in other peripheral nerve pathologies such as
Guillain–Barre syndrome (Taieb et al., 2015) and chronic inflam-
matory demyelinating polyradiculoneuropathy (Attarian et al.,
2015).

TST has also been applied in a number of central nervous sys-
tem disorders such as Parkinson’s disease (Xu et al., 2020), multi-
ple system atrophy (Eusebio et al., 2007) and spinocerebellar
ataxia type 6 (Sakuma et al., 2005), although the clinical relevance
remains to be determined.

At a clinical level, the use of TST has some caveats. Notably, TST
is limited to the study of central conduction to distal hand and foot
muscles (Buhler et al., 2001, Magistris et al., 1999, Magistris et al.,
1998, Rosler et al., 2002). Absence or marked reduction of CMAP
responses preclude TST studies. Additionally, TST cannot differen-
tiate central conduction deficit from proximal peripheral conduc-
tion block, and clinical correlation is required. Confounding
effects of sub-maximal peripheral stimulation also need consider-
ation (Caranzano et al., 2021). Potential risk of injury with needle
stimulation, when used for proximal sciatic nerve stimulation also
needs consideration, although this is a rare adverse event. Another
major limitation of TST is the fact that the technique is rather pain-
ful, limiting its use for monitoring patients’ follow-up.

2.4. Other TMS techniques

2.4.1. Foramen magnum stimulation
Activation of the corticospinal tracts (CST) at the foramen mag-

num was first described with a high voltage electrical stimulation
(Ugawa et al., 1991b), and later with TMS using a double-cone coil
(Ugawa et al., 1994c). The site of foramen magnum stimulation
(FMS) seems to be at either the foramen magnum or CST decussa-
tion [cervicomedullary junction] (Ugawa et al., 1992, Ugawa et al.,
1991b, Ugawa et al., 1994c), preferentially activated by TMS cur-
rents induced in a parallel direction to the decussation (Taylor,
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2006). Upward induced currents at foramen magnum are more
effective than downward currents (Ugawa et al., 1989), with opti-
mal TMS coil position being mid-way between the inion and mas-
toid process ipsilateral to the target muscle (Shirota et al., 2011).
The MEP latency with FMS is 2–3 ms shorter than D-wave latency
and was not impacted by voluntary contraction, contrasting with
motor cortical stimulation (Ugawa et al., 1991b, Ugawa et al.,
1994c). The physiological differences could relate to the fact that
FMS evokes a single descending volley (Taylor et al., 2002,
Ugawa et al., 1991b, Ugawa et al., 1994c), in contrast to cortical
stimulation that elicits multiple descending volleys by a single
pulse stimulation (Day et al., 1987).

The clinical utility of FMS is in localizing the site of CST lesions
rostral or caudal to the pyramidal decussation (Ugawa et al., 1996),
and the clinical utility was demonstrated in the following settings;
(i) detecting subclinical lesions, (ii) identifying multiple CST
lesions, (iii) unmasking CST dysfunction that could be clinically
masked by presence of peripheral neuropathy, and (iv) establishing
the presence of distinct disease-conduction delay rostral to fora-
men magnum was shown to distinguish cervical myeloradiculopa-
thy from amyotrophic lateral sclerosis (ALS) (Ugawa et al., 1996).
Separately, prolonged cortical to brainstem (CTX-BST) conduction
times were reported in ALS, although is less sensitive at detecting
CST dysfunction than prolonged CMCT (Tokimura et al., 2020).
Despite potential clinical utility, FMS has not been used widely
due to pain associated with stimulation. Foramen magnum stimu-
lation may fail to elicit an MEP response which could be overcome
by a paired-pulse FMS paradigm (Matsumoto et al., 2008),
although there is limited clinical experience in using this tech-
nique. Separately, FMS may be used to assess the excitability of
spinal motor neurons (Taylor, 2006) and spinal cord synaptic effi-
cacy (Cortes et al., 2011, Fitzpatrick et al., 2016, Yamashita et al.,
2021), which may be of clinical utility in spinal cord injuries
(Vastano and Perez, 2020), although further research is required.
2.4.2. Conus stimulation
Stimulation of the conus enables assessment of the cortico-

conus motor conduction time (CCCT) and cauda equina conduction
time (CECT), which reflect conduction in proximal peripheral nerve
segments innervating the lower limbs (Fig. 3). Conus stimulation is
achieved by using a large 20-cm-diameter Magnetic Augmented
Translumbosacral Stimulation (MATS) coil (Matsumoto et al.,
2009b). The MATS coil is positioned lateral to midline and con-
tralateral to recording muscle site. The edge of the MATS coil is
placed over the L1, L3 or L5/S1 spinous processes with stimulus
intensity set to maximal stimulator output (Matsumoto et al.,
2009b). The magnetic stimulation induced currents flowing in
either upward or downward direction in the body, and three
MEP responses are evoked at different directions of the induced
currents. The optimal induced current direction is defined as the
direction in which the largest response was elicited with a stable
latency (Matsumoto et al., 2010a, Matsumoto et al., 2013a). When
recording from the tibialis anterior (TA) muscle (Fig. 3C and D),
proximal segments of the cauda equina are activated by position-
ing the magnetic augmented translumbosacral stimulation (MATS)
coil over the L1 spinous process and inducing current flow upward,
while neuro-foraminal stimulation is achieved by placing the coil
over the L5 spinous process for inducing current flow 45� down-
ward from the horizontal direction (Matsumoto et al., 2009a,
Matsumoto et al., 2009b). A similar stimulation set-up was used
when recording from the abductor hallucis (AH) muscle (L1 or L3
spinous process and upward induced current, Fig. 3A and B), with
the MATS coil placed over the S1 spinous process and induced cur-
rent flowing 60� downward from the horizontal direction for opti-
mal neuroforaminal activation (Matsumoto et al., 2009a).



Fig. 3. Stimulation of the lumbosacral region. (A) Position of the magnetic augmented translumbosacral stimulation (MATS) coil in magnetic stimulation of cauda equina
with motor evoked potentials (MEP) recorded over the adductor hallucis (AH). The coil edge was positioned over the L1, L3, and S1 spinous processes. The induced current
directions are illustrated by grey dashed lines and are tangential to the direction of coil winding over the activation sites. (B) At L1 and L3 levels, MATS coil stimulations failed
to elicit a supramaximal MEP response. At the S1 level, stimulating nerves within the neuro-foramina, the MEP responses are supramaximal elicited at a TMS intensity of 70%
maximal stimulator output. The MEP onset latency differences between the L1 and L3 stimulation levels suggest that cauda equina in the spinal canal at L1 and L3 levels were
activated separately. Cauda equina conduction time (CECT) is calculated by subtracting the S1 from L1 elicited MEP onset latencies when recoding from AH. Tibial nerve
compound muscle action potential (CMAP) responses were illustrated with ankle and knee stimulation. (C) Conus stimulation method when recoding over the right tibialis
anterior muscle. For proximal cauda equina stimulation, the edge of MATS coil is positioned over the L1 spinous process for inducing currents in an upward direction (dashed
grey arrow), while for neuroforaminal activation the edge of the MATS coil is positioned over L5 with induced current direction being 45� downward from a horizontal
direction. (D) The MEP responses elicited with cortical, L1 and L5 stimulation are illustrated. The cortico-conus motor conduction time (CCCT) is calculated by subtracting the
MEP onset latency elicited by L1 from cortical stimulation. Additionally, CECT is measured by subtracting MEP onset latency elicited by L1 form L5 stimulation. Central motor
conduction time (CMCT) is represented by addition of CCCT and CECT.
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The CECT is calculated by subtracting the L5/S1 evoked MEP
latency from that evoked at the L1 level. The CCCT is calculated
by subtracting the MEP latency evoked with L1 frommotor cortical
stimulation, while central motor conduction time can be calculated
by subtracting MEP latency at L5/S1 stimulation from cortical MEP
latencies (Matsumoto et al., 2010a, Matsumoto et al., 2013a). A
limitation of conus stimulation relates to submaximal activation
of neural elements, thereby limiting the possibility of establishing
conduction block at the cauda equina.

At a clinical level, assessment of CCCT may identify CST dys-
function in the setting of peripheral nerve disease or when upper
motor neuron signs are absent (Murakami et al., 2019, Tokimura
et al., 2020, Tokushige et al., 2013). Separately, CECT may be pro-
longed in demyelinating neuropathies, such as chronic inflamma-
tory demyelinating polyradiculoneuropathy, demyelinating
Guillain-Barré Syndrome phenotypes, anti-myelin-associated gly-
coprotein (MAG) polyneuropathy, POEMS syndrome and Charcot-
Marie-Tooth disease type 1 (Maccabee et al., 2011, Matsumoto
et al., 2015, Matsumoto et al., 2010b), where it may be of diagnos-
tic utility. Additionally, prolonged CECT was also reported in pri-
mary malignant lymphoma of the cauda equina (Matsumoto
et al., 2009a) and in lumbar spinal canal stenosis (Senocak et al.,
2009). Larger studies are required to determine the diagnostic util-
ity of conus stimulation in peripheral nervous system disorders,
particularly developing optimal diagnostic cut-off criteria.
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2.4.3. Facial nerve stimulation
The facial nerve can be directly stimulated by TMS with a

90 mm circular coil positioned over the ipsilateral parieto-
occipital region, with the base of the coil over the mastoid process
(canalicular stimulation) (Chen et al., 2008, Rimpiläinen et al.,
1993, Rösler et al., 1989, Schmid et al., 1992, Schriefer et al.,
1988, Wolf et al., 1995). The site of facial nerve stimulation
remains controversial, although appears to be within the internal
acoustic meatus where the nerve transitions from low-resistance
cerebrospinal fluid to high-resistance petrous bone (Schmid
et al., 1992). Cortical MEPs are elicited by stimulation of the facial
area in the contralateral motor cortex, with the optimal position
being � 2 cm lateral and � 1 cm anterior to the position that
evokes the strongest contraction in hand muscles (Paradiso et al.,
2005). Facilitation of the target muscle is often required to record
an MEP response (Rösler et al., 1989). The TMS elicited responses
are compared to facial nerve CMAP responses evoked by electrical
stimulation at the stylomastoid fossa or further along the facial
nerve. The three stimulation sites allow assessment of three seg-
ments (cortico-proximal, transosseal, and distal) of the cortico-
facial projection.

The MEP and CMAP responses may be recorded from any facial
muscle, including orbicularis oculi, oris, nasalis, mentalis, and buc-
cinator, and should be recorded bilaterally to enable a side-to-side
comparison. The facial MEP responses are smaller than CMAP
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responses, and may be contaminated by a number of artefacts,
including volume conduction from uncrossed ipsilateral MEPs,
blink and other facial reflexes, peripheral stimulation of the ipsilat-
eral facial nerve, and possibly by activation of muscles innervated
by the trigeminal nerve (Paradiso et al., 2005, Türk et al., 1994,
Urban et al., 1997). Normative values have been previously
reported and should be established with each laboratory prior to
undertaking studies in neurological diseases (Rimpiläinen et al.,
1992, Rösler et al., 1989, Rösler et al., 1995, Urban et al., 1997).
The clinical utility of magnetic stimulation in facial nerve disorders
is discussed below.

2.4.4. Spinal nerve stimulation in peripheral neuropathy
The spinal nerve stimulation is sometimes used to evaluate the

proximal parts of peripheral nerves. Focal lesions between Erb’s
point and neuroforamina, i.e., brachial plexus or spinal nerves just
distal to neuroforamina, can be detected in demyelinating neu-
ropathies (Matsumoto et al., 2013a, Matsumoto L. et al., 2010),
and focal lesions between knee and neuroforamina, i.e., the sacral
nerves, sacral plexus, or spinal nerves just distal to neuroforamina,
can also be detected (Matsumoto et al., 2013b).

2.5. TMS-EEG

TMS in combination with EEG (TMS-EEG) enables direct assess-
ment of cortical circuits, by-passing sensory and motor pathways,
as TMS-EEG is not reliant on the integrity of these systems. More-
over, TMS-EEG can activate cortical neurons with a wide range of
stimulation intensities, thereby providing full excitability profiles,
from threshold to saturation (Casali et al., 2013, Kähkönen et al.,
2005, Komssi et al., 2004, Rosanova et al., 2009). Consequently,
input–output properties of cortical neurons and circuits can be bet-
ter assessed, which has pathological implications. Additionally,
TMS-EEG offers an unambiguous measure of connectivity, namely
causal interactions within the thalamocortical system (Massimini
et al., 2005, Morishima et al., 2009, Paus, 2005).

The flexibility of TMS-EEG affords unprecedented opportunities
for exploring and modulating cortical excitability but also repre-
sents a challenge, especially when probing cortical areas outside
M1. Indeed, in the absence of a motor read-out, when a TMS coil
is positioned over the region of interest, the actual impact of the
induced electric field on cortical neurons is difficult to predict, even
when utilizing individual head models and TMS navigation sys-
tems (Lioumis and Rosanova, 2022). Key factors such as microscale
axon orientation, cytoarchitectonics and local neuronal excitability
remain unaccounted for and may dramatically affect the interac-
tion between the induced electric field and brain activity. Differ-
ences in the strength of direct cortical activation have been
highlighted as a major problem affecting the reproducibility of
TMS-EEG studies in assessing cortical excitability and connectivity
(Belardinelli et al., 2019). Maximizing the direct impact of stimula-
tion on cortical neurons, while minimizing collateral effects such
as cranio-facial muscle, auditory or somatosensory activation, is a
key prerequisite for improving the reproducibility, signal-to-
noise ratio (SNR), as well as clinical utility of TMS-EEG.

Although off-line software tools are available for reducing arti-
facts (Mutanen et al., 2022), controlling for quality of EEG signals in
real-time is the most effective strategy for recording reliable TMS
evoked potentials (TEP). Utilizing a software that enables setting
of stimulation parameters based on real time visualization EEG sig-
nals, may be critical for recording good quality TEPs, and has been
successfully implemented in the study of brain-injury patients
(Casali et al., 2013, Casarotto et al., 2016, Rosanova et al., 2018,
Sinitsyn et al., 2020). A free-release MATLAB-based tool, called
rt-TEPs (real-time TEP), is available to assist in the implementation
of this approach (Casarotto et al., 2022).
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Together with tools that enable on-line assessment of TEP qual-
ity, other tools have been developed to control for confounding fac-
tors such as the auditory evoked potentials (AEP) produced by TMS
‘‘clicks”. The AEPs can be abolished by continuously playing a
white noise through inserted earplugs during acquisition of TEPs
(Paus et al., 2001), administering continuous masking noise that
reproduces the time-varying spectral content of the coil ‘‘click”
(Massimini et al., 2005), or by interposing a foam layer between
the TMS coil and scalp (ter Braack et al., 2015). More recently, a
highly flexible and freely available tool that can generate effective
and safe masking noises, customized for each TMS device and tai-
lored on subject’s perception, has been released (Russo et al.,
2022).

Developing such tools is critical as researchers and clinicians
would like to avoid situations such as that illustrated in Fig. 4.
Here, it is shown how despite reasonable a priori assumptions
based on anatomical and biophysical data, TMS can have little
impact on the underlying cortex. Under these circumstances, lack
of real-time control on cortical impact, artifacts and confounding
factors may result in a ‘false TEP’ with little initial activation and
late symmetrical, central topography typical of an AEP. The figure
also shows how this fundamental drawback can be readily con-
trolled for and prevented during the experiment if the operator’s
actions during the measurement are informed by tools such as
rt-TEP. In this case, responses consistent with the effect of direct
cortical stimulation can be easily obtained, and are characterized
by a strong initial activation under the TMS coil followed by asym-
metric topography, which is specific to the stimulated site, and
high SNR.

To obtain high-quality TEPs, the adjustment of TMS parameters
may involve noise masking optimization, intensity changes and
small coil rotations (as illustrated in Fig. 4). Although a few manual
rotations of the TMS coil are generally effective in increasing the
SNR, a systematic search of the optimal electric field orientation
is practically unfeasible. Such fine tuning requires more sophisti-
cated strategies and hardware, such as an EEG-based adaptive
search algorithms coupled with electronically controlled two-coil
transducers (Souza et al., 2022, Tervo et al., 2020, Tervo et al.,
2022). Combining rt-TEP with advanced closed-loop systems rep-
resents a promising strategy whereby fundamental stimulation
parameters are first set by the operator, based on visual feed-
back, and then automatically optimized in a closed-loop fashion.

Beside the appropriate experimental procedures, the reliability
of TMS-EEG measurements critically depends on the hardware.
Active amplifiers tend to induce long-lasting decay artifacts that
are more prominent and difficult to eliminate, often masking early
TEPs components. The accuracy of the TMS-navigation unit is also
a key factor. Specifically, the settings (coil position coordinates and
rotation) identified during the initial parameter search must be
precisely retrieved and held steady throughout the experiment
and across repeated measurements (Lioumis and Rosanova,
2022). TMS hardware, TMS coils and pulse waveshapes can differ
in their focality, efficacy on stimulating cortical circuits and collat-
eral effects (magnetic artifacts, sensory and auditory stimulation)
(Koponen et al., 2020). With theoretical and technical improve-
ments, the quality and informativeness of TEPs is likely to improve.

2.5.1. Clinical measurements: Principles and examples
Experimental procedures and tools to record reproducible TEPs

are being improved, standardized and shared within the TMS-EEG
community (Belardinelli et al., 2019, Siebner et al., 2019) with the
aim of establishing TMS-EEG as a reliable clinical tool (Julkunen
et al., 2022). Recent preclinical studies have suggested that several
biomarkers can be already extracted from TEPs that may serve as
potential pathophysiological, diagnostic, and prognostic biomark-
ers in neurological patients (Tremblay et al., 2019).



Fig. 4. TMS-EEG principles. (A) Key elements (pointed by red arrows) of a TMS-EEG set-up employed in a clinical setting. (B and C) These panels directly compare the final
average TMS evoked potentials [(TEP] (150 trials) collected during two sessions. Although both responses have been obtained by setting stimulation parameters based on
reasonable a priori anatomical (position and orientation with respect to the cortical gyrus) and physiological (maximum stimulator output [MSO, %] at or above resting motor
threshold [RMT]) information, they differ in fundamental ways. The responses in B show small early activations and are characterized by larger, late symmetric components
which are maximal over midline channels, like those reported previously (Conde et al., 2019; Chung et al., 2018). These waveforms are hardly consistent with the effects of
direct cortical stimulation, which is expected to trigger responses that are large immediately after the pulse and specific for the stimulation site (Keller et al., 2014; Kundu
et al., 2020). Conversely, the TEP reported in C fulfills these basic criteria and is similar to those described in previous studies (Rosanova et al., 2009; Casarotto et al., 2016;
Sinitsyn et al., 2020). In this case, a strong initial activation is followed by an overall asymmetric wave shape with high signal-to-noise ratio (SNR). Obtaining this kind of
responses only required maximizing the immediate impact of TMS on early (8–50 ms) components through slight adjustments of the intensity (by 4% MSO) and orientation of
stimulation (30◦ counterclockwise), while at the same time optimizing noise masking. Making such adjustments is relatively straightforward but would be impossible based
on a priori information alone and can only be done if the operator is guided in real-time by informative visual feedback (rt-TEP) about the immediate effects of TMS.
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2.5.1.1. Time-domain, early and late components. Early TEP compo-
nents (0–50 ms) have been considered as markers of cortical
excitability, possibly reflecting the immediate reactivity of local
cortical neuronal populations (Moliadze et al., 2003, Mueller
et al., 2014, Romero et al., 2019). Among different time-domain
measurements, the peak-to-peak amplitude and slope of early TEPs
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at the individual channel level, as well as multi-channel measure-
ments such as local and global mean field power in early time win-
dows, have been used to detect changes in cortical excitability over
time or after neuromodulatory interventions (Esser et al., 2006,
Huber et al., 2013, Ly et al., 2016, Romero Lauro et al., 2014).
Amplitude changes of early TEPs and regional cortical hyperex-
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citability have been demonstrated in Alzheimer’s disease at speci-
fic cortical locations, suggesting potential clinical utility (Casarotto
et al., 2011, Casula et al., 2022, Julkunen et al., 2011, Julkunen et al.,
2008), although the variation in cortical atrophy across studies
may limit interpretability given the inherent variability of stimula-
tion parameters. Early TEPs have a high individual test–retest
reproducibility (Casarotto et al., 2010), and may be of utility in
assessing disease progression or treatment effects in neurological
diseases. Of relevance, early TEPs have been effectively used to
measure the increase in frontal cortex excitability induced by elec-
troconvulsive treatment (Casarotto et al., 2013) and local modula-
tions of cortical excitability by dopaminergic agents in Parkinson’s
disease (Casarotto et al., 2019, Leodori et al., 2022, Turco et al.,
2018c).

Selective alterations of late TEPs components (>50 ms) have
been linked to pharmacological modulation of cortical inhibition
(Premoli et al., 2014), or pathological cortical adaptation dynamics
in severe brain injury (Rosanova et al., 2018) and stroke (Sarasso
et al., 2020, Tscherpel et al., 2020). Abnormalities of later TEP com-
ponents have been observed in Parkinson’s disease (Maidan et al.,
2021), whereas deep brain stimulation of the subthalamic nucleus
and L-Dopa intake increases late TEPs (Casula et al., 2017). Finally,
alterations of late TEP components may be of utility as a biomarker
of epileptogenic cortical foci and a measure of anti-epileptic drug
effects (Kimiskidis et al., 2017, Valentin et al., 2008).
2.5.1.2. Spectral features. Alterations in membrane properties of
cortical and thalamic neurons, as well as alterations in their pat-
terns of connectivity, underlie most neurological conditions, lead-
ing to distinctive changes in oscillatory dynamics (Hughes and
Crunelli, 2005, Jeong, 2004, Llinás et al., 1999, Soininen et al.,
1992). Such alterations can be studied with EEG recordings,
although spontaneous rhythms are variable and their topography
can change radically in response to eye opening, planning of simple
movements or cognitive activity. A complementary way of probing
frequency tuning of brain circuits is to apply direct perturbations
to detect the main rate of ensuing oscillations, the so-called natural
frequency. Following an early (0–20 ms) stereotypical sharp com-
ponent, TMS consistently evokes (i) alpha-band oscillations after
stimulation of the occipital cortex, (ii) beta-band oscillations after
stimulation of the parietal cortex, and (iii) fast beta/gamma- band
oscillations after stimulation of the frontal cortex (Rosanova et al.,
2009). Dampening of beta-band responses have been reported in
Parkinson’s disease after unilateral surgical lesioning of the ventro-
lateral thalamic nucleus (Van Der Werf et al., 2006). A marked
reduction of gamma-band TMS-evoked oscillation was reported
in the frontal cortex of schizophrenia patients, possibly related to
thalamic dysfunction (Ferrarelli et al., 2012, Guller et al., 2012).
Slowing of the natural frequency was reported in cortical areas
overlying subcortical strokes (Pellicciari et al., 2018, Sarasso
et al., 2020, Tscherpel et al., 2020). As such, TMS-evoked EEG oscil-
lations may provide valuable clinical information about the state of
cortico-subcortical (especially thalamic) loops.
2.5.1.3. Connectivity. Long-range interactions of neuronal popula-
tions represent a key aspect of brain function. Such interactions
are typically inferred based on measures of functional connectivity
that rely on correlation-based analyses of spontaneous activity. A
limitation of these measures of temporal correlation among time
series, such as cross-correlation, coherence, phase-locking value,
is the possible biasing by common drivers, correlated inputs, and
noise. A more informative and clinically relevant measure is effec-
tive connectivity, which refers to the ability of a specific neuronal
population causally influencing the activity of connected neuronal
groups within a system (Friston, 2011, Lee et al., 2003). TMS-EEG
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offers a straightforward way to measure effective connectivity in
the human brain.

In studies of patients with severe brain injury, resulting in an
Unresponsive Wakefulness Syndrome (UWS), a dramatic reduction
in spread of TMS-evoked activity has been reported both at the
source and sensory level (Casarotto et al., 2016, Ragazzoni et al.,
2013, Rosanova et al., 2012). Notably, recovery of effective connec-
tivity paralleled and often heralded recovery of consciousness.
Changes in effective connectivity have also been demonstrated in
stroke (Borich et al., 2016, Casula et al., 2021) and genetic general-
ized epilepsy patients (Vlachos et al., 2022), whereas no major
variations were found in early-stage patients with multiple-
sclerosis (Zipser et al., 2018). Clinical results show that perturba-
tional measures of connectivity with TMS-EEG are sensitive and
potentially prognostic, especially after diffuse, multifocal and focal
brain injury. A potential role for TMS-EEG assessing and prognosti-
cating mild traumatic brain injury has been recently proposed
(Coyle et al., 2018).

2.5.1.4. Complexity. The TEPs are characterized by high differentia-
tion (i.e., different areas have different natural frequencies) and
high integration (i.e., causal interactions among distant areas).
Inspired by theoretical principles, TMS-EEG-based measures of
complexity have been developed to simultaneously quantify differ-
entiation and integration in corticothalamic networks. These mea-
sures have been clinically utilized by different centers in large
patient cohorts, representing a novel approach to stratifying Disor-
ders of Consciousness (DoC) (Casarotto et al., 2016, Sinitsyn et al.,
2020, Wang et al., 2022) and will be discussed below in section
3.12.

2.6. Peristimulus time histogram (PSTH)

The PSTH TMS technique assesses corticomotoneuronal system
integrity by evaluating a small number of corticomotoneurons that
converge onto a specific population of spinal motor neurons
(Weber and Eisen, 2000). The primary peak (PP) reflects the firing
probability of a single voluntarily recruited motor unit induced by
a sub-threshold TMS stimulus. In healthy controls, PP occurs � 20–
25 ms after the stimulus, is well synchronized and of short dura-
tion, in keeping with activation of fast-conducting monosynaptic
pathways. The PP reflects the rising edge of the underlying excita-
tory post-synaptic potential (EPSP) evoked at the anterior horn cell.
Additionally, excitatory, and inhibitory effects on motor neurons
may be assessed, as can the strength of synaptic inputs. Latency,
amplitude, and dispersion (calculated by bins excess, duration,
and synchronicity) of the PP is typically evaluated (see Table 1).
3. TMS abnormalities in neurological diseases (Table 1)

3.1. Neurodegenerative disorders

3.1.1. Amyotrophic lateral sclerosis/motor neuron disease
Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive

neurodegenerative disorder of the human motor system character-
ized by upper [UMN] and lower motor neuron [LMN] dysfunction
(Kiernan et al., 2011, Kiernan et al., 2020). Fundamental to under-
standing of ALS pathogenesis pertains to the relationship between
upper and lower motor neuron dysfunction. An UMN origin for ALS
has been proposed, whereby corticomotoneuronal hyperexcitabil-
ity mediated neurodegeneration via an anterograde glutaminergic
mechanism, the dying forward hypothesis (Eisen et al., 1992). In
contrast, LMN dysfunction has been proposed as the primary event
in ALS pathogenesis with UMN dysfunction occurring as a sec-
ondary phenomenon [dying-back hypothesis] (Fischer et al., 2004,



Table 1
Clinical diagnostic utility of TMS in neurological diseases: Consensus opinion.

Disease Characteristic TMS
findings

Potential Clinical Utility Clinical aspects that may affect interpretation

Amyotrophic
lateral sclerosis
(ALS)

SICI ;
SICF "
ICF " ⟷

RMT⟷ ; "
MEP/CMAP amplitude"
or ;*
CSP duration ;
CMCT "

-SICI is a potential diagnostic biomarker in
differentiating ALS from mimicking disorders
-Useful in differentiating ALS from other neuromuscular
mimicking disorders
-CMCT prolongation detects the CST involovements in
patients with muscular atropy due to spinal motor
neuron involvements.

-Riluzole therapy may transiently increase SICI
-Changes in cortical excitability according to disease
progression

Parkinson’s
disease (PD)

SICI ;
SICF "
ICF ⟷ ;
RMT ⟷ ; (PD subtype)
I/O curve steeper at
resting state
SAI ; (disease
progression)
CSP duration ⟷ ;
ISP duration ⟷ ; (PD
subtype)
Normal SICI on I3 waves

-SICI and SICF might be used as biomarkers of disease
progression
-SAI might be used to predict PD dementia and falls
-Limited diagnostic utility

-ON or OFF-drug condition
-Tremor-dominant or akinetic-rigid subtype
-Disease duration or severity of symptoms

Parkinsonism
(MSA, PSP)

CMCT " (MSA, PSP)

SICF⟷

-Prolonged CMCTmight be used to differentiate MSA/PSP
from PD
-Limited diagnostic utility

-Parkinsonism or cerebellar ataxia predominant MSA
subtypes

Lewy Body Disease SICI ;
ICF ;
SAI ;

-SAI may help differentiate LBD (SAI ;) from
Parkinsonian syndrome and FTD (SAI⟷)
-Limited diagnostic utility

Huntington’s
disease (HD)

SAI ;
SICI ⟷ ;
CSP duration " (early
stage)

-Limited diagnostic utility -Different charges according to disease stage
-HD patients are not able to be fully relaxed

Dystonia SICI ;

LICI ;
CSP ;
IHI ; (with mirror
movements)
Surround inhibition ;

-Limited diagnostic utility -Test on affected side or unaffected side
-Homogeneity of dystonia presentation
–No single parameter can be used to prove organic
dystonia

Tics and
Tourette’s
syndrome

SICI ;

CSP duration ;

-Limited diagnostic utility -Timing of assessment (before tics occur or when tics are
suppressed)

Cervical
spondylitic
myelopathy

CMCT "
MEP amplitude ;

-Prolonged CMCT is a major and objective criterion for
the diagnosis of pyramidal tract lesion in the context of
myelopathy

MEP of APB muscle is most sensitive

Spinal cord injury RMT "

CMCT "
MEP amplitude ;

-Prolonged CMCT is a major and objective criterion for
the diagnosis of pyramidal tract lesion in the context of
myelopathy

-No single measurement can predict gait and balance
outcome after SCI

Alzheimer’s
disease (AD)

RMT ;
AMT ;
CSP duration ⟷
SICI ⟷
ICF ⟷
LICI ⟷
SAI ;

-Potential diagnostic utility
-SICI-ICF/SAI ratio may help differentiate AD from FTD
-SICI-ICF may help differentiate AD from LBD

-SAI may be increased by acetylcholinesterase inhibitors

Mild cognitive
impairment
due to
Alzheimer’s
disease

RMT ;
SICI ⟷
ICF ⟷
LICI ⟷
SAI ;

-Potential diagnostic utility
-SICI-ICF/SAI ratio may help differentiate MCI-AD from
MCI-FTD
-SICI-ICF may help differentiate MCI-AD from MCI-LBD

-Interpretation may be hampered by the heterogeneity of
MCI and the paucity of studies performed in patients with
a biomarker supported diagnosis of MCI

Frontotemporal
dementia (FTD)

RMT ⟷
CMCT "
SICI ;
ICF ;
SAI ⟷

-Potential diagnostic utility
-SICI-ICF/SAI ratio may help differentiate FTD from AD
-SAI may help differentiate FTD from LBD

Epilepsy RMT ⟷
CSP duration "
SICI ;
ICF ⟷

; SICI and LICI may be useful in discriminating seizure
from syncope
Follow up clinical condition

-Antiepileptic medications cause "RMT, SICI & LICI

(continued on next page)
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Table 1 (continued)

Disease Characteristic TMS
findings

Potential Clinical Utility Clinical aspects that may affect interpretation

LICI ;
Myoclonus

epilepsy
SICI ;
SICI ; even on I3 waves
RMT ;

-Limited diagnostic utility Anti-epileptic drugs affect the results

Migraine without
aura

SICI ; (at ISI 4 ms)
SICF ⟷SICF "
(suprathreshold
conditioning stimulus;
weak test stimulus)
SICF ; (preictal phase)

RMT⟷ ; "
LICI ⟷ (up to 120 ms
ISI)LICI ;
(150% test stimulus)LICI
;
(250 ms ISI)
SAI ⟷
SAI ; (preictal phase)
CSP ⟷ (interictal)CSP
duration ;
(interictal, women)

-TMS changes vary according to the phase of migraine
cycle
-Limited diagnostic utility

-RMT/PT, and SAI change with proximity of migraine
attack
-ICF changes with conditioning/test stimulus intensity
and proximity of migraine attack
-CSP duration decreases with focused sustained attention
and sleep restriction

Migraine with
aura

SICI ;

SICF "
RMT⟷
Steeper I/O curve at rest
CSP duration ;
LICI 250 ms "
CBI;

SAI ; (when disease
progressed)

-PT might be used to discriminate between transient
ischemic attacks and aura without headache

-1 Hz rTMS reduces PT
- deficits of cortical inhibition are related more to aura
rather than headache mechanisms
-CSP shortens also in facial muscles
-Topiramate modulates
occipital cortex excitability

Chronic migraines RMT;

SICI absent

-Limited diagnostic utility
-Potential biomarker of treatment effects

Botulinum toxin therapy partially normalizes SICI after
12-months treatment

Episodic cluster
headaches

SICI ; (ictal)
SICI ; (allodynia)
SICF " (preictal and
ictal)
SICF " (allodynia)
RMT ⟷

CSP duration ⟷

-Limited utility Changes in paired-pulse TMS variables are ipsilateral to
the pain side; inhibitory changes are ictal; facilitatory
changes are both interictal and ictal.

Medication-
overuse
headache

CSP duration ⟷
(NSAIDs alone or in
combination)CSP
duration ;
(triptans)

-Limited utility -CSP changes reveal medication-induced neural
adaptation in motor cortex

Multiple Sclerosis CMCT "
TST ;MEP amplitude ;
(or desynchronized)
TST-MEP amplitude ;

-CMCT increase or MEP amplitude decrease after
fatiguing exercise
-SICI ;
-SICF ;
-SAI ;
-CSP duration "
-ISP "
-Limited diagnostic utility
-Potential prognostic utility

-TMS measures may be affected by multiple sclerosis type
(RRMS vs. SPMS/PPMS), and treatment (corticosteroids
and immunomodulatory drugs) and the presence of
fatigue

Neuropathic pain SICI ;
(contralateral to pain
side)

-SICI might be a biomarker to select candidates for
analgesic cortical neuromodulation
-Limited diagnostic utility

-Defective SICI can be restored by therapeutic
intervention producing analgesic effects

Stroke RMT "

MEP latency "
MEP amplitude ;
Shallower I/O curves
SICI ;

-Potential prognostic utility: Absent upper limb MEPs
predicts worse motor recovery and outcomes

-Depending on post-stroke phase (acute, sub-acute, or
chronic)

Cerebellar disease CBI ; -Differentiate cerebellar ataxia due to cerebellar or
cerebellar efferent pathways dysfunction from that due
to cerebellar afferent pathways dysfunction, or from
non-cerebellar ataxia

-CBI changes may be seen for compensation of basal
ganglia dysfunction (movement disorders)
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Table 1 (continued)

Disease Characteristic TMS
findings

Potential Clinical Utility Clinical aspects that may affect interpretation

Facial nerve
disorders

MEP ; or absent
Prolonged transosseal
conduction time

-May localize facial nerve dysfunction-Prognostication
(if MEP present better prognosis)
-Limited diagnostic utility

Brain Tumors RMT " or ; (tumor
hemisphere compared
to contralateral
hemisphere)

MEP latency "
MEP amplitude ;

-Preoperative brain mapping
-Seed regions for function-based tractography
-Preoperative risk stratification
-Postoperative transcallosal disinhibition
-Limited diagnostic utility

-Edema
-Patient cooperation

Functional
neurological
disorders
(paretic
disorders)

RMT, SICI, ICF ⟷
RMT, SICI "
MEP duration with
voluntary contraction
⟷
MEP amplitude with
movement imagination
;

-Change in MEP amplitude with movement imagination
-Elemental measures in functional dystonia are similar
to other types of dystonia
-Limited clinical utility

Dystonic
functional
neurological
disorders

SICI ;
LICI ;
CSP duration ;
Forearm reciprocal
inhibition ;
Cutaneous silent period
"

-Limited clinical utility in differentiating functional from
organic dystonia

Neurophysiological measures in functional dystonia are
similar to other types of dystonia.

APB: Abductor pollicis brevis, CBI: Cerebellar inhibition of the motor cortex, CMCT: Central motor conduction time, CSP: Cortical silent period, GABA: Gamma-aminobutyric
acid, LBD: Lewy body disease, IHI: Interhemispheric inhibition, I/O curve: Input-output curve, ISP: Ipsilateral silent period, LICI: Long-interval intracortical inhibition, MEP:
Motor evoked potential, MSA: Multiple system atrophy, PPMS: Primary progressive multiple sclerosis, PSP: Progressive supranuclear palsy, RMT: Resting motor threshold, PT
phosphene threshold; NSAID (nonsteroidal anti-inflammatory drugs): RRMS: Relapsing-remitting multiple sclerosis, SAI: Short latency afferent inhibition, SCI: Spinal cord
injury, SICF: Short-interval intracortical facilitation, SICI: Short-interval intracortical inhibition, SPMS: Secondary progressive multiple sclerosis, TST: Triple-stimulation
technique. ⟷, no change or normal; ;, reduced; ", increased. *, The MEP amplitude, expressed as a percentage of the compound muscle action potential response (MEP/
CMAP), is increased in strong limbs without marked UMN signs, and also in the early stages of ALS. In most ALS patients, the MEP amplitude patients is decreased. It should be
stressed that a Delphi consensus process was not possible.
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Williamson and Cleveland, 1999), while others have suggested that
upper and lower motor neuron degeneration occur independently
and in a stochastic manner [independent degeneration hypothesis]
(Ravits et al., 2007). Additionally, identification of upper and lower
motor neuron dysfunction is critical for ALS diagnosis (Shefner
et al., 2020). Transcranial magnetic stimulation has provided vital
insights in the understanding of ALS pathogenesis and has emerged
as an important diagnostic technique. Early reports described
hyperexcitability of motor cortex with lower-than-normal motor
threshold, in particular recruiting the same motor units contribut-
ing to spontaneous fasciculations (Caramia et al., 1991).

Paired-pulse TMS studies have consistently identified cortical
hyperexcitability as a pathogenic mechanism in ALS (Fig. 1), medi-
ated by a combination of reduced cortical inhibition and increased
cortical facilitation (Vucic et al., 2018). Reduction or absence of SICI
has been identified as an early and intrinsic feature in ALS (Blair
et al., 2010, Hanajima et al., 1996, Sommer et al., 1999, Stefan
et al., 2001, Tankisi et al., 2022, Vucic and Kiernan, 2006, Vucic
and Kiernan, 2008, Yokota et al., 1996, Zanette et al., 2002b,
Ziemann et al., 1997b), correlating with peripheral neurodegener-
ation (Vucic and Kiernan, 2006) and preceding the development of
LMN dysfunction (Menon et al., 2015). Reduction of SICI is an
adverse prognostic biomarker in ALS (Shibuya et al., 2016b), is
associated with disease evolution (Dharmadasa et al., 2020,
Menon et al., 2017, Shibuya et al., 2017) and development of clin-
ical features such as the split hand-phenomenon (Bae et al., 2014,
Menon et al., 2014). Additionally, SICI reduction is evident in clin-
ically pure lower motor neuron ALS phenotypes, including flail arm
and leg variants of ALS (Menon et al., 2016, Vucic and Kiernan,
2007), where it is an adverse prognostic biomarker. It has been
argued that the reduction in SICI may represent a compensatory
147
mechanisms in response to peripheral neurodegeneration
(Zanette et al., 2002b), although the findings of normal cortical
excitability in ALS mimicking disorders (Menon et al., 2015,
Vucic et al., 2011b, Vucic and Kiernan, 2008, Vucic et al., 2010),
along with partial and transient normalization of SICI with the
anti-glutaminergic agent riluzole (Geevasinga N. et al., 2016a,
Vucic et al., 2013a), argues against a compensatory mechanism
in ALS. Dysfunction or degeneration of GABAergic interneuronal
circuits, acting via GABAA, was postulated to mediate the reduction
of SICI in ALS (Clark et al., 2021, Nihei et al., 1993, Zhang et al.,
2016).

Increased activity of cortical facilitatory circuits also contribute
to development of cortical hyperexcitability and ALS pathogenesis.
Short interval intracortical facilitation, a biomarker of cortical exci-
tatory circuit function (Di Lazzaro et al., 1999c, Rusu et al., 2014,
Van den Bos et al., 2018), is increased in ALS and accompanied
by reduction in SICI (van den Bos et al., 2018). Overactivity of facil-
itatory circuits correlated with a greater degree of functional dis-
ability and development of UMN signs.

A comparable increase in cortical hyperexcitability has also
been reported in familial ALS cohorts, including phenotypes linked
to mutations in superoxide dismutase-1 (Vucic et al., 2008), fused
in sarcoma (Williams et al., 2013) and c9orf72 genes (Geevasinga
Nimeshan et al., 2015). Significant correlations between cortical
hyperexcitability and LMN dysfunction has been established
(Geevasinga Nimeshan et al., 2015, Vucic and Kiernan, 2010), with
asymptomatic mutation carriers exhibiting normal cortical func-
tion (Geevasinga Nimeshan et al., 2015, Vucic et al., 2008). As with
sporadic ALS cohorts, cortical hyperexcitability precedes the clini-
cal development of familial ALS by months (Vucic et al., 2008). The
findings from familial ALS cohorts have supported the notion that
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ALS is a multistep process (Al-Chalabi et al., 2014, Vucic et al.,
2020, Vucic et al., 2019), with cortical hyperexcitability being an
important pathogenic step.

Reduction of LICI has been previously reported in ALS (Zanette
et al., 2002a, 2002b). The reduction in LICI was accompanied by
SICI reduction and correlated with greater disease severity and
UMN dysfunction. Similarly, reduction of transcallosal inhibition
(SIHI and LIHI) has been reported in ALS and correlated with a fas-
ter rate of disease progression and greater degree of muscle weak-
ness (van den Bos et al., 2021). Degeneration of long-latency
inhibitory circuits, acting via GBABB receptors (Ziemann et al.,
2015), was postulated to underlie these abnormalities in ALS.

Single-pulse TMS has provided additional evidence for the
pathogenic importance of cortical hyperexcitability in ALS (van
den Bos et al., 2019, Vucic et al., 2018). The cortical silent period
was shown to be consistently reduced in ALS (Geevasinga
Nimeshan et al., 2015, Geevasinga N. et al., 2015, Menon et al.,
2016, Mills, 2003, Triggs et al., 1999, Vucic and Kiernan, 2006,
Vucic and Kiernan, 2007, 2008, Zanette et al., 2002b). The reduc-
tion in CSP duration appears more prominent in early disease
stages and is specific for ALS compared to other neuromuscular
diseases (Menon et al., 2015, Vucic et al., 2011b, Vucic and
Kiernan, 2008, Vucic et al., 2010). Moreover, reduction of RMTs
has been reported as an early feature of ALS (Eisen and Weber,
2001, Mills and Nithi, 1997a) and associated with profuse fascicu-
lations, preserved muscle bulk and hyperreflexia. Resting motor
threshold increases with disease progression, potentially reflecting
underlying UMN degeneration (Mills and Nithi, 1997a). The reduc-
tion in RMT is not an invariable finding, with some studies report-
ing a normal (Menon et al., 2017, Mills and Nithi, 1997a, Vucic and
Kiernan, 2006, Zanette et al., 2002b), or even increased RMT
(Berardelli et al., 1991, Eisen et al., 1990, Miscio et al., 1999,
Triggs et al., 1999, Urban et al., 2001), reflecting clinical hetero-
geneity of ALS. Of relevance, TMS studies using neuronavigation
have reported an increase in RMT, with a reduction in the mean
motor cortical map area which could be used as a biomarker of
upper motor neuron dysfunction (Chervyakov et al., 2015).

An increase in MEP amplitude has also been reported as an early
feature of ALS and correlating with LMN dysfunction (Menon et al.,
2015, Menon et al., 2014, Vucic and Kiernan, 2006, Vucic and
Kiernan, 2007). The increase in MEP amplitude is likely to reflect
enhanced corticomotoneuronal glutamatergic activity and pro-
vides further support for the pathogenic importance of cortical
hyperexcitability in ALS.

The diagnosis of ALS relies on identifying concomitant upper
and lower motor neuron signs in one or more body regions, with
evidence of rapid disease progression (Shefner et al., 2020). Given
the absence of a pathognomonic test, clinically based and consen-
sus driven diagnostic criteria have been developed for ALS (Brooks,
1994, Brooks et al., 2000, de Carvalho et al., 2008, Shefner et al.,
2020). Limitations in eliciting UMN signs in ALS, in part due to
superimposed LMN dysfunction, has been well documented
(Swash, 2012), and impacts on the sensitivity of the ALS diagnostic
criteria (Costa et al., 2012, Geevasinga Nimeshan et al., 2016,
Geevasinga N. et al., 2016b, Higashihara et al., 2012, Turner et al.,
2009).

Threshold tracking TMS has proven to be a robust and objective
biomarker of UMN dysfunction in ALS (Menon et al., 2015, Vucic
et al., 2011b). Specifically, the presence of cortical dysfunction, as
heralded by reduction of SICI or motor cortex inexcitability, reli-
ably differentiates ALS from neuromuscular mimicking disorders,
hastening the diagnosis of ALS by � 8 months when compared to
clinical criteria (Vucic et al., 2011b). Importantly, identification of
cortical dysfunction enhances the diagnostic utility of the Awaji
criteria by 34% irrespective of site of onset or disease stage
(Menon et al., 2015). Additionally, sub-clinical identification of
148
UMN dysfunction has further aided the diagnosis of ALS (Menon
et al., 2016, Vucic and Kiernan, 2007). Separately, prolonged CMCT
has also been reported as a potential diagnostic biomarker of UMN
dysfunction (Eisen et al., 1990, Mills, 2003, Tokimura et al., 2020),
although the sensitivity appears to be poor (Menon et al., 2015).
While the main limitation of threshold tracking TMS was broader
availability, the recent commercialization of the technique will
likely lead to translation of threshold tracking TMS into clinical
practice and therapeutic trial setting.

The PSTH technique has also disclosed abnormalities in ALS,
characterised by increased dispersion and/or desynchronization
of the PP (Kohara et al., 1996b, Mills, 1995, Nakajima et al.,
1997). Specifically, small amplitude, delayed and desynchronized
PPs, along with longer excitatory postsynaptic potential (EPSP) rise
times of reduced amplitude, have been reported in ALS (Awiszus
and Feistner, 1993, Eisen et al., 1996, Mills, 1995). Degeneration
of fast-conducting with relative preservation of slow conducting
motor pathways probably account for these findings (Eisen et al.,
1996). An increase in EPSP amplitude was reported in a proportion
of ALS patients (Eisen et al., 1996), potentially reflecting glutamate
excitotoxicity. A limited number of longitudinal studies in ALS
have suggested progression of PP abnormalities, characterised by
increasing desynchronization (double peaks) and delay of PP
(Weber et al., 2000). The second component of the PP probably
reflect activation of higher threshold slow-conducting pathways,
that could be explained by development of cortical
hyperexcitability.

Abnormalities of PSTH have also been reported in multiple scle-
rosis and stroke (Boniface et al., 1991, Kohara et al., 1996a),
although the presence of double PPs are typically evident in ALS
(Weber and Eisen, 2000, Weber et al., 2009), suggesting potential
diagnostic utility. While PSTH is a sensitive method for detecting
UMN dysfunction (Weber and Eisen, 1999, 2000), the technique
is complex, not readily applicable in clinical practice and sensitiv-
ity to detect subclinical UMN dysfunction remains to be
determined.

3.1.2. Dementia
3.1.2.1. Alzheimer’s disease (AD) is the leading cause of dementia

(Gustavsson et al., 2022, Scheltens et al., 2021), clinically, charac-
terized by amnestic cognitive impairment and dysfunction in other
cognitive domains that interfere with activities of daily living
(Knopman et al., 2021). Pathologically, AD is characterized by the
accumulation of amyloid-b plaques and tau neurofibrillary tangles,
and macroscopically by atrophy beginning in the entorhinal cortex,
which spreads to the limbic and paralimbic regions, and ultimately
neocortical associative areas (Frisoni et al., 2010). Although the
neocortex becomes affected in more advanced stages of the dis-
ease, deficits in functional connectivity have been observed in early
disease stages (Brier et al., 2012; Dennis and Thompson, 2014; Fer-
reri et al., 2003). Thus, TMS may represent a useful tool for in vivo
functional evaluation of cortical networks in AD [see review (Di
Lazzaro et al., 2021)].

Motor cortex excitability is increased in AD as revealed by
reduction of RMT (Alagona et al., 2004, Brem et al., 2013, de
Carvalho et al., 1997, Di Lazzaro et al., 2004, Di Lazzaro et al.,
2008, Di Lorenzo et al., 2013, Ferreri et al., 2011, Hoeppner et al.,
2012, Inghilleri et al., 2006, Issac et al., 2013, Khedr et al., 2011,
Martorana et al., 2009, Martorana et al., 2008, Motta et al., 2018,
Schirinzi et al., 2018, Terranova et al., 2013, Trebbastoni et al.,
2012, Wang et al., 2016) and AMT (Di Lazzaro et al., 2007b,
Khedr et al., 2011, Pepin et al., 1999, Wegrzyn et al., 2013).

The increase in motor cortex excitability reflects functional
changes in cortical neurotransmission involving the intricate rela-
tionships between GABAergic, glutamatergic, and cholinergic neu-
rotransmission in M1 and resulting in an imbalance between
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excitatory and inhibitory activities (Di Lazzaro et al., 2004). Given
that TMS produces high frequency repetitive discharge of pyrami-
dal neurons and non-NMDA receptors are more involved in high
frequency discharge, it has been suggested that enhanced
excitability in AD represents enhanced neurotransmission via the
non-NMDA receptors (Brem et al., 2013, Di Lazzaro et al., 2004).

Synaptic GABAA activity, as reflected by SICI, was reported to be
unchanged in AD by some (Alberici et al., 2008, Benussi et al.,
2018a, Benussi et al., 2018b, Benussi et al., 2017, Di Lazzaro
et al., 2004, Di Lazzaro et al., 2002c, Di Lazzaro et al., 2008, Di
Lazzaro et al., 2007b, Di Lorenzo et al., 2013, Martorana et al.,
2013, Motta et al., 2018, Nardone et al., 2008, Olazarán et al.,
2013, Pepin et al., 1999), although a reduction in SICI has also been
reported (Hoeppner et al., 2012, Liepert et al., 2001, Martorana
et al., 2008, Nardone et al., 2006, Olazarán et al., 2010,
Pierantozzi et al., 2004b). A recent meta-analysis reported that SICI
is reduced only in AD patients with longer symptom duration
(Mimura et al., 2021), and it can be speculated that SICI impair-
ment manifests only in advanced stages of AD, and that the discor-
dant findings may be related to the varied patient characteristics
across different studies.

Additionally, GABAB inhibitory neurotransmission as evaluated
by CSP duration, was reported to be unchanged in most studies
(Alagona et al., 2004, Di Lazzaro et al., 2002c, Inghilleri et al.,
2006, Issac et al., 2013, Liepert et al., 2001, Trebbastoni et al.,
2012). In contrast, reduction of LICI, another measure of GABAB

neurotransmission, has been reported in a few studies (Benussi
et al., 2017, Benussi et al., 2020c, Brem et al., 2013). Further studies
are needed to confirm this finding. Separately, intracortical
excitability as probed by ICF, tends to be reduced in AD (Alberici
et al., 2008, Benussi et al., 2018b, Benussi et al., 2017, Benussi
et al., 2020c, Di Lorenzo et al., 2013, Liepert et al., 2001,
Martorana et al., 2013, Motta et al., 2018, Nardone et al., 2008,
Nardone et al., 2006, Olazarán et al., 2010). Cholinergic-mediated
inhibition evaluated with SAI was significantly decreased in AD
(Bella et al., 2016, Benussi et al., 2021a, Benussi et al., 2022,
Benussi et al., 2018b, Benussi et al., 2017, Benussi et al., 2020c,
Di Lorenzo et al., 2013, Di Lorenzo et al., 2019, Hwang et al.,
2018, Koch et al., 2016, Motta et al., 2018, Nardone et al., 2014,
Schirinzi et al., 2018, Yildiz et al., 2018).

Treatment of AD patients with acetylcholinesterase inhibitors
(Di Lazzaro et al., 2004), L-dopa (Martorana et al., 2009, Nardone
et al., 2014) and dopamine agonists (Koch et al., 2014a,
Martorana et al., 2013), was reported to normalize SAI. Interhemi-
spheric connectivity, as assessed by interhemispheric silent period
(iSP), was abnormal in AD patients as disclosed by prolonged laten-
cies (Hoeppner et al., 2012, Khedr et al., 2011, Wegrzyn et al.,
2013). Parietal-to-motor (PPC-M1) connectivity was also shown
to be impaired in AD (Bonnì et al., 2013).

TMS related techniques have been successfully applied in the
differential diagnosis of AD from other neurodegenerative disor-
ders [see review (Di Lazzaro et al., 2021)]. Considering that the
abnormality of single TMS measures, such as motor threshold, is
not specific to AD as it has been observed in different neurodegen-
erative disorders such as ALS (Vucic et al., 2013b), researchers have
investigated whether combined measures evaluating multiple
parameters and thus multiple neurotransmitter circuits may be
of greater diagnostic utility. In an early multicenter study [175 par-
ticipants], using a complex parameter combining SICI, ICF and SAI
measures, it was shown that TMS can differentiate AD from fron-
totemporal dementia (FTD) and healthy controls with a high sensi-
tivity and specificity (Benussi et al., 2017). These initial findings
were confirmed in larger study (N = 694) implementing a machine
learning algorithm approach based on TMS measures (SICI, ICF, SAI
and LICI), that accurately distinguished AD form other neurodegen-
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erative disorders with a high diagnostic accuracy ranging from 89
to 92% (Benussi et al., 2020c).

3.1.2.2. Frontotemporal dementia (FTD) is one of the most fre-
quent neurodegenerative dementing disorders after AD and is
characterized by behavioral abnormalities, language impairment,
and deficits of executive functions (The Lund and Manchester
Groups, 1994). Three different variants have been proposed
according to the clinical presentation: (i) behavioral variant of
FTD (bvFTD) (Rascovsky et al., 2011), (ii) agrammatic variant of pri-
mary progressive aphasia (avPPA) and (iii) semantic variant of PPA
(svPPA) (Gorno-Tempini et al., 2011). In approximately 10–30%
cases, a genetic mutation may be found in the microtubule associ-
ated protein tau (MAPT) or granulin (GRN) gene, or expansion on
chromosome 9 open reading frame 72 (C9orf72) (Benussi et al.,
2021c).

Several motor circuit abnormalities have been reported in FTD,
including reduction in M1 excitability or absent MEPs, increase in
MEP latencies and CMCT (Bae et al., 2016, Burrell et al., 2011,
Chandra et al., 2016, Di Lazzaro et al., 2006a, Wang et al., 2016).
SICI and ICF are significantly reduced in FTD (Bae et al., 2016,
Benussi et al., 2018a, Benussi et al., 2021a, Benussi et al., 2020a,
Benussi et al., 2020b, Benussi et al., 2020c, Benussi et al., 2020d,
Burrell et al., 2011, Di Lazzaro et al., 2006a, Padovani et al., 2018,
Palese et al., 2020), mirroring the GABAergic and glutamatergic
abnormalities which are characteristic of FTLD pathology
(Benussi et al., 2019a, Murley and Rowe, 2018). Normal level of
SAI was demonstrated by many studies (Benussi et al., 2018a,
Benussi et al., 2016, Benussi et al., 2020b, Benussi et al., 2017,
Benussi et al., 2019c, Di Lazzaro et al., 2006a, Padovani et al.,
2019), confirming that cholinergic deficits are not evident in FTD.

3.1.2.3. Mild cognitive impairment (MCI) is an intermediate con-
dition between normal aging and dementia. Approximately 50% of
patients diagnosed with mild cognitive impairment progress to
dementia within 3 to 5 years of diagnosis (Albert et al., 2011,
Petersen et al., 2014), underscoring the importance of effective
diagnostic biomarkers at a potentially early stage of the disease
(Rossini et al., 2022). Of relevance, 70–80% of patients with amnes-
tic mild cognitive impairment have associated AD pathological
changes, while 20–30% have other neuropathological processes,
including frontotemporal lobar degeneration, Lewy body disease
or vascular changes (Petersen and Negash, 2008). Clinical and
pathological heterogeneity in mild cognitive impairment could
explain the contrasting TMS findings.

In some studies, a non-significant increase in M1 excitability
was reported, like that reported in AD (Benussi et al., 2021b,
Nardone et al., 2012, Olazarán et al., 2010, Padovani et al., 2018,
Sakuma et al., 2007, Tsutsumi et al., 2012). In contrast, no signifi-
cant differences in SICI and ICF were evident in mild cognitive
impairment (Benussi et al., 2021b, Nardone et al., 2012, Olazarán
et al., 2010, Padovani et al., 2018, Tsutsumi et al., 2012). Most stud-
ies have reported a decrease in SAI (Benussi et al., 2017, Benussi
et al., 2021b, Benussi et al., 2020c, Padovani et al., 2018, Peter
et al., 2016, Tsutsumi et al., 2012), with one study reporting reduc-
tion in amnestic mild cognitive impairment patients only (Nardone
et al., 2012), while another study did not show any abnormalities
(Sakuma et al., 2007). LTP-like plasticity was found to be unaltered
in mild cognitive impairment (Lahr et al., 2016).

A single center study reported high diagnostic accuracy (�90%)
of TMS in diagnosing mild cognitive impairment related to AD
when compared to non-AD related mild cognitive impairment
(Padovani et al., 2018). Specifically, a novel index encompassing
SICI, ICF and SAI ([SICI-ICF]/SAI) differentiated AD from non-AD
mild cognitive impairment with a specificity of 87.9% and sensitiv-
ity of 94.4%. The utility of the novel TMS index was comparable to
established biomarkers of amyloidosis (Padovani et al., 2019). A
recent multicenter study, utilizing a machine learning algorithm
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approach re-affirmed a high accuracy [72 to 86%], precision [72–
90%] and recall [75–98%] of TMS (SICI, ICF, SAI and LICI measures)
in classifying different mild cognitive impairment phenotypes
(Benussi et al., 2021b).

3.2. Movement disorders

Over the years, there has been increased interest in investigat-
ing changes of motor cortex in patients with movement disorders,
particularly Parkinson’s disease (PD) and dystonia with TMS stud-
ies. Motor cortex has also been investigated in other types of
movement disorders, including atypical parkinsonism, tic, and
Tourette’s syndrome (TS), as well as Huntington’s disease
(Bologna et al., 2022).

3.2.1. Parkinson’s disease (PD): Parkinson’s disease is a common
movement disorder affecting 1% of the population aged > 65 years,
clinically presenting with rest tremor, bradykinesia, and rigidity
(Bloem et al., 2021). In PD patients, RMT and AMT were normal
in most studies (Chen and Rothwell, 2012), although some studies
reported a reduction of RMT (Tremblay and Tremblay, 2002, Valls-
Sole et al., 1994), more prominent on the side exhibiting greater
rigidity (Cantello et al., 1991, Spagnolo et al., 2013). Increased
AMT may correlate with bradykinesia in PD patients, which could
be related to difficulties in volitional contraction (Ellaway et al.,
1995), although another study did not reveal the same findings
(Bologna et al., 2018). In fact, a recent study showed that PD
patients with tremor-dominant subtype had both RMT and AMT
reduction compared to controls and akinetic-rigid patients
(Khedr et al., 2021). The MEP amplitude and the IO curve steepness
were found to be increased at rest but reduced with muscle con-
traction in PD (Valls-Sole et al., 1994). The slope of the IO curve
correlated with disease stage and severity of bradykinesia
(Bologna et al., 2018, Valls-Sole et al., 1994). A compensatory
increase in cortical excitability in response to bradykinesia may
account for these TMS findings.

Reduced SICI (Ni et al., 2013, Ridding et al., 1995) and CSP dura-
tion (Cantello et al., 2002) have been reported in PD, indicated dys-
function of GABAergic circuits, although at least one paper
reported normal SICI in PD, albeit with anterior-posterior directed
currents (Hanajima et al., 2011). The degree of reduction of SICI
was similar across levodopa-naïve, non-dyskinetic and dyskinetic
patients (Ammann et al., 2020). Importantly, SICI was also reduced
on the less affected side, even in drug-naïve patients in whom the
less affected side was minimally symptomatic (Ammann et al.,
2020). With disease progression, there is a further reduction in SICI
(Kojovic et al., 2015). Normalization of SICI has been reported with
dopaminergic medications (Ni et al., 2013, Ridding et al., 1995) and
subthalamic nucleus deep brain stimulation (Cunic et al., 2002),
although others have not reported any modulating effects of
dopaminergic medications on SICI (Bologna et al., 2018, Lewis
and Byblow, 2002, MacKinnon et al., 2005). The discordant findings
may be related to heterogeneity of PD patients across different
studies. Reduced LICI at ISIs 100 to 150 ms was also reported in
PD patients at rest (Chu et al., 2009), although normal or increased
LICI have also been reported in PD (Sailer et al., 2003, Valzania
et al., 1997). Increased LICI (at ISIs 150–200 ms) with minimal
muscle contraction was also reported in PD (Berardelli et al.,
1996). The variable LICI findings could be related to different mea-
surement conditions such as conditioning stimulus intensity, ISI, or
target muscle status (rest or active). Of further relevance, a signif-
icant reduction of CSP duration has been reported in PD patients
that were in the ‘‘OFF” compared to ‘‘ON” state, although in both
states the CSP duration was not significantly different when com-
pared to healthy controls (Ridding et al., 1995). Consequently,
monitoring CSP duration could serve as a therapeutic biomarker
in PD.
150
Normal (Ridding et al., 1995) or reduced ICF (Bares et al., 2003)
has been reported in PD patients (Lefaucheur et al., 2004), while
SICF is increased and was associated with reduced SICI, suggesting
that SICF could partially account for decreased SICI (Ni et al., 2013).
The increase in SICF was observed in de novo PD patients (Shirota
et al., 2019) and is further enhanced in PD patients with dyskinesia
(Guerra et al., 2019). A triple-pulse protocol reported that in the
presence of SICI, SICF-1 was further facilitated in normal subjects
but not in PD patients, especially in patients with greater motor
impairment, and the effect may be normalized by levodopa
(Saravanamuttu et al., 2021). In another study, the combined effect
of SICI and SICF-1 (ISI 1.5 ms) was comparable between drug naïve
PD patients and healthy controls (Shirota et al., 2019). These find-
ings suggest that abnormal interactions between cortical circuits
may be a feature of PD, and the effects may depend on disease
stage.

The function of the corpus callosum is affected in PD patients.
Specifically, while LIHI was reduced in PD patients with mirror
movements, SIHI was normal (Li et al., 2007). Additionally, patients
with tremor-dominant subtype were shown to have shorter iSP
duration compared to akinetic-rigid patients, while iSP latency
tended to be longer in akinetic-rigid patients compared to healthy
controls (Khedr et al., 2021).

SAI was reported to be either normal or increased in PD patients
off dopaminergic medications (Nardone et al., 2005), but reduced
in those taking dopamine medications (Sailer et al., 2003). Stronger
SAI was associated with higher gait speed and longer step length in
patients receiving dopaminergic medications (Rochester et al.,
2012), with SAI partially explaining the variability of gait speed
(Rochester et al., 2012). Reduction of SAI was also evident in PD
patients prone to falling, even after adjusting for cognitive function
(Pelosin et al., 2016), suggesting a role for SAI as a predictive bio-
marker for gait, posture, and balance impairment. Separately, cog-
nitive impairment in PD was also associated with reduced SAI
(Celebi et al., 2012, Nardone et al., 2013a, Yarnall et al., 2013).
Reduction of LAI was also reported in PD and was independent of
medication states (Sailer et al., 2003). Impairment of the
cerebellar-M1 connections, as reflected by reduced CBI, was
reported in PD patients off medications which normalized with
dopaminergic treatment (Ni et al., 2010, Shirota et al., 2010),
although others have reported CBI reduction irrespective of treat-
ment status (Carrillo et al., 2013).

3.2.2. Atypical Parkinsonism: Atypical Parkinsonian syndromes
includes multiple systemic atrophy (MSA), progressive supranu-
clear palsy (PSP) and diffuse Lewy body dementia. Atypical parkin-
sonism may be with similar clinical presentation to Parkinson’s
disease, but some electrophysiological responses are different
between each disorder. Several subtypes of PSP have been
described and most studies focused on the typical Richardson sub-
type. PSP patients exhibit normal CMCT in early disease (Fisicaro
et al., 2020), with evidence of CMCT prolongation with disease pro-
gression that correlates with disease duration (Abbruzzese et al.,
1991, Morita et al., 2008). Moreover, PSP patients exhibit reduced
SICI and steeper IO gradients at rest (Conte et al., 2012), as well
as normal ICF (Bologna et al., 2017, Kuhn et al., 2004). Reduced
iSP duration, implying transcallosal dysfunction, has been reported
in the Richardson but not in the Parkinson subtype of PSP
(Wittstock et al., 2013). SAI is unchanged in PSP, irrespective of
cognitive function, suggesting that cognitive dysfunction evident
in PSP is unrelated to deficits in cholinergic pathways (Nardone
et al., 2005). Additionally, decreased CBI indicates involvement of
the dentate-thalamo-cortical pathway in PSP (Brusa et al., 2014,
Shirota et al., 2010), which is compatible with pathological findings
showing dentate nucleus and superior cerebellar peduncle degen-
eration in PSP (Kanazawa et al., 2009).



S. Vucic, K.-H. Stanley Chen, M.C. Kiernan et al. Clinical Neurophysiology 150 (2023) 131–175
Several studies showed prolonged CMCT in MSA (Eusebio et al.,
2007, Morita et al., 2008), which may be related to UMN signs.
Paired-pulse studies showed reduced SICI but normal ICF
(Marchese et al., 2000, Suppa et al., 2014). Normal SICF at ISI of
3 ms was reported in both MSA parkinsonism and cerebellar
(MSA-C) subtypes (Suppa et al., 2014), suggesting diagnostic utility
in differentiating MSA form PD (Ni et al., 2013, Shirota et al., 2019).
Prolonged contralateral and ipsilateral CSP durations were
reported in MSA (Kuhn et al., 2004), although others found no sig-
nificant changes (Wolters et al., 2004). Reduced SAI, elicited with
digit stimulation, was reported in MSA patients, implying abnor-
malities in central cholinergic or GABAergic pathways (Mascia
et al., 2005). SAI evoked by median nerve stimulation was reduced
in MSA-C with cognitive dysfunction, as was CBI which correlated
with ataxia severity (Shirota et al., 2022).

Diffuse Lewy body dementia (DLBD) manifests as parkinsonism
and dementia, frequently accompanied by cognitive fluctuation,
executive or visuospatial dysfunction and rapid eye movement
(REM) sleep behavioral disorder (McKeith et al., 2017). In DLBD,
reduction of SAI has been reported (Di Lazzaro et al., 2007b,
Marra et al., 2012), and a greater SAI reduction was associated with
visual hallucinations (Marra et al., 2012), implying central cholin-
ergic deficits (Marra et al., 2012, Tiraboschi et al., 2000). More
recent studies have confirmed previous findings of reduced SAI in
larger cohorts, at ISIs of N20 + 0 ms and N20 + 4 ms, which may be
useful to distinguish atypical parkinsonian syndrome from DLBD
(Benussi et al., 2018b, Benussi et al., 2020c). The reduction in SAI,
however, is not an invariable finding (Nardone et al., 2006), and
larger studies with pathological confirmation used as a reference
standard for DLBD diagnosis may be required to confirm a poten-
tial diagnostic utility of SAI in DLBD.

3.2.3. Huntington’s disease: In Huntington’s disease (HD), discor-
dant single and paired pulse TMS findings have been reported.
While some studies disclosed increased RMT (Schippling et al.,
2009), others have reported normal RMT values (Kamble et al.,
2018). Similarly, CSP duration was reported to be either normal
or reduced (Schippling et al., 2009, Tegenthoff et al., 1996). While
the discordant findings were related to phenotypic heterogeneity
and differences in methodology (Berardelli et al., 1999, Modugno
et al., 2001, Wassermann et al., 2008), CSP shortening correlated
with functional decline in HD (Lefaucheur et al., 2006b). Addition-
ally, while some studies reported normal SICI (Hanajima et al.,
1999, Priori et al., 2000), other have documented reduced SICI
(Abbruzzese et al., 1997, Kamble et al., 2018) and increased ICF
(Abbruzzese et al., 1997, Nardone et al., 2007), suggesting abnor-
malities of intracortical glutamatergic pathways. Reduced SAI
was reported in HD gene carriers and early-stage HD patients, sug-
gesting impairment of sensorimotor integration in the pre-
symptomatic or early stages of disease. Greater reduction in SAI
correlated with an earlier age of disease onset and more severe
phenotype (Schippling et al., 2009).

3.2.4. Dystonia: Dystonia is characterized by involuntary muscle
contraction that elicits abnormal posture or irregular repetitive
movements. Agonist and antagonist muscle co-contraction is typi-
cally recorded. TMS studies in dystonia have revealed normal RMT
and IO curves (Kojovic et al., 2013, Quartarone et al., 2009), while
most have reported reduced SICI, CSP duration and absence of ICF
(Espay et al., 2006, Ridding et al., 1995). Reduced SICI may be evi-
dent in idiopathic dystonia (Gilio et al., 2003), dopa-responsive
dystonia (Huang et al., 2006) or asymptomatic carriers of the
dystonia-1 (DYT-1) gene mutations (Edwards et al., 2003), suggest-
ing dysfunction of cortical inhibitory circuits. In contrast, some
studies have reported increased ICF and normal SICI in cervical
(Amadio et al., 2014, Ganos et al., 2018a) and focal hand dystonia
(Rona et al., 1998) as well as Segawa disease (DYT5) (Hanajima
et al., 2007). Differences in dystonic location does not account for
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TMS differences since reduced SICI was also evident in cervical
dystonia when assessed from the unaffected limb (Kanovský
et al., 2003). Botulinum toxin treatment could potentially account
for the discordant findings (Amadio et al., 2014), since botulinum
toxin may restore abnormal SICI one month after injection (Gilio
et al., 2000). Methodological differences and individual variability
could also contribute to discordant findings (Hanajima et al., 2008).

Separately, reduced resting LICI may be observed in the affected
hemisphere in writer’s cramp (Espay et al., 2006), whereas active
LICI may be normal (Espay et al., 2006), decreased (Chen R et al.,
1997) or increased in dystonia (Rona et al., 1998). CSP duration
may be reduced (Chen R et al., 1997), although the results seem
task dependent with CSP duration reduced during pincer grasp
but normal when performing full strength grip (Stinear and
Byblow, 2005, Tinazzi et al., 2005). Prolonged iSP was reported in
writer’s cramp, reflecting increased activation of transcallosal pro-
jections from the stimulated motor cortex to inhibitory interneu-
rons in the non-stimulated contralateral motor cortex (Niehaus
et al., 2001).

Assessment of transcallosal inhibitory connections have dis-
closed variable findings, depending on presence of mirror move-
ments or whether dystonia is sporadic or familial. Reduced SIHI
and LIHI in the affected but not unaffected hand was reported in
focal hand dystonia (Nelson et al., 2010), being most prominent
at beginning of movement and associated with mirror dystonia
(Beck et al., 2009). Others have reported a reduction of SIHI and
LIHI in both the affected and unaffected hands in writer’s cramp
patients with mirror dystonia, and a greater decrease in IHI was
evident with more severe dystonia (Sattler et al., 2014). In musi-
cian’s dystonia, IHI impairment may be an endophenotypic bio-
marker as its reduced in asymptomatic first-degree family
members (Bäumer et al., 2016). Surround inhibition is considered
a cortical physiological function that suppresses an area surround-
ing activated neural circuits to enable recruitment of a specific
neuronal population. Dystonia patients exhibit decreased surround
inhibition (Beck et al., 2008, Sohn and Hallett, 2004).

Sensory-motor integration appears to be abnormal in dystonia.
LAI, generated by mixed nerve stimulation at ISI of 200 ms,
reversed to facilitation in focal hand dystonia but not in cervical
dystonia patients (Abbruzzese et al., 2001), and was most promi-
nent during initiation of a phasic movement. Consequently,
decreased LAI cannot explain involuntary contractions or reduced
surround inhibition in dystonia patients (Pirio Richardson et al.,
2009). Discordant findings have been reported for SAI in dystonia,
which represent sensory-motor integration mediated by choliner-
gic and GABAergic pathways. With digit stimulation, reduced SAI
with topographical suppression has been reported in focal hand
dystonia (McDonnell et al., 2007), and only in tested muscle
located near the digit that was stimulated. When SAI was tested
with median nerve stimulation, facilitation was observed at ISIs
of N20 + 10 ms (Kessler et al., 2005), but was normal at other ISIs
(25 ms) (Quartarone et al., 2009).

Reduced CBI was also reported in focal hand dystonia (Brighina
et al., 2009b), suggesting a pathophysiological role for cerebello-
thalamo-basal ganglia pathway (Kaji et al., 2018). In contrast, CBI
was reported to be normal in cervical dystonia (Koch et al.,
2014b), suggesting differences in pathophysiology across the dys-
tonic phenotypes. Additionally, the suppression of SICI and
enhancement of ICF with cerebellar stimulation evident in healthy
controls was absent in dystonia patients (Brighina et al., 2009b).
Additionally, CBI reduction was documented in focal upper limb
dystonia (Brighina et al., 2009b), but not cervical dystonia
(Sondergaard et al., 2021b), although the severity of cervical dysto-
nia significantly correlated with CBI reduction (at ISI 5 ms) imply-
ing a pathophysiological role for cerebello-thalamo-cortical tract
dysfunction in focal dystonias. It should be stressed that assess-
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ment of cortical inhibition cannot distinguish organic from func-
tional dystonia’s since CSP duration, SICI and LICI are all reduced
in the latter (Avanzino et al., 2008, Espay et al., 2006). SICI and
CSP duration in fixed dystonia’s, considered a subtype of functional
dystonia, were also reduced.

3.2.5. Tics and Tourette’s syndrome: Patients with tics and TS
have normal RMT and IO curves (Heise et al., 2010, Orth et al.,
2008). In Tourette’s syndrome, motor cortex excitability was
reduced in the period immediately preceding voluntary movement
and during tic suppression (Draper et al., 2015, Ganos et al., 2018b,
Jackson et al., 2013). Paired pulse TMS studies have demonstrated
SICI reduction in Tourette’s syndrome which correlates with motor
tic severity (Gilbert et al., 2004, Orth et al., 2008, Orth and
Rothwell, 2009, Ziemann et al., 1997a). CSP duration in Tourette’s
syndrome patients was significantly reduced compared to controls
(Ziemann et al., 1997a).

3.3. Myelopathy and spinal cord injuries

3.3.1. Cervical spondylitic myelopathy: In chronic spondylitic
myelopathy, the CMCT remains the most robust and commonly
utilized parameter for evaluating the damage to the corticospinal
tract due to spinal cord compression (Funaba et al., 2015, Lo,
2007, 2008). By evaluating CMCT for both proximal and distal
upper limb muscles it is also possible to identify more precisely
the level of cord dysfunction (Di Lazzaro et al., 1992). CMCT may
be abnormal even in the absence of pyramidal signs (Lanza et al.,
2020), and is particularly sensitive when MEPs were obtained from
the abductor pollicis brevis (APB) muscle, at least for C6-C7
myelopathy (Imajo et al., 2018, Shibuya et al., 2014). The prolonga-
tion in CMCT has also been correlated with the ratio of flattening
and anteroposterior diameter parameters visualized with MRI
(Rikita et al., 2017) and kinematic CT myelography (Funaba et al.,
2021), as well as long-term functional outcome after cervical spine
decompression (Deftereos et al., 2015, Mazur et al., 2014,
Nakanishi et al., 2014, Takahashi et al., 2008). Abnormal CMCT
was also documented in other myelopathies, including those
resulting from high voltage electrical burns, even if MRI was unre-
markable (Seo et al., 2011), and mucopolysaccharidosis (Cantone
et al., 2019).

Chronic spondylitic myelopathy exhibits similar features as
chronic progressive spinal cord injury and may share similar TMS
findings. Specifically, motor cortex mapping with TMS showed
dynamic changes after chronic spondylitic myelopathy surgery
(Green et al., 2015) and spinal cord injury (Tazoe and Perez,
2021). The findings pertaining to CSP duration have been more
variable, including an increase (Barry et al., 2013), reduction
(Shimizu et al., 2000) or absence of change (Nardone et al., 2013b).

3.3.2. Spinal cord injuries: In spinal cord injuries, TMS assesses
the functional integrity of the corticospinal tracts and motor con-
trol mechanisms. While no single TMS parameter may be consid-
ered a validated biomarker here, it may provide additional
information on severity, prognosis and therapy. TMS provides
information in four domains: assessment of residual function, cor-
tical excitability changes, longitudinal follow up, and rehabilita-
tion. TMS provides a useful method of assessing abdominal
muscle motor preservation in spinal cord injury (Bjerkefors et al.,
2015), as demonstrated in residual innervation of pelvic floor mus-
cles by indirect cortical descending pathways (Williams et al.,
2020). Additionally, TMS studies have disclosed preservation of
crossed corticospinal facilitation in truncal muscles after an incom-
plete spinal cord injuries, as reflected in truncal control during
functional arm movements (Chiou and Strutton, 2020). Another
study suggested that paired corticospinal-motoneuronal stimula-
tion may enhance spinal plasticity after spinal cord injury
(Bunday et al., 2018).
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Deafferentation due to acute spinal cord injuries can change the
state of large cortical networks within one hour, and these changes
play a critical role in the functional reorganization of central path-
ways (Nardone et al., 2013c). With chronic cervical spinal cord
injuries, individuals have lower MEP amplitudes and a tendency
toward higher TMS motor thresholds relative to healthy controls.
However, no significant difference in CSP duration was observed
(Sfreddo et al., 2021). A study on cortical stimulation had found
prolonged MEP latencies in all coil orientations in spinal cord inju-
ries compared to control subjects. However, the MEP latencies eli-
cited by posterior-anterior and anterior-posterior compared to
lateral-medial cortical stimulations were shorter in spinal cord
injuries, particularly for MEPs elicited by anterior-posterior cur-
rents (Jo et al., 2021). MEP amplitudes remained unchanged in
muscles at and within 5 segments below the cord injury during
70% of maximum voluntary contraction compared to rest. In mus-
cles beyond the 5 segments below spinal cord injuries, MEP ampli-
tudes were significantly higher (Bunday et al., 2013).

Paired pulse TMS studies have reported increased SICF in spinal
cord injuries patients with normal CMCT, while those with abnor-
mal CMCT showed lower SICF. The neural elements producing SICF
could have increased in activity after spinal cord injuries to
enhance activation of residual corticospinal tract pathways, com-
pensating for impairment of the motor cortex in generating appro-
priate voluntary movements (Nardone et al., 2015a, Nardone et al.,
2015b). Incomplete spinal cord injuries reduces SICI compared to
controls (Roy et al., 2011), suggesting an increase in cortical
excitability. In contrast, other studies have reported increased
AMTs and CSP duration with spinal cord injuries (Freund et al.,
2011), suggesting reduced cortical excitability. The discordant cor-
tical excitability findings in spinal cord injuries may be related to
small study cohorts and require further validation in larger sample
of subjects (Nardone et al., 2015b). More recent studies have sug-
gested that deficits in corticospinal transmission after incomplete
cervical spinal cord injuries extend to the preparatory phase of
upcoming movements (Federico and Perez, 2017).

Smaller MEP amplitudes and a shortening of reaction time to
startle have been reported in patients with incomplete spinal cord
injuries and spasticity, suggesting that imbalanced corticospinal
and reticulospinal tract contributions are more pronounced in par-
ticipants with chronic incomplete spinal cord injuries (Sangari and
Perez, 2019). Increased reticulospinal inputs to biceps but not tri-
ceps brachii, and loss of corticospinal drive to triceps brachii in tet-
raplegic spinal cord injuries patients likely represent
reorganization of descending motor control, thereby contributing
to asymmetrical recovery between elbow flexor and extensor mus-
cles after cervical spinal cord injuries I (Sangari and Perez, 2020).
Overall, lesion studies involving corticospinal and vestibulospinal
pathways, which makes differential contributions to impairment
of gait ability and balance, indicate that no single electrophysiolog-
ical or anatomical measure can provide an optimal prediction of
clinical gait and balance disability as an ideal biomarker in spinal
cord injuries (Barthélemy et al., 2015).

A long-term study of spinal cord injuries patients revealed a sig-
nificant decrease in motor cortical excitability acutely, involving
spinal segments below the lesion and sparing muscles rostral to
the lesion, with the inhibition persisting for up to 3 years (Kriz
et al., 2012). Another study reported an increase in MEP amplitude
over a 12-month follow-up period which was paralleled by a sig-
nificant improvement of motor and walking function (Petersen
et al., 2012). Rapid motor cortical reorganization was demon-
strated after spinal cord injuries which normalized at 24 months
post injury (Dias Leao et al., 2020, Fassett et al., 2018). Motor maps
areas are also increased when assessed at rest and decreased dur-
ing voluntary contraction, with reduction being greater in patients
with greater sensory deficits (Tazoe and Perez, 2021). These find-
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ings suggest that sensory input may further reshape abnormal
changes in motor cortical maps in humans with chronic spinal cord
injuries during voluntary contraction. Additionally, MEPs can be
recorded from bulbocavernosus and external anal sphincter mus-
cles with cortical and sacral nerve root stimulation, to assess
peripheral innervation and central motor control in sacral/puden-
dal territories and to demonstrate the presence of neurological dis-
order affecting the genito-urinary tracts (Opsomer et al., 1989) or
anorectal function (Lefaucheur, 2006).
3.4. Epilepsy

Cortical excitability appears to be increased in drug naïve epi-
lepsy patients, being most prominent in generalized epilepsy. For
generalized epilepsy, the majority of studies have reported lower
RMTs (de Goede et al., 2016), although the reduction was only sig-
nificant in specific epilepsy phenotypes including juvenile myoclo-
nic epilepsy (Badawy et al., 2013b, Cuypers et al., 2013).
Additionally, a meta-analysis reported a non-significant trend
towards lower RMTs for generalized epilepsy in general, with the
reduction being significant only in JME (Brigo et al., 2012). In con-
trast, others have reported increased RMT values, which was
attributed to activation of inter-ictal compensatory mechanisms
to prevent the spreading or recurrence of new seizures (Badawy
et al., 2009, Lee et al., 2015) or as a result of antiepileptic drugs
(AEDs) which block sodium channels (Rossini et al., 1994, Rossini
et al., 2015, Ziemann et al., 2015). In focal epilepsy, RMT was not
significantly different when compared to healthy controls (de
Goede et al., 2016). Separately, the MEP amplitudes were within
normal limits for both generalized and focal epilepsy phenotypes
(de Goede et al., 2016, Klimpe et al., 2009, Lee et al., 2015).

Prolonged CSP duration has been reported in generalized epi-
lepsy, a finding attributed to a protective hyperactivation of inhibi-
tory circuits acting to prevent recurrence of new seizures (Cincotta
et al., 2015, de Goede et al., 2016). A significant reduction in CSP
duration was reported in the familial cortical myoclonic tremor
with epilepsy phenotype (Suppa et al., 2009). In focal epilepsy,
non-significant reduction in CSP duration has been reported
(Cincotta et al., 2015, de Goede et al., 2016).

In drug naïve patient with generalized epilepsy, SICI (measured
at ISI of 2 and 5 ms) was reported to be reduced or absent in the
contra-and ipsilateral motor cortices (Badawy et al., 2012, 2013a,
Badawy et al., 2010, Badawy et al., 2013b, de Goede et al., 2016,
Werhahn et al., 2000a), although this was not a consistent finding
(Cantello et al., 2006, de Goede et al., 2016, Lee et al., 2015).
Although there was no significant difference in ICF measured at ISIs
10 ms and 15 ms in generalized epilepsy (Badawy et al., 2012,
2013a, Badawy et al., 2010, Badawy et al., 2013b, Lee et al.,
2015), averaged ICF was increased (Cantello et al., 2006). Interest-
ingly, ICF may be decreased within 48 hours of a grand-mal seizure
(Delvaux et al., 2001). For focal epilepsy, SICI was reduced while no
significant changes were evident for ICF (de Goede et al., 2016).

LICI was abnormal in generalized epilepsy, with absence of inhi-
bition evident at ISIs of 50, 150, 250 and 300 ms (Badawy and
Jackson, 2012, Badawy et al., 2012, 2013a, Badawy et al., 2010,
Badawy et al., 2013b). In focal epilepsy, LICI was facilitated on
the ipsilateral side at ISIs of 250 and 300 ms.

Patients with some forms of epilepsy are more likely to have
seizures after sleep deprivation or when assessed in the early
morning period, and these factors can increase the likelihood of
detecting interictal EEG epileptiform abnormalities (Badawy
et al., 2006, Renganathan and Delanty, 2003). TMS studies have
shown that these activating factors are associated with increased
cortical excitability and reduced intracortical inhibition, poten-
tially accounting for an increased risk of seizures in these settings
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(Badawy et al., 2006, Kreuzer et al., 2011, Manganotti et al., 2006,
Serafini et al., 2013).

A potential limitation of using TMS in epilepsy relates to MEP
variability in patients and controls (Corp et al., 2021). While MEP
variability may be reduced with close attention to target muscle,
pulse waveform and use of neuronavigation, current findings can
only be reliably applied in a large cohort setting and not on an indi-
vidual patient. Consequently, it seems unlikely that TMS will be
able to be used as a diagnostic biomarker in epilepsy. In one study
using LICI, the reported diagnostic sensitivity was reported to be as
low as 24% (Young et al., 2009). The utility of TMS may be in eval-
uating the physiological effects of AEDs as a biomarker of changes
in cortical excitability and future seizure risk (Badawy et al., 2012).

3.5. Migraine and other headaches

The first ten years of this century were dedicated to exploring
the pathophysiology of migraine with TMS and to examine the
clinical diagnostic utility of the different TMS techniques applied
on distinct brain areas (Chen et al., 2008). The studies performed
have provided seemingly contradictory findings, reasonably
because each investigation had depicted distinct facets of a com-
plex pathophysiological mechanism. In the last ten-to-twelve
years, although great efforts have been devoted to test TMS as a
possible treatment for migraine, some of the original contradic-
tions have been clarified, whereas others remained unsolved.

3.5.1. Migraine without aura: Abnormal cortical plasticity was
reported in migraine without aura (MO) patients, and these plas-
ticity changes were most evident on paired associative stimulation
testing when the ISI was set to 10 ms, with MEP responses poten-
tiated (Pierelli et al., 2013). Variability in RMT findings have been
reported in MO patients, including normal, increased, or reduced
RMT (Afra et al., 1998, Badawy and Jackson, 2012, Bettucci et al.,
1992, Brighina et al., 2010, Cortese et al., 2017, Gunaydin et al.,
2006, Maertens de Noordhout et al., 1992, Neverdahl et al., 2017,
Pierelli et al., 2013, Siniatchkin et al., 2009, van der Kamp et al.,
1996, van der Kamp et al., 1997, Werhahn et al., 2000b). The
RMT appears to be influenced by the proximity of a migraine
attack, being higher if measured closer to the attack (Cortese
et al., 2017), potentially accounting for the variability of RMT find-
ings. Dependance on the exact time-point at which physiological
measurements are made during the migraine cycle was not con-
firmed in the motor cortex of children and adolescents but was
replicated in the visual cortex (Siniatchkin et al., 2009). These find-
ings confirm that excitability of motor and occipital cortex may dif-
fer in the same patient.

CSP duration, assessed interictally, was reported to be normal in
MO patients (Maier et al., 2011, Siniatchkin et al., 2007), although
was reduced in female interictal migraineur patients (Neverdahl
et al., 2017, Yuksel and Topalkara, 2021). CSP shortening was exac-
erbated by a contingent negative variation task requiring focused
sustained attention (Maier et al., 2011), and induced by sleep
restriction especially in patients with non-sleep related migraine
(Mykland et al., 2022).

In patients studied interictally, SICI was decreased when tested
at ISI of 4-ms but not 2-ms (Cosentino et al., 2018, Mykland et al.,
2022, Neverdahl et al., 2017). These observations underly the rele-
vance of the stimulation parameters used when testing intracorti-
cal inhibition in migraine. Using standard stimulation paradigms,
ICF was reported to be normal interictally (Neverdahl et al.,
2017), albeit increased when using suprathreshold conditioning
stimuli (Siniatchkin et al., 2007). The increase in ICF with sub-
threshold conditioning stimuli was only evident with low
suprathreshold test stimuli [110%RMT] (Cosentino et al., 2018).
During the preictal phase ICF decreased (Neverdahl et al., 2017),
indicating that changes in migraine cycle affect ICF.
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LICI studied with ISIs up to 120-ms showed no significant
abnormality in migraine patients (Cosentino et al., 2018,
Siniatchkin et al., 2007). Increasing the test stimulus intensity to
150% RMT leads to reduction of LICI, which positively correlates
with disease duration (Cosentino et al., 2018). In a separate study,
LICI was reduced at ISI of 250-ms (Badawy and Jackson, 2012),
implying dysfunction of long latency intracortical inhibitory cir-
cuits in migraine. When studied interictally, SAI was found to be
either normal (Alaydin et al., 2019) or reduced (Coppola et al.,
2020) in MO patients. When assessed in the immediate preictal
or ictal periods, SAI was reduced (Alaydin et al., 2019, Coppola
et al., 2020).

3.5.2. Migraine with aura: In migraine with aura (MA) patients,
TMS studies have disclosed normal RMT (Badawy and Jackson,
2012, Brighina et al., 2011, Cosentino et al., 2011), but increased
MEP amplitude in response to increasing stimulus intensity
(Cosentino et al., 2011) or repetitive TMS (rTMS) [at 5 Hz] delivered
at 110% RMT intensity (Brighina et al., 2011). The changes in TMS
variables were reversed by prophylactic levetiracetam treatment
(Brighina et al., 2011, Cosentino et al., 2011). Of relevance, visual
cortex exhibited reduced TMS-elicited phosphene thresholds,
which was reduced by anodal transcranial direct current stimula-
tion (Chadaide et al., 2007). Low-frequency rTMS (at 1 Hz) resulted
in a reduction in TMS-elicited phosphene thresholds, an effect
reverted by valproate treatment (Palermo et al., 2009).

The CSP duration was reduced in MA patients (Chen et al., 2008,
Maier et al., 2011, Mykland et al., 2022), while LICI at ISI 250 ms
was facilitated (Badawy and Jackson, 2012). The deficits of cortical
inhibition appear to be more related to aura rather than headache
mechanisms. Additionally, reduction of CSP duration was reported
interictally, in females migraineurs during pre-ovulatory record-
ings (Yuksel and Topalkara, 2021), and may be evident when
recording from facial muscles (Curra et al., 2007). Based on the cal-
cium channel hypothesis of hemiplegic migraine and the observa-
tion that P/Q-type calcium channels are strongly expressed in the
cerebellum, CBI was shown to be reduced in MA patients
(Brighina et al., 2009a).

Occipital TMS may also be an effective tool in discriminating
between transient ischemic attacks and migraine aura without
headaches aura based both on the frequency and threshold of
inducing phosphenes (Naeije et al., 2017), although further studies
are required to confirm utility. Interestingly, topiramate modulates
occipital cortex excitability, although the modulating effects were
independent of clinical benefits, as reflected by reduction in head-
ache frequency (Aurora et al., 2010). In chronic migraine patients
without aura, RMT was reduced and SICI absent, while patients
with episodic migraine exhibited normal RMT and SICI values
(Valente et al., 2021). Botulinum toxin therapy resulted in partial
normalisation of SICI in the chronic migraine patients after 12-
months of treatment accompanied by improvement in pain
(Valente et al., 2021). Taken together, it was proposed that botuli-
num toxin therapy resulted in long-term alteration of cortical plas-
ticity, mainly due to effects on chronic pain.

TMS studies in episodic cluster headaches disclosed physiolog-
ical RMT and CSP duration values in both hemispheres, while SICI
was reduced and ICF increased in the ipsilateral hemisphere to the
headache side (Cosentino et al., 2015). Of relevance, SICI was
reduced when assessed ictally, whereas ICF was increased both
ictally and interictally. Similarly, a reduction of SICI and increase
in ICF were reported in cluster headache and allodynia (Ekizoglu
et al., 2015).

In patients with medication-overuse headache, the CSP differed
according to the type of medication overused (Currà et al., 2011). In
patients overusing triptans alone, CSP duration was reduced, sim-
ilar to migraineur patients. In contrast, overuse of non-steroidal
anti-inflammatory agents alone or in combination with triptans,
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was not associated with abnormalities of CSP duration. The cortical
changes were attributed to medication-induced neural adaptation,
potentially mediated by alterations in central serotonin
neurotransmission.

3.6. Neuropathic pain

In acute or tonic pain experiments, various changes in corti-
cospinal motor excitability occur, as assessed by TMS techniques
(Burns et al., 2016a, Lefaucheur, 2004). A recent meta-analysis con-
cluded that greater reduction motor cortex excitability was associ-
ated with shorter durations and higher levels of induced
experimental pain (Chowdhury et al., 2022). Additionally, cortico-
motor depression in the early stage of pain could indicate a higher
susceptibility to development of chronic pain (Seminowicz et al.,
2019). In chronic pain, measures of cortical excitability can reflect
impairment of various neurotransmitter systems related to mal-
adaptive plasticity of pain modulatory systems. Corticospinal
excitability changes are not specific to pain pathophysiology.
Therefore, TMS is not a relevant tool for diagnosis of chronic pain
or its mechanisms (neuropathic, nociceptive, or nociplastic), but
could be a biomarker to understand or monitor therapeutic anal-
gesic interventions.

Only two meta-analyses that assessed changes of cortical
excitability parameters in chronic pain have been published
(Chang et al., 2018, Parker et al., 2016). A significant reduction of
SICI and CSP duration was reported in one study, especially in
the context of neuropathic pain (Parker et al., 2016). A trend
towards increased SICF was reported, albeit from a single study,
while no difference was found for RMT, IO curve, ICF, and LICI in
chronic pain. A subsequent meta-analysis reported inconclusive
findings regarding reduction in SICI and CSP duration, except in
complex regional pain syndrome, with a trend towards increased
LICI in chronic pain (Chang et al., 2018). Other reviews have also
discussed cortical excitability changes in specific chronic pain con-
ditions, such as complex regional pain syndrome (Di Pietro et al.,
2013, Nardone et al., 2018), central post-stroke pain (Betancur
et al., 2021), or phantom-limb pain (Nardone et al., 2019), with
variable findings.

The main TMS feature most consistently associated with
chronic pain is SICI reduction in the motor cortex contralateral to
the painful limb (Burns et al., 2016b, Eisenberg et al., 2005,
Lefaucheur et al., 2006a, Schwenkreis et al., 2010, Sorel et al.,
2018), suggesting that impairment of GABAergic neurotransmis-
sion could contribute to chronic pain pathophysiology. This notion
is supported by findings of SICI normalization in response to ther-
apeutic interventions that induce analgesic effects, such as motor
cortex rTMS, peripheral nerve repetitive magnetic stimulation or
ketamine infusion, with the degree of pain relief correlated with
SICI improvement (Fierro et al., 2010, Lefaucheur et al., 2006a,
Massé-Alarie et al., 2013, Mhalla et al., 2011, Sorel et al., 2018). It
remains to be determined whether SICI reduction could serve as
a biomarker to select candidates for analgesic neuromodulation,
especially with regard to high frequency rTMS applied over the
contralateral motor cortex, a therapeutic use of rTMS with high
level of evidence of efficacy (Lefaucheur et al., 2020). The response
to rTMS could be used as a surrogate biomarker to predict efficacy
of invasive cortical stimulation (André-Obadia et al., 2014,
Lefaucheur et al., 2011, Pommier et al., 2018).

Changes in motor cortex excitability may also be related to
impaired descending inhibitory pain controls, as assessed by con-
ditioned pain modulation (CPM) protocols. In fact, defective
descending inhibitory controls (no pain reduction during CPM)
have been associated with increased ICF (Botelho et al., 2016),
reduced CSP duration (Tarragó et al., 2016) or greater SICI in
fibromyalgia (Cardinal et al., 2019, Caumo et al., 2016). The
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changes in cortical excitability correlated with increased serum
brain-derived neurotrophic factor (BDNF) levels (Botelho et al.,
2016, Cardinal et al., 2019, Caumo et al., 2016). It should be
stressed that these changes in cortical excitability were opposite
to that observed in chronic pain (reduced SICI and CSP duration),
which cannot be explained through changes in descending
controls.

Beyond cortical excitability measures, TMS can also be applied
for mapping of motor cortical representation, notably using
image-guided neuronavigation systems. Studies have been per-
formed in stroke and phantom limb patients (Gunduz et al.,
2020, Teixeira et al., 2021), although no clear association between
motor map reorganization and presence or intensity of pain have
been established beyond the plasticity of motor function in these
conditions.

3.7. Multiple sclerosis

The probability that a patient with clinically definite MS
(CDMS) has a prolonged CMCT is moderately high, with substantial
variability across studies [56–93%] (Barker et al., 1986, Beer et al.,
1995, Hess et al., 1986, Hess et al., 1987, Ingram et al., 1988, Jones
et al., 1991, Kandler et al., 1991b, Mayr et al., 1991, Michels et al.,
1993, Ravnborg et al., 1992, Rossini et al., 1989, van der Kamp
et al., 1991). The large variability is explained by many factors,
but most importantly by the selection and number of target mus-
cles. Sensitivity increases if lower limb muscles are included (Jones
et al., 1991, Jung et al., 2006, Kandler et al., 1991b, Mayr et al.,
1991), and may also be influenced by the MS phenotype. Specifi-
cally, CMCT prolongation is more pronounced in progressive MS
than in relapsing-remitting MS (RRMS) (Facchetti et al., 1997,
Filippi et al., 1995, Humm et al., 2003, Kidd et al., 1998). Addition-
ally, in RRMS or secondary progressive MS (SPMS) patients with
lesions in the hand area of sensorimotor cortex, CMCT is prolonged
(Madsen et al., 2022). Interestingly, CMCT can reveal a subclinical
involvement of the corticospinal tracts in about 14% of multiple
sclerosis patients (Di Lazzaro et al., 1999a).

Conventional measurements of MEP amplitude by single-pulse
TMS add little to the sensitivity provided by CMCT measurements
(Hess et al., 1987, Kandler et al., 1991b, Ravnborg et al., 1992).
Triple-stimulation technique (TST, Fig. 2), however, have revealed
frequent occurrence of central conduction failure due to focal cen-
tral conduction block (Humm et al., 2004a) or loss of fastest-
conducting corticospinal axons, even in the presence of normal
CMCT and MEP measures (Hofstadt-van Oy et al., 2015, Magistris
et al., 1999). TMS abnormalities, including prolonged MEP latency
and CMCT as well as reduced MEP amplitude, was evident in MS
patients without pyramidal tract signs (Kale et al., 2009), implying
that the diagnostic utility of TMS is possibly underestimated in the
currently recommended diagnostic criteria for MS (Thompson
et al., 2018).

Axial muscles such as the diaphragm, paraspinal, pelvic floor
and external sphincter muscles are often affected in MS. The corti-
cospinal projection to these muscles is more difficult to assess, but
TMS measures may reveal abnormalities (Brostrom et al., 2003,
Eardley et al., 1991, Garland et al., 1996, Hashimoto et al., 2000,
Lagueny et al., 1998, Miscio et al., 2003, Urban and Vogt, 1994).

Many studies indicated a significant correlation between CMCT
or TST abnormalities and clinical motor signs or motor disability
(Britton et al., 1991, Ingram et al., 1988, Jones et al., 1991, van
der Kamp et al., 1991). CMCT measures integrated into a multi-
modal evoked potential (EP) score revealed close correlations with
the Expanded Disability Status Scale [EDSS] (Bednarik and
Kadanka, 1992, Fuhr et al., 2001). With longitudinal measure-
ments, changes in EP score correlated with changes in EDSS
(Ayache et al., 2015, Fuhr et al., 2001, Schlaeger R et al., 2012).
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Multimodal EP scores, including baseline CMCT measurement,
predicted the EDSS score in CDMS patients 2–3 years later (Fuhr
et al., 2001, Schlaeger R et al., 2012) and long-term disability
14 years later (Schlaeger R. et al., 2012). Consequently, high multi-
modal EP scores at the time of measurement seem to be predictive
of disability development.

TMS studies may also have a positive predictive value of con-
version to MS, which may be an important management issue in
patients with radiologically isolated or clinically isolated syn-
dromes (CIS), who do not fulfill the current diagnostic criteria for
MS (Thompson et al., 2018). To date, only one study has addressed
this issue and demonstrated a longer CSP duration in CIS patients
who developed CDMS within the next 24 months compared to
those that did not develop CDMS (Pallix-Guyot et al., 2011). Other
TMS measures (CMCT, MEP amplitude, RMT, iSP duration, transcal-
losal conduction time) did not differentiate between these two CIS
groups (Pallix-Guyot et al., 2011).

Monitoring or predicting treatment efficacy is another potential
utility of TMS. CMCT improves during an MS relapse treated with
corticosteroids and correlates with clinical improvement (Fierro
et al., 2002, Kandler et al., 1991a, La Mantia et al., 1994, Salle
et al., 1992). Reduced MEP amplitude and MEP map size after a
first-time motor relapse improves at 6-months follow-up, and this
improvement is associated with improvement of hand dexterity
(Chieffo et al., 2019). Reduced SAI improves in PPMS patients over
one year of treatment with ocrelizumab, and this is associated with
an improvement in the 9-hole peg test, a measure of sensorimotor
hand function (Dubbioso et al., 2022a). Of relevance, the treatment
response to 4-aminopyridine, an agent that improves gait function
in SPMS (Goodwill et al., 2013), was predicted by prolonged CMCT
to lower extremities (Zeller et al., 2014) and high RMT to a hand
muscle (Ahdab et al., 2019).

TMS measures such as MEP onset latency variation (Britton
et al., 1991, Fujihara and Miyoshi, 1998), TMS-frequency-
dependent CMCT prolongation and MEP attenuation (Claus et al.,
1992, Nielsen, 1997), greater increase in CMCT and more prolonged
MEP amplitude reduction in response to fatiguing exercise (Coates
et al., 2020, Liepert et al., 1996, Liepert et al., 2005, Petajan and
White, 2000, Russo et al., 2015, Schubert et al., 1998, White and
Petajan, 2004) have also been applied in MS, although their clinical
utility remains to be determined. Additionally, reduction of SICF
(Dubbioso et al., 2022a, Mori et al., 2013), SICI (Belvisi et al.,
2022, Caramia et al., 2004, Conte et al., 2009, Vucic et al., 2012),
SAI (Cucurachi et al., 2008, Dubbioso et al., 2022a), and prolonged
CSP duration (Nantes et al., 2016), prolonged transcallosal conduc-
tion time (Boroojerdi et al., 1998a) and prolonged iSP duration
(Boroojerdi et al., 1998b, Höppner et al., 1999, Jung et al., 2006,
Schmierer et al., 2002, Schmierer et al., 2000) have also been
reported in MS.

3.8. Stroke

Stroke is associated with abnormalities in TMS measures from
both the ipsilesional and contralesional primary motor cortex.
Most studies record MEPs from the upper limbs, and less is known
about the effects of stroke on MEPs recorded from the lower limbs
or swallowing muscles. The most obvious abnormality is an
absence of MEPs in response to ipsilesional M1 stimulation. The
absence of MEPs prevents measurement of motor threshold, MEP
amplitude or latency, but still provides clinically important
information.

Absent paretic upper limb MEPs at the early sub-acute stage of
stroke strongly predicts worse motor recovery and outcomes, and
at the chronic stage is related to worse motor performance (Boyd
et al., 2017, Cicinelli et al., 1997, Karatzetzou et al., 2022, Stinear,
2017, Talelli et al., 2006, Traversa et al., 1997). The absence of MEPs
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in the paretic lower limb at the early sub-acute stage is also linked
to worse walking outcomes (Karatzetzou et al., 2022, Preston et al.,
2021), although further research is needed. There is initial evidence
that proximal upper limb muscles can recover strength despite an
initial absence of MEPs, possibly via descending motor pathways
that are less readily accessed by TMS such as the reticulospinal
tract (Schambra et al., 2019). Further work is needed to understand
the clinical implications of MEP absence in the proximal versus dis-
tal upper limb muscles.

The presence or absence of upper limb MEPs at the early sub-
acute stage is a relatively simple biomarker that can inform indi-
vidualized therapy plans (Rosso and Lamy, 2020, Stinear, 2017,
Stinear et al., 2017a) and improve the efficiency and sensitivity
of clinical trials (Stinear et al., 2018). The MEP status biomarker,
however, has not yet been consistently defined. After a stroke, it
is not uncommon to observe low amplitude MEPs that fail to meet
traditional threshold amplitude criteria even at maximum stimu-
lus intensity. Consequently, some studies define MEP + status as
the presence of MEPs of any amplitude, on the basis that transmis-
sion of motor output from ipsilesional M1 is more clinically rele-
vant than threshold stimulus intensity at the early sub-acute
stage (Stinear et al., 2017a, Stinear et al., 2017b). It remains unclear
whether initially absent or subthreshold MEPs that eventually
meet the motor threshold criterion during subsequent recovery
are associated with better outcome (Schambra et al., 2019, Talelli
et al., 2006).

When MEPs are present in paretic muscles they can exhibit sev-
eral abnormal features. Motor threshold is typically higher, MEP
latency is delayed, MEP amplitude is smaller, and the slope of
the stimulus–response curve is typically shallower (Bütefisch
et al., 2008, Cicinelli et al., 1997, McDonnell and Stinear, 2017,
Talelli et al., 2006, Traversa et al., 1997, Veldema et al., 2021).
Motor map areas of the ipsilesional M1 are also typically smaller,
and their center of gravity can be shifted anteriorly or posteriorly
relative to maps of the contralesional M1 (Cicinelli et al., 1997,
Lüdemann-Podubecká and Nowak, 2016). These abnormalities
reflect the effects of stroke on the number of available cortical neu-
rons and descending axons, and the excitability of surviving corti-
cal neurons. More pronounced abnormalities in MEP threshold,
latency, and amplitude, and motor map parameters are typically
associated with worse motor performance at time of assessment
(Boyd et al., 2017, Buetefisch et al., 2018, Duque et al., 2005,
Lüdemann-Podubecká and Nowak, 2016, Talelli et al., 2006). Nor-
malization of upper limb MEP parameters during the sub-acute
stage of stroke is associated with improvements in upper limb
motor performance (McDonnell and Stinear, 2017, Schambra
et al., 2019, Stinear et al., 2015, Veldema et al., 2021). The clinical
relevance of shifts in motor map center of gravity is not yet clear
(Lüdemann-Podubecká and Nowak, 2016).

Measures of contralesional M1 excitability are typically within
normal limits at the sub-acute stage of stroke (McDonnell and
Stinear, 2017, Talelli et al., 2006). Contralesional excitability can
become elevated at the chronic stage, perhaps reflecting prolonged
asymmetric upper limb use after stroke (Xu et al., 2019). Studies at
the chronic stage initially reported excessive pre-movement inhi-
bition of the ipsilesional M1 by the contralesional M1 via the cor-
pus callosum, and this was thought to contribute to poorer paretic
upper limb performance (Duque et al., 2005, Murase et al., 2004).
The resulting interhemispheric competition model posited that
asymmetric interhemispheric inhibition between the M1s com-
pounds reduced ipsilesional cortical excitability and hinders motor
recovery. Subsequent studies (Bütefisch et al., 2008, Stinear et al.,
2015, Xu et al., 2019) and meta-analyses (McDonnell and Stinear,
2017, Veldema et al., 2021) have shown that contralesional M1
excitability and interhemispheric inhibition of ipsilesional M1 are
typically normal at the sub-acute stage of stroke. Abnormally ele-
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vated pre-movement interhemispheric inhibition of the ipsile-
sional M1 appears to develop as patients recover upper limb
motor capacity and is therefore unlikely to be a useful therapeutic
target (Xu et al., 2019). Furthermore, a recent review argues that
transcallosal projections serve to shape the output of the opposite
M1, rather than inhibit it (Carson, 2020).

Stimulation of the contralesional M1 can also produce MEPs
and/or CSPs in paretic upper limb muscles. Ipsilateral MEPs can
be more prevalent in the paretic upper limb, particularly the prox-
imal muscles. In older adults without stroke, there is a positive
association between upper limb strength and the ratio between
ipsilateral and contralateral MEPs, with the former thought to be
mediated by the reticulospinal tract (Maitland and Baker, 2021).
There appears to be no clear relationship between ipsilateral
responses to contralesional M1 stimulation and paretic upper limb
performance (Hammerbeck et al., 2019). The neuronal populations
responsible for ipsilateral MEPs and CSPs, and their clinical signif-
icance, remains under investigation.

Paired-pulse studies indicate that ipsilesional and contrale-
sional SICI and LICI are typically abnormally low at the early sub-
acute stage of stroke and normalize over subsequent weeks
(Bütefisch et al., 2008, Dimyan and Cohen, 2010, Grigoras and
Stagg, 2021, Huynh et al., 2016, McDonnell and Stinear, 2017,
Talelli et al., 2006), though some longitudinal studies using thresh-
old tracking techniques report persistently low SICI in both hemi-
spheres (Huynh et al., 2013b, Huynh et al., 2016). Abnormally low
SICI has also been reported in contralateral M1 following acute
cerebellar stroke (Huynh et al., 2013a). Further research is required
to establish the clinical significance of altered intracortical function
after stroke, and whether it presents a viable therapeutic target
(Agarwal et al., 2019).

3.9. Cerebellar disorders

In focal diseases affecting the cerebellar efferent system and
comprising the cerebellar hemispheres, dentate and ventrolateral
thalamic nuclei, CBI is decreased or absent (Kikuchi et al., 2012,
Ugawa et al., 1997). In contrast, CBI was normal in patients with
lesions of the afferent cerebellar inputs, including pontocerebellar,
middle cerebellar peduncle and sensory-cerebellar pathways
(Ugawa et al., 1994a, Ugawa et al., 1995a). TMS findings in chronic
cerebellar neurodegenerative diseases are more complex, reflect-
ing the underlying pathology. A reduction of CBI (at ISI 5 ms)
was reported in spinocerebellar ataxia type 3 (SCA3), correlating
with ataxia severity, and indicating the pathophysiological impor-
tance of cerebellothalamocortical tract dysfunction (Maas et al.,
2021, Ugawa et al., 1997). CBI was normal in mildly affected
SCA3 patients, suggesting that reduction of efferent pathway integ-
rity is not a relevant feature of the earliest disease stages or that
TMS only detects abnormalities after a certain threshold of dys-
function has been exceeded. A significant reduction of CBI (at ISI
5 and 6 ms) was also reported in the multiple system atrophy cere-
bellar subtype (MSA-C) and correlated with greater disease sever-
ity (Shirota et al., 2022). In early MSA-C with predominant
dysfunction in the cerebellar afferent pathways, CBI is normal,
implying a potential role for CBI as a biomarker of disease progres-
sion in neurodegenerative cerebellar diseases, although further
research is required.

Reduction of CBI may herald the development of cerebellar dys-
function in other neurological disorders including progressive
supranuclear palsy (PSP), essential tremor and focal dystonia.
Specifically, an absence of CBI has been reported in PSP associated
with degeneration of the dentate nuclei (Benussi et al., 2019b,
Brusa et al., 2014, Shirota et al., 2010). While cerebellar ataxia is
not a typical clinical feature of PSP, gait instability and falls could
potentially be associated with dysfunction of cerebellar efferent
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pathways (Benussi et al., 2019b). Reduction of CBI was also
reported in essential tremor but did not correlate with tremor
severity (Hanajima et al., 2016), suggesting that the cerebellar
efferent pathways were either a primary pathogenic event or a
compensatory physiological phenomenon in response to a patho-
genic process outside the cerebellum. However, another study
found normal CBI in essential tremor (Pinto et al., 2003).

Increased motor threshold was reported in acute cerebellar
stroke, contralateral to the affected cerebellar hemisphere (Cruz-
Martínez and Arpa, 1997), although others have reported normal
thresholds (Huynh et al., 2013a, Liepert et al., 2004). Transient pro-
longation of CMCT has also been reported after cerebellar stroke
(Cruz-Martínez and Arpa, 1997), with the argument that reduced
size and increased dispersion of the efferent volleys accounted
for the findings. A reduction of SICI has been reported in both the
ipsi- and contralesional M1 (Huynh et al., 2013a), although others
have documented an increase of SICI and reduction in ICF (Liepert
et al., 2004). The discordant findings could be explained by vari-
ability in the cerebellar infarct territory, suggesting that distinct
cerebellar regions and projections could potentially modulate cor-
tical inhibitory and facilitatory circuits. Whether these modulatory
effects represent adaptive changes or direct cerebellar damage,
remains to be determined.

In degenerative cerebellar diseases, prolonged CMCT was
reported in SCA1 in the upper limbs and SCA2 in the lower limbs,
but not other SCA phenotypes (Tang et al., 2020), implying diverse
pathological processes. Normal level of SICI has been reported in
various forms of SCA (Ugawa et al., 1994b), while ICF was reduced
(Berardelli et al., 2008, Liepert et al., 1998, Schwenkreis et al., 2002,
Wessel et al., 1996). The ICF reduction was evident in SCA2 and
SCA3, but not in Friedreich’s ataxia, SCA1, and SCA6 patients. The
reduction of ICF may be related to reduced excitatory drive form
the deep cerebellar nuclei and reflecting underlying cortical
pathology in SCA disorders. Reduction of SICI has also been
reported in SCA 3 and SCA 14 patients (Farrar et al., 2016, Ganos
et al., 2014), indicating a dysfunction of cortical inhibitory circuits,
a notion supported by neuroimaging studies disclosing paracentral
cortical thinning and atrophy (de Rezende et al., 2015, Etchebehere
et al., 2001). The pathological and clinical heterogeneity of degen-
erative cerebellar disorders could account for the seemingly discor-
dant TMS findings, although future studies should utilize multiple
TMS parameters in a machine learning algorithm to develop prog-
nostic and outcome biomarkers that can be readily translated into
a clinical trial setting.

3.10. Facial nerve disorders

In unilateral idiopathic Bell’s palsy, TMS studies have disclosed
a reduced or absent MEP response when recording from the facial
muscles (Glocker et al., 1994, Happe and Bunten, 2012, Lin et al.,
2021, Schrader and Schrader, 1995, Schriefer et al., 1988). These
TMS deficits developed in acute stages of Bell’s palsy and persisted
for months, even after the recovery of muscle weakness. Interest-
ingly, the sensitivity of TMS was greater than electrical facial nerve
stimulation, implying that the TMS stimulation site was proximal
to the pathogenic lesion. While the prognostic utility of TMS
abnormalities in Bell’s palsy is limited (Lin et al., 2021), identifying
a reduced or absent MEP responses may be of diagnostic potential,
particularly in setting of relatively preserved peripheral motor
amplitudes and prior to development of Wallerian degeneration.
A normal TMS response with facial nerve stimulation combined
with reduced MEP response with cortical stimulation may argue
against a peripheral facial nerve lesion (Schriefer et al., 1988,
Straub et al., 2000).

A reduction of facial MEP amplitudes is not specific to Bell’s
palsy and has been identified in other etiologies of facial nerve dys-
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function, including infectious diseases, diabetes and neoplasms
(Happe and Bunten, 2012, Nowak et al., 2005). Bilateral facial nerve
dysfunction is associated with specific diseases, including Guil-
lain–Barré syndrome, Lyme’s disease, HIV infection, or sarcoidosis
(Rösler et al., 1995). Prolonged transosseal conduction time,
defined as latency differences between cortical MEP responses
from electrically elicited facial nerve motor responses (stylomas-
toid stimulation), along with simultaneous slowing of conduction
in the distal segments with MEP desynchronization, are character-
istic features of demyelinating neuropathies, with or without
accompanying facial weakness (Rösler et al., 1995, Schriefer
et al., 1988). In facial nerve trauma, the MEP responses are typically
absent, although if present imply nerve continuity and thereby a
better prognosis (Har-El and McPhee, 2000). Paired pulse TMS
was implemented as a prognostic tool in predicting the occurrence
of hemifacial spam (HFS) after microvascular decompression (Park
et al., 2018). In this protocol, a subthreshold CS delivered prior to a
test stimulus resulted in MEP facilitation at ISIs 20, 25, and 30 s,
and inhibition at ISIs 75 and 100 ms in healthy controls. Good sur-
gical outcomes were reported after microvascular decompression
when the physiological pattern of facilitation-inhibition was evi-
dent, suggesting prognostic utility, although further research is
required.
3.11. Brain tumors

Brain tumors affect standard TMS parameters to varying
degrees. Tumor growth in vicinity of the primary motor cortex
may be associated with a complex pattern of changes (Sollmann
et al., 2018). Consideration of tumor growth dynamics is important
when interpreting TMS, as its likely that effects of time-dependent
compensatory mechanisms may be assessed. Due to highly vari-
able tumor growth dynamics and individual predispositions to
neuroplasticity, clinically heterogeneous findings may be evident.
Increased RMT of both the tumorous and healthy hemispheres
was associated with a worse motor outcome (Rosenstock et al.,
2022). In patients with small tumor-to-corticospinal tract dis-
tances, a disturbance in motor excitability (interhemispheric RMT
ratio < 90% or > 110%) is associated with a higher risk of newmotor
deficits either from surgery or tumor growth (Rosenstock et al.,
2017). A greater distance between the lesion and motor hotspot
as well as the presence of MEP responses 1 week after surgery have
been associated with improved motor recovery, suggesting their
utility in prognostication (Takakura et al., 2017).

Of relevance, microstructural impairment of white matter cor-
relates with a deterioration of the motor excitability profile, result-
ing in significantly higher RMTs in the ipsilateral motor cortex
(Mirchandani et al., 2020). Fine granular analysis of MEPs has been
shown to be more sensitive to tumor-related changes than classical
analysis, with spectral analysis of EMG responses showing early
impairment of cortical excitability in brain tumors (Machetanz
et al., 2021). Specifically, brain tumors affect corticospinal trans-
mission resulting in temporal and spectral MEP desynchronization
which correlates with poor dexterity performance.

Recent advances in TMS technology have enabled M1 mapping
with a two-coil transducer without moving the coil. This approach
has resulted in electronically controlled modelling of the applied
electric field over a wider cortical area allowing for improved spa-
tial and temporal control of the stimulation (Koponen et al., 2018).
Multicoil TMS systems are being developed that can tune elec-
tronic stimulation to a cortical region without moving the coil
enabling time-coupled application of stimuli with unlimited E-
field orientations and strengths (Nieminen et al., 2022). This would
enable excitability measurements of tumorous motor cortical areas
with unprecedented control and significantly improve already
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promising neuromodulatory interventions in brain tumor patients
(Ille et al., 2021a).

Closed-loop configurations with automated modification of
stimulation depending on neurophysiological and/or behavioral
measures have received increasing attention in recent years.
EMG-driven TMS allows online adaption of stimulation settings
to allow optimized analysis of specific excitability measures
(Meincke et al., 2016). EEG feedback for brain state-dependent syn-
chronization of the TMS stimulus allows for better control of the
TMS-brain interaction and therefore more reliable assessments of
tumor effects on brain excitability (Zrenner et al., 2022). Given
the clinical utility of RMT, novel TMS technologies have the poten-
tial to interrogate the effects of brain tumor on motor function
even more accurately and at an individualized level. In the future,
this could provide TMS with an even more important role for tai-
lored treatment pathways including neuromodulatory interven-
tions during the treatment of motor eloquent brain tumors.

Using TMS to outline language-related areas has been made
possible with advances in neuronavigation (Lioumis et al., 2012).
Comparison of neuronavigated TMS to intraoperative mapping
showed a high negative predictive value (Krieg et al., 2014, Picht
et al., 2013). Nonetheless, the combination of cortical mapping
and subcortical tractography, seeded from those areas, lead to a
broader clinical application for approach guidance but also risk
assessment. Various studies disclosed high reliability for preopera-
tive risk prediction, particularly for the ratio between left and
right-sided language production, connectivity between hemi-
spheres, as well as proximity between tumor and subcortical tracts
(Ille et al., 2016, Sollmann et al., 2019, Sollmann et al., 2017). In
adults, comparison data also provides some hint that language elo-
quent perisylvian tumors can be resected with the same functional
and oncological results based on neuronavigated TMS data instead
of performing awake surgery (Ille et al., 2021b), although further
studies are required. Clinical mapping using neuronavigated TMS
may be of utility in pediatric patients as well down to the age of
6 years (Rosenstock et al., 2020). Such pediatric applications fur-
ther promote the spread of neuronavigated TMS in neuro-
oncology.

3.12. Disorders of consciousness

As anticipated in section 2.5, directly probing the internal state
of cortico-thalamic circuits with TEP provides relevant information
in disorders of consciousness. TEPs reflect the reactivity of the neu-
ronal population under the TMS coil as well as remote and re-
entrant responses from connected populations with different elec-
trophysiological properties (Massimini et al., 2005, Rosanova et al.,
2009). In this way, TMS-EEG may be used to assess by a causal per-
spective to what extent distributed and differentiated groups of
neurons interact to produce complex dynamics. Based on theoret-
ical neuroscience (Tononi and Edelman, 1998) and empirical evi-
dence (Sarasso et al., 2021), this kind of complexity, arising from
the coexistence of functional integration and functional differenti-
ation, is considered a fundamental prerequisite for consciousness.
Consequently, specific TMS-EEG-based measures, such as Pertur-
bational Complexity Index (PCI), have been developed to assess
recovery of consciousness in patients emerging from coma. In this
section, we will present the rationale and basic methods for com-
puting PCI and describe its application in patients with disorders of
consciousness, highlighting its advantages and some methodolog-
ical cautionary notes.

3.12.1. Computing PCI
Upon falling asleep and with general anesthesia, the complex

waveforms and spatio-temporal dynamics characterizing TEPs
during wakefulness are replaced by a simpler response, charac-
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terised by a positive–negative deflection centered around the stim-
ulated area (Ferrarelli et al., 2012, Massimini et al., 2005, Sarasso
et al., 2015). Notably, a similar change in TEPs characteristics can
be observed also in pathological loss of consciousness, whereas
the return of complex waveforms is associated with recovery
(Ragazzoni et al., 2013, Rosanova et al., 2012). PCI has been devised
to capture these changes (Casali et al., 2013).

Starting from TEPs, computing PCI involves a few steps (i) per-
forming cortical source modelling of average scalp responses (ii)
applying statistics to extract a binary matrix that describes the
spatial–temporal pattern of deterministic cortical activation and
(iii) compressing this binary matrix using the Lempel and Ziv algo-
rithm (Lempel and Ziv, 1976) to quantify its complexity. Local (low
integration) or stereotypical (low differentiation) responses can be
effectively compressed, resulting in low PCI values. On the con-
trary, responses that are both integrated and differentiated are less
compressible, resulting in high PCI values.

3.12.2. PCI validation and application
Before applying it to disorders of consciousness patients, PCI

was first calibrated in healthy subjects and patients who could
report about their state of consciousness, including wakeful and
dreaming experiences as well as deep sleep and general anesthesia.
Such calibration in a large benchmark population (n = 150) enabled
a definition of an operational cut-off (PCI*=0.31) above which con-
sciousness is invariably present. This empirical PCI cut-off was
then applied to infer the presence of consciousness in challenging
disorders of consciousness patients showing minimal, or no beha-
vioural signs of consciousness (Bodart et al., 2017, Casarotto et al.,
2016, Sinitsyn et al., 2020). PCI showed an unprecedented sensitiv-
ity (about 95%) in identifying Minimally Conscious State patients
which show minimal behavioural outputs. In these patients, high
PCI values reliably detected the presence of consciousness even
when severely abnormal EEG patterns, characterized by slow
waves, are present (Fig. 5A, B). Crucially, PCI also allows an infor-
mative stratification of patients that are completely unresponsive,
such as patients in a Vegetative State, otherwise called Unrespon-
siveness Wakefulness Syndrome. Within the population identified
by this behavioral label, TEPs reveal the existence of three different
electrophysiological states (Fig. 5C): (i) a state with no significant
EEG response to TMS (no response patients), (ii) a low-
complexity state similar to that observed in non-rapid eye move-
ment (NREM) sleep and anesthesia unconsciousness (low-
complexity patients) and (iii) a high-complexity state similar to
that observed in conscious awake or dreaming subjects (high-
complexity patients) (Casarotto et al., 2016).

This TMS-EEG-based stratification has interesting pathophysio-
logical implications and is clinically informative. The ‘‘no” response
subgroup is typically composed of TMS of patients who suffered
from post-anoxic damage and diffuse cortical necrosis, once called
‘apallic syndrome’. The low-complexity group encompasses
patients of variable aetiology in whom portions of the cerebral cor-
tex retain some degree of structural integrity, activity and reactiv-
ity. Interestingly, although these patients are awake, as judged by
eye opening, residual circuits appear to be blocked in a pathologi-
cal sleep-like state whereby cortical reactivity is limited to a low-
complexity positive–negative deflection. Notably, in these patients,
time–frequency analysis of TEPs point to specific neuronal dynam-
ics underlying loss of complexity-the inescapable occurrence of a
silent period (OFF-period) after the initial activation triggered by
TMS. This tendency of cortical neurons to plunge into an OFF-
period upon receiving an input, also known as cortical bistability,
is a mode typical of NREM sleep, that may pathologically intrude
in the awake brain after injury, leading to a massive disruption
of network complexity in many unresponsive patients. As shown
by longitudinal measurements, the reduction of cortical bistability



Fig. 5. TMS-EEG and Perturbational Complexity Index (PCI) in a benchmark population, in minimally conscious state and Unresponsiveness Wakefulness Syndrome patients.
(A) Distribution of maximum PCI values computed in the benchmark population (left) in the absence of subjective report (blue line) and in the presence of subjective report
(delayed, green line; immediate, red line). The dashed horizontal line indicates the cut-off (PCI*) optimally discriminating consciousness from unconsciousness in the
benchmark population. The scatter plot shows the maximum PCI values obtained in individual minimally conscious state (n = 38) patients, sorted by the Coma Recovery
Scale-Revised (CRS-R). For each patient, the PCI is represented by a color-filled circle (Modified from Casarotto et al., 2016). (B) The upper row shows TMS evoked potentials
[TEPs] (butterfly plot of all EEG channels superimposed, with three illustrative channels highlighted by bold red traces) together with the corresponding PCI values in three
representative minimally conscious state patients with PCI higher than PCI*. The lower row shows 10 s of spontaneous EEG recorded from four bipolar EEG channels (F3-C3,
P3-O1, F4-C4, and P4-O2) in the same patients. Note that despite having all PCI values above PCI*, minimally conscious state patients displayed patterns of spontaneous
background EEG activity that were severely abnormal (left), moderately abnormal (center), and mildly abnormal (right) (Modified from Casarotto et al., 2016). (C) PCI-based
stratification of Unresponsiveness Wakefulness Syndrome patients. The scatter plot shows all the maximum PCI values obtained in individual Unresponsiveness Wakefulness
Syndrome (n = 43) patients. For each patient, the PCI is represented by a colour-filled circle. Unresponsiveness Wakefulness Syndrome patients could be stratified into three
subgroups according to PCI values: high-complexity patients with PCI > PCI* (n = 9, red), low-complexity patients with PCI < PCI* (n = 21, blue), and no-response patients with
PCI = 0 (n = 13, black). The lower row shows the structural MRI, the TEP and the corresponding PCI value reported for a representative subject of each subgroup (modified from
Casarotto et al., 2016).
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parallels, and sometimes anticipates, recovery of network com-
plexity and behavioural responsiveness (Rosanova et al., 2018,
Rosanova et al., 2012). Notably, a similar intrusion of sleep-like
reactivity can also be observed locally in the perilesional area of
stroke patients, possibly leading to selective loss of motor/cogni-
tive function (Sarasso et al., 2020, Tscherpel et al., 2020). Finally,
the finding of a third subgroup of unresponsive patients showing
high-complexity, entails important clinical and ethical implica-
tions. Indeed, this condition indicates a capacity for consciousness,
not expressed in behaviour due to pathological impairment of sen-
sory and/or motor functions, and indicates a better chance of
recovery (Casarotto et al., 2016, Rosanova et al., 2018, Rosanova
et al., 2012).
3.12.3. Advantages of TMS-EEG in disorders of consciousness patients
and cautionary notes

The high-sensitivity of TMS-EEG above and beyond behavioural
responsiveness and spontaneous EEG patterns may be ascribed to
different factors. First, this technique allows by-passing sensory
processing, as well as motor functions, which are often impaired
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after severe brain injury. Second, it does not require any active
engagement in specific tasks, a demand often unmet by patients
with severe cognitive impairment. Third, the high signal-to-noise
ratio of TEPs allows detecting residual network complexity even
when this is masked by high-amplitude delta waves in the sponta-
neous EEG (Frohlich et al., 2021).

The flip side is that applying TMS-EEG to disorders of conscious-
ness demands stringent requirements and special methodological
caution. A first key requirement is that TEPs must adhere to the
quality criteria illustrated in section 2.5. This not only entails a
high-amplitude (around 10 microvolts) initial response but also
requires collecting a number of trials that is sufficient to obliterate
the increased baseline variability imposed by spontaneous slow
waves, which are often present after brain injury. Since collecting
hundreds of trials currently takes from 5 to 10 minutes, TMS-EEG
measures of complexity cannot be used to monitor short term fluc-
tuations in the state of consciousness, such as fleeting dreams
reports during sleep (Nieminen et al., 2016) and anaesthesia.
Finally, given that the current calibration of PCI in subjects provid-
ing negative delayed report during sleep and anaesthesia cannot
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rule out the presence of fleeting dreams, low PCI values cannot be
used to rule out consciousness but only to reveal the presence of it
in unresponsive patients.
3.13. Functional neurological disorders

Functional neurological disorders are common and may present
with almost any neurological symptom. One important feature for
making the diagnosis is incongruence or incompatibility with fea-
tures of other neurological disorders (Hallett et al., 2022). TMS may
supplement clinical assessment in functional neurological disor-
ders. While there are some promising small studies, none of the
methods have moved into clinical practice.

In patients with functional weakness, discordant TMS findings
have been reported, with some studies documenting normal
RMT, SICI, and ICF (Liepert et al., 2008, 2009), while others estab-
lished an increase in RMT and SICI (Benussi et al., 2020e). Differ-
ences are small and could be different from stroke patients with
comparable reduction in muscle strength. Separately, an increase
in MEP duration with voluntary contraction (30% maximal force)
has been reported in stroke and healthy controls, decreased in
MS, while no change was evident in functional neurological disor-
ders paretic patients (Brum et al., 2015), suggesting potential
utility.

Changes in MEP amplitude and RMT with movement imagery of
target muscle may also be of diagnostic utility in functional neuro-
logical disorders. In healthy controls, imagining movement of con-
gruent muscle in the contralateral limb increases the MEP
amplitude and reduces RMT (Facchini et al., 2002), while negative
motor imagery resulted in MEP amplitude reduction (Sohn et al.,
2003). Motor imagery was associated with more pronounced
motor output enhancement in the hemisphere in stroke (Cicinelli
et al., 2006), contrasting with paretic functional neurological disor-
ders patients (weak upper limb) whereby the MEP amplitude is
reduced (Liepert et al., 2008, 2009, 2011).

In dystonic functional neurological disorder patients, abnormal-
ities of TMS measures have been well documented, including a
reduction of SICI, LICI, and CSP duration (Espay et al., 2006). Addi-
tionally, the cutaneous silent period was increased, and forearm
reciprocal inhibition reduced. In contrast, SAI and LAI were compa-
rable to healthy controls for functional dystonia, while a similar
degree of SICI reduction was evident in both functional and organic
dystonia (Quartarone et al., 2009). As such, the utility of TMS in
dystonic functional neurological disorders seems limited.
4. Conclusion

The various TMS techniques have demonstrated strong clinical
and diagnostic utility in a variety of neurological diseases, includ-
ing neurodegenerative, movement, autoimmune and episodic dis-
orders as well as spinal cord and functional neurological
diseases. Novel TMS techniques, such as threshold tracking TMS,
has demonstrated diagnostic utility in ALS and has been recently
commercialized. TMS-EEG is an emerging technique with the abil-
ity to directly assess cortical function, bypassing subcortical and
peripheral neurological systems. In addition to established utility
as a diagnostic biomarker in neurodegenerative disease, TMS mea-
sures appear suitable for incorporation as therapeutic (i.e., moni-
toring and outcome) biomarkers of clinical efficacy in future
clinical trials. Multicenter studies incorporating larger patient
cohort sizes and more homogenous study populations in terms of
disease characteristics and treatment will help further clarify util-
ity of the novel TMS techniques.
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