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Abstract:

Post-mortem examination of a fin whale Balaenoptera physalus stranded 
in the Mediterranean Sea led to the finding of Bolbosoma balaenae for 
first time in this basin. In this work, we describe new structural 
characteristics of this parasite using light microscopy and scanning 
electron microscopy (SEM) approaches. Moreover, the molecular and 
phylogenetic data as inferred from both ribosomal RNA 18S-28S and the 
mitochondrial DNA cytochrome oxidase c subunit 1 (cox1) for adult 
specimens of B. balaenae are also reported for the first time. Details of 
the surface topography such as proboscis’s hooks, trunked trunk spines 
of the prebulbar foretrunk, ultrastructure of proboscis’s hooks and 
micropores of the tegument are shown. The 18S+28S rRNA Bayesian 
tree (BI) as inferred from the phylogenetic analysis showed poorly 
resolved relationships among the species of Bolbosoma. In contrast, the 
combined 18S+28S+mtDNA cox1 BI tree topology showed that the 
present sequences clustered with species of Bolbosoma in a well-
supported clade with a high probability value. The comparison of cox1 
and 18S sequences revealed that the present specimens are conspecific 
with the cystacanths of B. balaenae previously collected in the 
euphausiid Nyctiphanes couchii from the North Eastern Atlantic Ocean. 
This study provided taxonomic, molecular and phylogenetic data that 
allow for a better characterisation of this poor known parasite.
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26 Abstract

27 Post-mortem examination of a fin whale Balaenoptera physalus stranded in the 

28 Mediterranean Sea led to the finding of Bolbosoma balaenae for first time in this basin. In 

29 this work, we describe new structural characteristics of this parasite using light microscopy 

30 and scanning electron microscopy (SEM) approaches. Moreover, the molecular and 

31 phylogenetic data as inferred from both ribosomal RNA 18S-28S and the mitochondrial DNA 

32 cytochrome oxidase c subunit 1 (cox1) for adult specimens of B. balaenae are also reported 

33 for the first time. Details of the surface topography such as proboscis’s hooks, trunked trunk 

34 spines of the prebulbar foretrunk, ultrastructure of proboscis’s hooks and micropores of the 

35 tegument are shown. The 18S+28S rRNA Bayesian tree (BI) as inferred from the 

36 phylogenetic analysis showed poorly resolved relationships among the species of Bolbosoma. 

37 In contrast, the combined 18S+28S+mtDNA cox1 BI tree topology showed that the present 

38 sequences clustered with species of Bolbosoma in a well-supported clade with a high 

39 probability value. The comparison of cox1 and 18S sequences revealed that the present 

40 specimens are conspecific with the cystacanths of B. balaenae previously collected in the 

41 euphausiid Nyctiphanes couchii from the North Eastern Atlantic Ocean. This study provided 

42 taxonomic, molecular and phylogenetic data that allow for a better characterisation of this 

43 poor known parasite.

44

45 Key words: Balaenoptera physalus, fin whale, Bolbosoma balaenae, ribosomal RNA 18S-

46 28S, mitochondrial DNA cox1, phylogenetic analysis, Mediterranean Sea
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48 Key Findings

49  First report of Bolbosoma balaenae in a cetacean from the Mediterranean Sea

50  First integrative taxonomy of adults of B. balaenae by morphology and multilocus 

51 analysis 

52  New morphological features of B. balaenae are shown

53  B. balaenae represents a distinct phylogenetic lineage from other polymorphid 

54 acanthocephalans 

55  Present specimens of B. balaenae are conspecific with the cystacanths previously 

56 sequenced from Atlantic euphausiid Nyctiphanes couchii 
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73 Introduction

74 Polymorphid acanthocephalans belonging to the genus Bolbosoma Porta, 1908 comprise 12 

75 valid species (Amin, 2013). Of these, at least 10 (all described at the adult stage) have been 

76 reported in the intestinal tract of a range of oceanic whales and dolphins (Amin, 2013; Felix, 

77 2013). The life cycle of Bolbosoma species has been not yet completely elucidated. However, 

78 it has been suggested that pelagic crustaceans (euphausiids and copepods) and fishes serve as 

79 intermediate and paratenic hosts, respectively (Measures, 1992; Hoberg et al., 1993; Dailey et 

80 al., 2000; Gregori et al., 2012). Marine mammals serve as definitive hosts; they become 

81 infected by ingestion of infected preys. In marine mammals, the species of Bolbosoma may 

82 cause different degrees of enteritis due to their ability to perforate mucosal surface for 

83 anchoring to the muscular layer (Parona, 1893; Porta, 1906; Dailey et al., 2000; Arizono et 

84 al., 2012; Kaito et al., 2019).

85 Bolbosoma balaenae (Gmelin, 1790) Porta, 1908 type species, has been described as 

86 Sipunculus lendix Phipps, 1774 in a sei whale Balenoptera borealis Lesson, 1828 from the 

87 Arctic waters. After its original description, B. balaenae was reported as sporadic finding in 

88 four oceanic odontocetes (i.e., the northern bottlenose whale Hyperoodon ampullatus 

89 Lacépède, 1804, spinner dolphins Stenella longirostris Gray, 1828, spotted dolphins S. 

90 attenuata Gray, 1846, and the pygmy sperm whale Kogia breviceps Golvan, 1961 (Gregori et 

91 al., 2012; Felix, 2013) and, at least, in other five mysticetes species as regular hosts: the 

92 common minke whale B. acutorostrata Lacépéde, 1804, the fin whale B. physalus Linneus, 

93 1758, the blue whale B. musculus Linneaus, 1758, the humpback whale Megaptera 

94 novaeangliae Borowski, 1781, and the grey whale Eschrichtius robustus Lilljeborg, 1861 

95 (Golvan, 1961; Zdzitowiecki, 1991; Dailey et al., 2000; Felix, 2013). Regarding its 

96 geographical distribution, B. balaenae is known from Antarctic and Arctic waters, Southwest 
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97 Atlantic Ocean, Tasman Sea, and northern California coast to date (Zdzitowiecki, 1991; 

98 Dailey et al., 2000; Gregori et al., 2012; Felix, 2013). 

99 The identification of Bolbosoma species is hardly based on the morphological 

100 characters alone, because of its similarities with congeneric species, and/or the old poor 

101 original description and redescriptions (Phipps, 1774; Van Cleave, 1953). Moreover, the 

102 presence of a wide variability of morphological characters of the anterior extremity in 

103 Bolbosoma spp. has been reported (Porta, 1906; Meyer, 1933; Van Cleave, 1953; 

104 Petrochenko, 1956; Zdzitowiecki, 1991). Likely, due to the old, opportunistic, and scattered 

105 findings around its geographical range, B. balaenae remains a little known parasite: no 

106 microscopic images and molecular data exist for adult specimens of B. balaenae. Moreover, 

107 interest in Bolbosoma species increased recently by reason of their potential zoonotic role. At 

108 least, 8 cases of human infection with Bolbosoma sp. and a case for B. capitatum causing 

109 clinical signs and intestinal lesions, have been reported from Japan and related to 

110 consumption of uncooked fish flesh (Arizono et al., 2012; Kaito et al., 2019).

111 Aims of the present study were to: 1) report the first occurrence of B. balaenae from a 

112 fin whale in the Mediterranean Sea; 2) describe new morphological characters of the species 

113 by using traditional microscopy and scanning electron microscopy (SEM); 3) carry out the 

114 molecular characterization of the species and to study its phylogenetic relationships with 

115 congener species and other polymorphid species maturing in marine hosts.

116

117 Materials and methods

118 Parasitological study

119 An immature female fin whale measuring 14.4 meters in total length was found stranded in a 

120 cove of Capri Island (Tyrrhenian Sea) in southern Italy on November 8, 2020. At necropsy, 

121 approximately 1 meter of duodenum showing the occurrence of acanthocephalans embedded 
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122 into the intestinal wall or free in the lumen was cut and moved to the laboratory, where 

123 parasites were counted, rinsed in saline solution, and preserved in ethanol 70% or frozen (- 

124 20°C) for morphological and molecular analyses, respectively. Morphological measurements 

125 were obtained from 20 relaxed adult specimens (10 females and 10 males) using a compound 

126 microscope and a stereomicroscope equipped with ZEN 3.1 imaging system (Zeiss). To study 

127 the proboscis and the pattern of hook spination, the bulb of acanthocephalans was dissected 

128 using scissors and tweezers under the stereomicroscope, and proboscis and neck were 

129 displayed and clarified in Amman’s lactophenol. To study the testes and cement glands, the 

130 male specimens were dissected and organs were displayed and measured under the 

131 stereomicroscope. Acanthocephalans were morphologically classified following the 

132 identification keys proposed by Meyer (1933), Van Cleave (1953) and Petrochenko (1956). 

133 Copromicroscopic examination was performed on a sample of faeces obtained from the 

134 rectum and a standard flotation method with Sheather’s sucrose solution (specific gravity 

135 1.27) was used to detect and measure parasite eggs. 

136 For SEM, the anterior portion of five acanthocephalan specimens was also fixed 

137 overnight in 2.5% glutaraldehyde, then transferred to 40% ethanol (10 min), rinsed in 0.1 M 

138 cacodylate buffer, postfixed in 1% OsO4 for 2 h, and dehydrated in ethanol series, critical 

139 point dried and sputter-coated with platinum. Observations were made using a JEOL JSM 

140 6700F scanning electron microscope operating at 5.0 kV (JEOL, Basiglio, Italy).

141

142 Molecular and phylogenetic analyses 

143 Caudal portions of 10 specimens of B. balaenae (comprising three specimens studied for 

144 SEM) were used for molecular analyses. Total genomic DNA from ∼2 mg of each specimen 

145 was isolated using the Quick-gDNA Miniprep Kit (ZYMO RESEARCH), following the 

146 standard manufacturer-recommended protocol. 
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147 Two regions (18S and 28S) of the nuclear ribosomal RNA (rRNA) and a fragment of 

148 the mitochondrial DNA (mtDNA cox1) were amplified. The near-complete small subunit 

149 (ssrDNA, 18S) (∼1800 bp) was amplified using the forward 5’-

150 AGATTAAGCCATGCATGCGT-3’ and reverse 5’-GCAGGTTCACCTACGGAAA-3’ 

151 primers (Garey et al., 1996; Garcia-Varela et al., 2002, 2013). The near-complete large 

152 subunit (lsrDNA, 28S) (∼2900 bp) was amplified using 2 overlapping PCR fragments of 

153 1400-1500 bp. Primers for the amplicon 1 were forward 5’-

154 CAAGTACCGTGAGGGAAAGTTGC-3’ and reverse 5’-CTTCTCCAA 

155 C(T/G)TCAGTCTTCAA-3’; primers for the amplicon 2 were forward 5’-

156 CTAAGGAGTGTGTAACAACTCACC and reverse 5’-

157 CTTCGCAATGATAGGAAGAGCC-3’ (García-Varela and Nadler, 2005). A partial (∼700 

158 bp) sequence of the mitochondrial cytochrome c oxidase subunit 1 (cox1) was amplified 

159 using the primers LCO1490 (5-GGTCAACAAATCATAAAGATATTGG-3) and HCO2198 

160 (5-TAAACTTCAGGGTGACCAAAAAATCA-3) (Folmer et al., 1994). Polymerase chain 

161 reactions (PCRs) were performed in a 25 µL volume containing 0.6 µL of each primer 10 

162 mM, 2 µL of MgCl2 25 mM (Promega), 5 µL of 5× buffer (Promega), 0.6 µL of dNTPs 10 

163 mM (Promega), 0.2 µL of Go-Taq Polymerase (5U/µL) (Promega) and 2 µL of total DNA. 

164 PCR temperature conditions for rDNA amplifications were the following: 95°C for 3 min 

165 (initial denaturation), followed by 40 cycles at 94°C for 1 min (denaturation), 52-56°C 

166 (optimized for the 18S and 28S amplification, respectively) for 1 min (annealing), 72°C for 1 

167 min (extension) and followed by post-amplification at 72°C for 7 min. PCR cycling 

168 parameters for the mtDNA cox1 amplifications were the following: 95°C for 5 min (initial 

169 denaturation), followed by 40 cycles at 95°C for 1 min (denaturation), 45°C for 1 min 

170 (annealing), 72°C for 1 min (extension) and followed by post-amplification at 72°C for 7 

171 min.
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172 PCR amplicons were purified using the AMPure XP kit (Beckman coulter) following 

173 the standard manufacturer-recommended protocol and Sanger sequenced from both strands, 

174 using the same primers, through an Automated Capillary Electrophoresis Sequencer 3730 

175 DNA Analyzer (Applied Biosystems), using the BigDye® Terminator v3.1 Cycle Sequencing 

176 Kit (Life Technologies). Contiguous sequences were assembled and edited using MEGAX v. 

177 11 (Kumar et al., 2018). Sequence identity was checked using the Nucleotide Basic Local 

178 Alignment Search Tool (BLASTn) (Morgulis et al., 2008). 

179 The 18S, 28S and cox1 data sets were aligned with all the sequences of species of 

180 genera Andracantha, Bolbosoma and Corynosoma (Polymorphidae) available in GenBank, 

181 using ClustalX v. 2.1 (Larkin et al., 2007), as described in García-Varela et al. (2013) (see 

182 Table 1). 

183 Sequences were combined (18S+28S and 18S+28S+cox1), using SequenceMatrix 

184 (Vaidya et al., 2011), while the best partition schemes and best-fit models of substitution 

185 were identified using Partition Finder (Lanfear et al., 2012) with the Akaike information 

186 criterion (AIC; Akaike, 1973). Sequences obtained in the present study were deposited in 

187 GenBank under the accession numbers MZ047218-MZ047227 (18S), MZ047231-MZ047240 

188 (28S) and MZ047272-MZ047281 (cox1). 

189  Phylogenetic trees of the 18S+28S and 18S+28S+cox1 gene loci were constructed 

190 using the Bayesian inference (BI) with MrBayes, v. 3.2.7 (Ronquist and Huelsenbeck, 2003). 

191 The Bayesian posterior probability analysis was performed using the MCMC algorithm, with 

192 four chains, 0.2 as the temperature of heated chains, 5,000,000 generations, with a 

193 subsampling frequency of 500 and a burn-in fraction of 0.25. Posterior probabilities were 

194 estimated and used to assess support for each branch. Values with a 0.90 posterior probability 

195 were considered well-supported. Trees were drawn using FigTree v. 1.3.1 (Rambaut, 2009). 

196 The phylogenetic trees were rooted using Hexaglandula corynosoma (Travassos, 1915) 
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197 Petrochenko, 1958 and Polymorphus brevis (Van Cleave, 1916) Travassos, 1926 as 

198 outgroups, according to García-Varela et al. (2021). Genetic distances were computed using 

199 the Kimura 2-Parameters (K2P) model (Kimura, 1980) with 1000 bootstrap re-samplings, 

200 using MEGA Software, version 7.0 (Kumar et al., 2018).

201

202 Results

203 Parasitological study

204 A total of 142 specimens of acanthocephalans yellowish in colour were collected from the 

205 examined tract of duodenum. Most specimens were firmly embedded with their proboscis 

206 and cephalic bulb within the muscular layer of the intestinal wall, having perforated the 

207 mucosal and submucosal surfaces, and few specimens were found free in the intestinal 

208 lumen. Gross changes consisted of oedematous thickening of duodenal wall with the 

209 occurrence of 5-10 mm large, green-dark multifocal nodular lesions scattered throughout the 

210 muscular layer.

211 Based on the morphological characters, all the acanthocephalans were identified as B. 

212 balaenae (Figs. 1 and 2). Specimens of B. balaenae differ from all other species of 

213 Bolbosoma having unarmed bulb and proboscis armed with 24 rows of hooks with 7-8 hooks 

214 per row. Proboscis was cylindrical showing hooks of different sizes and morphology, first 5 

215 with roots and last 2-3 with rootless (Fig. 1C, 1D; Table 2). A field of trunked trunk spines 

216 restricted to the prebulbar foretrunk variable in number (from 5 to 9 irregular circles) was 

217 distinguished by SEM study alone (Fig. 2). Observation of the detailed surface morphology 

218 allowed also to highlight the features and unique ultrastructure of proboscis’s hooks showing 

219 shallow longitudinal grooves, as well as the micropores of about 100-120 nanometres on the 

220 tegument of the foretrunk (Fig. 2). Most important diagnostic morphological measurements 

221 of B. balaenae and their mature eggs observed at the copromicropic analysis (Fig. 1H) are 
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222 listed in table 2. Voucher specimens have been deposited at the Zoological Collection of the 

223 Stazione Zoologica Anton Dohrn in Naples (Italy) with the following accession number: 

224 SZN-ACA0001.

225

226 Molecular and phylogenetic analyses

227 The BLASTn analysis of the 18S sequences retrieved a similarity between 99.70% and 100% 

228 with sequences from GenBank belonging to B. balaenae (JQ040306), Bolbosoma sp. 

229 (JX442167), and B. turbinella (JX442166). The BLASTn analysis of 28S sequences 

230 produced a percentage of similarity of 99.60% with Bolbosoma sp. (JX442179) from the 

231 northern fur seal Callorhinus ursinus Linnaeus, 1758 available in GenBank. The mtDNA 

232 cox1 sequences shared a similarity of ∼99% with B. balaenae (JQ061132) from the 

233 euphausiid Nyctiphanes couchii (Bell, 1853), erroneously deposited in GenBank under the 

234 name Rhadinorhynchus pristis by Gregori et al. (2012). 

235 The combined 18S+28S phylogenetic Bayesian tree, including sequences of species within 

236 the three genera (Andracantha, Bolbosoma and Corynosoma) of the family Polymorphidae, 

237 showed poorly resolved relationships, especially within the genus Bolbosoma (Fig. 3). In 

238 contrast, the concatenated BI tree topology of the three gene loci 18S+28S+cox1 showed that 

239 the obtained sequences from Bolbosoma here analyzed clustered in a highly supported clade 

240 (100% of probability value) (Fig. 4). This clade including also the sequences available in 

241 GenBank of the polymorphid cystacanth obtained from N. couchii (JQ061132, JQ040306), 

242 resulted to be clearly distinct from the other species of the genus Bolbosoma, whose 

243 sequences at those analyzed gene loci, were available in GenBank (Fig. 4). The distance 

244 values between the present sequences of B. balaenae and the sequences from N. couchii 

245 were: K2P= 0.017±0.005 at the mtDNA cox1 and K2P= 0.004±0.002 at the 18S rRNA 

246 (present sequences versus JQ040304-JQ040306). While, at the interspecific level, the 
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247 mtDNA cox1 sequences of B. balaenae showed a higher value of differentiation (K2P= 

248 0.165±0.020) with respect to the closest sequence of B. caenoforme (KF156891). No 

249 sequences of B. caenoforme were available in GenBank for the 28S gene locus. 

250

251 Discussion

252 Previous reports of Bolbosoma species from the marine mammals in the Mediterranean Sea 

253 are limited to B. capitatum (Parona, 1893; Porta, 1906) in a long-finned pilot whale 

254 Globicephala melas Traill, 1809, and B. vasculosum (only immature specimens in a common 

255 dolphin Delphinus delphis; Van Cleave 1953). Recently, a single specimen of Bolbosoma sp. 

256 later identified as B. capitatum was collected from 1 of 7 fin whales (Marcer et al., 2019).

257 These uncommon records suggest that Bolbosoma spp. are only occasional in the 

258 Mediterranean basin, likely transported from migrating individuals from the Atlantic Ocean. 

259 Helminth parasites have been extensively used as biological tags of marine vertebrates in host 

260 population structure studies. Recently, we used anisakid nematodes of the dwarf sperm whale 

261 Kogia sima Owen 1866 and trypanorhynch cestodes of the sunfish Mola mola Linnaeus, 1758 

262 to suggest the possible existence of a resident population or migration routes of their hosts, 

263 respectively (Santoro et al., 2018; 2020). The fin whale is the most abundant mysticete in the 

264 Mediterranean Sea (Panigada and Notarbartolo di Sciara, 2012) with the occurrence of both 

265 resident and migrating populations confirmed by genetic studies (Bérubé et al., 1998). For the 

266 migrating fin whale populations, a general movement trend towards the northeast North 

267 Atlantic in spring-summer and towards the Mediterranean during fall-winter has been 

268 suggested (Geijer et al., 2016). The present finding of a parasite known from geographical 

269 areas far from the Mediterranean basin seems to suggest that the present fin whale would be a 

270 migrating and not a resident individual. 
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271 Regarding the source of infection, Bolbosoma cystacanths have been found in fish 

272 (Scombridae, Scorpaenidae, Carangidae, Trichiuridae, Gempylidae, Salmonidae, Berycidae, 

273 Lophotidae, Gadidae and Belonidae (www. nhm. ac.uk/ research- curation/ research/ projects/ 

274 host-parasites/ index. Html) and crustaceans (euphausiids and copepods) (Measures, 1992; 

275 Hoberg et al., 1993; Dailey et al., 2000; Gregori et al., 2012). Recently, Gregori et al. (2012) 

276 found cystacanths identified as B. balaenae in 0.04% of the euphausiid N. couchii specimens 

277 examined from the Atlantic Galician waters (Spain). The source of the infection of the 

278 present fin whale with B. balaenae remains unknown; it could be plausible that the fin whale 

279 acquired the infection by ingestion of infected crustaceans and/or fish during the migration 

280 from the Atlantic to the Mediterranean Sea waters. 

281 Most of the morphological characters of adult specimens of B. balaenae were not 

282 detailed by earlier authors so that comparisons with the present material are limited. For 

283 instance, males/females combined total length were 80-160 mm in the original description 

284 (reported in Porta, 1906) and 190 to 205 mm in Van Cleave (1953), while data on the 

285 measurements of the hook proboscis are missed as well as the measurements of most 

286 characters listed in table 2. Regarding the number of rows of hooks and the number of hooks 

287 per longitudinal row of the proboscis, the present data correspond to previous data (Meyer, 

288 1933; Van Cleave, 1953; Zdzitowiecki, 1991). In contrast, previous descriptions of prebulbar 

289 foretrunk of B. balaenae using optical microscopy alone reported apparently contrasting data 

290 on the presence/absence and numbers of circles of spines: 6 circles in Meyer (1933), 0 in Van 

291 Cleave (1953), and up to 10 circles of spines in Zdzitowiecki (1991). Moreover, in 

292 cystacanths morphologically identified as B. balaenae found encapsulated in the 

293 cephalothorax of N. couchii, Gregori et al. (2012) described a single field of trunk spines 

294 restricted to the foretrunk and composed of 4 to 6 irregular circles of small spines adjacent to 

295 the neck. Finally, Bennett et al. (2021) found 7 circles of spines in an immature individual 
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296 identified as B. balaenae in a blue penguin Eudyptula novaehollandiae Stephens 1826 from 

297 New Zealand. The present observation regarding the occurrence of trunked trunk spines on 

298 the prebulbar foretrunk of adult individuals of B. balaenae differentiated by SEM alone 

299 supports the hypothesis of Van Cleave (1953), according to which the trunk spines show 

300 wide variability in number, and these may be lost along the parasite life span. 

301 The species of the genus Corynosoma (a polymorphid genus very close to 

302 Bolbosoma) use the flattened, spiny foretrunk as a very efficient device that assists the 

303 proboscis to adhere to the gut wall but is also able to put the ventral hindtrunk into contact 

304 with the substratum, reinforcing attachment (Aznar et al. 2006, 2018). Aznar et al. (2016) 

305 reported that cystacanths and adults of Corynosoma cetaceum (a parasite of the stomach of 

306 dolphins) exhibited a wide range of fold spine reduction and variability, suggesting that they 

307 are generated before the adult stage, when spines are functional for attachment to the stomach 

308 wall of its definitive host. This assumes that the foretrunk spines should not be regarded as a 

309 diagnostic taxonomic character within the genus Corynosoma (Aznar et al., 2016) as well as 

310 in the genus Bolbosoma. 

311 Observation of the detailed surface morphology of the present material using SEM 

312 allowed also to highlight the features and unique ultrastructure of proboscis’s hooks, showing 

313 shallow longitudinal grooves, as well as the micropores of the tegument of foretrunk 

314 supposed to be a specialized system implicated in absorptive function (Heckmann et al., 

315 2013). According to Heckmann et al. (2013) micropores on the tegument showing different 

316 sizes and shapes have been described in at least 16 acanthocephalan species. The different 

317 ultrastructural pattern of proboscis’s hooks has been studied as a potential diagnostic feature 

318 to differentiate among species of Centrorhynchus and species of related genera, but no 

319 conclusive results were obtained (Amin et al., 2015; 2018). No mention is done on both 

320 ultrastructure of proboscis’s hooks and epidermal micropores from previously published 
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321 papers reporting SEM observation of B. capitatum, B. vasculosum, and B. turbinella (Amin 

322 and Margolis, 1998; Costa et al., 2000; da Fonseca et al., 2019). Future studies comparing the 

323 ultrastructure features among Bolbosoma species could reveal if the present findings might 

324 yield important information to help identify this species.

325 The combination of morphological and molecular studies is considered a very useful 

326 approach to resolve taxonomic ambiguities within the genera of Polymorphidae (García-

327 Varela et al., 2013). Unfortunately, out of the 12 species of Bolbosoma considered as valid, 

328 DNA sequences for only six of those are available in GenBank. Moreover, from the current 

329 23 Bolbosoma sequences available, only four are from adult parasites obtained from their 

330 definitive hosts: three of them are belonging to B. turbinella (18S, 28S and cox1) from the 

331 grey whale, and one to B. nipponicum (ITS1/ITS2 region) from the common minke whale. 

332 Before the present study, four sequences of B. balaenae (including three of 18S and one of 

333 cox1) were available in GenBank, all from same cystacanths (Gregori et al., 2012). However, 

334 the sequence of cox1 (JQ040303) deposited in GenBank as B. balaenae belongs to R. pristis 

335 (an acanthocephalan of Rhadinorhynchidae family), while the sequence deposited as R. 

336 pristis (JQ061132.1) belongs to B. balaenae. Likely an error occurred by Gregori et al. 

337 (2012) at moment of sequence submission and the names of sequences used in the mentioned 

338 study were inverted. 

339 In the present study, the BI phylogenetic analysis based on the combined (18S+28S) 

340 rRNA data produced poorly resolved clades among species of Andracantha, Corynosoma and 

341 Bolbosoma. Moreover, from the obtained results it is clear that the gene locus 18S is not 

342 diagnostic for the genetic identification of Bolbosoma species. While, the phylogenetic tree 

343 herein inferred from combining the sequences obtained at the three gene loci 

344 (18S+28S+cox1) from adult individuals of B. balaenae and those sequences at the same gene 

345 loci available in GenBank, has shown that the species of Andracantha, Bolbosoma, and 
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346 Corynosoma  are comprising, respectively,  in three distinct and  well-supported major clades 

347 (Fig. 4). These findings are in agreement with previous phylogenetic elaborations provided 

348 by García-Varela et al. (2013) and Presswell et al. (2018). In addition, the combined BI 

349 inferred from 18S+28S+cox1 gene sequences supports, with high probability values, that the 

350 so far genetically characterized species of Bolbosoma, including B. balenae, represent distinct 

351 phylogenetic lineages. 

352 The phylogenetic pattern obtained is congruent with the life cycles of members of 

353 these three genera (i.e., Andracantha, Bolbosoma and Corynosoma), which involve teleost 

354 marine fish as paratenic hosts. It has been suggested that the shared ecological feeding 

355 behaviour among different definitive hosts could have provided many opportunities for co-

356 speciation and host-switching events and could have accompanied the evolutionary pathways 

357 of these polymorphid species (Dailey et al., 2000; Aznar et al., 2006; García-Varela et al., 

358 2013, 2021; Presswell et al., 2018). 

359 Finally, the only report of pathological changes associated with Acanthocephala of the 

360 genus Bolbosoma in a Mediterranean cetacean was reported by Parona (1893) who described 

361 a severe intestinal parasitosis caused by B. capitatum in a long-finned pilot whale. Parona 

362 (1893) reported the occurrence of at least 25305 individual parasites strictly embedded in the 

363 muscular layer along the first 12 meters of the intestine. Dailey et al. (2000) described gross 

364 multifocal transmural abscesses encapsulating proboscis of B. balaenae along the first 7.5 m 

365 of the ileum in a juvenile gray whale. The present results agree with the gross pathological 

366 changes described by Parona (1893) and Dailey et al. (2000) and confirm that B. balaenae 

367 may cause enteritis also in the fin whale. 

368
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563 Figure legends

564 Fig. 1. Microscopic features of Bolbosoma balaenae from the intestine of the fin whale from 

565 the southern Italy. Anterior extremity frontal (A, female) and lateral (B, male) views (scale 

566 bar: 1000 μm). Proboscis (C, scale bar: 50 μm) and particular of proboscis basal hooks (D, 

567 scale bar: 100 μm). Bursa lateral (E, scale bar: 1000 μm) and ventral (F, scale bar: 500 μm) 

568 views. Genital pore of female in lateral view (G, scale bar: 500 μm). Mature egg (H, scale 

569 bar: 20 μm). 

570

571 Fig. 2. Scanning electron micrographs of Bolbosoma balaenae from the intestine of the fin 

572 whale from the southern Italy. General view of prebulb and proboscis of a female (A, scale 

573 bar: 100 μm). Note the circles of trunked trunk spines on the prebulb. Lateral (B) and apical 

574 (C) views of proboscis and neck (scale bar: 100 μm) of a male. High magnification of an 

575 apical (D, scale bar: 10 μm) and a basal (E, scale bar: 1 μm) proboscis hook. High 

576 magnification of an apical proboscis hook’ surface (F, scale bar: 1 μm) showing longitudinal 

577 grooves. A high magnification of a truncated trunk spine (G, scale bar: 1 μm). Note the body 

578 wall micropores on the tegument of the prebulb. Mature egg (H, scale bar: 10 μm). 

579

580 Fig. 3. Phylogenetic concatenated tree from Bayesian inference based on 18S and 28S 

581 sequences of B. balaenae obtained in the present study, with respect to the sequences of 

582 species of genera Andracantha, Bolbosoma and Corynosoma, at the same gene loci available 

583 in GenBank. The analysis was performed by MrBayes, v. 3.2.7, using the GTR + G 

584 substitution model. Hexaglandula corynosoma and Polymorphus brevis were used as 

585 outgroup. The sequences obtained in this study are in bold. 

586
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587 Fig. 4. Phylogenetic concatenated tree from Bayesian inference based on 18S+28S+cox1 

588 sequences of B. balaenae obtained in the present study, with respect to the sequences of 

589 species of genera Andracantha, Bolbosoma and Corynosoma, at the same gene loci available 

590 in GenBank. The analysis was performed by MrBayes, v. 3.2.7, using the GTR + G 

591 substitution model. Hexaglandula corynosoma and Polymorphus brevis were used as 

592 outgroup. The sequences obtained in this study are in bold. 

593

594

595
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Table 1. Species, stage (L: larva; A: adult), host, locality, and accession numbers of sequences of cox1, 28S and 18S of genera Andracantha, Corynosoma and 
Bolbosoma included in the Bayesian inference shown in the figures 3 and 4. -: data not reported.

The cox1 sequence of Bolbosoma balaenae of Gregori et al. (2012) was erroneously deposited in GenBank under the name Rhadinorhynchus pristis.

Species Stage Host Locality cox1 28S 18S References

Andracantha gravida - Phalacrocorax auritus Yucatan, Mexico EU267822 EU267814 EU267802 García-Varela et al., 2009
Andracantha leucocarboi A Leucocarbo chalconotus New Zealand MF527025 MF401623 - Presswell et al., 2018
Andracantha sigma A Eudyptula minor New Zealand MF527034 MF401624 - Presswell et al., 2018
Andracantha phalacrocoracis A Phalacrocorax pelagicus Hokkaido, Japan LC465396 LC461973 - Sasaki et al., 2019
Corynosoma australe - Phocarctos hookeri New Zealand JX442191 JX442180 JX442168 García-Varela et al., 2013
Corynosoma hannae L Peltorhamphus novaezeelandiae New Zealand KX957726 - - Hernandez-Orts et al., 2016
Corynosoma validum - Callorhinus ursinus St. Paul Island, Alaska JX442193 JX442182 JX442170 García-Varela et al., 2013
Corynosoma villosum L Pleurogrammus azonus Hokkaido, Japan LC465336 LC461969 - Sasaki et al., 2019
Corynosoma obtuscens - Callorhinus ursinus St. Paul Island, Alaska JX442192 JX442181 JX442169 García-Varela et al., 2013
Corynosoma enhydri - Enhydra lutris Monterey Bay, 

California
DQ089719 AY829107 AF001837 García-Varela and Nadler, 2006

Corynosoma magdaleni - Phoca hispida saimensis Lake Saimaa, Finland EF467872 EU267815 EU267803 García-Varela et al., 2008
Corynosoma semerme L Osmerus dentex Hokkaido, Japan LC465392 LC461963 - Sasaki et al., 2019
Corynosoma strumosum - Phoca vitulina Monterey Bay, 

California
EF467870 EU267816 EU267804 García-Varela et al., 2008

Bolbosoma balaenae⃰ L
A

Nyctiphanes couchii
Balaenoptera physalus

Spain
Capri Island, Italy

JQ061132
MZ047272-
MZ047281

-
MZ047231-
MZ047240

JQ040306
MZ047218-
MZ047227

Gregori et al., 2012
Present study

Bolbosoma caenoforme A Salvelinus malma Tauj Bay, Russia KF156891 - KF156879 Malyarchuk et al., 2014
Bolbosoma sp. - Callorhinus ursinus St. Paul Island, Alaska JX442190 JX442179 JX442167 García-Varela et al., 2013
Bolbosoma turbinella - Eschrichtius robustus Monterey Bay, 

California
JX442189 JX442178 JX442166 García-Varela et al., 2013

Bolbosoma vasculosum - Lepturacanthus savala Indonesia - - JX014225 Verweyen et al., 2011
Hexaglandula corynosoma A Nyctanassa violacea La Tovara, Mexico EU189488 EU267817 EU267808 Guillén-Hernández et al., 2008; 

García-Varela et al., 2009
Polymorphus brevis A Nycticorax nycticorax Michoacan, Mexico DQ089717 AY829105 JX442171 García-Varela and Nadler, 2006; 

García-Varela et al., 2013
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Table 2. Measurements (mean value ± standard deviation with range in parenthesis) of main diagnostic 
characters in Bolbosoma balaenae found in a fin whale from southern Italy. Measurements are in micrometres 
except when stated. Ten elements for each characters were measured except for the bursa for which the 
measurements were obtained from four specimens with everted bursa. 

Characters Male (n = 10) Females (n = 10)

Total length (cm) 11.3±0.91 (10.1-12.8) 13.6±0.75 (12.8-14.5)

Width at middle of body (mm) 2.4±0.06 (2.4-2.5) 4±0.94 (3-5.1)

Bulb length (mm) 5.2±0.30 (5.1-5.6) 6.1±0.82 (5-7.1)

Bulb width (mm) 5.1±0.23 (4.9-5.4) 5.9±0.61 (4.9-6.6)

Prebulb length (mm) 1±0.18 (0.8-1.2) 1±0.21 (0.8-1.3)

Prebulb width at base (mm) 1.4±0.26 (1.1-1.5) 1.8±0.25 (1.6-2.1)

Proboscis length 564.6±10.44 (598.4-613.1) 611±38.05 (561-648.7)

Proboscis width at basal hook 499.9±3.51 (496.1-503.1) 483.9±67.65 (425.5-572.9)

Neck length 573±48.44 (518.4-610.8) 517.8±61.04 (454-595.4)

Lemnisci length 4005.4±219.02 (3828.4-4250.7) 3157.2±873.27 (2211.7-4369.8)

Proboscis hook 1 length 66.8±15.58 (54.5-88.6) 51.8±3.36 (46.2-55.1)

Proboscis hook 1 width 10.5±1.72 (8.2-12.1) 11.7±3.48 (5.7-16.6)

Proboscis hook 2 length 61.8±7.33 (56.4-74.4) 61.6±9.46 (79.2-53.6)

Proboscis hook 2 width 13.3±2.40 (10.2-16.8) 14.4±1.95 (11.4-18.2)

Proboscis hook 3 length 63.2±4.40 (59.4-69.1) 57.72±10.68 (40.01-87.99)

Proboscis hook 3 width 14.55±0.96 (13.19-15.49) 13.7±3.13 (11.5-20.9)

Proboscis hook 4 length 60.6±3.53 (56.8-65.7) 51.1±7.65 (39.2-67.1)

Proboscis hook 4 width 16.1±2.05 (14.2-18.7) 14.5±3.39 (11.3-20.9)

Proboscis hook 5 length 67±4.35 (61.8-73.9) 51.3±8.97 (40.2-70.8)

Proboscis hook 5 width 19.2±1.42 (16.7-20.9) 14.9±3.35 (9.5-20.7)

Proboscis hook 6 length 58.3±11.71 (44.4-70.1) 57.7±12.41 (40.3-81.7)

Proboscis hook 6 width 15.5±4.22 (11.2-19.8) 16.7±3.78 (13.9-24.7)

Proboscis hook 7 length 37.6±1.12 (36.8-39.5) 35.3±7.65 (21.4-55.5)

Proboscis hook 7 width 8.2±0.97 (7.1-9) 9.4±2.56 (5.7-11.5)

Proboscis hook 8 length 28.5±3.96 (24.7-35.3) 34.1±7.41 (22.8-46.8)

Proboscis hook 8 width 4.8±1.37 (3.8-7.5) 7.1±1.48 (4.9-11.2)

Anterior testis length 3621.5±350.1 (3044.5-3949.4) -

Anterior testis width 1308.5±143.13 (1065.3-1406.6) -

Posterior testis length 3479.5±348.46 (2866.5-3712.6) -

Posterior testis width 1431.6±105.53 (1275-1441) -

Cement glands length (cm) 5±0.97 (4-6.5) -

Bursa diameter 2260.2±0.18 (2020.1-2480.3) -

Egg length - 140.6±6.74 (132.1-149.5)
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Egg width - 31.2±1.78 (27.8-33.9)
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Fig. 1. Microscopic features of Bolbosoma balaenae from the intestine of the fin whale from the southern 
Italy. Anterior extremity frontal (A, female) and lateral (B, male) views (scale bar: 1000 μm). Proboscis (C, 

scale bar: 50 μm) and particular of proboscis basal hooks (D, scale bar: 100 μm). Bursa lateral (E, scale 
bar: 1000 μm) and ventral (F, scale bar: 500 μm) views. Genital pore of female in lateral view (G, scale bar: 

500 μm). Mature egg (H, scale bar: 20 μm). 
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Fig. 2. Scanning electron micrographs of Bolbosoma balaenae from the intestine of the fin whale from the 
southern Italy. General view of prebulb and proboscis of a female (A, scale bar: 100 μm). Note the circles of 
trunked trunk spines on the prebulb. Lateral (B) and apical (C) views of proboscis and neck (scale bar: 100 

μm) of a male. High magnification of an apical (D, scale bar: 10 μm) and a basal (E, scale bar: 1 μm) 
proboscis hook. High magnification of an apical proboscis hook’ surface (F, scale bar: 1 μm) showing 

longitudinal grooves. A high magnification of a truncated trunk spine (G, scale bar: 1 μm). Note the body 
wall micropores on the tegument of the prebulb. Mature egg (H, scale bar: 10 μm). 
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Fig. 3. Phylogenetic concatenated tree from Bayesian inference based on 18S and 28S sequences of B. 
balaenae obtained in the present study, with respect to the sequences of species of genera Andracantha, 
Bolbosoma and Corynosoma, at the same gene loci available in GenBank. The analysis was performed by 

MrBayes, v. 3.2.7, using the GTR + G substitution model. Hexaglandula corynosoma and Polymorphus 
brevis were used as outgroup. The sequences obtained in this study are in bold. 
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Fig. 4. Phylogenetic concatenated tree from Bayesian inference based on 18S+28S+cox1 sequences of B. 
balaenae obtained in the present study, with respect to the sequences of species of genera Andracantha, 
Bolbosoma and Corynosoma, at the same gene loci available in GenBank. The analysis was performed by 

MrBayes, v. 3.2.7, using the GTR + G substitution model. Hexaglandula corynosoma and Polymorphus 
brevis were used as outgroup. The sequences obtained in this study are in bold. 
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