TRADITIONS IN COLLISION: THE
EMERGENCE OF LOGICAL EMPIRICISM
BETWEEN THE RIEMANNIAN AND
HELMHOLTZIAN TRADITIONS

Marco Giovanelli

This article attempts to explain the emergence of the logical empiricist philosophy of
space and time as a collision of mathematical traditions. The historical development of
the “Riemannian” and “Helmholtzian” traditions in nineteenth-century mathematics is
investigated. Whereas Helmholtz’s insistence on rigid bodies in geometry was developed
group theoretically by Lie and philosophically by Poincaré, Riemann’s Habilitationsvotrag
triggered Christoffel’s and Lipschitz’s work on quadratic differential forms, paving the
way to Ricci’s absolute differential calculus. The transition from special to general rela-
tivity is briefly sketched as a process of escaping from the Helmholtzian tradition and en-
tering the Riemannian one. Early logical empiricist conventionalism, it is argued, emerges
as the failed attempt to interpret Einstein’s reflections on rods and clocks in general rela-
tivity through the conceptual resources of the Helmholtzian tradition. Einstein’s episte-
mology of geometry should, in spite of his rhetorical appeal to Helmholtz and Poincaré,
be understood in the wake the Riemannian tradition and of its aftermath in the work of

Levi-Civita, Weyl, Eddington, and others.

1. Introduction

In an influential paper, John Norton (1999) has suggested that general relativity
might be regarded as the result of a “collision of geometries” or, better, of geo-
metrical strategies. On the one hand, there is Riemann’s “additive strategy,” which
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makes sure that no superfluous elements enter into the initial setting and then
progressively obtains the actual geometry of space as the result of a progressive
enrichment of structure. On the other hand, in Kleins “subtractive strategy,” one
starts “with all bells and whistles and then strips away all elements deemed to be
descriptive fluff only” (Janssen 2005, 61).

This article intends to show that the emergence of the early logical empiricists’
philosophy of space and time might be seen as the result of a cognate, but less
successful, “collision” of two geometrical traditions that might be labeled the
“Helmholtzian” and the “Riemannian” traditions. Logical empiricist neoconven-
tionalism is nothing but the result of the attempt to interpret the philosophical
novelty of general relativity, the very “triumph” (Einstein 1915, 778) of the Rie-
mannian tradition in Einstein’s own account, by resorting to the conceptual re-
sources shaped by the Helmholtzian one. Fascinated by Helmholez’s approach to
geometry based on the independence of the congruence of bodies from position,
what the logical empiricists neglected to appreciate was that Riemann’s assump-
tion of the independence of the length of lines from position was the relevant issue
(Torretti 1983).

This article is divided into three parts. In the first part (secs. 2 and 3), the
main line of Riemann’s (sec. 2.1) and Helmholtz’s (sec. 2.2) contributions to
geometry are sketched and their development into different lines of evolution
is investigated: if Lie and Poincaré developed the group theoretical and philo-
sophical implications of Helmholtz's work (sec. 3.1), Riemann’s insight found
its expression in the nongeometrical work of Christoffel, Lipschitz (sec. 2.2),
Ricci, and Levi-Civita (sec. 3.2) that led to the formulation of the absolute dif-
ferential calculus.

In the second part of this article (sec. 4), the passage from special to general
relativity is presented as an escape from the Helmholtzian tradition (sec. 4.1)
and an appropriation of the conceptual tools of the Riemannian one (sec. 4.2).
It was only after general relativity that the geometrical content of this tradition
was rediscovered by Levi-Civita and implemented by Weyl in space-time phys-
ics (sec. 4.3).

The third part of this article (secs. 5-7) will show how the standard logical
empiricists’ (Schlick’s and most of all Reichenbach’s) philosophy of space and
time emerged in the attempt to interpret general relativity in the light of Helm-
holtz’s and Poincaré’s philosophy of geometry (secs. 5.1, 5.3, 5.4, and 6.2), partly
misled by some ambiguous remarks of Einstein himself (secs. 5.2 and 6.1). Ne-
glecting the group theoretical implications of Helmholtzs and Poincaré’s work,
logical empiricists considered their discussion of the role of rigid bodies in the
foundations of geometry (the reproducibility of congruent figures at a distance)
as the right philosophical framework to understand the role of rods and clocks

329

This content downloaded from 205.208.116.024 on November 20, 2017 00:41:28 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journal s.uchicago.edu/t-and-c).



HOPOS | Emergence of logical Empiricism

in general relativity. However, rods and clocks in Einstein’s theory represent the
counterpart of a central feature of Riemannian geometry as such (the reproduc-
ibility of the unit of length at a distance) that Weyl and Eddington had proposed to
drop (sec. 7).

This article hopes to show that the role of Helmholtz and Poincaré in the
historical and systematical discussion of space-time theory has been overesti-
mated among philosophers of science. Recent historically accurate and philo-
sophically influential works, such as those of Michael Friedman (2001, 2002a,
2002b, 2009) or Robert DiSalle (2006), have analyzed the developments of sci-
entific philosophy in the nineteenth century, from Kant to Einstein, precisely
along a line in which Helmholtz and Poincaré are the main protagonists. The
historical reconstruction suggested in the current article should contribute to a
demonstration that the philosophical problems raised by Einstein’s theory can
be propetly understood from the point of view of what we have labeled the Rie-
mannian tradition, from the less accessible works of authors such as Christoffel,
Lipschitz, and Ricci, to which historians of the philosophy of science have granted
far too little attention.

2. Riemann, Helmholtz, and the Birth of the Nineteenth-Century
Debate on the Foundations of Geometry

2.1. Riemann's Habilitationsvortrag and lts Analytic Development
in the Commentatio mathematica

Bernhard Riemann’s “Uber die Hypothesen, welche der Geometrie zu Grunde
liegen”—a lecture given in 1854 to fulfill the requirements of promotion to Pri-
vatdozent—was discovered in the late 1860s by Dedekind, to whom Riemann’s
wife had handed over her husband’s Nachlass. As Riemann’s preparatory notes
reveal, his intention was to “build all geometry” without resorting to “any spatial
intuition” (cited in Scholz 1982, 228). Space might be regarded as a special case
of the abstract concept of a continuous 7-dimensional manifold (Scholz 1979),
in which, roughly, every single element is identified by means of 7 variables x;,
X2, X3, . . . X, that can assume the “the continuous series of all possible number
values [Zahlenwerthe] from —oo to +o0” (cited in Scholz 1982, 228). The system
of colors (Riemann 1868, 135), as generated as mixtures of three basic colors,
can be considered as another example of a three-dimensional manifold, whereas
sounds, defined by their continuously changing pitch and volume, can be seen as
being the elements of a two-dimensional manifold.
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Having introduced the notion of a continuous manifold of 7 dimensions,
Riemann’s next problem was to investigate the measure relations of which such
a manifold is capable (Scholz 1992), that is, the possibility of comparing “defi-
nite portions of a manifoldness, distinguished by a mark or by a boundary”
(which Riemann calls “quanta”) with one another (Riemann 1873, 15; Riemann
1873 is a translation of Riemann 1868).

The comparison with regard to quantity in a continuous manifold happens
through measurement. Measurement involves the “superposition of the mag-
nitudes to be compared [einem Aufeinanderlegen der zu vergleichenden Grossen).”
It must be possible to transport one quantity to be used “as a standard [a/s
Massstab]” (Riemann 1873, 15) for the others so that the ratio between the mag-
nitude of every quantity and a given unit magnitude of the same kind can be
determined univocally. Without the possibility “of transporting one manifold
as the standard for another” (cited in Scholz 1982, 228), “two magnitudes can
only be compared when one is a part of the other; in which case also we can only
determine the more or less and not the how much” (Riemann 1873, 15) with
respect to a given standard of length. In other words, if measurement must be
possible, then “the length of lines” must be regarded as “independent of their
position” and “expressible in terms of certain units” (15).

According to Riemann, space has a feature that distinguishes it from other
possible continuous manifolds. In space, the magnitude of any piece of a man-
ifold of one dimension can be compared with any other, or, as Riemann fa-
mously put it, “the length of lines is independent of their position and conse-
quently every line is measurable by means of every other” (1873, 15); that is, it
can be expressed as a multiple or a fraction of every other. In contrast, in the man-
ifold of colors there is no relation between any two arbitrary colors that would
correspond to the distance between any two points in space, nor can one compare
a difference of pitch with a difference of volume in the manifold of sounds.

In space, there is instead a distance between any pair of arbitrary points, which
can be expressed as a function of their coordinates. Inspired by “the celebrated
memoir of Gauss, Disquisitiones generales circa superficies curvas [Gauss 1828a,
1828b,” Riemann famously assumed the hypothesis (the simplest among the
other possible alternatives) that the distance between any two arbitrarily closed
points, the so-called line element 4, is equal to “the square root of an always pos-
itive integral homogeneous function of the second order of the quantities dx, in
which the coefficients are continuous functions of the quantities x” (Riemann
1873, 16; see also Libois 1957; Scholz 1992).

The length of an arbitrary path connecting two points can then be calculated
as the integral Jds, that is, by adding together the lengths of the infinitesimal
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portions into which the line may be decomposed. More precisely, the equality of
line-lengths corresponds to the equality of such integrals, so that the relative ra-
tios of any two lengths are uniquely represented. Multiplying all lengths by a
positive constant causes the values to change to a different unit of measure with-
out upsetting relative ratios of lengths. Hence, once a unit of length has been
stipulated, the numerical value of the length of an arbitrary line may be deter-
mined “in a manner wholly independent of the choice of independent vari-
ables” (Riemann 1873, 16).

The coefficients of the quadratic expression depend indeed on a particular
choice of such variables, but, regardless of the system of variables used, the length
of a line is always assigned the same value. As Riemann points out, every such
expression can be in fact transformed “into another similar one if we substitute
for the 7 independent variables functions of 7z new independent variables,” leav-
ing “unaltered the length of lines.” However, as he immediately emphasizes, “we
cannot transform any expression into any other” (Riemann 1873, 16).

In particular it is not always possible to transform every expression into one
“in which the line element may be reduced to the form VZdx*” (Riemann
1873, 16; for more details, see Portnoy 1982; Zund 1983), that is, the manifolds
that Riemann calls “flat,” where “the position of points” might be “expressed by
rectilinear co-ordinates.” Hence, when “the line-element . . . is no longer reduc-
ible to the form of the square root of a sum of squares,” this might be interpreted
as a “deviation from flatness,” just like a “sphere . . . cannot be changed into a
plane without stretching” (Riemann 1873, 16; cf. Farwell and Knee 1992).

In the 1861 Commentatio mathematica—which Dedekind also found in the
Nachlass (Riemann 1876; Farwell 1990, 240-53)—Riemann developed the
formal tools for discerning the geometrical properties that do not depend on
the choice of the independent variables from those that are a mere appearance
introduced by the special variables one has chosen (Farwell 1990). In particu-
lar—answering a question on heat conduction for a prize offered by the French
Academy of Sciences—Riemann investigated under which conditions a positive
definite quadratic differential form Sa,dx,dx] with nonconstant coefficients
could be transformed into =,dx{ with constant coefficients by a mere change
of the independent variables (Zund 1983). Thus, the four-index symbol (i,
V/, !'"")—containing the first and the second partial derivatives of the functions
a,, with respect to the coordinates—turned out to furnish an objective mathe-
matical criterion: when it vanishes, the nonconstancy of the coefficients 4,/
(which in this context correspond to the conductivity coefficients of the body)
is merely an artifact of the system of variables chosen; if not, the nonconstancy
expresses a real difference.
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As Riemann observes, although in passing, the expression / Sa, dx,dx! “can
be regarded as a line element in a more general space of 7 dimensions extend-
ing beyond the bounds of our intuition” (Farwell 1990, 252; trans. of Rie-
mann). Quadratic differential forms that can be transformed into one another
by a mere change of variables leaving the line element unchanged represent the
same geometry. Thus, the four-index symbol («, ¢/, I'"’) corresponds geomet-
rically to “the measure of curvature” (Riemann 1876, 382; Farwell 1990, 252).
We have thus to differentiate the 4,, twice before we arrive at a geometrical
property that has a significance independent of any special coordinate system.

Whereas such variation in the ,, might be neglected in small enough re-
gions of space—a property that Riemann calls “flatness in the smallest parts™—
over larger regions, “in aggregates with constant curvature figures may have
any arbitrary position given them” (Riemann 1873, 16-17). Spaces of constant
curvature, which are “exactly the same in all directions at one point as at an-
other,” are merely a special case in which “not merely an existence of /ines inde-
pendent of position, but of bodies” is assured (17).

In general, in Riemann’s perspective, the properties of space are not given in
advance once and for all but can be discovered only step by step. Riemann’s fa-
mous urging, in the last sections of his Habilitationsvortrag, to search the ground
of measure relations in the “binding forces” that act on space could then be in-
terpreted as the geometrical counterpart of Riemann’s physical speculations
about the propagation of all physical phenomena through infinitely near action
in his Fragmente on Naturphilosophie (Riemann 1873, 36—37; Weber and Dede-
kind 1876, 532-38; cf. Bottazzini 1995).

2.2. Riemann between Helmholtz and Christoffel

The Commentatio remained unpublished until 1876, when Dedekind included
itin the first edition of Riemann’s collected works (Weber and Dedekind 1876).
Dedekind, however, immediately published Riemann’s Habilitationsvortrag in
1868 in the “Abhandlungen der Kéniglichen Gesellschaft der Wissenschaften
zu Gottingen” (Riemann 1868). Hermann von Helmholtz had learned of Rie-
mann’s lecture in the same year from Ernst Schering, who had worked on Gauss’s
Nachlass together with Riemann and was a close friend of Helmholtz's: “the few
indications you give of the results of the work that Riemann came to exactly the
same conclusion as myself,” Helmholtz wrote to Schering (Koenigsberger 1906,
254). Encouraged by the agreement with Riemann’s results, Helmholtz decided
to present his own reflections of geometry to the public in an 1868 semitechnical
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talk, “Uber die Tatsichlichen Grundlagen der Geometrie,” which would be pub-
lished in the same year (Helmholtz 1868a; see also Volkert 1993). Helmholtz
famously outlined the program of deriving Riemann’s hypothesis that metric re-
lations are given by a quadratic differential from Riemann’s last restriction, the
fact that their congruence does not depend on position: when two rigid point
systems can be brought into congruence in a place, then they can be brought
into congruence everywhere independently from the path along which they were
led to each other (Helmholtz 1868a, 198).

Helmbholtz published a lengthy mathematical proof a little later in his famous
1868 paper “Uber die Thatsachen, die der Geometrie zum Grunde liegen”
(Helmholtz 1868b), the title of which clearly mimicked the title of Riemann’s
lecture. Roughly, Helmholtz showed that translations and rotations of a rigid
body—expressed analytically by m(m — 1)/ 2 differential equations between
m points—necessarily leave a quadratic differential form unchanged: “With
this,” Helmholtz concludes, “we have got to the starting point of Riemann’s in-
vestigations” (1977, 56). In this way, however, Helmholtz shifted attention
from points and the paths that join them to bodies and the volumes they fill
(Torretti 1983, 238). Riemann’s general assumption that the length of lines
is independent of position was replaced with the more restricted condition that
angles and sides of bodies are independent of position, a condition that, as
I have mentioned, is satisfied by a more limited class of geometries.

The appearance of Riemann’s paper, however, struck his contemporaries also
for very different reasons. Dedekind mentioned Riemann’s unpublished Habili-
tationsvortrag to Elwin Bruno Christoffel—his successor at the Eidgendssische
Technische Hochschule (ETH) in Zurich (Butzer 1981). In the celebrated
Crelles Journal, Christoffel addressed the problem raised by Riemann, the
equivalence of quadratic differential forms such as F = 2w, ¥x0x;, in the most
general way, without focusing on the special case of the reducibility to an expres-
sion with constant coefticients (Christoftel 1869, 46-47; cf. Ehlers 1981). He
introduced the three-index symbols {#/} later named after him (Christoffel
1869, 49; the Christoffel symbols of the second kind)—which involve the first
derivatives of the w;—and from them derived the four-index symbol ( ghki)
(54; that corresponds to the four-index symbol introduced by Riemann and
to our Riemann-Christoffel tensor).

Whereas Christoffel resorted to an abstract algebraic approach, the Bonn
mathematician Rudolf Lipschitz—in the very same issue of Crelles Journal—
reached similar results by investigating the dynamics of a mechanical system:
he found that if the “quadrilinear form” ¥, vanishes (Lipschitz 1869, 84), the
differential form ds” = f'(dx), which enters into the definition of the inertial
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motion of particles, can be reduced to constant coefficients (75; cf. Tazzioli
1994; Liitzen 1995, 1999).!

Whereas Christoffel and Lipschitz remained outside the philosophical de-
bate, in 1870 Helmholtz had already discussed the epistemological implica-
tions of his mathematical investigations in a lecture given at the University of
Heidelberg (Helmholtz 1876; a partial English translation appeared as Helm-
holtz 1870). The paper includes, among others, the very famous convex mirror
thought experiment, a sort of inversion of Beltrami’s “interpretation” of non-
Euclidean space with negative curvature in the interior of a Euclidean sphere
(Beltrami 1868a, 1868b). Helmholtz shows that even if our rigid motions would
appear distorted in the mirror, the imaginary inhabitants of the mirror world, by
performing their measurements with equally distorted instruments, would not
notice any difference (Helmholtz 1876, 44—45). If they were able to converse
with us, Helmholtz claims, “then neither would be able to convince the other
that he had the true, and the other the distorted situation” (Helmholtz 1977,
20).

The thought experiment presupposes that in each space all parts, “if one dis-
regards their limits, are mutually congruent” (Helmholtz 1977, 43; trans. of
1868a, 200-201). Helmholtz wanted to emphasize that a decision about which
set of congruence relations is the “real” one cannot be made “as long as we in-
troduce no mechanical considerations” (Helmholtz 1977, 20; trans. of 1876,
45-46). Referring to the “investigations carried out by Prof. Lipschitz in Bonn”
(Helmholtz 1977, 17), Helmholtz points out that if the inhabitants of the convex
mirror were right—and we are living in a distorted non-Euclidean world—then
we would be forced to introduce a non-Newtonian mechanics, where free force
motions would still follow straight lines but where the speed would depend on
the position (Helmholtz 1977, 20; trans. of 1876, 47).

Helmbholtz’s argument implies a sophisticated form of empiricism, in which,
given a set of physical laws, the choice of geometry turned out to be nonarbitrary
(DiSalle 2006, 83). Its anti-Kantian implications—the possible discrepancy be-
tween the “transcendental” and physical notion of congruence (Helmholtz 1879,
supp. 3)—were mitigated by the fact that Helmholtz seems to consider the very
existence of rigid bodies as a necessary condition of geometry (Helmholtz 1879,
supp. 2; see also Friedman 2002b). With isolated exceptions (Clifford 1876),
Riemann’s speculations about variably curved spaces were never taken seriously
in the nineteenth century (Hawkins 1980, 2000). It was rather Helmholtz’s

1. Lipschitz considered a more general case of a differential form of the pth root, whereas Riemann
had only considered the case p = 2.
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approach that shaped the philosophical discussion, not without the resistance
of professional philosophers who—as Helmholtz confessed to Lipschitz—were
often ready to “pronounce upon the most complex problems of the theory of
space in the sure conviction of superior wisdom” (Helmholtz to Lipschitz,
March 2, 1881; Lipschitz 1986, 131).

3. The Development of the Helmholtzian and Riemannian
Traditions in the Nineteenth Century

3.1. The Helmholtzian Tradition and the Emergence of Lie's
Theory of Continuous Groups

In 1883, Felix Klein urged his friend, the Norwegian mathematician Sophus Lie,
to consider Helmholtz's geometric work (Stubhaug 2002, 381) in the light of the
theory of continuous groups, on which Lie had systematically started to work in
1870, playing a significant role in the emergence of Klein's own Erlanger Pro-
gramm (Klein 1872; see also Rowe 1989). In 1886, Lie was invited to Berlin to
the Meetings of the German Natural Sciences. He gave a lecture entitled “Bemer-
kungen zu v. Helmholtz' Arbeit tiber die Tatsachen, welche der Geometrie
zugrunde liegen” (Lie 1886, 374), in which he pointed out several imprecisions
in HelmholtzZ's demonstration, suggesting that Helmholtz's approach could be
improved through group theoretical considerations (Stubhaug 2002, 340).

In 1887, Poincaré—who had previously insisted on the importance of the
notion of a group (Poincaré 1881, 1882, 1885, 1997; see also Lie’s letter to
Klein in October 1882, cited and translated in Rowe [1985], 76)—referred
to Lic’s results in his paper on the foundations of geometry (Poincaré 1887,
214). At the end of the paper, Poincaré also touches on the “celebrated Memoire
of Riemann,” in which every geometry is characterized “through the expression
of the arc element as a function of the coordinates” (214). However, he discarded
it as geometrically irrelevant, because it allows for spaces that exclude “the exis-
tence of a group of motion which does not alter distances” (214).2

Lie did further work on Helmholtzs space problem, in some papers pub-
lished in the early 1890s (see Lie 1890a, 1890b, 1892a, 1892b). In a series of
lectures he had given in Géttingen in 1889-90 on non-Euclidean geometry
(published as Klein 1893), Klein failed to refer explicitly to Lie’s result, arousing
his angry reaction: “You still challenge me to destroy the Helmholtz theory.
I shall eventually do so. I also show . . . that H[elmholez]s theory is basically
false” (cited and translated in Rowe 1988, 39).

2. Unless otherwise stated, all translations of Poincaré are my own.
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In his 1893 lecture given in Chicago on the occasion of the World’s Fair,
Klein admitted that Lie’s 1886 paper on Helmholtz “somehow escaped my
memory.” “These papers,” Klein observed, “contain an application of Lie’s the-
ory of continuous groups to the problem formulated by Helmholtz” (Klein
1894, lecture 40, 88). The motions of three-dimensional space with respect
to a certain point can take o of possible real values (a rigid body has six degrees
of freedom) and form a group (two motions always can be replaced by a single
one) that leaves invariant the distance between any two points p, p' given by
Q(p, p). Lie famously showed that, considering only a part of space surround-
ing the origin, ifa (1/2)n(n + 1)-parameter group (in an z-dimensional num-
ber manifold) can be defined, then the space is of maximal uniformity, that s, of
constant or null curvature (on Lie’s result, see Klein [1898]).

This local result of Lie (which stands in sharp contrast with Klein’s con-
cern with the global Clifford-Klein problem; cf. Hawkins 2000, 134) appeared
in its definitive form in the last volume of his masterpiece, written with Friedrich
Engel, Theorie der Transformationsgruppen (Lie and Engel 1893, chap. 21). Ac-
cording to what Lie and Engel write in a footnote (437n), Poincaré was not
aware of Helmholtz's work in 1887. It is not clear when precisely Poincaré come
to know Helmholtzs epistemological reflections (Heinzmann 2001), but his name
is mentioned in Poincaré’s 1891 philosophical paper, which is usually considered
as the birth of geometric conventionalism (Poincaré 1891, 774).

A year later (Poincaré 1892), responding to the objections of George Mou-
ret, Poincaré transformed Helmholtzs convex mirror thought experiment in
his famous “parable” (Sklar 1974, 91-93 and 113-15) of the heated sphere
(cf. also Poincaré 1895, 641-44), in which a non-Euclidean space is mimicked
by a suitable temperature field, which uniformly distorts the motion of solids
and the paths of light rays. The inhabitants of such a world might, however,
decide to introduce a non-Maxwellian law of light propagation, in order to keep
the simpler Euclidean geometry (Walter 2009). Thus, the latter can always be
“saved” if one, contrary to Helmholtz, is ready to change the “laws of physics.”

In Poincaré’s approach, also, a choice must be made between alternative but
unique sets of congruence relations (unique up to the choice of a unit of length):
homogenous tessellations of space, each defined by the properties of the corre-
sponding group of rigid motions. It is not by chance that Poincaré again explic-
itly excluded Riemann’s approach based “on the manner in which the lengrh of a
curveis defined” being incompatible with the “movement of a sofid body” such as
“we assume to be possible in Lic’s theorem” (Poincaré 1891, 773; trans. in Pesic
2007, 103). According to Poincaré, the geometries of Riemann, in the general
case, “can never be, therefore, purely analytical, and would not lend themselves to
proofs analogous to those of Euclid” (Poincaré 1891, 773; trans. in Pesic 2007, 103.)
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3.2. The Analytical Development of the Riemannian Tradition:
Ricci and the Absolute Differential Calculus

Roughly in the same years, Riemann’s work had been in fact developed along
the nongeometrical path put forward by Christoffel. In 1892, Gregorio Ricci-
Curbastro had published in Darboux’s Bulletin a first summary (Ricci-Curbastro
1892) of nearly a decade of work on the equivalence of quadratic differential
forms (Ricci-Curbastro 1884, 1886, 1888, 1889). Ricci was able to systematize
Christoftel’s results into his “absolute differential calculus” (Bottazzini 1999), as
Ricci started to call it in 1893, alluding to the fact that it can be applied “inde-
pendently of the choice of the independent variables” (Ricci-Curbastro 1893,
1336 n. 1; trans. in Gray 1999, 247).

Ricci’s main interest was in the study of quadratic differential forms, such as
‘0 = 2,a,dx,dx,,” where the a, can be the conductivity coefficients in the an-
alytical theory of heat or the components of pressure in elasticity theory (Ricci-
Curbastro 1892, 167-68). Roughly, the problem was then to establish the laws
according to which the coefficients #, change, by replacing the independent

«

variables x,, x,, . . . x, with the variables y,, 7., . . . 3, (which are smooth func-
tions of the first ones) in such a way as to leave ¢ invariant. Ricci’s main inno-
vation was to interpret the three-index symbol 4,,; and the four-index symbol
4, (173) introduced by Christoffel as the result of a kind of differentiation
more general than the usual one, which he referred to as “covariant differenti-
ation.” The case in which | /¢ is the expression of the line element of the space
of three dimensions in curvilinear coordinates x,, x,, x;” (167—68; trans. for
this essay) is of course only a particular application of Ricci’s mathematical ap-
paratus.

In Padua, in 1899, Klein met Ricci’s pupil Tullio Levi-Civita and asked him
to publish, in the Mathematische Annalen, an organic and systematic account of
Ricci’s results (Levi-Civita to Arnold Sommerfeld, March 30, 1899; Sommer-
feld 2000, 105). In 1901, Levi-Civita coauthored with Ricci the memoir “Méth-
odes de calcul différentiel absolu et leurs applications” (Levi-Civita and Ricci-
Curbastro 1901), which was destined to become the manifesto of the absolute
differential calculus. Ricci’s results, however, were initially dismissed as “useful
but not indispensable” (Bianchi 1902, 149) and remained substantially unnoticed
(Reich 1994, 77; but see Bottazzini 1999). As is well known, it has been general
relativity that showed the indispensability of Ricci’s work and stimulated Levi-
Civita’s geometrical reinterpretation (see sec. 4.3 below). As we will see, it is only
from inside this tradition, which spread from Riemann to Levi-Civita, that the sig-
nificance of general relativity for the history of the epistemology of geometry should
be understood.
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4. Einstein’s Relativity Theories: Between the Helmholtzian
and Riemannian Traditions

4.1. Escaping from the Helmholtzian Tradition: Rigid Bodies
and Special Relativity

Hermann Minkowski’s (1909) presentation of the Einstein-Lorentz electrody-
namics of a moving body (Einstein 1905) in terms of the group G, (that leaves
the quadratic differential expression *#* — dx* — dy’ — dz” invariant) might
be considered the first triumph of the group theoretical approach to physics
(Walter 1999)—a fact about which Minkowski’s Géttingen colleague Klein
was of course very pleased (Klein 1910). It is, however, less appreciated in the
philosophical literature that already special relativity unwittingly marked the be-
ginning of the end of the Helmholtzian approach to the epistemology of geom-
etry, via the discussion of the relativistic definition of rigid motion.

It was another Gottingen scientist, Max Born, who was the first to face the an-
alytical problem of “defining rigidity by a differential law instead of an integral
law” (1909, 3), by using a quadratic form of three spatial differentials J, dy,
A (ds* = pndE® + pundn® + pusd + 2pdédny + 2pdEdE + 2prdndf) in
which the coefficients p.g are the “deformation quantities” (10). A motion of a
filament in space-time will be rigid if Op.s/7 = 0 (where 7 is the proper time).
Born then carried out the integration of these conditions for bodies in the case of
a uniformly accelerated translation (15). Soon thereafter Paul Ehrenfest (1909)
pointed out that, assuming Born’s relativistic definition of rigidity, it turns out
that a rigid cylinder cannot rotate without violating Lorentz invariance (the
Ehrenfest paradox). Gustav Herglotz (1910) and Fritz Noether (1910), Emmy
Noether’s brother, showed that Born’s infinitesimal condition of rigidity implies
that a rigid body has only 3 degrees of freedom.

Einstein had rapidly come to recognize that, according to the “investiga-
tions of Born and Herglotz,” “in the theory of relativity there does not exist a
‘rigid’ body with 6 degrees of freedom” (Einstein to Jakob Laub, March 1910;
in Einstein 1993, doc. 199, 232; cited and translation in Stachel 2002, 268).
It was finally Max von Laue who showed that actually special relativity does
not allow at all for the usual concept of a rigid body: in a relativistic rigid body,
“the number of kinematic degrees of freedom is infinitely great” (1911, 86).

After all, the very notion of a rigid body also intuitively contradicted the
special relativistic ban on superluminal signaling (Laue 1911, 86): the motion
of a part of a rigid body would instantaneously “signal” to all other parts of the
body that they had to move, too. It was, however, not easy to avoid resorting to
“rigid bodies” in a context in which a coordinate system was still thought of as a
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rigid cubical lattice of meter sticks (and an array of clocks) that fill space-time.
By discussing his celebrated “rigidly rotating disk” thought experiment (Stachel
1989), Einstein seemed then to be ready to embrace the patent inconsistency
that “even though the rigid body cannot really exist,” nevertheless “the measur-
ing rods as well as the coordinate axes are to be considered as rigid bodies”

(1912, 356).

4.2 Enfering info the Riemannian Tradition: Rods and

Clocks and General Relativity

Einstein’s rigidly rotating disc has been described as the “missing link” (Stachel
1989) in the path that led to Einstein’s “decisive idea” (Einstein 1923b) to re-
sort to Gauss’s theory of surfaces, but also Born’s work may have suggested to
him that he consider quadratic differential forms with variable coefficients
(Maltese and Orlando 1995). Einstein was not aware at that time of “the work
of Riemann, Ricci, and Levi-Civita” (Einstein 1923b), to which Grossman fa-
mously introduced him in August 1912, starting the long journey that would
lead to general relativity (similar statements can be found in Einstein’s 1922
Kyoto address; see Abiko 2000).

In a joint paper, Einstein and Grossmann (1913) famously outlined a the-
ory of gravitation based on the so-called Enzwurf theory. In a paper published
briefly thereafter, Grossmann summarizes their collaboration as follows:

The mathematical core [Grundgedanke] of Einstein’s theory of gravita-
tion [consists in the idea] of characterising a gravitational field through a
quadratic differential form. . . . Of fundamental importance [Von grund-
legender Bedeurung] in this respect [hiebei] are the famous paper of Chris-
toftel, Uber die Transformation der homogenen Differentialausdriicke zweiten
Grades [Christoffel 1869], and the paper, based on the latter, of Ricci and
Levi-Civita, Méthodes de calcul différentiel absolu et leurs applications [Levi-
Civita and Ricci-Curbastro 1901]. In the latter work the authors devel-
oped the method for giving to differential equations of mathematical phys-
icsa. .. form which is independent of the coordinate system. (Grossmann
1913, 291; trans. for this essay)

Einstein’s articles and research notes up to 1915 document how the search for the
coordinate-independent partial differential field equations (cf. Renn and Stachel
[2007], for a recent overall account) to determine the g,, had to overcome—apart
from “technical” problems related to finding a suitable two-index contraction of
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the Riemann-Christoffel tensor—also some “philosophical” difficulties that con-
cerned primarily the physical significance of the coordinate system.

Einstein had to explain how to verify the values g,, predicted by the field
equations through measurements with rods and clocks in a context in which
the length of a measuring rod and the rate of a clock are not determined solely
by the coordinate differentials but also by the quantities g, (Einstein and Gross-
mann 1913), that is, by the very quantities that should be measured. Einstein
started to distinguish between “coordinate distances [Koordinatenabstinde]” and
“natural distances [natiirliche Abstinde],” as measured by rods and clocks (Einstein
1913, 1252).

In a small enough (in astronomical proportions) region of space-time, where
the g,, may be considered constant (i.e., taking on the Minkowski values) to a
sufficiently accurate approximation, the coordinate differentials d, can be mea-
sured directly by rods and clocks; ds, oriented in any way, can be calculated as
the root of the sum of squares of the coordinate differentials. In a finite region,
however, there is, in general, no choice of coordinates for which special relativity
is valid: the distance s is not determined solely by the sum of the coordinate
differentials dx, of its end points, but the functions g,, must also be introduced
if the measurements made by the rods and clocks are to yield the same invariant
interval s in every position and in every orientation.

It is in particular in the last sections of Einstein’s systematic exposition of
the Entwurftheory, presented to the Berlin Academy, “Die formale Grundlage
der allgemeinen Relativititstheorie” (Einstein 1914), that Einstein explicitly ad-
dressed the implications that the new theory can have for the “epistemology of
geometry’:

Before Maxwell, the laws of nature were, in spatial relation, in principle in-
tegral laws: this is to say that distances between points finitely separated
from one another appeared in the elementary laws. . . . From this view-
point, the propositions of geometry are to be considered as integral physical
laws, since they deal with distances of finitely separated points. Through
and since Maxwell, physics has undergone a thorough-going, radical change
in gradually carrying through the demand that distances of finitely sepa-
rated points may no longer appear in the elementary laws, that is, “action
at a distance theories” [Fernwirkungs-Theorien] are replaced by “local-
action theories” [Nahewirkungs-Theorien). In this process it was forgotten
that also Euclidean geometry—as employed in physics—consists of phys-
ical propositions that from a physical viewpoint are to be set precisely on
the side of the integral laws of the Newtonian point mechanics. In my opin-
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ion, this signifies an inconsistency from which we should free ourselves.

(Einstein 1914, 1079-80; Ryckman 2005, 63).?

This passage might be considered the coup de grice for the Helmholtzian tra-
dition in the epistemology of geometry. Helmholtz’s approach is, by its very
nature, a “distant geometrical” point of view in which finite fixed distances
are regarded as freely movable in space. General relativity, appropriating the
mathematical apparatus that had emerged from the Riemannian tradition,
had fully implemented a near-geometrical point of view, by banning finite point
distances from the laws of nature, in which now only the distances ds of infinitely
near points may occur.

In pre-general-relativistic theories, a coordinate system was thought of as a
scaffold of congruent tiles made of rigid rods (and clocks) defined indepen-
dently of the physical fields spread on it. In general relativity, the functions
2., that enter into the definition of ds themselves represent the potentials of a
physical field, subject to partial differential equations and that contain at the
same time all the information about the coordinate system. Only after having
definitively renounced—rvia the so-called hole argument (Stachel 1980; Norton
1984)—the independent physical role of a coordinate system was Einstein able
to present his field equations in November 1915: it was “a real triumph,” as Ein-
stein (1997, 98) put it, of the mathematical formalism developed through the
work of Riemann, Christoffel, Ricci, and Levi-Civita.

It is worth noting that such a formalism has only a tenuous connection to ge-
ometry. In particular, Einstein—even in his first systematic presentation of his
newly completed general theory (Einstein 1916)—does not refer to the “curva-
ture of space-time.” The Riemann-Christoffel tensor is introduced as a merely
analytical tool (Janssen 1992; Reich 1994, 204-5), in as much as it is the only
tensor “which can be obtained from the fundamental tensor g,, by differentia-
tion alone” (Einstein 1916/1996, sec. 12).

A “geometrical” issue emerges only when it comes to comparing the values of
the g,, predicted by the field equations (e.g., a spherically symmetric asymptot-
ically flat solution; Einstein 1916/1996, sec. 22) with the values obtained by
measurement. Roughly, the g,, can be found empirically as the factors by which
the coordinate differentials #x, must be multiplied in order to ensure that &s* has
the same value (normed as the unit interval) measured locally, in a flat region of
space-time (sec. 4), in every position and in every orientation. In the case con-
sidered by Einstein (sec. 22), for a unit measuring rod put radially to the spher-

3. Unless otherwise noted, all translations of Einstein are my own.
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ical field (& = —1; dx, = dx; = dx, = 0), we have —1 = g,,dx{, whereas
a tangential position (dx, = dx; = dx; = 0) would measure —1 = g,,dx; =
—dbx;. In the presence of a real gravitational field—if “the same rod, independently
of its place and its orientation, as a realization of the same interval” (197)—it is
impossible to chose a coordinate system so that coordinate distances always corre-
spond to real distances as in Euclidean geometry. Similarly, if one assumes that a
unit clock at rest (dx, = dx, = dx; = 0) always measures the same ds = 1, the
only nonvanishing coordinate differential dx; has to be multiplied by the correct-
ing factor gy (1 = gudxi) (197).

Concretely, to directly measure the numerical value of the ds, we might use
a small enough rigid rod, for instance, a rock salt crystal, and a fast enough uni-
formly running clock, such as a cadmium atom emitting its red line. General
relativity assumes that “the ratio between the wave length of the red cadmium
line and the lattice constant of rock salt is an absolute constant” (Flamm 1916,
451; my emphasis), which is not affected by the presence of the gravitational
field. This is nothing else than the “operational” reformulation of the Riemann-
ian postulate that the length of a line must be independent of its position. Once
an atom has been chosen as a unit clock, proper time s is calculated as the in-
tegral of the infinitesimal element ds along a time-like path.

Of course this lets emerge a difficulty of which Einstein became immediately
conscious. The reproducibility of such complicated atomic structures in deter-
minate circumstances—for instance, in a strong electromagnetic field—is far
from obvious. However, the very possibility of making measurements in general
relativity presupposes the constancy of the relative lengths of rods and the rel-
ative periods of clocks whatever gravitational or electromagnetic fields they have
passed through. Einstein made this presupposition explicit in a letter to Michele
Besso in late 1916: “your observation about the equivalence of physiclally] dif-
ferent measuring rods and clocks (and subjected to different prehistories),” Ein-
stein writes, “is fully correct” (1998a, doc. 270, 349; trans. in Speziali 1972,
86). This is, so to speak, the fact at the basis of the Riemann-Einstein geometry
of space-time. The investigation of the epistemological status of this presuppo-
sition is precisely the fundamental problem around which the discussions on
the role of rods and clocks in general relativity revolved.

4.3. Beyond Riemann: levi-Civita, VWeyl, and the Geometrical
Development of the Riemannian Tradition

In 1917, at the request of the editor of the Naturwissenschafien, Moritz Schlick
wrote a semipopular two-part paper on relativity, destined to become a classic.
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Relying on Einstein’s insistence that the quantitative comparison of lengths
and times is possible only by means of “measuring-rods and clocks” (Schlick
1917, 163), Schlick could effectively present general relativity to a philosophical
audience as the heir of the well-known discussion between Helmholtz and
Poincaré on the role of rigid bodies in the epistemology of geometry. Of course
Schlick was well aware that the notion of a rigid body was already modified by
special relativity and that it is completely meaningless in general relativity (182~
83). However, Schlick could believe that the role that “rigid bodies” had played
in the Helmholtz-Poincaré debate was simply taken up by the infinitesimal rigid
rods (and clocks with infinitesimal periods) in Einstein’s theory.

Although Einstein was enthusiastic about Schlick’s paper (Einstein 1998a,
doc. 297; here see Howard 1984), the role of rods and clocks in general rela-
tivity is hardly understandable in the context of Helmholtz’s philosophy of ge-
ometry and its conventionalist incarnation in Poincaré’s work. The choice of a
certain rod as a unit rod is of course arbitrary, but this is irrelevant: it only cor-
responds to the choice of the unit of measure in which we agree to express the
lengths of lines. But, the fact that “two of our little rods can still be brought
into coincidence [zur Deckung] at every position” in space (Einstein 1917/2005,
57), despite the different physical circumstances they have passed through, is
not a matter of convention: it represents a central feature of the Riemann-
Einstein geometry. It is only when Einstein’s theory forced the mathematical
community to let the geometrical content of the Riemannian tradition reemerge
after decades of abstract algebraic development that the problematic nature of
Einstein’s assumption could fully emerge.

Levi-Civita (1916; but see also Hessenberg [1917-18] and Schouten [1918])
had famously recognized the geometric meaning of the Christoffel symbols and
of the covariant differentiation: they determine the parallel displacement of vec-
tors (Reich 1992). As Hermann Weyl systematically showed in his 1917 lectures
on relativity at the ETH Zurich (Weyl 1918, secs. 15 and 16), the Ricci calculus
can be translated into more intuitive geometrical terms (Reich 1992).

Roughly, the line element ds can be seen as a vector, the components of
which are the coordinate differentials dx, relative to the chosen coordinate sys-
tem. In a Euclidean region of space (where there exists a coordinate system in
which the g, are constant), when a vector is parallel transported around a loop
it always returns to its original position with the same length and direction: the
Christoffel symbols {’;S} =T, (Weyl 1918¢, 99)—the components of the
“affine connection,” in the terminology that Weyl will soon adopt (1919b,
101)—-can be made to vanish identically. However, this property does not hold
in the general case: the Riemann-Christoffel tensor R

hi

,» measures precisely the
change in the direction resulting from parallel transport around the loop (Weyl
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1918c, sec. 165 cf. Scholz 1994, sec. 4). Einstein was extremely impressed by
Weyl's geometrical derivation of the curvature tensor (Einstein to Weyl, March 8,
1918, Einstein 1998b, doc. 476, 670), which he praised in a enthusiastic review
of Weyl’s book (Einstein 1918a).

Weyl also announced to Einstein (Einstein 1998a, doc. 270) the draft of a
10-page paper (published after some difficulties as Weyl [1918b]) in which the
disturbing asymmetry between length and direction in Levi-Civitas parallel
transport (Afriat 2009) could be dropped, in the name of a purely infinitesimal
geometry (Weyl 1918d). In this kind of geometry, the determination of magni-
tudes does not take place directly at a distance: transporting a unit vector along a
closed path, one might arrive at the end of the journey around a loop with a dif-
ferent transported measuring unit, depending on the path. Weyl introduced later
the “length-curvature” tensor f;, (Streckenkriimmung) as the measure of such a
change of length, just like the Riemann “vector-curvature” tensor (Vektorkriim-
mung) measures the change of direction. Riemannian geometry is only a special
case of a Weylean geometry where the f;, = 0 (Weyl 1919a, 109).

As is well known, Weyl suggested that by dropping the last distant-geometric
feature of Riemannian geometry, namely, the independence of the ratio of the
measure units from their position, a possible unification of “gravitation and
electricity” might be achieved: when separated and brought together, rods and
clocks would have different relative lengths and periods if they have passed through
electromagnetic fields. Roughly, the gravitational field reveals itself in the nonin-
tegrability or path-dependency of direction, but the electromagnetic field reveals
itself in the nonintegrability of length (e.g., Scholz 1994, sec. 5).

Against Weyl’s “stroke of genius,” Einstein raised a famous “measuring-rod
objection” (Einstein 1998b, doc. 498, 710; doc. 515), published as an adden-
dum to Weyl’s paper (Einstein 1918b). If Weyl's theory were true, Einstein
claimed, “the relative frequency of two neighboring atoms of the same kind
would be different in general” (trans. in O’Raifeartaigh 1997, 35). Such behavior
would contradict the empirical fact that energized atoms emit sharp, separated
lines independently of their prehistory. Replying to Einstein, Weyl insisted that
it is epistemologically unsatisfying to resort to the behavior of complicated atomic
structures to measure the invariant s. In fact, one can learn how a clock behaves
(e.g., in a strong electromagnetic field) only from “a dynamical theory based on
physical laws” (Weyl 1918a, 479). Weyl did not intend to deny the physical be-
havior of atomic structure pointed out by Einstein but to urge a dynamical ex-
planation for the existence of such a “central office of standards [Eichamz]” (Weyl
1919a, 103), for the fact that in Riemannian geometry “the measuring unit (the
cm) can be chosen once and for all (of course the same in every position)” (Weyl

1919b, 110).
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Since Weyl could not rely on any dynamical models at that time, at the
Meeting of Natural Scientists in Bad Nauheim in September 1920, he famously
started to speculate that atoms might not really preserve their radius if trans-
ported but adjust it every time anew to the space-time structure, in particular
to the radius of curvature of Einstein’s static spherical universe (Weyl 1920,
650). The apparent Riemannian behavior of rods and clocks is then enforced
by the physical mechanism of adjustment, making the “real” non-Riemannian
geometry of space-time in principle unobservable.

In the discussion that followed Weyl’s paper, Einstein complained that, if
the “equality” of rods and clocks “were dependent on their prehistory,” one
would lose “the possibility of coordinating [zuzuordnen] a number ds to two
neighboring points” (Einstein’s reply in Weyl 1920, 650). Renouncing such
“empirically based coordination,” the theory would be deprived of its empirical
content. Einstein could, however, not avoid acknowledging that it is a short-
coming of general relativity: it would be preferable if measuring rods are “intro-
duced separately” but “constructed as solutions of differential equations” (Laue
1920, 662).

The importance of this epistemological ideal and the impossibility of fulfill-
ing it at the present stage of development of physics (cf. Fogel 2008, chaps. 3
and 4) emerges in several parts of Einstein’s correspondence with Weyl himself
(Einstein 1998b, docs. 472, 507, 512, 551, 661) and with Walter Dillenbach
(Einstein 1998a, doc. 299; 1998b, doc. 863), Besso (Einstein 1998b, doc. 604),
Adriaan Fokker (Einstein 2004, doc. 76), and others (Goenner 2004). It reveals
Einstein’s ambiguity between the provisional acceptance of rods as and clocks as
metrical indicators (Howard 1990, 1994) and his commitment to the higher
epistemological standard on which Weyl had insisted (Ryckman 2005, sec. 1.4).

For our purposes, it is important to emphasize that this discussion about the
role of rods and clocks in general relativity has of course nothing to do with the
Helmholtzian consideration about the role of rigid bodies in the foundation
of geometry, as Schlick thought: it pertains exclusively to the status of the Rie-
mannian requirement that the lines, one-dimensional measuring threads, should
be independent of their position (Weyl 1919a, 102). The Helmholtzian stand-
point presupposes that space is, as Weyl pictorially put it, a uniform “tenement
house [Mietkaserne]” (Weyl's commentary in Riemann 1919, 45 n. 6): it is a
rigid scaffold of congruent tiles, which is independent of any physical process,
and serves as a form for the phenomena, a conception that general relativity
made untenable. The Riemannian standpoint assumes on the contrary only the
existence of a central “office of standards [Eichami]” (i.e., the global availability
of the unit of measure; Weyl 1919a, 103).
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The “conventionalist” agenda that Schlick (1918) by that time had treated
systematically in his epistemological monograph confused two problems emerg-
ing from two traditions, the one that draws on Helmholtz and the other that goes
back to Riemann, which must however be carefully distinguished. This can be
seen by the high level of mathematical sophistication (Scholz 2004) necessary to
bring them together, a task that Weyl himself had started to work on in those
years (Weyl 1922, 1923, 1988) in the attempt to single out group theoretically
the Riemannian class of Pythagorean metrics from all possible classes of Finsler
metrics (Finsler 1918), as the one endowed with a uniquely determined affine
connection (Scholz 2004), an attempt that, because of its philosophical inspira-
tion (Ryckman 2005, sec. 6.3.2), remained mostly on the brink of a philosoph-
ical discussion (but see, e.g., Becker 1923).

5. The Emergence of Logical Empiricism as a Progressive Blurring
of the Helmholtzian and the Riemannian Traditions

Thus, the Einstein-Weyl debate had raised a central epistemological problem.
As Arthur S. Eddington—the “apostle” of relativity to the English-speaking
world—explains in the second edition (Eddington 1920b) of his report on rel-
ativity (Eddington 1918), “In Einstein’s theory it is assumed that the interval ds
has an absolute value, so that two intervals at different points of the world can be
immediately compared” (Eddington 1920b, X). Operationally this means that
“atoms which are absolutely similar will measure by their vibrations egual values
of the absolute interval 45" (Eddington 1920c, 128) that can be normed as the
unit interval. The hypothesis that there are no systematic differences in the pre-
vious histories of different acoms of the same substance, even if they have passed
through strong gravitational or electromagnetic fields, ensures that this norm
can be replicated everywhere. It is, however, an assumption that depends on
quantum theoretical considerations about the structure of matter and thus that
lie totally outside the macroscopic setting of general relativity: “The general
course is to start with the ‘interval’ as something immediately measurable with
scales and clocks,” but, as Eddington points out, “in a strict analytical develop-
ment the introduction of scales and clocks before the introduction of matter is—
to say the least of it—an inconvenient proceeding” (1920a, 152).

5.1. Reichenbach’s Early Anficonventionalist Stance

Schlick was then right to emphasize the crucial epistemological role played by
rods and clocks in general relativity as the only means to coordinate the abstract
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mathematical apparatus of the theory with concrete physical reality. However,
this role clearly cannot be understood within the framework set by the Helmholtz-
Poincaré debate on the role of rigid bodies in the foundations of geometry. It is
the Riemann-Weyl opposition that, historically and systematically, should be re-
garded as the correct setting in which to understand Einstein’s own wavering
attitude toward rods and clocks as guarantors of the physical content of his the-
ory of gravitation.

The incompatibility of Einstein’s new theory with nineteenth-century con-
ventionalism was simply, but masterfully, explained in the brief monograph on
relativity, Relativititstheorie und Erkenntnis apriori (Reichenbach 1920/1965),
that the young Hans Reichenbach—who had just participated in Einstein’s
1919 summer term lectures on general relativity in Berlin®—had finished writ-
ing in June 1920 (cf. Einstein 2004, doc. 57): “It was from a mathematical
standpoint asserted that geometry has only to do with conventional stipula-
tions with an empty schema containing no statements about reality but rather
chosen only as the form of the latter, and which can with equal justification be
replaced by a non-Euclidean schema.® Against these objections, however, the
claim of the general theory of relativity presents a completely new idea. This the-
ory makes the equally simple and clear assertion that the propositions of Fuclidean
geometry are just false” (Reichenbach 1920/1965, 3-4, 109 n. 1.).

In this well-known passage, Reichenbach shows that conventionalism pre-
supposes the validity of the Helmholtzian requirement that the congruence of
bodies is independent of position; it presupposes the existence of incompatible
but unique sets of congruence relations, among which, once and for all, a choice
can be made. For this reason, as we have seen, Poincaré had explicitly connected
his conventionalism to the work of Lie. The notion of congruence naturally re-
lates the concept of tessellation with the properties of a group of rigid motions
mapping the space onto itself.

In Einstein-Riemann geometry, on the contrary, measurement is assured by
the possibility of comparing small measuring rods. In the failure to extend the
local Euclidean behavior of such rods over larger regions of space, Reichenbach
points out, “the invalidity of Euclidean geometry is considered proven” (1921a,
384; 20006, 42), at least if we attribute the length 1 to the rod in all positions

4. See the Hans Reichenbach Collection at the University of Pittsburgh, HR 028-01-04 and 028-
01-03.

5. Here, a footnote appears in the original: “Poincaré has defended this conception [Poincaré 1902].
It is characteristic that from the outset he excludes Riemannian geometry for his proof of equivalence, be-
cause it does not permit the shifting of a body without a change of form. If he had known that it would be
this geometry that physics would choose, he would not have been able to assert the arbitrariness of ge-
ometry.
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and in every orientation. As Reichenbach rightly notices, this impossibility
makes manifest the “absolute character of the curvature of space” expressed by
the Riemann-Christoffel tensor (Reichenbach 1920/1965, 33).

Reichenbach has thus separated what Schlick had irremediably confused: the
Helmholtzian measuring procedure based on the free mobility of finite bodies
and the Riemannian one on the transportability of small one-dimensional rods.
As Reichenbach knows perfectly well, however, this latter assumption is far
from being obvious: “Weyl’s generalization of the theory of relativity,” Reichen-
bach writes, “abandons altogether the concept of a definite length for an infi-
nitely small measuring-rod” (1920/1965, 76), so that “the comparison of two
small measuring rods at two different space points would also no longer contain
the objective relation that it contains in Einstein’s theory” (91).

Reichenbach is aware that this point can be easily understood by resorting
to Levi-Civita’s notion of the parallel transport of vectors. This is not surpris-
ing since in the lectures on relativity that Reichenbach had followed in Berlin,
Einstein had used for the first time the concept of parallel displacement in in-
troducing the Riemann tensor (Einstein 2002, 11 n. 179). Reichenbach sum-
marizes:

Weyl’s theory represents a possible generalization of Einstein’s concep-
tion of space which, although not yet confirmed empirically, is by no
means impossible. . . . In Euclidean geometry a vector can be shifted par-
allel to itself along a closed curve so that upon its return to the point of
departure it has the same direction and the same length. In the Einstein-
Riemannian geometry it has merely the same length, no longer the orig-
inal direction, after its return. In Wey/s theory it does not even retain the
same length. This generalization can be continued. If the closed curve
is reduced to an infinitely small circle, the changes disappear. The next
step in the generalization would be to assume that the vector changes its
length upon turning around itself. There is no “most general” geometry.
(1920/1965, 79-80; my emphasis)

Put in these terms, it appears clear that the transportability of infinitesimal rigid
rods is the distinctive feature of the entire class of Riemannian geometries if
considered as a special case of a more encompassing class (such as that of Weyl
geometries). It has therefore nothing to do with the problem of the choice be-
tween Euclidean and non-Euclidean geometry (which is between special cases
of Riemannian metrics) as in classical conventionalism.

As we have seen, general relativity assumes the Riemannian behavior of
clocks, the relative periods of which are always the same whenever they are
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brought together; Weyl suggested that “the frequency of a clock” might be “de-
pendent upon its previous history” (Reichenbach 1920/1965, 80).

The fact that this is contradicted by our knowledge of the behavior of clocks
does not necessarily contradict Weyl’s theory since it could be assumed that the
influences suffered by the clocks “compensate each other on the average”; hence,
“the experiences made until now, according to which, say, the frequency of a
spectral line under otherwise equal conditions is the same on all celestial bodies,
can be interpreted as approximations” (Reichenbach 1920/1965, 80-81). Thus,
the real geometry of the world might be Weyl’s geometry, in spite of the empir-
ically observed Riemannian behavior of rods and clocks.

Reichenbach was, however, skeptical about Weyl’s presumption to deduce
the real geometry of space from an epistemological principle, the principle
of the relativity of magnitude: “Weyl’s generalization must be investigated from
the viewpoint of a physical theory, and only experience can be used for a critical
analysis” (Reichenbach 1920/1965, 77), especially if one considers that Weyl’s
geometry is not the only possible non-Riemannian geometry that one can pos-
sibly take into consideration. Reichenbach sent his book to Weyl who responded
privately (Rynasiewicz 2005) and publicly by arguing that his theory did not
make any pretense to deduce the nonintegrability of lengths by pure reason
but only to show that “it must be understood as the outflow [AusflufS] of a
law of nature” (Weyl 1921e, 475; emphasis mine). As we have seen, it is precisely
this alternative that plays a central role in Einstein’s epistemological reflections
about geometry.

5.2. Einstein's Misleading Reference to Poincaré in Geometrie
und Erfahrung

It has puzzled historians that Reichenbach was ready to give up his convinc-
ing analysis of the role of rods and clocks in general relativity and embrace con-
ventionalism after having exchanged a few letters with Schlick (Schlick and
Reichenbach 2015). In the absence of additional information, one can only
speculate that the publication of Einstein’s celebrated Geometrie und Erfahrung
(Einstein 1921; the expanded version of a lecture given on January 27, 1921)
might have played a relevant role in convincing Reichenbach of the correct-
ness of Schlick’s epistemological stance.

In his celebrated lecture, Einstein, after having introduced—with a reference
to Schlick’s “book on epistemology [Schlick 1918]” (Einstein 1921, 55 1954)—
a rigid distinction between “axiomatic geometry” and “practical geometry,”
claims in fact that without a sort of “Helmholtzian” approach to geometry as
a natural science concerning the physical behavior of practically rigid bodies,
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he (Einstein) “should have been unable to formulate the theory of relativity”
(Einstein 1921, 6-7; 1954). However, Einstein recognized that Poincaré was
in principle, sub specie acterni, right by claiming that it is always possible to make
rigid bodies agree with any kind of geometry by changing the physical laws that
govern their behavior (Einstein 1921, 8; 1954). Only the sum of geometry plus
physics, G + P, as Einstein famously concludes, can be compared with expe-
rience (Einstein 1921, 7; 1954; cf. Friedman 2002a).

However, on closer inspection the reference to Poincaré in Einstein’s Geo-
metrie und Erfabrung is highly misleading (Friedman 2002a). The problem
Einstein was addressing had clearly nothing to do with the Helmholtz-Poincaré
alternative between the empirical or conventional choice between Euclidean and
non-Euclidean sorts of Riemannian geometries. Even if the name of Weyl is not
mentioned, Einstein was concerned with a feature of Riemannian geometries as
such, precisely that feature of which Weyl’s work had revealed the contingency
(Ryckman 2005, sec. 4.5).

As we have seen, measurement in general relativity presupposes that if two
rods “are found to be equal once and anywhere, they are equal always and ev-
erywhere.” The same assumption must be made for clocks, or, more specifically,
for atomic clocks: “The existence of sharp spectral lines is a convincing experi-
mental proof” (Einstein 1921, 95 1954; my empbhasis) of their Riemannian be-
havior. Against this assumption it could be objected that rods and clocks are
complex atomic structures, the behavior of which (Einstein 1921, 9; 1954) can-
not be simply read off from observation but is of necessity “theory laden.”

Einstein could then recognize that someone is sub specie aeterni right who,
like Weyl or Eddington, argues that rods and clocks are not “irreducible elements”
but “composite structures,” which must “not play any independent part” in the-
oretical physics. However, Einstein could also point out that, sub specie temporis,
that is, “in the present stage of development of theoretical physics,” he was justi-
fied in starting from the plausible assumption about their behavior, even if it
is external to the framework of general reladvity (Einstein 1921, 8; 1954; my
emphasis).

The issue at stake is then the presupposition that the ratio of clock periods
and rod lengths is an absolute constant. Precisely this, Einstein observes, “en-
ables us to speak with meaning of the mensuration, in Riemann’s sense of the
word” (Einstein 1921, 8; 1954; my emphasis).

Thus, the reference to Poincaré cannot be taken “literally” but must be in-
terpreted at most as an analogy. One can assume as a fact, a la Helmholrz, that
the ratio of two atoms is the same whenever they are compared, as Einstein did,
or decide, to adopt a sort of Poincaréian strategy, to save non-Riemannian ge-
ometry, by blaming the apparent Riemannian behavior of atomic clocks on the
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dynamical mechanism of an adjustment to the world curvature (Weyl 1921a,
1921b).

Einstein’s formula G + P seems then to allude to such a strategy of “doubling
geometry” (Vizgin 1994, 146). An unobservable “world geometry”—as Edding-
ton called it—that is not “the geometry of actual space and time” (but from
which the unification of electromagnetism and gravitation may be achieved) is
introduced on a deeper level of stratification with respect to the “natural geom-
etry,” which is the “geometry of Riemann and Einstein, not Weyl's generalized
geometry” (Eddington 1921, 121).

5.3. Schlick’s Influence on Reichenbach’s Conversion
to Conventionalism

The background of Geometrie und Erfahrung (cf. Ryckman 2005, sec. 3.5) must
not have been not difficult to guess even if Einstein did not mention his real
interlocutors by name. Schlick’s review of Geometrie und Erfahrung clearly shows
that he was aware of it. Schlick points out that Einstein’s theory of measurement
presupposes that “two measuring rods are always and overall equally long, if
they once and somewhere were found as equal” (Schlick 1921, 435). As Schlick
remarks, this condition is “confirmed by experience,” even if Weyl has “tried
to drop it” (435). Thus, Schlick was not only as well aware of Weyl’s theory
as was Reichenbach; he was also aware that this theory was the polemical goal
of Einstein’s lecture. However, unlike Reichenbach, Schlick never attempted a
real confrontation. On the contrary, Schlick, supported by Einstein’s flattering
reference to his book in Geometrie und Erfabrung, could apparently not restrain
himself from taking Einstein’s reference to Poincaré as a confirmation that the
Helmholtz-Poincaré debate was the right framework from which the new theory
could be understood as he had suggested.

Schlick’s Erliuterungen to Helmholtz's writings on geometry (Helmholtz 1921,
1977)—which he edited in 1921 together with Paul Hertz—show how Ein-
stein’s formula G + P could be integrated with apparent success into the frame-
work of the discussion by Helmholtz and Poincaré of the role of rigid bodies in
the foundations of geometry (Pulte 2006). Helmholtz claimed that which bodies
are “actually” rigid depends on the laws of physics, so that “real” physical geom-
etry is discovered by empirical investigation; Poincaré objected that one can
always change the laws of physics, in order to preserve the simplest Euclidean
geometry. In reality it should be argued—"as by Einstein in Geometrie und Er-
Jfahrung” (Schlick’s commentary in Helmholtz 19215 1977, n. 31)—that one
chooses certain bodies as rigid (i.c., geometry that holds in the actual world),
if this choice leads to the simplest possible physics.
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Ironically, one can look at Hertz's Erliuterungen to Helmholtz’s more techni-
cal papers to understand why Schlick’s appropriation of Einstein’s formula G +
P was based on a misunderstanding. Schlick seems to have not given enough
philosophical relevance to the difference between “Riemann [who] gives an el-
ementary law (differential law)” and “Helmholtz [who] conversely formulates
his axioms for systems of finitely separated points.”® One has to distinguish the
“Helmholtzian axiom”—which was “criticized and completed by Sophus Lie
with help of group theory” (Hertz’s commentary in Helmholtz 1921; 1977, 57
n. 1)—according to which the volume of finite bodies does not depend on posi-
tion, from that of Riemann in which only that the length of infinitesimally
rigid rods does not depend on position. It is worth quoting Hertz’s commentary

at length:

We therefore have to emphasize, as an especially important feature of
Helmboltz's axiom, the following proposition: two point systems which
once coincide can also be brought into coincidence in every other situ-
ation, even when each is connected to another system. As is known, Rie-
mann considered a more general case: finite rigid bodies need not always
be movable, but infinitely small bodies should be able to go anywhere;
thus, in other words, the axioms stated here by Helmholtz should hold
for infinitesimal rigid bodies: there should be a line element independent
of the path. In this [Riemann’s axiom] Weyl” sees a vestige of prejudices
about geometry “at a distance.” The length relationship between two ex-
tensions could depend upon the path along which an infinitesimal com-
paring rod was brought from one to the other. H. Reichenbach® can al-
ready seek a further generalization: that namely a material extension,
after a rotation about itself, might no longer coincide with the same ex-
tension as previously.” (Hertz’s commentary in Helmholtz 1921, 57 n. 1;

1977)

As we have seen, Einstein in Geometrie und Erfarung—as Schlick himself no-
ticed in his review—was precisely concerned with the validity of Riemann’s ax-
iom, since, needless to say, Helmholtz’s axiom is not valid in spaces of variable
curvature.

6. It might be interesting to compare this passage with that of Einstein’s quoted above.

7. Here, a footnote appears in the original: “See e.g. Raum, Zeit, Materie [Weyl 1921d], sec. 16;
Math. Zeitschr. 2 (1918) [Weyl 1918d].”

8. Here, a footnote appears in the original: “Relativitatstheorie und Erkenntnis a priori [‘Relativity
theory and a priori knowledge’], Berlin, 1921, p. 76.”

9. The footnotes are Paul Hertz’s. Reichenbach’s passage to which Hertz refers us was quoted above.
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It is then surprising that Reichenbach himself—who Hertz mentions for
having proposed a possible extension of Riemannian geometry—in his review
of the Schlick-Hertz edition of Helmholtz's writings, although praising the tech-
nical parts of Hertzs presentation (Reichenbach 1921b, 422), could see the
main result of Helmholtz’s reflections on geometry in the connection “of the
axiom of congruence with the behavior of rigid bodies; even Poincaré,” Reichen-
bach concludes, “has not expressed conventionalism more clearly” (421).

5.4. Reichenbach’s Capitulation to Schlick’s Conventionalism

Reichenbach’s capitulation to Schlick’s philosophy could have not been more
unconditional, as one can realize reading between the lines of his beautiful
1922 overview of contemporary philosophical discussions about relativity (Rei-
chenbach 1922a). Reichenbach awkwardly tries to convince himself and his
readers that his previous opinion that the metric “expresses an objective property
of reality” “does not contradict conventionalism.” In 1920 he simply “forgor to
add the proposition of the definition of the metric through rigid bodies.” When this
definition is added, one has to agree with Schlick that “a metric emerges only
after the physical laws have been established (the 7 of Einstein’s formula)”; in
principle one can change the metric “provided one changes the laws of physics
correspondingly” (Reichenbach 1922a, 356; 1978, 1:34-35; my empbhasis).

Thus, Reichenbach took it for granted that Einstein’s formula G + P should
be read in the context of nineteenth-century conventionalism: in principle it
is always possible to make rigid bodies agree with any kind of geometry (G)
we please by changing the physical laws (P) that govern their behavior, for in-
stance, by introducing a “field of force” that suitably deforms all our measuring
instruments. Anticipating the main lines of his future philosophy of geometry,
Reichenbach reached the conclusion that “depending on the choice of the field
of force, one gets a different geometry.” In this sense, Reichenbach points out,
“material objects do not define a single geometry, but a class of geometries; this is
precisely the meaning of conventionalism.” By changing the definition of rigidity,
a change that can be interpreted as the effect of a force, “one obtains then a Rie-
mannian geometry of different measure-determination” (Reichenbach 1922a,
365-60) .

This understanding of Einstein’s formula, however, is rather puzzling. It is
sufficient to consider the point that Reichenbach made immediately thereaf-
ter. Reichenbach remarks that the entire class of Riemannian geometries—of
both the Euclidean and the non-Euclidean sort—“is based on an axiom, that
denotes an empirical fact [einen empirischen Tatbestand),” the axiom that “two
natural measuring rods, which can be brought to superposition once, can be
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superposed again after they have been transported along different paths.” The
assumption of the “transportability of rods” is “the axiom of the class of Rie-
mannian geometries,” that is, “the possible geometries according to Einstein” (Rei-
chenbach 1922a, 366).

After Weyl's (1921e, 475) clarification, Reichenbach started to recognize that
one of Weyl’s main achievements is precisely to have shown that “the axiom of the
Riemann class for natural measuring rods” is not “logically necessary” (Reichen-
bach 1922a, 368). While Einstein had “simply accepred the univocal transport-
ability of natural measuring-rods” as a given fact, Weyl urged “that the validity
of this axiom,” should be “understood as an outflow of a law of nature” (368).
Reichenbach did not find Weyl's explanation of the univocal “transportability
[Uebertragbarkeir] through the adaptation of the measuring-rods to the curva-
ture of the world” (368 n. 1) satisfying. However, he had to admit that Weyl’s
speculative argument had clearly put the finger on a hidden presupposition that
Einstein’s theory had uncritically assumed.

What Reichenbach failed to appreciate, however, is that Einstein’s G + P
should be understood precisely on the background of Weyl’s (and Eddington’s)
strategy of “doubling geometry,” by opposing the apparent Riemannian natural
geometry, forced by mechanism of the adjustment, to the real non-Riemannian
ether or world geometry and not to the choice between classes of Riemannian
geometries, between the Euclidean and the non-Euclidean geometries. To the
contrary, by 1922 the essential lines of Reichenbach’s conventionalism were
already written in stone. The solution of the problem of space, Reichenbach
claims, is to be found “only in this conception we call conventionalism, which
goes back to Helmboltz and Poincaré” (Reichenbach 1922b, 40; 2000).

Again, Reichenbach could consider this conclusion acceptable only by blur-
ring what Hertz had called the “Helmholtzian axiom” with the “Riemannian
axiom.” On the one hand he believes that the main philosophical lesson of gen-
eral relativity is that “the definition of congruence is . . . arbitrary, and what is
congruent in one geometry is not necessarily congruent in another” (Reichen-
bach 1922b, 33; 2006, 127; my emphasis). On the other hand Reichenbach
points out that “this definition of congruence is arbitrary, but it is uni-vocal,
and it entails that two rigid rods that are congruent at a point remain congru-
ent at all points. This is an axiom that we can consider to be experimentally well
confirmed” (Reichenbach 1922b, 35; 2006, 129; my emphasis).

In this way, however, Reichenbach completely confuses what he had so care-
fully distinguished in his first 1920 monograph. There cannot be any univocal
definition of congruence of bodies in Riemannian manifolds of variable curva-
ture, where the Helmholtzian axiom does not hold, and two bodies that are
congruent here, in general, cannot be reproduced in another location. In all
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Riemannian manifolds (with variable or constant curvature), there is an arbi-
trary but univocal definition of the unit of length: two unit rods have the same
length wherever they are compared.

As Reichenbach rightly points out, although rather in passing, in his more
technical 1924 monograph, in this respect Weyl had raised a relevant philo-
sophical problem. He realized that we cannot simply accept this “fact” as a for-
tunate circumstance: “it cannot be an accident that two measuring rods are
equal at every place in a neighborhood comparison”; Weyl had therefore rightly
required that “this fact must be explained” (Reichenbach 1924, 64; 1969, 91;
my emphasis). A similar passage from a 1925 paper by Reichenbach makes this
point eloquently:

The word adjustment, first used in this way by Weyl, is a very good char-
acterization of the problem. It cannot be a coincidence if two measuring
rods placed next to each other are of the same length regardless of their
location; it must be explained as an adjustment to the field in which the
measuring rods are embedded as test bodies. Just as a compass needle ad-
justs to its immediately surrounding magnetic field by changing its direc-
tion, measuring rods and clocks adjust their units of measure to the met-
ric field. . . .

Of course, the answer can only arise from a detailed theory of matter about
which we have not the least idea; it must explain why the accumulation
of certain field loci of particular density, i.c., the electrons, express the
metric of the surrounding field in a simple manner. The word “adjust-
ment” here thus only means a problem withour providing an answer. . . .
Once we have this theory of matter, we can explain the metrical behavior
of material objects; but at present the explanation from Einstein’s theory
is as poor as Lorentz’s or the classical terminology. (Reichenbach 1925,
48; 2006; my emphasis)

It is difficult to disagree with Reichenbach’s remark that Weyl’s speculative
theory of the adjustment of rods and clocks to the world curvature only allows
the problem to emerge but it does not furnish a plausible solution. However, it
is just as hard not be puzzled by the fact that Reichenbach did not realize that
it was precisely this problem that Einstein intended to address in Geometrie
und Erfabrung: at the present stage of development of physics, in absence of
a theory of matter, general relativity can only assume as a fortunate circumstance
that the dimensions of those atomic structures that we use as rods and clocks do
not depend on what happened to them in the past. This is indeed a poor expla-
nation as Reichenbach rightly notices; in principle it would be preferable to
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have theory that can account for this remarkable behavior. Einstein mentioned
Poincaré not in order to support classical conventionalism but to allude to Weyl’s
and Eddington’s conceptually more rigorous but physically less advantageous
attitude toward the relations between geometry and physics (Eddington 1923,
chap. 7).

6. The Assessment of Reichenbach’s Conventionalism as the
Merging of the Helmholtzian and the Riemannian Traditions

6.1. FEinstein’s Rhetorical Use of the Helmholtz-Poincaré Opposition

Einstein had returned to the issue of the epistemological status of rods and
clocks again in his July 1923 Nobel prize lecture. He insisted that “it would
be logically more correct to begin with the whole of the laws” and not with an “ar-
tificially isolated part” such as rods and clocks. However, “we are not . . . suffi-
ciently advanced in our knowledge of Nature’s elementary laws to adopt #his
more perfect method.” Einstein here is more explicit that in Geometrie und Er-
fabrung about whom he was referring us to: “At the close of our considerations
we shall see that in the most recent studies there is an attempt, based on ideas
by Levi-Civita, Weyl, and Eddington, o implement that logically purer method,”
as demonstrated in their attempt “to replace Riemannian metric geometry” with
a more general one from which the “identity between the gravitational field and
the electromagnetic field” might be derived (Einstein 1923/1967, 483-89).
There is then evidence that Einstein’s philosophical reflections on the role of
rods and clocks in general relativity, dispersed in several writings of that time,
must be understood against this background. In a 1924 review of a book by a
minor neo-Kantian (Elsbach 1924; see Howard 1990, 2010), Einstein distin-
guishes two different “standpoints” on the question about the relation between
geometry and experience: according to “standpoint A,” the “concept of the in-
terval corresponds to something experiential,” but, according to “standpoint B,”
to the “practically-rigid measuring body is accorded no reality”; “only geometry
with physical sciences taken together” can be compared with experience (Ein-
stein 1924, 1690-91). In a brief paper published 1 year later, “Nichteuklidische
Geometrie und Physik,” Einstein expressly attributed standpoint A to Poincaré
and standpoint B to Helmholtz (Einstein 1925, 19; Pesic 2007, 161).
Einstein did not hide his sympathy for the latter, without whom, he claimed,
“the formulation of relativity theory would have been practically impossible”
(1925, 18; Pesic 2007, 161). The logical empiricists could apparently find here
the umpteenth confirmation of their reading of Einstein’s work. However, once
again, Einstein’s praise of the Helmholtzian attitude toward geometry, which
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nearly literally reproduces his appreciation for practical geometry in Geometrie
und Erfabrung, cannot be taken at face value. It is the “chain of thought Weyl-
Eddington-Schouten” (Einstein to Besso, June 5, 1925; cited in Speziali 1972,
204) to which Einstein—with growing skepticism—was alluding.

The names of Helmholtz and Poincaré are used to symbolize in a brief non-
technical account published in a literary magazine, the Deutsche Literaturzeitung,
two different approaches toward the relationship between geometry and physics.
Einstein had assumed a sort of Helmholtzian attitude, by accepting a res facti,
that we happen to live in a world in which the relative periods of clocks and
the relative lengths of rods do not depend on their histories. Weyl and Edding-
ton had challenged him from a more critical Poincaréian point of view, by raising
a questio iuris in asking with what right one admits such a presupposition in gen-
eral relativity, if the latter has nothing to say about the behavior of rods and
clocks.

As Einstein put it in an entry in the Encyclopedia Britannica, there are the
“consistent thinkers” (like Weyl or Eddington), who rightly consider it prefer-
able “to allow the content of experience [Erfahrungsbestinde] to correspond to
geometry and physics conjointly.” But, there are those who, like Einstein him-
self, at the present time stick to a more pragmatic interpretation of geometry as
the study of the “laws regulating the positions of rigid bodies” (Einstein 1926,
609).

The reference to the role played by “rigid bodies” in geometry must not be
understood in the framework of nineteenth-century conventionalism. It refers
again to “the Riemannian restriction”—as Eddington calls it in the same 1926
edition of the Encyclopedia Britannica (Eddington 1926, 907)—about the re-
sult of the comparison of units of length at a distance: “The assumption of Rie-
mannian geometry,” Eddington writes, “is that the result does not depend on
the intermediate steps the route of transfer.” As Eddington points out, this is
“an assumption, not an « priori necessity” (907). One may claim that such an
assumption is experimentally well confirmed, so that “the geometry of space
and time is strictly Riemannian as Einstein supposed” (908). However, the “ex-
perimental verification only extends to a limited degree of accuracy” (907). It
should be preferable to regard the “Riemannian restriction” as “a deduction not
an axiom of our geometry” (908).

6.2. Reichenbach on Riemann and Helmholtz

It is interesting to note that Reichenbach, in his classic Philosophie der Raum-Zeit-
Lehre, which may have already been finished in 1926 (see his letter to Schlick, in
Schlick [2006, 6:175]), was completely aware of the fact that “the comparison of
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two units of length at different locations” (Reichenbach 1928, 24-25; 1958,
16) is a problematic issue. Reichenbach’s analysis reveals how here “definitions
and empirical statements are interconnected” (Reichenbach 1928, 24-25; 1958,
16). The choice of a rod as unit of length is of course conventional; we could
agree on the Paris meter or on something else. However, Reichenbach pinpoints
that “it is an observational fact [beobachtbare Tarsache], formulated in an empir-
ical statement [ Erfabrungssatz])” (Reichenbach 1928, 24; 1958, 16; my empha-
sis) that two measuring rods equal in length in Paris will be found equal at every
other spatial point. It would be possible to imagine a world in which “if two
of these copies were transported and compared locally, they would be different
in length” if compared elsewhere. In such a world “a special definition of the
unit of length would have to be given for every space point” (Reichenbach
1928, 24; 1958, 17). We simply happen to live in the fortunate world in which
units of length are reproducible everywhere.

As Reichenbach points out, this “physical fact makes the convention univ-
ocal [eindeutig]” (i.e., independent of the path of transportation). The choice
of the unit of measure is a matter of convention, but the statement about the
“univocalness [Eindeutigkeit] of the convention is . . . empirically verifiable and
not a matter of choice” (Reichenbach 1928, 25; 1958, 17; my emphasis). Rei-
chenbach refers us to section 46 of the book for more clarification, a reference
that, curiously, survived in the English translation, where, however, section 46
was suppressed. It is precisely there that Reichenbach discusses at length Weyl’s
theory, that is, the theory that revealed the contingency of this empirically ver-
ifiable fact.

As we have seen, the error at the basis of Reichenbach’s geometrical conven-
tionalism can be easily seen in an attempt to extend this reasoning to the no-
tion of congruence. In the general case of a world endowed with a geometry of
variable curvature, there is no “univocal” (i.e., position-independent) defini-
tion of congruence on which all its inhabitants may come to agree: two finite
bodies that are congruent in a flat part of space cannot have this congruence re-
produced in a curved part of the same space. In such a world there might be,
however, a univocal definition of the unit of measure: the inhabitants of different
regions of the world may agree on using the same units, so that they can compare
the length of lines that they measure. If they find the length in question is 5, they
may decide once and for all whether 5 centimeters, 5 kilometers, 5 light years,
and so on, are meant.

Again, Reichenbach confuses the Helmholtzian axiom of the independence
of the congruence of bodies from position with the Riemannian axiom of the
independence of the length of lines, chains of rods, that connect two points from
position. Unfortunately, Reichenbach elevates this confusion to a philosophical
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agenda: “while Riemann prepared the way for an application of geometry to
physical reality by his mathematical formulation of the concept of space, Helm-
holtz laid the philosophical foundations.” In particular “he recognized the con-
nection of the problem of geometry with that of rigid bodies.” For this reason,
according to Reichenbach, “Helmholtz’s epistemological lectures must therefore
be regarded as the source of modern philosophical knowledge of space” (1928,
48; 1958, 35).

The Helmholtzian and Riemannian traditions have been blurred into one
single line of development: “The solution to the problem of space described
here is to be attributed principally to the work of Riemann, Helmboltz, Poincaré,
and Einstein” (Reichenbach 1929a, 60; 1978, 1:179; my empbhasis). General
relativity, however, cannot be regarded as the heir of this mathematical tradition
simply because, as I have tried to show, such a tradition never existed. Poincaré
explicitly excluded the Riemannian geometries of variable curvature from his
conventionalism, precisely because they were at odds with the Helmholtzian ax-
iom based on the existence of rigid bodies and its group theoretical definition
furnished by Lie. Reichenbach not only completely neglected the group theo-
retical implications of the work of Helmholtz and of Poincaré (Friedman
1995), most of all he did not appreciate philosophically the fact that Riemann’s
work evolved along a different nongeometrical tradition whose geometrical sig-
nificance reemerged only after general relativity in Levi-Civita’s notion of the
parallel transport of vectors.

Precisely because he did not appreciate the difference between these two
traditions, Reichenbach could simply delude himself that, even if “there are
not rigid bodies” in general relativistic space-time, the “definition” of congru-
ence can be redirected to “infinitesimal measuring instruments” (1928, 286;
1958, 250). However, we clearly cannot stipulate arbitrarily which rods of in-
finitesimal lengths are rigid and which clocks of infinitesimal periods can be re-
garded as ideal clocks (Torretti 1983, 238-39). As we have seen, general relativ-
ity is built precisely on the Riemannian assumption that the relative lengths and
periods of infinitesimal rods and clocks are not affected by the presence of a grav-
itational field. Again, Reichenbach’s geometrical conventionalism confuses the
definition of congruence with the choice of the unit of measure with the norm
of the dfs as the unit interval, two issues that paradoxically appear clearly distinct
in Reichenbach’s own semitechnical presentation. Which atomic period we use
as a unit clock, “for instance, the linear unit may be defined by means of the wave
length of the red cadmium line,” is of course conventional. One can use another
atom (e.g., an atom of sodium with a yellow emitting line), but this would leave
the geometry of space-time unaffected. However, that the relative periods of
atomic clocks is the same wherever they are compared is a fact, which “is taught
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to us by experience”; it is the fact at the basis of Riemannian geometry: “For the
fact that the objects in question are similar is, of course, noz established by defini-
tion but is a fact that must be discovered” (Reichenbach 1929a, 30; 1978, 1:161).

The possibility of measurements in Riemann-Einstein geometry presupposes
this empirically discovered “special property” of our rods and clocks that have
always the same relative length and relative rate of ticking wherever they are com-
pared, so that “there is no need to store a special unit at a definite location.” It is
a property that characterizes all Riemannian geometries (Euclidean and non-
Euclidean). The fundamental question is then as follows: “What would happen
if the measuring rods would not possess the mentioned special property [ Vorzug-
seigenschaft]?” (Reichenbach 1928, 332; my empbhasis).

Reichenbach unfortunately raised this question precisely in the aforemen-
tioned section 46, of the appendix of his book (Reichenbach 1928, 331-
73), a paragraph that did not even make it to the English translation. However,
this was exactly the question Einstein, Weyl, and Eddington were addressing
in their debate about the role of rods and clocks in general relativity. In spite
of Einstein’s didactically effective but misleading references, the framework
from which this issue can be understood is not provided by Helmholtz's and
Poincaré’s appeal to rigid bodies in geometry but by Levi-Civitas regeometri-
zation of Riemann’s work via the notion of parallel transport of vectors. It was
Weyl’s attempt—which Reichenbach discussed at length in the appendix—to
put the direction and the length of vectors on an equal footing (Afriat 2009) that
let emerge the contingency of a central feature of Riemannian geometry on
which the very destiny general relativity as a physical theory stands or falls.

7. Einstein’s Late Reflections on Rods and Clocks in General
Relativity and His Last Dialogue with Reichenbach

7.1. Einstein, Weyl, and Eddington after 1930

By 1930, after the discovery of an “absolute length” //mc in the Dirac theory of
the electron, Weyl had actually already completely abandoned his 1918 gauge
theory (Weyl 1931). The material electron had assumed the role of world ra-
dius as an absolute standard of measure (Weyl 1934). It began to become clear
(London 1927) that the gauge invariance ties the electromagnetic field to the
Schrédinger-Dirac field of the electron ¥ (Dirac 1928a, 1928b) and not to
the gravitational field g, as Weyl had originally thought (Weyl 1929a, 1929b).
Weyl’s invitation to abandon all “geometrical capers [Lufispriinge]” (Weyl 1931,
56; cf. Scholz 2006) was, however, not followed by Einstein, who, as is well
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known, in the subsequent years tried several geometrical paths in the search for
a unified theory of gravitation and electromagnetism, which invariably led to
a dead end.

Reichenbach himself had presented, in two very readable semipopular pa-
pers (Reichenbach 1929b, 1929¢), Einstein’s last attempt in which another
parallelism, the “Fernparallelismus” (Sauer 2006), takes the place of the usual
“Riemannian” Levi-Civita’s parallelism, introducing a curvature-free but non-
Euclidean space-time, with nonvanishing torsion (the measure of the closure
failure of a parallelogram made up of two vectors and their reciprocal parallel
transports). Around 1930, Einstein himself presented his theory to a larger pub-
lic in some semipopular contributions (Einstein 1929, 1930a, 1930b, 1930¢), in
which he showed increasing epistemological confidence in the power of mathe-
matical speculation (Dongen 2010). Material particles should appear as solu-
tions of the field laws (portions of the field with high density without singular-
ities), from which ideally also the behavior of rods and clocks as atomic structures
should be derived. However, Einstein admits, “as long as the questions are not
satisfactorily solved, there will be a justified doubt as to whether such far-reaching
deductive methods may be granted to physics at all” (Einstein 1930a, 1930b,
1930c; Pesic 2007, 177).

To describe the actual provisional status of theoretical physics, Einstein re-
sorted again to the language of “rigid bodies.” In his 1933 Herbert Spencer lec-
ture at Oxford University, Einstein makes clear that, epistemologically, theoret-
ical physics “is really exactly analogous to Euclidean geometry,” which is a formal
axiomatic system on the one hand but on the other might be regarded as “the
science of the possibilities of the relative placing of actual rigid bodies” (Einstein
1933, 165). It is against the background of such a “logical parallelism of geom-
etry and theoretical physics” (165) that Einstein insists that it has been a “fatal
[verhingnisvolle] error”—as he put it in “Physik und Realitdt”—that this con-
ception of geometry as a branch of physics “has fallen into oblivion” (Einstein
1936, 321, trans. 356).

The epistemological problem Einstein was addressing is put in an equally
popular but more direct way in Eddington’s 1938 lectures at Trinity College,
Cambridge:

We notice that relativity theory has to go outside its own borders to obtain
the definition of length, without which it cannot begin. It is the micro-
scopic structure of matter which introduces a definite scale of things.
Since we have separated molar physics from microscopic physics primarily
out of consideration of the grossness of our sensory equipment, it would
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be unreasonable to expect to find it complete in itself. We can only make
it logically complete as far as the point where its roots stretch down into
physics as a whole. . . . The secret of the union of molar and microscopic
physics—of relativity theory and quantum theory—is “whe full circle.” . . .
Generally we enter on the circle at the junction now under discussion,
where relativity theory takes its standard of length from quantum theory.
(Eddington 1939, 76-77; emphasis mine)

As we have seen, general relativity must at last rely on a “quantum-specified
standard . . . reproducible at the remotest times and places” (Eddington
1939, 79). But it is at least plausible that “the quantum-specified standard does
not provide an exact definition of length in strong electric or magnetic fields”
since it is not exactly reproducible in those circumstances (79). It is “quantum
theory” that must “ultimately be able to calculate precisely how much a crystal
standard expands or contracts when placed in a magnetic field, or how a wave-
length is modified” (81). Only from the standpoint of “physics as a whole” (76),
as a union of molar and microscopic physics, can we then expect an epistemo-
logically satisfying solution of the problem. At the present state, however, “ap-
peal must be made to quantum theory for the definition of the interval 4,
which is the starting-point of relativity theory” (Eddington 1941, 693).

In those years, for example, in his Yale lectures in 1930-31 (Weyl 1932) and
in Mind and Nature (Weyl 1934), Weyl also never tired of emphasizing that, in
principle, “only the theoretical system as a whole” should “be confronted with
experience” (Weyl 1932, 78), a system in which “all parts of physics and geom-
etry finally coalesce into one indissoluble unity” (Weyl 1934, 45). In his 1949
English-augmented translation (Weyl 1949) of his 1927 monograph (Weyl
1927), Weyl insisted that the behavior of rods and clocks “by which Einstein
measures the fundamental quantity ds*” should come out “as a remote conse-
quence of the fully developed theory” (Weyl 1949, 288). Geometry and physics
can only be “put to the test as a whole” (134).

7.2. Einstein, Reichenbach, and the Anonymous Non-Positivist

In his “Autobiographical Notes” for Schilpp’s Library of Living Philosophers,
which came out in 1949, Einstein again seems to embrace in principle such an
epistemological ideal, although defending the legitimacy of his more opportu-
nistic attitude. As Einstein famously pointed out, it, “in a certain sense, is incon-
sistent” to consider measuring rods and clocks “as theoretically self-sufficient en-
tities”; “strictly speaking” they “would have to be represented as solutions of the
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basic equations (objects consisting of moving atomic configurations).” How-
ever, he still pragmatically recognizes that “it was better to permit such inconsis-
tency—with the obligation, however, of eliminating it at a later stage of the the-
ory” (Einstein 1949a, 57).

The issues Einstein was raising, as he makes particularly clear in the final
“Remarks” (1949b), were the same that he had been concerned with 30 years
carlier: “Everything finally depends upon the question: Can a spectral line be
considered as a measure of a ‘proper time’ (Eigen-Zeit) ds = gydxdx; (if one
takes into consideration regions of cosmic dimensions)? Is there such a thing
as a natural object that incorporates the ‘natural-measuring-stick’ independently
of its position in four-dimensional space? The affirmation of this question made
the invention of the general theory of relativity psychologically possible; however
this supposition is logically not necessary” (685; last emphasis mine).

The fact that general relativity still assumes that there are “physical objects,
which (in the macroscopic field) measure the invariant s,” shows that “a com-
plete theory of physics as a totality . . . does not yet exist.” According to Ein-
stein, in a complete theory “the objects used as tools for measurement do not
lead an independent existence alongside of the objects implicated by the field-
equation” (1949b, 685).

Because of this, it was not particularly enlightening that Einstein, addressing
Reichenbach’s discussion (Reichenbach 1949) of the question is “geometry . . .
verifiable (viz., falsifiable) or not,” resorted to an imaginary dialogue that op-
poses “Reichenbach, together with Helmholtz” on the one hand and Poincaré
on the other (Einstein 1949b, 677-78). As is well known, the anonymous “non-
Positivist,” who substitutes for Poincaré by the end of the dialogue, escapes this
alternative by supporting the holistic claim that “no ‘meaning’”—in Reichen-
bach’s sense (meaning verifiability)—can be attributed to “the individual con-
cepts and assertions” but only “to the entire system” (677-78), that is, only to
“the completely developed theory of relativity (which, however, does not yet exist
at all as a finished product)” (677-78). It is of course not clear for whom the
non-Positivist stands (Howard 1990), but it seems not overwhelmingly specula-
tive to argue that the anonymous interlocutor shares Weyl’s and Eddington’s
epistemological stance.

The words with which Weyl, in late 1950 on the occasion of 50 years of
general relativity, sketched his debate with Einstein in the 1920s seem to con-
firm this reading. Even if Weyl has no intention of defending a “theory in which
I no longer believe,” he still argues that the theory had put general relativity in
front of a legitimate epistemological problem: “the definition” of the metric
field “with help of rods and clocks” can of course “only be regarded as a tempo-
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rary connection to the experience.” In principle, “it must be derived” from the
laws of physics, “in which relation the measurement results which are read off
from those bodies stay to the fundamental quantities of the theory” (Weyl 1951,
81).

The contemporary reaction of logical empiricists to Einstein’s epistemolog-
ical remarks shows, however, that they still read them in the context of the age-
old but still discussed problem (Hempel 1945) of the choice between Euclid-
ean or non-Euclidean geometries. Reichenbach considered Einstein’s position
as a “witty defense of conventionalism” to which he answered resorting again to
Helmholtz’s and Poincaré’s conceptual resources, from which he defended his
“verifiability theory of meaning” (Reichenbach 1951, 135). Rudolf Carnap’s
preface to the English translation of Reichenbach’s classical 1928 monograph
(Reichenbach 1958) considers the main achievement of Reichenbach precisely
in having established the connection of Poincaré’s work to that of Einstein (also
see Carnap’s 1958 seminar on the foundations of physics published as Carnap
[1966]).

7.3. The Discussion on the Riemannian Axiom in the 1960s

Itis then not surprising that the lengthy chapter dedicated to Weyl’s theory was
omitted by Maria Reichenbach and John Freund in their widely read English
translation of Reichenbach’s masterpiece (Reichenbach 1958) and remains un-
translated to this day (Coffa 1979). This decision was of course comprehensi-
ble. Weyl’s theory in his original form was physically untenable, as Weyl him-
self did not hesitate to admit on the occasion of the reissue of his 1918 paper
(cf. addendum to Weyl [1918d] published in Weyl [1956], 192). However, the
fact that Weyl’s theory was regarded as philosophically and epistemologically
uninteresting is the sign of a more fundamental misunderstanding, a misunder-
standing that, given the enormous influence of Reichenbach’s book, might have
not been free of consequences on the later development of the philosophical in-
vestigation of space-time theories. Weyl’s failed 1918 attempt to unify gravita-
tion and electricity had raised a fundamental epistemological question about
the status of the nothing but obvious Riemannian behavior of rods and clocks
that provides general relativity with its empirical content. This issue continued
to play a nonnegligible role in the foundational discussions of general relativity
in the physical community in the subsequent decades.

Just after the publication of Reichenbach’s book in English, the Irish phys-
icist John Lighton Synge, making a “a plea for chronometry” (Synge 1959), sug-
gested introducing as the basis of general relativity the chronometric version of

365

This content downloaded from 205.208.116.024 on November 20, 2017 00:41:28 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journal s.uchicago.edu/t-and-c).



HOPOS | Emergence of logical Empiricism

the “Riemannian hypothesis” (Synge 1960, 105), that is, the “chronometric as-
sumption which makes space-time Riemannian” (107): the ratio of frequencies
of atomic clocks is a “natural constant,” independent of the world-line on which
the observations are made (106).

At about the same time, convinced of the epistemological shortcomings of
this approach, Robert F. Marzke (1959) and, a little later, Wolfgang Kundt and
Banesh Hoffmann (1962) attempted to construct clocks using the reflection of
light between two world-lines, without resorting to complicated atomic struc-
tures (Marzke 1959). As Marzke explains in 1964, in a paper written with John
A. Wheeler (Marzke and Wheeler 1964), a theory should be able to describe
the behavior of its own probes. “The conceivability of alternative theories,” such
as Weyl geometry, raised the question, “how accurately has the Riemann postu-
late been tested?” (59). General relativity assumes that “the ratio” of world-lines
“is independent of the choice of route of inter comparison” (58), but, from the
epistemological point of view, the intercomparison should “be carried through
without any recourse to measuring rods or clocks of atomic constitution” (62).
General relativity, “in and by itself ” should provide “its own means for defining
intervals of space and time” without leaning on quantum theory. In this spirit,
Ehlers, Pirani, and Schild had famously suggested the use of light rays and freely
falling particles (following Weyl 1921c) instead of rods and clocks; however, “an
additional Riemannian axiom” (Ehlers et al. 1972, 82) was still needed, to force
the Streckenkriimmung to vanish everywhere.

Thus, this debate reproduced at a higher level of sophistication the technical
and philosophical issue (Carrier 1990; Coleman and Korté 1995) that Einstein,
Weyl, and Eddington had faced some decades eatlier. This confirms beyond a
reasonable doubt that precisely the role of the Riemannian axiom was at the
heart of Einstein’s reflections about rods and clocks: hence, these reflections
do not bear any connection with the problem of whether the choice among var-
ious different Riemannian geometries is conventional or empirical, as logical em-
piricists believed, a problem that, on the contrary, makes sense only under the
assumption of the Helmholtzian axiom of free mobility. It is again a sign of a
curious misunderstanding that Reichenbach’s well-informed 1922 remarks on
the Weyl-Einstein-Eddington debate were omitted also from the 1878 English
translation of his philosophical writings because—as the editors surprisingly
point out—it was “of no historical importance” (Reichenbach 1978, 1:38).

8. Conclusion

Riemann’s and Helmholtz’s two brief writings on the foundation of geometry,
although they each had an undeniably enormous influence on the history of the
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sometimes stormy relationship between geometry and physics, undergo differ-
ent destinies. The intuitive attractiveness of Helmholtz's conviction that spatial
measurement necessarily presupposes the rigid motions of bodies with the vol-
umes they fill hindered the full appreciation of Riemann’s more abstract and
general assumption that it is sufficient to assume that the length of the paths
between any two points—relative to some standard interval—can be univocally
determined.

Helmholtz's approach was in fact immediately extremely successful; devel-
oped technically by Lie’s work on continuous groups, it was brought to the cen-
ter of the philosophical scene by the elegant prose of Poincaré’s popular writ-
ings. In contrast, Riemmann’s approach somehow evolved subterraneously
from the inconspicuous work of Christoffel, to Ricci’s and Levi-Civita’s absolute
differential calculus, and never made the headlines of the philosophical debate.
It was general relativity that rescued this mathematical tradition from the obliv-
ion to which it would have probably been consigned otherwise.

Using logical empiricism as a case study, this article has tried to show that the
profound difference between these two traditions was never fully appreciated
in the philosophical debate, a misunderstanding that had long-standing con-
sequences on the history of philosophy of science. Whereas the emergence of
general relativity can be described as a process of progressive “emancipation”
from the distant-geometrical approach that dominated the Helmholtzian tradi-
tion to let emerge the near-geometrical implications of the Riemannian one,
early logical empiricists’ philosophy of space and time emerges on the contrary
as a sort of unfortunate “collision”—to borrow Norton’s (1999) term—of the
Riemannian and the Helmholtzian traditions. The logical empiricists tried to in-
terpret Einstein’s new approach to geometry and physics, the very expression of
the Riemannian tradition, by projecting it onto the background of the Helm-
holtzian one.

With the mathematical technique developed by Riemann, Christoffel, Ricci,
and Levi-Civita, Einstein’s theory of gravitation inherited the tacit assumption
that, when a unit of measure has been chosen once and for all, the length of
world-lines can be attributed a unique value, independent of the coordinate sys-
tem chosen. Einstein’s insistence against Weyl on the indispensability of rods
and clocks in general relativity pivoted precisely on the status of this Riemann-
ian assumption that the ratio of any two world-lines is an absolute constant.
Schlick and Reichenbach, however, mislead by some of Einstein’s remarks, tried
to interpret Einstein’s rods-and-clocks parlance under the light of the Helm-
holtzian assumption of the relation between congruence and the free mobility
of rigid bodies. Helmholtz’s requirement that the congruence of bodies should
be independent of position was irremediably blurred with Riemann’s idea that
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the length of lines should be independent of position. To put it more intuitively,
spatial measurements do not require rigid bodies but only inextensible threads

(Freudenthal 1956, 374; see also Torretti 1999, 163).
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