Lecture 9

Nerve tissue

- Nerve tissue
- Neuron
- Synapse
- Neuroglia
- Nerve
- Saltatory signal propagation
- Development of nerve tissue
- Nerve regeneration

Nerve tissue – general 1

Controls and integrates all body activities within limits that maintain life

Key functions

- sensing changes with sensory receptors
- interpreting and remembering those changes
- reacting to those changes with effectors

Somatic X Autonomous (vegetative)

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Anatomical organization of nervous system 1

Central nervous system - CNS

Definition:

Unpaired, bilaterally symmetrical structures extending along the longitudinal axis of the midsagittal plane of the body.

Structures arising directly from the neural tube.

Includes:

- Brain
- Spinal cord

Peripheral nervous system - PNS

Definition:

Made up of transmission pathways carrying information between the CNS and external/internal environments.

Afferent (sensory) pathways: Carry information to the CNS.

Efferent (motor) pathways: Carry information from the CNS.

Includes:

- Cranial nerves (12 pairs)
- Spinal nerves (31 pairs)
- Peripheral nerves
- Ganglia

Anatomical organization of nervous system 2

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings

Nerve tissue – General – Neuron 1

Nervous tissue is made up of just 2 types of cells:

- <u>Neurons</u>
- **Neuroglia glial cells** (supporting cells)
- Neurons are the basic functional units of nervous tissue.
- They are highly specialized to transmit nerve impulses.

1. Perikaryon (neurocyte)

2. Processes:

(one-way signal conduction)

- axon

(always only one; centrifugal conduction)

- dendrit(es)

(centripetal conduction)

Neuron 2

Position:

CNS – grey matter PNS – ganglia

Shape:

pyramidal, shpherical, ovoid, peer-shaped

Size:

5 to 150 μm

Organelles:

- Nuclues large + pale + prominent nucleoli
- Nissl substance rough ER
- Neurofibrils (neurofilaments + neurotubules + actin)

Neuron 3 - Perikaryon

• Lipofuscin pigment clumps

Neuron 4 - Perikaryon

Nissl substance in TEM

Cell and Tissue Ultrastructure – A Functional Perspective; 1993; Cross and Mercer, Freeman and Co.; Page 127

Neuron 5 - Perikaryon

Silver nitrate

Neuron 6 - Perikaryon

Neuron 7 – Neurites / Processes

Neuron 7 – Neurites / Processes

Dendrites

- Conducts impulses towards the cell body
- Typically short, highly branched & unmyelinated
- Surfaces specialized for contact with other neurons
- Contains neurofibrils & Nissl bodies
- Receptive surface for synaptic junctions
- Contain MAP-2 (distinction from axon)
- Tens of thousands of synapses on large dendrites
- Dendritic spines located on surface of some dendrites
- Spines diminish with age and poor nutrition

Axon (nerve fiber)

- 1 axon projects from cell body at axon hillock
- <u>Axon hillock</u> pyramid shaped region of the soma that is devoid of RER
- Some axons are up to 100 cm
- Initial segment = Spike trigger zone (a portion of axon from its origin to the beginning of myelin sheath)
- At spike trigger zone trigger zone summation of excitatory and inhibitory impulses occurred
- Collateral branches, Terminal arbor
- Myelinated or Unmyelinated
- Conduct impulses away from cell body
- Swollen tips called <u>synaptic knob (terminal button)</u> contain synaptic vesicles filled with neurotransmitters
- Cell membrane = axolemma
- Cytoplasm = axoplasm

White matter: areas of myelinated axons Gray matter: areas of unmyelinated axons, cell bodies, and dendrites

Neuron 8 – Neurites / Processes

Neuron in TEM

Axon hilloc -

Neuron 9 – Axonal transport

Why?

many proteins made in soma must be transported to axon and axon terminal to repair axolemma, serve as gated ion channel proteins, as enzymes or neurotransmitters

How?

axonal transport – two-way passage of proteins, organelles, and other material along an axon

- anterograde transport movement down the axon away from soma (dynein)
- retrograde transport movement up the axon toward the soma
- (kinesin)

- **Slow transport:** 1-5 mm/day
- Fast transport: 200-400 mm/day

Nerve tissue – Neuropil 1

All the material filling space among the bodies of neurons and glial cells + ECM

pyramidal cells - impregnation

motoneurons - HE

motoneurons - combined method

Nerve tissue – Neuropil 2

Neuropil in TEM

Neuron – Classification 1

According to the number of the processes

Neuron – Classification 2

According to the function

Motor (efferent) neurons:

conduct impulses to muscles, neurons, glands

Sensory (afferent) neurons:

receive sensation

Interneurons:

local circuit neurons

Synapse 1

Definition

Synapses are highly specialized intercellular junctions, which link the neurons of each nervous pathway

- · Axon terminal forms bouton terminal
- Presynaptic membrane contains mitochondria, and an abundance of synaptic vesicles with neurotransmitter
- **Presynaptic dense projections -** are associated with synaptic vesicles form active sites of synapse
- Synaptic vesicles (smaller + larger storage)
- Postsynaptic membrane contains receptors and some dense materials
- Synaptic cleft 20-30 nm width, occupied by fine filaments
- Glial cells increase synaptic efficacy
- Asymmetric synapses are excitatory (a thick postsynaptic membrane and a 30 nm synaptic cleft)
- **Symmetric synapses are inhibitory** (thin postsynaptic membrane and a 20 nm synaptic cleft)
- Need special staining to see by light microscopy

Excitatory synapses

- postsynaptic Na+ channels open
- influx of Na+
- depolarizition of membrane of postsynaptic neuron

Χ

Inhibitory synapses

- postsynaptic CI- (or other anion) channels open
- influx of anions
- hyperpolarizition of membrane of postsynaptic neuron

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings

Neurotransmitters

- Acetylcholine
- Amioacids gluatamate, glycin, GABA (gamma-amminobutyric acid)
- Monoamines serotonin, catecholamines, dopamine, adrenaline, ...
- Neuropeptides enkefalin, somatostatin, neurotensin,
- Others adenosine, nitric oxide

Synapse in TEM

Classification according to the constitution

One neuron may have **1 000 to 10 000 synapses !!!**

General features

- non-neuronal cells of several types
- support and protect the neurons
- bind neurons together and form framework for nervous tissue
- in fetus, guide migrating neurons to their destination
- if mature neuron is not in synaptic contact with another neuron it is covered by glial cells
- prevents neurons from touching each other
- gives precision to conduction pathways
- · only nuclei visible by light microscopy without special staining
- there are several glial cells for each neuron

Number of **neurons**: about **100 billions to 1 trillion** Number of **glial cells: 50x more** then neurons

- Astrocytes
- Oligodendrocytes
- Microglia
- Ependymal cells

Peripheral neuroglia

- Schwann cels
- Satelite cells

Neuroglia - Astrocytes

- most abundant glial cell in CNS
- covers entire brain surface and most non-synaptic regions of the neurons in the gray matter of the CNS

diverse functions:

- ✓ form a supportive framework of nervous tissue
- have extensions (perivascular feet) that contact blood capillaries that stimulate them to form a tight seal called the blood-brain barrier
- convert blood glucose to lactate and supply this to the neurons for nourishment
- nerve growth factors secreted by astrocytes promote neuron growth and synapse formation
- communicate electrically with neurons and may influence synaptic signaling
- regulate chemical composition of tissue fluid by absorbing excess neurotransmitters and ions
- astrocytosis or sclerosis when neuron is damaged, astrocytes form hardened scar tissue and fill space formerly occupied by the neuron
- ✓ contains GFAP

Neuroglia - Astrocytes

fibrous astrocyte (predominant in white matter)

Neuroglia - Oligodendrocytes

- ✓ smaller than astrocytes; darker, round nucleus, abundant RER, well developed golgi apparatus
- ✓ form myelin sheaths in CNS
- \checkmark one cell serves more then one axon
- cannot migrate around axons (unlike Schwann cells) must push newer layers of myelin under the older ones so myelination spirals inward toward nerve fiber
- ✓ nerve fibers in CNS have no Schwann sheath (neurilemma) or endoneurium
- each arm-like process wraps around a nerve fiber forming an insulating layer that speeds up signal conduction
- ✓ damaged in multiple sclerosis

Neuroglia - Microglia

- ✓ **smallest** neuroglial cell
- ✓ small, dark, elongated nuclei
- ✓ possess **phagocytotic** properties
- ✓ when activated antigen presenting cell
- ✓ originate in bone marrow (**mesodermal** origin)

Neuroglia – Ependymal cells

- ✓ line ventricles of CNS and central canal of spinal cord
- ✓ cuboidal or low columnar shape
- ✓ no basal lamina
- ✓ secrete cerebrospinal fluid (CSF)
- ✓ some are **ciliated**, facilitate movement of CSF
- ✓ participate in formation of **Choroid plexus**

Neuroglia – Central - Summary

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- cells that encircle all axons in PNS
- provide structural and metabolic support to axons
- provide guidance for axonal growth

Small diameter axons

Enveloping by only cytoplasm

only Schwann sheath – gray nerve fiber

Large diameter axons

Wrapping by myelin sheaths

Schwann + myelin sheath- double contoured nerve fiber

Small diameter axons

Non-myelinated fibers

(typical for autonomous nerve system)

One Schwann cell can ensheath multiple axons

only Schwann sheath – gray nerve fiber

Double contoured nerve fiber

Schwann sheath = Neurilemma

Myelin sheath

Myelin sheath is segmented = Many Schwann cells are needed to cover one nerve fibre

Schmidt-Lanterman clefts

- Schwann cell cytoplasm trapped within the lamellae of myelin

Schmidt-Lanterman clefts

Neuroglia – Functional effect of myelination

Signal propagation

Non-myelinated axons – slow (0.5 - 2 m/s)

Myelinated axons – fast (15 – 20 m/s)

Peripheral nerve – Organization 1

Consists of 100's to 100,000's of myelinated and unmyelinated axons (nerve fibers).

Copyright @2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Connective tissue layers composing nerves:

- Endoneurium surrounds axons
- · Perineurium surrounds fascicles
- Epineurium surrounds the entire nerve

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Peripheral nerve – Organization 2

Peripheral nerve – Organization 3

perineurium

Gastrulation

Formation of the three germ layers

Ectoderm: outside, surrounds other layers later in development, generates skin and nervous tissue.

- <u>Mesoderm</u>: middle layer, generates most of the **muscle, blood** and **connective tissues** of the body and placenta.
- Endoderm: eventually most interior of embryo, generates the **epithelial lining** and associated **glands** of the **gut**, **lung**, and **urogenital tracts.**

Schoenwolf et al: Larsen's Human Embryology, 4th Edition. Copyright © 2008 by Churchill Livingstone, an imprint of Elsevier, Inc. All rights reserved

Neural Induction

In addition to patterning the forming mesoderm, the primitive node also sets up the neural plate

Neurulation

Folding and closure of the neural plate

neural folds close

- neural crest delaminates and migrates away
- closure happens first in middle of the tube and then zips rostrally and caudally
- anterior neuropore closes around day 25
- posterior neuropore closes around day 28

The early neural tube is a pseudostratified epithelium

- The "apical" portion abuts the central canal
- The **"basal" portion** abuts the **surrounding tissue** (e.g. somites, notochord, etc.).
- Cell division occurs in the apical portion.

Neural crest

the "4th germ layer"

Copyright © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins

Neural crest derivatives

Nerve tissue regeneration - CNS

Stem / progenitor cells resiging in some areas of adult brain

Life-long plasticity of CNS

- Sprouting new dendrites
- Synthesis of new proteins
- Changes of synaptic contacts

Nerve tissue regeneration - PNS

Axons and dendrites may be repaired if:

- Neuron cell body remains intact
- Schwann cels remains active and form tube •
- Scar tissue does not form too rapidly •

b 2 weeks

Breakdown of axon Breakdown of myelin sheath c 3 weeks

Schwann cells divide Axon begins to grow (1.5 mm/day) Navigaion by Schwann cells Collaterals will die

d 3 months

Thank you for your attention !

Questions and comments at: ahampl@med.muni.cz