M A S A R Y K O V A U N I V E R Z I T A

PŘÍRODOVĚDECKÁ FAKULTA

Post-magmatické změny rudní (Sn, W, Nb, Ta, Sc, REE) mineralizace na ložisku Cínovec-Zinnwald

Dizertační práce

Sebastián Hreus

Vedoucí práce: Doc. Jan Cempírek, Ph.D.

ÚSTAV GEOLOGICKÝCH VĚD

Brno 2021

Bibliografický záznam

Autor:	Mgr. Sebastián Hreus Přírodovědecká fakulta, Masarykova univerzita, Ústav geologických věd	
Název práce:	Post-magmatické změny rudní (Sn, W, Nb, Ta, Sc, REE) mineralizace na ložisku Cínovec-Zinnwald	
Studijní program:	Geologie	
Studijní obor:	Geologie	
Vedoucí práce:	Doc. Jan Cempírek, Ph.D.	
Konzultant:	Prof. RNDr. Milan Novák, CSc.	
Počet stran:	186	
Akademický rok:	2021/2022	
Klíčová slova:	greisen; Li-Sn-W ložiska; hydrotermální alterace; Saxothuringikum; skandium; prvky vzácných zemin	

Bibliographic Entry

Author:	Mgr. Sebastián Hreus Faculty of Science, Masaryk University, Department of Geological Sciences		
Title of Thesis:	Post-magmatic changes of ore (Sn, W, Nb, Ta, Sc, REE) mineralization at the Cínovec-Zinnwald deposit		
Degree programme:	Geology		
Field of Study:	Geology		
Supervisor:	Doc. Jan Cempírek, Ph.D.		
Consultant:	Prof. RNDr. Milan Novák, CSc.		
Number of pages:	186		
Academic Year:	2021/2022		
Keywords:	greisen; Li-Sn-W deposits; hydrothermal alteration; LA-ICP-MS; Saxothuringicum, scandium, rare earth elements		

Abstrakt

Na greisenovém ložisku Cínovec-Zinnwald v SV části Krušných hor v současné době probíhá intenzivní ložiskový průzkum, který má za cíl ověřit zásoby Li, Sn, W a dalších doprovodných, potenciálně těžitelných surovin (Nb, Ta, Rb, Cs, Sc, REE). Pro část těchto doprovodných surovin nebyly donedávna dostupné podrobnější informace o jejich distribuci v rámci užitných minerálů na ložisku. Tato práce proto poskytuje přehled o distribuci Sc, REE+Y a další mineralizace ve vybraných částech ložiska Cínovec, a především pak ložiska Cínovec-Jih, které nebylo v minulosti díky nedostupnosti studijního materiálu podrobně zkoumáno. Práce vychází ze studia vzorků odebraných se zaměřením na mineralizaci Sc a REE+Y z vrtného průzkumu na české straně ložiska.

V primárně magmatických minerálech byly nejvyšší obsahy skandia zaznamenané v kolumbitu (do 3 hm.% Sc₂O₃), zirkonu (do 2,5 hm.% Sc₂O₃) a xenotimu-(Y) (do 1,6 hm.% Sc₂O₃); z minerálů metasomatického a hydrotermálního původu pak v ixiolitu (do 4,9 hm.% Sc₂O₃; vůbec nejvyšší nabohacení Sc), v qitianlingitu (do 1,3 hm.% Sc₂O₃) a v minerálech skupiny wolframitu (do 1 hm.% Sc₂O₃). Hlavním nositelem skandia z pohledu celkového množství tohoto prvku na ložisku je zinnwaldit. Ten má sice relativně nízké obsahy Sc (typicky 40-85 ppm), ale jelikož patří mezi hlavní minerály na ložisku, váže v sobě majoritní podíl (93 %) z celkového množství Sc v rámci ložiska.

Distribuce REE+Y vykazuje, podobně jako Sc, silnou frakcionaci v magmatickém i hydrotermálním stadiu. V minerálech magmatického původu jsou HREE+Y akumulovány především v zirkonu (do 14,7 hm.% HREE+Y), v minerálech xenotimové skupiny (do 66,6 hm.% REE+Y, z toho tvoří 66,0 hm.% HREE+Y), a v primárním fluoritu (1,7 hm.% REE+Y, z toho 1,3 hm.% HREE+Y). LREE pak vstupují především do monazitu-(Ce) (do 64,3 hm.% REE+Y, a z toho až do 60,9 hm.% LREE). V minerálech spjatých s metasomatózou a hydrotermálními procesy, vzniklých rekrystalizací magmatických minerálů, vznikly nejčastěji REE+Y fluorkarbonáty. Do struktury minerálů skupiny bastnäsitu vstupují hlavně LREE (do 70,2 hm.% REE+Y, a až do 68,8 hm.% LREE); naproti tomu minerály skupiny synchysitu mají velice variabilní obsah HREE+Y (do 51,6 hm.% REE+Y, 25,4-3,4 hm.% HREE+Y). Nejvyšší průměrný obsah REE+Y byl zaznamenán v úzké zóně stockscheidru na kontaktu granitové kopule a ryolitu, který byl při migraci fluid bohatých REE+Y přirozenou bariérou.

Abstract

The Cínovec-Zinnwald world-class greisen deposit in the NE part of the Krušné hory/Erzgebirge is currently explored to verify the reserves of Li, Sn, W and other accompanying minor elements, potentially present in extractable ores (Nb, Ta, Rb, Cs, Sc, REE). Until recently, more detailed information on the distribution of minor elements within the ore minerals in the deposit was not available. This work provides an overview of the distribution of Sc, REE+Y, and other elements in selected parts of the Cínovec deposit, especially from the Cínovec-Jih deposit, which has not been studied in detail in the past due to the unavailability of study material. The work is based on the study of samples collected (with focus on the Sc and REE+Y mineralization) from the drilling survey on the Czech side of the deposit.

In primary magmatic minerals, the highest contents of scandium were recorded in columbite (up to 3 wt.% Sc_2O_3), zircon (up to 2.5 wt.% Sc_2O_3) and xenotime-(Y) (up to 1.6 wt.% Sc_2O_3); from minerals of metasomatic and hydrothermal origin, Sc is present in ixiolite (up to 4.9 wt.% Sc_2O_3 ; highest Sc content from all minerals), in qitianlingite (up to 1.3 wt.% Sc_2O_3) and in wolframite-group minerals (up to 1 wt.% Sc_2O_3). The main carrier of scandium in terms of the total amount of this element in the deposit is zinnwaldite. Despite its relatively low Sc contents (typically 40-85 ppm Sc), it carries the major part (93%) of the total Sc as it is one of the main minerals in the deposit.

Similar to Sc, the distribution of REE+Y shows a high fractionation in magmatic and hydrothermal stages. In minerals of magmatic origin, HREE + Y accumulates mainly in zircon (up to 14.7 wt.% HREE+Y), in minerals of the xenotime group (up to 66.6 wt.% REE+Y, of which up to 66.0 wt.% is HREE+Y), and in primary fluorite (1.7 wt.% REE + Y, up to 1.3 wt.% HREE+Y). LREE enter mainly to monazite-(Ce) (up to 64.3 wt.% REE+Y, of which are up to 60.9 wt.% LREE). REE+Y fluorocarbonates were most often formed in minerals resulting from the recrystallization of magmatic minerals, associated with metasomatic and hydrothermal processes. The bastnäsite group minerals contain mainly LREE (up to 70.2 wt.% REE+Y, of which up to 68.8 wt.% LREE); in contrast, minerals of the synchysite group have a very variable HREE+Y contents (up to 51.6 wt.% REE+Y, of which is 3.4-25.4 wt.% HREE+Y). The highest average REE+Y contents were recorded in the narrow zone of the stockscheider at the contact of the Cínovec granite cupola and the Teplice rhyolite, which formed a natural barrier during the migration of (REE+Y)-rich fluids.

Zadání dizertační práce

Předmětem práce bude výzkum post-magmatických změn rudní (Sn,W,Nb,Ta,Sc,REE) mineralizace na ložisku Cínovec-Zinnwald. Důraz bude kladen především na ložisko Cínovec-Jih, na kterém v současnosti probíhá intenzivní vrtný průzkum, v menší míře pak na další části ložiska, včetně vzorků z historických důlních děl a dobře dokumentovaných vzorků z muzejních fondů. K výzkumu budou použity moderní metody instrumentální analýzy a charakterizace materiálů (EMP-WD, RTG-difrakce, pokročilé EBSD. Ramanova spektroskopie, SEM-CL, atd.). Cílem práce je objasnit post-magmatické materiálové změny v rudní mineralizaci v různých částech ložiska (vertikální a horizontální změny), jejich význam pro optimalizaci zpracování, separace a metalurgie rudních minerálů, a detailní charakterizace vybraných fází včetně nestechiometrie a fázových přechodů mechanismem order-disorder. Získané poznatky významným způsobem rozšíří znalosti o strukturních vlastnostech vybraných rudních minerálů a otevřou cestu k jejich využití v geologickém (vznik, vývoj) a ekonomickogeologickém (metalurgie) modelování ložisek nerostných surovin. Výzkum bude financován z grantu GAČR a o další financování bude žádáno v roce 2017.

Poděkování

Můj veliký dík patří především doc. Janu Cempírkovi, Ph.D. za ochotu, trpělivost i cenné rady při psaní této práce, Mgr. Jakubovi Výravskému za milou a dlouhodobou spolupráci, pomoc a za množství trefných připomínek.

Děkuji také RNDr. Karlu Breiterovi, DSc. za informace ohledně ložiska Cínovec, poskytnutí některých vzorků i cennou zpětnou vazbu, Mgr. Vojtěchovi Šešulkovi, Ph.D., Pavlu Reichlovi, Ph.D., P.Geo a firmě Geomet za ochotu, poskytnutí vzorků hornin i za informace ohledně celohorninových analýz.

Za různorodé věcné připomínky a rady jsem vděčný prof. RNDr. Milanu Novákovi, CSc., doc. Mgr. Michaele Vašinové Galiové, Ph.D, a doc. Radkovi Škodovi, Ph.D.

Děkuji také za pomoc s grafickou a technickou stránkou práce Anne Márii Pavolkovej, a Zuzane Bartošovej,

V neposlední řadě bych chtěl poděkovat za trpělivost s mou osobou a každodenní pomoc své manželce, Mgr. Monike Hreusovej, Ph.D., mé rodině a Bohu.

Originální publikace a vymezení podílu autora dizertační práce

Práce částečně vychází z publikované práce autora disertace (Sebastián Hreus, SH).

Publikace: Sebastián Hreus, Jakub Výravský, Jan Cempírek, Karel Breiter, Michaela Vašinová Galiová, Ondřej Krátký, Vojtěch Šešulka, Radek Škoda (2021): Scandium distribution in the world-class Li-Sn-W Cínovec greisen-type deposit: Result of a complex magmatic to hydrothermal evolution, implications for scandium valorization. *Ore Geology Rewiews*, **139**, 104433. (DOI: https://doi.org/10.1016/j.oregeorev.2021.104433)

SH se podílel na odběru vzorků, analýze pomocí elektronového mikroskopu a elektronové mikrosondy, analýze LA-ICP-MS, spolupřipravoval draft rukopisu a se spoluautory dokončil finální text rukopisu.

Obsah

	5.1.8 Kasiterit	. 45
	5.1.9 Wolframit	. 45
	5.1.10 Ixiolit a qitianlingit	. 48
	5.1.11 Scheelit	. 49
	5.1.12 Minerály superskupiny pyrochloru	. 49
5	.2 Sekundární REE minerály	. 49
	5.2.1 Minerály skupiny bastnäsitu	. 49
	5.2.2 Minerály skupiny synchysitu	. 50
	5.2.3 Fluocerit-(Ce)	. 51
	5.2.4 Minerály dussertitové skupiny	. 51
6. I	Diskuse	. 54
6	.1 Krystalová chemie Sc a REE+Y v minerálech	. 54
6	.2 Chování minerálů s obsahem Sc během alterací v subsolidu	. 57
6	.3 Vývoj REE mineralizace na ložisku Cínovec	. 60
6	.4 Distribuce REE+Y v rámci ložiska	. 64
6	.5 Srovnání s dalšími ložisky ve světě	. 66
7. Z	Závěr	. 67
Pot	žitá literatura	. 68
Příl	ohy	.77
F	říloha č. 1: Článek publikovaný v odborném časopise s IF	.77
F	říloha č. 2: Tabulky s chemickým složením minerálů	. 95

1. Úvod

Ložisko Cínovec/Zinnwald v Krušných horách bylo systematicky těženo od 14. století; během těžby se ale postupně měnily dobývané suroviny. Po nejdelší období byl hlavním těženým nerostem kasiterit, který sloužil jako významný zdroj cínu. V 19. století, po objevu využití wolframu, se začal intenzivně těžit také wolframit. Během těžby Sn a W ve 20. století pak bylo v krátké epizodě z ložiska získáváno rovněž skandium (Petrů et al. 1956). Obnovený zájem o komodity v prvním desetiletí 21. století (nejprve Sn, později pak především Li) pak podnítily nový průzkum ložiska s cílem ověřit zásoby Li, Sn, W, Nb, Ta a dalších prvků. Mezi potencionálně zajímavé suroviny na ložisku patří také Sc a REE+Y.

Skandium se využívá především jako přísada do palivových článků (tzv. "solid oxide fuel cell") a lehkých hliníkových slitin využívaných např. v leteckém průmyslu, a jeho spotřeba kontinuálně roste. Na druhou stranu je stále trh se skandiem velice omezený, a to zčásti i kvůli limitované nabídce. V ještě větším měřítku v posledním období roste využívání prvků vzácných zemin a yttria, které se ve využívají v široké škále high-tech technologií, jako jsou např. displeje, mobilní telefony, moderní automobily, výkonné baterie apod. Jak Sc tak i REE patří mezi tzv. "kritické suroviny" (COM 2020), u kterých existuje potenciální riziko dodávek pro světový průmysl.

Z výše uvedených důvodů je zajímavé zvážit zařazení mezi potencionálně dobývané suroviny také minerály Sc a REE+Y. Tato práce proto přináší podrobná data o mineralogii a distribuci Sc a REE+Y v minerálech ložiska Cínovec, a diskutuje mechanismy jejich vzniku. Zjištěné poznatky tak mohou být (vedle dalších podstatných faktorů) podkladem pro zvážení ekonomické výhodnosti získávání těchto prvků coby vedlejší suroviny na ložisku.

2. Granitický magmatismus v regionální geologii Saxothuringika

Svrchně karbonské granitoidy Krušných hor se nachází na severozápadním okraji Českého masivu a náleží ke krystaliniku sasko-durynského pásma (Saxothuringika), které je součástí skupiny evropských variscid. Krušné hory mají antiformní strukturu s proterozoickými metamorfovanými horninami v jádře a s paleozoickým metamorfovaným obalem (Konopásek et al., 2001). Tyto metamorfity tvoří plášť variských granitoidů Krušných hor (obr. 1).

Obr. 1: Schematická geologická mapa rozlišující typy variských granitů v Krušných horách. Důležité Atypové granity, včetně Cínoveckého jsou označeny maltézským křížem. V závorce jsou uvedeny jména těles, které byly zastiženy pouze podpovrchově (Breiter, 2012, upraveno).

V minulosti byla předpokládána existence jednoho koherentního krušnohorského batolitu pod celým pohořím Krušné hory (Watznauer, 1954), na druhou stranu Tischendorf (1969) upřednostňoval model předpokládající existenci většího množství plutonů.

Výzkum Breitera et al. (1999) podpořil myšlenku přítomnosti vícero magmatických center pod Krušnými horami.

2.1. Typologie granitů

Dle starších prací (Hochstetter, 1856; Laube, 1876) byly granitoidy Krušnohoří děleny na dvě suity intruzí:

1. starší inruzivní komplex – OIC ("horská žula") náleží petrograficky převážně do pole biotitického monzogranitu – např. tělesa Loket, Nejdek, Fláje (Breiter, 2005).

2. mladší intruzivní komplex – YIC ("krušnohorská žula") je z petrologického hlediska tvořen Li-biotitovými syenogranity s topazem až albit-zinnwaldit-topazovými alkalickoživcovými leukogranity – např. tělesa Krudum, Nejdek-Eibenstock, Cínovec, Krupka (Breiter, 2005). Ložiska Sn a W jsou spjata právě s mladším intruzivním komplexem.

Fiala (1968) vyčleňuje ještě jednotku "přechodné granity". Jedná se o dvojslídné granity ve Slavkovském lese na přechodné hranici mezi intruzemi OIC a YIC.

Toto dělení je obecně akceptované, je ale neobhajitelné v praxi, protože využívá stáří hornin v klasifikaci, která je ale založená na petrologické charakteristice hornin. Vztahy mezi intruzemi pozorované v terénu a radiometrické datování v Německé části Krušných hor (Erzgebirge) jednoznačně nepotvrdilo předpoklad, že všechny plutony, které jsou zařazeny do skupiny OIC jsou starší než ty, které byly zařazeny do skupiny YIC (Förster *et al.*, 1999). Z těchto důvodů byly na základě geochemických a mineralogických výzkumů rozlišeny dvě suity na základě rozdílné geochemické signatury (Breiter et al., 1991; Förster et al., 1999; Breiter, 2012):

- Silně peraluminické granity (A/CNK = 1,1-1,3), které jsou charakteristické obohacením P, ale nízkými obsahy HREE a HFSE.
- Mírně peraluminické granity (A/CNK = 1,0-1,1), které se vyznačují velmi nízkým obsahem P a vysokými obsahy REE a HFSE.

Ložiska greisenů v Krušných horách (Erzgebirge) byla v minulosti těžena hlavně jako zdroj Sn a W. Z genetického hlediska lze rozlišit několik hlavních typů ložisek (Breiter, 2005):

 Sn-W muskovit-topazové greiseny (bez zvýšených obsahů Li) s Cu-sulfidy a intenzivní brekciací (Breiter, 2005). Ty jsou známy pouze v subvulkanických pních a žilných rojích slabě peraluminických granitů – Seifen, Gottesberg (Gottesman et al., 1994).

- 2. Sn-W zinnwaldit-topazová mineralizace greisenů, která je vázaná na vrchlíky kopulí nejmladších intruzí složitých granitových masivů. V těchto typech ložisek postihuje greisenizace v různé míře prakticky celý objem horniny, typické jsou vysoké obsahy vzácných alkálií (Li, Cs, Rb) a fluoru. Tato mineralizace je vázána na oba geochemické typy granitů. Ve slabě peraluminických granitech jsou tyto mineralizace popisované pouze v subvulkanické pozici Cínovec (Breiter, 2005). V silně peraluminických masivech se mineralizované kopule vyskytují ve dvou pozicích. V subvulkanické pozici je ložisko Krásno (Jarchovský a Pavlů, 1991). Na druhou stranu, v plutonické pozici jsou vázané mineralizace např. na lokalitě Ehrenfriedersdorf (Hösel et al., 1994).
- Sn muskovitické žilné greiseny (chudé Li, Rb, Cs a F), které jsou charakteristické pro nejdecko-eibenstocký pluton. Vznik těchto greisenů je vázán na greisenizaci kolem puklin za působení fluid vystupujících ze skrytých intruzí více frakcionovaného magmatu – Přebuz, Rolava (Breiter, 2005).
- Křemenné žíly s wolframitem v pozdních odmíšeninách granitů OIC, které se vyskytují v silně peraluminických (Rotava v nejdeckém masivu) i slabě peraluminických (Kirchberg) granitech (Breiter, 2005).
- Malé, nejčastěji wolframonosné muskovitické greiseny silně peraluminických granitů nejdeckého masivu, v apikálních částech středně frakcionovaných facií (Hubertky u Božího Daru – (Absolonová a Pokorný, 1983), Vykmanov – (Štemprok, 1984).

2.2 Altenbergsko-Teplický vulkanický komplex, stáří hornin

Teplický ryolit náleží k Altenbergsko-Teplickému vulkanickému komplexu. Tento komplex se skládá ze Schönfeld-Altenbergského depresního komplexu a již výše zmíněného Teplického ryolitu. Altenbersko-Teplický vulkanický komplex je nejstarším post-orogenetickým vulkanosedimentárním komplexem variské části českého masivu (Walther et al., 2016). Stářím hornin v oblasti Altenbergsko-Teplického vulkanického komplexu se zabývalo více prací. Höhndorf et al. (1994) publikovali Sm-Nd izochronové stáří fluoritu (321 mil. let \pm 22). Romer et al. (2010) zkoumali stáří měřené metodou U-Pb ze zirkonu, který pocházel z mikrogranitické žíly procházející teplickým ignimbritem $-319,2 \pm 2,4$ mil. let. Li-slídy z cínoveckého plutonu měřené pomocí metody Ar-Ar dosahují stáří v rozsahu 312.6 ± 2.1 a 314.9 ± 2.3 mil. let (Seifert et al. 2011). Později také autoři Seifert a Pavlova (2016) zjistili výzkumem zinnwalditů z masivního greisenu a ze žilného greisenu srovnatelné výsledky – 311.4±3.0 mil. let, resp. 312.5±3.1. mil. let. Molybdenitová mineralizace v greisenové kopule spojená právě s těmito pozdními granitickými intruzemi byla datovaná pomocí systému Re-Os z molybdenitu -323.9 ± 2.5 a 317.9 ± 2.4 mil. let (Romer et al., 2007), srovnatelné stáří naměřili také Ackerman et al. (2017): 322.4 ± 5.5 , 321.4 ± 3.8 , 319.2 ± 2.0 a 315.3 ± 2.0 mil. let. Zhang et al. (2017) měřili stáří kasiteritů pomocí metody U-Pb na více ložiscích v oblasti Krušných hor/Erzgebirge. Na ložisku Cínovec-Zinnwald stáří kasiteritu dle těchto autorů odpovídá hodnotě $321,5 \pm 3,1$ mil. let.

3. Ložisko Cínovec-Zinnwald

3.1. Historie ložiska

Ložisko Cínovec-Zinnwald patří mezi klasické greisenové ložiska. Historicky bylo těženo zejména pro cín a wolfram. Cínová ruda byla systematicky těžena od 14. století. V druhé polovině 19. století byl objeven význam wolframu pro tvrzení oceli. Z tohoto důvodu bylo od roku 1879 na ložisku Cínovec-Zinnwald přistoupeno k systematické těžbě wolframitu, který se stal hlavním předmětem těby. Cínové a wolframové rudy byly systematicky těženy také během 20. století až do ukončení těžby v roce 1990 (Urban et al., 2015).

Během krátkého období bylo v padesátých letech 20. století získáváno také skandium (přibližně 320 kg koncentrátu), které bylo extrahováno z wolframového koncentrátu Za zmínku stojí, že se jednalo o první extrakci kovového skandia na světe (Petrů et al., 1956; Brožek et al., 2011).

Od padesátých let 20. století bylo ve více obdobích předmětem zájmu o ložisko Cínovec také lithium. V prvním případě se jednalo o možnost využití pro výrobu jaderných zbraní, později pak pro výrobu keramiky. Případná těžba byla ale v obou případech vyhodnocena jako ekonomicky nevýhodná, a tak nebyla nikdy zahájena (Breiter et al., 2016).

Díky průzkumu okolí starého ložiska v 50. a 60. letech 20. století došlo k nálezu zrudněných greisenových těles, později vyčleněných, jako ložisko Cínovec-jih (Breiter et al., 2016).

Na německé straně byla část podzemních prostor v letech 1990 až 1992 upravena a přizpůsobena pro potřeby turismu. Díky tomuto počinu bylo zřízeno hornické muzeum, kterého hlavní částí je prohlídková štola Tiefer Bünaustolln (Müller et al., 2018).

V současnosti je ložisko Cínovec-Zinnwald předmětem zájmu několika společností zabývajících se průzkumem nerostných surovin. Na české straně to jsou Geomet s.r.o. a Cínovecká deponie, na německé straně se jedná o společnosti Bacanora a SolarWorld. Hlavním předmětem zájmu jsou Li, W a Sn. Možnými vedlejšími produkty těžby jsou také Nb, Ta, Rb, Cs a Sc.

3.2 Geologické poměry ložiska

Ložisko Cínovec-Zinnwald se nachází v severní části Krušných Hor (Erzgebirge), na Česko-Německé hranici (obr. 2). Převažující část ložiska leží na české straně Krušných hor (Cínovec). Zbylá část ložiska leží na německé straně (Zinnwald-Georgenfeld). Ložisko je vázáno na granitovou kopuli post-kolizního A-typového Cínoveckého granitu, který proráží Teplickým ryolitem. Západní kontakt granitu s ryolitem je poměrně příkrý (70°). Na druhou stranu, kontakt směru na sever, jih a východ je relativně plochý (20-30°), lemovaný pegmatitoidní horninou, takzvaným stockcheidrem (Breiter et al., 2017a). Ten tvoří sekvence s mocností až do 1,5 m. Stockscheider se skládá z jedné, nebo několika vrstev (bands) K-živce a křemene s velikostí krystalických agregátů až do 20 cm, které se střídají s jemnozrnnými vrstvami aplitického charakteru (Müller et al., 2018).

Obr. 2: Řez ložiskem Cínovec-Zinnwald (Breiter et al., 2019, upraveno).

Cínovecký pluton tvoří eliptické těleso s povrchovou rozlohou 1,4 x 0,3 km. Z množství vrtných děl, které byly v ložisku Cínovec-Zinnwald provedené, je nejvýznamnějším vrt CS-1 (Štemprok a Šulcek, 1969), který patří s celkovou hloubkou 1569 m mezi nejhlubší jádrové vrty ve vzácně prvkových granitoidních horninách světa. Vrt CS-1 byl vrtán v centrální části kopule z důvodu studia podložních geologických poměrů ložiska. Zinnwalditový granit sensu lato byl ověřen (v několika různých texturních varietách) do hloubky 735 m, kde tvoří kontakt s biotitovým granitem sensu lato, který byl zastižen až do konce provedeného vrtu CS-1.

Z geochemického hlediska je Cínovecký pluton silně frakcionované, mírně peraluminické těleso (Breiter a Škoda, 2012), obohacené o F, Li, Rb, Sn, W, Nb a Ta a ochuzené o P, Mg, Ti, Sr a Ba (Breiter et al., 2017a). Mezi typické akcesorické minerály plutonu patří fluorit, topaz, kasiterit, wolframit, kolumbit, Nb-rutil, zirkon, monazit, xenotim a REE fluorkarbonáty (Rub et al., 1998; Breiter a Škoda, 2012; Johan a Johan, 1994a, 2005; Breiter et al., 2017b).

Ložisko Cínovec-Zinnwald je vázáno na nejsvrchnější část granitové kopule do hloubky cca 200 m (Breiter et al., 2017b) a je složeno ze čtyř různých typů rudních těles (Nessler et al., 2015; Breiter et al., 2017a):

- Ploché křemen–zinnwalditové žíly, paralelní s granit–ryolitovým kontaktem. Typická minerální asociace zahrnuje topaz, K-živec a wolframit, který převažuje nad kasiteritem.
- Strmé křemen-zinnwalditové žíly s úklonem JZ-SV, které jsou texturně podobné plochým žílám, lokálně jsou ale obohacené o polymetaly.
- 3. Takzvané "masivní greiseny", které se vyskytují v podobě strmých, nebo také plochých zón s intenzivní metasomatickou greisenizací.
- Ploché, ukloněné tělesa "mineralizovaných granitů" s jemnozrnným kasiteritem, které jsou známé z jižní části ložiska.

3.3 Petrologie ložiska

Ucelený petrologický přehled o ložisku Cínovec-Zinnwald poskytnuli Štemprok a Šulcek (1969). Mezi nejnovější publikace věnující se petrologické charakteristice ložiska patří zejména zpráva Breitera (2015), články Breitera et al. (2016) a Breitera et al. (2019).

Granitová kopule je na kontaktu granitu s ryolitem tvořena **stockscheidrem.** Jedná se o pegmatitoidní horninu složenou z vrstvy orientovaně rostoucích krystalů ortoklasu (které rostou od kontaktu směrem do centra intruze) s drobnozrnnou základní hmotou (Breiter et al., 2016). Křemen tvoří zrna do 8 cm a vyznačuje se poměrně vysokými obsahy Al – průměrně 456 ppm (Müller et al., 2018). Textura stockscheidru vznikla rychlou krystalizací vodou saturovaného magmatu ochlazeného na kontaktu s ryolitem (Breiter et al., 2016).

V důsledku degazace a ochlazení magmatu podél svrchního kontaktu intruze krystalizoval drobnozrnný, výrazně **porfyrický albit-zinnwalditový granit (mikrogranit).** Jedná se o horninu, která byla během dalších intruzivních pulzů magmatu rozlámána a její jednotlivé trosky se ponořili do ještě plastického magmatu v podloží (Breiter et al., 2016; 2019). Porfyrický mikrogranit se skládá z automorfního křemene a perthitického živce, dále také ze subhedrálních fenokrystů albitu. Jemnozrnný matrix je tvořen stejnými minerály. V hornině je běžný také černý zinnwaldit, mezi akcesorické minerály patří topaz, fluorit zirkon thorit a rutil. (Breiter et al., 2019).

Produktem krystalizace vodou nasyceného magmatu in situ je převážně leukokratní **drobně zrnitý albit-zinnwalditový granit.** Byl lokalizován ve svrchní části kopule do hloubky přibližně 250 m ve vrtu CS-1 a do přibližně 300 m pod kontaktem v jižní části granitové kopule. Vyznačuje se silnou vysokoteplotní raně postmagmatickou reakcí s greisenizačními fluidy (Breiter et al., 2016, Breiter et al., 2019). Granit je tvořen křemenem, albitem, zinnwalditem a sericitizovaným K-živcem. Mezi akcesorie patří fluorit, topaz, kasiterit, zirkon a kolumbit, vzácně se objevuje i xenotim a monazit. V asociaci s fluoritem se vyskytují hojné sekundární minerály REE ze skupiny bastnäsitu (Breiter et al., 2016; 2019).

Ploché **křemen-zinnwalditové žíly**, které byly historicky nazývané Flöze jsou vázané na svrchní, centrální část granitové kopule. Jedná se o hrubozrnné až megakrystové žíly s mocností do 2 m. Kolem žil jsou časté greisenové lemy s mocností do cca 20 cm (Müller et al., 2018; Breiter et al., 2019). Mezi hlavní rudní fáze patří kasiterit a wolframit, minoritním rudním minerálem je scheelit. Příležitostně se v apikální části žil vyskytují také žlutá zrna topazu-pyknitu (Müller et al., 2018; Breiter et al., 2019). Méně časté jsou sub-vertikální (strmé) žíly

s mocností do 50 cm – historicky zvané Morgänge. Strmé žíly se vyznačují podobným typem mineralizace, jako ploché žíly, mají ale zpravidla nižší koncentrace rudních minerálů (Müller et al., 2018).

"Masivní greiseny" jsou ploché zóny, které se vyznačují rozsáhlým metasomatickým přetiskem původních granitů. Rozsah greisenů v centrální části kopule je omezený. Kromě největšího tělesa o mocnosti 20 m je greisenitizace v této části ložiska omezena na poměrně tenké plochy s mocností do 2 m a lemy křemen-zinnwalditových žil (Breiter et al., 2016; 2019). Rozsah greisenitizace v jižní části kopule je mnohem větší – greisenová tělesa jsou rozptýlena téměř v celém albit-zinnwalditovém granitu. Z mineralogického hlediska jsou greiseny tvořeny křemenem, zinnwalditem, dále také malým množstvím fluoritu, topazu, rudních a akcesorických minerálů (Breiter et al., 2016).

V hloubce 260-369 m přechází postupným ubýváním slídy albit-zinnwalditový granit do **bezslídného granitu.** Jedná se o středně zrnitý granit, který je tvořen perthitickým živcem s velikostí fenokrystů do 1 cm, křemenem, K-živcem a albitem (Breiter et al., 2016; 2019). Kapkovitý křemen a také živce se vyznačují primárním magmatickým vzhledem (Breiter et al., 2016). Zinnwaldit se vyskytuje pouze velmi sporadicky. Mezi typické akcesorie patří fluorit, zirkon, rutil, kasiterit, thorit a kolumbit. Uvnitř bezslídného granitu se vyskytují tělesa křemenných feldspatitů až feldspatitů, které tvoří vrstvy s mocností do 5 m (Breiter et al., 2016; 2019).

Na hloubku 369-530 m je vázána **zóna xenolitů zinnwalditového mikrogranitu**, která se lokálně mísí s zinnwalditovým granitem (Breiter et al., 2019).

Středně až hrubozrnný **albit-zinnwalditový granit** byl zjištěn v hloubce 530-740 m. Jedná se o téměř bílou, mineralogicky i texturně homogenní horninu. Skládá se z perthitického živce, albitu, křemene a makroskopického zinnwalditu černé barvy. Mezi vedlejší a akcesorické minerály patří topaz, fluorit, zirkon, xenotim, monazit, thorit, kasiterit, rutil, kolumbit, pyrochlor a scheelit (Breiter et al., 2019).

Biotitový granit se vyznačuje homogenním mineralogickým i chemickým složením. Byl zaznamenán ve spodní části intruze, v hloubce 750-1597 m. Texturně je ale tento typ granitu značně variabilní. Převažuje růžový porfyrický středně zrnitý biotitový granit, místy se hrubnutím zrna a zmenšováním vyrostlic textura mění na hrubě zrnitou, neporfyrickou (Breiter, 2015; 2019).

3.4 Mineralogie ložiska

V následující části jsou shrnuté dosavadní poznatky o mineralogii ložiska Cínovec-Zinnwald z odborné literatury se zaměřením na hlavní a významné vedlejší minerály.

3.4.1 Křemen

Charakteristiku křemene ve vybraných typech hornin Cínoveckého plutonu publikovali především Breiter et al. (2017a, 2017c) a Müller et al. (2018).

Díky katodové luminiscenci bylo možné rozlišit rezidua magmatických křemenů (střední intenzita CL) od nově tvořených hydrotermálních křemenů (velice nízká intenzita CL). Celkově ukazují katodoluminiscenční snímky většiny zrn křemene ve všech typech granitoidních hornin koncentrickou zonálnost, často v hexagonálním tvaru, což je typické pro růst ve stabilních podmínkách. V mikrogranitech jsou poměrně běžná zrna se zaoblenými jádry, která jsou lemována euhedrálními, často oscilačně zonálními okraji (Breiter et al., 2017a). Nejmladší, mléčný křemen tvořící povlaky starších hydrotermálních křemenů je silně obohacen Al (více, než 1000 ppm) a Li (~100 ppm; Breiter et al., 2017a).

Křemen z jednotlivých hornin pak vykazuje jistá specifika uvedená níže.

Stockscheider – agregáty křemene ve stockscheideru dosahují velikosti až do 8 cm mají "hřebenovitou texturu", kolmou směrem ke kontaktu s tělesem teplického ryolitu. Křemen ze stockscheideru má nevýraznou katodoluminiscenci. V CL není viditelná primární růstová zonálnost, je ale pozorovatelná hustá síť mikrotrhlin vyhojených sekundárním křemenem, který je téměř bez luminiscence (Müller et al., 2018).

Ablitový granit – křemen z albitového granitu se vyskytuje ve formě nepravidelně omezených zrn. Zrna vykazují slabě kontrastní, oscilační růstovou zonálnost, která pokračuje až po nepravidelně omezený okraj minerálu. Hranice oscilačních růstových zón jsou ostře omezené. Intenzita luminiscence je obecně vyšší v centrální části zrn a snižuje se směrem k okraji (Müller et al. 2018). Křemeny v albitových granitech uvnitř teplického ryolitového komplexu a také přímo v cínoveckém plutonu často obsahují koncentricky uspořádané inkluze euhedrálních albitů s tzv. strukturou sněhových vloček (Müller a Seltmann, 2000; Müller et al., 2018).

Greiseny, masivní greiseny – křemen z masivních greisenů v albitovém granitu vykazuje slabou luminiscenci v CL. Vyznačuje se nevýraznými oscilačními zónami s nízkým kontrastem, které jsou podobné křemenům s tzv. strukturou sněhových vloček, mají ale nižší

intenzitu CL. Díky studii pomocí CL bylo zjištěno, že křemen z masivních greisenů se skládá z klastrů individuálních, více i méně izomorfických zrn křemene, s velikostí 1 až 10 mm (Müller et al., 2018). Mladší, metasomatický křemen v greisenech je rozlišitelný od reliktů magmatického křemene, které vykazují vyšší intenzitu CL a vyšší obsahy Ti (<10 ppm) (Breiter et al., 2017c).

Hydrotermální ploché a strmé žíly – křemen z hydrotermálních žil tvoří agregáty i euhedrální krystaly záhněd a bezbarvých křemenů, místy až do velikosti 30 cm. Krystaly křemene byly známé zejména z dutin v křemen-zinnwalditových žílách z historických dobývek (Breiter et al., 2017c; Müller et al., 2018). Obecně lze konstatovat, že agregáty křemene rostou kolmo na kontakt žil s okolní horninou. Nevýrazná luminiscence žilného křemene odhalila jemnou oscilační růstovou zonálnost s nízkým kontrastem. Místy se v centrální části žil vyskytují také menší, izomorfní zrna s velikostí do 5 mm (Müller et al., 2018).

Obsahy stopových prvků v křemeni měřené pomocí LA-ICP-MS

Obsah Al v křemeni z ložiska Cínovec-Zinnwald se v publikovaných datech pohybuje v rozsahu cca. 5-2300 ppm (Müller et al., 2018; Breiter et al., 2017c). Vysoké koncentrace Al byly zaznamenány ve stockscheidru (průměrně 456 ppm) (Müller et al., 2018), extrémně vysokých koncentrací dosahují mléčné okraje krystalů ze žil (průměrně 1848 ppm), což indikuje kyselejší reakci pozdějších nízkoteplotních fluid, ze kterých vznikali (Breiter et al., 2017c). Na druhou stranu – nejnižší obsahy Al byly naměřeny v plochých a strmých žílách – v průměru 95 a 91 ppm (Müller et al., 2018), nebo v záhnědách z hydrotermálních žil – v průměru 24 ppm (Breiter et al., 2017a).

Zastoupení Ti v křemeni bylo zjištěno v rozsahu < 0,5-133 ppm, místy byly zaznamenány také zvýšené obsahy Li < 0,5-110 ppm a Ge < 0,5-2,91 ppm (Breiter et al., 2017c; Müller et al., 2018).

V rámci tělesa cínoveckého plutonu je pozorovatelná výrazná frakcionace složení křemene od biotitového granitu po zinnwalditový granit. Projevuje se zvyšujícími se obsahy Al (od 136-176 do 240-280 ppm) a Ge (od 0,8-1,2 do 1,1-1,7 ppm) a snižujícím se obsahy Ti (od 16-54 do 6-14 ppm) (Breiter et al., 2017c).

3.4.2 Slídy

Zinnwaldit, definovaný jako pevný roztok směsné řady polylithionit-siderofylit (Rieder et al. 1999), byl poprvé popsán právě z greisenového ložiska Cínovec (*"Zinnwald, Böhmen"*), jako *"hrubé, šestihranné tabulky"* (Haidinger, 1845). Původní práce považovaly zinnwaldit za postmagmatický produkt, který vzniknul obohacením annitu zejména o Li a ochuzením o Sn, W, Nb, Ta (Johan et al., 2012; Čabla a Tichý, 1965; Štemprok, 1965).

Zinnwaldit ze střední části kopule je makroskopicky černý a tvoří zrna s velikostí 2-5 mm. Pro tento zinnwaldit je typický vysoké množství inkluzí zirkonu, fluoritu, monazitu, xenotimu a rutilu (Breiter et al., 2019). Zinnwaldit z nejsvrchnější části kopule je světle hnědý, stříbřistý až bezbarvý. V žílách tvoří zinnwaldit často monominerální vrstvy s mocností agregátů až do 5 cm a s velikostí několika m², přičemž jednotlivé tabulky dosahují i velikost přesahující 10 cm². Tento zinnwaldit obsahuje pouze malé množství inkluzí (Breiter et al., 2019).

V zinnwalditovém granitu slídy chemicky odpovídají zinnwalditu až trilithionitu s obsahem 2,0-4,7 hm % Li₂O; 1,22-2,7 apfu Li (Breiter et al., 2017a; Breiter et al., 2019), slídy vykazují silné nabohacení F a Li směrem k nejsvrchnější části granitové kopule (Breiter et al., 2017a).

Pozdější hydrotermální alterací zinnwalditu v greisenech došlo lokálně ke vzniku *muskovitu*. Proces muskovitizace, který je z objemového hlediska poměrně marginální vedl k obohacení Sn a k ochuzení o Li (Breiter et al., 2019; obr. 3).

Dle zjištění Johana et al. (2012) je lithný annit důležitým nositelem Sn, Nb, Ta a W. Zastoupení těchto prvků (kromě W) se dle měření Johana et al. (2012) s hloubkou snižovalo, obsahy předmětných prvků v zinnwalditu (z hloubky nad 735 m) byly zaznamenány v nižších koncentracích. Štemprok a Šulcek (1969) publikovali vysoké obsahy Sn v zinnwalditu, které byly ale zjištěné pomocí analýz na mokré cestě (až do 1500 ppm). Takto vysoké koncentrace jsou ale nejspíše zapříčiněny přítomností mikroskopických inkluzí kasiteritu.

Na základě výše uvedených poznatků vyslovili Johan et al. (2012) domněnku, že annit je primárním zdrojem Sn, Nb a Ta. Během procesu "lithionace" byl dle Johana et al. (2012) annit přeměněn na Sn chudý zinnwaldit a akcesorické minerály Sn, Nb a Ta.

Obr. 3: Změna obsahu Li vs. Sn dle Breitera et al., (2019).

V novějších pracích převažuje názor, že jak annit v biotitovém granitu, tak i zinnwaldit z zinnwalditového granitu jsou primární magmatické minerály (Breiter at al., 2017d; Breiter et al., 2019). Paradoxní situaci, kdy Sn-bohatý annit z pouze mírně obohaceného biotitového granitu (10-30 ppm Sn) vykazuje vyšší obsahy Sn, než zinnwaldit ze silně obohaceného zinnwalditového granitu (50-200 ppm Sn) je možné dle autorů vysvětlit relativně pozdní krystalizaci zinnwalditu, přičemž podstatná část Sn, Nb a Ta již v tom čase byla vázaná v magmatickém kasiteritu a kolumbitu.

3.4.3 Živce

Z plagioklasů dominuje na ložisku Cínovec-Zinnwald albit (Ab_{99,6-91,1}), který obsahuje 0,09 až 0,18 hm.% Rb₂O. Albit považují Johan et al. (2012) za magmatický minerál, vyskytuje se jak v zinnwalditovém, tak i v biotitovém granitu.

Z K-živců byl v zinnwalditovém i biotitovém granitu ve vrtu CS-1zaznamenán ortoklas (Johan et al., 2012). Štemprok (1965) zmiňuje také vzácný výskyt mikroklinu. Ortoklas je perthitický

a bylo u něj pozorováno postupné zvyšování koncentrací Rb od 0,24 hm.% Rb₂O v nejhlubší části vrtu CS-1 (1558 m), až do 0,83 hm.% Rb₂O v zinnwalditovém granitu ve svrchní části kopule (Johan et al., 2012). Vysoká variabilita albitové komponenty v jednotlivých krystalech K-živce indikuje také přítomnost mikroperthitů, které není možné rozlišit pomocí optického mikroskopu (Johan et al., 2012).

Tabulkové krystalky albitu (0-2 mol.% An), které jsou uzavřené v ortoklasu indikují krystalizační sekvenci albit → ortoklas (Johan et al., 2012).

3.4.4 Zirkon

Zirkon z ložiska Cínovec je značně obohacený o Th, Y, REE a Sc. Na ložisku byla popsaná autory Breiterem a Škodou (2012) výrazná vertikální zonalita zirkonu, obsahy Hf, F a U se zvyšují směrem k nejsvrchnější části kopule. Množství Hf postupně narůstá od cca. 2 hm. % HfO₂ z hlubších částí (protolithionitový granit) do 5-10 hm. % HfO₂ v nejsvrchnější části (zinnwalditový granit).

Zirkon se dle Breitera a Škody (2012) vyznačuje také zonalitou jednotlivých krystalů – okraje jsou obohacené Hf, jádra krystalů vykazují zvýšené koncentrace U. Na nejsvrchnější část kopule (do hloubky 200 m) jsou vázány také vysoké koncentrace Th (3-8 hm. % ThO₂). Ve větší hloubce přesahují obsahy ThO₂ nad 1 hm.% pouze sporadicky. Nejvyšší zastoupení REE, Y, Sc a Bi v zirkonech bylo pozorováno také v nejsvrchnější části zinnwalditového granitu, snižování obsahu směrem do hloubky je ale mnohem méně výrazné (Breiter a Škoda 2012). Kempe a Wolf (2006) zjistili, že koncentrace Sc jsou vyšší v greisenech (1500-10300 ppm) ve srovnání se zastoupením Sc v granitech (600-8400 ppm). Ve srovnání s tím mají nealterovaná zrna zirkonů z okolního ryolitu koncentrace Sc pod detekčním limitem (EDS).

3.4.5 Minerály skupiny wolframitu

Ucelený přehled o těchto minerálech poskytují Breiter et al. (2017b): nejvíce Fe-obohacený wolframit je popisován z okrajové části greisenu. Jedná se o Mn bohatý ferberit s Mn/(MnFe) = 0,42–0,46; relativně obohacený o Nb₂O₅ (3–5 hm.%), Ta₂O₅ (~1 hm.%) a Sc₂O₃ (0.6–0.8 hm.%). Agregáty z křemenných žil a greisenů, tvořící místy euhedrální krystaly s velikostí až kolem 10 cm, které byly ve starší literatuře popisovány jako "wolframity" chemicky představují Fe bohaté hübnerity s Mn/(MnFe) = 0,56–0,66. Velké krystaly z křemenných žil vykazují v BSE značnou zonálnost. Jednotlivé zóny se liší v koncentracích Nb a Ta. Pozdější hydrotermální přeměnou Fe bohatých hübneritů vzniká lokálně W-Nb-Ta-Sc bohatý ixiolit

(Breiter et al., 2017b). Hübnerity, které byly nalezeny v asociaci s galenitem v křemenné žíle, jsou ochuzené o minoritní prvky (<0.05 hm.% Nb₂O₅, <0,2 hm.% Sc₂O₃, Ta pod detekčním limitem mikrosondy) (Breiter et al., 2017b).

3.4.6 Minerály skupiny kolumbitu

Kolumbit byl popsán jako akcesorický minerál vyskytující se ve všech částech cínovecké kopule (Breiter et al., 2017b). Je hlavním minerálem Nb i Ta a na ložisku se vyskytuje v podobě subhedrálních až euhedrálních krystalů uzavřených ve slídách a v křemeni. Velikost krystalů je zpravidla do 500 mikronů. Krystaly kolumbitu se vyskytují většinou samostatně, vzácně byly zaznamenány v asociaci se zirkonem (Johan a Johan, 1994a) a kasiteritem (Breiter et al., 2017b). Popsány byly také často se vyskytující malé zrna (~10mm) rozptýlené v zinnwalditu (Breiter et al., 2017b).

U kolumbitu byly pozorovány 2 typy zonálnosti (Johan a Johan, 1994a): 1. zonálnost založená na odlišných poměrech Nb/(Nb+Ta), pozorovaná v zinnwalditovém granitu. Jádra krystalů vykazují komplexní zonálnost, která se dynamicky mění na oscilační zonálnost (obr. 4a). 2. zonalita, která reflektuje rozmístění wolframu. V zinnwalditovém granitu se jedná se o komplexní, slabě vyvinutou zonálnost, naproti tomu v přechodné zóně mezi zinnwalditovým a protolithionitovým granitem byla zaznamenána o výrazná zonalita (obr. 4b), nejčastěji paralelní s (010).

Dle nejnovějších poznatků Breitera et al., (2017b) se z hlediska chemického složení v Cínovci vyskytují kolumbity-(Fe) a kolumbity-(Mn). Poměr Ta/(Nb + Ta) je ve většině případů v rozsahu 0,05-0,25; výjimečně byly zaznamenány také hodnoty blížící se k 0.01 a 0,33. Mn/(Mn+Fe) vykazuje mnohem větší variabilitu – v rozmezí 0,18-0,88 (většina analýz je ale v rozsahu 0,3-0,6 ppm); celkově bylo zaznamenáno zvyšování tohoto poměru směrem z hlubších částí – 0,15-0,40 (zinnwalditový granit, hloubka 500-635 m) k nejsvrchnějším partiím plutonu – 0,5-0,9 (granit a greisen, hloubka 0-180 m). Do struktury kolumbitu na ložisku ve značné míře vstupují také W (3-6 hm.% WO₃, sporadicky až do 8 hm.%.), Sn, Ti a Sc.

Obr. 4: BSE snímky kolumbitu. a) Komplexní a oscilační zonálnost kolumbitu. V jednotlivých zónách jsou vyznačené rozličné poměry Nb/(Nb+Ta). b) Zonalita kolumbitu z přechodové zóny granitové kopule. Převzato z Johan a Johan (1994).

3.4.7 Kasiterit

Kasiterit se vyskytuje v podobě anhedrálních až subhedrálních krystalů v křemenných žílách s zinnwalditem s greisenovými lemy, v zinnwalditovém granitu a v greisenu (Rub et al., 1998, Breiter et al., 2017b). V biotitovém granitu byl popsán v podobě jemně rozptýlených zrn. Kasiterit se vyskytuje v asociaci s křemenem, minerály kolumbitové skupiny, minerály pyrochlorové superskupiny a scheelitem (Breiter et al, 2017b).

Kasiterit z biotitového granitu, který je Breiterem et al. (2017b) považován za produkt magmatické krystalizace, je Nb, Ta, Ti a Fe chudý (<0,5 hm.% oxidů). Na druhou stranu je kasiterit z zinnwalditového granitu ve většině případů obohacený o Nb a Ta (do ~5 hm.% Nb₂O₅ a Ta₂O₅), Ti a Fe. Kasiterit z greisenových poloh a z křemenných žil s zinnwalditem má proměnlivé obsahy Nb a Ta (<0,1–6,3 hm.% Nb₂O₅ a Ta₂O₅) a je lokálně obohacený o W – do 5,2 hm.% WO₃ (Breiter et al., 2017b).

3.4.8 REE fluorkarbonáty

Systematickému studiu REE fluorkarbonátů z vrtu CS-1 na ložisku Cínovec se věnovali Johan a Johan (2005). Na lokalitě popsali bastnäsit-(Ce), synchysit-(Ce) a synchysit-(Y).

Bastnäsit-(Ce) se vyskytuje v zinnwalditovém granitu v hloubce od 97 do 379,8 m (Johan a Johan, 2005). V biotitovém granitu (který byl dříve označován jako "protolithionitový

granit") byl bastnäsit popisován jako vzácné, subhedrální krystaly, nebo anhedrální zrna uzavřené v synchysitu. V zinnwalditovém granitu tvoří bastnäsit inkluze ve fluoritu a vzácněji také v zinnwalditu (Johan a Johan, 2005). Bastnäsit byl místy pozorován jako starší, reziduální fáze, která je nahrazována mladším synchysitem. Distribuční diagram REE s normalizací na chondrit vykazuje výraznou Eu anomálií, poměry [Ce/La]_{at} a [Sm/Nd]_{at} se zvyšují s hloubkou.

Synchysit-(Ce) a synchysit-(Y) byl ve vrtu CS-1 zaznamenaný od hloubky 378 m, ve svrchní části kopule nebyl zjištěn (Johan a Johan, 2005). Tvoří subhedrální krystaly a radiální agregáty s velikostí do 150 µm. Dle dat Johan a Johan (2005) vzniká synchysit přeměnou monazitu a xenotimu. Z geochemického hlediska je synchysit významně obohacený o Th (ve spodní části zinnwalditového granitu), Johan a Johan (2005).

5. Metody

4.1 Studované vzorky

Z jedenácti různých vrtů (obr. 5) bylo odebráno 36 vzorků hornin – granity (zinnwalditový granit *sensu lato* dle Breitera et al., 2017b a biotitový granit), greisenizované granity, masivní

Obr. 5: Plošná distribuce vrtů z ložiska Cínovec studovaných v této práci (autor: Šešulka, 2021, upraveno).

greiseny, greisen alterovaný sulfidy, křemen-zinwalditové žíly, zinnwalditový mikrogranit, a stockscheider (Tabulka 1). Ze vzorků byly připraveny leštěné výbrusy o tloušť ce $\geq 100 \ \mu m$, které jsou vhodné pro analýzu SEM a LA-ICP-MS a byly pokryty vrstvičkou uhlíku o tloušť ce cca 25 nm pro potřeby SEM a elektronové mikroanalýzy.

Vzorek	Vrt	Od-do	Litologie
P7/100	PSn07	100,3-100,4	granit
P7/281	PSn07	281,8-281,9	greisen
P7/289	PSn07	289,2-289,3	greisen
P7/332	PSn07	332,2-332,3	křemen-zinnwalditová žíla
P7/335	PSn07	335,9-336	jemnozrnný greisen
P7/350	PSn07	350-350,1	granit
P7402	PSn07	402,5-402,6	granit
P2/199	PSn02	199,8-199,9	stockscheider
P2/218	PSn02	218,6-218,7	granit s albitem
P2/248	PSn02	248,5-248,6	greisen
P2/301	PSn02	301,5-301,6	greisen s albitem
P2/327	PSn02	327,5-327,6	greisen
P2/410	PSn02	410,6-410,7	albitový granit
P1/208	PSn01	208,9-209,0	stockscheider
P1/209a	PSn01	209,1-209,2	stockscheider
P1/209c	PSn01	20,4-209,5	stockscheider
P1/250	PSn01	250,5-250,6	alterovaný greisen se sulfidy
C2/176	CIS2	176,7-176,8	stockscheider
C2/177	CIS2	177,9-178,0	stockscheider
C2/178	CIS2	178,7-178,8	stockscheider
C8/197	CIW08	193,5-193,6	granit
C8/193	CIW08	197,1-197,2	greisenizovaný granit
C20/10	CIW-20	10-11	granit
C20/142	CIW-20	142,9-143	greisen
C20/178	CIW-20	178,9-179	porfyrický granit
C20/179	CIW-20	179,9-180	greisen
C20/195	CIW-20	195,2-195,3	granit
C20/246	CIW-20	246,5-246,6	albitový granit
C23/375	CIW23	375,4-375,5	granit
C1/205	CIS-01	205,4-205,5	křemen-zinnwalditová žíla se sulfidy
P13/133A	PSn13	133-133,1	křemen-zinnwalditová žíla s wolframitem a sulfidy, střed
P13/133B	PSn13	133-133,1	křemen-zinnwalditová žíla s wolframitem a sulfidy, okraj
P1/250	PSn13	250,5-250,6	alterovaný greisen se sulfidy
4637	CS-1	502	zinnwalditový mikrogranit
4992	CS-1	988	biotitový granit
4693	CS-1	1579	biotitový granit

Tabulka 1: Seznam studovaných vzorků a typů hornin z ložiska Cínovec.

4.2 SEM a elektronová mikrosonda

Leštěné výbrusy byly zkoumané pomocí skenovacího elektronového mikroskopu (SEM) JEOL JSM-6490LV, poté proběhla analýza relevantních minerálů pomocí elektronové mikrosondy CAMEXA SX 100 v spojené laboratoři elektronové mikroskopie a mikroanalýzy Ústavu geologických věd Masarykovy univerzity a Geologické služby v Brně.

Byly aplikovány následující podmínky: urychlující napětí 15 kV, proud svazku 5 nA (minerály skupiny dussertitu), 10 nA (slídy, fluorkarbonáty, fluocerit), 20 nA (zirkon, monazit, xenotim, fluorit) a 40 nA (kolumbit, wolframit, ixiolit, kasiterit a Nb-rutil), průměr svazku $1 - 5 \mu m$. Standardy použité pro zirkon: F na topazu, Si, Zr na zirkonu, Hf na metalickém Hf, Y na YPO₄, Al na sanidinu, U na metalickém U, Th na CaTh(PO₄)₂, Sc na ScVO₄, Ca na titanitu, P na fluoroapatitu, Ti na TiO, Fe na almandinu, Dy na DyPO₄, Er na ErPO₄, Yb na YbPO₄. Nb na kolumbitu, Ta na CrTa₂O₆. Standardy použity pro kolumbit, wolframit, ixiolit a Nb-rutil: Na na albitu, Ta na CrTa₂O₆, Al, Zn na gahnitu, Nb, Fe na kolumbitu, Pb na vanadinitu, U na metalickém U, Ca na titanitu, Sn na metalickém Sn, Ti na TiO, Mn na Mn₂SiO₄, F na topazu, Mg na pyropu, Th na CaTh(PO₄)₂, Si na sanidinu, Sc na ScVO₄, Y na YAG, Sb na Sb, W na metalickém W, Bi na metalickém Bi a Zr on zirkonu. Standardy pro xenotim: Y na YAG, S na SrSO₄, Si, Ca na wollastonitu, La na LaPO₄, Ca na CePO₄, P na fluorapatitu, Pr na PrPO₄, Cl na vanadinitu, Th na ThO₂, U na metalickém U, Nd na NdPO₄, Sm na SmPO₄, Eu na EuPO₄, Gd na GdPO₄, Dy na DyPO₄, Er na ErPO₄, Pb na vanadinitu, As na lammeritu, Fe na andraditu, Yb na YbPO4, Tb na TbPO4, Al na sanidinu, Ho na HoPO4, Tm na TmPO4. Standardy pro monazit: Y na YAG, S na SrSO₄, Si, Ca na wollastonitu, La na LaPO₄, Ca na CePO₄, P na fluorapatitu, Pr na PrPO₄, Cl na vanadinitu, Th na ThO₂, U na metalickém U, Nd na NdPO₄, Sm na SmPO₄, Eu na EuPO₄, Gd na GdPO₄, Dy na DyPO₄, Er na ErPO₄, Pb na alamositu, As na lammeritu, Fe na almandinu, Yb na YbPO₄, Standardy pro kasiterit: Ta na CrTa₂O₆, Mg na MgAl₂O₄, Al na gahnitu, Nb, Fe na kolumbitu, Pb na vanadinitu, Si na sanidinu, Sn na metalickém Sn, Ti na TiO, Mn na Mn₂SiO₄, W on metalickém W, Zr na zirkonu, Ca na titanitu, Bi na metalickém Bi a Sc na ScVO₄. Standardy pro slídy: Na na albitu, Si, Al, K na sanidinu, Mg na pyropu, Ti na titanitu, Cs na pollucitu, Cl na vanadinitu, Ba na barytu, P na fluorapatitu, Cr na chromitu, Ca na wollastonitu, Fe na almandinu, Mn na spessartinu, Zn na gahnitu, F na topazu, Sc na ScVO₄, a Rb on syntetickém Rb-leucitu. Standardy pro fluorit, fluorkarbonáty a fluocerit: Na na albitu, Y na YAG, Sr, S na SrSO₄, Si, Ca na wollastonitu, La na LaPO₄, Ca na CePO₄, P na fluorapatitu, Pr na PrPO₄, Cl na vanadinitu, Th na ThO₂, U na metalickém U, Nd na NdPO₄, Sm na SmPO₄, Eu na EuPO₄, Gd na GdPO₄, Dy na DyPO₄, Pb na alamositu, As na lammeritu, Fe na almandinu, F na topazu, Be na barytu. Standardy pro minerály skupiny dussertitu: Na na albitu, Y na YAG, Sr, S na SrSO₄, Si, Ca na wollastonitu, La na LaPO₄, Ca na CePO₄, P na fluorapatitu, Pr na PrPO₄, Cl na vanadinitu, Th na ThO₂, U na metalickém U, Nd na NdPO₄, As na lammeritu, Fe na almandinuu, F na topaz, Be na barytu, Mg na MgAl₂O₄, Ti na anatasu, Mn na spessartinu, Al na ortoklasu. Na všechny analýzy minerálů byla aplikovaná korekční procedura X-PHI (Merlet 1994). Vzorce všech minerálů byly přepočítané na odpovídající čísla aniontů a kationtů na jednotku vzorce; jednotlivé přepočty jsou popsány v tabulkách.

4.3 LA-ICP-MS

LA-ICP-MS byla použita pro zjištění zastoupení minoritních a stopových prvků v 8 vzorcích, které obsahovaly slídy. Měření probíhalo na pracovišti "FunGlass - Centre for Functional and Surface Functionalized Glass" (Trenčianska univerzita Alexandra Dubčeka v Trenčíne). Zařízení LA-ICP-MS se skládalo z laserového ablačního systému LSX-213 G2+ (Teledyne CETAC Technologies) vybaveného 213 nm Q-switched Nd:YAG laserem a komorou 2-vol Cell HelEx II. LA systém byl napojen na kvadrupolový spektrometr ICP-MS Agilent 7900 (Agilent). Ablatovaný materiál byl před vstupem do ICP hmotnostního spektrometru unášen proudem He (0.8 a 0.6 l.min⁻¹) a míchán s Ar (0.6 l.min⁻¹). Povrch vzorku byl ablatován laserovým paprskem na jednotlivých bodech po dobu 45 s, použitý průměr ablatovaného bodu byl 50 µm. Ablace byla provedena pomocí pulzní fluence laseru 4 J.cm⁻² a opakovací frekvence 10 Hz. Byly měřeny signály izotopů Li, Al, Si, Sc, La, Ce a Y. Spektrometr ICP-MS byl vyladěn pomocí standardu SRM NIST 612 s ohledem na citlivost a minimum dvounásobně nabitých iontů. Potenciální interference byly minimalizovány pomocí kolizní cely (He 1 ml.min⁻¹). Obsah prvků byl vypočítán na základě srovnání se standardy skel SRM NIST 610 a 612 a Si a Al jako vnitřními referenčními prvky pro korekci základní linie a integraci plochy píku. Měřené obsahy Li jsou v souladu s dříve publikovanou studií od Breitera et al. (2019) zaměřenou na přesnou kvantifikaci Li ve slídách z Cínovce.

4.3 Automatická mineralogie (TIMA)

TIMA (Tescan Integrated Mineral Analyzer) byl použit k charakterizaci 18 vybraných výbrusů v laboratoři R&D TESCAN Brno, s.r.o., s cílem získání modálního složení hornin, distribuce zrnitosti a asociace příslušných rudních minerálů, celkového chemického složení, distribuce prvků a porozumění texturám na výbrusů. Přistroj kombinuje signál z BSE detektoru a 4 EDS detektorů za účelem rozlišení individuálních fází a vytvoření snímků minerálů, které jsou poté

interpretovány ve specializovaném software (Hrstka et al., 2018). Pro analýzu byly nastaveny následující podmínky: urychlovací napětí 25 kV, proud svazku 10 nA, režim mapování bodů (detaily v Hrstka et al., 2018) s 1 µm BSE a 5 µm EDS mřížkou. Data byly měřeny a zpracovávány prostřednictvím software TIMA 2.2. Průměrné zastoupení hlavních a vedlejších prvků příslušných fází z elektronové mikrosondy, data koncentrace stopových prvků z LA-ICP-MS a průměrné hustoty minerálů byly použity na výpočet distribuce prvků a celkového složení vzorků. Případné potenciální odchylky v hustotách a složení použitých ve výpočtech nejsou výrazné a neovlivňují získané výsledky. Vypočtená velikost zrn jednotlivých minerálů je vyjádřena jako ECD (equivalent circle diameter) – průměr kruhu, který má stejnou plochu, jako pozorovaný řez zrnem. Velikost zrn nebyla korigována pro stereologii.

4.4 Celohorninové analýzy

Celohorninové analýzy byly provedeny v laboratoři ALS; vybraná data poskytnuta firmou pro Geomet s.r.o.za účelem ukázky korelace geochemických dat (viz též Hreus et al. 2021). Pro zjištění koncentrací Sc, REE+Y, Sn, Nb a W byl použit "multielementární balíček" ME-MS81 (Lithium borate fusion ICP-MS). Lithium bylo analyzováno metodou M. E-4ACD81 (Base metal by four-acid). Pro více informací viz. www.alsglobal.com.

5. Mineralogie studovaných vzorků

Výzkum mineralogie studovaných vzorků se soustředil především na distribuci Sc a REE v magmatickém stadiu, při greisenizaci a při pozdějších hydrotermálních pochodech. Níže jsou proto charakterizovány jednotlivé minerály, které ve své struktuře obsahují zvýšené množství těchto prvků. Je nutné poznamenat, že studie poskytuje podrobné výsledky především z centrální části ložiska a z ložiska Cínovec-Jih.

5.1 Primární minerály magmatického a greisenového stadia

5.1.1 Zirkon

Minerál je na ložisku častý v granitech a greisenech, naproti tomu v křemen-zinnwalditových žilách je méně častý a v některých výbrusech z těchto žil dokonce nebyl vůbec přítomen. V granitech se zirkon typicky vyskytuje v asociaci s xenotimem, Sc-kolumbitem, vzácně také s uraninitem, bývá uzavírán v křemeni, zinnwalditu, fluoritu anebo v muskovitu. Magmatické zirkony v některých případech sloužily jako krystalizační jádra Nb-Ta oxidů (obr. 6 a, b, n), starší generace kasiteritu (obr. 6c), nebo pozdních fluorokarbonátů (obr. 6d). Zirkon nejčastěji tvoří euhedrální krystaly, některé z nich mají oscilační zonálnost (obr. 6e); krystaly jsou často částečně rekrystalizované. Zirkon, který prorůstá s xenotimem, se vyskytuje téměř vždy na kontaktu s muskovitem, fluoritem, nebo dutinovými fylosilikáty (obr. 6b, g, h).

V greisenech byly zaznamenané dva odlišné texturní typy zirkonu. Zirkon I tvoří malé, většinou euhedrální až subhedrální inkluze v zinnwalditu (obr. 6c, d). Na druhou stranu, tvoří zirkon II větší krystaly, které se vyskytují mimo zinnwalditu (obr. 6e, g). Navzdory výše zmíněným texturním rozdílům je ale chemické složení obou typů zirkonů velmi podobné. Také v případě zirkonů z různých litologií byly pozorované pouze drobné změny v chemickém složení (výjimkou je lokální zvýšení koncentrací Sc v masivních greisenech a křemen-zinnwalditových žílách). Zirkony, které jsou uzavřené ve fluoritu patří s největší pravděpodobností ke stejné generaci, jako zirkony uzavřené v křemeni, nebo v zinnwalditu. Během pozdější muskovitizace se kolem zirkonu místy tvořil mladší xenotim (obr. 6b, e, f).

Mezi nejdůležitější prvky, které substituují do struktury zirkonu patří Hf (1,4–11,9 hm.% HfO₂), Y (<6.5 hm.% Y₂O₃) a Sc (<2,5 hm.% Sc₂O₃). Obsahy Sc se obecně zvyšují se snižujícím poměrem Zr/Hf (obr. 7a, Tabulka T1 v příloze 2). Průměrný obsah Sc je 0,6 hm.% Sc₂O₃. Zirkon je často alterovaný (obr. 6g), porézní a má nízkou analytickou sumu oxidů (průměrně 91,2 hm. %, (obr. 7b, c, d).

Obr. 6: Mineralogické asociace a texturní typy zirkonu a xenotimu. Zkratky minerálů použity dle Whitney a Evans, 2010. a) agregáty Sc-kolumbitu v zinnwalditu a křemeni v asociaci se zirkonem, a ryzím bismutem (vzorek P2/327 z greisenu); b) krystal zirkonu obrůstaný mladším xenotimem a kolumbitem, Vznik těchto mladších fází je spojen s muskovitizací. Vzorek P7/335 z greisenu; c) Zinnwaldit s četnými

(pokračování popisku obr. 6 z předchozí strany) inkluzemi. Zirkon tvoři krystalizační jádra pro mladší kasiterit. Vzorek P2/248 z greisenu; d) Zinnwaldit s inkluzemi zirkonu, monazitu a fluorkarbonátu (F-Cb), vzorek C20/178 z porfyrického granitu; e) částečně alterovaný zirkon obrůstaný mladším xenotimem, vzorek P7/402 z granitu; f) zirkon obrůstaný zonálním xenotimem, vzorek C20/179 z greisenu; g) částečně alterovaný zirkon s xenotimem a fluoritem, vzorek P7/100 z granitu; h) narůstání bastnäsitu na monazitu, vzorek 4693 z biotitového granitu, vrt CS-1.

Obr. 7: Diagramy chemismu zirkonu. Zelené symboly – granit, žluté symboly – greisen, modré symboly – Qz-znw žíla. Různé tvary symbolů byl použit pro odlišné vrty. a) vztah mezi Zr/Hf a obsahem Sc; b) obsahy Sc₂O₃ vs. analytická suma oxidů (z elektronové mikrosondy); c) alterace zirkonu ve vztahu CaO vs. analytická suma oxidů; d) alterace zirkonu spjatá s přínosem xenotimové komponenty – P₂O₅ vs. analytická suma oxidů.
Bylo provedeno 142 analýz zirkonů, ty vykazují extrémní rozpětí hodnot: ZrO₂ (32,8–66,1 hm.%; 0,625–0,995 apfu Zr) a SiO₂ (16,4–32,6 hm.%; 0,560–1,072 apfu Si). Obsahy Ca, P, Y a U+Th se obecně zvyšují s mírou alterace (obr. 7c, d). Stupeň alterace se s největší pravděpodobností zvyšuje metamiktizací a také kvůli vysokému množství substituentů se na ložisku projevuje vysoká mísitelnost zirkonu s xenotimem, thoritem a chernovitem, tedy s minerály, které jsou se zirkonem izostrukturní (Breiter a Škoda, 2012; Förster, 2006; Förster et al., 2011; Johan a Johan, 1994a). Zirkon je také primárním minerálem s obsahem REE, v minerálu dominují HREE+Y – obsah Y₂O₃ se pohybuje od 0 až do 6,5 hm.% (průměrně 1,08 hm.%, median 1,00 hm.%), koncentrace Dy₂O₃ jsou v množství do 2,0 hm.%, Er₂O₃ do 1,8 hm.% a Yb₂O₃ až do 4,3 hm.%. Jediným prvkem LREE, který se pohybuje nad mezí detekce elektronové mikrosondy, je Ce (do 1,5 hm.% Ce₂O₃).

5.1.2 Minerály xenotimové skupiny

Minerály xenotimové skupiny jsou primárními REE minerály a z hlediska procentuálního zastoupení REE v krystalové struktuře jsou významným nositelem HREE a Y. Výskyt minerálů xenotimové skupiny na lokalitě je pouze minoritní, jejich zastoupení v rámci ložiska je ale komplexní – byly nalezeny v každé ze studovaných hornin na ložisku. Dominantním minerálem xenotimové skupiny na Cínovci je xenotim-(Y), v albitovém granitu byl nalezen také chernovit-(Y).

Minerály xenotimové skupiny tvoří euhedrální až subhedrální agregáty oscilačně zonálních krystalů, které obrůstají zirkon (obr. 6f), dále subhedrální krystaly obrůstající zirkon, které se vyskytují v asociaci s muskovitem, nebo fluoritem (6b, e), a skeletální agregáty zarostlé v krystalech zirkonu (obr. 6g). Mladý xenotim byl pozorován také ve formě vyloužených anhedrálních agregátů ve fluoritu.

Obsahy Y+REE v minerálech xenotimové skupiny jsou variabilní. Majoritní Y (22,5-34,4 hm.% Y₂O₃) je substituováno dalšími REE (převážně HREE). Poměrně vysoké jsou koncentrace Yb (5,8-14,4 Yb₂O₃), Er (4,2-8,0 hm.% Er₂O₃) a Dy (6,1-9,3 hm.% Dy₂O₃); zatímco další REE jsou zastoupené pouze v malém množství (Tabulka T2 v příloze 2). Suma REE+Y v xenotimu-(Y) vykazuje hodnoty 61,6-66,7 hm.%, v případě chernovitu-(Y) se jedná o nižší obsahy (49,3-51,4 hm.%). Oscilační zonálnost, která byla pozorovaná u xenotimu-(Y) (obr. 6f) je způsobená v největší míře substitucí HREE₂(Y)-1. Obsahy skandia jsou převážně nízké (průměr: 0,2 hm.%, median: 0,1 hm.% Sc₂O₃); v ojedinělých případech dosahují – ale pouze u xenotimu-(Y) – až 1,6 hm.% Sc₂O₃. U chernovitu-(Y) byly zaznamenané celkově nízké

koncentrace Sc (0-0,02 Sc₂O₃). Z dalších prvků vstupují do minerálů xenotimové skupiny v určité míře také Th (do 2,3 hm.% ThO₂), U (do 1,4 hm.% UO₂), Si (do 3,3 hm.% SiO₂), Fe (do 4,0 hm.% FeO), Zr (do 2,7 hm.% ZrO₂). Arsen substituuje do struktury chernovitu pouze ve velmi malém měřítku (do 0,2 hm.% As₂O₃), zatímco fosfor je ve struktuře chernovitu běžným substituentem (koncentrace až do 7,1 hm.% P₂O₅). Ve stopovém množství nižším, než 1 hm.% oxidu vstupují do minerálů xenotimové struktury také Mn, Pb a F.

5.1.3 Monazit-(Ce)

Monazit-(Ce) patří mezi minoritní akcesorické minerály na ložisku Cínovec. Jeho výskyt byl zjištěn zejména v granitu a greisenových tělesech, v křemen-zinnwalditových žilách se vyskytuje pouze sporadicky. Vyskytuje se nejčastěji ve formě lištovitých a jehlicovitých krystalů (teď 6b), méně často také v podobě xenomorfních zrn. Monazit tvoří relativně často inkluze v zinnwalditu (obr. 6b) a ojediněle také v jiných minerálech. Přímo z monazitu vzácně vyrůstají mladší krystalky bastnäsitu (obr. 6h).

Z hlediska chemického složení vstupuje do monazitu z REE kromě majoritního Ce (25,7-35,3 hm.% Ce₂O₃) také La (8,7-13,4 hm.% La₂O₃), Pr (2,5-4,2 Pr₂O₃), Nd (8,3-11,2 hm.% Nd₂O₃), Sm (1,6-2,5 hm.% Sm₂O₃), Gd (0,3-1,3 hm.% Gd₂O₃) a stopová množství Eu, Dy a Er (s obsahem méně, než 1 hm.% oxidů). V nezanedbatelném množství vstupuje do struktury minerálu také Y (1,3-0,1 hm.% Y₂O₃). Z dalších prvků je v monazitu významně zastoupeno Th (5,0-11,4 hm.% ThO₂), v menším množství také Ca (0,4-2,2 hm.% CaO) a Si (0,5-1,2 hm.% SiO₂), které ale může být kontaminací z okolních silikátů. Ve stopovém množství jsou v monazitu z Cínovce přítomny také U, Pb, As a Zr (obsahy u těchto prvků jsou vždy pod 1 hm.% oxidů; Tabulka T3 v příloze 2).

5.1.4 Nb-rutil

Nb-rutil byl zaznamenán ve většině studovaných vzorků, vždy ale patří mezi minoritní akcesorické minerály. Největší množství Nb-rutilu bylo zjištěné ve vzorcích z granitu (Tabulka T4 v příloze 2). Nb-rutil se vyskytuje v podobě malých anhedrálních zrn (s velikostí do cca 50 µm), které jsou uzavřené v zinnwalditu. Tyto zrna místy obsahují odmíšeniny Sc-kolumbitu (obr. 9a). Dále byly zaznamenané také větší zrna Nb-rutilu (cca kolem 200 µm) typické svou sektorovou zonálností, u kterých je možné pozorovat tzv. *dissolution-reprecipitation* (viz také Putnis a Austrheim, 2002), tedy částečné metasomatické rozpouštění Nb-rutilu, které vedlo místy až ke vzniku mladšího Sc-kolumbitu (obr. 9b). Sektorová zonálnost je způsobená hlavně

rozdílnými obsahy Nb+Ta+Sc(+Fe), které jsou vyšší v primárních a nižší v rekrystalizovaných zónách.

Obsahy Nb₂O₅ v rutilu jsou hodně variabilní (od 5,8 až do 22,9 hm.%; 0,038-0,152 apfu Nb). Koncentrace Ta jsou obvykle nižší (0,8-23,7 hm.%; 0,003-0,106 apfu Ta); poměr Ta/(Ta+Nb) je 0,02-0,51. Množství skandia se pohybuje v rozsahu od 0 do 0,28 hm.% Sc₂O₃ (průměrný obsah je 0,16 hm.%), obsah Fe byl zaznamenán až do 9,89 hm.% FeO_{tot}. Koncentrace skandia a železa pozitivně korelují se zvyšujícím se Nb+Ta (obr. 8a,b; Tabulka 4 v příloze 2). Obsahy REE+Y se pohybují pod mezí detekce elektronové mikrosondy.

Obr. 8: chemismus rutilu a) pozitivní korelace Nb+Ta vs. Sc; b) pozitivní korelace mezi Nb+Ta a M³⁺ + 2M²⁺

5.1.5 Kolumbit

Kolumbit je častá akcesorie na ložisku Cínovec, byl zjištěn ve všech studovaných vzorcích. Minerál se nejčastěji vyskytuje v podobě roztroušených zrn v zinnwalditu (obr. 6a, 9b, c 10 z publikace) s velikostí 5-20 μ (vzácně až do 250 μm), nebo tvoří větší solitérní zrna (o velikosti cca 10-200 μm), která jsou uzavřená v zinnwalditu, albitu, muskovitu, nebo v křemeni (obr. 6b, 9e), vyskytuje se také v asociaci se zirkonem (obr. 6a, b), nebo kasiteritem (obr. 9f). Větší zrna (je ale nutné poznamenat, že zrna s velikostí přes 100 μm jsou spíše vzácností) se vyznačují typicky nepravidelnou zonálností (obr. 9d), která odráží změny poměrů Ta/Nb, stejně tak jako obsahu Sc (obr. 10b; viz také Johan a Johan, 1994a). V albitovém granitu byly rozlišeny dvě odlišné generace kolumbitu (obr. 9e), které tvoří inkluze převážně v albitu, muskovitu a fluoritu. Kolumbit I tvoří homogenní, Nb-bohaté Sc,Ti-chudé domény, které jsou obrůstané porézním, Ta, Ti a Sc-bohatým kolumbitem II.

Obr. 9: BSE snímky minerálních asociací rutilu a xenotimu. Zkratky minerálů použity dle Whitney a Evans, 2010. a) odmíšený kolumbit z Nb-rutilu b) asociace rutilu a kolumbitu v zinnwalditu c) velké zrno kolumbitu v částečně alterovaném zinnwalditu d) zonální kolumbit. Světlá část je obohacená o Sc a Ta e) dvougenerační agregát kolumbitu f) prorůstání kasiteritu a kolumbitu.

Celkově se kolumbity vyznačují vysokou variabilitou Mn/(Mn + Fe) – 0,26-0,99, dále také poměrně širokým rozsahem hodnot poměru Ta/(Ta + Nb) – 0,07-0,49; obr. 10a, b. Mezi nejvýznamněji zastoupené vedlejší prvky patří Ti (0,81-6,33 hm.% TiO₂), Sc (0,12-3,04 hm.% Sc₂O₃ s průměrným obsahem 1,35 hm.% Sc₂O₃ (n = 140), WO₃ s průměrným obsahem 2,84 hm.%, ZrO₂ s průměrným zastoupením 0,37 hm.% a SnO₂, které má průměrné koncentrace 0,49 hm.%. Množství Fe₂O_{3 (calc.)} je značně variabilní (0,24-14,56 hm.%). Obsahy Sc pozitivně korelují se zvyšujícím se množstvím Fe³⁺ a Ti (obr. 10c, d; Tabulka T5 v příloze 2). Obsahy vzácných zemin v kolumbitu nebyly elektronovou mikrosondou detekovány, Y se místy pohybuje nad mezí detekce Y (do 0,2 hm.% Y₂O₃).

Obr. 10: Chemismus minerálů skupiny kolumbitu. a) diagram Mn/(Mn+Fe) vs. Ta/Ta+Nb); b) diagram Sc vs. Ta/(Ta+Nb); c) diagram Sc vs. Ti; d) diagram M³⁺ vs. M⁴⁺.

5.1.6 Slídy

Minerály skupiny slíd se vyskytují ve všech typech studovaných hornin. V největším množství jsou přítomné v křemen-zinnwalditových žílách a v greisenech. Trioktaedrické slídy jsou na ložisku zastoupeny zinnwalditem (obr. 11). Magmatický a metasomatický zinnwaldit z greisenů není možné odlišit z důvodu reekvilibrace zinnwalditu magmatického původu (Breiter et al. 2019). V zinnwalditu byly pozorované početné inkluze akcesorických minerálů – hlavně kolumbitu, zirkonu, xenotimu a monazitu (obr. 6c, d). Tento typ zinnwalditu je typický hlavně pro granity.

Muskovit vzniká převážně alterací trioktaedrických slíd (obr. 9c, 11). Primární muskovit hydrotermálního původu se vyskytuje méně často – relativně hojný je pouze v křemenzinnwalditových žilách. V asociaci s mladším muskovitem se vyskytují mladší kasiterit (obr. 10b), xenotim narůstající na zirkon (obr. 6b, e), fluorit (obr. 6g, 12a) a scheelit (obr. 12a).

Obr. 11: BSE snímky a diagram složení slíd z ložiska Cínovec. Zkratky minerálů použity dle Whitney a Evans, 2010. a) muskovitizace zinnwalditu. b) vznik kasiteritu spolu s intenzivní muskovitizací zinnwalditu. Jamka uprostřed snímku je po analýze LA-ICP-MS; c) diagram složení slíd – obsah ^TAl vs. Li. Obsahy Li₂O v zinnwalditu jsou variabilní (2,4-4,4 hm.%; Tabulka T6 v příloze 2), široké rozpětí bylo zjištěno také u koncentrací Fe (5,2-17,8 hm.% FeO). Obsahy F jsou vysoké (7,8-9,1 hm.%), blíží se k plné obsazenosti pozice (1,78-2,00 apfu). Zinnwaldit z granitu je relativně obohacený Sc (57-87 ppm) ve srovnání s zinnwalditem z greisenů (40-67 ppm Sc); zinnwaldit z křemen-zinnwalditových žil vykazuje největší variabilitu v obsahu Sc (32-169 ppm). Koncentrace REE+Y v zinnwalditu jsou nízké. Obsahy La (do 2,7; průměrně 0,1 ppm), Ce (do 4,2; průměrně 0,3 ppm) a Y (do 1,9; průměrně 0,1 ppm) se většinou pohybují pod mezí detekce LA-ICP-MS.

Muskovit, který vzniká zatlačováním zinnwalditu, je nejvýznamnější dioktaedrickou slídou na ložisku. Obsahy Fe v této slídě jsou celkově nízké – ve většině případů do 2 hm.% (průměrně 1,5 hm.% FeO; Tabulka T6 v příloze 2), pouze v několika analýzách byl zjištěn obsah Fe až do 6,2 hm.% (0,354 apfu, vše v greisenech). Koncentrace Li jsou ve srovnání s trioktaedrickými slídami značně nižší (do 0,6 hm.% Li₂O; 0,177 apfu Li; obr 4a z publikace). Obsah F je také relativně nízký (0,26-0,89 hm.%, 0,05-0,19 apfu). Obsahy Sc v mladším muskovitu, který vzniká zatlačováním zinnwalditu, jsou v rozmezí 6-48 hm.% (průměr 37 ppm; pouze ve dvou analýzách byly znamenané abnormálně vysoké hodnoty – 147 a 157 ppm Sc, jedná se o muskovit v těsné blízkosti wolframitu). Na druhou stranu, muskovit z křemen-zinnwalditových žil, který se vyskytuje typicky v dutinách v křemeni, vykazuje větší variabilitu v koncentraci skandia (41; 80; 101 ppm Sc). Koncentrace REE+Y jsou vyšší, než v případě zinnwalditu, stále ale dosahují nízkých hodnot – La – do 4,8; průměrně 0,7 ppm, Ce – do 6,1; průměrně 1,3 ppm, Y – do 4,6; průměrně 0,8 ppm.

5.1.7 Fluorit

Fluorit je typickým vedlejším minerálem na ložisku. Nejčastěji se vyskytuje v podobě zrn zarostlých do zinnwalditu, a je přítomný ve všech studovaných litologiích. Často se tvoří asociaci s zinnwalditem. Na Cínovci se vyskytují krystaly fluoritu typicky fialové barvy s velikostí do dvou centimetrů (výjimečně i více). Během pozdějších hydrotermálních pochodů vznikly dvě odlišné zóny (obr. 12 b, c): a) v BSE zřetelně světlejší zóny se zvýšeným obsahem REE+Y; b) v BSE tmavší zóny, kde je obsah REE+Y snížený. Ke snížení REE+Y ve fluoritu došlo precipitací mladších, nejčastěji jehlicovitých agregátů REE fluorkarbonátů (obr. 12 b). Méně často byla pozorována také zrna mladších neporézních anhedrálních fluoritů.

Obr. 12: BSE snímky fluoritu a jeho asociací. Zkratky minerálů použity dle Whitney a Evans, 2010. a) zóna muskovitizace zinnwalditu zřetelně viditelná i v BSE. Spolu s muskovitizací dochází také ke vzniku scheelitu a fluoritu. b) REE+Y bohatý fluorit částečně přeměněný na směs minerálů synchysitové a bastnäsitové skupiny. Tmavější tóny jsou bohatší o Y+REE, světlejší zóny jsou Y+REE ochuzené. c) Y+REE fluorit částečně přeměněný REE+Y na fluorkarbonáty. Ve svrchí části zrna k alteraci fluoritu téměř nedošlo. d) poměrně velké zrno fluoritu značně alterované na směs REE+Y fluorkarbonátů.

Fluority na ložisku Cínovec lze geochemicky rozlišit na a) REE+Y chudé fluority – u tohoto typu se suma REE+Y pohybuje kolem detekce elektronové mikrosondy, a b) REE+Y obohacené fluority (Tabulka T7 v příloze 2). Tento typ fluoritu se vyznačuje přítomností sekundárních REE fluorkarbonátů, které vznikly během pozdějších alterací. Suma REE+Y, se pohybuje až do 1,7 hm.%. Obsahy Y v tomto typu fluoritu byly zjištěny až do 1,2 hm.%, zvýšené jsou také obsahy La (0,2 hm.%), Ce (do 0,7 hm.%), Pr (do 0,1 hm.%), Nd (do 0,2 hm.%), Gd (do 0,2 hm.%), Dy (do 0,2 hm.%) a Yb (do 0,6 hm.%). Zóny ve fluoritech, které jsou obohacené o REE+Y je možné pozorovat i přímo v BSE (obr. C2 177, F2). Ve fluoritech ze stockscheidru došlo ke vzniku exterémně vysokého množství fluórkarbonátů. Pěkným příkladem je vzorek C2/177, kde byly pozorované fluority s velikostí do 2 mm, kde jsou

fluórkarbonáty tvořené predominantně na puklinách a v oscilačních zónách, rozsah fluórkarbonatizace fluoritu je značný (obr F3 ze vzorku C2/177). Skandium nebylo v této studii v žádném z analyzovaných fluoritů detekováno.

Přítomnost REE minerálů ve fluoritu je nepřímo odvoditelná i z jeho sytě fialové barvy, která vznikla díky radiaci Th; to se ve fluoritu objevuje a při jeho rekrystalizaci vstupuje do minerálů skupiny bastnäsitu (Johan a Johan, 2005) a synchysitu.

5.1.8 Kasiterit

Kasiterit se vyskytuje hlavně v křemen-zinnwalditových žilách a v masivních greisenech, v greisenizovaných granitech, a ve stockscheidru je jeho výskyt méně častý. Minerál tvoří převážně subhedrální zrna a agregáty zrn s variabilním množstvím inkluzí a s rozličnou porozitou (obr. 9f, 13a). Kasiterit tvoří také malé (typicky 5-10 µm) anhedrální, porézní inkluze v zinnwalditu v asociaci s kolumbitem a zirkonem (obr. 6c), porézní zrna s inkluzemi křemene, nebo zinnwalditu, které se typicky vyskytují na korodovaných okrajích krystalů zinnwalditu. V greisenu místy narůstají na porézní kasiterit mladší, neporézní zrna kasiteritu (obr. 13a). V granitech kasiterit často koroduje a obrůstá Sc-kolumbit (obr. 9f).

Kasiterit vykazuje relativně vysoké koncentrace Nb (0-7,4 hm.% Nb₂O₅) a Ta (<6,5 hm.% Ta₂O₅, obr. 14a), zároveň ale relativně nízké koncentrace Fe (<3,5 hm.% FeO), velmi nízké koncentrace MnO (\leq 0,6 hm.%) a TiO₂ (\leq 0,9 hm.%). Obsahy Sc (\leq 0,3 hm.% Sc₂O₃, 0-0,007 apfu; obr. 14b, Tabulka T8 v příloze 2) jsou obvykle na hranici detekčního limitu elektronové mikrosondy, průměrný obsah Sc₂O₃ v kasiteritu je 0,07 hm.%. REE+Y nebyly v kasiteritu detekovány.

5.1.9 Wolframit

Wolframit se vyskytuje v masivních greisenech (typický příklad takovéto mineralizace se nachází ve vzorku P7/281) a v křemen-zinnwalditových žilách (obr. 13b) v podobě krystalů s velikostí do několika mm. V těchto horninách se vyskytují dva typy wolframitu, které se liší jak texturou, tak chemickým složením. 1. Sc, Nb-bohatý euhedrální wolframit s charakteristickou oscilační zonálností, která se odvíjí od obsahu Nb (obr. 13c), 2. homogenní, Sc, Nb-chudý subhedrální až euhedrální krystaly (obr. 13e), které jsou typicky uzavřené v zinnwalditu, nebo v křemeni. Tento typ wolframitu se jeví jako mladší. Oba typy wolframitu jsou charakteristické nahrazováním mladšího scheelitu po okrajích a puklinách;

Obr. 13: BSE snímky minerálních asociací kasiteritu a wolframitu. a) dvě generace kasiteritu v zinnwalditu; b) Sc-ixiolit ve wolframitu; c) oscilačně zonální Sc, Nb-bohatý wolframit; d) zrno Sc, Nb-chudého wolframitu; e) mladší ixiolit v Sc-wolframitu; f) prvková mapa Mn zobrazující dvě generace wolframitu z greisenu alterovaného sulfidy; g) wolframit II korodovaný sulfidy; h) mladý jehlicovitý wolframit II.

alterace Sc, Nb-bohatého typu probíhala především podél Nb-bohatých zón (obr. 13c), kde dochází k nahrazování scheelitem, Sc-ixiolitem (obr. 13b) a Sc-kolumbitem (obr. 13c).

Sc, Nb-chudý wolframit se vyznačuje relativně nízkými obsahy MnO (průměrně 12,56 hm.%, 0,52 apfu Mn), Nb (průměrně 0,68 hm.% Nb₂O₅, 0,015 apfu) a Sc (průměrně 0,17 hm.% Sc₂O₃, 0,007 apfu Sc). Sc, Nb-bohatý wolframit je mírně obohacený o Mn (průměrně 14,04 hm.% MnO, 0,58 apfu Mn), Nb (průměrně 2,45 hm.% Nb₂O₅, 0,054 apfu Nb) a Sc (průměrně 0,55 hm.% Sc₂O₃; 0,025 apfu Sc). Nejvyšší množství Sc (0,35-0,9 hm.% Sc₂O₃; 0,015-0,037 apfu) bylo zjištěno ve wolframitu z křemen-zinnwalditové žíly (vzorky P13/133A, B; obr. 14c).

Obr. 14: diagramy chemického složení pro kasiterit, wolframit a ixiolit. a) obsahy (apfu) Fe+Mn vs. Nb+Ta v kasiteritu; b) obsahy (apfu) Fe+Mn vs. Sc v kasiteritu; c) Sc vs. Nb+Ta ve wolframitu d) Mn/(Mn+Fe) vs. Sc₂O₃ ve wolframitu a ixiolitu.

Dvě generace wolframitu, které se výrazně liší jak texturně, tak i chemickým složením byly nalezeny v greisenu značně alterovaném sulfidy (vzorek P1/250; obr. 13d, f). Starší wolframit I (ferberit až Fe-bohatý hübnerit, 0,46-0,83 apfu Mn se zvýšenými obsahy $Sc \ge 0,009$ apfu) tvoří jádra (s velikostí do 500 x 100 µm) relativně velkých tabulkovitých krystalů wolframitu II (obr. 13f). Domény wolframitu I jsou nerozlišitelné v BSE – byly nalezeny díky vyhodnocení map prvkové distribuce pomocí metody TIMA. Chemické složení wolframitu I je podobné složení Sc, Nb-chudých wolframitů z masivních greisenu, které byly popsané výše. Wolframit II tvoří tlustší tabulkovité krystaly, nebo tenčí jehlicovité krystaly (obr. 13h), oba tyto typy krystalů jsou často korodované sulfidy (obr. 13g). Ve srovnání s wolframitem II má wolframit I proměnlivý poměr Mn/(Mn + Fe) a zvýšené obsahy Sc (0,20-0,53 hm.% Sc₂O₃; obr. 7d, 8 z publikace) a Nb (1,09-2,11 Nb₂O₅). Wolframit II je na druhou stranu obohacený o Mn (0,82-0,92 apfu Mn) a ochuzený o Sc a Nb (typicky <0,076 hm.% Sc₂O₃ a <0,85 hm.% Nb₂O₅; vzácně byly zjištěné domény s Nb do 1,22 hm.% Nb₂O₅) (obr. 14c, d; Tabulka T9 v příloze 2). Na obr. 14d z publikace je zřetelná vysoká heterogenita wolframitu I z hlediska poměru Mn/(Mn+Fe). Texturní a prvkové mapy wolframitu I neumožnili zjistit, zda analytické body, které odhalili Mn-bohaté wolframity I (obr. 14c, d) reprezentují výše frakcionované primární wolframity, nebo zda byly při analýze zasažené také části wolframitu II. Pro vyřešení této problematiky je nutné podrobné studium dalších výbrusů. Prvky vzácných zemin ani Y nebyly ve wolframitu zjištěny.

5.1.10 Ixiolit a qitianlingit

Fáze blízká W-Nb-Sc ixiolitu patří mezi vzácnější akcesorie v granitu a greisenech. V relativně větším množství byla zjištěna pouze ve dvou vzorcích (P13/133A – křemen-zinnwalditová žíla s wolframitem a P7/281 – masivní greisenu). Ixiolit se vždy vyskytuje v asociaci s Sc, Nb-bohatým wolframitem a s největší pravděpodobností je sekundárního původu (obr. 13b, c, e). Typickým znakem ixiolitu je vysoká porozita a /nebo hydratace, kvůli které mají analýzy z elektronové mikrosondy nízkou sumu analyzovaných prvků (81,7-61,6 hm.%).

Ixiolit obsahuje nejvyšší množství Sc ze všech analyzovaných fází na ložisku. Obsah Sc se pohybuje mezi 1,05 a 4,8 hm.% Sc₂O₃ (obr. 14d, 8; Tabulka T10 v příloze 2) s průměrným nnožstvím 2,24 hm.% Sc2O3 (n = 16). Ve srovnání s wolframitem, se kterým se vyskytuje v asociaci je ixiolit nejméně 5-10 krát obohacen o prvky, které jsou jinak obecně málo kompatibilní se strukturou wolframitu, jako Sc, Nb, Ta, Th a Bi. Část dat se shoduje s ideálním mineralogickým složením qitianlingitu (který již dříve na ložisku popisují také Breiter et al.

2017a z vrtu CS-1). Qitianlingit má variabilní poměry Mn/(Mn + Fe) – 0,06-0,85; což indikuje možnost přítomnosti jeho Mn-analogu (např. Dixon et al. 2014). REE+Y nebyly v ixiolitu, ani v qitianlingitu zjištěny.

5.1.11 Scheelit

Scheelit je pozdním hydrotermálním produktem rozpadu wolframitu v greisenech a křemenzinnwalditových žilách. Typicky tvoří jemnozrnné agregáty anhedrálních zrn, které vyplňují trhlinky ve wolframitu a v W-bohatém ixiolitu (obr. 13d), nebo se vyskytuje v blízkosti alterovaných zrn těchto minerálů (obr. 12a); v křemen-zinnwalditových žilách tvoří scheelit lokálně velké (cca do 2 cm), subhedrální krystaly v dutinách křemene, nebo zinnwalditu. Složení scheelitu (Tabulka T11 v příloze 2) se ve většině případů blíží ideálnímu vzorci. Pouze lokálně jsou některé scheelity z křemen-zinnwalditových žil a z greisenu značně alterovaného sulfidy obohacené o Mo. Obsahy skandia v scheelitu jsou ve většině analýz pod detekčním limitem elektronové mikrosondy, pouze lokálně dosahují hodnot nad mezí detekce (do 0,66 hm.% Sc₂O₃). Obsahy REE+Y nebyly v scheelitu detekované.

Ve vzácné mineralogické asociaci greisenu alterovaného sulfidy (vzorek P1/250), kde mladší sulfidická mineralizace alterovala starší wolframit a kasiterit, tvoří scheelit anhedrální agregáty, které se vyskytují v asociaci se sfaleritem a mladším galenitem s bismutinitem.

5.1.12 Minerály superskupiny pyrochloru

Z vrtu CS-1 popsali Breiter et al. (2017a) a Rub et al. (1998) také minerály superskupiny pyrochloru, které obsahují od 0 do 0,18 hm.% Sc₂O₃. REE, ani Y nebyly v těchto minerálech detekované vůbec. Tyto minerály se vyskytovali ve vzorcích studovaných v této práci pouze velice výjimečně. Kvůli celkově nízkému zastoupení těchto minerálů v rámci ložiska a jejich marginálnímu podílu na distribuci Sc a REE+Y nejsou dále diskutovány.

5.2 Sekundární REE minerály

5.2.1 Minerály skupiny bastnäsitu

Minerály skupiny bastnäsitu (ideálně REE(CO₃)F) jsou na ložisku zastoupené dominantním bastnäsitem-(Ce) a minoritním bastnäsitem-(La) – ten byl v této studii zjištěn pouze v jediném případě. Minerály skupiny bastnäsitu tvoří a) protáhlé jehlicovité euhedrální až subhedrální

krystaly b) anhedrální agregáty v zónách alterace. Minerály bastnäsitové skupiny tvoří často mladší impregnace v zinnwalditu, a v K-živci (zaznamenáno ve stockscheidru); ve fluoritu tvoří spolu se synchysitem inkluze vázané na zóny jeho rekrystalizace. Často se vyskytuje v okolí zrn monazitu, byl zjištěn i přímý nárůst bastnäsitu na alterovaný monazit (obr. 6 h z CS-1, 1579 m, vzorek 4693).

Chemické složení minerálů bastnäsitové skupiny je značně variabilní (Tabulka T12 v příloze 2). Z prvků vzácných zemin má nejhojnější zastoupení Ce (do 42,5 hm.% Ce₂O₃), dále také La (do 20,8 hm. % La₂O₃) a Nd (do 14,1 hm.% Nd₂O₃). V menším množství byly detekovány také Pr (do 4,9 hm.% Pr₂O₃), Sm (do 6,7 hm.% Sm₂O₃), Eu (do 0,4 hm.% Eu₂O₃), Gd (8,1 hm.% Gd₂O₃) a Dy (do 5,0 hm.% Dy₂O₃). Významným substituentem je Th (do 23,9 hm.% ThO₂), které pozitivně koreluje s Ca (obr. 16b, místy až 10,0 hm.% CaO) a negativně koreluje se sumou REE+Y. Z dalších prvků bylo zaznamenáno P₂O₅ (až 0,4 hm.%), SiO₂ (do 1,4 hm.%), a FeO (do 0,7 hm.%). Další minoritní prvky (U, S, Sr, Pb, Ba a Na) byly zjištěny v koncentracích nižších, než 1 hm.% oxidů. Skandium nebylo v minerálech skupiny bastnäsitu detekováno.

5.2.2 Minerály skupiny synchysitu

Z minerálů skupiny synchysitu (ideálně CaREE(CO₃)₂F) se v přibližně stejném množství na ložisku vyskytují jak synchysit-(Y), tak synchysit-(Ce). Minerály synchysitové skupiny jsou mladší než minerály skupiny bastnäsitu (místy byly pozorované nárusty synchysitu na bastnäsit – obr. 15a ze vzorku C2/177). Minerály skupiny synchysitu tvoří jehlicovité euhedrální až subhedrální krystaly, místy byly pozorované jako mladé anhedrální agregáty. Minerály synchysitové skupiny se vyskytují ve stejných asociacích jako minerály skupiny bastnäsitu. Ve srovnání s minerály bastnäsitové skupiny se ve fluoritu vyskytuje větší množství minerálů synchysitové skupiny.

Z hlediska chemického složení minerálů skupiny synchysitu (Tabulka T13 v příloze 2) mají mezi prvky REE+Y v předmětných minerálech nejvyšší zastoupení Ce (do 26,2 hm.% Ce₂O₃), Y (do 18,23 hm. % Y_2O_3) a Nd (12,9 hm.% Nd₂O₃). Mezi další REE s významným zastoupením patří také Pr (do 3,6 hm.% Pr₂O₃), Sm (do 5,2 hm.% Sm₂O₃), Eu (do 0,9 hm.% Eu₂O₃), Gd (5,7 hm.% Gd₂O₃) a Dy (do 4,3 hm.% Dy₂O₃). Z ostatních prvků, které vstupují do struktury minerálů skupiny synchysitu jsou ve větším množství zastoupené také Th (do 15,2 hm.% ThO₂), As do 5,8 hm.% As₂O₅ a Fe (do 4,7 hm.% FeO). Další prvky (As, Si, S, P, U, Pb, Ba a Na) byly detekovány v množství nižším, než 1 hm.% oxidů. byly zjištěné koncentrace As

do 5,8 hm.% As₂O₅. Obsahy skandia jsou v minerálech skupiny synchysitu pod mezí detekce eletktronové mikrosondy.

Obr. 15: Fluorkarbonáty REE+Y z ložiska Cínovec. a) starší bastnäsit je obrůstán mladším synchysitem; b) arsenogoyazit (Agoy), který částečně zatlačující zirkon.

5.2.3 Fluocerit-(Ce)

Z fluoridů vzácných zemin byl v této studii na lokalitě Cínovec zaznamenán pouze fluocerit-(Ce) – s idealizovaným vzorcem CeF₃. Fluocerit-(Ce) byl nalezen v podobě anhedrálních zrn, a to pouze v jednom vzorku z vrtu CS-1, z hloubky 1579 m (vzorek 4963 z "protolithionového" granitu). Fluocerit-(Ce) se vyskytuje ve formě oválných inkluzí v biotitu, které jsou částečně zatlačované fluorkarbonáty, především bastnäsitem-(Ce) (foto s fluoceritem).

Do fluoceritu-(Ce) vstupuje z REE kromě dominantního Ce (do 38,6 hm.%) ve větší míře také La (do 24,2 hm.%), Pr (do 3,3 hm.%) a Nd (do 9,2 hm.%). Všechny další prvky (Si, Th, Y, Sm, Gd, Ca a Fe) byly detekované v koncentracích nepřesahujících 1 hm.% oxidů (Tabulka T14 v příloze 2). Obsahy Sc jsou ve fluoceritu-(Ce) pod mezí detekce elektronové mikrosondy.

5.2.4 Minerály dussertitové skupiny

Z minerálů skupiny dussertitu byly v této studii na ložisku zaznamenány tři zástupci: arsenoflorencit-(Ce) [ideální vzorec CeAl₃(AsO₄)₂(OH)₆], arsenoflorencit-(La) [ideální vzorec LaAl₃(AsO₄)₂(OH)₆] a arsenogoyazit [ideální vzorec SrAl₃(AsO₄)(AsO₃OH)(OH)₆]. Složení všech uvedených minerálů se pohybuje na hranici arsenoflorencit-arsenogoyazit (obr. Xe) graf). Tato mineralizace, která je spojená s nejmladší remobilizací REE+Y na ložisku je vázaná na sericitizaci a chloritizaci (F3, vzorek P2/218). Minerály dussertitové skupiny tvoří nejčastěji anhedrální, místy pórovité agregáty, které doprovází muskovitizaci a chloritizaci, nebo vyplňují dutiny. V některých případech byla zaznamenána alterace zirkonu za vzniku arsenogoyazitu (obr. 15b, ze vzorku P2/218).

Chemické složení minerálů skupiny dussertitu na ložisku Cínovec je poměrně různorodé (Tabulka T15 v příloze 2). Z prvků vzácných zemin převažuje ve většině analýz Ce (do 8,9 hm.% Ce₂O₃, obr. X, e) graf s REE), v jediné analýze arsenoflorencitu-(La) má významné zastoupení také La (až do 8,7 hm.% La₂O₃); ve zvýšeném množství se dále objevují také Pr (do 2,2 hm.% Pr₂O₃) a Nd (do 4,3 hm.% Nd₂O₃). Arsenoflorencit má významné zastoupení arsenogoyazitové komponenty (obr. 16d) graf) až do 0,473 apfu R²⁺ (kde v R²⁺ výrazně převažuje Sr). Rovněž arsenogoyazit se vyznačuje vysokým obsahem arsenoflorencitové komponenty (až do 0,465 apfu REE). Z dalších prvků jsou dále ve větší míře zastoupeny S (do 2,6 hm.% SO₃), P (do 2,6 hm.% P₂O₅), Si (do 1,8 hm.% SiO₂) a F (do 1,4 hm.%). Koncentrace Th, Ca, Mn a Fe se pohybují blízko detekčního limitu elektronové mikrosondy.

skupiny.

La

Nd

6. Diskuse

6.1 Krystalová chemie Sc a REE+Y v minerálech

Slídy, a zejména pak zinnwaldit, jsou významnými nositeli Sc; naproti tomu obsahy REE+Y se pohybují v jednotkách ppm a jsou zanedbatelné. Přesné substituční mechanismy inkorporace Sc do slíd nelze jednoznačně určit z důvodu nízkých koncentrací tohoto prvku. Na základě podobných iontových průměrů Sc³⁺ a Fe²⁺ (Shannon, 1976) je však možné se domnívat, že skandium vstupuje do oktaedrické pozice zinnwalditu.

Obsahy Sc, F a P v **zirkonu** (do 0,08 apfu Sc, 0,30 apfu F a 0,16 apfu P) se zvyšují během jeho frakcionace, kterou lze vyjádřit poměrem Zr/Hf (obr. 7a), Obsahy P jsou relativně nízké ve srovnání s obsahy Sc a REE³⁺ (Tabulka T1 v příloze 2), z tohoto důvodu se pretulitová a xenotimová substituce (Sc, Y+REE³⁺ + P⁵⁺ = Si⁴⁺ + Zr⁴⁺), která běžně stojí za vstupem těchto kationtů do struktury zirkonu (viz např. Breiter et al., 2006; Mlčoch a Skácelová, 2010; Výravský et al. 2017a), uplatňuje pouze v omezeném měřítku; avšak možné obsahy As₂O₅ (viz např. Breiter a Škoda, 2012) nebyly zjištěné pomocí EDX analýzy a nebyly ani pomocí elektronové mikrosondy detekované. Pozitivní korelace Sc a REE³⁺ s F naznačuje, že substituce (REE³⁺, Sc) + (F⁻, OH⁻) = Zr⁴⁺ + O²⁻, která stojí za vstupem "fluoro-zirkonovou" komponentu může hrát v tomto případě důležitou roli.

Na základě analýzy dat chemického složení **Nb-rutilu** bylo zjištěno, že množství Nb + Ta převyšuje množství $M^{2+} + M^3$. To naznačuje simultánní působení následujících substitučních vektorů: (1) 3Ti = 2Nb + M^{2+} (kolumbitová komponenta) a (2) 2Ti = (Nb,Ta) + (Fe,Sc)³⁺ (rossovskyitová/heftetjernitová komponenta). Skandium vykazuje slabou pozitivní korelaci s Nb + Ta (obr. 8a) a s největší pravděpodobností vstupuje do rutilové struktury pomocí mechanismu (2). Kvůli celkově nízkým obsahům Sc můžeme tuto substituci pouze předpokládat. Sklon regresní křivky blízký 1 v diagramu, který ukazuje obsahy $M^{3+} + 2M^{2+}$ vs. M^{5+} (obr. 8b) naznačuje, že pouze substituce (1) a (2) jsou zodpovědné za vstup Nb a Ta do struktury rutilu. Prorůstání **kolumbitu** a Nb-rutilu bylo pozorováno např. v porfyrickém nebo albitovém granitu (obr. 3j, k z publikace). Srůsty jsou pravděpodobně primární (ne exsoluční), a protože rutil není ochuzený o Nb, je zřejmé, že Sc preferenčně vstupuje do struktury kolumbitu, který obsahuje až do 1,77 hm.% Sc₂O₃. Podobný trend byl pozorovaný také Černým et al. (1998), ale v Nb- a Ta-rutilu, který vznikl vyloužením z kolumbitu. Tito autoři popsali obohacení rutilu Fe²⁺, Ta, Fe³⁺ a Sn, zatímco minerály skupiny kolumbitu byly více kompatibilní s Mn, Nb, Sc, W a Zr. Lokálně pozorovaná sektorová zonálnost (např. obr. 3k z publikace) mohla být způsobená přednostním vstupem Nb+Ta do rozdílných krystalografických směrů a domén během růstu krystalů rutilu (např. Carocci et al. 2019).

Skandium v kolumbitu vykazuje výraznou pozitivní korelaci s Ti (R = 0,9; obr. 5c z publikace) a negativní korelaci s Nb + Ta a Fe + Mn, což indikuje substituci (Fe,Mn)²⁺ + (Nb,Ta)⁵⁺ = (Fe,Sc)³⁺ + Ti⁴⁺. Diagramy závislosti M³⁺ vs. M⁴⁺ ukazují, že poměr kationtů se vychyluje od linie 1:1, což může indikovat částečnou substituci Sc + Fe³⁺ za R5+, např. vektorem 2(Fe,Mn)²⁺ + (Nb,Ta)⁵⁺ = $3(Sc,Fe)^{3+}$ (heftetjernitová/rossovskyitová komponenta; obr. 10d).

Kasiterit se vyznačuje obsahem zvýšeného množství Nb, Fe, Mn a Sc, které vstupuje do jeho struktury prostřednictvím kombinace substitučních mechanismů 3 $\text{Sn}^{4+} = (\text{Fe},\text{Mn})^{2+} + 2$ (Nb,Ta)⁵⁺ (Möller et al., 1988; Costi et al., 2017) a (Fe³⁺,Sc) + (Nb,Ta)⁵⁺ = 2 Sn⁴⁺; přičemž druhá jmenovaná je spojená se vstupem Sc do struktury minerálu (obr. 14a, b). Vstup Fe + Mn a Nb + Ta do struktury kasiteritu tedy umožňuje také vstup malého množství Sc³⁺ (obr. 14b), Ti⁴⁺ a Zr⁴⁺ výměnou za Sn⁴⁺. Minoritní substituce Sc (do ~ 0,003 apfu) probíhala ve všech typech studovaných hornin, ale pouze kasiterit z granitu vykazuje mírně zvýšené hodnoty ve srovnání s kasiteritem z greisenu (obr. 14b).

Skandium ve **wolframitu** vykazuje silnou pozitivní korelaci s Nb + Ta (obr. 7c), která indikuje heterovalentní substituci Fe2+ + W6+ = (Sc,Fe)3+ + (Nb,Ta)5+. Nízký poměr Sc/(Nb + Ta) \sim 0,2 (obr. 7c) je spojen s nízkými obsahy Fe3+ (rossovskyitová komponenta; Konovalenko, et al. 2015). "Wolframoixiolit" (přechodná fáze mezi wolframitem a kolumbitem) je relativně běžným produktem alterace wolframitu v Nb-bohatém prostředí (viz např. Novák et al. 2008).

V minerálech **skupiny bastnäsitu** probíhá (vedle homovalentních substitucí jednotlivých prvků REE) zcela jednoznačně i substituce $Th^{4+} + Ca^{2+} = 2REE^3$, podporovaná pozitivní korelací Th s Ca (obr. 16b, Johan a Johan, 2005). Zároveň nebyla pozorována korelace mezi Th a F, která by poukazovala na možnou substituci $REE^{3+} + F^- = Th^{4+} + O^{2-}$. První substituční mechanismus je pro skupinu bastnäsitu charakteristický.

Ve **skupině synchysitu** popisují Johan a Johan (2005) u Th bohatých synchysitů z zinnwalditového granitu (hloubka 508-739 m) kombinaci následujících substitucí:

- 1) $Th^{4+} + Ca^{2+} = 2REE^{3+}$
- 2) $REE^{3+} + F^{-} = Th^{4+} + O^{2-}$

V této studii byly Th bohaté synchysity (10,20 a 15,21 hm.% ThO₂) vzácně nalezeny ve vzorku z vrtu CS-1 v biotitovém granitu z hloubky 988 m. Tyto synchysity mají mírně zvýšené obsahy

Ca a také nejnižší $\sum REE+Y$; proto se inkorporace kombinací substitucí 1) a 2) jeví jako vysoce pravděpodobná. Byly rovněž nalezeny agregáty jemnozrnného Th-bohatého synchysitu, jejich EMP analýzy poskytly nízkou analytickou sumu; obsahy REE jsou také nižší, na druhou stranu substituce s Ca probíhá pouze v malé části studovaných vzorků (obr. 17a, b).

Obr. 17: Diagramy složení minerálů skupiny synchysitu a obsahy Sc_2O_3 ve všech studovaných akcesorických minerálech. a) REE+Y vs. Th v minerálech skupiny synchysitu, b) REE+Y vs. Ca, c) obsahy Sc_2O_3 v důležitých akcesorických minerálech z ložiska Cínovec (Hreus et al. 2021).

6.2 Chování minerálů s obsahem Sc během alterací v subsolidu

Distribuce a koncentrace Sc (obr. 2 z publikace) ve slídách a v akcesorických minerálech ložiska Cínovec byly významně ovlivněna reakcemi v subsolidu, které zapříčinily silnou frakcionaci Sc (obr. 17 a 19). V této studii bylo rozlišeno pět nejvýznamnějších alteračních procesů, které vedly k mobilizaci a redistribuci Sc.

Alterace zirkonu

Vliv alterace zirkonu na obsah Sc v tomto minerálu není zcela zřejmý, nebyly ani pozorované jednoznačné trendy, které by jej dokazovaly. Většina zrn zirkonu na lokalitě je značně alterovaná, což je zřetelné z nízké analytické sumy (obr. 7b), vstupu strukturně nekompatibilních prvků (Ca, Fe, F) a odmíšenin, které tvoří v BSE nepravidelnou zonálnost. Skandium vykazuje celkově nejvýraznější pozitivní korelaci s P (0,45), Hf (0,45) a F (0,32), což může indikovat určitou roli F a P v substituci Sc (+HREE) v zirkonu (viz diskuse výše). Výrazná pozitivní korelace s frakcionací (poměr Zr/Hf, obr. 7a) je zřetelná i přes nižší analytickou sumu, slabá korelace Sc s Ca (0,15), Fe (0,15) a analytickou sumou (0,27) dokazuje, že pouze samotná alterace zirkonu nebyla určujícím faktorem pro zvyšování obsahu Sc. Obohacení fluid, které se podílely na vzniku greisenů Sc, tedy nebylo způsobeno alterací magmatického zirkonu. Kempe a Wolf (2006) zjistili mírně vyšší koncentrace Sc v zirkonech z greisenů (1500-10300 ppm) ve srovnání se zirkony z alterovaného granitu (600-8400 ppm).

Obr. 18: schematický geologický řez s vyznačením zón s koncentracemi Sc nad 10 ppm (Hreus et al. 2021, upraveno).

Ve své studii prezentovali názor, že obohacení v zirkonech je spojeno s alterací "externími fluidy bohatými V, Sc a HREE", které spojovali s možným plášťovým původem (Kempe a Wolf 2006). Pro tuto hypotézu ale neexistují uspokojivé důkazy. Breiter a Škoda (2012) uvádějí, že zirkon v greisenech má podobný poměr Zr/Hf, jako zirkon z okolních granitů, což svědčí o tom, že tento poměr není ovlivněn greisenizací ani pozdějšími alteracemi. Zirkony s vysokými obsahy Hf (a také Th, U, Y, REE a P) jsou považované za před-greisenizační, raně magmatické minerály, zatímco ty s vysokými koncentracemi Ca, Fe, Mg a Sc by měly být hydrotermálního původu. Pozitivní korelace obsahů Sc s frakcionačními indikátory (pokles poměru Zr/Hf) může odrážet stupeň frakcionace granitu, který je v blízkém okolí greisenové mineralizace.

Vznik Ta, Sc, Ti-bohatého kolumbitu v granitech

V některých případech bylo možné rozlišit dvě generace kolumbitu v albitovém granitu. Homogenní kolumbit I, obohacený o Nb je obrůstaný nehomogenním, porézním kolumbitem II, který je obohacený Sc, Ta a Ti. Tyto kolumbity se vyskytují v asociaci s albitem, muskovitem a fluoritem (obr. 9e, viz také Breiter at al. 2019 a). Asociace kolumbitu II s mladým muskovitem a fluoritem, stejně tak, jako jeho vysoká porozita a heterogenita naznačují, že vznikal pravděpodobně procesem metasomatického rozpouštění v pevném stavu (dissolutionreprecipitation; Putnis 2009).

Alterace primárního zinnwalditu na muskovit

Při tomto objemově významném procesu je muskovit ve srovnání s zinnwalditem (obr. 9 z publikace) ochuzený o Sc (cca. 20-25 ppm). Navíc je muskovit, který vzniká alterací zinnwalditu v granitech, mnohem výrazněji ochuzený Sc, než muskovit vznikající v greisenech (obr. 19).

Stupeň nahrazování zinnwalditu se výrazně liší od úzkých lemů muskovitu na hranách a puklinách ve velkých krystalech zinnwalditu (obr. 9c,) až do stavu, kdy jsou přítomny pouze zkorodované zbytky zinnwalditového jádra, které je zcela obklopeno velkými agregáty mladšího muskovitu (obr. 11b). V některých případech byl pozorován také mezistupeň muskovitizace ("alterovaný zinnwaldit", obvykle fengit s obsahem Li a 37–83 ppm Sc), který tvoří zónu postupující alterace, je možné ho pozorovat také na snímcích BSE (obr. 12a). Během procesu alterace bylo ze slíd uvolněno vysoké množství Fe a Li stejně tak jako významné množství Rb, F, Mn a Sc. Breiter a kol. (2019) přisuzují tyto hydrotermální změny reakcí

s pozdními fluidy obohacenými Sn, což je zřetelné také ze společné asociace kasiteritu s muskovitem (obr. 11b) a fluoritem (obr. 6c; viz také Xie et al. 2015).

Obr. 19: Distribuce Sc ve slídách (Hreus et al. 2021, upraveno).

Scheelitizace Sc,Nb bohatého wolframitu

Tento proces vedl ke vzniku W,Nb,Sc-bohatého ixiolitu. Tato alterace byla zjištěna u obou vzorků obsahujících Sc,Nb-bohatý wolframit (P7/281 – greisen a P7/133A, B – křemenzinnwalditová žíla). Zdá se, že tento proces souvisí s muskovitizací doprovázenou fluoritem a následnou přeměnou na jílové minerály, nicméně přesný vzájemný vztah těchto procesů a jejich načasování nejsou jednoznačné. Během scheelitizace wolframitu se Sc a Nb z původního wolframitu (průměrně 0,48 % hm. Sc₂O₃; 2,41 % hm. Nb₂O₅) dostává z velké části do Scixiolitu (průměrně 2,01 % hmotn. Sc₂O₃; 20,13 % hmotn. Nb₂O₅), zatímco scheelit je ochuzený o tyto prvky (Sc a Nb jsou většinou pod detekčním limitem el. mikrosondy); významný rozdíl v iontových poloměrech Sc (75 pm) a Ca (100 pm; Shannon, 1976) činí Sc nekompatibilní v scheelitové struktuře při nízkých teplotách. Nekompatibilita Sc (a nepřítomnost REE) také brání substituci Nb za W v scheelitu, protože nebylo možné vyvážení náboje. Podobný mechanismus obohacování Sc byl popsán z pegmatitu v Kožichovicích, kde byl Sc-bohatý kolumbit přeměněn na Sc-ochuzený fersmit a sekundární minerály obohacené o Sc, které vznikly při subsolidové reakci s Ca-obohacenými fluidy (Výravský et al 2017b). Na rozdíl od našich údajů, Kempe a Wolf (2006) publikovali zvýšené koncentrace Sc v scheelitu (31–3900 ppm); jimi zkoumaný vzorek scheelitu byl ale s nejvyšší pravděpodobností texturně a parageneticky odlišný. Až 0,3 hm.% Sc₂O₃ bylo zjištěno také v scheelitu z greisenu v horní části vrtu CS-1 (viz Hreus et al. 2021).

Hydrotermální alterace greisenu sulfidickou mineralizací

Sulfidická hydrotermální alterace greisenu (vzorek P1/250) vedla k nahrazení Sc-Nb-(Ta)bohatého wolframitu I mladým Sc-Nb-(Ta)-chudým, Mn bohatým wolframitem II. Reziduální domény staršího wolframitu I (s Mn/Mn+Fe = 0,46–0,81; 0,21–0,53 hm.% Sc₂O₃ a 1,09–2,11 hm.% Nb₂O₅) byly nalezeny v podobě hrubých, prizmatických krystalů wolframitu. Zbytek krystalů původního wolframitu I je nahrazen wolframitem II (obr.10c) s Mn/(Mn + Fe) 0,79– 0,89, který je extrémně ochuzený o Sc (obsahy Sc₂O₃ jsou pouze do 0,076 hm.%), obsahy Nb2O5 jsou taktéž výrazně nižší (do 1,22 hm.%).

6.3 Vývoj REE mineralizace na ložisku Cínovec

Mineralizace magmatického stádia vývoje ložiska

Během magmatické fáze vznikaly krystalizací z magmatu minerály xenotimové skupiny – xenotim-(Y) a chernovit-(Y), s vysokými obsahy Y a HREE (45,3–63,4 hm.%). Dalším primárně magmatickým minerálem REE je monazit-(Ce), který do své struktury akumuluje přednostně LREE. Monazit i minerály skupiny xenotimu vykazují po normalizaci na chondrit typické magmatické křivky (obr. 20).

Vedle nich je podstatné množství HREE+Y fixováno také v zirkonu (0,15–14,7 hm.%), který patří mezi velmi časté akcesorie. V tomto případě ale korelují vysoké obsahy HREE+Y s nízkou celkovou sumou oxidů, což dokazuje, že převážná část HREE+Y se do struktury zirkonu dostala až během metamiktizace (obr. 21). Kromě zvýšeného množství HREE+Y v zirkonu byl pozorovaný také variabilní obsah Ce (obr. X spider diagram).

Obr. 20: Chondritem normalizované REE primárních a sekundárních minerálů z ložiska Cínovec. Yttrium je jako pseudo-lanthanoid zařazeno mezi Dy a Ho. Normalizace na chondrit je podle McDonough a Sun (1995).

Obr. 21: Analytická suma vs. HREE+Y v zirkonu

V literatuře je věnovaná pozornost také thoritu z ložiska Cínovec (Johan a Johan, 2005), který podobně jako xenotim akumuluje hlavně HREE. Zajímavostí je, že thorit tvoří v 940,5 m (zinnwalditový granit) vrtu CS-1 směsný roztok s xenotimem (přibližně v poměru 1:1, až 55 hm.% ThO₂; Johan a Johan, 2005). Ve vzorcích z vyšší části ložiska studovaných v této práci je také v xenotimu a chernovitu přítomné mírně zvýšené množství Th (do 2,3 hm.% ThO₂). Je nutné poznamenat, že thorit se vyskytuje pouze jako minoritní akcesorie, a proto je jeho celkový podíl na distribuci REE na ložisku marginální. Tento minerál je ale významným indikátorem přítomnosti vysokého množství Th (±U) na ložisku, což je diskutováno níže.

Již během magmatického stadia došlo k částečné akumulaci REE z F bohatých fluid, ze kterých vznikl fluorit. Svědčí pro to textury rekrystalizovaného fluoritu s četnými inkluzemi REE-fluorokarbonátů. Pozdně magmatický původ Y-bohatého fluoritu z A-typového granitu Hora Svaté Kateřiny předpokládají rovněž Breiter et al. (2009), s ohledem na plochý tvar křivek chondritem normalizovaných obsahů REE ve fluoritu a v celohorninových analýzách. Geochemická signatura granitů z ložiska Cínovec i z Hory Svaté Kateřiny stejně tak jako texturní a paragenetický charakter fluoritů z obou lokalit jsou velice podobné (Breiter et al. 2009).

Mineralizace metasomatického a hydrotermálního stadia vývoje ložiska

Jak již bylo naznačeno výše, pozdější přeměnou primárních pozdně magmatických REE minerálů – během greisenizace a hydrotermální alterace s přínosem CO₂ (Johan a Johan, 2005;

Breiter et al. 2009, Förster et al. 2011) došlo přínosem pozdějších fluid ke vzniku REE fluorkarbonátů (bastnäsitu a synchysitu). Velice sporadicky došlo také ke vzniku oxifluoridů a fluoridů REE (Johan a Johan, 1994b; Johan a Johan 2005). Podíl těchto minerálů na celkové distribuci REE+Y v rámci ložiska je ale zanedbatelný. Minerály skupiny bastnäsitu vznikly přeměnou primárního monazitu (obr. 6h, viz také Johan a Johan, 2005) a LREE-bohatých partií fluoritu. Bastnäsit váže do své struktury přednostně LREE (obr. 20), na druhou stranu synchysit váže převážně HREE+Y (obr. 20). Minerály skupiny synchysitu vznikají přeměnou minerálů xenotimové skupiny, což je v souladu s dříve publikovaným zjištěním (Johan a Johan 2005) z vrtu CS-1. Na rozdíl od předchozího výzkumu (Johan a Johan, 2005) byly ale minerály skupiny synchysitu zjištěné ve velkém množství i v apikální části ložiska, konkrétně ve stockscheideru (ve fluoritu, zinnwalditu, i dalších minerálech). Skutečnost, že výše zmínění autoři minerály skupiny synchysitu nezaznamenali, vyplývá z toho, že studovali pouze vrt CS-1 z centrální části ložiska, kde je ale stockscheider oddenudován.

Některé minerály skupiny bastnäsitu a synchysitu na ložisku mají vysoké obsahy Th (minerály skupiny bastnäsitu až do 23,9, minerály skupiny synchysitu do 15,2 hm.% ThO₂). Je velice pravděpodobné, že vznikly rozpadem thoritu, případně Th bohatého monazitu a zirkonu. Th-bohaté bastnäsity, jejichž vznik je vázán na alteraci thoritu, byly popsané také z A-typového granitu Hora Svaté Kateřiny (Breiter et al. 2009).

Za zmínku stojí lokální obohacení sekundárních REE fází As v některých analýzách minerálů skupiny synchysitu (ze stockscheidru, vzorek C2/177), ale především pak minerálů dussertitové skupiny. Förster et al. (2011) spojují vznik těchto minerálů s rozpadem As-bohatého monazitu-(Ce) a xenotimu-(Y). Přínos As do prostředí může být i z vnějšího prostředí z přínosu fluid, které se podílely i na vzniku sulfidické mineralizace. Nejmladší REE fáze jsou zastoupeny minerály dussertitové skupiny – viz také Förster et al. (2011) - arsenoflorencit-(La), arsenoflorencit-(Ce) a arsenogoyazit. Arsenoflorencit-(La) a arsenoflorencit-(Ce) vznikly během muskovitizace a chloritizace, alterací primárních (zejména monazit, xenotim), nebo sekundárních (zejména REE fluorkarbonáty) minerálů REE. Vznik arsenogoyazitu (s podstatným obsahem arsenoflorencitové komponenty) je přímo spjat s rekrystalizací zirkonu (P2/218, F4). Kam putovaly HREE+Y během této remobilizace není doposud jasné. Malá část HREE+Y se akumulovala v nově vznikajícím muskovitu (ten obsahuje průměrně 0,8 ppm Y na rozdíl od staršího zinnwalditu s průměrným obsahem Y = 0,1 ppm). Zbytek HREE+Y mohl vstupovat do některých z nově vznikajících fází, nebo migroval v rámci systému na větší vzdálenost.

Jiným možným scénářem vzniku minerálů dussertitové skupiny je přínos Sr + Ba + As hydrotermálními, nízkoteplotními fluidy, jejichž zdroj by ležel mimo greisenový systém (podobně jako zdroj sulfidické a fluorit-barytové mineralizace). Podobně se mladší fluida s Sr + Ba podílela např. na vzniku goyazitu v suroveckém mikrogranitu (Petrík et al. 2011).

Muskovit, který vzniká rekrystalizací zinnwalditu, obsahuje průměrně 7 ppm Sr, zatímco starší zinnwaldit průměrně pouze 0,7 ppm Sr. To naznačuje, že Sr se do systému dostalo až s fluidy, která se podílela na vzniku muskovitu. Velmi podobné to bylo také na francouzské lokalitě Beauvoir (Charoy et al. 2003). Minerály dussertitové skupiny (nejvíce zkoumaný byl goyazit), jsou považované za nízkoteplotní (~250-300°C) a nízkotlaké hydrotermální minerály (Baldwin et al. 2000, Charoy et al. 2003, Petrík et al. 2011), a s obdobnými teplotami vzniku je pravděpodobně spojena také krystalizace arsenoflorencitu a arsenogoyazitu na ložisku Cínovec.

6.4 Distribuce REE+Y v rámci ložiska

Velké nahromadění REE+Y je soustředěno do úzké zóny na kontaktu mezi ryolitem a granitovou kupolí, kde se vytvořil stockscheider (obr. 22). Toto extrémní obohacení REE (až do 885 ppm v případě vrtu CIS-2, metráž 176,7-178, údaje jsou z celohorninových analýz) je s největší pravděpodobností způsobeno zastavením migrace fluid o přirozenou bariéru, kterou tvořilo těleso méně tektonicky porušeného teplického ryolitu. Tavenina obohacená o F+REE+Y vedla ke vzniku fluoritu, u kterého dnes můžeme pozorovat: a) zvýšené obsahy REEE+Y (do 1,7 hm. %), b) vysoké množství inkluzí mladších REE+Y fluorkarbonátů (kolem kterého jsou zóny fluoritu s nízkými obsahy REE+Y), nebo jejich přítomnost na puklinách ve fluoritu (obr. 12d). Tyto fluorkarbonáty vznikly alterací fluoritu nízkoteplotními CO₂ fluidy. Část REE-mineralizace krystalovala také samostatně mimo agregáty fluoritu, sekundární REE fluorkarbonáty jsou běžně přítomny i v dalších minerálech (obr. 6d) a na puklinách v rámci tělesa stockscheidru.

Obr. 22: Řez ložiskem Cínovec se vyznačením míst s nejvyšší koncentrací REE a s vyznačením některých studovaných vrtů. Autor: V. Šešulka.

Další zóna s vysokými koncentracemi REE se nachází v centrální části ložiska kolem vrtu CIW-20, v hloubce mezi cca 150 až 200 m. Jedná o zinnwalditový granit s vysokými obsahy Y, ale i Ce a dalších REE. Tato část ložiska bude předmětem další podrobné studie.

6.5 Srovnání s dalšími ložisky ve světě

I když je Sc typickým prvkem hornin s plášťovou afinitou (Wang et al. 2020), k jeho nahromadění dochází i v některých typech hydrotermálních ložisek.

Koncentrace Sc a jeho chování na hydrotermálních ložiscích byly popsány z regionu Nanling v Jižní Číně (Zhang et al. 1987, Zhao et al. 2017), který patří mezi nejvýznamnější metalogenetické provincie s W-Sn-(Nb-Ta) žilnou mineralizací na světě. Mezi významná ložiska této oblasti patří Baishishan, Dangping, Xihuashan a Yaogangxian (Zhao et al., 2017). Skandium se vyskytuje na těchto ložiscích převážně ve wolframitu a kasiteritu (Wang et al. 2020 a literatura citovaná v této práci), ale ve srovnání s ložiskem Cínovec jsou obsahy Sc v této oblasti relativně nízké – nejvyšší koncentrace byly zaznamenané ve wolframitu v Xihuashanu (463 ppm). Další oblasti, kde byla detailněji popisována distribuce Sc, je Mongolský Altaj, Mongolsko a centrální Mongolsko. Wolframity z Bayanmodu/Modota (centrální Mongolsko) i z Bayantsogtu (Mongolský Altaj) dosahují místy koncentrací, které přesahují 1000 ppm (Kempe a Wolf, 2006), což se blíží obsahům Sc ve wolframitu na ložisku Cínovec. Mezi W-Sn mineralizace, kde byly současně popsané i vysoké koncentrace REE, patří např. Nb-Zr-REE ložiska Khalzan Buregte a Shar Tolgoi Tsakhir, Mongolský Altaj, Mongolsko (Kempe et al. 1999, 2015). Jedná se o hydrotermálně přeměněné alkalické horniny; na ložiscích byly popsané oxidy, fluorokarbonáty i silikáty REE.

Ve variském orogenním pásmu je několik významných oblastí s výskytem greisenových těles. Patří mezi ně Cornwall (Anglie), Iberský masiv (Portugalsko, Španělsko), Massif Central (Francie) a Krušné Hory/Erzgebirge (Česká republika, Německo). Detailněji se distribuci a koncentracím Sc v minerálech věnovali Kempe a Wolf (2006), kteří popsali z greisenových ložisek převážně z německé části Krušných hor (Erzgebirge) mineralizace s vysokými obsahy Sc. Neobvykle vysoké koncentrace Sc, převážně ve wolframitu a v kasiteritu, byly popsány z Altenbergu, Sadisdorfu a Cínovce/Zinnwaldu; nejvyšší obsahy Sc v Krušných horách/Erzgebirge popisují Kempe a Wolf (2006) právě z wolframitu (≤ 8800 ppm) a kasiteritu (≤ 10 000 ppm) z ložiska Cínovec/Zinnwald. HREE-W-U oxidické minerály a jejich mobilizace hydrotermálními fluidy byly popsány na ložisku Puy-les-Vignes v Massif Central ve Francii (Harlaux et al. 2015). Na ložisku byl popsán směsný roztok mezi euxenitem-(Y) a columbitem, zirkon, xenotim, monazit a Nb-Fe-W rutil, matrix tvoří adulár s turmalínem a chloritem. Minerální asociace popisovaných HREE minerálů je tedy výrazně odlišná od ložiska Cínovec.

7. Závěr

V této práci byla studována mineralizace ložiska Cínovec, které patří mezi světově významná ložiska Li, Sn a W, ale potenciálně také Nb, Ta, Sc a REE+Y. Hlavním nositelem Sc jsou slídy (zinnwaldit a muskovit, s obsahem až 169 ppm Sc, průměrně 57 ppm), které obsahují až 93% Sc v rámci celého ložiska (Hreus et al. 2021). Menší množství celkového Sc ve výrazně vyšších koncentracích je přítomna ve wolframitu (do 1,0 hm.% Sc₂O₃), kolumbitu (do 3,0 hm.% Sc₂O₃), a v poměrně vzácném ixiolitu (až 4,9 hm.% Sc₂O₃), který je součástí kasiterit-wolframitové rudy. Z akcesorií jsou pak z pohledu absolutních obsahů Sc v jednotlivých minerálech významnými nositeli Sc i zirkon (do 2,5 hm.% Sc₂O₃) a xenotim (až 1,6 hm.% Sc₂O₃). Jejich podíl na celkovém množství Sc na ložisku je ale nízký.

Problém možné separace a extrakce Sc je nutné rozdělit na dvě části s ohledem na typ zdrojové rudy: slídový koncentrát, a kasiterit-wolframitový koncentrát s obsahem dalších těžkých minerálů jako jsou například zirkon a xenotim. I když je Sc zastoupeno převážně ve slídách, pro jeho získávání bude potřebné vyřešit způsob jeho extrakce. Naproti tomu minerální složení těžkého koncentrátu, který obsahuje minerály s nejvyšší koncentrací Sc (ixiolit, wolframit, kolumbit, zirkon, xenotim), bude, vedle složení těžené rudy, závislé na několika dalších faktorech: (i) efektivita jejich separace v závislosti na jemnosti mletí (projeví se zde poměrně malá velikost zrn některých minerálů zejména kolumbitu a zirkonu) a (ii) typ uzavírajících minerálů (slída vs. oxidy vs. hlušinové silikáty). Z pohledu průměrné koncentrace, velikosti zrn a i možného dalšího zpracování se jeví jako nejvhodnější wolframit a kasiterit, které by bylo možné v případě těžby separovat v rámci těžké frakce spolu s dalšími minerály, u nichž by bylo nutné optimalizovat ekonomickou výhodnost jejich získávání (kolumbit, Nb-rutil, xenotim, zirkon).

Primárními minerály REE+Y na ložisku jsou zirkon, xenotim, monazit, s greisenizací a přínosem F bohatých fluid došlo k remobilizaci REE a posléze ke vzniku Y-bohatého fluoritu (do 1,7 hm.% REE). Fluorit později rekrystalizoval vlivem fluid obohacených CO₂ za vzniku fluorkarbonátů REE+Y (synchysit – do 51,6 hm.% hm.% REE+Y a bastnäsit do 70,2 hm.% REE+Y). Y-bohatý fluorit byl nalezen ve všech studovaných litologiích, včetně jednoznačně mladší křemen-zinnwalditové žíly. Nejvíce REE je soustředěno do stockscheidru, a okrajového pegmatitu na hranici mezi teplickým ryolitem a granitovou kopulí. Pro potenciální získávání REE+Y minerálů se jeví jako zajímavý především fluorit spolu se sekundárními REE+Y fluorkarbonáty, u primárních minerálů s REE bude problematická malá velikost zrn.

67

Použitá literatura

Absolonová E. a Pokorný L. (1983): The W-Sn-Mo-Bi deposit at Boží Dar near Jáchymov. – Sborník geologických věd. Řada LG: Ložisková geologie **25**, *73-110*.

Ackerman, L., Haluzová, E., Creaser, R. A., Pašava, J., Veselovský, F., Breiter, K., Erban, V. a Drábek, M. (2017): Temporal evolution of mineralization events in the Bohemian Massif inferred from the Re–Os geochronology of molybdenite. – Mineralium Deposita, **52**, 5, *651-662*.

Baldwin, J. R., Hill, P. G., Von Knorring, O., & Oliver, G. J. H. (2000). Exotic aluminium phosphates, natromontebrasite, brazilianite, goyazite, gorceixite and crandallite from rareelement pegmatites in Namibia. – Mineralogical Magazine, **64**(6), *1147-1164*.

Breiter, K. (2005): Vývoj fosforem bohatého peraluminického magmatu. – MS, dizertační práce. Přírodovědecká fakulta Masarykovy univerzity. Brno.

Breiter, K. (2012): Nearly contemporaneous evolution of the A-and S-type fractionated granites in the Krušné hory/Erzgebirge Mts., Central Europe. – Lithos, **151**, *105-121*.

Breiter, K. (2015): Geochemická a petrograficko-mineralogická charakteristika vzorků z archivních vrtů v oblasti Cínovce. – závěrečná zpráva. – Geologický ústav AV ČR. Praha.

Breiter, K., Čopjaková, R., & Škoda, R. (2009). The involvement of F, CO₂, and As in the alteration of Zr–Th–REE-bearing accessory minerals in the Hora Svaté Kateriny A-type granite, Czech Republic. – The Canadian Mineralogist, **47**(6), *1375-1398*.

Breiter, K., Ďurišová, J. a Dosbaba, M. (2017c): Quartz chemistry–a step to understanding magmatic-hydrothermal processes in ore-bearing granites: Cínovec-Zinnwald Sn-W-Li deposit, Central Europe. – Ore Geology Reviews, **90**, *25-35*.

Breiter K., Ďurišová J., Hrstka T., Korbelová Z., Hložková Vaňková M., Vašinová Galiová M., Kanický V., Rambousek P., Knésl I., Dobeš P. a Dosbaba M. (2017a): Assessment of magmatic vs. metasomatic processes in rare-metal granites: a case study of the Cínovec-Zinnwald Sn–W–Li deposit, Central Europe. – Lithos, **292**, *198-217*.

Breiter, K., Förster, H. J., a Seltmann, R. (1999): Variscan silicic magmatism and related tintungsten mineralization in the Erzgebirge-Slavkovský les metallogenic province. – Mineralium Deposita, **34**, 5-6, 505-521. Breiter, K., Förster, H.-J. a Škoda, R. (2006): Extreme P-, Bi-, Nb-, Sc-, U- and F-rich zircon from fractionated perphosphorus granites: The peraluminous Podlesí granite system, Czech Republic. – Lithos **88**, *15–34*.

Breiter, K., Hložková, M., Korbelová, Z. a Galiová, M. V. (2019): Diversity of lithium mica compositions in mineralized granite–greisen system: Cínovec Li-Sn-W deposit, Erzgebirge. – Ore Geology Reviews, **106**, *12-27*.

Breiter K., Korbelová Z., Chládek Š., Uher P., Knesl I., Rambousek P., Honig S. a Šešulka V. (2017b): Diversity of Ti–Sn–W–Nb–Ta oxide minerals in the classic granite-related magmatic–hydrothermal Cínovec-Zinnwald Sn–W–Li deposit (Czech Republic). – European Journal of Mineralogy, **29**, 4, 727-738.

Breiter, K., Korbelová, Z., Šešulka, V. a Honig, S. (2016): Nové petrologické a mineralogické poznatky z Li (Sn, W, Nb, Ta) ložiska Cínovec-jih. – Zprávy o geologických výzkumech, **49**, *113-121*.

Breiter, K., Sokolová, M. a Sokol, A. (1991): Geochemical specialization of the tin-bearing granitoid massifs of NW Bohemia. – Mineralium Deposita, *26*, 4, *298-306*.

Breiter K. a Škoda R. (2012): Vertical zonality of fractionated granite plutons reflected in zircon chemistry: the Cínovec A-type versus the Beauvoir S-type suite. – Geologica Carpathica **63**, 5, *383-398*.

Breiter, K., Vaňková, M., Galiová, M. V., Korbelová, Z. a Kanický, V. (2017d): Lithium and trace-element concentrations in trioctahedral micas from granites of different geochemical types measured via laser ablation ICP-MS. – Mineralogical Magazine, **81**, 1, *15-33*.

Brožek, V., Dušek, B. a Novák, M. (2011): Chemické listy a české skandium po 55 letech. – Chemické listy, **105**, *285-314*.

Čabla, V. a Tichý, K. (1965): Nové výsledky geologického průzkumu na Cínovci. – Sborník geologických věd. Řada LG: Ložisková geologie **5**, *107-133*.

Carocci, E., Marignac, C., Cathelineau, M., Truche, L., Lecomte, A., Pinto, F. (2019): Rutile from Panasqueira (Central Portugal): An excellent pathfinder for wolframite deposition. – Minerals **9**, *9*.

Černý, P., Ercit, T. S., Wise, M. A., Chapman, R. a Buck, H. M. (1998): Compositional, structural and phase relationships in titanian ixiolite and titanian columbite-tantalite. – The

Canadian Mineralogist 36, 547–561.

COM (2020): Critical Raw Materials Resilience: Charting a Path towards greater Security and Sustainability. – COM (2020), pp.474. Dostupné z: https://eur-lex.europa.eu/le gal-content/EN/ALL/?uri=CELEX:52020DC0474.

Costi, H. T., Horbe, A. M. C., Borges, R. M. K., Dall'agnol, R., Rossi, A. a Sighnolfi, G. (2017): Mineral chemistry of cassiterites from Pitinga Province, Amazonian craton, Brazil. – Revista Brasileira de Geociências **30**, *775–782*.

Dixon, A., Cempírek, J., a Groat, L. A. (2014): Mineralogy and geochemistry of pegmatites on Mound Begbie, British Columbia. – The Canadian Mineralogist **52**, *129–164*. Fiala, F. (1968): Granitoids of the Slavkovský (Císařský) les. – Sborník geologických věd. Řada G: Geologie, **14**, *93-159*.

Förster, H-J. (2006): Composition and origin of intermediate solid solutions in the system thorite-xenotime-zircon-coffinite. – Lithos **88**, *35–55*.

Förster, H-J., Ondrejka, M. a Uher, P. (2011): Mineralogical responses to subsolidus alteration of granitic rocks by oxidizing As-bearing fluids: REE arsenates and As-rich silicates from the Zinnwald granite, Eastern Erzgebirge, Germany. – The Canadian Mineralogist **49**, *913–930*.

Förster, H. J., Tischendorf, G., Trumbull, R. B. a Gottesmann, B. (1999): Late-collisional granites in the Variscan Erzgebirge, Germany. – Journal of Petrology, **40**, 11, *1613-1645*.

Gottesmann B., Wasternack J. a Märtens S. (1994): The Gottesberg tin deposit (Saxony): geological and metallogenic characteristic. – *In:* Seltmann, R., Kämpf, H., Möller, P. (Eds.): Metallogeny of collisional orogens. Czech Geological Survey, Prague, *110-115*.

Haidinger, W. (1845): Handbuch der bestimmenden Mineralogie: enthaltend die Terminologie, Systematik, Nomenklatur und Charakteristik der Naturgeschichte des Mineralreiches. – Braumüller & Seidel. Wien.

Hreus S., Výravský J., Cempírek J., Breiter K., Vašinová Galiová M., Krátký O., Šešulka V. a Škoda R. (2021): Scandium distribution in the world-class Li-Sn-W Cínovec greisen-type deposit: Result of complex magmatic to hydrothermal evolution, implications for scandium valorisation – Ore Geology Reviews, **139**, *104433*.

Höhndorf, A., Kämpf, H., Dulski, P., Seltmann, R. a Möller, P. (1994): Sm/Nd and Rb/Sr isotopic investigations on fluorite mineralization of the eastern Erzgebirge. – *In:* Seltmann, R., Kämpf, H. and Möller, P. (eds.): Metallogeny of Collisional Orogens Focussed on the Erzgebirge and Comparable Metallogenic Settings *116-128*. Praha.

Hochstetter C. (1856): Allgemeine bericht über die geologische Aufnahme der I. Sektion im Sommer 1855. – Jb.Geol.Reichsanst., **7**, *316-332*. Wien. – převzato z Breiter (2005): Vývoj fosforem bohatého peraluminického magmatu. – MS, dizertační práce. Přírodovědecká fakulta Masarykovy univerzity. Brno.

Hösel, G., Hoth, K., Hung, D., Leonhardt, D., Mann, M., Meyer, H a Tägel, U. (1994): Das Zinnerz-Lagerstättengebiet Ehrenfriedersdorf Erzgebirge. – Sächsisches Landesamt für Umwelt und Geologie, Sächsisches Obergamt. Freiberg.

Hrstka, T., Gottlieb, P., Skála, R., Breiter, K. a Motl, D. (2018): Automated mineralogy and petrology-applications of TESCAN Integrated Mineral Analyzer (TIMA). – Journal of Geosciences **63**, *47–63*.

Charoy, B., Chaussidon, M., De Veslud, C. L. C. a Duthou, J. L. (2003). Evidence of Sr mobility in and around the albite–lepidolite–topaz granite of Beauvoir (France): an in-situ ion and electron probe study of secondary Sr-rich phosphates. – Contributions to Mineralogy and Petrology **145**(6), *673-690*.

Jarchovský T. a Pavlů D. (1991): Albite-topaz microgranite from Horní Slavkov (Slavkovský les Mts.) NW Bohemia. – Věstník Ústředního Ústavu geologického **66**, *13-22*.

Johan V. a Johan Z. (1994a): Accessory minerals of the Cínovec (Zinnwald) granite cupola, Czech Republic Part 1: Nb-, Ta- and Ti-bearing oxides. – Mineralogy and Petrology **51**, 2-4: *323-343*.

Johan, Z.,a Johan, V. (1994b). Oxyfluorures de terres rares de la coupole granitique de Cínovec (Zinnwald), République tchèque. – Comptes rendus de l'Académie des sciences. Série 2. Sciences de la terre et des planètes, **318**(10), *1333-1340*.

Johan Z. a Johan V. (2005): Accessory minerals of the Cínovec (Zinnwald) granite cupola, Czech Republic: indicators of petrogenetic evolution. – Mineralogy and Petrology **83**, 1-2, *113-150*.

Johan, Z., Strnad, L. a Johan, V. (2012): Evolution of the Cínovec (Zinnwald) granite cupola, Czech Republic: composition of feldspars and micas, a clue to origin of W, Sn mineralization. – the Canadian Mineralogist **50**, *1131-1148*.

Kempe, U. a Wolf, D. (2006): Anomalously high Sc contents in ore minerals from Sn–W deposits: possible economic significance and genetic implications. – Ore geology reviews, **28**, 1, *103-122*.

Konopásek, J., Schulmann, K. a Lexa, O. (2001): Structural evolution of the central part of the Krušné hory (Erzgebirge) Mountains in the Czech Republic—evidence for changing stress regime during Variscan compression. – Journal of Structural Geology, **23**, 9, *1373-1392*.

Konovalenko, S. I., Ananyev, S. A., Chukanov, N. V., Rastsvetaeva, R. K., Aksenov, S. M., Baeva, A. A., Gainov, R. R., Vagizov, F., G., Lopatin, O. N. a Nebera, T. S. (2015): A new mineral species rossovskyite, (Fe³⁺,Ta)(Nb,Ti)O4: crystal chemistry and physical properties. – Physics and Chemistry of Minerals **42**, 825–833.

Laube G.C. (1876): Geologie des Böhmischen Erzgebirges. – Arch. Naturw. Landesdurchforsch. Böhmen. Praha. – převzato z Breiter (2005): Vývoj fosforem bohatého peraluminického magmatu. – MS, dizertační práce. Přírodovědecká fakulta Masarykovy univerzity. Brno.

McDonough, W. F. a Sun, S. S. (1995). The composition of the Earth. – Chemical geology, **120**(3-4), *223-253*.

Merlet, C. (1994): An accurate computer correction program for quantitative electron probe microanalysis. – Microchimica Acta **114/115**, *363–376*.

Mlčoch, B. a Skácelová, Z. (2010). Geometry of the Altenberg-Teplice Caldera revealed by the borehole and seismic data in its Czech part. – Journal of Geosciences **55**, *217-229*.

Möller, P., Dulski, P., Szacki, W., Malow, G. a Riedel, E. (1988): Substitution of tin in cassiterite by tantalum, niobium, tungsten, iron and manganese. – Geochimica et Cosmochimica Acta **52**, *1497–1503*.

Monecke, T., Kempe, U., Monecke, J., Sala, M., & Wolf, D. (2002). Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and
mineral samples from granite-related rare metal deposits. – Geochimica et Cosmochimica Acta **66**(7), *1185-1196*.

Müller, A., Herklotz, G. a Giegling, H. (2018): Chemistry of quartz related to the Zinnwald/Cínovec Sn-W-Li greisen-type deposit, Eastern Erzgebirge, Germany. – Journal of Geochemical Exploration, **190**, *357-373*.

Müller, A., Seltmann, R. a Behr, H. J. (2000): Application of cathodoluminescence to magmatic quartz in a tin granite–case study from the Schellerhau Granite Complex, Eastern Erzgebirge, Germany. – Mineralium Deposita, **35**, 2-3, *169-189*.

Nessler J., Seifert T. a Gutzmer J. (2015): New Sn-W potential at the Zinnwald/Cínovec deposit, Eastern Erzgebirge, Germany. – *In:* 13th SGA Biennial Meeting Nancy – France 2015, Mineral resources in a sustainable world, *819-822*.

Novák, M., Johan, Z., Škoda, R., Černý, P., Šrein, V. a Veselovský, F. (2008): Primary oxide minerals in the system WO₃–Nb₂O5–TiO₂–Fe₂O₃–FeO and their breakdown products from the pegmatite No. 3 at Dolní Bory-Hatě, Czech Republic. – European Journal of Mineralogy **20**, *487–499*.

Petrík, I., Kubiš, M., Konečný, P., Broska, I. a Malachovský, P. (2011): Rare phosphates from the Surovec Topaz–Li-Mica microgranite, Gemeric unit, Western Carpathians, Slovak Republic: Role of F/H₂O of the melt. – The Canadian Mineralogist **49**(2), *521–540*.

Petrů F., Hájek B., Procházka V. a Vít J. (1956): Příspěvky k chemii vzácnějších prvků I. Isolace skandia ze zbytků po zpracování wolframových rud. – Chemické Listy **50**, *1696*.

Putnis, A. (2009): Mineral replacement reactions. – Reviews in Mineralogy and Geochemistry **70**, 87–124.

Putnis A. a Austrheim H. (2013): Mechanisms of Metasomatism and Metamorphism on the Local Mineral Scale: The Role of Dissolution-Reprecipitation During Mineral Reequilibration. – In: Metasomatism and the Chemical Transformation of Rock. Lecture Notes in Earth System Sciences. Springer, Berlin, Heidelberg.

Rieder M., Cavazzini G., D'yakonov Y.S., Frank-Kamenetskii V.A., Gottardi G., Guggenheim S., Koval' P.V., Müller G., Neiva A.M.R., Radoslovich E.W., Robert J.-L., Sassi F.P., Takeda H., Weiss Z. a Wones D.R. (1999): Nomenclature of the micas. – Mineralogical Magazine **63**, 2, 267-279.

Romer, R. L., Förster, H. J. a Štemprok, M. (2010): Age constraints for the late-Variscan magmatism in the Altenberg–Teplice Caldera (Eastern Erzgebirge/Krušné hory). – Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry, 187, **3**, *289-305*.

Romer, R. L., Thomas, R., Stein, H. J. a Rhede, D. (2007): Dating multiply overprinted Snmineralized granites—examples from the Erzgebirge, Germany. – Mineralium Deposita, **42**, 4, *337-359*.

Rub A. K., Štemprok M. a Rub M. G. (1998): Tantalum mineralization in the apical part of the Cínovec (Zinnwald) granite stock. – Mineralogy and Petrology, **63**, 3-4: *199-222*.

Seifert, T., Atanasova, P., Gutzmer, J. a Pfänder, J. (2011): Mineralogy, geochemistry and age of greisen mineralization in the Li–Rb–Cs–Sn–W deposit Zinnwald, Erzgebirge, Germany. – Mineralogical Magazine, **75** (Suppl), *1833*.

Seifert, T. a Pavlova, G. G. (2016): New 40Ar/39Ar ages of Sn-and W-polymetallic mineralization in the Erzgebirge. – *In:* Krušné hory (DE, CZ). – Goldschmidt Conference Abstracts, *2792*.

Shannon, R. D. (1976): Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. – Acta Crystallographica A **32**, *751–767*.

Štemprok, M. (1965): Petrografie a vertikální rozsah mineralizace v cínovecké žulové klenbě. – Sborník geologických věd. Řada LG: Ložisková geologie, *5*, *7-106*.

Štemprok, M. (1984): Geologický výzkum cínové a wolframové mineralizace vykmanovského žulového masívku u Ostrova nad Ohří. – Geologický Průzkum, **26,** 65-69.

Štemprok, M. (2000): Geochemical data from deep dril holes into ore-bearing granites. – Münchener Geol. Hefte, **28**, *225-243*.

Štemprok, M. a Šulcek, Z. (1969): Geochemical profile through an ore-bearing lithium granite. – Economic Geology, **64**, 4, *392-404*.

Tischendorf, G. (1969): Über die kausalen Beziehungen zwischen Granitoiden und endogenen Zinnlagerstatten. – Zeitschrift für Angewandte Geologie **15**, *333–342*.

Urban, M. (2015): Horní města Krušných hor. – Ústecký kraj, Sokolov, Fornica Publishing.

Výravský, J., Novák, M. a Škoda, R. (2017a): Formation of pretulite (ScPO₄) by recrystallization of Sc-rich precursors in Dolní Bory pegmatite: Evidence for different mobility of Sc, Y, REE and Zr in hydrothermal conditions. – Chemical Geology **449**, *30*–40.

Výravský, J., Škoda, R. a Novák, M. (2017b): Kristiansenite, thortveitite and ScNbO₄: Products of Ca-metasomatism of Sc-enriched columbite-(Mn) from NYF pegmatite Kožichovice II, Czech Republic. – PEG 2017 8th International Symposium on Granitic Pegmatites, Kristiansand, Norway, NGF Abstracts and Proceedings of the Geological Society of Norway 2. Geological Society of Norway, *169–172*.

Walther, D., Breitkreuz, C., Rapprich, V., Kochergina, Y. V., Chlupacova, M., Lapp, M., Stanek, K. a Magna, T. (2016): The Late Carboniferous Schönfeld-Altenberg Depression on the NW margin of the Bohemian Massif (Germany/Czech Republic): Volcanosedimentary and magmatic evolution. – Journal of Geosciences, **61**, 4, *371-393*.

Wang, Z, Yan Hei Li M., Ray Liu, Z-R., Zhou, M-F. (2020): Scandium: ore deposits, the pivotal role of magmatic enrichment and future exploration, – Ore Geology Reviews **128**, *103906*.

Watznauer, A. (1954): Die erzgebirgischen Granitintrusionen. – Geologie, 3, 688-706.

Whitney, D. L., Evans, B. W., 2010. Abbreviations for names of rock-forming minerals. Am. Miner. 95, 185–187.

Xie, L., Wang, R. C., Groat, L. A., Zhu, J. C., Huang, F. F. a Cempírek, J. (2015): A combined EMPA and LA-ICP-MS study of Li-bearing mica and Sn–Ti oxide minerals from the Qiguling topaz rhyolite (Qitianling District, China): the role of fluorine in origin of tin mineralization. – Ore Geology Reviews **65**, *779–792*.

Zhang, R., Lehmann, B., Seltmann, R., Sun, W. a Li, C. (2017): Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: The classic Erzgebirge tin province (Saxony and Bohemia). – Geology, **45**, 12, *1095-1098*.

Zhang, Z.R., Luo, X.C., Chen, R.M., Yu, X.Z., Yang, S.X., Ren, Y.C., Zeng, J.W. a Sun, W.J. (1987): The ores of typical tungsten deposits in Nanling region: material composition and comprehensive utilization prospects. – Geol. Prospect. **23**(6), *38–40*.

Zhao, W.W., Zhou, M.F., Li, Y.H.M., Zhao, Z. a Gao, J.F. (2017): Genetic types,
mineralization styles, and geodynamic settings of Mesozoic tungsten deposits in South China.
– Journal of Asian Earth Sciences 137, 109–140.

Přílohy

Příloha č. 1: Článek publikovaný v odborném časopise

Sebastián Hreus, Jakub Výravský, Jan Cempírek, Karel Breiter, Michaela Vašinová Galiová, Ondřej Krátký, Vojtěch Šešulka, Radek Škoda (2021): Scandium distribution in the worldclass Li-Sn-W Cínovec greisen-type deposit: Result of a complex magmatic to hydrothermal evolution, implications for scandium valorization. *Ore Geology Rewiews*, **139**, 104433. DOI: https://doi.org/10.1016/j.oregeorev.2021.104433 ELSEVIER

Ore Geology Reviews

journal homepage: www.elsevier.com/locate/oregeorev

Scandium distribution in the world-class Li-Sn-W Cínovec greisen-type deposit: Result of a complex magmatic to hydrothermal evolution, implications for scandium valorization

Sebastián Hreus^{a,*}, Jakub Výravský^{a,b}, Jan Cempírek^{a,*}, Karel Breiter^c, Michaela Vašinová Galiová^d, Ondřej Krátký^a, Vojtěch Šešulka^a, Radek Škoda^a

^a Department of Geological Sciences, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic

^b TESCAN Brno s.r.o, Libušina třída 1, 62300 Brno, Czech Republic

^c Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165 00 Praha 6, Czech Republic

^d Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic

ARTICLE INFO

Keywords: Variscan orogen Scandium Greisen deposits Lithium Tungsten Hydrothermal alteration

ABSTRACT

Scandium is a metal with specific industrial applications and its importance is expected to grow significantly in future. For its use in high-tech alloys and solid oxide fuel cells it is regarded as a strategic metal. The world-class Li-Sn-W Cínovec/Zinnwald greisen-type deposit contains significant amount of Sc which could be an interesting by-product in anticipated production of Li, Sn and W. We conducted systematic study of Sc abundances and mineralogical controls of its fractionation during magmatic and post-magmatic evolution of the Cínovec granite cupola and its greisen deposits. From the main accessory minerals found in (partially to strongly) metasomatized granites, the highest concentrations of Sc₂O₃ were found in columbite (\leq 3.0 wt%), zircon (\leq 2.5 wt%), and Nb-rutile (\leq 0.3 wt%) which are supplemented by wolframite (\leq 1.0 wt%), ixiolite (\leq 4.9 wt%) and cassiterite (\leq 0.3 wt%) in greisens and quartz-zinnwaldite veins. However, the major Sc-carrier in most rock types and especially in greisens is the common zinnwaldite (typically 40–85 ppm Sc) hosting up to 93% of the total Sc. Younger fluids causing zinnwaldite muscovitization and rare sulfidic overprint were significantly depleted in Sc and caused mobilization of Sc and/or its redistribution into secondary minerals.

1. Introduction

Scandium is a light transitional metal with various applications in modern industry. The most important Sc use is in aluminium alloys primarily used in aerospace industry; addition of <1 wt% Sc greatly improves alloy strength and weldability (Davydov et al., 2000; Ahmad, 2003). Other important applications include solid oxide fuel cells (Fergus et al., 2016) and Sc-doped crystals for solid state lasers (Boulon, 2012). Scandium, with oxidation state + III and being located above Y and La in the periodic table of elements, is sometimes (e.g., according to IUPAC - International Union of Pure and Applied Chemistry) listed among the Rare Earth Elements (REE). However, the ionic radius of Sc³⁺ (0.745 Å in 6-fold and 0.870 Å in 8-fold coordination; Shannon, 1976) is more similar to some transitional metals (e.g., Fe²⁺ 0.78, Ni²⁺ 0.69, Zn²⁺ 0.74, Zr⁴⁺ 0.72 Å) and other elements like Mg²⁺ (0.72 Å), Sb³⁺ (0.76 Å), and Sn⁴⁺ (0.69 Å) rather than to REE (La³⁺ 1.032, Lu³⁺ 0.861

Å) or Y^{3+} (0.90 Å). It is therefore geochemically linked with Mg, Fe, Ni, Zr and Sn, and typically occurs separately from REE + Y. Its ionic radius allows simple substitution for Fe and Mg (see above) in common mafic silicates (garnet, pyroxene, amphibole, Fe-Mg micas, tourmaline, epidote) or in Zr-Sn-Ti-Fe-Mn-Nb-Ta-W-Y bearing accessory minerals (e. g. zircon, baddeleyite, columbite-tantalite, cassiterite, rutile, ixiolite, wolframite, xenotime; e.g., Breiter et al., 2006; Copjaková et al., 2015; Výravský et al., 2017a). Although Sc is not particularly rare (31 ppm in the lower and 14 ppm Sc in the upper continental crust; Rudnick and Gao, 2003), its high compatibility in many rock-forming minerals makes Sc-rich minerals very scarce and hampers Sc accumulation in economic quantities. The most important past, current and potential future sources of Sc include: 1) granitic pegmatites of the NYF (Černý and Ercit, 2005) geochemical family (e.g. Pezzotta et al., 2005; Kolitsch et al., 2010; Raade et al., 2004; Guastoni et al., 2012); 2) carbonatites (Amli, 1977; Shimazaki et al., 2008; Kalashnikov et al., 2016); 3) greisens (Kempe

* Corresponding authors. *E-mail addresses:* sebastian.hreus@mail.muni.cz (S. Hreus), jan.cempirek@gmail.com (J. Cempírek).

https://doi.org/10.1016/j.oregeorev.2021.104433

Received 9 April 2021; Received in revised form 9 August 2021; Accepted 24 August 2021 Available online 29 August 2021 0169-1368/© 2021 Elsevier B.V. All rights reserved. and Wolf, 2006); 4) Al-laterites (Ochsenkühn-Petropoulou et al., 2002; Wang et al., 2011; Wang and Li, 2020); and 5) Sc-bearing Ni laterites developed on ultramafic rocks (Aiglsperger et al. 2016, Teitler et al., 2019). Other Sc sources include hydrothermal U ores, Fe, Ti and Zr ores and apatite; see Wang et al. (2011) and Wang and Li (2020) for review. Currently, the Sc market is limited to just approx. 15–20 tons per year (USGS 2020) due to high prices and limited supply preventing more widespread adoption in the Al-alloy industry. Therefore, more information on processes and conditions controlling Sc concentration in nature and its distribution among minerals in different types of deposits is certainly needed.

Local enrichment of scandium is characteristic for a number of greisen deposits in the eastern Krušné Hory/Erzgebirge area which are well known for their Sn, W and Li resources. Especially high Sc contents were reported from Altenberg, Cínovec/Zinnwald (Czech/German parts of the deposit), Krupka and Sadisdorf deposits (Kempe and Wolf, 2006). Worldwide, scandium occurs in greisens in relatively small quantities and its contents were discussed in detail in few publications only (Wise et al., 1998; Kempe and Wolf, 2006).

Cínovec is a classic greisen-type deposit, historically exploited for Sn and W. Tin ores were mined in Cínovec from 14th to 19th century. Production of W ore commenced in 19th century, and both Sn and W ores were systematically mined during 20th century until the mine closure in 1990. For a short period in 1950's, Sc compounds were extracted from the W concentrate from the Cínovec deposit and were used for the world's first isolation of metallic scandium at the University of Chemistry and Technology in Prague (Petrů et al., 1956; Brožek et al., 2011).

The Cínovec/Zinnwald district is currently subject of interest of several exploration companies for its remarkable resources of Li, Sn and W. Potential by-products include e.g. Nb, Ta, Rb, Cs, and theoretically also Sc. Systematic study of Sc abundances and mineralogical controls of its fractionation during several stages of magmatic and post-magmatic evolution of the Cínovec granite cupola and its greisen deposits is therefore desirable.

In this contribution we used combination of EMPA, LA-ICP-MS, SEM and automated mineralogy (TIMA) to (i) evaluate Sc content of both ore and rock-forming minerals, (ii) to assess their mass proportions and their contribution to Sc distribution, and (iii) to constrain magmatic/hydrothermal behaviour of Sc on the classic Li-Sn-W greisen deposit Cínovec.

2. Geological setting

The Cínovec deposit is located within the Krušné Hory Mts. at the north-western margin of the Bohemian massif; it belongs to the crystalline rocks of the Saxothuringian Zone, part of the European Variscides (Cháb et al., 2010). It is formed by an Upper Proterozoic–Lower Palaeozoic metamorphic suite penetrated by a number of late Variscan granitic plutons; their mutual relationship has been a matter of discussion. Single coherent batholith under the whole Krušné Hory Mountains was assumed by Watznauer (1954), whereas Tischendorf (1969) preferred the idea of three partial plutons. Investigation of Breiter et al. (1999) supports presence of more independent magmatic centres whereas Štemprok and Blecha (2015) promoted model of a large composite granite batholith system underlying the whole area.

According to recent geochemical and mineralogical research (Breiter, 2012; Breiter et al., 1991; Förster et al., 1999), two distinct suites of Variscan granites in Krušné Hory area were distinguished: 1) strongly peraluminous S-type granites (A/CNK = 1.1-1.3) characterized by P enrichment but low HREE and HFSE contents, located mainly in the western part of the Krušné Hory, and 2) slightly peraluminous A-type granites (A/CNK = 1.0-1.1) with very low P and high REE and HFSE contents, forming namely large volcano-plutonic complex of the Altenberg-Teplice caldera (ATC) in the eastern part of the area. Evolution of both granite types was nearly contemporaneous. Both types of magmatic intrusions were associated with explosive brecciation and

followed by greisenization (Breiter, 2012).

The immediate surroundings of the Cínovec deposit is formed by Upper Carboniferous Altenberg–Teplice caldera (ATC), approximately 40x20 km in size, consisting of relatively older Schönfeld volcanosedimentary unit and three younger eruptions of Teplice rhyolite (Breiter, 1997; Hoffmann et al., 2013; Moëlo et al., 2010; Walther et al., 2016). After caldera collapse and intrusion of voluminous ring dykes of granite porphyry (Tomek et al., 2019), several small granite plutons intruded the volcanic filling of the caldera, the Cínovec cupola being the largest of them.

The Cínovec deposit is related to the cupola of highly evolved, postcollisional, aluminous A-type Cínovec granite (Förster et al., 1995) (Fig. 1) that can be classified as a peraluminous low-P rare-element granite (Linnen and Cuney 2005). Seifert and Kempe (1994) assign the Zinnwald albite granite to the "Li-Sn small intrusion granite group" which include the stock granites of other Sn-W-Mo-Li deposits in the eastern part of Krušné Hory. The Cínovec granite cupola forms a N-S elongated elliptical outcrop ca. 1.4×0.3 km in size. Upper part of the cupola to the depth of 735 m is formed by mostly medium grained equigranular albite-zinnwaldite granite, which in the uppermost 300 m interval underwent strong late- to post-magmatic alterations. Deeper part of the cupola is formed by diverse textural varieties of biotite granite; relative age of both granite varieties is still controversial (Breiter et al., 2017b). Zone of special type of unidirectional solidification textures composed of cm-dm long prismatic crystals of orthoclase, traditionally termed as "Stockscheider", rims the upper granite contact in total thickness of 25-300 cm (Breiter et al., 2017b).

Four types of mineralization were recognized at the Cínovec deposit: 1) Quartz-zinnwaldite veins – two systems of ore veins were subject to historical mining between ca. 1400–1975: flat-lying veins (13 main veins 20–200 cm thick, historically termed as "Flötze") and subvertical veins (thinner and less common "Morgengänge") are present mostly in the central and northern (i.e. Saxonian) part of the deposit (Korges et al., 2018). The veins occur mostly in the upper 220 m of the granite body. The vein mineralization is represented by dominant quartz, zinnwaldite and topaz; the veins can be locally enriched in cassiterite and wolframite with grades reaching up to several wt.% of Sn + W (\bar{S} temprok, 1965; David, 1991; Monecke et al., 2007).

2) So called "massive greisens" form mainly flat and subordinately also steep zones with remarkable pervasive metasomatic greisenization, which are several hundred meters long and up to several tens of meters thick. Predominantly irregular steep joints in combination with flat Lshaped joints were the most important conditions which led to fluid migration and subsequent intensive replacement of feldspars by quartz, zinnwaldite, topaz and fluorite. The largest greisen bodies are in the southern part of the deposit; they occur typically from 5 to 20 m up to 300 m beneath the granite-rhyolite contact (Fig. 2; Breiter et al., 2016; data of authors). The greisen bodies represent a world-class Li resource due to their high Li content (cf. Neßler et al. 2017).

Ore minerals are represented mainly by cassiterite and wolframite. Amounts of sulphides (namely sphalerite), columbite and other Nb-Ta minerals are only accessory. This type of mineralization was mined in 1980–1990.

The process of quartz-zinnwaldite veins formation and greisenization was coeval and took place in the subsolidus stage of the deposit development; those lithologies were formed by upwards migrating F- and Lirich fluids at temperatures of $500 \rightarrow 380$ °C (Breiter et al. 2017b).

3) Bodies of "greisenized granites", i.e. less altered granites with more or less common remnants of their original textures, were found mainly in the eastern part of the cupola. In comparison to the "massive greisens", the greisenized granites are characterized by significantly lower mica (i.e. Li) amounts, but their contents of cassiterite locally reach economic grade.

4) Different type of mineralization is represented by younger hydrothermal veins with common sulphides (typically sphalerite and galena) and barite + fluorite that cut the granites and occasionally

Fig. 1. Geological Map of Krušné hory/Erzgebirge. Important A-type granite plutons (including Cínovec pluton) are shown as Maltese cross symbols. Names of bodies without surface exposures are indicated in parentheses (after Breiter, 2012).

Fig. 2. Schematized cross-section through the Cínovec deposit. Areas of Sc concentration (bulk rock data) above 10 ppm are marked by red line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

transect to the surrounding Teplice rhyolite. Locally, abundant sulphides are part of massive greisens.

Age of the deposit is still highly controversial, with isotopic age dates between ca. 321 and 310 Ma (Höhndorf et al., 1994; Romer et al. 2007;

Romer et al., 2010; Seifert et al., 2011; Seifert and Pavlova, 2016; Ackerman et al., 2017; Tomek et al., 2019). However, discussion of this controversy is beyond scope of this paper.

The bulk-rock contents of Sc in the main rock types from Cínovec

were published earlier by Breiter et al. (2017b): 5–27 ppm in greisens, 5–7 ppm in the zinnwaldite granite, and only about 4 ppm in the deeper biotite granite. Contents in the southern part of the deposit are similar; however massive greisens with elevated Sc contents (Fig. 2) are more frequent there.

3. Materials and methods

3.1. Samples

Twenty-three rock samples – granites (zinnwaldite granites sensu lato according to Breiter et al. 2017b), greisenized granites, massive greisens, quartz-zinnwaldite veins, and sulphide-rich greisen – were collected from 6 drill holes (5 of them are located on north–south cross-section of the deposit; Fig. 2, Table 1). Polished thin-sections \geq 100 μm thick, suitable for both SEM and LA-ICP-MS investigations, were prepared from all samples and coated by 25 nm layer of carbon prior to SEM work and EMPA.

3.2. SEM and EPMA

The polished thin sections were investigated with JEOL JSM-6490LV scanning electron microscope (SEM), and relevant minerals were measured using CAMECA SX 100 electron microprobe, both at the Joint Laboratory of Electron Microscopy and Microanalysis of the Department of Geological Sciences, Masaryk University and Czech Geological Survey in Brno. Following analytical conditions were applied: accelerating voltage 15 kV, beam current 10nA (micas), 20nA (zircon) and 40nA (columbite, wolframite, ixiolite, cassiterite and Nb rutile); beam size: 1-5 µm. Standards used for zircon: F on topaz, Si, Zr on zircon, Hf on metallic Hf, Y on YPO4, Al on sanidine, U on metallic U, Th on CaTh (PO₄)₂, Sc on ScVO₄, Ca on titanite, P on fluorapatite, Ti on TiO, Fe on almandine, Dy ond DyPO₄, Er on ErPO₄, Yb on YbPO₄, Nb on columbite, Ta on CrTa₂O₆. Standards used for columbite, wolframite, ixiolite and Nb rutile: Na on albite, Ta on CrTa₂O₆, Al, Zn on gahnite, Nb, Fe on columbite, Pb on vanadinite, U on metallic U, Ca on titanite, Sn on metallic Sn, Ti on TiO, Mn on Mn₂SiO₄, F on topaz, Mg on pyrope, Th on CaTh(PO₄)₂, Si on sanidine, Sc on ScVO₄, Y on YAG, Sb on Sb, W on metallic W, Bi on metallic Bi and Zr on zircon. Standards for cassiterite: Ta on CrTa₂O₆, Mg on MgAl₂O₄, Al on gahnite, Nb, Fe on columbite, Pb on vanadinite, Si on sanidine, Sn on metallic Sn, Ti on TiO, Mn on Mn₂SiO₄, W on metallic W, Zr on zircon, Ca on titanite, Bi on metallic Bi and Sc on ScVO₄. Standards for micas: Na on albite, Si, Al, K on sanidine, Mg on pyrope, Ti on titanite, Cs on pollucite, Cl on vanadinite, Ba on baryte, P on fluorapatite, Cr on chromite, Ca on wollastonite, Fe on almandine, Mn on spessartine, Zn on gahnite, F on topaz, Sc on ScVO₄, and Rb on synthetic Rb-leucite. For all minerals, correction procedure X-PHI described by Merlet (1994) was applied.

Formulae of all minerals were calculated to corresponding number of anions and cations per formula unit; individual procedures are described in respective tables.

3.3. LA-ICP-MS

LA-ICP-MS was used for determination of elemental content at the minor and trace level in 8 samples with micas. The measurements were carried out at Fun glass – Centre for Functional and Surface Functionalized Glass (Trenčianska univerzita Alexandra Dubčeka v Trenčíne). The LA-ICP-MS setup consists of LSX-213 G2+ (Teledyne CETAC Technologies) laser ablation system equipped with 213 nm Q-switched Nd: YAG laser and 2- vol Cell HelEx II. LA system was connected to quadrupole based ICP-MS Agilent 7900 (Agilent). The ablated material was carried by He flow (0.8 and 0.6 l.min⁻¹) and mixed with Ar (0.6 l.min⁻¹) prior to entering the ICP mass spectrometer. The sample surface was ablated at individual spots for 45 s per spot by a laser beam in 50 μ m diameter. Ablation was performed using the laser pulse fluence of 4 J

Table 1

List of the st	udied samples	and rock types	from the	Cínovec	deposit

Sample	Drill hole	from-to	Lithology	Dominant Sc- bearing minerals
P7/100	PSn07	100.3–100.4	Granite	Zircon, columbite,
P7/281	PSn07	281.8–281.9	Greisen	zinnwaldite Wolframite, cassiterite,
P7/289	PSn07	289.2–289.3	Greisen	muscovite Cassiterite, zinnwaldite,
P7/332	PSn07	332.2–332.3	Quartz-zinnwaldite vein	muscovite Zinnwaldite, muscovite,
P7/335	PSn07	335.9–336	Fine grained greisen	columbite Columbite, zircon,
P7/350	PSn07	350-350.1	Granite	Zinnwaldite, Zinnwaldite, zircon, columbite
P7/402	PSn07	402.5–402.6	Granite	Columbite, zinnwaldite, zircon
P2/199	PSn02	199.8–199.9	Stockscheider	Columbite, zinnwaldite
P2/218	PSn02	218.6–218.7	Granite with albite	Zinnwaldite, columbite
P2/248	PSn02	248.5–248.6	Greisen	Zinnwaldite, cassiterite
P2/301	PSn02	301.5–301.6	Greisen with albite	Zinnwaldite, muscovite, columbite
P2/327	PSn02	327.5–327.6	Greisen	Zinnwaldite, zircon, columbite
P2/410	PSn02	410.6–410.7	Albite granite	Zircon, columbite,
C20/10	CIW- 20	10–11	Granite	Muscovite, zinnwaldite, columbite
C20/ 142	CIW- 20	142.9–143	Greisen	Cassiterite, muscovite,
C20/	CIW-	178.9–179	Porphyritic granite	Zinnwaldite,
C20/	CIW-	179.9–180	Greisen	Zinnwaldite,
C20/ 195	20 CIW- 20	195.2–195.3	Granite	Zinnwaldite, columbite,
C20/	CIW-	246.5–246.6	Albite granite	Zinnwaldite,
C1/205	CIS-01	205.4–205.5	Quartz-zinnwaldite vein with sulphides	Wolframite, zinnwaldite,
P13/ 133A	PSn13	133–133.1	Quartz-zinnwaldite vein with wolframite	Wolframite, Sc- ixiolite
P13/ 133B	PSn13	133–133.1	Quartz-zinnwaldite vein with wolframite	Wolframite, muscovite, Sc-
P1/250	PSn01	250.5–250.6	and sulphides, rim Altered greisen with sulphides	ixiolite Wolframite, muscovite, zinnwaldite

cm⁻² and 10 Hz repetition rate. The signals of isotopes of the following elements were measured: Li, Al, Si, and Sc. ICP-MS was tuned using SRM NIST 612 with respect to the sensitivity, and minimal doubly charged ions and oxide formations. The potential interferences were minimized via collision cell (He 1 ml.min⁻¹). The contents of elements were calculated using SRM NIST 610 and 612 glass standards, and Si and Al as internal reference elements after baseline correction and integration of the peak area. The measured Li contents are in agreement with earlier detailed study by Breiter et al. (2019) focused on precise quantification of Li in Cínovec micas.

3.4. Automated mineralogy (TIMA)

The TIMA (Tescan Integrated Mineral Analyzer) solution in the R&D laboratory of TESCAN Brno, s.r.o., Brno, Czech Republic, was used to characterize 18 selected thin sections in order to obtain modal composition of the rocks, grain size distribution and associations of the relevant ore minerals, bulk chemical composition, elemental deportment and to understand the textures on thin-section level. The machine combines signal from BSE detector and four EDS detectors to distinguish individual phases and create mineral images, which are interpreted in dedicated software (see Hrstka et al., 2018). Following analytical conditions were used for acquisition: accelerating voltage of 25 kV, probe current of 10 nA, and the "dot mapping" mode (see details in Hrstka et al., 2018) with 1 μ m BSE and 5 μ m EDS grid. The data were measured and processed in TIMA 2.2. software. Mean composition of the relevant phases obtained from EPMA and trace-element LA-ICP-MS data and the mean mineral densities were used to calculate deportment of elements and bulk sample composition. We believe that the potential errors in mean densities and compositions used for calculations are not significant and cannot obscure the findings discussed below.

The calculated grain size of individual minerals is expressed as ECD (equivalent circle diameter) – diameter of a circle, which has the same area as the observed cross-section of the grain. The grain size was not corrected for stereology.

3.5. Whole rock analyses

Whole rock analyses were carried out in ALS laboratory. Multi element ME-MS81 package (Lithium Borate Fusion ICP-MS) was used to determine Sc, Sn, Nb and W. Lithium was analysed by the method ME-4ACD81 (Base Metals by four-acid digestion; see www.alsglobal.com for more details).

4. Results

4.1. Micas

The mica-group minerals are present in all studied rocks. Trioctahedral micas are represented by zinnwaldite. In greisens, magmatic and metasomatic zinnwaldite cannot be distinguished due to complete reequilibration of the magmatic mica (Breiter et al. 2019). In some cases (mostly in granite), zinnwaldite encloses multiple inclusions of accessory minerals (Fig. 3a, b) such as columbite, zircon or xenotime

Muscovite occurs as common late alteration product of trioctahedral micas (Fig. 3c, d, e); primary muscovite of hydrothermal origin is generally less frequent, it is relatively common in quartz veins only. Muscovitization is usually associated with fluorite (Fig. 3f,i) and the fine-grained muscovite may enclose cassiterite (Fig. 3d), scheelite (Fig. 3f), or altered zircon intergrown with xenotime (Fig. 3h,n).

Contents of silica in zinnwaldite (Table S1) varies from 41.6 to 50.0 wt% (3.051-3.837 apfu Si) whereas Al_2O_3 ranges between 16.7 and 23.4 wt% (1.296-1.922 apfu Al); contents of Fe vary significantly from 5.2 to 17.8 wt% FeO (0.284-1.089 apfu Fe). Li₂O was found in the range of 2.4–4.4 wt% Li₂O (0.709-1.345 apfu Li; Fig. 4a); F contents are very high (7.8–9.1 wt%), near ideal full occupancy (1.78-2.00 apfu). Zinnwaldite from granite is relatively enriched in Sc (57-87 ppm) in comparison to the zinnwaldite from greisen (40-67 ppm Sc); zinnwaldite from quartz-zinnwaldite veins shows the largest Sc contents variability (32-169 ppm Sc).

The major dioctahedral mica represented by the late muscovite replacing zinnwaldite contains 46.8–50.8 wt% SiO₂ (3.137-3.339 apfu Si) and 29.0–38.9 wt% Al₂O₃ (2.327-3.071 apfu Al). Fe contents are generally low with most of analyses below 2 wt% FeO (average 1.5 wt%) with several exceptions, all in greisens (up to 6.2 wt% FeO; 0.354 apfu Fe). Concentrations of Li are significantly lower in comparison to trioctahedral micas (<0.6 wt% Li₂O; max. 0.177 apfu Li; Fig. 4a); F

contents are also low (0.26–0.89 wt%; 0.05–0.19 apfu). Sc content in secondary muscovite after zinnwaldite is 6–48 ppm, average 37 (without two abnormal values from mica in close vicinity of wolframite in greisen – 147, 157 ppm). On the other hand, muscovite from quartzzinnwaldite veins which typically fills cavities in quartz associated with older wolframite and zinnwaldite shows larger variability in Sc distribution (41, 80 and 101 ppm Sc).

4.2. Zircon

Zircon occurs frequently in granites and greisens but is generally less abundant and sometimes absent in quartz-zinnwaldite veins. In granites, it is typically associated with xenotime, Sc-columbite, and rare uraninite; it is enclosed in quartz, zinnwaldite, fluorite, or muscovite. Zircon typically forms euhedral crystals, occasionally with indistinct oscillatory zoning (Fig. 3h); they are frequently partially recrystallized. Zircon overgrown by xenotime crystals and aggregates occurs almost exclusively at the contact with muscovite, fluorite or pocket phyllosilicates (Fig. 3g–i, n). Magmatic zircons also served as crystallization centres for Nb, Ta-oxides (Fig. 3l, n), early cassiterite (Fig. 3b), or late fluorocarbonates (Fig. 3a).

Two textural types of zircon were observed in greisens: Zircon I forms common small, mostly euhedral to subhedral inclusions in zinnwaldite (Fig. 3a, b), whereas zircon II forms larger crystals outside zinnwaldite (Fig. 3h, i). However, despite textural differences, their composition is very similar. There are very few compositional differences among the zircons from granite, massive greisen and quartzzinnwaldite veins except locally increased Sc in the latter two rock types (Fig. 4b, c). Zircon enclosed in fluorite seems to be the same generation (no significant difference in texture and chemical patterns) as the zircon in quartz or zinnwaldite. Most significant substituents in zircon include Hf (1.4–11.9 wt% HfO₂), Y (<6.5 wt% Y_2O_3), and Sc (<2.5 wt% Sc₂O₃); Sc content generally increases with decreasing Zr/Hf value (Fig. 4b; Table S2). Average Sc content is 0.6 wt% Sc₂O₃. Zircon is frequently altered (Fig. 3i), porous, and has low analytical sums of oxides (average 91.2 wt%; Fig. 4c). In 142 zircon analyses, contents of ZrO2 (32.8-66.1 wt%; 0.625-0.995 apfu Zr) and SiO2 (16.4-32.6 wt%; 0.560-1.072 apfu Si) show extreme variation. It is mostly due to the alteration of the zircon marked by decrease of analytical sum of oxides. Contents of Ca, P, Y and U + Th generally increase with alteration degree; the alteration is likely promoted by metamictization and high amounts of substituting elements due to very high miscibility of zircon with thorite, xenotime and chernovite, i.e. minerals isostructural with zircon (Breiter and Škoda, 2012; Förster, 2006; Förster et al., 2011; Johan and Johan, 1994). In greisens, TIMA data indicate that xenotime is mostly in contact with muscovite (39%), zircon (25%), fluorite (10%) and quartz (9%) and only 3% of xenotime perimeter is in contact with zinnwaldite. Muscovitization clearly promoted formation of xenotime on zircon crystal rims (Fig. 3h, i, n).

4.3. Xenotime-(Y)

Xenotime-(Y) was found as an accessory mineral in all studied rocks. It forms either euhedral to subhedral aggregates of oscillatory-zoned crystals overgrowing zircon (Fig. 3g), subhedral overgrowths on zircon restricted exclusively to its contact with muscovite or fluorite (Fig. 3h, n), or skeletal aggregates in zircon crystals (Fig. 3i).

Contents of Y + REE in xenotime-(Y) vary; the dominant Y (0.48–0.63 apfu; 24.1–32.9 wt% Y₂O₃) is accompanied by HREE and MREE in variable amounts – Yb with 0.09–0.16 apfu (8.5–14.2 wt% Yb₂O₃) is the most common, followed by Er_2O_3 (5.4–7.7 wt%) and Dy₂O₃ (6.7–8.5) whereas other REE are subordinate (Table S3). The observed oscillatory zoning (Fig. 3g) is mainly controlled by the HREE₁(Y)₋₁ substitution. Scandium contents are rather low (up to 0.008 apfu; 0.31 wt% Sc₂O₃) and are positively correlated with Zr and Si contents; this suggests Sc link to the zircon component in the xenotime

(caption on next page)

Fig. 3. BSE images of mica, zircon, xenotime, rutile and columbite mineral assemblages (except Clb = columbite, F-Cb = fluoro-carbonate, and Phs = phyllosilicate, the abbreviations are according to Whitney and Evans, 2010); a) multiple inclusions of zircon, monazite and a fluoro-carbonate (F-Cb) in zinnwaldite (sample C20/178 from porphyric granite); b) high amount of inclusions (zircon, cassiterite and monazite) in zinnwaldite (sample P2/248 from greisen); c) muscovitization of zinnwaldite (sample P2/289 from greisen); d) alteration of zinnwaldite by later muscovite with associated cassiterite. Hole in central part is after analysis by LA-ICP-MS (sample P2/218 from greisen); e) zinnwaldite aggregates with columbite (Clb) inclusion and irregular muscovite alteration rims (sample C20/246 from albite granite); f) zinnwaldite alteration along crystal rim, associated with scheelite (sample P2/248 from greisen); g) zircon aggregates overgrown by zoned xenotime (sample C20/179 from greisen) and fine-grained phyllosilicates (Phs); h) alteration along indistinct oscillatory zoning in euhedral zircon (sample P7/402 from granite); i) partly altered zircon with exsolved xenotime sectors in fluorite (sample P7/100 from granite); j) Nb-rutile with columbite inclusions of Sc-columbite (sample C20/246 from albite granite; k) sector-zoned Nb-rutile with inclusions of Sc-columbite (sample C20/246 from albite granite; b) sc-columbite aggregates in zinnwaldite and quartz, with zircon and native bismuth (sample P2/327 from greisen); m) crystal of homogeneous Sc- and Ta-poor columbite rimmed by Sc, Ta-enriched porous columbite II associated with muscovite and fluorite (sample P7/100 from granite); n) Sc-columbite in advenotime in quartz. Younger Sc columbite and xenotime grow on older zircon crystal, sample P7/335 from greisen; o) variability of Ta content visible on BSE image in Sc-columbite (sample C20/246 from albite granite). Brighter part is enriched in Ta and Sc, whereas darker parts are enriched in Nb and W. Note that the

Fig. 4. Compositional diagrams for micas, zircon, and rutile. a) distribution of tetrahedral Al vs. Li in micas; b) relationship between Sc contents and Zr/Hf in zircon; c) Sc₂O₃ contents vs. total of oxides analyzed using EMPA in zircon; d) positive correlation of Sc with Nb + Ta in rutile.

structure (or submicroscopic inclusions of zircon in xenotime).

4.4. Nb-rutile

The Nb-rutile was found in all studied samples, except of P7/281, C20/142 and C20/10. The highest rutile contents were observed in

Fig. 5. Compositional diagrams for columbite-tantalite minerals. a) Mn/(Mn + Fe) vs. Ta/(Ta + Nb); b) Sc vs. Ta/(Ta + Nb); c) Sc vs. Ti; d) trivalent vs. tetravalent cations. Abbreviations: Fe-Tnt = ferrotantalite, Mn-Tnt = manganotantalite, Fe-Clb = ferrocolumbite, Mn-Clb = manganocolumbite.

granite samples (Table S10). It forms either irregular grains up to ca. 50 μ m enclosed in zinnwaldite with irregular patches of (exsolved?) Scbearing columbite (Fig. 3j) or occurs as substantially larger grains (ca. 200 μ m) showing sector zoning and partial dissolution-reprecipitation, with occasional patches of Sc-columbite (Fig. 3k). The sector zoning is caused mainly by variable Nb + Ta + Sc(+Fe) contents which are generally higher in primary and lower in recrystallized zones.

Contents of Nb₂O₅ in rutile vary from 5.8 to 22.9 wt% (0.038–0.152 apfu Nb), whereas Ta₂O₅ concentrations are usually lower (0.8–23.7 wt %, 0.003–0.106 apfu Ta) resulting in Ta/(Ta + Nb) ratio of 0.02–0.51. The amount of Sc ranges from b.d.l. to 0.28 wt% Sc₂O₃, with the average of 0.16 wt%. The Sc contents generally increase with those of Nb + Ta (Fig. 4d; Table S4).

4.5. Columbite

Columbite is a ubiquitous accessory mineral in Cínovec and has been found in most of the samples. Besides the Sc-bearing columbite grains in Nb-rutile, it mainly occurs either in zinnwaldite as disseminated grains (ca. 5–20 μ m, exceptionally up to 250 μ m) (Fig. 3e, j, l; see also Fig. 10), or forms slightly larger individual grains (ca. 10–200 μ m) mainly enclosed in zinnwaldite, albite, quartz, and muscovite (Fig. 3m, n), sometimes associated with zircon (Fig. 3l, n). The size of columbite grains exceptionally exceeds 100 μ m and the largest ones found in the albite granite reach ca. 400 μ m. The larger grains typically exhibit complicated patchy zoning (Fig. 3o), reflecting mainly changes in Ta/Nb value, as well as Sc content (Fig. 5; cf. Johan and Johan, 1994). Exceptionally, two distinct generations of columbite were recognized in the albite granite (Fig. 3m) enclosed mostly in younger albite, muscovite, and fluorite. The columbite I forms homogeneous Nb-rich, Sc, Tipoor domain overgrown by porous, Ta, Ti and Sc-enriched columbite II.

The analyzed grains show high variability of Mn/(Mn + Fe) value (0.26–0.99) and slightly lower variance in Ta/(Ta + Nb) (0.07–0.49) (Fig. 5a, b). The most important minor elements comprise Ti (0.81–6.33 wt% TiO₂), followed by Sc (0.12–3.04 wt% Sc₂O₃ with avg. value 1.35 wt% Sc₂O₃ (n = 140), WO₃ with avg. 2.84 wt%, avg. 0.37 wt% ZrO₂ and

avg. 0.49 wt% SnO₂. The amount of $Fe_2O_{3(calc.)}$ is very variable, ranging from 0.24 to 14.56 wt%; together with Sc, contents of Fe^{3+} increase with Ti (Fig. 5c, d; Table S5).

4.6. Cassiterite

Cassiterite occurs as a minor component mainly in quartzzinnwaldite veins and massive greisen bodies, less frequently in variably greisenized granites and in stockscheider. It forms predominantly subhedral grains and their aggregates with variable amounts of inclusions and different porosity (e.g., Fig. 6a, b). Cassiterite forms small (typically from 5 up to a few 10 μ m), anhedral porous inclusions in zinnwaldite, associated with columbite and zircon (Fig. 3b) or apparently porous grains, commonly with inclusions of quartz or zinnwaldite, typically found on corroded rims of zinnwaldite crystals. Younger, nonporous cassiterite sometimes overgrows the porous cassiterite in greisens (Fig. 6a). In granites, cassiterite commonly corrodes and overgrows Sc-columbite (Fig. 6b).

Cassiterite has relatively high Nb (0–7.4 wt% Nb₂O₅) and Ta (<6.5 wt% Ta₂O₅; Fig. 7a) contents, with relatively low Fe (<3.5 wt% FeO), and very low MnO (\leq 0.6 wt%) and TiO₂ contents (\leq 0.9 wt%).

Concentrations of Sc (≤ 0.3 wt% Sc₂O₃, 0–0.007 apfu; Fig. 7b, Table S6) are usually close to the detection limit of electron microprobe; average amount of Sc₂O₃ in cassiterite is 0.07 wt%.

4.7. Wolframite

Wolframite occurs in both massive greisens (e.g., sample P7/281) and the quartz-zinnwaldite veins (Fig. 6h) in crystals up to several mm large. In both rocks, it forms two textural and compositional types – Sc, Nb-rich euhedral wolframite with characteristic oscillatory zoning defined by their Nb contents (Fig. 6g) and homogeneous Sc, Nb-poor subhedral to euhedral crystals (Fig. 6f) typically enclosed in zinnwaldite or quartz; the latter type seems to be younger. Both wolframite types are characterized by replacement along their rims by scheelite; the Sc, Nb-rich type is preferentially altered along the Nb-rich zones (Fig. 6g), and replaced by scheelite, Sc-ixiolite (Fig. 6h, i), and Sc-columbite (Fig. 6g).

The Sc, Nb-poor wolframite has relatively low contents of MnO (avg. 12.56 wt%; 0.52 apfu Mn), Nb (avg. 0.68 wt% Nb_2O_5 , 0.015 apfu) and Sc (avg. 0.17 wt% Sc_2O_3 , 0.007 apfu Sc). The Sc, Nb-rich wolframite is slightly enriched in Mn (avg. 14.04 wt% MnO, 0.58 apfu Mn), Nb (avg.

Fig. 6. BSE images of cassiterite, wolframite, and ixiolite mineral assemblages (except Clb = columbite, Wlf = wolframite and Ixi = ixiolite, the abbreviations according to Whitney and Evans, 2010); a) aggregate of porous and homogeneous cassiterite grains enclosed in zinnwaldite. Sample P7/289 from greisenized granite; b) Sc-columbite overgrown and partially corroded by cassiterite. Sample C20/10 from granite; c) TIMA EDX element map of Mn distribution in wolframite: woframite I (core, Mn depleted) and wolframite II (rim, Mn-enriched). Sample P1/250 from greisen; d) wolframite II corroded by sphalerite and galena, sample P1/250 from greisen extraordinary rich in sulphides; e) needles of younger wolframite II, sample P1/250 from greisen extraordinary rich in sulphides; f) homogeneous Sc,Nb-poor wolframite with minor scheelite associated with cassiterite. g) heterogenous Sc,Nb rich wolframite with Sc-ixiolite. Both pictures are from sample P7/281 from greisen; h) darker Sc-rich ixiolite replacing older bright Sc,Nb-rich wolframite. Sample P13/133A from quartz-zinnwaldite vein; i) porous darker Sc-rich ixiolite forming lamellae in cavity in Sc,Nb-rich wolframite. Sample P7/281 from greisen.

Fig. 7. Compositional diagrams for cassiterite, wolframite and ixiolite. a) Nb + Ta vs. Fe + Mn in cassiterite; b) Sc vs. Fe + Mn in cassiterite; c) Nb + Ta vs. Sc in wolframite; d) Mn/(Mn + Fe) ratio vs. Sc₂O₃ contents in wolframite and ixiolite.

2.45 wt% Nb₂O₅, 0.054 apfu Nb) and Sc (avg. 0.55 wt% Sc₂O₃; 0.025 apfu Sc). The highest amounts of Sc (0.35–0.9 wt% Sc₂O₃; 0.015–0.037 apfu) were found in wolframite from quartz-zinnwaldite vein (samples P13/133A, B; Fig. 7c).

Two texturally and/or compositionally contrasting generations of wolframite (Wlf) were found in the sulphide-rich greisen (sample P1/250; Fig. 6c, d). Older Wlf I (ferberite to Fe-rich hübnerite, 0.46–0.83 apfu Mn, with elevated Sc \geq 0.009 apfu) forms cores up to ca. 500 \times 100 µm in size in some relatively large and thick tabular crystals of Wlf II (Fig. 6c). The Wlf I domains are indistinguishable in BSE images and were found by investigating the element distribution maps from TIMA only; their composition is similar to the Sc, Nb-poor wolframite from "ordinary" greisens described above. The Wlf II forms either thicker tabular crystals or thin needle-like crystals (Fig. 6e) which are both corroded by sulphides (Fig. 6d). Compared to Wlf I with variable Mn/ (Mn + Fe) and elevated Sc (0.20–0.53 wt% Sc₂O₃; Figs. 7d, 8) and Nb

(1.09–2.11 wt% Nb₂O₅) contents, the Wlf II is enriched in Mn (close to hübnerite end member – 0.82–0.92 apfu Mn) and depleted in Sc and Nb (typically < 0.076 wt% Sc₂O₃, and < 0.85 wt% Nb₂O₅; rarely up to 1.22 wt% Nb₂O₅) (see Fig. 7c, d; Table S7).

In the Fig. 7d, the Wlf I is highly heterogeneous in its Mn/(Mn + Fe) ratio. Textures and element maps of Wlf I do not allow to decide whether the Mn-rich analytical points of Wlf I (Fig. 7c, d) represent a fractionated primary wolframite or mixed analytical points with Wlf II; the problem would require a study of further thin sections to be resolved.

4.8. Ixiolite- and qitianlingite-like phase

The W-Nb-Sc ixiolite-like phase is rather scarce accessory mineral in granite and greisens; in significant amounts it was found in two samples only (P13/133A – quartz-zinnwaldite vein with wolframite and P7/281 – massive greisen). The ixiolite is always associated with Sc, Nb-rich

wolframite and appears to be of secondary origin (Fig. 6g–i). Its typical feature is a high porosity and/or hydratation, which results in low EPMA analytical totals (81.7–61.6 wt%).

The ixiolite contains highest amounts of Sc from all the investigated phases; its content ranges between 1.05 and 4.8 wt% Sc₂O₃ (Figs. 7d, 8; Table S8) with average of 2.24 wt% Sc₂O₃ (n = 16). Compared to the associated wolframite, the ixiolite is at least 5–10 times enriched in elements that are generally poorly compatible with the wolframite structure, such as Sc, Nb, Ta, Th, and Bi. Part of the mineral compositional data matches the ideal composition of qitianlingite (also reported by Breiter et al. 2017a from the CS-1 borehole) with variable Mn/(Mn + Fe) ratio (0.06–0.85), indicating possible presence of the qitianlingite Mn-analogue (e.g. Dixon et al. 2014).

4.9. Scheelite

Scheelite is a late hydrothermal product of wolframite breakdown in greisens and quartz-zinnwaldite veins. It typically forms fine-grained aggregates of anhedral grains which fill cracks in wolframite or W-rich ixiolite (Fig. 6f) or occur near their altered grains (Fig. 3f); in quartz-zinnwaldite veins scheelite locally forms large (up to 2 cm) subhedral crystals in quartz or zinnwaldite pockets. Scheelite composition (Table S9) is in most cases close to its ideal formula; locally, some scheelites from quartz-zinnwaldite veins and greisen with sulphides are enriched in Mo. Sc contents in scheelite are b.d.l. in most analyses, only locally up to 0.066 wt% of Sc₂O₃.

In rare assemblage where sulphide mineralization recrystallized early wolframite and cassiterite, scheelite (Sc_2O_3 is b.d.l.) forms anhedral aggregates associated with earlier sphalerite and later galena and bismuthinite.

From the Cínovec CS-1 borehole, Breiter et al. (2017a) and Rub et al. (1998) reported also pyrochlore-microlite (from b.d.l. up to 0.18 wt% Sc₂O₃); these minerals were encountered in the studied samples only very sporadically. Due to its scarcity, their influence of the total Sc budget of the deposit is negligible.

5. Discussion

5.1. Crystal chemistry of Sc-bearing minerals

Micas, especially zinnwaldite, are important hosts of Sc. Exact substitution mechanism of Sc in micas is not obvious due to its low concentration. However, based on similarities in ionic radii of Sc^{3+} and Fe^{2+} (Shannon, 1976), Sc is most probably accommodated in the octahedral structural sites of zinnwaldite.

Zircon contents of Sc, F and P (up to 0.08 apfu Sc, 0.30 apfu F and 0.16 apfu P) increase during its fractionation expressed as decreasing Zr/Hf ratio (Fig. 4b). Contents of P are relatively low compared to those of Sc and REE³⁺ (Table S2), therefore the pretulite/xenotime substitution (Sc, REE³⁺) + P⁵⁺ = Si⁴⁺ + Zr⁴⁺ that normally incorporates those cations into the zircon structure (e.g., Breiter et al., 2006; Mlčoch and Skácelová, 2010; Výravský et al., 2017a) is limited only; possible As₂O₅ contents (e.g., Breiter and Škoda 2012) were not revealed by EDX analyses (and were not measured using EMPA). Positive correlation of Sc and REE³⁺ with F indicates that the substitution (REE³⁺,Sc) + (F⁻,OH⁻) = Zr⁴⁺ + O²⁻ which incorporates the theoretical "fluoro-zircon" component (M³⁺SiO₃F; e.g. Bastos Neto et al. 2012) could play important role.

The compositional data for **Nb-rutile** show that the amounts of Nb + Ta exceed those of $M^{2+} + M^{3+}$; this indicates simultaneous operation of (1) 3Ti = 2Nb + M^{2+} (columbite component) and (2) 2Ti = (Nb,Ta) + (Fe,Sc)³⁺ (rossovskyite/heftetjernite components) substitution vectors. Scandium shows weakly positive correlation with Nb + Ta (Fig. 4d) and most likely enters the rutile structure by mechanism (2); however, due to its overall low content, this can be only inferred.

Intergrowths of columbite and Nb-rutile were observed e.g. in

porphyritic or albite granite (Fig. 3j, k). The intergrowths seem to be primary (i.e. not exsolution), as the rutile is not depleted in Nb; scandium preferably partitioned to the columbite structure which contains up to 1.77 wt% Sc₂O₃. Similar partitioning trends were described by Černý et al. (1998) in Nb- and Ta-rutile exsolved from columbite; they observed rutile enrichment in Fe²⁺, Ta, Fe³⁺ and Sn whereas the columbite-group minerals were more compatible with Mn, Nb, Sc, W and Zr. The locally observed sector zoning (e.g., Fig. 3k) may be caused by preferred incorporation of Nb + Ta on different crystallographic faces during rutile crystal growth (e.g., Carocci et al. 2019).

In **columbite**, Sc shows a strong positive correlation with Ti (R = 0.9; Fig. 5c) and negative correlation with Nb + Ta and Fe + Mn which indicates substitution (Fe,Mn)²⁺ + (Nb,Ta)⁵⁺ = (Fe,Sc)³⁺ + Ti⁴⁺. However, the M³⁺ vs. M⁴⁺ plot shows that the cation ratio deviates from the 1:1 line, which might indicate partial Sc + Fe³⁺ substitution for Nb, e.g. by exchange vector 2(Fe,Mn)²⁺ + (Nb,Ta)⁵⁺ = 3(Sc,Fe)³⁺ (heftet-jernite/rossovskyite component; Fig. 5d).

Cassiterite contains appreciable contents of Nb, Fe, Mn and Sc incorporated in its structure via combination of substitution mechanisms $3 \text{ Sn}^{4+} = (\text{Fe},\text{Mn})^{2+} + 2 (\text{Nb},\text{Ta})^{5+}$ (Möller et al., 1988; Costi et al., 2017) and (Fe³⁺,Sc) + (Nb,Ta)^{5+} = 2 \text{ Sn}^{4+}; the latter is responsible for Sc incorporation (Fig. 7a, b). Progressive incorporation of Fe + Mn and Nb + Ta enhances substitutions of small amounts of Sc³⁺ (Fig. 7b), Ti⁴⁺ and Zr⁴⁺ for Sn⁴⁺. Minor Sc substitution (up to ~ 0.003 apfu) occurs in all rock types but the cassiterite from granite generally shows slightly elevated values compared to greisen cassiterite (Fig. 7b).

Scandium in **wolframite** shows strong positive correlation with Nb + Ta (Fig. 7c) which indicates the coupled substitution $Fe^{2+} + W^{6+} = (Sc,Fe)^{3+} + (Nb,Ta)^{5+}$. The low Sc/(Nb + Ta) ~ 0.2 (Fig. 7c) shows a high proportion of Fe^{3+} (rossovskyite component; Konovalenko et al., 2015). "Wolframoixiolite" (transitional composition among wolframite and columbite) is rather common product of wolframite alteration in Nb-rich environment (e.g., Novák et al. 2008).

5.2. Subsolidus alterations of Sc-bearing minerals

Distribution of Sc in micas and accessory minerals of the Cínovec deposit was significantly affected by subsolidus reactions that caused strong fractionation of Sc (Figs. 8 and 9). We distinguished five most significant subsolidus alteration processes that led to mobilization and redistribution of Sc.

1) Alteration of zircon: The influence of zircon alteration on its Sc content is ambiguous and no clear trend has been observed. Most of the zircon grains are seriously altered, showing low EPMA analytical totals (Fig. 4c), uptake of non-formula elements (Ca, Fe, F) and patchy zoning in BSE. In the whole dataset, Sc shows strongest positive correlation with

Fig. 8. Contents of Sc_2O_3 in important Sc-bearing accessory minerals from the Cínovec deposit. Box boundaries show 25th and 75th percentile, thin and thick lines within the box are median and average values, respectively. Whiskers show 10th and 90th percentiles; dots represent outlying values.

Fig. 9. Plot of Sc vs. Li in zinnwaldite and in younger dioctahedral micas.

Fig. 10. Cumulative grain size of relevant minerals obtained by TIMA. The data are combined from 18 investigated thin sections.

P (0.45), Hf (0.45) and F (0.32), which may indicate F and P importance for Sc (+HREE) substitution in zircon (see discussion above). Good positive correlation with Zr/Hf fractionation (Fig. 4b) despite the lower analytical totals, as well as poor correlation of Sc with Ca (0.15), Fe (0.15) and analytical total (0.27) show that zircon alteration was not an essential Sc source for later processes. Enrichment of scandium in greisen-forming fluids was therefore not caused by alteration of magmatic zircon.

Kempe and Wolf (2006) observed somewhat higher Sc concentrations in zircons from greisen samples (1500–10,300 ppm) comparing to those form altered granite (600–8400 ppm). They claimed that Sc enrichment in zircons is linked to alteration by "*external fluids rich in U, Sc, HREE, possible of mantle origin*". However, there is no evidence for existence of such fluids and the whole process of greisenization and redistribution of HFSE could be explained by exsolution of F-Li-Sn-W-rich fluids during granite evolution (see discussion below). Breiter and Škoda (2012) reported, that zircons in greisens have similar Zr/Hf ratio as zircons from the surrounding granites and that it is not influenced by the greisenization or any other later subsolidus alteration. Zircons with high Hf (and U, Th, Y + REE, P) are believed to be pre-greisenization early magmatic mineral whereas those with high F, Ca, Fe, Mg and Sc should be of hydrothermal origin (Breiter and Škoda 2012). The positive correlation of Sc contents in zircon with fractionation indicators (decreasing Zr/Hf) might reflect the fractionation degree of the granite hosting the greisen mineralization. This is in agreement with preferential partitioning of Sc to fluoride melts in Li-bearing systems (Shchekina and Gramenitskii 2008). According to Breiter and Škoda (2012) the zircons from Cínovec are magmatic in origin. We agree that the overgrowths of oscillatory-zoned xenotime on zircon (Fig. 3g) are most likely magmatic. On the other hand, xenotime epitactic overgrowths restricted to muscovite or fluorite (Fig. 3h, n) and zones and patches inside zircon (Fig. 3i) should be attributed to breakdown of the complex zircon-xenotime solid solution in subsolidus via exsolution (Fig. 3i) and/or the dissolution-reprecipitation process (Fig. 3h, n; see Putnis 2009).

2) Formation of Ta, Sc, Ti-enriched columbite in granites. In several cases, two different generations of columbite were distinguished in albite granite samples as homogenous Clb I enriched in Nb, overgrown by inhomogeneous, porous columbite II enriched in Sc, Ta and Ti, associated with albite, muscovite and fluorite (Fig. 3m; see also Breiter et al. 2017a). The association of the columbite II with young muscovite and fluorite as well as its high porosity and heterogeneity (Fig. 3m) suggest its origin via a dissolution-reprecipitation process (Putnis 2009) caused by the fluids responsible for muscovitization of zinnwaldite. In most samples, the columbite generations cannot be unambiguously distinguished on BSE images due to intense hydrothermal overprint of the grains that resulted in heterogeneous patchy zoning; however, domains enriched in Sc, Ta and Ti are distinct (Fig. 5). It is not clear, when exactly the patchy zoning of columbite originated and what elements and to what degree were enriched/leached out during the process. However, if the columbite II and the Sc, Ta, Ti-enriched patches in columbite originated from reaction with fluids causing zinnwaldite breakdown, such fluids would have been enriched in Sc because the muscovite is significantly Sc-depleted (cf. Fig. 9). Since the Nb/(Nb + Ta) ratio changes during the process, the alkalinity of fluids was elevated but not sufficient (e.g., in terms of Na contents) to produce significant amounts of pyrochlore-microlite (e.g., McNeil et al., 2020; Novák et al., 2004).

3) The volumetrically dominant process is alteration of primary zinnwaldite to muscovite; muscovite is depleted in Sc (by ca. 20-25 ppm) compared to the original zinnwaldite (Fig. 9). Muscovite formed by alteration of zinnwaldite in granites is significantly more depleted in Sc compared to the secondary muscovite from greisens (Fig. 9). The degree of zinnwaldite replacement varies widely from very weak to almost complete, ranging from sporadically developed thin muscovite rims on edges and fractures in large zinnwaldite crystals (Fig. 3c, e) to the state where only corroded remnants of zinnwaldite are present in cores of large aggregates of muscovite (Fig. 3d). Sometimes an intermediate product ("altered zinnwaldite", usually Li-bearing phengite; 37-83 ppm Sc) could be recognized as a zone of advancing alteration front distinct in BSE images (Fig. 3f). During the alteration process, high amounts of Fe and Li as well as significant amounts of Rb, F, Mn and Sc were removed from micas. Breiter et al. (2019) attributed this hydrothermal alteration to reaction with late Sn-enriched fluid which is supported by common association of cassiterite with muscovite (Fig. 3d) and fluorite (Fig. 3b; see also Xie et al. 2015).

4) Scheelitization of Sc,Nb-rich wolframite led to formation of W, Nb,Sc-rich ixiolite. This alteration was recognized in both samples that contain the Sc,Nb-rich wolframite (P7/281 – greisen and P7/133A, B –quartz-zinnwaldite vein). The process seems to be related to muscovitization accompanied by fluorite and followed by alteration to clay minerals, but precise mutual relationship of events and their relative timing is ambiguous. During scheelitization of wolframite, Sc and Nb from the original wolframite (avg. 0.48 wt% Sc₂O₃; 2.41 wt% Nb₂O₅) partitioned largely to the Sc-ixiolite (avg. 2.01 wt% Sc₂O₃; 20.13 wt% Nb₂O₅) whereas scheelite is depleted in these elements (Sc and Nb mostly b.d.l. of EPMA); the significant difference in ionic radii of Sc (75 pm) and Ca (100 pm; Shannon, 1976) makes Sc incompatible in the scheelite structure at low temperatures. Incompatibility of Sc (and absence of REE) also hinders substitution of Nb for W in scheelite, because it could not be charge-balanced. Similar Sc-enrichment mechanism was described from the Kožichovice pegmatite, where Sc-rich columbite was transformed to Sc-depleted fersmite and secondary Sc-enriched minerals during subsolidus reaction with Ca-rich fluids (Výravský et al., 2017b). In contrast to our data, Kempe and Wolf (2006) reported elevated concentrations of Sc in scheelite (31–3900 ppm); however, their sample was probably a different textural and paragenetic type of scheelite. Up to $0.3 \text{ wt}\% \text{ Sc}_2\text{O}_3$ was also found in scheelite from a greisen in the top part of the CS-1 drill hole (unpublished data K.B.).

5) Sulphide-bearing hydrothermal alteration of greisen assemblages caused replacement of Sc,Nb,(Ta)-rich wolframite I by Sc,Nb, (Ta)-poor, Mn-rich wolframite II in the sulphide-rich greisen bodies (sample P1/250). The residual domains of older wolframite I with Mn/ $(Mn + Fe) 0.46-0.81, 0.205-0.530 wt\% Sc_2O_3 and 1.094-2.109 wt\%$ Nb₂O₅ were found in several thick-prismatic wolframite crystals. The remaining volume of former wolframite I crystals is replaced by wolframite II (Fig. 5c) with Mn/(Mn + Fe) 0.79-0.89, which is extremely depleted in Sc₂O₃ up to 0.076, Nb₂O₅ contents are also significantly lower (up to 1.223 wt%). The wolframite II of very similar composition also forms thin, in cross-section long-prismatic crystals. The wolframite I is compositionally similar to the primary wolframite from greisens whereas the wolframite II is a product of its alteration. Apparently, the wolframite I was dissolved and reprecipitated to wolframite II by sulphide-bearing fluids as the associated sphalerite and galena seem to be coeval and in equilibrium with the wolframite II. The same fluids also caused extraordinarily extensive replacement of zinnwaldite by muscovite (enriched in Ca, Zn, Pb and depleted in Sn compared to other Cínovec muscovite data), which is the dominant mineral of this assemblage (Table 1). Since we have not found any secondary Nb,Sc-bearing mineral in the sulphide-rich greisen sample, the Sc, Nb, Fe and other elements from wolframite I (and zinnwaldite) were either removed by F-enriched fluids resulting from widespread muscovitization of zinnwaldite, or at least partly reside in the adjacent secondary muscovite which is locally extraordinary rich in Sc (147 and 157 ppm, Fig. 9). No remarkable correlation between Nb, Ta, Sc contents in wolframite and its Mn/(Mn + Fe) ratio was observed in most of samples, which is comparable to Breiter et al. (2017c); the only exception was observed in the greisen sample P7/281, where noticeable positive correlation between Mn/(Mn + Fe) ratio and Nb and Sc contents was detected.

5.3. Budget of Sc in rocks and ores

Combination of EPMA, LA-ICP-MS and TIMA data enabled complete characterization of bulk Sc content and its distribution between minerals in the studied samples. The EPMA data of accessory minerals and LA-ICP-MS data of micas are described in detail above. To obtain full picture, we also analysed the important rock-forming minerals. The results yield avg. Sc content for quartz 0.9 ppm, K-feldspar 0.55 ppm and albite 0.25 ppm, proving insignificance of these minerals for bulk rock Sc content, despite their high mass abundance (Table S10). The Sc concentration in topaz was studied by Breiter et al. (2013) and they found just 2.5–3.5 ppm Sc. Given the general low abundance of topaz in the rocks, it is also not important for bulk rock Sc budget (Table S10).

In different samples from granites, the bulk Sc content varies between 6 and 13 ppm, depending on the amount of micas (Table S10), which are, together with columbite and zircon, the most important Sc carriers in these rocks. The mica-poor sample P7-402 contains 6.2 ppm Sc, which is hosted 46 % in columbite, 27% in zinnwaldite and 13% in zircon. On the other hand, the sample C20-178 contains low amount of columbite and most of its 12.6 ppm Sc rest in micas (75%) and zircon (14%). Due to generally very low abundance of Nb,Ta-rich rutile, it hosts only ~ 1% of the bulk Sc as maximum in the sample C20-178. contents between 11 and 119 ppm. Three types of greisen based on the major Sc-hosting minerals were found: 1) Mica-rich, cassiterite and wolframite-poor greisen (sample P7-350) contains 31.1 ppm Sc stocked by more than 90% in zinnwaldite; 2) Cassiterite- and mica-rich, wolframite poor greisen (sample P7-289) contains 29 ppm Sc hosted by 47% in cassiterite and 43% in zinnwaldite; 3) Wolframite-rich greisen contains usually more than 50 ppm Sc, dominantly bound in wolframite, e.g. sample P7-281 with 118.5 ppm Sc, 85% of which resides in wolframite.

The muscovitization of zinnwaldite is locally so intense (chapter 5.2), that the amount of Sc hosted in muscovite exceeds that of zinnwaldite (Table S10). Columbite and zircon are present in greisens in comparable amounts as in granites; however, their relative importance is much lower in greisens due to generally higher Sc amounts present in micas, wolframite and cassiterite (Table S10).

Similar to massive greisens, the quartz-zinnwaldite veins may contain significant amount of Sc, mostly controlled by presence of zinnwaldite and wolframite (+cassiterite). The sample P7-332 is an example of zinnwaldite-rich quartz vein (72% zinnwaldite, 22% quartz, 6% muscovite) and it contains 48.4 ppm Sc hosted by 96% in the micas. The Sc-richest sample is a quartz vein with ca. 15 wt% wolframite (including the Sc,Nb-rich variety); the sample contains 284.8 ppm Sc, hosted by 88% in wolframite and 6% in the secondary Sc-ixiolite.

5.4. Problems of Sc valorization in the Cínovec deposit

For assessment of viability of Sc recovery as a by-product from various minerals from the Cínovec/Zinnwald deposit, further variables need to be considered. Among others, these include grain size, content of Sc and absolute concentration of the minerals in rocks/ores. Although Sc-ixiolite, columbite and zircon show the highest contents of Sc (and other valuable hi-tech metals, such as Nb, Ta, Zr, Hf, REE), their absolute concentration in rocks is very low and together they typically carry less than ca. 4 ppm of bulk Sc only (Table S10). Moreover, the grain size distribution curves obtained from TIMA show, that these minerals form 10-100x smaller grains than the primary ore minerals (zinnwaldite, cassiterite, wolframite - Fig. 10). Approximately 70-100% of mass of Scixiolite, columbite and zircon resides in grains smaller than 50 μm (Fig. 10), therefore much larger comminution costs would be required to liberate them. On the other hand, cassiterite and wolframite form much larger grains (median grain size approx. 200 and 1500 µm for cassiterite and wolframite, respectively - Fig. 10) in greisens and especially in quartz-zinnwaldite veins (Fig. 6c, f, g) and would be recovered as secondary exploration targets.

Except for the W-richest ores, the majority of bulk Sc is hosted in zinnwaldite. Concentrations of Sc in zinnwaldite are relatively low (40–169, avg. 63 ppm – this study, Breiter et al., 2019 reported similar Sc content (42–100 ppm). Despite the same bonding of Sc as Li at the octahedral site in zinnwaldite structure, chemical and thermodynamic requirements for their extraction might be significantly different. Therefore, further research is necessary (technical and economic viability) in order to decide whether the process of Li extraction from zinnwaldite needed for expected annual production of 25,267 t of LCE (Lithium carbonate equivalent – European Metals, 2020) would contain approx. 26 t of Sc₂O₃, which is more than current inferred market size for Sc (see below).

Despite being regarded as strategic metal due to its use in solid oxide fuel cells and lightweight alloys (COM, 2020), the global Sc demand is still rather limited (15–20 t/year – USGS, 2020). However, even if Sc and other metals are not extracted from zinnwaldite, the waste after Li extraction might be a valuable resource for future use.

The studied massive greisen samples exhibit variable bulk Sc

5.5. Summary of Sc behaviour during magmatic and post-magmatic evolution of the deposit

Contents of Sc in biotite and two-mica granites in the Bohemian Massif mostly vary between 3 and 10 ppm and reaching 18–24 ppm in amphibole-bearing granodiorites and tonalities (Breiter and Sokol, 1997). In this context, the Sc-contents in Cínovec granites are not anomalous. However, specific manner of hydrothermal processes allowed to concentrate Sc in greisens generally, and in some hydrothermal minerals particularly. Scandium enrichment is generally related to greisenization and Li(\pm Sn,W)-enrichment; in bulk contents, Sc positively correlates with Li, and partially also W and Sn whereas influence of Nb is negligible (Fig. 11).

In A-type melts, group of HFSE and some other elements like REEs and Sc, behave incompatibly and become enriched in the latest magma portions (Eby, 1990; Haapala, 1995; Taylor and Fallick, 1997; Breiter, 2012). This also applies to Sc in Cínovec: the average bulk-rock Sc-contents increase from ca. 4 ppm in the biotite granite to about 7 ppm in the fractionated zinnwaldite granite (data from the CS-1 drill hole; Breiter et al., 2017b). Enrichment of Sc in zircon during

geochemical fractionation of its parental melt is remarkable. Breiter and Škoda (2012) reported strong correlation between zircon fractionation expressed as decreasing Zr/Hf value and increase of Sc in zircon in direction to the top of Cínovec cupola. In contrast, Sc contents in micas slightly decrease upwards, from ca. 60–120 ppm Sc in the biotite granite to ca. 45–90 ppm Sc in zinnwaldite from granites and greisen in the uppermost part of the cupola (Breiter et al., 2019). Here, Sc correlates positively with Fe and their crystallochemical similarity outweighs the general upwards fractionation trend.

At certain point of magma evolution, Li-F-HFSE-Sc fluids were exsolved from silicate melt, leading to crystallization of mica-poor volatiles- and HFSE-depleted granite at the depth interval of 260–369 m (with only 1–3 ppm Sc), and massive formation of greisens above (Breiter et al., 2017b). Scandium followed other ore elements, moved upwards and became enriched in greisens.

In greisens, Sc content is controlled by amount of zinnwaldite and wolframite. Cassiterite is important only locally in zinnwaldite-poor greisens. Contribution of columbite and zircon is negligible. Local bulk concentrations above tens of ppm Sc are controlled by exceptionally large presence of wolframite in the ores.

Fig. 11. Bulk-rock contents of Sc compared to the contents of Li (a), Sn (b), Nb (c) and W (d). The CS 1 drillhole data are from Breiter et al. (2017b).

After greisenization (zinnwaldite formation at the expense of feldspars), some of Sc-bearing minerals were more or less hydrothermally altered at lower temperature, leading to redistribution and/or mobilization of Sc (see discussion above). Some of this Sc released from metasomatized Sc-enriched precursors precipitated in close proximity in form of Sc-rich secondary minerals (e.g. Sc-ixiolite after Sc,Nb-rich wolframite). This is in line with common formation of Sc minerals in pegmatites by metasomatic replacement of Sc-rich precursors (e.g., Výravský et al., 2017a). In other cases, no specific Sc-rich secondary mineral was found close to the precursors (e.g. muscovitization of zinnwaldite). Given the large amount of F released during muscovitization of zinnwaldite, which forms extraordinary strong complexes with Sc (Grammacciolli et al. 2000), the released Sc might have been carried away by fluids of such composition. In the nearby Sadisdorf deposit, kolbeckite (ScPO₄*2H₂O), which formed in the silicified kaolinized cap of the deposit without any indication of potential Sc precursor mineral was reported by Kempe and Wolf (2006), which would indicate possibility of Sc transport by fluids over relatively large distances. Although no Sc-dominant mineral was described from Cínovec deposit so far, there may be good chance for future discoveries since probably large amount of Sc-enriched fluids was present there in late subsolidus stage.

6. Conclusions

Main carriers of scandium in greisen ores are micas (up to 169 ppm Sc), wolframite (up to 1.0 wt\% Sc_2O_3), columbite (up to 3.0 wt\% Sc_2O_3), and less abundant but most Sc-enriched ixiolite (up to 4.9 wt\% Sc_2O_3).

Scandium distribution in granite is controlled by variable amounts of mica and accessory zircon and columbite (Table S10); on the other hand, in massive greisens and in quartz-zinnwaldite veins, major part of total Sc is in micas, and significant amount of Sc is accumulated also in wolframite and cassiterite.

Scandium concentrated and accumulated in the deposit in three steps:

During magmatic fractionation, Sc was hosted mostly in micas, subordinary also in accessory minerals like zircon, rutile, cassiterite and columbite; contents of Sc in residual F-rich melt increased.

During magmatic/hydrothermal transition, Sc was segregated to greisen-forming F-rich fluid and later hosted in greisen-stage zinnwaldite, wolframite and cassiterite.

Late fluids redistributed Sc from altered zinnwaldite, wolframite and columbite to secondary or recrystallized Sc-rich oxide minerals (ixiolite, columbite) and locally to muscovite, while significant amount of Sc could be removed away by fluids.

Zinnwaldite processing might provide up to 26 tons of Sc_2O_3 annually (assuming unrealistic 100% recovery). The practical viability is, of course, questionable and depends on the fact, whether the Li extraction process could be adjusted to recover some Sc along with Li at reasonable costs, and whether there will be demand for the potentially increased Sc production.

Wolframite and cassiterite could also potentially serve as important Sc-sources, given their high Sc content and rather large grain size. However, their anticipated production rates are much lower compared to those of zinnwaldite and the total Sc amount is more than ten times lower.

Despite having the highest concentrations of Sc, columbite, ixiolite, zircon, xenotime and Nb-rutile are unlikely to be targeted separately as Sc-ores due to their small grain size, and general scarcity.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the GAČR project no. 19-05198S to JC, KB, and RŠ, by RVO 67985831 to KB and by project of the Ministry of Education, Youth and Sports no. FCH-S-21-7398 to MVG. We are grateful to D. Galusková and H. Kaňková for assistance with LA-ICP-MS analyzes. Last but not least, we would like to thank to C. Marignac and one anonymous reviewer for their fruitful comments that improved manuscript of this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.oregeorev.2021.104433.

References

- Ackerman, L., Haluzová, E., Creaser, R.A., Pašava, J., Veselovský, F., Breiter, K., Erban, V., Drábek, M., 2017. Temporal evolution of mineralization events in the Bohemian Massif inferred from the Re–Os geochronology of molybdenite. Min. Depos. 52 (5), 651–662.
- Ahmad, Z., 2003. The properties and application of scandium-reinforced aluminum. JOM 55 (2), 35–39.
- Aiglsperger, T., Proenza, J.A., Lewis, J.F., Labrador, M., Svojtka, M., Rojas-Purón, A., Longo, F., Ďurišová, J., 2016. Critical metals (REE, Sc, PGE) in Ni laterites from cuba and the dominican republic. Ore Geol. Rev. 73, 127–147.
- Amli, R., 1977. Carbonatites, a possible source of scandium as indicated by Sc mineralization in the Fen paralkaline complex, southern Norway. Econ. Geol. 72, 855–859. https://doi.org/10.2113/gsecongeo.72.5.855.
- Bastos Neto, A.C., Pereira, V.P., Pires, A.C., Barbanson, L., Chauvet, A., 2012. Fluorinerich xenotime from the world-class madeira Nb–Ta–Sn deposit associated with the albite-enriched granite at pitinga, Amazonia. Brazil. The Canad. Mineral. 50, 1453–1466.
- Boulon, G., 2012. Fifty years of advances in solid-state laser materials. Opt. Mater. 34, 499–512.
- Breiter, K., 1997. Teplice rhyolite (Krušné Hory Mts., Czech Republic): chemical evidence of a multiply exhausted stratified magma chamber. Bull. Czech geol. Surv. 72, 205–213.
- Breiter, K., 2012. Nearly contemporaneous evolution of the A-and S-type fractionated granites in the Krušné Hory/Erzgebirge Mts. Central Europe. Lithos 151, 105–121.
- Breiter, K., Škoda, R., 2012. Vertical zonality of fractionated granite plutons reflected in zircon chemistry: the Cínovec A-type versus the Beauvoir S-type suite. Geol. Carpat. 63, 383–398.
- Breiter, K., Sokol, A., 1997. Chemistry of the Bohemian granitoids: Geotectonic and metallogenic implications. J. Geol. Sci. Econ. Geol. Mineral. 31, 75–96.
- Breiter, K., Sokolová, M., Sokol, A., 1991. Geochemical specialization of the tin-bearing granitoid massifs of NW Bohemia. Mineral. Depos. 26, 298–306.
- Breiter, K., Förster, H.-J., Seltmann, R., 1999. Variscan silicic magmatism and related tintungsten mineralization in the Erzgebirge-Slavkovský les metallogenic province. Mineral. Depos. 34 (5-6), 505–521.
- Breiter, K., Förster, H.-J., Škoda, R., 2006. Extreme P-, Bi-, Nb-, Sc-, U- and F-rich zircon from fractionated perphosphorus granites: The peraluminous Podlesí granite system, Czech Republic. Lithos 88, 15–34.
- Breiter, K., Gardenová, N., Vaculovič, T., Kanický, V., 2013. Topaz as an important host for Ge in granites and greisens. Mineral. Mag. 77 (4), 403–417.
- Breiter, K., Korbelová, Z., Šešulka, V., Hönig, S., 2016. New petrological and mineralogical data from the Li (Sn, W, Nb, Ta)-deposit Cínovec-Jih. Geosci. Res. Rep. 49, 113–121 (in Czech with English summary).
- Breiter, K., Korbelová, Z., Chládek, Š., Uher, P., Knesl, I., Rambousek, P., Honig, S., Šešulka, V., 2017a. Diversity of Ti–Sn–W–Nb–Ta oxide minerals in the classic granite-related magmatic–hydrothermal Cínovec/Zinnwald Sn–W–Li deposit (Czech Republic). Eur. J. Mineral. 29 (4), 727–738.
- Breiter, K., Ďurišová, J., Hrstka, T., Korbelová, Z., Hložková Vaňková, M., Vašinová Galiová, M., Kanický, V., Rambousek, P., Knésl, I., Dobeš, P., Dosbaba, M., 2017b. Assessment of magmatic vs. metasomatic processes in rare-metal granites: a case study of the Cínovec-Zinnwald Sn–W–Li deposit. Central Europe. Lithos 292, 198–217.
- Breiter, K., Ďurišová, J., Dosbaba, M., 2017c. Quartz chemistry A step to understanding magmatic-hydrothermal processes in ore-bearing granites: Cínovec-Zinnwald Sn-W-Li deposit, Central Europe. Ore Geol. Rev. 90, 25–35.
- Breiter, K., Hložková, M., Korbelová, Z., Galiová, M.V., 2019. Diversity of lithium mica compositions in mineralized granite–greisen system: Cínovec Li-Sn-W deposit, Erzgebirge. Ore Geol. Rev. 106, 12–27.
- Brožek, V., Dušek, B., Novák, M., 2011. Chemické listy and czech scandium after 55 Years. Chemické listy 105, 285–314 (in Czech).
- Carocci, E., Marignac, C., Cathelineau, M., Truche, L., Lecomte, A., Pinto, F., 2019. Rutile from Panasqueira (Central Portugal): an excellent pathfinder for wolframite deposition. Minerals 9, 9. https://doi.org/10.3390/min9010009.
- Černý, P., Ercit, T.S., 2005. The classification of granitic pegmatites revisited. The Canad. Mineral. 43 (6), 2005–2026.

S. Hreus et al.

Černý, P., Ercit, T.S., Wise, M.A., Chapman, R., Buck, H.M., 1998. Compositional, structural and phase relationships in titanian ixiolite and titanian columbitetantalite. Canad. Mineral. 36, 547–561.

- COM 2020. Critical Raw Materials Resilience: Charting a Path towards greater Security and Sustainability. COM (2020) 474 final. Available at: https://eur-lex.europa.eu/le gal-content/EN/ALL/?uri=CELEX:52020DC0474.
- Čopjaková, R., Škoda, R., Galiová, M.V., Novák, M., Cempírek, J., 2015. Sc- and REE-rich tourmaline replaced by Sc-rich REE-bearing epidote-group mineral from the mixed (NYF+LCT) Kracovice pegmatite (Moldanubian Zone, Czech Republic). Am. Miner. 100 (7), 1434–1451.
- Cháb, J., Breiter, K., Fatka, O., Hladil, J., Klavoda, J., Šimůnek, Z., Štorch, P., Vašíček, Z., Zajíc, J., Zapletal, J., 2010. Overview of crystalline basement and its Carbonifous and Permian cover sequence of the Bohemian Massif. Czech Geological Survey, Praha.
- Costi, H. T., Horbe, A. M. C., Borges, R. M. K., Dall'agnol, R., Rossi, A., Sighnolfi, G., 2017. Mineral chemistry of cassiterites from Pitinga Province, Amazonian craton, Brazil. Revista Brasileira de Geociências 30, 775–782.

David, J., 1991. Final liquidation report ore mine Cínovec. Unpublished report stored in the Czech Geological Survey (in Czech).

- Davydov, V.G., Rostova, T.D., Zakharov, V.V., Filatov, Y.A., Yelagin, V.I., 2000. Scientific principles of making an alloying addition of scandium to aluminium alloys. Mater. Sci. Eng. A 280 (1), 30–36.
- Dixon, A., Čempírek, J., Groat, L.A., 2014. Mineralogy and geochemistry of pegmatites on Mound Begbie, British Columbia. Canad. Mineral. 52, 129–164.
- European Metals, 2020. Cinovec, a globally significant lithium & tin project in the heart of Europe. Investor presentation, June 2020. Accessed at: https://www.europeanme t.com/wp-content/uploads/2020/07/European-Metals-Presentation-June-2020-up dated.pdf.
- Fergus, J., Hui, R., Li, X., Wilkinson, D. P., Zhang, J., (Eds.). 2016. Solid oxide fuel cells: materials properties and performance. CRC press.
- Eby, G.N., 1990. The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26 (1–2), 115–134.
- Förster, H.-J., 2006. Composition and origin of intermediate solid solutions in the system thorite-xenotime-zircon-coffinite. Lithos 88 (1-4), 35–55.
- Förster, H.-J., Ondrejka, M., Uher, P., 2011. Mineralogical responses to subsolidus alteration of granitic rocks by oxidizing As-bearing fluids: REE arsenates and As-rich silicates from the Zinnwald granite, Eastern Erzgebirge, Germany. Canad. Mineral. 49 (4), 913–930.
- Förster, H.-J., Seltmann, R., Tischendorf, G., 1995. High-fluorine, low phosphorus A-type (post-collision) silicic magmatism in the Erzgebirge. Terra Nostra 7, 32–35.
 Förster, H.-J., Tischendorf, G., Trumbull, R.B., Gottesmann, B., 1999. Late-collisional
- Forster, H.-J., Iischendorf, G., Irumbull, K.B., Gottesmann, B., 1999. Late-collisional granites in the Variscan Erzgebirge, Germany. J. Petrol. 40 (11), 1613–1645. Guastoni, A., Nestola, F., Ferraris, C., Parodi, G., 2012. Xenotime-(Y) and Sn-rich
- thortveitite in miarolitic pegmatites from Baveno, Southern Alps, Italy. Mineral. Mag. 76 (3), 761–767.
- Haapala, I., 1995. Metallogeny of the Rapakivi granitesMetallogenese der Rapakivi-Granite. Mineral. Petrol. 54 (3-4), 149–160.
- Hoffmann, U., Breitkreuz, C., Breiter, K., Sergeev, S., Stanek, K., Tichomirowa, M., 2013. Carboniferous-Permian volcanic evolution in Central Europe – U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). Int. J. Earth Sci. 102 (1), 73–99.
- Höhndorf, A., Kämpf, H., Dulski, P., Seltmann, R., Möller, P., 1994. Sm/Nd and Rb/Sr isotopic investigations on fluorite mineralization of the eastern Erzgebirge. – In: Seltmann, R., Kämpf, H. and Möller, P. (eds.): Metallogeny of Collisional Orogens Focussed on the Erzgebirge and Comparable Metallogenic Settings 116–128. Praha.
- Hrstka, T., Gottlieb, P., Skála, R., Breiter, K., Motl, D., 2018. Automated mineralogy and petrology-applications of TESCAN Integrated Mineral Analyzer (TIMA). J. Geosci. 63, 47–63.

Johan, V., Johan, Z., 1994. Accessory minerals of the Cínovec (Zinnwald) granite cupola, Czech Republic Part 1: Nb-, Ta- and Ti-bearing oxides. Mineral. Petrol. 51, 323–343.

- Kalashnikov, A.O., Yakovenchuk, V.N., Pakhomovsky, Y.A., Bazai, A.V., Sokharev, V.A., Konopleva, N.G., Mikhailova, J.A., Goryainov, P.M., Ivanyuk, G.Y., 2016. Scandium of the Kovdor baddeleyite–apatite–magnetite deposit (Murmansk Region, Russia): mineralogy, spatial distribution, and potential resource. Ore Geol. Rev. 72, 532–537.
- Kempe, U., Wolf, D., 2006. Anomalously high Sc contents in ore minerals from Sn-W deposits: possible economic significance and genetic implications. Ore Geology Reviews 28, 103–122.

Kolitsch, U., Kristiansen, R., Raade, G., Tillmanns, E., 2010. Heftetjernite, a new scandium mineral from the Heftetjern pegmatite, Tørdal, Norway. Eur. J. Mineral. 22, 309–316.

- Konovalenko, S.I., Ananyev, S.A., Chukanov, N.V., Rastsvetaeva, R.K., Aksenov, S.M., Baeva, A.A., Gainov, R.R., Vagizov, F.G., Lopatin, O.N., Nebera, T.S., 2015. A new mineral species rossovskyite,(Fe 3+, Ta)(Nb, Ti) O 4: crystal chemistry and physical properties. Phys. Chem. Miner. 42 (10), 825–833.
- Korges M., Weis P., Lüders V., Laurent, O., 2018. Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation. Geology, 46, 75–78.
- Seifert, T., Kempe, U., 1994. Tin-tungsten deposits and late-Variscan magmatic rocks of the Erzgebirge. Beih. z. Eur. J. Mineral. 6, 125–172 (in German). Kempe, U., Wolf, D., 2006. Anomalously high Sc contents in ore minerals from Sn–W deposits: possible economic significance and genetic implications. Ore Geol. Rev. 28, 103–122.
- Linnen, R.L., Cuney, M., 2005. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: Linnen, R.L., Samson, I.M. (Eds.), Rare-Element Geochemistry and Mineral Deposits, 17. Geological Association of Canada Short Course, pp. 45–66.

- McNeil, A.G., Linnen, R.L., Flemming, R.L., 2020. Solubility of wodginite, titanowodginite, microlite, pyrochlore, columbite-(Mn) and tantalite-(Mn) in flux-
- rich haplogranitic melts between 700° and 850° C and 200 MPa. Lithos 352, 105239. Merlet, C., 1994. An accurate computer correction program for quantitative electron
- probe microanalysis. Microchim. Acta 114-115 (1), 363–376. Mlčoch, B., Skácelová, Z., 2010. Geometry of the Altenberg-Teplice Caldera revealed by the borehole and seismic data in its Czech part. J. Geosci. 55, 217–229.
- Moëlo, Y., Lulzac, Y., Rouer, O., Palvadeau, P., Gloaguen, É., Léone, P., 2002. Scandium mineralogy: pretulite with scandian zircon and xenotime-(Y) within an apatite-rich oolitic ironstone from Saint-Aubin-Des-Châteaux, Armorican Massif, France. Canad. Mineral. 40, 1657–1673.
- Möller, P., Dulski, P., Szacki, W., Malow, G., Riedel, E., 1988. Substitution of tin in cassiterite by tantalum, niobium, tungsten, iron and manganese. Geochim. Cosmochim. Acta 52 (6), 1497–1503.
- Monecke, T., Dulski, P., Kempe, U., 2007. Origin of convex tetrads in rare earth element patterns of hydrothermally altered siliceous igneous rocks from the Zinnwald Sn–W deposit. Germany. Geochim. Cosmochim. Acta 71 (2), 335–353.
- Neßler, J., Seifert, T., Gutzmer, J., Müller, A., 2017. Contribution to the exploration and metallogenic characteristic of the Li-Sn-W-greisen deposit Zinnwald, eastern Erzgebirge, Germany. Freiberger Forschungshefte C 552 - Geowissenschaften, TU Bergakademie. 390 pp. and Appendix (in German), Freiberg, Germany.

Novák, M., Černý, P., Cempírek, J., Šrein, V., Filip, J., 2004. Ferrotapiolite as a pseudomorph of stibiotantalite from the Lastovicky lepidolite pegmatite, Czech republic; an example of hydrothermal alteration at constant Ta/(Ta+ Nb). Canad. Mineral. 42 (4), 1117–1128.

- Novák, M., Johan, Z., Škoda, R., Černý, P., Šrein, V., Veselovský, F., 2008. Primary oxide minerals in the system WO₃-Nb₂O₅-TiO₂-Fe₂O₃-FeO and their breakdown products from the pegmatite No. 3 at Dolní Bory-Hatě, Czech Republic. Eur. J. Mineral. 20, 487–499.
- Ochsenkühn-Petropoulou, M.T., Hatzilyberis, K.S., Mendrinos, L.N., Salmas, C.E., 2002. Pilot-plant investigation of the leaching process for the recovery of scandium from red mud. Ind. Eng. Chem. Res. 41 (23), 5794–5801.
- Petrů, F., Hájek, B., Procházka, V., Vít, J., 1956. Contribution to the chemistry of rarer elements I. Isolation of scandium from the residues after wolframite ores processing. Chemické Listy 50, 1696 (in Czech).
- Pezzotta, F., Diella, V., Guastoni, A., 2005. Scandium silicates from the Baveno and Cuasso al Monte NYF-granites, Southern Alps (Italy): mineralogy and genetic inferences. Am. Miner. 90, 1442–1452.

Putnis, A., 2009. Mineral replacement reactions. Rev Min. Geochem. 70, 87-124.

Raade, G., Bernhard, F., Ottolini, L., 2004. Replacement textures involving four scandium silicate minerals in the Heftetjern granitic pegmatite, Norway. Eur. J. Miner. 16 (6), 945–950.

- Romer, R.L., Thomas, R., Stein, H.J., Rhede, D., 2007. Dating multiply overprinted Snmineralized granites—examples from the Erzgebirge, Germany. Miner. Depos. 42 (4), 337–359.
- Romer, R.L., Förster, H.J., Štemprok, M., 2010. Age constraints for the late-Variscan magmatism in the Altenberg-Teplice Caldera (Eastern Erzgebirge/Krušné Hory). Neues Jahrbuch für Mineralogie-Abhandlungen, J. Miner, Geochem. 187, 289–305.
- Rub, A.K., Stemprok, M., Rub, M.G., 1998. Tantalum mineralization in the apical part of the Cinovec (Zinnwald) granite stock. Mineral. Petrol. 63 (3-4), 199–222.
- Rudnick R. L. and Gao S., 2003. The composition of the Upper Crust. In: H. D. Holland, K. K. Turekian (eds.): Treatise on Geochemistry. 3, 1–64.
- Seifert, T., Atanasova, P., Gutzmer, J., Pfänder, J., 2011. Mineralogy, geochemistry and age of greisen mineralization in the Li–Rb–Cs–Sn–W deposit Zinnwald, Erzgebirge, Germany. Mineral. Mag. 75, 1833.

Seifert, T., Pavlova, G.G., 2016. New 40Ar/39Ar ages of Sn-and W-polymetallic mineralization in the Erzgebirge. In Krušné Hory (DE, CZ): Goldschmidt Conference Abstracts 2792.

Shannon, R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Crystal Phys. Diffraction Theor. General Crystallogr. 32 (5), 751–767.

Shchekina, T.I., Gramenitskii, E.N., 2008. Geochemistry of Sc in the magmatic process: Experimental evidence. Geochem. Int. 46 (4), 351–366.

- Shimazaki, H., Yang, Z., Miyawaki, R., Shigeoka, M., 2008. Scandium-Bearing Minerals in the Bayan Obo Nb-REE-Fe Deposit, Inner Mongolia, China. Resour. Geol. 58 (1), 80–86.
- Štemprok, M., 1965. Petrology and the vertical extent of mineralization in the Cínovec (Zinnwald) granite cupola. Sborník geolog. věd, Ložisková geologie, mineralogie 5, 7–106 (in Czech with English summary).
- Štemprok, M., Blecha, V., 2015. Variscan Sn–W–Mo metallogeny in the gravity picture of the Krušné Hory/Erzgebirge granite batholith (Central Europe). Ore Geol. Rev. 69, 285–300.
- Taylor, R.P., Fallick, A.E., 1997. The evolution of fluorine-rich felsic magmas: source dichotomy, magmatic convergence and the origins of topaz granite. Terra Nova 9 (3), 105–108.
- Teitler, Y., Cathelineau, M., Ulrich, M., Ambrosi, J.P., Munoz, M., Sevin, B., 2019. Petrology and geochemistry of scandium in New Caledonian Ni-Co laterites. J. Geochem. Explor. 196, 131–155.
- Tischendorf, G., 1969. Über kauzalen Beziehungen zwischen Granitoiden und endogenen Zinnlagerstätten. Z. Angew. Geol. 15, 333–342.
- Tomek, F., Žák, J., Svojtka, M., Finger, F., Waitzinger, M., 2019. Emplacement dynamics of syn-collapse ring dikes: An example from the Altenberg-Teplice caldera, Bohemian Massif. GSA Bulletin 131, 997–1016. https://doi.org/10.1130/B35019.1.

USGS 2020. MINERAL COMODITY SUMMARIES 2020. Accessed at: https://pubs.usgs. gov/periodicals/mcs2020/mcs2020.pdf.

S. Hreus et al.

- Výravský, J., Novák, M., Škoda, R., 2017a. Formation of pretulite (ScPO₄) by recrystallization of Sc-rich precursors in Dolní Bory pegmatite: evidence for different mobility of Sc, Y, REE and Zr in hydrothermal conditions. Chem. Geol. 449, 30–40.
- Výravský, J., Škoda, R., Novák, M., 2017b. Kristiansenite, thortveitite and ScNbO₄: Products of Ca-metasomatism of Sc-enriched columbite-(Mn) from NYF pegmatite Kožichovice II, Czech Republic. PEG 2017 8th International Symposium on Granitic Pegmatites, Kristiansand, Norway, , NGF Abstracts and Proceedings of the Geological Society of Norway2. Geological Society of Norway, pp. 169–172.
- Walther, D., Breitkreuz, C., Rapprich, V., Kochergina, Y.V., Chlupáčová, M., Lapp, M., Stanek, K., Magna, T., 2016. The late carboniferous schönfeld-altenberg depression on the NW margin of the bohemian massif (Germany/Czech Republic): volcanosedimentary and magmatic evolution. J. Geosci. 61, 371–393.
- Wang, W., Pranolo, Y., Cheng, C.Y., 2011. Metallurgical processes for scandium recovery from various resources: a review. Hydrometallurgy 108 (1-2), 100–108.
- Wang, Z., Yan Hei Li, M., Ray Liu, Z-R., Zhou, M-F., 2020: Scandium: ore deposits, the pivotal role of magmatic enrichment and future exploration, Ore Geol. Rev. (2020), https://doi.org/10.1016/j.oregeorev.2020.103906.

 Watznauer, A., 1954. Granite intrusions of Erzgebirge. Geologie 3, 688–706 (in German).
 Wise, M.A., Černý, P., Falster, A.U., 1998. Scandium substitution in columbite-group minerals and ixiolite. Canad. Mineral. 36, 673–680.

- Whitey, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. Am. Miner. 95 (1), 185–187.
- Xie, L., Wang, R.-C., Groat, L.A., Zhu, J.-C., Huang, F.-F., Cempírek, J., 2015. A combined EMPA and LA-ICP-MS study of Li-bearing mica and Sn–Ti oxide minerals from the Qiguling topaz rhyolite (Qitianling District, China): the role of fluorine in origin of tin mineralization. Ore Geol. Rev. 65, 779–792.

Příloha č. 2: Tabulky s chemickým složením minerálů

Datum	2016_ 05_15								
Bod	2/1.	8/1.	13/1.	14/1.	16/1.	18/1.	25/1.	26/1.	27/1.
Vzorek (vrt/bloubka)	C20- 178								
P_2O_5	1,47	1,31	1,64	0,49	0,61	0,70	0,05	1,00	0,87
Nb ₂ O ₃	0,20	0,16	0,00	0,00	0,00	0,00	0,00	0,17	0,00
Ta₂O₅	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SiO ₂	23,16	24,30	23,28	26,95	27,58	25,93	32,57	24,78	25,61
TiO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,03
ZrO ₂	46,29	46,73	48,62	55,73	56,64	54,64	66,11	50,66	51,00
HfO ₂	2,35	2,97	1,43	2,19	2,30	2,23	1,46	1,81	6,04
UO ₂	0,48	0,61	0,67	0,30	0,14	0,32	0,00	0,54	0,50
ThO ₂	1,01	0,70	0,75	0,26	0,24	0,19	0,00	0,28	0,39
Al ₂ O ₃	0,99	1,33	0,68	0,48	0,62	0,76	0,00	0,99	1,01
Sc ₂ O ₃	0,26	0,37	0,22	0,11	0,29	0,35	0,00	0,18	0,44
Y ₂ O ₃	6,05	4,87	5,15	1,96	1,76	2,17	0,17	5,08	2,54
Dy ₂ O ₃	0,70	0,67	0,59	0,20	0,23	0,31	0,00	0,66	0,40
Er ₂ O ₃	1,01	0,86	0,77	0,34	0,31	0,36	0,11	0,91	0,61
Yb ₂ O ₃	3,40	2,14	1,54	0,60	0,69	0,62	0,00	1,88	0,99
CaO	1,24	0,95	1,60	0,80	0,66	0,92	0,03	0,80	1,20
FeO	1,10	0,71	1,88	1,49	1,30	1,34	0,06	0,65	1,14
F	1,84	1,53	1,40	0,76	0,74	0,89	0,00	1,63	1,31
Suma	91,54	90,20	90,21	92,65	94,10	91,73	100,56	92,02	94,09
5	0.044	0.000	0.040	0.044	0.047	0.000	0.004	0.000	0.005
P	0,044	0,039	0,049	0,014	0,017	0,020	0,001	0,029	0,025
	0,004	0,003	0,000	0,000	0,000	0,000	0,000	0,003	0,000
la Si	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,020	0,000	0,010	0,907	0,911	0,002	0,995	0,000	0,009
7r	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001
∠i Hf	0,733	0,004	0,001	0,014	0,912	0,307	0,900	0,000	0,044
11	0,024	0,000	0.005	0.002	0,022	0,022	0,010	0.004	0.004
Th	0.008	0,006	0,006	0.002	0.002	0,001	0,000	0.002	0.003
AI	0.041	0.055	0.028	0.019	0.024	0.030	0.000	0.041	0.041
Sc	0.008	0.011	0.007	0.003	0.008	0.010	0.000	0.006	0.013
Y	0,114	0,091	0,096	0,035	0,031	0,039	0,003	0,094	0,046
Dy	0,008	0,008	0,007	0,002	0,002	0,003	0,000	0,007	0,004
Er	0,011	0,010	0,009	0,004	0,003	0,004	0,001	0,010	0,007
Yb	0,037	0,023	0,016	0,006	0,007	0,006	0,000	0,020	0,010
Ca	0,047	0,036	0,060	0,029	0,023	0,033	0,001	0,030	0,044
Fe	0,033	0,021	0,055	0,042	0,036	0,038	0,001	0,019	0,032
Suma kat.	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
F	0,206	0,170	0,155	0,081	0,077	0,096	0,000	0,179	0,141
O ₂ -	3,732	3,780	3,750	3,862	3,873	3,844	3,996	3,790	3,806

Tabulka T1: Chemické složení (hm.%) a přepočtený krystalochem. vzorec zirkonu (apfu)

Datum	2016_ 05_15								
Bod	29/1.	30/1.	34/1.	35/1.	47/1.	48/1.	59/1.	64/1.	67/1. D7
Vzorek (vrt/bloubka)	C20- 178	C20- 178	C20- 178	C20- 178	P7- 335	P7- 335	P7- 335	P7- 335	P7- 335
P_2O_5	1,86	0,15	1,47	1,25	0,63	1,48	1,16	1,44	1,98
Nb ₂ O ₃	0,00	0,00	0,00	0,15	0,00	0,57	0,46	0,96	0,84
Ta ₂ O ₅	0,00	0,00	0,00	0,00	0,00	0,11	0,00	0,00	0,16
SiO ₂	22,29	32,13	23,78	23,97	26,91	24,42	26,12	25,84	23,29
TiO ₂	0,04	0,13	0,00	0,00	0,00	0,05	0,43	0,00	0,00
ZrO ₂	46,85	65,48	48,91	46,70	54,94	45,72	49,01	44,38	42,72
HfO ₂	2,17	1,79	3,12	4,49	2,76	5,13	6,69	7,31	6,28
UO ₂	0,70	0,10	0,69	0,45	0,40	0,45	1,18	1,83	1,99
ThO ₂	0,68	0,44	0,28	0,36	0,29	1,07	0,46	1,23	1,11
Al ₂ O ₃	1,19	0,06	0,96	0,96	0,96	0,93	1,04	1,22	1,03
Sc ₂ O ₃	0,23	0,03	0,26	0,39	0,19	0,46	0,44	0,53	0,60
Y ₂ O ₃	5,92	0,55	4,31	4,70	1,41	2,63	1,73	2,51	2,98
Dy ₂ O ₃	0,83	0,11	0,61	0,61	0,39	0,81	0,50	0,77	0,88
Er_2O_3	0,91	0,13	0,71	0,83	0,34	0,78	0,53	0,73	0,83
Yb ₂ O ₃	1,84	0,22	1,66	1,85	0,92	2,09	1,16	1,62	2,02
CaO	1,77	0,09	1,15	1,09	1,39	1,53	1,35	1,81	1,93
FeO	1,31	0,33	1,05	1,08	0,46	0,29	0,19	0,07	0,11
F	1,76	0,18	1,87	1,47	0,54	0,79	0,74	0,86	0,92
Suma	90,34	101,91	90,82	90,36	92,52	89,30	93,19	93,10	89,67
Р	0,056	0,004	0,044	0,037	0,018	0,045	0,034	0,042	0,061
Nb	0,000	0,000	0,000	0,003	0,000	0,010	0,008	0,017	0,016
Та	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,002
Si	0,789	0,976	0,839	0,850	0,903	0,871	0,891	0,889	0,841
Ti	0,001	0,003	0,000	0,000	0,000	0,001	0,011	0,000	0,000
Zr	0,808	0,970	0,842	0,807	0,899	0,795	0,815	0,744	0,752
Hf	0,022	0,016	0,031	0,045	0,026	0,052	0,065	0,072	0,065
U	0,006	0,001	0,005	0,004	0,003	0,004	0,009	0,014	0,016
Th	0,005	0,003	0,002	0,003	0,002	0,009	0,004	0,010	0,009
AI	0,050	0,002	0,040	0,040	0,038	0,039	0,042	0,049	0,044
Sc	0,007	0,001	0,008	0,012	0,005	0,014	0,013	0,016	0,019
Ŷ	0,111	0,009	0,081	0,089	0,025	0,050	0,031	0,046	0,057
Dy E-	0,010	0,001	0,007	0,007	0,004	0,009	0,006	0,008	0,010
Er	0,010	0,001	0,008	0,009	0,004	0,009	0,006	0,008	0,009
	0,020	0,002	0,010	0,020	0,009	0,023	0,012	0,017	0,022
Ga Fe	0,007	0,003	0,043	0,042	0,000	0,000	0,049	0,007	0,073
Suma kat	2 000	2 000	2 000	2 000	2 000	2 000	2 000	2 0002	2 000
F	0.196	0.017	0.208	0.164	0.058	0.089	0.080	0.094	0.104
O ₂ -	3,720	3,974	3,763	3,776	3,875	3,844	3,872	3,842	3,828

Tabulka T1, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec zirkonu (apfu)

	00_10
Bod 69/1. 70/1. 83/1. 84/1. 88/1. 12/1. 15/1. 16/1.	18/1.
VZOREK P7-	P7- 332
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,95
Nb ₂ O ₃ 0,52 0,30 1,53 0,85 0,90 0,00 0,00 0,44	0,29
Ta ₂ O ₅ 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	0,00
SiO ₂ 27,93 25,02 22,62 23,68 24,46 22,19 25,75 21,91	21,70
TiO ₂ 0,03 0,00 0,03 0,00 0,03 0,04 0,00 0,03	0,03
ZrO ₂ 44,87 49,15 40,34 44,92 46,10 46,83 53,52 43,21	44,15
HfO ₂ 4,75 3,94 2,51 2,76 4,97 4,20 3,76 3,47	3,18
UO ₂ 1,72 0,60 3,25 1,96 1,63 1,14 0,79 1,05	1,21
ThO ₂ 0,63 0,61 1,63 1,44 0,85 0,20 0,15 2,40	0,63
Al ₂ O ₃ 1,04 1,43 1,06 0,97 1,01 0,88 0,92 0,69	0,84
Sc ₂ O ₃ 0,65 0,43 0,30 0,34 0,41 0,59 0,41 0,58	0,62
Y ₂ O ₃ 2,53 2,57 3,62 2,86 2,31 3,74 1,83 4,64	4,36
Dy ₂ O ₃ 0,72 0,71 0,98 0,86 0,69 1,11 0,66 1,25	1,34
Er ₂ O ₃ 0,65 0,66 0,95 0,78 0,70 1,03 0,43 1,34	1,21
Yb ₂ O ₃ 1,68 2,01 2,45 2,08 1,58 2,81 1,46 3,76	3,26
CaO 1,94 1,57 2,01 1,79 1,72 2,25 1,53 1,79	2,23
FeO 0,11 0,21 0,00 0,10 0,12 0,69 0,60 0,51	0,64
F 0,85 0,87 0,92 0,84 0,80 1,13 0,63 0,99	1,01
Suma 92,30 91,60 86,35 88,00 89,76 91,39 93,53 91,22	89,65
P 0,048 0,045 0,068 0,054 0,045 0,077 0,031 0,092	0,089
Nb 0,009 0,005 0,029 0,016 0,016 0,000 0,000 0,008	0,005
Ta 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001	0,000
Si 0,936 0,860 0,843 0,858 0,869 0,781 0,867 0,787	0,778
Ti 0,001 0,000 0,001 0,000 0,001 0,001 0,000 0,001	0,001
Zr 0,733 0,824 0,733 0,794 0,798 0,804 0,879 0,757	0,772
Hf 0,045 0,039 0,027 0,029 0,050 0,042 0,036 0,036	0,032
U 0,013 0,005 0,027 0,016 0,013 0,009 0,006 0,008	0,010
Th 0,005 0,005 0,014 0,012 0,007 0,002 0,001 0,020	0,005
Al 0,041 0,058 0,047 0,041 0,042 0,037 0,037 0,029	0,036
Sc 0,019 0,013 0,010 0,011 0,013 0,018 0,012 0,018	0,019
Y 0,045 0,047 0,072 0,055 0,044 0,070 0,033 0,089	0,083
Dy 0,008 0,008 0,012 0,010 0,008 0,013 0,007 0,014	0,015
Er 0,007 0,007 0,011 0,009 0,008 0,011 0,005 0,015	0,014
YD 0,017 0,021 0,028 0,023 0,017 0,030 0,015 0,041	0,036
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,085
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2,000 0 115
O_2^- 3,842 3,837 3,825 3,840 3.851 3.781 3.856 3.807	3.784

Tabulka T1, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec zirkonu (apfu)

Datum	2016_ 05_16	2016_ 05_16	2016_ 05_16	2016_ 05_16	2016_ 05_16	2016_ 05_16	2016_ 05_17	2016_ 05_17	2016_ 05_17
Bod	22/1.	24/1.	25/1.	84/1.	90/1.	95/1.	1/1.	2/1.	3/1.
Vzorek (vrt/bloubka)	P7- 332	P7- 332	P7- 332	P13- 133B	P13- 133B	P13- 133B	C20- 179	C20- 179	C20- 179
P ₂ O ₅	2,50	2,87	2,85	2,06	2,17	1,03	0,59	0,80	1,67
Nb ₂ O ₃	0,36	0,37	0,00	0,47	0,00	0,00	0,00	0,00	0,00
Ta₂O₅	0,16	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SiO ₂	23,77	22,00	22,16	22,50	21,08	23,09	23,99	26,89	24,63
TiO ₂	0,05	0,04	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZrO ₂	46,24	45,68	46,16	44,55	45,68	41,95	39,65	55,68	48,24
HfO ₂	4,63	3,51	3,59	2,90	4,23	6,12	2,74	2,63	5,44
UO ₂	1,28	0,83	0,90	1,06	0,62	0,72	0,64	0,27	0,31
ThO ₂	0,96	0,77	0,39	2,87	0,73	3,06	7,33	0,65	0,45
Al ₂ O ₃	0,57	0,80	0,84	0,76	0,77	1,57	1,17	1,14	1,91
Sc ₂ O ₃	0,74	0,63	0,60	2,14	2,50	2,49	0,18	0,30	0,49
Y ₂ O ₃	3,84	4,52	4,19	2,54	2,55	1,65	2,81	1,55	2,72
Dy ₂ O ₃	0,84	1,36	1,32	0,62	0,70	0,30	0,61	0,29	0,48
Er ₂ O ₃	1,06	1,34	1,22	0,78	0,83	0,61	0,55	0,32	0,55
Yb ₂ O ₃	3,11	3,51	3,17	2,47	2,71	1,62	1,04	0,97	1,16
CaO	1,73	2,06	2,28	1,05	1,16	1,05	1,91	0,86	0,96
FeO	0,48	0,61	0,46	0,43	2,32	2,65	3,41	1,48	1,77
F	0,84	1,13	1,02	1,95	1,65	1,24	1,25	0,96	1,12
Suma	93,15	92,01	91,15	89,14	89,69	89,13	87,83	94,76	91,90
Р	0,073	0,085	0,085	0,064	0,066	0,031	0,018	0,022	0,048
Nb	0,006	0,007	0,000	0,009	0,000	0,000	0,000	0,000	0,000
Та	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Si	0,824	0,774	0,781	0,822	0,758	0,824	0,872	0,885	0,840
Ti	0,001	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zr	0,782	0,784	0,793	0,794	0,801	0,730	0,703	0,894	0,803
Hf	0,046	0,035	0,036	0,030	0,043	0,062	0,028	0,025	0,053
U	0,010	0,006	0,007	0,009	0,005	0,006	0,005	0,002	0,002
Th	0,008	0,006	0,003	0,024	0,006	0,025	0,061	0,005	0,003
AI	0,023	0,033	0,035	0,033	0,033	0,066	0,050	0,044	0,077
Sc	0,022	0,019	0,018	0,068	0,078	0,077	0,006	0,009	0,014
Y	0,071	0,085	0,079	0,049	0,049	0,031	0,054	0,027	0,049
Dy	0,009	0,015	0,015	0,007	0,008	0,003	0,007	0,003	0,005
Er	0,012	0,015	0,013	0,009	0,009	0,007	0,006	0,003	0,006
YD Oc	0,033	0,038	0,034	0,027	0,030	0,018	0,011	0,010	0,012
Ca Ta	0,064	0,078	0,086	0,041	0,045	0,040	0,074	0,030	0,035
re Suma kat	2,014	2 000	2,000	2,000	0,070	0,079	2,104	2,041	2 000
Suma Kat. F	∠,000 ∩ ∩a?	∠,000 ∩ 126	∠,000 ∩ 112	2,000 0 226	∠,000 ∩ 188	2,000 0 170	∠,000 ∩ 1/12	∠,000 ∩ 100	∠,000 ∩ 121
02 ⁻	3,831	3,785	3,789	3,772	3,721	3,725	3,692	3,842	3,796

Tabulka T1, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec zirkonu (apfu)

Datum	2016_ 05_17	2016_ 05_17	2016_ 05_17	2016_ 05_17	2016_ 05_17	2016_ 05_17	2016_ 05_07	2016_ 05_17	2016_ 05_17
Bod	4/1.	5/1.	10/1.	12/1.	13/1.	25/1.	30/1.	31/1.	39/1.
Vzorek (vrt/bloubka)	C20-	P07-							
P_2O_5	0,24	0,55	1,02	1,78	1,17	1,29	2,01	0,54	1,36
Nb ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,24
Ta ₂ O ₅	0,00	0,16	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SiO ₂	30,04	29,57	24,71	23,73	25,05	25,34	22,17	26,85	26,94
TiO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZrO ₂	60,08	53,77	50,72	50,45	53,47	48,06	46,03	57,36	38,33
HfO ₂	2,69	10,39	3,59	1,65	1,97	8,16	2,35	2,12	1,66
UO ₂	0,34	0,52	0,41	0,45	0,41	0,35	0,66	0,42	0,35
ThO ₂	0,00	0,00	0,49	0,63	0,23	0,53	0,29	0,16	1,90
Al ₂ O ₃	0,63	0,08	1,04	1,08	1,07	0,72	1,34	0,49	4,09
Sc ₂ O ₃	0,04	0,58	0,51	0,17	0,16	0,71	0,36	0,08	0,28
Y_2O_3	0,50	0,12	3,16	4,06	3,42	2,45	5,73	1,27	2,60
Dy ₂ O ₃	0,11	0,00	0,50	0,73	0,59	0,56	1,05	0,19	0,77
Er ₂ O ₃	0,17	0,21	0,81	0,72	0,63	0,58	1,14	0,22	0,66
Yb ₂ O ₃	0,28	0,35	1,61	1,28	1,34	1,08	2,30	0,45	1,94
CaO	0,62	0,30	0,96	1,09	0,98	0,76	1,13	0,87	1,67
FeO	0,77	0,92	1,01	1,48	0,84	1,32	1,39	1,49	1,88
F	0,31	0,51	1,29	1,56	1,27	1,23	2,16	0,74	0,85
Suma	96,81	98,04	91,83	90,87	92,61	93,13	90,11	93,25	85,50
Р	0 007	0.015	0 030	0 053	0 034	0.038	0.061	0 015	0.039
Nb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.004
Та	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Si	0,955	0,965	0,857	0,827	0,855	0,877	0,793	0,899	0,917
Ti	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zr	0,931	0,855	0,858	0,857	0,890	0,811	0,803	0,936	0,636
Hf	0,024	0,097	0,036	0,016	0,019	0,081	0,024	0,020	0,016
U	0,002	0,004	0,003	0,003	0,003	0,003	0,005	0,003	0,003
Th	0,000	0,000	0,004	0,005	0,002	0,004	0,002	0,001	0,015
AI	0,024	0,003	0,042	0,044	0,043	0,029	0,056	0,019	0,164
Sc	0,001	0,016	0,015	0,005	0,005	0,021	0,011	0,002	0,008
Y	0,008	0,002	0,058	0,075	0,062	0,045	0,109	0,023	0,047
Dy	0,001	0,000	0,006	0,008	0,007	0,006	0,012	0,002	0,008
Er	0,002	0,002	0,009	0,008	0,007	0,006	0,013	0,002	0,007
Yb	0,003	0,004	0,017	0,014	0,014	0,011	0,025	0,005	0,020
Ca	0,021	0,010	0,036	0,041	0,036	0,028	0,043	0,031	0,061
Fe	0,021	0,025	0,029	0,043	0,024	0,038	0,042	0,042	0,053
Suma kat.	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
F	0,031	0,053	0,141	0,172	0,137	0,134	0,245	0,078	0,091
O_2^-	3,927	3,933	3,805	3,779	3,820	3,825	3,710	3,869	3,734

Tabulka T1, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec zirkonu (apfu)

Datum	2016_ 05_17								
Bod	40/1.	41/1.	60/1.	63/1.	64/1.	65/1.	66/1.	67/1.	76/1.
Vzorek	P07-	P07-	P07-	P07-	C20-	C20-	C20-	C20-	C20-
P_2O_5	1,82	1,69	1,31	2,32	1,29	3,21	3,37	3,23	3,28
Nb ₂ O ₃	0.18	0.23	0.16	0.54	0.62	0.14	0.20	0.19	0.38
Ta ₂ O ₅	0,00	0,00	0,00	0,76	0,16	0,12	0,00	0,00	0,11
SiO ₂	22,77	23,06	25,23	23,05	17,59	19,98	19,81	21,54	20,65
TiO ₂	0,00	0,00	0,00	0,04	0,06	0,00	0,00	0,00	0,00
ZrO ₂	44,84	44,60	49,45	36,59	47,46	45,23	46,53	42,32	43,56
HfO ₂	3,11	3,44	4,57	7,53	7,82	7,80	4,88	7,03	6,85
UO ₂	0,55	0,53	0,53	1,13	1,01	0,62	0,70	0,67	0,64
ThO₂	0,26	0,23	0,63	3,30	0,32	0,42	1,16	0,80	1,77
Al ₂ O ₃	1,03	1,07	0,57	0,77	1,46	1,16	1,28	1,08	1,08
Sc ₂ O ₃	0,37	0,39	0,34	0,64	1,19	1,36	0,96	1,19	1,12
Y ₂ O ₃	4,28	4,33	2,09	3,55	1,89	3,58	4,71	4,16	4,06
Dy ₂ O ₃	1,04	0,98	0,52	0,98	0,47	0,74	0,96	0,82	0,88
Er ₂ O ₃	0,98	1,06	0,64	0,92	0,43	0,74	0,84	0,93	0,88
Yb ₂ O ₃	2,66	2,85	1,74	2,21	0,94	1,67	2,11	2,05	1,90
CaO	1,87	1,78	1,84	1,80	1,44	0,66	0,61	1,13	0,84
FeO	1,32	1,42	1,65	0,37	1,80	1,35	0,98	1,01	0,77
F	0,80	0,83	0,65	0,69	1,32	1,86	1,88	2,13	2,04
Suma	87,90	88,49	91,90	87,17	87,27	90,65	90,97	90,27	90,82
Р	0,055	0,051	0,038	0,073	0,042	0,100	0,104	0,099	0,102
Nb	0,003	0,004	0,003	0,010	0,012	0,003	0,004	0,003	0,007
Та	0,000	0,000	0,000	0,008	0,002	0,001	0,000	0,000	0,001
Si	0,817	0,823	0,864	0,864	0,675	0,732	0,723	0,782	0,758
Ti	0,000	0,000	0,000	0,001	0,002	0,000	0,000	0,000	0,000
Zr	0,785	0,776	0,825	0,669	0,888	0,808	0,828	0,749	0,779
Hf	0,032	0,035	0,045	0,081	0,086	0,082	0,051	0,073	0,072
U	0,004	0,004	0,004	0,009	0,009	0,005	0,006	0,005	0,005
Th	0,002	0,002	0,005	0,028	0,003	0,003	0,010	0,007	0,015
AI	0,044	0,045	0,023	0,034	0,066	0,050	0,055	0,046	0,047
Sc	0,012	0,012	0,010	0,021	0,040	0,043	0,030	0,038	0,036
Y	0,082	0,082	0,038	0,071	0,039	0,070	0,091	0,080	0,079
Dy	0,012	0,011	0,006	0,012	0,006	0,009	0,011	0,010	0,010
Er	0,011	0,012	0,007	0,011	0,005	0,008	0,010	0,011	0,010
YD Oa	0,029	0,031	0,018	0,025	0,011	0,019	0,023	0,023	0,021
Ca Eo	0,072	0,068	0,067	0,072	0,059	0,026	0,024	0,044	0,033
re Suma kat	2,040	2,042	0,047	2,000	2 000	2,000	0,030	0,031	2,024
Suma Kat. F	∠,000 ∩ ∩Q1	2,000 0 003	2,000 0 070	2,000 0 082	∠,000 ∩ 161	2,000 0.216	∠,000 0.217	2,000 0 244	∠,000 0.236
O2 ⁻	3.777	3,774	3,820	3,835	3,748	3,777	3,781	3,751	3,778

Tabulka T1, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec zirkonu (apfu)

Datum	2016_ 05_17	2016_ 05_17	2016_ 05_22						
Bod	84/1.	85/1.	6/1.	13/1.	15/1.	17/1.	18/1.	21/1.	22 / 1 .
Vzorek (vrt/hloubka)	C20- 10	C20- 10	P7/100						
P ₂ O ₅	1,13	3,54	2,85	2,67	2,85	2,40	3,93	3,22	2,66
Nb ₂ O ₃	0,00	0,85	0,81	0,87	0,53	0,69	0,84	0,95	0,90
Ta₂O₅	0,00	0,28	0,37	0,60	0,13	0,00	0,42	0,34	0,43
SiO ₂	25,27	20,39	22,36	21,75	20,93	23,48	20,41	21,15	22,97
TiO ₂	0,00	0,06	0,00	0,00	0,00	0,00	0,04	0,04	0,04
ZrO ₂	53,45	40,38	39,38	39,44	39,82	42,44	36,92	39,91	42,18
HfO ₂	3,11	4,18	4,93	3,93	3,66	4,06	3,98	1,93	3,74
UO ₂	0,43	1,03	0,53	0,52	0,33	0,57	0,52	0,42	0,42
ThO ₂	0,32	4,15	3,82	5,31	3,17	0,85	4,01	6,04	4,81
Al ₂ O ₃	0,82	0,86	0,87	0,65	0,49	0,90	0,60	0,80	0,81
Sc ₂ O ₃	0,27	0,81	0,87	0,72	0,88	0,45	0,84	0,57	0,69
Y ₂ O ₃	1,74	5,10	5,29	4,71	4,96	4,23	6,54	5,50	5,00
Dy ₂ O ₃	0,37	0,94	1,68	1,48	1,42	1,25	2,00	1,61	1,41
Er ₂ O ₃	0,35	1,03	1,57	1,39	1,33	1,20	1,83	1,42	1,43
Yb ₂ O ₃	0,86	2,45	4,05	3,60	3,68	3,18	4,34	3,53	3,61
CaO	0,94	1,10	1,15	1,18	1,11	0,95	0,98	0,98	0,90
FeO	2,69	0,84	0,97	0,96	2,80	1,54	1,22	0,93	1,12
F	1,09	2,53	2,10	1,94	2,12	1,85	2,34	2,10	2,19
Suma	92,81	90,51	93,60	91,72	90,17	90,01	91,77	91,43	95,31
Р	0,032	0,112	0,087	0,083	0,089	0,073	0,123	0,101	0,079
Nb	0,000	0,016	0,015	0,016	0,010	0,013	0,016	0,018	0,016
Та	0,000	0,003	0,004	0,006	0,001	0,000	0,004	0,003	0,004
Si	0,854	0,760	0,802	0,801	0,769	0,842	0,756	0,781	0,809
Ti	0,000	0,002	0,000	0,000	0,000	0,000	0,001	0,001	0,001
Zr	0,880	0,734	0,688	0,709	0,714	0,742	0,667	0,718	0,725
Hf	0,030	0,044	0,050	0,041	0,038	0,042	0,042	0,020	0,038
U	0,003	0,009	0,004	0,004	0,003	0,005	0,004	0,003	0,003
Th	0,002	0,035	0,031	0,045	0,027	0,007	0,034	0,051	0,039
AI	0,033	0,038	0,037	0,028	0,021	0,038	0,026	0,035	0,033
Sc	0,008	0,026	0,027	0,023	0,028	0,014	0,027	0,018	0,021
Y	0,031	0,101	0,101	0,092	0,097	0,081	0,129	0,108	0,094
Dy E-	0,004	0,011	0,019	0,018	0,017	0,014	0,024	0,019	0,016
Er	0,004	0,012	0,018	0,016	0,015	0,014	0,021	0,016	0,016
YD Co	0,009	0,028	0,044	0,040	0,041	0,035	0,049	0,040	0,039
Ca Fo	0,034	0,044	0,044	0,047	0,044	0,030	0,039	0,039	0,034
i e Suma kat	2 000	2 000	2 000	2 000	2 000	2 000	2 000	2 000	2 000
F	2,000	2,000 0 298	2,000	2,000 0 226	2,000 0 246	2,000 0 210	2,000 0 274	2,000 0 245	2,000 0 244
0 ₂ -	3,804	3,738	3,738	3,755	3,687	3,758	3,720	3,753	3,751

Tabulka T1, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec zirkonu (apfu)

Datum	2016_ 05_22	2016_ 05_23	2016_ 05_23						
Bod	56/1.	78/1.	86/1.	87/1.	90/1.	92/1.	93/1.	11/1.	12/1.
Vzorek (vrt/hloubka)	P7/289	P7/289	P7/350	P7/350	P7/350	P7/350	P7/350	P7/281	P7/281
P_2O_5	0,65	0,89	1,53	1,77	2,10	1,91	1,62	1,86	2,02
Nb ₂ O ₃	0,00	0,00	0,52	0,35	0,83	1,04	0,23	0,00	0,00
Ta ₂ O ₅	0,00	0,00	0,00	0,00	0,31	0,50	0,00	0,00	0,00
SiO ₂	28,43	27,11	23,14	22,91	22,77	22,90	23,36	25,18	25,10
TiO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,05	0,00	0,00
ZrO ₂	57,60	53,68	46,22	46,91	42,51	38,14	44,44	51,62	48,43
HfO ₂	5,87	4,82	4,29	2,91	3,07	4,32	4,56	5,09	8,65
UO ₂	0,26	0,36	0,44	0,48	0,38	0,15	0,49	0,35	0,38
ThO ₂	0,00	0,24	0,43	0,23	3,83	4,82	0,78	0,14	0,00
Al ₂ O ₃	0,98	1,84	1,03	1,03	0,85	0,76	1,14	0,99	1,12
Sc ₂ O ₃	0,64	0,55	0,28	0,26	0,31	0,32	0,48	1,98	2,32
Y ₂ O ₃	0,09	0,52	3,16	3,35	3,87	3,73	3,46	1,05	0,97
Dy ₂ O ₃	0,16	0,32	1,02	1,08	1,28	1,23	1,08	0,48	0,40
Er ₂ O ₃	0,18	0,23	0,89	0,99	1,31	1,21	0,93	0,46	0,39
Yb ₂ O ₃	0,49	0,70	2,22	2,29	3,50	3,39	2,37	1,32	1,38
CaO	1.15	1.35	1.59	1.55	1.80	1.64	1.52	1.56	1.51
FeO	0,35	1,19	0,46	0,54	0,45	0,55	0,97	0,94	0,78
F	0,65	0,93	0,72	0,77	0,77	0,66	0,72	0,97	0,88
Suma	97,49	94,73	87,93	87,41	89,93	87,26	88,18	93,99	94,32
Р	0.018	0.025	0.047	0.054	0.064	0.061	0.049	0.052	0.057
Nb	0.000	0.000	0.010	0.006	0.015	0.020	0.004	0.000	0.000
Та	0,000	0,000	0,000	0,000	0,003	0,005	0,000	0,000	0.000
Si	0,912	0,884	0,839	0,831	0,826	0,859	0,841	0,838	0,840
Ti	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000
Zr	0,901	0,854	0,817	0,830	0,752	0,697	0,780	0,838	0,790
Hf	0,054	0,045	0,044	0,030	0,032	0,046	0,047	0,048	0,083
U	0,002	0,003	0,004	0,004	0,003	0,001	0,004	0,003	0,003
Th	0,000	0,002	0,004	0,002	0,032	0,041	0,006	0,001	0,000
AI	0,037	0,071	0,044	0,044	0,036	0,034	0,048	0,039	0,044
Sc	0,018	0,016	0,009	0,008	0,010	0,010	0,015	0,058	0,068
Y	0,002	0,009	0,061	0,065	0,075	0,074	0,066	0,019	0,017
Dy	0,002	0,003	0,012	0,013	0,015	0,015	0,013	0,005	0,004
Er	0,002	0,002	0,010	0,011	0,015	0,014	0,011	0,005	0,004
Yb	0,005	0,007	0,025	0,025	0,039	0,039	0,026	0,013	0,014
Ca	0,040	0,047	0,062	0,060	0,070	0,066	0,058	0,055	0,054
Fe Ourse Lat	0,009	0,032	0,014	0,016	0,014	0,017	0,029	0,026	0,022
Suma kat.	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
F	0,066	0,096	0,083	0,088	0,089	0,078	0,082	0,102	0,093
O_2^-	3,895	3,831	3,831	3,827	3,819	3,828	3,809	3,824	3,830

Tabulka T1, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec zirkonu (apfu)

Datum	2016_ 05_23								
Bod	15/1.	16/1.	47/1.	53/1.	55/1.	66/1.	80/1.	84/1.	85/1.
Vzorek (vrt/bloubka)	P7/281	P7/281	P2- 245	P2- 245	P2- 245	P2- 245	P2- 327	P2- 327	P2- 327
P_2O_5	2,57	2,42	3,49	2,91	3,01	1,80	2,83	2,87	1,23
Nb ₂ O ₃	1,32	1,11	1,33	0,29	0,37	0,00	0,00	0,12	0,00
Ta ₂ O ₅	0,00	0,00	0,22	0,00	0,00	0,00	0,00	0,00	0,00
SiO ₂	21,15	22,22	21,69	19,81	19,48	23,65	21,27	19,64	24,44
TiO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,09	0,06	0,03
ZrO ₂	43,57	44,61	34,87	44,27	40,99	48,86	45,37	45,92	52,78
HfO ₂	3,67	2,91	4,18	3,12	2,87	7,13	6,92	3,21	3,24
UO ₂	0,41	0,36	1,72	0,67	0,97	0,35	0,44	0,63	0,36
ThO ₂	0,66	0,35	9,57	0,89	1,53	0,35	0,95	1,19	0,61
Al ₂ O ₃	0,73	1,01	1,08	0,68	0,92	1,52	0,99	1,13	1,44
Sc ₂ O ₃	1,88	1,99	0,70	1,10	1,07	1,16	1,28	0,86	0,34
Y ₂ O ₃	3,03	3,09	3,35	3,36	3,64	1,06	2,90	3,65	1,15
Dy ₂ O ₃	0,97	0,89	1,04	0,94	1,01	0,37	1,12	1,26	0,49
Er_2O_3	0,97	1,03	0,88	0,97	1,02	0,40	0,98	1,10	0,52
Yb ₂ O ₃	2,62	2,51	2,14	2,35	2,60	1,23	2,37	2,54	0,91
CaO	1,88	1,46	2,70	2,67	2,81	1,73	1,75	1,74	1,35
FeO	0,40	0,72	0,51	0,34	0,25	0,83	1,23	1,65	1,29
F	1,02	1,03	1,09	1,03	0,98	0,79	1,37	1,47	0,98
Suma	86,84	87,70	90,55	85,39	83,50	91,23	91,84	89,02	91,15
Р	0,080	0,074	0,108	0,092	0,098	0,053	0,085	0,089	0,036
Nb	0,025	0,021	0,025	0,006	0,007	0,000	0,000	0,002	0,000
Та	0,000	0,000	0,002	0,000	0,000	0,000	0,000	0,000	0,000
Si	0,777	0,798	0,798	0,744	0,746	0,819	0,756	0,718	0,841
Ti	0,000	0,000	0,000	0,000	0,000	0,000	0,002	0,002	0,001
Zr	0,781	0,781	0,625	0,811	0,766	0,825	0,787	0,819	0,886
Hf	0,038	0,030	0,044	0,033	0,031	0,071	0,070	0,033	0,032
U	0,003	0,003	0,014	0,006	0,008	0,003	0,004	0,005	0,003
Th	0,006	0,003	0,080	0,008	0,013	0,003	0,008	0,010	0,005
Al	0,032	0,043	0,047	0,030	0,042	0,062	0,041	0,049	0,058
Sc	0,060	0,062	0,022	0,036	0,036	0,035	0,040	0,027	0,010
Y	0,059	0,059	0,066	0,067	0,074	0,020	0,055	0,071	0,021
Dy	0,011	0,010	0,012	0,011	0,012	0,004	0,013	0,015	0,005
Er	0,011	0,012	0,010	0,011	0,012	0,004	0,011	0,013	0,006
YD Ca	0,029	0,027	0,024	0,027	0,030	0,013	0,026	0,028	0,010
Ca Fo	0,074	0,000	0,100	0,107	0,115	0,004	0,007		0,000
i e Suma kat	2 000	2 000	2 000	2 000	2 000	2 000	2 000	2 000	2 000
F	∠,000 0 118	2,000	2,000 0 126	2,000	2,000 0 110	2,000	2,000 0 153	2,000	2,000
O2 ⁻	3,805	3.804	3,792	3.778	3,767	3.826	3,770	3,740	3.823
. =	- /	-,	- ,	- ,	- ,	-,	- , 2	- , 2	-,-=-

Tabulka T1, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec zirkonu (apfu)

Datum	2016_ 05_23	2017_ 08 07							
Bod	89/1.	90/1.	91/1.	92/1.	96/1.	104 / 1	105 / 1	109 / 1	1/1.
Vzorek (vrt/hloubka)	P2- 327	C20/24 6							
P ₂ O ₅	2,58	3,43	3,53	2,39	2,68	2,96	4,78	2,09	1,42
Nb ₂ O ₃	0,00	0,26	0,30	0,00	0,57	0,33	0,56	0,16	0,47
Ta ₂ O ₅	0,00	0,00	0,00	0,00	0,54	0,00	0,00	0,00	0,31
SiO ₂	20,36	18,48	19,19	21,40	20,40	20,28	16,71	22,12	23,84
TiO ₂	0,04	0,06	0,08	0,05	0,16	0,09	0,06	0,06	0,07
ZrO ₂	45,74	42,10	43,11	48,03	43,48	46,17	37,22	49,48	48,71
HfO ₂	5,07	4,28	3,12	4,05	4,95	3,61	3,19	4,12	5,33
UO ₂	0,53	0,65	0,72	0,49	1,27	0,63	1,79	0,54	0,55
ThO ₂	1,20	1,96	1,75	1,21	3,43	1,11	2,49	0,73	1,08
Al ₂ O ₃	1,00	0,70	0,95	1,13	0,97	1,04	0,77	1,13	1,05
Sc ₂ O ₃	0,90	0,97	0,95	0,78	0,89	0,95	0,91	0,69	0,42
Y ₂ O ₃	2,66	4,04	4,18	2,65	2,54	3,66	5,86	2,52	3,02
Dy ₂ O ₃	1,10	1,31	1,40	0,98	1,01	1,35	1,81	0,87	0,79
Er ₂ O ₃	0,90	1,21	1,36	0,83	0,81	1,17	1,76	0,90	0,71
Yb ₂ O ₃	2,00	2,90	3,25	2,16	1,79	2,85	3,69	2,13	1,58
CaO	1,48	1,92	2,14	1,80	2,10	2,24	2,18	2,13	1,14
FeO	1,34	2,02	0,86	1,48	0,48	0,83	0,64	0,74	0,95
F	1,21	1,34	1,49	1,33	1,27	1,50	1,76	1,36	1,15
Suma	88,10	87,61	88,36	90,75	89,30	90,77	86,18	91,75	92,59
Р	0,081	0,109	0,111	0,072	0,084	0,090	0,159	0,062	0,042
Nb	0,000	0,005	0,006	0,000	0,011	0,006	0,011	0,003	0,008
Та	0,000	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,003
Si	0,753	0,696	0,712	0,761	0,756	0,728	0,654	0,776	0,833
Ti	0,001	0,002	0,002	0,001	0,004	0,002	0,002	0,001	0,002
Zr	0,825	0,772	0,780	0,833	0,786	0,808	0,711	0,847	0,830
Ht	0,054	0,046	0,033	0,041	0,052	0,037	0,036	0,041	0,053
U	0,004	0,005	0,006	0,004	0,010	0,005	0,016	0,004	0,004
	0,010	0,017	0,015	0,010	0,029	0,009	0,022	0,006	0,009
AI	0,043	0,031	0,042	0,047	0,042	0,044	0,035	0,047	0,043
v	0,029	0,032	0,031	0,024	0,029	0,030	0,031	0,021	0,013
T Dv	0,052	0,001	0,003	0,030	0,030	0,070	0,122	0,047	0,000
Ey Fr	0,010	0,010	0,017	0,009	0,012	0,010	0,023	0,010	0,003
Yb	0.023	0.033	0.037	0.023	0,000	0.031	0.044	0.023	0,000
Ca	0.059	0.077	0.085	0.068	0.083	0.086	0.092	0.080	0.043
Fe	0,042	0,064	0,027	0,044	0,015	0,025	0,021	0,022	0,028
Suma kat.	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
F	0,142	0,159	0,175	0,150	0,149	0,171	0,218	0,151	0,127
O ₂ -	3,784	3,733	3,747	3,766	3,796	3,750	3,725	3,777	3,820

Tabulka T1, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec zirkonu (apfu)

Datum	2017_ 08_07								
Bod	9/1.	33/1.	34/1.	35 / 1 .	36/1.	37/1.	39/1.	40/1.	55 / 1 .
Vzorek	C20/	C20/	C20/	C20/	C20/	P2_ 100	P2_ 100	P2_	P2_ 100
P_2O_5	1.11	0.36	0.57	0.97	1.09	2.45	2.63	1.37	2.40
Nb ₂ O ₃	0.39	0.00	0.00	0.22	0.00	0.78	0.36	0.00	0.33
Ta ₂ O ₅	0.83	0.00	0.28	0.54	0.27	0.00	0.00	0.00	0.00
SiO ₂	25,13	29,17	28,83	25,93	26,20	22,43	22,23	23,32	21,41
TiO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,04
ZrO ₂	44,13	56,45	51,28	47,19	48,74	43,74	45,40	49,88	44,01
HfO ₂	8,86	6,01	11,91	8,93	7,45	3,81	2,86	4,58	4,75
UO ₂	0,36	0,23	0,15	0,17	0,21	1,33	1,03	0,43	0,81
ThO₂	1,64	0,00	0,20	1,33	1,51	0,14	0,65	0,24	0,44
Al ₂ O ₃	1,02	0,08	0,28	0,74	0,74	0,71	1,11	1,05	0,75
Sc ₂ O ₃	0,67	0,46	0,43	0,43	0,54	0,59	0,98	0,59	1,00
Y ₂ O ₃	3,61	0,00	0,66	2,94	2,13	2,79	3,51	2,13	3,43
Dy ₂ O ₃	0,62	0,00	0,26	0,54	0,42	0,96	0,92	0,56	0,95
Er ₂ O ₃	0,70	0,00	0,26	0,64	0,56	0,94	1,08	0,55	1,12
Yb ₂ O ₃	1,63	0,15	0,44	1,34	1,33	2,56	3,54	1,84	2,88
CaO	0,94	0,91	0,56	0,82	0,93	1,92	1,89	1,81	1,96
FeO	0,79	1,50	1,07	0,69	0,90	1,19	1,52	1,22	2,38
F	0,72	0,24	0,35	0,76	0,78	0,81	0,84	0,71	0,71
Suma	93,15	95,55	97,53	94,18	93,78	87,14	90,54	90,28	89,37
Ρ	0.033	0 010	0.016	0 028	0 032	0 075	0 078	0 041	0.073
Nb	0.007	0.000	0.000	0.004	0.000	0.015	0.006	0.000	0.006
Та	0,008	0,000	0,002	0,005	0,002	0,000	0,000	0,000	0,000
Si	0,877	0,948	0,949	0,895	0,897	0,817	0,780	0,818	0,765
Ti	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001
Zr	0,751	0,895	0,823	0,794	0,814	0,777	0,777	0,853	0,767
Hf	0,088	0,056	0,112	0,088	0,073	0,040	0,029	0,046	0,048
U	0,003	0,002	0,001	0,001	0,002	0,011	0,008	0,003	0,006
Th	0,013	0,000	0,001	0,010	0,012	0,001	0,005	0,002	0,004
AI	0,042	0,003	0,011	0,030	0,030	0,031	0,046	0,043	0,032
Sc	0,020	0,013	0,012	0,013	0,016	0,019	0,030	0,018	0,031
Y	0,067	0,000	0,012	0,054	0,039	0,054	0,065	0,040	0,065
Dy	0,007	0,000	0,003	0,006	0,005	0,011	0,010	0,006	0,011
Er	0,008	0,000	0,003	0,007	0,006	0,011	0,012	0,006	0,013
Yb	0,017	0,001	0,004	0,014	0,014	0,028	0,038	0,020	0,031
Ca	0,035	0,032	0,020	0,030	0,034	0,075	0,071	0,068	0,075
re Suma kat	2,023	0,041	0,030	0,020 2,000	0,020 2,000	0,030	0,045	0,030	2,000
Suma kal. F	∠,000 ∩ ∩₽∩	∠,000 ∩ ∩25	2,000 0 036	∠,000 ∩ ∩₽3	∠,000 ∩ ∩₽4	∠,000 ∩ ∩Ω?	∠,000 ∩ ∩Ω?	∠,000 ∩ ∩70	∠,000 ∩ ∩₽∩
Γ Ω2 ⁻	3 845	3 011	3 010	3 265	3 260	0,093 3 811	3 770	3 811	3 761
U 2	5,045	5,511	0,010	5,005	5,000	5,011	5,113	5,011	5,701

Tabulka T1, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec zirkonu (apfu)

Bod $5971.$ $6071.$ $6271.$ $6571.$ $7071.$ $8271.$ $9571.$ 10171 10271 Vzorek (vrt/hloubka) $P2_{-}$ 199 199 199 199 142	Datum	2017_ 08_07								
Vzorek (vrt/hloubka)P2 199P2 199P2 199P2 199C20- 142C20- 	Bod	59/1.	60/1.	62/1.	65/1.	70/1.	82/1.	95/1.	101/1	102/1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Vzorek (vrt/hloubka)	P2_ 199	P2_ 199	P2_ 199	P2_ 199	C20- 142	C20- 142	C20- 142	C20- 142	C20- 142
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	P ₂ O ₅	1,96	2,01	3,04	1,44	4,88	1,60	0,18	1,30	1,04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nb ₂ O ₃	0,16	0,11	0,68	0,00	0,00	0,47	0,00	0,16	0,95
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ta ₂ O ₅	0,00	0,00	0,00	0,00	0,17	0,22	0,00	0,23	0,00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SiO ₂	23,46	22,43	20,65	24,51	22,34	20,02	29,77	24,38	16,41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TiO ₂	0,04	0,03	0,00	0,00	0,00	0,00	0,00	0,00	0,05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ZrO ₂	49,76	46,29	41,12	50,89	42,07	32,81	59,76	46,10	57,75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HfO ₂	3,68	4,27	3,40	3,46	7,71	5,85	4,18	9,47	3,56
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	UO ₂	0,88	1,08	1,07	0,49	0,36	0,97	0,57	0,62	0,69
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ThO ₂	0,28	0,48	2,11	0,45	0,39	0,27	0,11	0,13	0,33
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Al ₂ O ₃	0,44	1,13	0,57	1,17	0,86	0,62	0,03	1,44	0,79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sc ₂ O ₃	0,55	0,74	0,90	0,47	0,42	0,26	0,09	0,60	0,15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Y ₂ O ₃	2,03	3,11	4,07	1,88	6,44	3,18	0,24	2,69	2,20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dy ₂ O ₃	0,52	0,84	1,02	0,51	1,13	0,41	0,00	0,61	0,67
Yb2O32,162,393,671,681,981,550,521,481,32CaO2,111,972,121,510,950,700,111,541,71	Er ₂ O ₃	0,71	0,81	1,18	0,59	1,18	0,72	0,19	0,68	0,56
CaO 2,11 1,97 2,12 1,51 0,95 0,70 0,11 1,54 1,71	Yb ₂ O ₃	2,16	2,39	3,67	1,68	1,98	1,55	0,52	1,48	1,32
	CaO	2,11	1,97	2,12	1,51	0,95	0,70	0,11	1,54	1,71
FeO 2,39 1,49 2,95 2,27 0,74 11,54 0,16 1,10 1,06	FeO	2,39	1,49	2,95	2,27	0,74	11,54	0,16	1,10	1,06
F 0,72 0,82 0,68 0,55 1,21 0,85 0,00 1,54 1,47	F	0,72	0,82	0,68	0,55	1,21	0,85	0,00	1,54	1,47
Suma 91,85 89,99 89,22 91,85 92,82 82,03 95,92 94,08 90,71	Suma	91,85	89,99	89,22	91,85	92,82	82,03	95,92	94,08	90,71
P 0,057 0,060 0,093 0,041 0,144 0,051 0,005 0,038 0,033	Р	0,057	0,060	0,093	0,041	0,144	0,051	0,005	0,038	0,033
Nb 0,003 0,002 0,013 0,000 0,000 0,009 0,000 0,003 0,018	Nb	0,003	0,002	0,013	0,000	0,000	0,009	0,000	0,003	0,018
Ta 0,000 0,000 0,000 0,000 0,002 0,002 0,000 0,002 0,000	Та	0,000	0,000	0,000	0,000	0,002	0,002	0,000	0,002	0,000
Si 0,806 0,793 0,744 0,832 0,781 0,748 0,974 0,840 0,620	Si	0,806	0,793	0,744	0,832	0,781	0,748	0,974	0,840	0,620
Ti 0,001 0,001 0,000 0,000 0,000 0,000 0,000 0,001 0,001	Ti	0,001	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,001
Zr 0,834 0,798 0,723 0,843 0,718 0,598 0,953 0,774 1,063	Zr	0,834	0,798	0,723	0,843	0,718	0,598	0,953	0,774	1,063
Hf 0,036 0,043 0,035 0,033 0,077 0,062 0,039 0,093 0,038	Hf	0,036	0,043	0,035	0,033	0,077	0,062	0,039	0,093	0,038
U 0,007 0,008 0,009 0,004 0,003 0,008 0,004 0,005 0,006	U	0,007	0,008	0,009	0,004	0,003	0,008	0,004	0,005	0,006
Th 0,002 0,004 0,017 0,003 0,003 0,002 0,001 0,003	Th	0,002	0,004	0,017	0,003	0,003	0,002	0,001	0,001	0,003
Al 0,018 0,047 0,024 0,047 0,036 0,027 0,001 0,058 0,035	AI	0,018	0,047	0,024	0,047	0,036	0,027	0,001	0,058	0,035
Sc 0,017 0,023 0,028 0,014 0,013 0,008 0,003 0,018 0,005	Sc	0,017	0,023	0,028	0,014	0,013	0,008	0,003	0,018	0,005
Y 0,037 0,058 0,078 0,034 0,120 0,063 0,004 0,049 0,044	Ŷ	0,037	0,058	0,078	0,034	0,120	0,063	0,004	0,049	0,044
Dy 0,006 0,010 0,012 0,006 0,013 0,005 0,000 0,007 0,008	Dy Fr	0,006	0,010	0,012	0,006	0,013	0,005	0,000	0,007	0,008
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Er	0,008	0,009	0,013	0,006	0,013	0,008	0,002	0,007	0,007
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0,023	0,026	0,040	0,017	0,021	0,010	0,005	0,010	0,015
$\mathbf{Fe} \qquad 0.069 0.044 0.089 0.064 0.022 0.004 0.004 0.037 0.009$	Fe	0,070 N NEQ	0,075	0,002 N NRQ	0,055	0,030	0,020	0,004	0,057	0,009
Suma kat 2 000 2 000 2 000 2 000 2 000 2 000 2 000 2 000 2 000	Suma kat	2 000	2 000	2 000	2 000	2 000	2 000	2 000	2 000	2 000
F 0.078 0.092 0.077 0.059 0.133 0.101 0.000 0.167 0.176	F	0.078	0.092	0.077	0.059	0.133	0.101	0.000	0.167	0.176
O_2^- 3,790 3,780 3,745 3,810 3,842 3,527 3,986 3,771 3,778	O ₂ -	3,790	3,780	3,745	3,810	3,842	3,527	3,986	3,771	3,778

Tabulka T1, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec zirkonu (apfu)

Datum	2017_ 08_07	2017_ 08_07	2017_ 08_25						
Bod	105 / 1 .	110 / 1	3/1.	6/1.	22/1.	25/1.	27/1.	28/1.	34 / 1 .
Vzorek (vrt/hloubka)	C20- 142	C20- 142	C20- 195	C20- 195	C20- 195	C20- 195	C20- 195	C20- 195	P02- 301
P ₂ O ₅	1,03	1,46	0,67	1,56	1,28	0,66	0,95	0,48	1,79
Nb ₂ O ₃	0,00	0,34	0,00	0,00	0,00	0,00	0,26	0,00	0,27
Ta ₂ O ₅	0,13	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,13
SiO ₂	25,40	23,95	26,25	27,92	24,22	25,81	24,99	29,55	23,54
TiO ₂	0,04	0,00	0,06	0,00	0,00	0,00	0,06	0,00	0,00
ZrO ₂	47,83	46,45	51,93	53,54	51,20	53,99	53,61	58,88	43,15
HfO ₂	10,15	2,86	3,43	5,00	2,75	2,99	2,20	2,76	6,60
UO ₂	0,37	0,81	0,31	0,17	0,90	0,32	0,14	0,12	0,40
ThO ₂	0,00	0,41	0,13	0,23	0,35	0,14	0,12	0,23	1,48
Al ₂ O ₃	1,39	1,38	0,77	0,30	0,55	1,16	0,63	0,20	1,01
Sc ₂ O ₃	0,72	0,17	0,22	0,21	0,11	0,07	0,03	0,15	0,53
Y ₂ O ₃	1,97	3,39	3,33	3,47	3,51	2,30	3,87	1,19	3,23
Dy ₂ O ₃	0,51	0,65	0,39	0,42	0,51	0,29	0,41	0,15	1,11
Er ₂ O ₃	0,48	0,78	0,60	0,66	0,72	0,43	0,68	0,25	1,02
Yb ₂ O ₃	1,06	1,85	1,44	1,26	1,67	1,03	1,28	0,76	2,76
CaO	1,25	1,50	0,75	0,41	1,77	1,30	0,87	0,27	1,58
FeO	1,12	2,03	0,85	0,30	0,82	1,29	1,10	0,36	0,85
F	1,18	1,99	1,08	0,63	1,06	1,18	1,30	0,51	0,76
Suma	94,63	90,00	92,20	96,06	91,41	93,26	92,66	95,86	90,86
Р	0,030	0,043	0,019	0,043	0,038	0,019	0,028	0,013	0,054
Nb	0,000	0,006	0,000	0,000	0,000	0,000	0,005	0,000	0,005
Та	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001
Si	0,863	0,840	0,899	0,921	0,843	0,869	0,858	0,961	0,839
Ti	0,001	0,000	0,001	0,000	0,000	0,000	0,002	0,000	0,000
Zr	0,792	0,795	0,867	0,861	0,869	0,886	0,897	0,934	0,750
Hf	0,098	0,029	0,034	0,047	0,027	0,029	0,022	0,026	0,067
U	0,003	0,006	0,002	0,001	0,007	0,002	0,001	0,001	0,003
In	0,000	0,003	0,001	0,002	0,003	0,001	0,001	0,002	0,012
AI	0,050	0,057	0,031	0,012	0,022	0,046	0,025	0,008	0,042
v	0,021	0,005	0,000	0,000	0,003	0,002	0,001	0,004	0,010
T DV	0,030	0,003	0,001	0,001	0,005	0,041	0,071	0,021	0,001
Fr	0,000	0,007	0,004	0,004	0,000	0,005	0,003	0,002	0,013
 Yb	0.011	0.020	0.015	0.013	0.018	0.011	0.013	0.008	0.030
Ca	0.045	0.056	0.027	0.014	0.066	0.047	0.032	0.009	0.060
Fe	0,032	0,060	0,024	0,008	0,024	0,036	0,032	0,010	0,025
Suma kat.	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
F	0,127	0,221	0,117	0,066	0,117	0,126	0,141	0,052	0,085
O ₂ -	3,807	3,718	3,837	3,915	3,810	3,803	3,817	3,939	3,798

Tabulka T1, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec zirkonu (apfu)
Datum	2017_	2017_	2017_	2017_	2017_	2017_	2017_	2017_	2017_
Bod	08_25 40 / 1 .	08_25 45/1.	08_25 47 / 1 .	08_25 51 / 1 .	08_25 52 / 1 .	08_25 60 / 1 .	08_25 61 / 1 .	08_25 64 / 1	08_29 1/1.
Vzorek	P02-	P02-	P02-	P02-	P02-	P02-	P02-	P02-	P02-
(vrt/hloubka)	301	301	301	301	301	301	301	301	410
P_2O_5	1,07	2,13	1,92	1,46	1,44	1,49	2,27	1,58	3,14
Nb ₂ O ₃	0,14	0,50	0,27	0,14	0,00	0,55	0,54	0,31	0,80
Ta ₂ O ₅	0,00	0,34	0,00	0,18	0,17	0,00	0,00	0,00	0,00
SiO ₂	23,56	21,46	20,98	23,81	24,07	19,24	21,21	20,78	25,37
TiO ₂	0,00	0,00	0,00	0,00	0,00	0,04	0,00	0,00	0,00
ZrO ₂	49,17	35,38	41,93	42,76	45,63	39,66	40,47	45,78	40,26
HfO ₂	2,94	8,64	2,70	9,55	9,19	3,93	2,89	3,46	3,29
UO ₂	0,44	0,54	0,72	0,39	0,30	0,66	0,61	0,42	1,41
ThO ₂	0,14	3,11	1,72	0,78	0,21	0,67	3,79	0,38	1,90
Al ₂ O ₃	0,97	0,76	0,78	0,85	0,78	0,77	0,75	0,79	1,03
Sc ₂ O ₃	0,18	0,60	0,40	0,68	0,71	0,31	0,43	0,25	0,36
Y ₂ O ₃	2,59	3,86	4,15	2,34	1,58	3,02	4,48	3,29	4,95
Dy ₂ O ₃	0,80	1,41	1,39	0,87	0,65	1,10	1,55	1,02	1,15
Er ₂ O ₃	0,72	1,38	1,29	0,86	0,61	1,14	1,45	1,01	1,00
Yb ₂ O ₃	2,03	3,56	3,75	2,12	1,69	2,91	3,84	2,52	2,56
CaO	2.08	2.35	2.29	1.71	1.54	2.72	2.13	2.83	1.16
FeO	1.46	0.54	0.61	1.32	1.79	0.85	0.59	0.50	0.50
F	0,78	0,89	0,87	0,71	0,66	0,73	0,95	0,92	2,05
Suma	89,55	88,68	86,63	90,90	91,19	81,26	88,85	86,45	91,26
Р	0,032	0,068	0,061	0,044	0,043	0,050	0,072	0,050	0,093
Nb	0,002	0,010	0,005	0,002	0,000	0,011	0,010	0,006	0,014
Та	0,000	0,004	0,000	0,002	0,002	0,000	0,000	0,000	0,000
Si	0,828	0,810	0,788	0,849	0,847	0,768	0,788	0,773	0,888
Ti	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000
Zr	0,843	0,651	0,768	0,743	0,783	0,772	0,733	0,831	0,687
Hf	0,030	0,093	0,029	0,097	0,092	0,045	0,031	0,037	0,033
U	0,003	0,005	0,006	0,003	0,002	0,006	0,005	0,004	0,011
Th	0,001	0,027	0,015	0,006	0,002	0,006	0,032	0,003	0,015
AI	0,040	0,034	0,034	0,036	0,032	0,036	0,033	0,035	0,043
Sc	0,006	0,020	0,013	0,021	0,022	0,011	0,014	0,008	0,011
Y Du	0,048	0,078	0,083	0,044	0,030	0,064	0,089	0,065	0,092
Dy E-	0,009	0,017	0,017	0,010	0,007	0,014	0,019	0,012	0,013
Er	0,008	0,016	0,015	0,010	0,007	0,014	0,017	0,012	0,011
	0,022	0,041	0,043	0,023	0,018	0,035	0,043	0,029	0,027
Ca Fo	0,078	0,095	0,092	0,020	0,000	0,110	0,000	0,113	0,043
r o Suma kat	2 000	2 000	2 000	2 000	2 000	2 000	2 000	2 000	2 000
F	2,000 0 086	2,000	2,000 0 104	2,000 0 080	2,000	2,000	2,000	2,000 0 100	2,000 0 227
O2 ⁻	3 774	3 739	3 743	3 798	3 812	3 710	3 750	3 748	3 776
J 2	0,114	0,100	0,140	0,100	0,012	0,710	0,100	0,140	0,110

Tabulka T1, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec zirkonu (apfu)

Datum	2017_ 08_29								
Bod	20/1.	21/1.	28/1.	29/1.	30/1.	38/1.	41/1.	42/1.	44 / 1 .
Vzorek	P02-								
P_2O_5	1.56	2.33	2.93	1.58	1.88	3.20	2.00	1.82	1.49
Nb ₂ O ₃	0.13	0.00	0.36	0.00	0.00	1.07	1.61	0.63	0.24
	0.00	0.00	0.00	0.00	0.00	0.00	0.47	0.32	0.21
SiO ₂	25,84	23,52	22,58	25,78	24,34	20,82	22,51	23,58	21,90
TiO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,04
ZrO ₂	50,51	49,52	43,58	52,06	50,83	39,47	36,03	42,75	41,67
HfO ₂	2,34	2,77	4,33	4,65	4,81	3,18	3,41	8,61	7,07
UO ₂	0,81	1,84	1,12	0,61	1,46	1,33	0,90	0,37	0,38
ThO ₂	0,78	0,23	1,17	0,29	0,34	2,00	7,49	2,65	3,41
Al ₂ O ₃	1,30	1,12	1,12	1,08	0,60	1,01	0,59	0,75	0,58
Sc ₂ O ₃	0,17	0,30	0,47	0,66	0,34	0,43	0,60	1,07	1,06
Y ₂ O ₃	2,58	2,84	5,36	1,84	2,29	5,95	4,78	2,91	2,22
Dy ₂ O ₃	0,67	0,66	1,11	0,46	0,48	1,32	1,33	0,78	0,71
Er ₂ O ₃	0,54	0,58	1,15	0,45	0,58	1,29	1,48	0,87	0,76
Yb ₂ O ₃	1,14	1,43	2,65	1,33	1,46	3,36	3,87	2,41	2,18
CaO	1,36	1,85	1,62	1,44	1,65	1,62	1,75	1,45	1,93
FeO	1,19	0,95	0,63	1,01	1,42	1,06	0,50	0,85	3,16
F	0,96	1,46	1,42	1,06	1,17	1,57	0,74	0,67	0,42
Suma	92,09	91,83	92,04	94,61	93,83	89,27	90,52	92,77	89,72
Р	0,045	0,068	0,087	0,045	0,054	0,099	0,063	0,055	0,046
Nb	0,002	0,000	0,007	0,000	0,000	0,020	0,031	0,011	0,004
Та	0,000	0,000	0,000	0,000	0,000	0,000	0,005	0,003	0,002
Si	0,873	0,815	0,795	0,859	0,832	0,765	0,835	0,834	0,792
Ti	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001
Zr	0,832	0,836	0,749	0,845	0,847	0,707	0,652	0,738	0,735
Hf	0,023	0,027	0,044	0,044	0,047	0,033	0,036	0,087	0,073
U	0,006	0,014	0,009	0,005	0,011	0,011	0,007	0,003	0,003
Th	0,006	0,002	0,009	0,002	0,003	0,017	0,063	0,021	0,028
Al	0,052	0,046	0,047	0,042	0,024	0,044	0,026	0,031	0,025
Sc	0,005	0,009	0,014	0,019	0,010	0,014	0,019	0,033	0,033
Ŷ	0,046	0,052	0,101	0,033	0,042	0,116	0,094	0,055	0,043
Dy	0,007	0,007	0,013	0,005	0,005	0,016	0,016	0,009	0,008
	0,006	0,006	0,013	0,005	0,006	0,015	0,017	0,010	0,009
	0,012	0,015	0,028	0,013	0,015	0,038	0,044	0,026	0,024
Ca	0,049	0,000	0,001	0,001	0,001	0,004	0,070	0,000	0,075
i e Suma kat	2 000	0,0∠7 2.000	2 000	0,020 2.000	2 000	2 000	2 000	2 000	2 000
F	2,000 0 102	2,000	2,000 0 158	2,000 0 111	2,000	2,000 0 183	2,000	2,000	2,000 0.048
O2 ⁻	3.821	3,779	3,769	3.821	3.807	3,735	3,800	3.828	3,753
	0,0 - 1	0,110	2,100	0,021	0,001	2,.00	2,000	0,020	2,100

Tabulka T1, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec zirkonu (apfu)

Datum	2017_ 08_29						
Bod	45/1.	58/1.	59/1.	68/1.	70/1.	88/1.	89/1.
Vzorek (vrt/hloubka)	P02-218						
P ₂ O ₅	1,82	1,62	0,55	1,72	0,27	1,36	1,16
Nb ₂ O ₃	1,07	1,02	0,00	0,71	0,00	0,19	0,26
Ta ₂ O ₅	0,41	0,20	0,00	0,32	0,00	0,16	0,30
SiO ₂	23,04	21,45	26,16	23,25	28,05	24,53	26,15
TiO ₂	0,00	0,06	0,00	0,00	0,00	0,00	0,00
ZrO ₂	40,44	41,80	53,26	40,02	54,06	45,29	36,35
HfO ₂	6,34	3,06	4,94	6,26	4,85	7,76	6,59
UO ₂	0,47	0,74	0,56	0,40	1,15	0,35	0,29
ThO ₂	4,60	7,11	0,32	3,96	0,35	0,80	1,81
Al ₂ O ₃	0,68	0,51	0,41	1,00	1,22	0,94	3,10
Sc ₂ O ₃	0,72	0,60	0,30	0,81	0,19	0,95	0,71
Y ₂ O ₃	3,68	3,13	1,09	3,44	0,50	2,03	1,86
Dy ₂ O ₃	1,02	0,86	0,36	1,05	0,26	0,65	0,46
Er ₂ O ₃	1,16	0,95	0,53	1,16	0,22	0,65	0,53
Yb ₂ O ₃	2,90	2,80	1,34	2,82	0,87	1,84	1,59
CaO	1,91	1,80	1,50	1,68	1,23	1,28	1,36
FeO	0,84	2,51	1,76	2,82	1,53	2,04	10,38
F	0,78	0,44	0,52	0,57	0,69	0,57	0,37
Suma	92,26	91,07	93,60	92,57	95,42	91,67	93,65
D	0.055	0.050	0.016	0.051	0.008	0.040	0.021
	0,055	0,050	0,016	0,051	0,008	0,040	0,031
	0,020	0,019	0,000	0,013	0,000	0,003	0,004
Si	0,004	0,002	0,000	0,003	0,000	0,002	0,003
Ti	0,020	0,702	0,002	0,014	0,010	0,000	0,020
Zr	0.707	0.743	0.876	0.683	0.861	0.767	0.556
Hf	0,065	0,032	0,048	0,063	0,045	0,077	0,059
U	0,004	0,006	0,004	0,003	0,008	0,003	0,002
Th	0,037	0,059	0,002	0,032	0,003	0,006	0,013
AI	0,029	0,022	0,016	0,041	0,047	0,038	0,115
Sc	0,023	0,019	0,009	0,025	0,005	0,029	0,019
Y	0,070	0,061	0,020	0,064	0,009	0,037	0,031
Dy	0,012	0,010	0,004	0,012	0,003	0,007	0,005
Er	0,013	0,011	0,006	0,013	0,002	0,007	0,005
Yb	0,032	0,031	0,014	0,030	0,009	0,020	0,015
Ca	0,073	0,070	0,054	0,063	0,043	0,048	0,046
Fe Sume list	0,025	0,076	0,050	0,083	0,042	0,059	0,272
Suma kat.	2,000	2,000	2,000	2,000	2,000	2,000	∠,000 0.027
	0,008	0,051 2 775	0,005	0,003	0,071	0,003	0,031
\mathbf{U}_2	3,198	3,115	3,843	3,749	3,840	3,808	3,579

Tabulka T1, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec zirkonu (apfu)

Vzorek			D7/222	07/000	D7/222	000/470	D00/440	D00/040
(vn/nioubka)	P7/335	P7/335	7/4	P7/332	P7/332	020/179	P02/410	PUZ/218
	21.07	21 / 2	21.61	22.50	20.51	21.24	2/1.	40/1.
F205 SiO2	0.00	0.77	0.62	0.59	0.00	0.40	0.50	1 1 4
302	1.01	1.02	0,02	0,50	0,00	0,49	0,59	0.59
	0.29	0.26	0,70	0,02	0.22	0,70	0,52	0,50
	0,30	0,30	0,11	1.29	1.07	1 76	1.06	0,00
502O2	0,79	0,05	2,25	1,20	0.16	0.05	0.02	0.17
30203 V202	0,1Z	0,20	20.01	22.80	27.05	0,00	0,02 22.70	20.92
1203 Co2O3	24,15	25,61	0 13	0 11	27,05	0 17	0.00	29,02
	0,00	0,00	0,13	0,11	0,00	0,17	0,00	0,00
Nu203	0,10	0,10	0,04	0,39	0,14	2.08	0,00	0,42
Gd2O3	0,03	0,03	2.91	2 20	1.00	2,00	0,55	2.95
	2,31	2,10	2,01	2,30	1,90	3,75	1,09	2,00
TD2O3	0,05	7.04	0,92	6,70	0,80	0.12	7.05	0,95
Dy203	0,40	1,04	1,25	0,70	1,79	0,13	1,90	1,00
H02O3	7.40	6.00	1,20 5.97	5.27	1,74	1,34		1,5Z
E1203	1 740	0,99	5,67	1 20	1,00	5,09	1,09	1.20
1111203 Vh2O2	1,74	1,74	0.94	1,30	1,02	1,41	10.50	0.21
10203	264	2.66	9,04	2 11	2.69	0,55	2 11	9,21
LuzOS	2,04	2,00	1,00	2,11	2,00	1,40	2,11	1,59
	0,03	0,05	0,08	0,03	0,04	0,06	0,05	0,10
FeO	0,00	0,00	0,00	0,23	0,13	0,00	0,19	0,20
	0,37	0,34	100.69	0,20	0,35	0,42	0,40	0,75
	99,03	99,44	100,00	101,16	0.050	101,41	0,000	99,05
P Si	0,984	0,983	0,970	0,975	0,956	0,959	0,900	0,968
31 7-	0,033	0,020	0,023	0,020	0,032	0,010	0,021	0,042
Zr	0,018	0,018	0,013	0,014	0,026	0,013	0,006	0,010
U Th	0,003	0,003	0,001	0,001	0,003	0,000	0,000	0,005
in Oa	0,007	0,005	0,019	0,010	0,009	0,014	0,009	0,015
Sc	0,004	0,008	0,010	0,001	0,005	0,002	0,000	0,006
f Ca	0,461	0,508	0,596	0,619	0,533	0,620	0,031	0,000
Ce	0,000	0,000	0,002	0,001	0,000	0,002	0,000	0,001
Na Sm	0,002	0,002	0,008	0,007	0,002	0,011	0,000	0,006
211	0,011	0,011	0,019	0,016	0,008	0,026	0,007	0,015
Ga	0,029	0,027	0,034	0,027	0,023	0,045	0,020	0,035
	0,010	0,010	0,011	0,009	0,010	0,012	0,009	0,012
Dy	0,102	0,093	0,085	0,076	0,093	0,095	0,093	0,093
HO	0,019	0,018	0,015	0,013	0,021	0,015	0,018	0,018
Er 	0,087	0,081	0,067	0,060	0,089	0,065	0,081	0,070
lm	0,020	0,020	0,016	0,014	0,021	0,016	0,017	0,014
Yb	0,162	0,157	0,109	0,115	0,154	0,094	0,117	0,104
Lu	0,030	0,030	0,020	0,023	0,030	0,016	0,023	0,018
Са	0,001	0,002	0,003	0,001	0,002	0,002	0,002	0,007
Fe	0,000	0,000	0,000	0,007	0,004	0,000	0,006	0,008
Sum kat.	2,003	2,005	2,020	2,011	2,020	2,027	2,027	2,030
F	0,043	0,040	0,060	0,029	0,040	0,049	0,045	0,088

Tabulka T2: Chemické složení (hm.%) a přepočtený krystalochem. vzorec skupiny xenotimu (apfu)

Vzorek								
(vrt/hloubka)	P7/335	P7/335	P7/332	P7/332	P7/332	C20/179	P02/410	P02/218
Bog	81/1.	82/1.	//1.	8/1.	13/1.	11/1.	2/1.	46/1.
P2O5	31,07	31,42	31,61	32,59	30,51	31,24	31,47	30,96
SiO2	0,88	0,77	0,62	0,58	0,88	0,49	0,59	1,14
ZrO2	1,01	1,02	0,76	0,82	1,45	0,76	0,32	0,58
002	0,38	0,36	0,11	0,07	0,32	0,06	0,06	0,66
ThO2	0,79	0,65	2,25	1,28	1,07	1,76	1,06	1,75
Sc2O3	0,12	0,25	0,31	0,05	0,16	0,05	0,02	0,17
Y2O3	24,15	25,81	30,91	32,89	27,05	32,15	32,70	29,82
Ce2O3	0,00	0,00	0,13	0,11	0,00	0,17	0,00	0,06
Nd2O3	0,16	0,18	0,64	0,59	0,14	0,84	0,00	0,42
Sm2O3	0,83	0,83	1,50	1,30	0,61	2,08	0,53	1,14
Gd2O3	2,31	2,18	2,81	2,30	1,90	3,75	1,69	2,85
Tb2O3	0,85	0,85	0,92	0,76	0,80	1,01	0,77	0,95
Dy2O3	8,46	7,84	7,25	6,70	7,79	8,13	7,95	7,85
Ho2O3	1,63	1,56	1,26	1,17	1,74	1,34	1,56	1,52
Er2O3	7,40	6,99	5,87	5,37	7,68	5,69	7,09	6,01
Tm2O3	1,74	1,74	1,42	1,30	1,82	1,41	1,51	1,20
Yb2O3	14,21	13,97	9,84	10,66	13,61	8,55	10,59	9,21
Lu2O3	2,64	2,66	1,86	2,11	2,68	1,45	2,11	1,59
CaO	0,03	0,05	0,08	0,03	0,04	0,06	0,05	0,18
FeO	0,00	0,00	0,00	0,23	0,13	0,00	0,19	0,26
F	0,37	0,34	0,52	0,26	0,35	0,42	0,40	0,75
Total	99,03	99,44	100,68	101,16	100,71	101,41	100,65	99,05
Р	0.984	0.983	0.970	0.975	0.956	0.959	0.966	0.968
Si	0.033	0.028	0.023	0.020	0.032	0.018	0.021	0.042
Zr	0.018	0.018	0.013	0.014	0.026	0.013	0.006	0.010
U	0.003	0.003	0,001	0.001	0.003	0,000	0,000	0,005
Th	0.007	0.005	0.019	0.010	0.009	0.014	0.009	0.015
Sc	0.004	0.008	0.010	0.001	0.005	0.002	0.000	0.006
Y	0.481	0.508	0.596	0.619	0.533	0.620	0.631	0.586
Ce	0.000	0.000	0.002	0.001	0.000	0.002	0.000	0.001
Nd	0,002	0,002	0,008	0,007	0,002	0.011	0,000	0,006
Sm	0.011	0.011	0.019	0.016	0.008	0.026	0,007	0.015
Gd	0.029	0.027	0.034	0.027	0.023	0.045	0.020	0.035
Th	0.010	0.010	0.011	0,009	0.010	0.012	0,009	0.012
Dv	0 102	0.093	0.085	0.076	0.093	0.095	0.093	0.093
Ho	0.019	0.018	0.015	0.013	0.021	0.015	0.018	0.018
Fr	0.087	0.081	0.067	0,010	0.089	0.065	0.081	0,010
Tm	0.020	0.020	0.016	0.014	0.021	0.016	0.017	0.014
Yh	0,020	0,020	0,010	0,014	0,021	0.094	0,017	0,014
	0,102	0,107	0,100	0,110	0,104	0,004	0,117	0,104
Ca	0,000	0,000	0.0020	0,020	0,000	0.002	0.020	0 007
Fo	0,001	0,002	0,003	0,001	0,002	0,002	0,002	0,007
Suma kat	2 002	2 005	2 020	2 011	2 020	2 027	2 027	2 020
F	2,003	2,003	2,020	0 0 20	2,020	2,021 0.040	2,027	2,030 0 088
<u> </u>	0,043	0,040	0,000	0,029	0,040	0,049	0,040	0,000

Tabulka T2, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec skupiny xenotimu (apfu)

Vzorek						
(vrt/hloubka)	17/1.	18/1.	20/1.	26/1.	29/1.	48/1.
Bod	P2-218	P2-218	P2-218	P2-218	C23/375	C23/375
P2O5	6,63	7,09	30,11	29,89	27,73	31,11
SiO2	3,31	2,19	0,25	0,80	0,56	0,32
ZrO2	2,40	2,69	0,00	0,00	0,00	0,00
UO2	1,14	1,08	0,24	1,41	0,23	0,28
ThO2	1,20	1,09	0,41	1,03	0,09	1,31
Sc2O3	0,02	0,00	0,05	0,13	0,32	0,05
Y2O3	22,51	22,61	25,26	29,12	34,51	27,48
Ce2O3	0,28	0,38	0,00	0,00	0,00	0,00
Nd2O3	1,14	0,00	0,37	0,00	0,00	0,00
Sm2O3	0,00	0,00	0,00	0,00	0,00	0,00
Gd2O3	3,12	3,15	1,89	2,46	0,68	2,07
16203	0,66	0,81	0,90	0,81	0,53	0,90
Dy2O3	6,14	6,55	9,33	7,97	6,75	7,71
Ho2O3	1,28	1,20	2,01	1,63	1,70	1,58
Er2O3	4,25	4,74	8,00	6,49	6,83	6,85
Tm2O3	0,75	1,00	1,79	1,26	1,36	1,69
Yb2O3	5,82	6,49	14,38	10,23	9,99	13,55
Lu2O3	0,76	0,86	2,09	1,53	1,78	2,39
CaO	1,17	1,18	0,10	0,04	0,46	0,08
FeO	0,18	0,22	0,20	0,34	0,33	0,25
F	0,22	0,20	0,34	0,33	0,25	0,00
Total	95,09	97,96	96,50	93,95	98,26	7,00
P	0 264	0 203	0 975	0 959	0 917	0 984
Si	0,204	0,200	0,010	0,000	0,017	0,004
Zr	0,100	0,107	0,010	0,000	0,022	0,012
	0,000	0,004	0,000	0,000	0,000	0,000
Th	0,012	0,012	0,002	0,012	0,002	0,002
Sc	0,010	0,012	0,004	0,000	0,001	0,011
v	0,001	0,000	0,002	0,004	0,011	0,002
	0,004	0,007	0,014	0,007	0,717	0,047
NG	0,000	0,007	0,000	0,000	0,000	0,000
Sm	0,013	0,020	0,000	0,003	0,000	0,000
Gd	0,042	0,042	0,000	0,011	0,001	0,000
Th	0,040	0,001	0,024	0,001	0,003	0,020
Dv	0,010	0,013	0,011	0,010	0,007	0,011
Но	0,035	0,103	0,113	0,037	0,000	0,033
Fr	0,013	0,013	0,024	0,020	0,021	0,013
Tm	0,000	0,075	0,030	0,017	0,004	0,000
Thi Vh	0,011	0,013	0,021	0,013	0,017	0,020
	0,004	0,000	0,014	0,007	0,717	0,047
	0,011	0,013	0,024	0,017	0,021	0,027
Ga Fo	0,009	0,002	0,004	0,002	0,019	0,003
i e Suma kat	0,100	0,000	0,013	0,000	0,000 2 055	0,000
Suma kal.	2,404	2,439	2,010	2,014	2,000	2,002
Г	0,000	0,000	0,000	0,000	0,000	0,000

Tabulka T2, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec skupiny xenotimu (apfu)

Bod	72/1.	73/1.	77/1.	76/1.	81/1.	82/1.	83/1.	88/1.
Vzorek	D7-335	D7-335	D7-335	D7/280	D2-307	D2-307	D2-307	D2-307
P205/	30 153	29 252	28 072	30 251	30 425	31 14	30.855	30 079
Δs2O3	00,100	20,202 N	0.073	0.04	0.047	0.067	0.095	0.041
SiO2	0 647	0 945	0,075	0,04	0,047	0,007	0,000	0,041
ZrO2	0,0401	0,040	0,000	0,371	0,044	0.475	0,047	0,720
	0,401	0,410	0,410	0,371	0,400	0,473	0,400	0,007
ThO2	5 537	8 084	5 953	10 345	6 737	6,000	4 98	5 629
La203	11 604	9,643	11 97	9 985	11 03	11 183	10,968	12 123
Ce2O3	35 353	32 895	34 949	31 972	33 704	34 631	34 802	34 968
Pr2O3	3 964	3 872	3 978	3 524	4 218	4 124	4 13	3 884
Nd2O3	0,004 9.455	9 971	9 177	8 275	9 775	9 732	11 008	8 822
Sm2O3	2 091	2 322	1 849	1 703	1 997	1 726	2 216	1 765
Gd203	0.568	0.808	0.288	0 712	0.635	0.663	0 757	0 489
Dv2O3	0 249	0 454	0.208	0.41	0.253	0.289	0.33	0.322
Y2O3	0.12	0 228	0.052	0.308	0.13	0.073	0 128	0.093
CaO	0.972	1 435	0,002	2 185	0.916	0.846	0,720	0.833
PhO	0.079	0 137	0.081	0 164	0.091	0.076	0.068	0.087
suma	101 251	100 573	98 896	101 354	101 361	101.8	102 094	100 245
ounia	101,201	100,010	00,000	101,001	101,001	101,0	102,001	100,210
Р	0,983549	0,966876	0,955152	0,978821	0,986573	0,998084	0,993767	0,98753
As	0	0	0,001782	0,000929	0,001093	0,001541	0,002195	0,000966
Si	0,02493	0,036898	0,037581	0,037535	0,03233	0,026504	0,020812	0,02804
Zr	0,007534	0,007958	0,008192	0,006914	0,009133	0,008769	0,008144	0,007318
subtotal	1,016013	1,011732	1,002707	1,024198	1,02913	1,034898	1,024918	1,023854
U	0,000497	0,000947	0,000957	0,00108	0,000597	0,000489	0	0
Th	0,048547	0,071822	0,054444	0,089973	0,05872	0,051838	0,043113	0,049675
La	0,164903	0,138861	0,177438	0,140756	0,155822	0,156157	0,153901	0,173401
Ce	0,498695	0,470206	0,514253	0,44738	0,472632	0,480017	0,484737	0,496479
Pr	0,055648	0,055081	0,058253	0,049074	0,058865	0,056888	0,057248	0,05488
Nd	0,130103	0,139032	0,131722	0,112951	0,133713	0,131586	0,149564	0,122184
Sm	0,027763	0,031241	0,025608	0,02243	0,026358	0,022518	0,029052	0,023587
Gd	0,007255	0,010458	0,003837	0,009021	0,008063	0,008321	0,009547	0,006286
Dy	0,003091	0,005711	0,002693	0,005048	0,003122	0,003525	0,004045	0,004023
Υ	0,00246	0,004737	0,001112	0,006265	0,00265	0,001471	0,002591	0,001919
Ca	0,040127	0,06003	0,033847	0,089478	0,037592	0,034318	0,031428	0,034612
Pb	0,000819	0,00144	0,000876	0,001687	0,000938	0,000775	0,000696	0,000908
subtotal	0,979907	0,989565	1,005042	0,975142	0,959072	0,947902	0,965922	0,967955

Tabulka T3: Chemické složení (hm.%) a přepočtený krystalochem. vzorec monazitu-(Ce) (apfu)

Bod	103/1.	7/1.	46/1.	47/1.	72/1.	73/1.	77/1.	76/1.
Vzorek								
(vrt/hloubka)	P2-327	C8-193	C2-1/6	C2-1/6	P7-335	P7-335	P7-335	P7/289
P2O5	31,118	28,504	28,267	29,002	30,153	29,252	28,072	30,251
As2O3	0,047	0	0,062	0	0	0	0,073	0,04
SiO2	0,956	0,624168	1,177	0,878	0,647	0,945	0,935	0,982
ZrO2	0,433	n.m.	n.m.	n.m.	0,401	0,418	0,418	0,371
UO2	0,068	0,242	0,279	0,4	0,058	0,109	0,107	0,127
ThO2	7,528	7,73	5 <i>,</i> 881	11,447	5 <i>,</i> 537	8,084	5 <i>,</i> 953	10,345
La2O3	8,668	9,417	12,447	13,374	11,604	9,643	11,97	9,985
Ce2O3	33,171	34,471	34,597	25,682	35,353	32,895	34,949	31,972
Pr2O3	4,188	3,952	3,758	2,534	3,964	3,872	3,978	3,524
Nd2O3	11,224	9,742	9,373	9,249	9,455	9,971	9,177	8,275
Sm2O3	2,521	1,754	1,601	1,861	2,091	2,322	1,849	1,703
Gd2O3	0,611	0,565116	0,637	1,253	0,568	0,808	0,288	0,712
Dy2O3	0,421	0,169	0,286	0,418	0,249	0,454	0,208	0,41
Y2O3	0,14	0,079	0,221	1,348	0,12	0,228	0,052	0,308
CaO	1,01	1,137	0,412	1,808	0,972	1,435	0,786	2,185
PbO	0,108	0,112	0,083	0,164	0,079	0,137	0,081	0,164
suma	102,212	98,49828	99,081	99,418	101,251	100,573	98,896	101,354
Р	0,993355	0,972032	0,957975	0,970344	0,983549	0,966876	0,955152	0,978821
As	0,001076	0	0,001508	0	0	0	0,001782	0,000929
Si	0,03605	0,025144	0,04712	0,034702	0,02493	0,036898	0,037581	0,037535
Zr	0,007962	n.m.	n.m.	n.m.	0,007534	0,007958	0,008192	0,006914
subtotal	1,038443	0,997176	1,006603	1,005046	1,016013	1,011732	1,002707	1,024198
U	0,000571	0,002169	0,002485	0,003518	0,000497	0,000947	0,000957	0,00108
Th	0,064594	0,070855	0,053573	0,102946	0,048547	0,071822	0,054444	0,089973
La	0,12055	0,139908	0,183778	0,194946	0,164903	0,138861	0,177438	0,140756
Ce	0,457925	0,508361	0,507056	0,371595	0,498695	0,470206	0,514253	0,44738
Pr	0,057537	0,058002	0,054813	0,036488	0,055648	0,055081	0,058253	0,049074
Nd	0,151147	0,140147	0,134002	0,130542	0,130103	0,139032	0,131722	0,112951
Sm	0,032757	0,024347	0,022086	0,025345	0,027763	0,031241	0,025608	0,02243
Gd	0,007637	0,007546	0,008453	0,016416	0,007255	0,010458	0,003837	0,009021
Dy	0,005114	0,002193	0,003689	0,005322	0,003091	0,005711	0,002693	0,005048
Ŷ	0,002809	0,001693	0,004708	0,028351	0,00246	0,004737	0,001112	0,006265
Са	0,040805	0,049072	0,017671	0,076559	0,040127	0,06003	0,033847	0,089478
Pb	0,001096	0,001214	0,000894	0,001745	0,000819	0,00144	0,000876	0,001687
subtotal	0,942543	1,005508	0,993209	0,993771	0,979907	0,989565	1,005042	0,975142

Tabulka T3, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec monazitu-(Ce) (apfu)

Bod	82/1.	83/1.	88/1.	103/1.
Vzorek				
(vrt/hloubka)	P2-327	P2-327	P2-327	P2-327
P2O5	31,14	30,855	30,079	31,118
As2O3	0,067	0,095	0,041	0,047
SiO2	0,7	0,547	0,723	0,956
ZrO2	0,475	0,439	0,387	0,433
UO2	0,058	0	0	0,068
ThO2	6,017	4,98	5,629	7,528
La2O3	11,183	10,968	12,123	8,668
Ce2O3	34,631	34,802	34,968	33,171
Pr2O3	4,124	4,13	3,884	4,188
Nd2O3	9,732	11,008	8,822	11,224
Sm2O3	1,726	2,216	1,765	2,521
Gd2O3	0,663	0,757	0,489	0,611
Dy2O3	0,289	0,33	0,322	0,421
Y2O3	0,073	0,128	0,093	0,14
CaO	0,846	0,771	0,833	1,01
PbO	0,076	0,068	0,087	0,108
suma	101,8	102,094	100,245	102,212
Р	0,998084	0,993767	0,98753	0,993355
As	0,001541	0,002195	0,000966	0,001076
Si	0,026504	0,020812	0,02804	0,03605
Zr	0,008769	0,008144	0,007318	0,007962
Subtotal	1,034898	1,024918	1,023854	1,038443
U	0,000489	0	0	0,000571
Th	0,051838	0,043113	0,049675	0,064594
La	0,156157	0,153901	0,173401	0,12055
Ce	0,480017	0,484737	0,496479	0,457925
Pr	0,056888	0,057248	0,05488	0,057537
Nd	0,131586	0,149564	0,122184	0,151147
Sm	0,022518	0,029052	0,023587	0,032757
Gd	0,008321	0,009547	0,006286	0,007637
Dy	0,003525	0,004045	0,004023	0,005114
Y	0,001471	0,002591	0,001919	0,002809
Ca	0,034318	0,031428	0,034612	0,040805
Pb	0,000775	0,000696	0,000908	0,001096
Subtotal	0,947902	0,965922	0,967955	0,942543

Tabulka T3: Chemické složení (hm.%) a přepočtený krystalochem. vzorec monazitu-(Ce) (apfu)

Vzorek (vrt/hloubka)	C20/178	P7/335	P7/335	P7/335	P7/335	C20/246	C20/246	C20/246
Bod	10/1.	54 /1 .	55 / 1 .	56/1.	65 / 1 .	29/1.	30/1.	32/1.
WO3	0,39	0,49	0,00	0,46	0,00	0,00	0,44	0,00
Nb2O5	16,54	12,02	14,45	16,19	7,27	13,80	15,05	5,82
Ta2O5	10,73	4,20	10,02	9,77	9,43	23,66	20,32	8,89
SiO2	0,07	0,06	0,08	0,08	0,11	0,00	0,06	0,06
TiO2	62,26	75,73	66,76	64,99	76,87	52,66	54,83	79,18
ZrO2	0,00	0,00	0,00	0,00	0,00	0,00	0,10	0,00
SnO2	3,13	1,61	1,16	1,71	1,05	1,02	0,93	0,95
Al2O3	0,10	0,15	0,10	0,10	0,05	0,11	0,09	0,04
Sc2O3	0,14	0,19	0,18	0,19	0,00	0,28	0,26	0,04
Fe2O3*	3,71	2,36	3,09	2,54	4,02	3,88	3,73	4,67
FeO*	4,34	2,70	3,74	4,67	1,45	5,35	5,36	0,64
MnO	0,00	0,00	0,08	0,00	0,00	0,07	0,08	0,00
Total	101,40	99,50	99,65	100,70	100,25	100,83	101,24	100,28
W	0,002	0,002	0,000	0,002	0,000	0,000	0,002	0,000
Nb	0,114	0,079	0,099	0,111	0,048	0,103	0,109	0,038
Та	0,044	0,017	0,041	0,040	0,037	0,106	0,089	0,035
Si	0,001	0,001	0,001	0,001	0,002	0,000	0,001	0,001
Ti	0,714	0,826	0,760	0,740	0,840	0,651	0,664	0,856
Zr	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000
Sn	0,019	0,009	0,007	0,010	0,006	0,007	0,006	0,005
AI	0,002	0,003	0,002	0,002	0,001	0,002	0,002	0,001
Sc	0,002	0,002	0,002	0,002	0,000	0,004	0,004	0,000
Fe	0,103	0,061	0,086	0,091	0,066	0,127	0,122	0,064
Mn	0,000	0,000	0,001	0,000	0,000	0,001	0,001	0,000
Fe3+*	0,047	0,029	0,039	0,032	0,049	0,053	0,050	0,056
Fe2+*	0,055	0,033	0,047	0,059	0,018	0,074	0,072	0,008
Sum cat.	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Ta/(Ta+Nb)	0,281	0,174	0,294	0,266	0,438	0,508	0,448	0,479

Tabulka T4: Chemické složení (hm.%) a přepočtený krystalochem. vzorec rutilu (apfu)

Bod	12/1.	21/1.	23/1.	80/1.	81/1.	82/1.	83/1.	2/1.
Vzorek								
(vrt/hloubka)	C20-178	C20-178	C20-178	C20-10	C20-10	C20-10	C20-10	C20/246
WO3	3,45	3,26	3,14	2,82	4,14	1,57	1,40	1,34
Nb2O5	55,75	55,76	56,53	47,27	47,53	63,43	63,67	46,35
Ta2O5	12,41	12,75	12,69	23,72	21,32	11,83	12,63	27,43
SiO2	0,16	0,14	0,11	0,09	0,09	0,07	0,05	0,00
TiO2	6,33	5,77	5,55	5,66	5,21	2,36	2,08	3,79
ZrO2	0,52	0,38	0,42	0,52	0,50	0,28	0,25	0,37
SnO2	1,14	0,86	0,62	0,95	1,32	0,39	0,33	0,37
Sc2O3	1,59	1,76	1,77	1,90	1,78	0,79	0,83	1,49
Y2O3	0,00	0,00	0,00	0,00	0,12	0,00	0,00	0,00
MnO	7,22	6,36	6,38	9,32	9,23	14,03	14,55	8,51
FeO	11,97	12,78	12,56	8,87	9,45	6,24	5,75	9,22
Total	100,74	99,90	100,13	101,36	100,86	101,27	101,73	98,99
W	0,051	0,049	0,047	0,043	0,064	0,023	0,021	0,022
Nb	1,437	1,450	1,474	1,269	1,277	1,647	1,651	1,306
Та	0,192	0,199	0,199	0,383	0,345	0,185	0,197	0,465
Si	0,009	0,008	0,006	0,005	0,005	0,004	0,003	0,000
Ti	0,272	0,250	0,241	0,253	0,233	0,102	0,090	0,178
Zr	0,015	0,011	0,012	0,015	0,015	0,008	0,007	0,011
Sn	0,026	0,020	0,014	0,022	0,031	0,009	0,007	0,009
Sc	0,079	0,088	0,089	0,098	0,092	0,039	0,041	0,081
Υ	0,000	0,000	0,000	0,000	0,004	0,000	0,000	0,000
Mn	0,349	0,310	0,312	0,469	0,465	0,682	0,707	0,449
Fe	0,571	0,615	0,606	0,440	0,470	0,300	0,276	0,480
0	5,907	5,904	5,921	5,911	5,892	5,938	5,942	5,937
Fe3+	0,186	0,191	0,157	0,178	0,215	0,125	0,117	0,126
Fe2+	0,384	0,424	0,448	0,262	0,254	0,175	0,159	0,355
Sum kat.	3,000	3,000	3,000	2,998	3,000	3,000	3,000	3,000
Mn/(Mn+Fe)	0,379	0,335	0,340	0,516	0,497	0,695	0,719	0,483
Ta/(Ta+Nb)	0,118	0,121	0,119	0,232	0,212	0,101	0,107	0,263

Tabulka T5: Chemické složení (hm.%) a přepočtený krystalochem. vzorec kolumbitu (apfu)

Bod	3/1.	4/1.	5/1.	6/1.	10/1.	11/1.	12/1.	13/1.
Vzorek								
(vrt/hloubka)	C20/246							
WO3	3,17	2,70	2,29	1,84	1,86	1,63	3,06	1,31
Nb2O5	52,09	63,58	47,88	*43,23	27,16	37,60	51,61	41,26
Ta2O5	18,35	9,82	24,31	29,47	43,30	34,43	17,79	31,16
SiO2	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
TiO2	5,42	1,99	5,33	4,73	6,67	6,21	5,65	5,06
ZrO2	0,48	0,14	0,52	0,60	0,80	0,70	0,60	0,65
SnO2	0,36	0,25	0,59	0,44	1,17	0,63	0,37	0,60
Sc2O3	2,07	0,58	2,10	1,81	2,49	2,51	2,04	1,84
Y2O3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	5,33	14,62	5,20	6,44	5,70	5,01	5,45	6,67
FeO	12,87	6,03	12,55	11,02	9,91	11,22	12,63	10,48
Total	100,38	99,89	101,00	99,90	99,34	100,09	99,33	99,27
W	0,048	0,041	0,036	0,030	0,032	0,027	0,047	0,021
Nb	1,388	1,668	1,297	1,214	0,806	1,066	1,383	1,170
Та	0,294	0,155	0,396	0,498	0,773	0,587	0,287	0,531
Si	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ti	0,240	0,087	0,240	0,221	0,329	0,293	0,252	0,239
Zr	0,014	0,004	0,015	0,018	0,026	0,021	0,017	0,020
Sn	0,008	0,006	0,014	0,011	0,031	0,016	0,009	0,015
Sc	0,107	0,029	0,110	0,098	0,142	0,137	0,105	0,100
Υ	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,266	0,719	0,264	0,339	0,317	0,266	0,274	0,354
Fe	0,634	0,292	0,629	0,572	0,544	0,588	0,626	0,550
0	5,936	5,926	5,935	5,925	5,889	5,930	5,929	5,918
Fe3+	0,128	0,147	0,130	0,150	0,223	0,139	0,141	0,165
Fe2+	0,506	0,145	0,499	0,423	0,322	0,449	0,485	0,385
Sum kat.	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000
Mn/(Mn+Fe)	0,295	0,711	0,295	0,372	0,368	0,312	0,304	0,392
Ta/(Ta+Nb)	0,175	0,085	0,234	0,291	0,490	0,355	0,172	0,312

Tabulka T5, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec kolumbitu (apfu)

Bod	14/1.	15/1.	16/1.	17/1.	18/1.	19/1.	20/1.	23/1.
Vzorek								
(vrt/hloubka)	C20/246							
WO3	0,50	1,73	1,71	2,88	3,01	1,51	3,02	2,16
Nb2O5	56,42	44,14	39,49	50,39	50,58	42,87	48,51	26,75
Ta2O5	20,42	26,73	30,95	17,36	18,23	27,90	19,53	43,56
SiO2	0,00	0,00	0,05	0,00	0,08	0,05	0,06	0,00
TiO2	1,33	5,18	6,20	5,89	5,89	5,67	6,23	6,26
ZrO2	0,16	0,50	0,60	0,66	0,73	0,65	0,59	0,67
SnO2	0,00	0,42	0,47	0,48	0,48	0,00	0,37	1,10
Sc2O3	0,63	2,08	2,55	2,07	2,10	2,54	2,11	2,22
Y2O3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	19,11	5,25	5,04	5,44	5,44	4,69	5,36	5,74
FeO	0,24	12,04	11,53	12,64	12,51	12,26	12,41	9,85
Total	99,04	98,21	98,69	98,36	99,17	98,51	98,37	98,60
W	0,008	0,028	0,028	0,045	0,046	0,024	0,047	0,037
Nb	1,555	1,239	1,115	1,362	1,357	1,200	1,317	0,806
Та	0,339	0,451	0,526	0,282	0,294	0,470	0,319	0,790
Si	0,000	0,000	0,003	0,000	0,005	0,003	0,003	0,000
Ті	0,061	0,242	0,291	0,265	0,263	0,264	0,282	0,314
Zr	0,005	0,015	0,018	0,019	0,021	0,020	0,017	0,022
Sn	0,000	0,010	0,012	0,011	0,011	0,000	0,009	0,029
Sc	0,034	0,113	0,139	0,108	0,108	0,137	0,110	0,129
Υ	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,987	0,276	0,266	0,275	0,273	0,246	0,273	0,324
Fe	0,012	0,625	0,602	0,632	0,621	0,635	0,623	0,549
0	5,939	5,916	5,910	5,906	5,923	5,910	5,914	5,898
Fe3+	0,122	0,169	0,180	0,189	0,153	0,180	0,172	0,204
Fe2+	-0,110	0,456	0,422	0,443	0,468	0,455	0,451	0,345
Sum kat.	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000
Mn/(Mn+Fe)	0,988	0,306	0,307	0,304	0,306	0,279	0,305	0,371
Ta/(Ta+Nb)	0,179	0,267	0,320	0,172	0,178	0,281	0,195	0,495

Tabulka T5, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec kolumbitu (apfu)

Bod	24/1.	25/1.	26/1.	27/1.	28/1.	103/1.	104/1.	106/1.
Vzorek								
(vrt/hloubka)	C20/246	C20/246	C20/246	C20/246	C20/246	C20-142	C20-142	C20-142
WO3	1,83	1,74	0,38	2,36	2,13	2,58	4,13	2,09
Nb2O5	38,35	40,86	52,09	50,65	47,99	44,96	58,73	47,36
Ta2O5	32,19	31,04	22,31	18,00	22,77	24,71	11,49	24,46
SiO2	0,00	0,00	0,00	0,00	0,07	0,05	0,13	0,08
TiO2	5,94	4,77	2,57	5,54	5,86	5,95	2,78	4,91
ZrO2	0,67	0,56	0,33	0,60	0,54	0,59	0,60	0,45
SnO2	0,60	0,53	0,32	0,29	0,40	1,14	1,53	0,64
Sc2O3	1,91	1,88	1,18	2,07	2,46	1,99	0,94	1,94
Y2O3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	6,14	6,46	17,32	5,55	4,52	7,69	10,18	7,99
FeO	10,61	10,76	1,16	12,76	13,24	10,52	9,95	10,01
Total	98,44	98,78	97,96	98,01	100,20	100,50	100,77	100,28
W	0,030	0,029	0,006	0,037	0,033	0,040	0,062	0,033
Nb	1,099	1,166	1,454	1,370	1,292	1,219	1,539	1,293
Та	0,555	0,533	0,374	0,293	0,369	0,403	0,181	0,402
Si	0,000	0,000	0,000	0,000	0,004	0,003	0,008	0,005
Ti	0,283	0,226	0,119	0,249	0,262	0,269	0,121	0,223
Zr	0,021	0,017	0,010	0,018	0,016	0,017	0,017	0,013
Sn	0,015	0,013	0,008	0,007	0,010	0,027	0,035	0,015
Sc	0,105	0,104	0,063	0,108	0,127	0,104	0,047	0,102
Υ	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,330	0,345	0,905	0,281	0,228	0,391	0,500	0,408
Fe	0,562	0,568	0,060	0,638	0,660	0,527	0,482	0,505
0	5,912	5,913	5,923	5,895	5,912	5,881	5,913	5,915
Fe3+	0,176	0,174	0,153	0,211	0,176	0,237	0,173	0,170
Fe2+	0,386	0,394	-0,094	0,427	0,484	0,290	0,309	0,336
Sum kat.	3,000	3,000	3,000	3,000	3,000	3,000	2,993	3,000
Mn/(Mn+Fe)	0,370	0,378	0,938	0,306	0,257	0,425	0,509	0,447
Ta/(Ta+Nb)	0,336	0,314	0,205	0,176	0,222	0,248	0,105	0,237

Tabulka T5, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec kolumbitu (apfu)

Bod	107/1.	8/1.	9/1.	10/1.	11/1.	12/1.	15/1.	16/1.
Vzorek								
(vrt/hloubka)	C20-142	C20-195						
WO3	2,33	3,49	3,44	2,11	3,37	2,98	3,45	3,29
Nb2O5	45,96	53,37	53,92	57,21	56,46	56,38	51,73	52 <i>,</i> 60
Ta2O5	24,49	15,98	15,90	15,62	17,18	17,29	14,56	16,75
SiO2	0,06	0,05	0,05	0,06	0,06	0,08	0,08	0,05
TiO2	5,63	4,37	3,18	3,73	2,24	2,25	6,21	5,45
ZrO2	0,52	0,40	0,29	0,24	0,28	0,26	0,49	0,40
SnO2	0,97	0,63	0,51	0,47	0,00	0,00	1,27	0,50
Sc2O3	1,91	1,39	1,45	1,58	0,97	0,95	1,87	1,69
Y2O3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	7,58	6,51	7,01	6,52	7,50	7,78	5,89	6,33
FeO	10,27	12,80	12,58	12,68	12,19	12,16	12,66	12,57
Total	99,87	99,11	98,49	100,36	100,74	100,34	98,31	99,80
W	0,036	0,054	0,053	0,032	0,052	0,046	0,053	0,050
Nb	1,256	1,431	1,460	1,512	1,521	1,516	1,377	1,397
Та	0,403	0,258	0,259	0,248	0,278	0,280	0,233	0,268
Si	0,003	0,003	0,003	0,004	0,003	0,005	0,005	0,003
Ti	0,256	0,195	0,143	0,164	0,101	0,101	0,275	0,241
Zr	0,015	0,012	0,008	0,007	0,008	0,008	0,014	0,012
Sn	0,023	0,015	0,012	0,011	0,000	0,000	0,030	0,012
Sc	0,100	0,072	0,076	0,080	0,050	0,049	0,096	0,086
Υ	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,388	0,327	0,355	0,323	0,379	0,392	0,294	0,315
Fe	0,519	0,635	0,630	0,620	0,608	0,605	0,624	0,617
0	5,908	5,900	5,889	5,929	5,940	5,922	5,893	5,907
Fe3+	0,183	0,199	0,221	0,142	0,120	0,156	0,215	0,187
Fe2+	0,336	0,436	0,409	0,478	0,488	0,449	0,409	0,431
Sum kat.	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000
Mn/(Mn+Fe)	0,428	0,340	0,361	0,342	0,384	0,393	0,320	0,338
Ta/(Ta+Nb)	0,243	0,153	0,151	0,141	0,155	0,156	0,145	0,161

Tabulka T5, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec kolumbitu (apfu)

Bod	17/1.	18/1.	19/1.	20/1.	50/1.	51/1.	52/1.	58/1.
Vzorek								
(vrt/hloubka)	C20-195	C20-195	C20-195	C20-195	P07-402	P07-402	P07-402	P07-402
WO3	3,51	3,26	2,82	2,80	3,25	3,20	2,71	3,51
Nb2O5	55,72	53,36	43,46	55,65	55,18	51,29	62,11	58,53
Ta2O5	17,05	14,97	26,45	17,23	13,82	18,26	9,99	9,99
SiO2	0,05	0,00	0,07	0,00	0,05	0,08	0,04	0,07
TiO2	2,23	5,27	5,13	2,47	5,02	5,98	4,65	4,86
ZrO2	0,24	0,37	0,43	0,25	0,42	0,64	0,46	0,46
SnO2	0,00	0,62	0,69	0,22	0,43	1,01	0,31	0,54
Sc2O3	0,98	1,63	1,67	1,01	1,36	1,74	1,85	1,37
Y2O3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	7,73	6,01	6,45	7,78	5,98	5,89	6,56	5,75
FeO	12,11	12,85	11,64	11,80	13,55	12,58	12,62	13,86
Total	99,84	98,58	99,04	99,39	99,27	100,99	101,41	99,03
W	0,054	0,050	0,045	0,044	0,049	0,048	0,040	0,053
Nb	1,508	1,428	1,212	1,510	1,458	1,356	1,586	1,529
Та	0,278	0,241	0,444	0,281	0,220	0,290	0,153	0,157
Si	0,003	0,000	0,004	0,000	0,003	0,005	0,002	0,004
Ti	0,100	0,235	0,238	0,112	0,221	0,263	0,198	0,211
Zr	0,007	0,011	0,013	0,007	0,012	0,018	0,013	0,013
Sn	0,000	0,015	0,017	0,005	0,010	0,024	0,007	0,012
Sc	0,051	0,084	0,090	0,053	0,069	0,089	0,091	0,069
Υ	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,392	0,301	0,337	0,396	0,296	0,292	0,314	0,281
Fe	0,606	0,636	0,600	0,593	0,662	0,615	0,596	0,670
0	5,923	5,905	5,891	5,925	5,895	5,920	5,954	5,910
Fe3+	0,154	0,190	0,219	0,151	0,210	0,160	0,093	0,180
Fe2+	0,453	0,446	0,382	0,442	0,452	0,455	0,503	0,490
Sum kat.	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000
Mn/(Mn+Fe)	0,393	0,321	0,360	0,400	0,309	0,322	0,345	0,296
Ta/(Ta+Nb)	0,155	0,144	0,268	0,157	0,131	0,176	0,088	0,093

Tabulka T5, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec kolumbitu (apfu)

Bod	61/1.	62/1.	8/1.	30/1.	33/1.	34/1.	35/1.	36/1.
Vzorek								
(vrt/hloubka)	P07-402	P07-402	P7/100	P7/100	P7/100	P7/100	P7/100	P7/100
WO3	3,19	2,63	4,59	7,99	3,47	3,51	4,42	5,84
Nb2O5	49,89	59,60	60,44	55,58	33,53	38,71	39,18	60,14
Ta2O5	20,66	14,05	7,70	6,80	35,90	29,30	29,66	8,56
SiO2	0,04	0,04	0,37	0,31	0,08	0,07	0,00	0,06
TiO2	5,08	2,57	2,23	2,10	5,96	5,73	5,15	1,91
ZrO2	0,45	0,21	0,51	0,00	0,54	0,59	0,52	0,59
SnO2	0,63	0,00	0,58	0,00	0,87	0,53	0,71	1,52
Sc2O3	1,63	1,09	0,55	0,12	2,94	2,80	3,04	0,75
Y2O3	0,00	0,00	0,13	0,13	0,00	0,14	0,00	0,16
MnO	6,33	7,47	14,14	18,55	11,87	12,70	12,39	11,98
FeO	12,25	12,24	7,27	2,12	3,70	4,18	4,25	8,18
Total	100,35	100,80	99,38	94,17	99,19	98,51	100,12	100,09
W	0,049	0,040	0,069	0,127	0,058	0,057	0,071	0,089
Nb	1,344	1,580	1,579	1,547	0,973	1,093	1,107	1,595
Та	0,335	0,224	0,121	0,114	0,627	0,498	0,504	0,137
Si	0,002	0,002	0,022	0,019	0,005	0,004	0,000	0,004
Ti	0,227	0,113	0,097	0,097	0,288	0,269	0,242	0,084
Zr	0,013	0,006	0,014	0,000	0,017	0,018	0,016	0,017
Sn	0,015	0,000	0,013	0,000	0,022	0,013	0,018	0,036
Sc	0,084	0,056	0,028	0,006	0,164	0,153	0,165	0,038
Υ	0,000	0,000	0,004	0,004	0,000	0,004	0,000	0,005
Mn	0,320	0,371	0,692	0,967	0,646	0,672	0,655	0,595
Fe	0,610	0,600	0,352	0,109	0,199	0,218	0,222	0,401
0	5,916	5,933	5,857	5,872	5,912	5,864	5,900	5,936
Fe3+	0,167	0,135	0,287	0,256	0,175	0,273	0,200	0,128
Fe2+	0,443	0,466	0,065	-0,147	0,024	-0,055	0,022	0,274
Sum kat.	3,000	2,993	2,990	2,991	3,000	3,000	3,000	3,000
Mn/(Mn+Fe)	0,344	0,382	0,663	0,899	0,765	0,755	0,747	0,597
Ta/(Ta+Nb)	0,199	0,124	0,071	0,069	0,392	0,313	0,313	0,079

Tabulka T5, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec kolumbitu (apfu)

Bod	37/1.	77/1.	80/1.	81/1.	82/1.	84/1.	94/1.	100/1.
Vzorek								
(vrt/hloubka)	P7/100	P7/289	P7/350	P7/350	P7/350	P7/350	P7/350	P7/350
WO3	1,67	2,37	2,32	1,68	2,83	12,17	5,99	1,66
Nb2O5	51,59	62,67	63,95	49,86	59,93	53,71	54,92	64,20
Ta2O5	18,97	13,19	10,70	15,61	8,83	8,10	8,21	11,03
SiO2	0,06	0,09	0,07	0,38	0,31	0,00	0,16	0,11
TiO2	4,12	1,36	2,18	2,92	1,95	2,48	4,54	2,14
ZrO2	1,21	0,00	0,22	0,22	0,12	0,34	0,31	0,19
SnO2	1,96	0,00	0,52	0,36	0,19	0,48	1,06	0,00
Sc2O3	1,42	0,52	0,58	1,08	0,53	0,94	0,73	0,69
Y2O3	0,18	0,13	0,16	0,15	0,08	0,09	0,16	0,13
MnO	12,91	10,45	9,23	8,99	12,83	9,49	13,93	10,99
FeO	5,22	10,25	10,65	9,73	6,92	11,60	7,82	9,25
Total	99,54	101,20	100,91	91,62	94,92	99,55	98,15	100,64
W	0,026	0,036	0,035	0,028	0,044	0,187	0,089	0,025
Nb	1,396	1,648	1,675	1,436	1,646	1,444	1,430	1,675
Та	0,309	0,209	0,169	0,271	0,146	0,131	0,129	0,173
Si	0,004	0,005	0,004	0,024	0,019	0,000	0,009	0,006
Ті	0,185	0,060	0,095	0,140	0,089	0,111	0,197	0,093
Zr	0,035	0,000	0,006	0,007	0,004	0,010	0,009	0,005
Sn	0,047	0,000	0,012	0,009	0,005	0,011	0,024	0,000
Sc	0,074	0,026	0,029	0,060	0,028	0,048	0,037	0,035
Υ	0,006	0,004	0,005	0,005	0,003	0,003	0,005	0,004
Mn	0,654	0,515	0,453	0,485	0,660	0,478	0,679	0,537
Fe	0,261	0,498	0,516	0,518	0,351	0,577	0,377	0,446
0	5,915	5,936	5,970	5,821	5,902	5,894	5,777	5,946
Fe3+	0,169	0,129	0,060	0,357	0,196	0,211	0,446	0,108
Fe2+	0,092	0,370	0,457	0,161	0,156	0,365	-0,069	0,338
Sum kat.	2,998	3,000	3,000	2,983	2,994	3,000	2,985	3,000
Mn/(Mn+Fe)	0,715	0,508	0,467	0,483	0,653	0,453	0,643	0,546
Ta/(Ta+Nb)	0,181	0,112	0,091	0,159	0,081	0,083	0,083	0,094

Tabulka T5, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec kolumbitu (apfu)

Bod	101/1.	105/1.	106/1.	20/1.	21/1.	37/1.	51/1.	67/1.
Vzorek								
(vrt/hloubka)	P7/350	P7/350	P7/350	P7/281	P7/281	P7/281	P2_199	P2-245
WO3	0,91	1,62	1,04	5,57	6,09	5,94	6,81	1,67
Nb2O5	58,26	62,96	48,95	52,82	55,64	53,39	57,41	63,93
Ta2O5	20,60	10,99	24,97	20,91	17,90	20,29	7,56	11,48
SiO2	0,08	0,08	0,00	0,06	0,05	0,06	0,09	0,05
TiO2	1,18	2,31	4,31	1,54	1,46	1,56	3,45	2,45
ZrO2	0,00	0,25	0,38	0,00	0,00	0,00	0,26	0,44
SnO2	0,00	0,43	0,58	0,00	0,20	0,21	0,61	0,84
Sc2O3	0,65	0,77	1,85	0,64	0,64	0,54	1,10	0,75
Y2O3	0,09	0,18	0,12	0,00	0,18	0,17	0,00	0,11
MnO	7,45	10,31	9,13	11,17	11,39	11,34	12,13	15,05
FeO	11,95	10,11	8,85	8,55	8,65	8,77	7,71	5,16
Total	101,50	100,17	100,47	101,69	102,36	102,53	97,40	102,14
W	0,014	0,024	0,016	0,088	0,094	0,092	0,105	0,067
Nb	1,578	1,644	1,337	1,450	1,498	1,448	1,541	1,480
Та	0,336	0,173	0,410	0,345	0,290	0,331	0,122	0,282
Si	0,005	0,005	0,000	0,004	0,003	0,003	0,005	0,003
Ti	0,053	0,100	0,196	0,070	0,065	0,070	0,154	0,111
Zr	0,000	0,007	0,011	0,000	0,000	0,000	0,008	0,007
Sn	0,000	0,010	0,014	0,000	0,005	0,005	0,015	0,000
Sc	0,034	0,039	0,097	0,034	0,033	0,028	0,057	0,056
Υ	0,003	0,006	0,004	0,000	0,006	0,005	0,000	0,004
Mn	0,378	0,504	0,467	0,574	0,575	0,576	0,610	0,325
Fe	0,599	0,488	0,447	0,434	0,431	0,440	0,383	0,664
0	5,976	5,918	5,913	5,960	5,963	5,949	5,915	5,929
Fe3+	0,048	0,165	0,174	0,080	0,074	0,102	0,170	0,142
Fe2+	0,551	0,324	0,274	0,354	0,357	0,337	0,213	0,522
Sum kat.	3,000	3,000	3,000	3,000	3,000	3,000	2,999	3,000
Mn/(Mn+Fe)	0,387	0,508	0,511	0,570	0,572	0,567	0,614	0,329
Ta/(Ta+Nb)	0,175	0,095	0,235	0,192	0,162	0,186	0,073	0,160

Tabulka T5, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec kolumbitu (apfu)

Bod	97/1.	98/1.	99/1.	110/1.	111/1.	112/1.	113/1.	114/1.
Vzorek								
(vrt/hloubka)	P2-327							
WO3	4,37	1,58	3,85	2,56	3,01	3,14	1,33	1,62
Nb2O5	55,26	67,22	57,09	57,56	54,79	57,55	59,49	58,36
Ta2O5	17,52	9,41	18,15	18,09	19,52	17,75	14,83	15,55
SiO2	0,05	0,00	0,05	0,06	0,00	0,07	0,07	0,06
TiO2	2,50	2,09	0,86	1,84	2,95	1,77	3,47	3,51
ZrO2	0,23	0,19	0,00	0,00	0,26	0,00	0,51	0,57
SnO2	0,00	0,54	0,00	0,20	0,32	0,00	0,77	0,78
Sc2O3	1,08	0,71	0,48	0,73	1,06	0,72	1,11	1,11
Y2O3	0,12	0,11	0,14	0,19	0,16	0,10	0,15	0,14
MnO	6,49	12,03	7,71	6,47	6,47	6,55	11,63	11,42
FeO	13,40	8,52	12,36	13,79	13,14	13,91	8,31	8,25
Total	101,13	102,92	101,04	101,69	101,82	101,97	102,00	101,68
W	0,023	0,060	0,039	0,046	0,048	0,020	0,024	0,023
Nb	1,713	1,553	1,534	1,463	1,533	1,542	1,524	1,661
Та	0,144	0,297	0,290	0,313	0,284	0,231	0,244	0,152
Si	0,000	0,003	0,003	0,000	0,004	0,004	0,003	0,004
Ti	0,088	0,039	0,082	0,131	0,078	0,150	0,153	0,092
Zr	0,005	0,000	0,000	0,007	0,000	0,014	0,016	0,008
Sn	0,012	0,000	0,005	0,007	0,000	0,018	0,018	0,006
Sc	0,035	0,025	0,037	0,054	0,037	0,055	0,056	0,034
Υ	0,003	0,004	0,006	0,005	0,003	0,004	0,004	0,000
Mn	0,574	0,393	0,323	0,324	0,327	0,564	0,558	0,641
Fe	0,402	0,622	0,680	0,649	0,685	0,398	0,398	0,379
0	5,957	5,954	5,926	5,932	5,924	5,914	5,921	5 <i>,</i> 893
Fe3+	0,087	0,093	0,147	0,137	0,151	0,173	0,158	0,214
Fe2+	0,315	0,529	0,533	0,512	0,534	0,225	0,241	0,165
Sum kat.	3,000	2,996	3,000	3,000	3,000	3,000	2,999	3,000
Mn/(Mn+Fe)	0,588	0,387	0,322	0,333	0,323	0,586	0,584	0,629
Ta/(Ta+Nb)	0,078	0,161	0,159	0,176	0,156	0,130	0,138	0,084

Tabulka T5, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec kolumbitu (apfu)

Bod	31/1.	35/1.	36/1.	50/1.	53/1.	65/1.	66/1.	67/1.
Vzorek								
(vrt/hloubka)	P02-301							
WO3	1,55	2,92	2,42	1,06	3,02	2,01	2,49	3,74
Nb2O5	62,96	47,29	49,47	65,39	60,92	64,89	50,20	51,92
Ta2O5	9,57	26,42	25,23	10,44	8,64	9,83	25,56	21,59
SiO2	0,06	0,05	0,11	0,05	0,08	0,00	0,08	0,08
TiO2	2,09	1,72	1,59	1,85	1,77	2,19	1,83	2,70
ZrO2	0,29	0,17	0,00	0,13	0,15	0,26	0,16	0,32
SnO2	0,27	0,30	0,00	0,24	0,31	0,69	0,00	0,28
Sc2O3	0,66	0,82	0,71	0,74	0,39	0,70	0,82	1,03
Y2O3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	12,98	12,34	11,31	13,73	13,53	13,16	6,45	8,06
FeO	7,76	6,99	8,56	6,85	7,62	7,21	12,91	11,01
Total	98,38	99,29	99,82	100,53	96,72	101,09	100,79	101,03
W	0,047	0,039	0,016	0,047	0,030	0,040	0,059	0,062
Nb	1,339	1,381	1,697	1,637	1,680	1,391	1,419	1,450
Та	0,450	0,424	0,163	0,140	0,153	0,426	0,355	0,368
Si	0,003	0,007	0,003	0,005	0,000	0,005	0,005	0,000
Ti	0,081	0,074	0,080	0,079	0,094	0,085	0,123	0,059
Zr	0,005	0,000	0,004	0,004	0,007	0,005	0,009	0,000
Sn	0,007	0,000	0,006	0,007	0,016	0,000	0,007	0,000
Sc	0,045	0,038	0,037	0,020	0,035	0,044	0,054	0,035
Υ	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,655	0,592	0,667	0,681	0,639	0,335	0,413	0,478
Fe	0,366	0,442	0,329	0,379	0,346	0,662	0,557	0,548
0	5,898	5,887	5,931	5,865	5,945	5,925	5,949	5,927
Fe3+	0,203	0,227	0,138	0,270	0,110	0,149	0,102	0,147
Fe2+	0,163	0,215	0,191	0,109	0,236	0,513	0,455	0,401
Sum kat.	3,000	2,997	3,000	2,998	3,000	2,991	3,000	3,000
Mn/(Mn+Fe)	0,641	0,572	0,670	0,643	0,649	0,336	0,426	0,466
Ta/(Ta+Nb)	0,252	0,235	0,088	0,079	0,084	0,234	0,200	0,202

Tabulka T5, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. Vzorec kolumbitu (apfu)

Bod	68/1.	69/1.	3/1.	11/1.	12/1.	13/1.	14/1.	15/1.
Vzorek								
(vrt/hloubka)	P02-301	P02-301	P02-410	P02-410	P02-410	P02-410	P02-410	P02-410
WO3	3,89	3,88	4,33	0,96	2,38	3,09	3,66	2,09
Nb2O5	52,06	54,40	60,74	45,23	45,94	59,41	56,77	50,01
Ta2O5	21,94	17,83	9,20	29,56	28,45	14,07	14,97	25,69
SiO2	0,00	0,00	0,06	0,00	0,00	0,05	0,06	0,06
TiO2	1,28	3,42	2,99	3,30	3,39	2,75	2,82	2,21
ZrO2	0,00	0,32	0,27	0,37	0,32	0,18	0,21	0,20
SnO2	0,00	0,23	0,30	0,44	0,53	0,26	0,23	0,35
Sc2O3	0,66	1,22	0,91	1,54	1,40	0,92	0,93	1,03
Y2O3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	9,16	6,19	8,30	9,73	5,16	8,70	8,84	5,50
FeO	10,65	13,32	12,59	8,19	13,17	11,37	11,03	13,40
Total	100,07	101,12	99,85	99,54	100,93	100,98	99,69	100,64
W	0,059	0,105	0,065	0,016	0,038	0,047	0,056	0,033
Nb	1,455	1,541	1,584	1,278	1,281	1,566	1,522	1,388
Та	0,287	0,122	0,144	0,502	0,477	0,223	0,241	0,429
Si	0,000	0,005	0,004	0,000	0,000	0,003	0,004	0,004
Ti	0,152	0,154	0,130	0,155	0,157	0,121	0,126	0,102
Zr	0,009	0,008	0,008	0,011	0,010	0,005	0,006	0,006
Sn	0,005	0,015	0,007	0,011	0,013	0,006	0,005	0,009
Sc	0,063	0,057	0,046	0,084	0,075	0,047	0,048	0,055
Υ	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,310	0,610	0,406	0,515	0,269	0,429	0,444	0,286
Fe	0,659	0,383	0,608	0,428	0,679	0,554	0,547	0,688
0	5,930	5,915	5,893	5,920	5,931	5,934	5,923	5,940
Fe3+	0,141	0,170	0,214	0,159	0,138	0,133	0,154	0,119
Fe2+	0,518	0,213	0,393	0,269	0,541	0,422	0,393	0,569
Sum kat.	3,000	2,999	3,000	3,000	3,000	3,000	3,000	3,000
Mn/(Mn+Fe)	0,320	0,614	0,400	0,546	0,284	0,436	0,448	0,294
Ta/(Ta+Nb)	0,165	0,073	0,083	0,282	0,271	0,125	0,137	0,236

Tabulka T5, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec kolumbitu (apfu)

Bod	16/1.	17/1.	26/1.	27/1.	31/1.	32/1.	35/1.	36/1.
Vzorek								
(vrt/hloubka)	P02-410							
WO3	2,34	4,11	2,67	2,07	1,03	2,49	3,18	3,20
Nb2O5	64,56	63,40	46,52	65,33	44,45	64,06	56,49	55,56
Ta2O5	9,43	8,88	26,58	8,49	29,59	9,62	14,57	16,39
SiO2	0,06	0,05	0,06	0,21	0,00	0,00	0,06	0,00
TiO2	1,92	2,70	3,19	1,82	4,07	2,12	3,87	4,05
ZrO2	0,21	0,17	0,40	0,16	0,46	0,21	0,32	0,24
SnO2	0,36	0,27	0,46	0,00	0,88	0,49	0,21	0,32
Sc2O3	0,52	0,83	1,23	0,45	1,77	0,59	1,32	1,33
Y2O3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	9,63	9,65	5,58	10,74	10,10	9,34	5,24	5,51
FeO	11,25	10,81	13,09	9,30	7,60	11,47	14,27	14,02
Total	100,73	100,94	100,01	99,28	100,42	100,56	99,73	100,93
W	0,035	0,061	0,043	0,031	0,016	0,037	0,048	0,049
Nb	1,680	1,643	1,300	1,725	1,243	1,666	1,501	1,471
Та	0,148	0,138	0,447	0,135	0,498	0,150	0,233	0,261
Si	0,003	0,003	0,004	0,012	0,000	0,000	0,003	0,000
Ті	0,083	0,116	0,148	0,080	0,190	0,092	0,171	0,178
Zr	0,006	0,005	0,012	0,005	0,014	0,006	0,009	0,007
Sn	0,008	0,006	0,011	0,000	0,022	0,011	0,005	0,007
Sc	0,026	0,042	0,066	0,023	0,095	0,030	0,068	0,068
Υ	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,469	0,468	0,292	0,531	0,529	0,455	0,261	0,273
Fe	0,541	0,518	0,677	0,454	0,393	0,552	0,701	0,686
0	5,925	5,944	5,914	5,965	5,917	5,923	5,920	5,921
Fe3+	0,151	0,112	0,172	0,070	0,166	0,153	0,161	0,159
Fe2+	0,391	0,407	0,505	0,383	0,227	0,399	0,540	0,528
Sum kat.	3,000	3,000	3,000	2,995	3,000	3,000	3,000	3,000
Mn/(Mn+Fe)	0,464	0,475	0,302	0,539	0,574	0,452	0,271	0,285
Ta/(Ta+Nb)	0,081	0,078	0,256	0,072	0,286	0,083	0,134	0,151

Tabulka T5, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec kolumbitu (apfu)

Bod	37/1.	39/1.	40/1.	43/1.	62/1.	63/1.	64/1.	65/1.
Vzorek								
(vrt/hloubka)	P02-410	P02-410	P02-410	P02-218	P02-218	P02-218	P02-218	P02-218
WO3	3,33	1,76	1,15	1,23	1,47	1,71	3,84	1,43
Nb2O5	59,94	64,32	44,34	65,11	40,31	42,32	51,32	65,75
Ta2O5	11,34	9,84	30,54	10,49	34,96	33,15	8,84	10,42
SiO2	0,00	0,00	0,00	0,05	0,00	0,08	0,21	0,07
TiO2	4,31	2,24	4,13	2,23	4,03	3,19	2,04	2,03
ZrO2	0,36	0,16	0,48	0,28	0,37	0,34	0,15	0,27
SnO2	0,30	0,29	0,83	0,47	0,43	0,27	0,00	0,44
Sc2O3	1,29	0,68	1,77	0,85	2,19	1,71	0,36	0,81
Y2O3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	5,21	9,81	9,78	15,94	12,75	13,07	14,77	15,35
FeO	14,56	10,95	7,83	4,46	4,50	4,59	4,12	5,20
Total	100,75	100,23	100,97	101,29	101,18	100,64	86,12	101,91
W	0,050	0,026	0,018	0,018	0,024	0,028	0,067	0,021
Nb	1,554	1,673	1,235	1,678	1,140	1,201	1,553	1,686
Та	0,177	0,154	0,512	0,163	0,595	0,566	0,161	0,161
Si	0,000	0,000	0,000	0,003	0,000	0,005	0,014	0,004
Ti	0,186	0,097	0,191	0,095	0,190	0,151	0,103	0,087
Zr	0,010	0,005	0,015	0,008	0,011	0,011	0,005	0,007
Sn	0,007	0,007	0,020	0,011	0,011	0,007	0,000	0,010
Sc	0,064	0,034	0,095	0,042	0,119	0,093	0,021	0,040
Y	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,253	0,478	0,511	0,770	0,676	0,695	0,837	0,738
Fe	0,699	0,527	0,403	0,213	0,235	0,241	0,231	0,246
0	5,931	5,917	5,931	5,935	5,920	5,927	0,000	5,941
Fe3+	0,137	0,166	0,139	0,130	0,159	0,146	0,329	0,119
Fe2+	0,561	0,361	0,264	0,083	0,076	0,095	-0,099	0,128
Sum kat.	3,000	3,000	3,000	3,000	3,000	2,997	2,991	3,000
Mn/(Mn+Fe)	0,266	0,476	0,559	0,784	0,742	0,742	0,784	0,750
Ta/(Ta+Nb)	0,102	0,084	0,293	0,088	0,343	0,320	0,094	0,087

Tabulka T5, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec kolumbitu (apfu)

Bod Vzorek	69/1.	83/1.	84/1.	85/1.	86/1.	87/1.	83/1. P13-
(vrt/hloubka)	P02-218	P02-218	P02-218	P02-218	P02-218	P02-218	133B
WO3	1,57	2,18	1,88	2,83	1,46	2,02	2,98
Nb2O5	55,68	63 <i>,</i> 87	65,53	37,29	39,07	39,82	64,05
Ta2O5	14,49	8,89	9,69	34,31	35,75	35,28	10,32
SiO2	0,00	0,08	0,05	0,00	0,06	0,00	0,07
TiO2	5,10	1,89	2,01	4,81	4,33	3,82	2,36
ZrO2	1,28	0,24	0,27	0,50	0,46	0,41	0,34
SnO2	2,01	0,54	0,41	0,91	0,53	0,39	0,35
Sc2O3	1,42	0,62	0,69	2,30	2,12	2,02	0,80
Y2O3	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	13,28	13,58	14,53	11,48	12,09	12,45	14,66
FeO	4,87	6,99	6,34	5,06	4,75	4,75	5,82
Total	100,40	99,31	101,50	99,98	100,89	101,06	101,76
W	0,024	0,033	0,028	0,047	0,024	0,033	0,044
Nb	1,469	1,680	1,683	1,074	1,113	1,134	1,649
Та	0,230	0,141	0,150	0,594	0,613	0,604	0,160
Si	0,000	0,004	0,003	0,000	0,004	0,000	0,004
Ті	0,224	0,083	0,086	0,231	0,205	0,181	0,101
Zr	0,036	0,007	0,007	0,016	0,014	0,013	0,009
Sn	0,047	0,012	0,009	0,023	0,013	0,010	0,008
Sc	0,072	0,032	0,034	0,127	0,116	0,111	0,040
Υ	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,656	0,669	0,699	0,619	0,645	0,664	0,707
Fe	0,238	0,340	0,301	0,270	0,250	0,250	0,277
0	5,943	5,918	5,927	5,928	5,933	5,932	5,944
Fe3+	0,114	0,164	0,146	0,144	0,135	0,136	0,111
Fe2+	0,123	0,176	0,155	0,125	0,116	0,114	0,166
Sum kat.	2,996	3,000	3,000	3,000	2,999	3,000	3,000
Mn/(Mn+Fe)	0,734	0,663	0,699	0,697	0,720	0,726	0,718
Ta/(Ta+Nb)	0,135	0,077	0,082	0,356	0,355	0,348	0,088

Tabulka T5, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec kolumbitu (apfu)

Bod	1/1.	2/1.	3/1.	4/1.	5/1.	6/1.	8/1.	23/1.	24/1.
Vzorek	P7-								
(vrt/hloubka)	402	402	402	402	402	402	402	332	332
SIO ₂	45,26	46,55	46,26	45,22	45,01	46,32	45,24	47,25	47,36
	20,63	20,28	20,45	20,91	20,86	20,16	20,51	20,33	19,84
TiO ₂	0,34	0,20	0,07	0,12	0,15	0,21	0,18	0,03	0,10
MgO	0,12	0,11	0,14	0,11	0,11	0,13	0,10	0,03	0,04
FeO	12,18	11,63	11,88	12,31	12,96	11,69	12,38	10,77	11,36
MnO	0,88	0,79	0,78	0,84	0,89	0,83	0,84	0,92	0,91
ZnO	0,11	0,00	0,08	0,03	0,12	0,01	0,12	0,04	0,15
CaO	0,00	0,00	0,00	0,00	0,02	0,01	0,00	0,00	0,00
Na ₂ O	0,20	0,18	0,33	0,20	0,22	0,24	0,26	0,20	0,19
K ₂ O	9,81	9,83	9,53	9,54	9,63	9,71	9,72	9,90	9,84
Rb ₂ O	1,28	1,33	1,82	1,65	1,44	1,59	1,43	1,11	1,18
F	8,13	8,48	8,45	8,25	8,20	8,30	8,30	8,36	8,58
H ₂ O	0,30	0,14	0,17	0,26	0,28	0,25	0,19	0,25	0,13
-(O=F)	-3,85	-4,02	-4,01	-3,91	-3,89	-3,94	-3,94	-3,96	-4,07
Suma	98,93	98,84	99,47	99,34	99,85	99,33	98,53	98,89	99,17
Si	3,266	3,351	3,323	3,254	3,236	3,317	3,290	3,366	3,380
AI	1,754	1,721	1,731	1,773	1,768	1,701	1,758	1,707	1,669
Ti	0,018	0,011	0,004	0,007	0,008	0,011	0,010	0,000	0,005
Mg	0,013	0,011	0,015	0,012	0,011	0,014	0,011	0,000	0,000
Fe	0,735	0,700	0,714	0,741	0,779	0,700	0,753	0,641	0,678
Mn	0,054	0,048	0,047	0,051	0,054	0,050	0,052	0,055	0,055
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,008
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,028	0,025	0,045	0,028	0,031	0,033	0,037	0,028	0,026
К	0,903	0,903	0,873	0,876	0,883	0,887	0,902	0,900	0,896
Rb	0,060	0,062	0,084	0,076	0,066	0,073	0,067	0,051	0,054
F	1,855	1,931	1,919	1,878	1,865	1,880	1,909	1,883	1,937
Li (ICP)	1,006	0,869	0,948	1,052	1,051	1,064	0,891	1,047	0,994
Suma kat.	9,691	9,636	9,703	9,747	9,753	9,730	9,679	9,677	9,702
TAI	0,734	0,649	0,677	0,746	0,764	0,683	0,710	0,634	0,620
MAI	1,020	1,071	1,053	1,027	1,003	1,018	1,048	1,072	1,049
MAI+Ti	1,039	1,082	1,057	1,033	1,012	1,029	1,057	1,072	1,054
Fe+Mg+Mn	0,748	0,711	0,728	0,753	0,791	0,714	0,764	0,641	0,678
ТМ	6,846	6,716	6,781	6,889	6,908	6,857	6,764	6,816	6,789
Vac. M	0,154	0,284	0,219	0,111	0,092	0,143	0,236	0,184	0,211
K+Na+Rb+Cs	0,991	0,989	1,002	0,980	0,980	0,993	1,005	0,978	0,976
Mn/Mn+Fe+Mg	0,072	0,068	0,065	0,068	0,069	0,070	0,068	0,086	0,081

Tabulka T6: Chemické složení (hm.%) a přepočtený krystalochem. vzorec sk. slíd (apfu)

Bod	25/1.	26/1.	27/1.	28/1.	29/1.	30/1.	31/1.	32/1.	33/1.
Vzorek	P7-	P7-	P7-	P7-	P7-	P7-	P7-	P7-	P7-
(vrt/hloubka)	332	332	332	332	332	332	332	332	332
	46,11	46,83	46,66	47,11	47,52	46,15	46,73	46,82	46,89
Al ₂ O ₃	20,33	20,20	20,05	20,16	20,05	20,06	20,12	20,11	19,90
TiO ₂	0,05	0,07	0,09	0,13	0,11	0,09	0,10	0,11	0,01
MgO	0,01	0,03	0,04	0,03	0,02	0,02	0,01	0,03	0,00
FeO	11,94	11,73	11,77	11,51	11,51	12,00	11,81	12,03	11,60
MnO	1,04	0,99	1,01	1,01	0,93	1,04	1,06	1,05	1,17
ZnO	0,07	0,08	0,06	0,14	0,16	0,10	0,09	0,21	0,20
CaO	0,01	0,00	0,04	0,02	0,02	0,01	0,00	0,00	0,00
Na ₂ O	0,18	0,20	0,33	0,16	0,22	0,24	0,21	0,22	0,20
K ₂ O	9,97	9,82	9,75	9,84	9,99	9,66	9,64	9,55	9,71
Rb ₂ O	1,39	1,34	1,18	1,22	1,30	1,44	1,17	1,23	1,24
F	8,49	8,54	8,29	8,46	8,35	8,39	8,30	8,25	8,39
H ₂ O	0,13	0,16	0,26	0,22	0,27	0,19	0,27	0,29	0,23
-(O=F)	-4,03	-4,05	-3,93	-4,01	-3,96	-3,98	-3,94	-3,91	-3,98
Suma	99,00	99,69	99,17	99,96	100,00	99,13	99,40	99,48	99,46
Si	3,327	3,340	3,342	3,343	3,374	3,322	3,335	3,344	3,341
AI	1,729	1,698	1,693	1,686	1,678	1,702	1,692	1,692	1,671
Ti	0,000	0,004	0,005	0,007	0,006	0,005	0,005	0,006	0,000
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,720	0,700	0,705	0,683	0,683	0,722	0,705	0,719	0,691
Mn	0,063	0,060	0,061	0,061	0,056	0,064	0,064	0,064	0,071
Zn	0,000	0,000	0,000	0,000	0,009	0,000	0,000	0,011	0,011
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,026	0,027	0,046	0,023	0,031	0,033	0,028	0,030	0,027
К	0,918	0,894	0,891	0,891	0,905	0,887	0,878	0,870	0,883
Rb	0,064	0,061	0,054	0,055	0,059	0,067	0,054	0,056	0,057
F	1,938	1,926	1,877	1,898	1,874	1,911	1,874	1,864	1,891
Li (ICP)	0,932	1,028	1,010	1,087	0,952	1,029	1,065	0,981	1,111
Suma kat.	9,717	9,738	9,684	9,733	9,628	9,742	9,700	9,637	9,754
TAI	0,673	0,660	0,658	0,657	0,626	0,678	0,665	0,656	0,659
MAI	1,056	1,039	1,035	1,029	1,053	1,023	1,027	1,036	1,012
MAI+Ti	1,056	1,042	1,040	1,036	1,059	1,028	1,032	1,042	1,012
Fe+Mg+Mn	0,720	0,700	0,705	0,683	0,683	0,722	0,705	0,719	0,691
ТМ	6,771	6,829	6,816	6,866	6,759	6,842	6,866	6,816	6,896
Vac. M	0,229	0,171	0,184	0,134	0,241	0,158	0,134	0,184	0,104
K+Na+Rb+Cs	1,008	0,982	0,991	0,969	0,995	0,989	0,960	0,957	0,966
Mn/Mn+Fe+Mg	0,088	0,085	0,086	0,089	0,082	0,088	0,091	0,089	0,102

Tabulka T6, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec sk. slíd (apfu)

Bod	34/1.	39/1.	40/1.	41/1.	42/1.	43/1.	20/1.	21/1.	22/1.
Vzorek	P7-	C20-	C20-	C20-	C20-	C20-	P2-	P2-	P2-
(vrt/hloubka)	332	195	195	195	195	195	245	245	245
	47,91	45,61	46,13	46,12	45,87	46,29	47,21	47,05	47,18
Al ₂ O ₃	19,63	20,38	20,37	20,46	20,59	20,43	19,91	19,76	19,75
TiO ₂	0,05	0,26	0,17	0,20	0,20	0,21	0,05	0,05	0,02
MgO	0,02	0,19	0,17	0,19	0,16	0,19	0,01	0,00	0,03
FeO	11,09	12,67	12,42	12,42	12,12	12,33	11,32	11,30	11,13
MnO	0,93	0,97	0,87	0,87	0,94	0,85	1,42	1,39	1,31
ZnO	0,19	0,21	0,14	0,04	0,07	0,09	0,17	0,10	0,11
CaO	0,00	0,00	0,02	0,03	0,00	0,02	0,00	0,01	0,01
Na ₂ O	0,15	0,23	0,21	0,21	0,25	0,21	0,13	0,18	0,17
K ₂ O	9,96	9,74	9,77	9,76	9,80	9,75	9,81	9,87	9,94
Rb ₂ O	1,22	1,18	1,11	1,22	1,15	1,37	1,14	1,03	1,14
F	8,50	8,20	8,23	8,29	8,28	8,34	8,32	8,43	8,43
H ₂ O	0,18	0,27	0,28	0,26	0,25	0,24	0,23	0,18	0,19
-(O=F)	-4,03	-3,89	-3,90	-3,93	-3,93	-3,95	-3,95	-3,99	-4,00
Suma	99,49	99,13	99,34	99,53	99,21	99,87	98,93	98,69	98,93
Si	3,409	3,293	3,311	3,303	3,292	3,311	3,386	3,380	3,379
AI	1,646	1,734	1,723	1,727	1,742	1,722	1,683	1,673	1,667
Ti	0,000	0,014	0,009	0,011	0,011	0,011	0,000	0,000	0,000
Mg	0,000	0,020	0,018	0,020	0,017	0,020	0,000	0,000	0,000
Fe	0,660	0,765	0,745	0,743	0,728	0,737	0,679	0,679	0,666
Mn	0,056	0,059	0,053	0,053	0,057	0,052	0,086	0,085	0,080
Zn	0,010	0,011	0,000	0,000	0,000	0,000	0,009	0,000	0,000
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,021	0,033	0,029	0,029	0,035	0,029	0,018	0,025	0,023
К	0,904	0,897	0,895	0,892	0,898	0,889	0,897	0,905	0,908
Rb	0,056	0,055	0,051	0,056	0,053	0,063	0,052	0,048	0,052
F	1,913	1,872	1,868	1,877	1,881	1,885	1,888	1,914	1,910
Li (ICP)	0,994	0,875	0,925	0,955	0,969	0,948	0,891	0,957	1,008
Suma kat.	9,668	9,628	9,634	9,666	9,686	9,667	9,590	9,664	9,693
TAI	0,591	0,707	0,689	0,697	0,708	0,689	0,614	0,620	0,621
MAI	1,055	1,027	1,035	1,030	1,035	1,033	1,069	1,053	1,046
MAI+Ti	1,055	1,041	1,044	1,041	1,045	1,044	1,069	1,053	1,046
Fe+Mg+Mn	0,660	0,786	0,764	0,763	0,745	0,757	0,679	0,679	0,666
ТМ	6,775	6,772	6,790	6,812	6,816	6,800	6,734	6,773	6,800
Vac. M	0,225	0,228	0,210	0,188	0,184	0,200	0,266	0,227	0,200
K+Na+Rb+Cs	0,981	0,984	0,975	0,977	0,989	0,981	0,968	0,977	0,983
Mn/Mn+Fe+Mg	0,085	0,075	0,069	0,069	0,077	0,068	0,127	0,125	0,120

Tabulka T6, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec sk. slíd (apfu)

Bod	23/1.	24/1.	25/1.	26/1.	27/1.	28/1.	29/1.	30/1.	31/1.
Vzorek	P2-								
(vrt/hloubka)	245	245	245	245	245	245	245	245	245
	46,37	47,21	47,09	47,01	47,23	46,50	46,35	46,61	46,60
AI_2O_3	20,36	19,74	19,99	20,01	20,08	19,95	19,79	20,02	20,01
TiO ₂	0,06	0,04	0,02	0,02	0,02	0,03	0,05	0,03	0,02
MgO	0,00	0,00	0,00	0,01	0,00	0,03	0,02	0,00	0,00
FeO	11,81	11,72	11,60	11,51	11,39	11,96	11,65	11,31	11,71
MnO	1,19	1,34	1,37	1,28	1,37	1,50	1,25	1,35	1,40
ZnO	0,12	0,08	0,20	0,11	0,13	0,16	0,10	0,20	0,12
CaO	0,03	0,00	0,00	0,03	0,02	0,00	0,01	0,00	0,02
Na ₂ O	0,22	0,12	0,15	0,14	0,17	0,18	0,19	0,20	0,20
K ₂ O	9,75	9,85	10,00	9,90	9,88	9,73	9,75	9,79	9,88
Rb ₂ O	1,18	1,22	1,25	1,22	1,10	1,18	0,99	1,05	1,21
F	8,38	8,25	8,34	8,37	8,34	8,07	8,42	8,36	8,35
H ₂ O	0,19	0,28	0,26	0,24	0,25	0,34	0,15	0,20	0,20
-(O=F)	-3,97	-3,91	-3,95	-3,97	-3,95	-3,83	-3,99	-3,96	-3,96
Suma	98,97	99,43	99,96	99,49	99,60	98,98	98,12	98,50	99,05
Si	3,336	3,374	3,351	3,354	3,364	3,351	3,356	3,357	3,359
AI	1,726	1,663	1,676	1,682	1,686	1,694	1,688	1,699	1,700
Ti	0,003	0,000	0,000	0,000	0,000	0,000	0,003	0,000	0,000
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,710	0,700	0,690	0,687	0,678	0,721	0,705	0,681	0,706
Mn	0,073	0,081	0,083	0,077	0,083	0,091	0,077	0,082	0,086
Zn	0,000	0,000	0,010	0,000	0,000	0,009	0,000	0,010	0,000
Са	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,031	0,017	0,020	0,019	0,023	0,025	0,027	0,028	0,028
К	0,895	0,898	0,907	0,901	0,898	0,895	0,900	0,899	0,908
Rb	0,055	0,056	0,057	0,056	0,050	0,054	0,046	0,049	0,056
F	1,906	1,864	1,875	1,887	1,879	1,839	1,928	1,904	1,903
Li (ICP)	0,920	0,982	1,019	1,035	0,992	0,897	0,961	0,950	0,884
Suma kat.	9,654	9,635	9,689	9,698	9,653	9,576	9,694	9,660	9,633
TAI	0,664	0,626	0,649	0,646	0,636	0,649	0,644	0,643	0,641
MAI	1,062	1,037	1,026	1,036	1,050	1,046	1,044	1,056	1,058
MAI+Ti	1,065	1,037	1,026	1,036	1,050	1,046	1,047	1,056	1,058
Fe+Mg+Mn	0,710	0,700	0,690	0,687	0,678	0,721	0,705	0,681	0,706
ТМ	6,767	6,800	6,829	6,835	6,803	6,763	6,790	6,780	6,737
Vac. M	0,233	0,200	0,171	0,165	0,197	0,237	0,210	0,220	0,263
K+Na+Rb+Cs	0,981	0,970	0,985	0,976	0,971	0,974	0,976	0,976	0,993
Mn/Mn+Fe+Mg	0,102	0,115	0,120	0,113	0,122	0,127	0,109	0,121	0,121

Tabulka T6, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec sk. slíd (apfu)

Bod	32/1.	33 / 1 .	34/1.	35/1.	36/1.	48/1.	49/1.	50/1.	51/1.
Vzorek	P2-	P2-	P2-	P2-	P2-	C20-	C20-	C20-	C20-
(vrt/hloubka)	245	245	245	245	245	195-4	195-5	195-1	195-2
SIO ₂	45,70	45,34	46,35	45,48	45,62	46,82	46,26	46,14	46,40
Al ₂ O ₃	20,79	20,51	20,44	20,50	20,43	20,29	20,03	20,42	20,43
TiO ₂	0,02	0,02	0,02	0,00	0,00	0,22	0,23	0,15	0,11
MgO	0,01	0,00	0,01	0,00	0,00	0,14	0,17	0,15	0,21
FeO	12,00	12,69	12,45	12,56	12,52	11,77	11,80	12,14	12,08
MnO	1,81	1,56	1,24	1,25	1,24	0,81	0,86	0,92	0,91
ZnO	0,23	0,17	0,16	0,14	0,13	0,14	0,03	0,13	0,02
CaO	0,01	0,00	0,00	0,02	0,03	0,01	0,02	0,01	0,00
Na ₂ O	0,17	0,25	0,23	0,24	0,18	0,20	0,20	0,19	0,19
K ₂ O	9,75	9,66	9,85	9,75	9,82	9,80	9,35	10,04	9,77
Rb ₂ O	1,15	1,16	1,05	1,06	1,02	1,43	1,82	1,06	1,23
F	8,22	8,10	8,26	8,20	8,19	8,22	8,18	8,19	8,22
H ₂ O	0,27	0,31	0,29	0,26	0,26	0,29	0,29	0,28	0,24
-(O=F)	-3,90	-3,84	-3,92	-3,89	-3,88	-3,90	-3,88	-3,88	-3,90
Suma	99,44	99,34	100,04	98,96	98,84	99,41	98,88	98,95	98,41
Si	3,290	3,273	3,307	3,287	3,304	3,351	3,330	3,326	3,358
AI	1,764	1,744	1,719	1,746	1,744	1,711	1,699	1,735	1,743
Ti	0,000	0,000	0,000	0,000	0,000	0,012	0,013	0,008	0,006
Mg	0,000	0,000	0,000	0,000	0,000	0,015	0,018	0,016	0,022
Fe	0,722	0,766	0,743	0,759	0,758	0,704	0,710	0,732	0,731
Mn	0,110	0,096	0,075	0,076	0,076	0,049	0,053	0,056	0,056
Zn	0,012	0,009	0,009	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,024	0,035	0,032	0,034	0,025	0,027	0,028	0,026	0,027
К	0,896	0,890	0,897	0,899	0,908	0,894	0,858	0,924	0,902
Rb	0,053	0,054	0,048	0,049	0,048	0,066	0,084	0,049	0,057
F	1,872	1,849	1,864	1,874	1,876	1,861	1,861	1,867	1,882
Li (ICP)	0,883	0,956	0,987	0,960	0,903	0,894	1,002	0,855	0,709
Suma kat.	9,630	9,671	9,681	9,686	9,641	9,583	9,656	9,592	9,494
TAI	0,710	0,727	0,693	0,713	0,696	0,649	0,670	0,674	0,642
MAI	1,054	1,017	1,025	1,033	1,048	1,062	1,029	1,061	1,101
MAI+Ti	1,054	1,017	1,025	1,033	1,048	1,074	1,041	1,069	1,107
Fe+Mg+Mn	0,722	0,766	0,743	0,759	0,758	0,719	0,728	0,747	0,753
ТМ	6,782	6,844	6,839	6,829	6,785	6,735	6,824	6,727	6,626
Vac. M	0,218	0,156	0,161	0,171	0,215	0,265	0,176	0,273	0,374
K+Na+Rb+Cs	0,976	0,978	0,977	0,983	0,981	0,987	0,970	0,999	0,986
Mn/Mn+Fe+Mg	0,153	0,125	0,101	0,101	0,100	0,068	0,072	0,075	0,074

Tabulka T6, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec sk. slíd (apfu)

Bod	52/1.	24/1.	25/1.	29/1.	31/1.	32/1.	33/1.	35/1.	1/1.
Vzorek	C20-	C20/	P13/						
(vrt/hloubka)	195-3	142	142	142	142	142	142	142	133a
SIO ₂	46,42	46,26	46,56	49,30	48,17	48,94	48,43	48,76	49,44
Al ₂ O ₃	20,63	20,75	20,74	35,40	36,43	35,72	36,72	36,33	19,32
TiO ₂	0,10	0,13	0,09	0,02	0,01	0,00	0,00	0,00	0,07
MgO	0,17	0,02	0,00	0,06	0,03	0,00	0,07	0,05	0,01
FeO	12,17	12,42	12,39	1,11	0,70	0,84	0,65	0,69	9,40
MnO	0,90	1,26	1,28	0,15	0,14	0,25	0,15	0,12	1,37
ZnO	0,04	0,11	0,17	0,00	0,00	0,04	0,02	0,05	0,21
CaO	0,00	0,01	0,04	0,06	0,01	0,01	0,05	0,04	0,00
Na ₂ O	0,18	0,26	0,24	0,10	0,16	0,05	0,08	0,12	0,13
K ₂ O	9,99	10,04	10,26	10,23	10,59	10,72	10,71	10,42	10,59
Rb ₂ O	1,23	1,04	1,03	0,12	0,00	0,03	0,01	0,03	0,79
F	8,35	8,76	8,86	0,61	0,54	0,64	0,52	0,64	9,07
H ₂ O	0,21	0,05	0,02	4,32	4,33	4,30	4,37	4,31	0,01
-(O=F)	-3,96	-3,69	-3,73	-0,26	-0,23	-0,27	-0,22	-0,27	-3,82
Suma	99,22	100,55	101,12	101,34	100,91	101,31	101,61	101,29	101,03
Si	3,338	3,304	3,309	3,206	3,147	3,190	3,144	3,169	3,437
AI	1,749	1,746	1,737	2,713	2,805	2,743	2,809	2,783	1,582
Ti	0,005	0,007	0,005	0,000	0,000	0,000	0,000	0,000	0,004
Mg	0,018	0,000	0,000	0,005	0,000	0,000	0,006	0,004	0,000
Fe	0,732	0,742	0,736	0,061	0,038	0,046	0,035	0,037	0,547
Mn	0,055	0,076	0,077	0,008	0,008	0,014	0,008	0,007	0,081
Zn	0,000	0,000	0,009	0,000	0,000	0,000	0,000	0,000	0,011
Ca	0,000	0,000	0,000	0,004	0,000	0,000	0,000	0,000	0,000
Na	0,024	0,037	0,034	0,012	0,020	0,000	0,010	0,015	0,018
К	0,917	0,915	0,930	0,848	0,883	0,891	0,887	0,863	0,939
Rb	0,057	0,048	0,047	0,000	0,000	0,000	0,000	0,000	0,035
F	1,899	1,978	1,991	0,126	0,112	0,132	0,106	0,132	1,994
Li (ICP)	0,774	0,880	0,877	0,019	0,001	0,000	0,003	0,001	1,223
Suma kat.	9,568	9,733	9,753	7,003	7,014	7,016	7,008	7,011	9,870
TAI	0,662	0,696	0,691	0,794	0,853	0,810	0,856	0,831	0,563
MAI	1,087	1,051	1,047	1,919	1,952	1,933	1,953	1,952	1,019
MAI+Ti	1,092	1,058	1,051	1,919	1,952	1,933	1,953	1,952	1,023
Fe+Mg+Mn	0,750	0,742	0,736	0,066	0,038	0,046	0,041	0,042	0,547
ТМ	6,670	6,756	6,751	6,013	5,999	5,993	6,005	6,001	6,884
Vac. M	0,330	0,244	0,249	0,987	1,001	1,007	0,995	0,999	0,116
K+Na+Rb+Cs	0,998	0,999	1,011	0,861	0,903	0,891	0,896	0,878	0,992
Mn/Mn+Fe+Mg	0,073	0,103	0,105	0,127	0,201	0,305	0,201	0,158	0,148

Tabulka T6, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec sk. slíd (apfu)

Bod	2/1.	3/1.	6/1.	7/1.	8/1.	10/1.	12/1.	13/1.	16/1.
Vzorek	P13/	P2/							
(vrt/hloubka)	<u>133a</u>	218							
SIO ₂	49,99	49,11	47,19	47,24	47,81	48,64	47,93	46,09	48,76
Al ₂ O ₃	19,22	19,86	20,01	20,77	33,97	33,63	33,59	20,52	35,59
TiO ₂	0,03	0,14	0,01	0,02	0,00	0,00	0,00	0,02	0,01
MgO	0,01	0,00	0,01	0,00	0,06	0,05	0,08	0,00	0,22
FeO	9,10	9,75	11,26	11,49	1,45	1,74	1,38	11,43	0,63
MnO	1,30	1,42	1,32	1,36	0,44	0,31	0,92	1,45	0,04
ZnO	0,14	0,29	0,15	0,15	0,00	0,07	0,04	0,12	0,05
CaO	0,00	0,03	0,01	0,01	0,12	0,13	0,07	0,02	0,33
Na ₂ O	0,11	0,08	0,13	0,18	0,07	0,09	0,05	0,14	0,07
K ₂ O	10,66	10,77	10,37	10,15	10,25	9,87	10,32	10,35	9,49
Rb ₂ O	0,63	0,72	1,04	1,14	0,13	0,39	0,16	1,09	0,21
F	9,04	8,85	8,84	9,01	0,63	0,74	0,89	8,83	0,26
H ₂ O	0,01	0,07	0,03	0,00	4,18	4,17	4,05	0,00	4,45
-(O=F)	-3,81	-3,73	-3,72	-3,80	-0,27	-0,31	-0,38	-3,72	-0,11
Suma	100,37	100,43	100,31	101,32	98,96	99,93	99,28	99,90	100,10
Si	3,489	3,453	3,355	3,325	3,202	3,224	3,210	3,309	3,196
AI	1,580	1,646	1,677	1,723	2,681	2,628	2,652	1,736	2,749
Ti	0,000	0,007	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,000	0,000	0,000	0,000	0,006	0,005	0,008	0,000	0,021
Fe	0,531	0,573	0,670	0,676	0,081	0,096	0,077	0,686	0,034
Mn	0,077	0,085	0,080	0,081	0,025	0,017	0,052	0,088	0,000
Zn	0,000	0,015	0,008	0,008	0,000	0,000	0,000	0,000	0,000
Ca	0,000	0,000	0,000	0,000	0,009	0,009	0,005	0,000	0,023
Na	0,014	0,011	0,017	0,024	0,009	0,011	0,000	0,019	0,009
K	0,949	0,966	0,941	0,912	0,875	0,834	0,881	0,948	0,793
Rb	0,028	0,032	0,047	0,051	0,000	0,016	0,007	0,050	0,009
F	1,996	1,968	1,987	2,007	0,134	0,155	0,189	2,005	0,054
Li (ICP)	1,096	0,869	1,029	1,010	0,023	0,102	0,030	0,990	0,000
Suma kat.	9,761	9,623	9,811	9,819	7,045	7,099	7,112	9,832	6,889
TAI	0,511	0,547	0,645	0,675	0,798	0,776	0,790	0,691	0,804
MAI	1,069	1,098	1,032	1,048	1,883	1,852	1,862	1,045	1,945
MAI+Ti	1,069	1,106	1,032	1,048	1,883	1,852	1,862	1,045	1,945
Fe+Mg+Mn	0,531	0,573	0,670	0,676	0,087	0,102	0,085	0,686	0,056
ТМ	6,773	6,647	6,819	6,823	6,018	6,072	6,029	6,809	6,001
Vac. M	0,227	0,353	0,181	0,177	0,982	0,928	0,971	0,191	0,999
K+Na+Rb+Cs	0,992	1,009	1,006	0,987	0,884	0,862	0,889	1,018	0,811
Mn/Mn+Fe+Mg	0,144	0,148	0,119	0,120	0,286	0,169	0,615	0,129	0,000

Tabulka T6, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec sk. slíd (apfu)

Bod	17/1.	20/1.	22/1.	23/1.	24/1.	25/1.	26/1.	27/1.	28/1.
Vzorek	P2/	P2/	P2/	P2/	P2/	P1/	P1/	P1/	P1/
(vrt/hloubka)	218	218	218	218	218	250	250	250	250
SIO ₂	48,61	48,73	46,20	45,96	48,80	49,81	49,52	49,92	50,43
Al ₂ O ₃	36,53	36,51	20,20	20,70	35,93	35,40	34,81	32,76	32,88
TiO ₂	0,00	0,00	0,08	0,17	0,01	0,00	0,00	0,00	0,00
MgO	0,11	0,07	0,03	0,05	0,18	0,11	0,13	0,03	0,01
FeO	0,60	0,49	9,61	11,22	0,64	0,98	1,06	1,32	1,39
MnO	0,05	0,04	1,66	1,84	0,03	0,05	0,04	1,10	1,00
ZnO	0,11	0,00	0,11	0,30	0,07	0,02	0,04	0,02	0,00
CaO	0,19	0,08	0,00	0,01	0,41	0,26	0,27	0,08	0,11
Na ₂ O	0,03	0,03	0,26	0,13	0,04	0,07	0,12	0,03	0,06
K ₂ O	9,86	10,27	8,88	10,34	9,55	9,79	9,67	9,84	9,72
Rb ₂ O	0,15	0,18	3,55	1,13	0,14	0,11	0,23	0,39	0,27
F	0,26	0,29	8,90	8,05	0,26	0,49	0,57	0,80	0,83
H ₂ O	4,48	4,48	0,00	0,37	4,47	4,40	4,32	4,15	4,17
-(O=F)	-0,11	-0,12	-3,75	-3,39	-0,11	-0,21	-0,24	-0,34	-0,35
Suma	100,89	101,11	99,62	100,15	100,48	101,30	100,60	100,13	100,63
Si	3,164	3,168	3,339	3,293	3,187	3,227	3,238	3,303	3,313
AI	2,803	2,797	1,720	1,748	2,765	2,703	2,682	2,554	2,545
Ti	0,000	0,000	0,005	0,009	0,000	0,000	0,000	0,000	0,000
Mg	0,010	0,006	0,000	0,000	0,018	0,010	0,013	0,000	0,000
Fe	0,032	0,027	0,581	0,672	0,035	0,053	0,058	0,073	0,076
Mn	0,000	0,000	0,102	0,112	0,000	0,000	0,000	0,062	0,056
Zn	0,000	0,000	0,000	0,016	0,000	0,000	0,000	0,000	0,000
Ca	0,013	0,006	0,000	0,000	0,029	0,018	0,019	0,006	0,008
Na	0,000	0,000	0,036	0,018	0,000	0,009	0,015	0,000	0,007
К	0,819	0,851	0,818	0,945	0,796	0,809	0,806	0,830	0,814
Rb	0,000	0,008	0,165	0,052	0,000	0,000	0,000	0,016	0,011
F	0,053	0,059	2,033	1,824	0,053	0,101	0,117	0,168	0,173
Li (ICP)	0,002	0,001	1,077	0,934	0,000	0,001	0,001	0,001	0,001
Suma kat.	6,899	6,923	9,881	9,623	6,882	6,931	6,949	7,012	7,004
TAI	0,836	0,832	0,661	0,707	0,813	0,773	0,762	0,697	0,687
MAI	1,967	1,965	1,059	1,041	1,951	1,930	1,920	1,856	1,858
MAI+Ti	1,967	1,965	1,063	1,050	1,951	1,930	1,920	1,856	1,858
Fe+Mg+Mn	0,043	0,033	0,581	0,672	0,053	0,064	0,071	0,073	0,076
ТМ	6,012	5,999	6,823	6,783	6,004	5,995	5,991	5,992	5,991
Vac. M	0,988	1,001	0,177	0,217	0,996	1,005	1,009	1,008	1,009
K+Na+Rb+Cs	0,819	0,859	1,025	1,015	0,796	0,818	0,822	0,846	0,833
Mn/Mn+Fe+Mg	0,000	0,000	0,175	0,166	0,000	0,000	0,000	0,848	0,727

Tabulka T6, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec sk. slíd (apfu)

Bod	29/1.	30/1.	31/1.	33/1.	35 / 1 .	36/1.	37/1.
Vzorek	P1/250	P1/250	P1/250	P1/250	P1/250	P1/250	P1/250
(vrt/hloubka)		4	4				
SIO ₂	48,05	45,25	45,17	48,12	49,99	49,36	49,13
AI_2O_3	31,78	20,48	20,72	33,21	33,48	34,65	34,48
TiO ₂	0,02	0,06	0,07	0,01	0,01	0,01	0,00
MgO	0,00	0,03	0,01	0,11	0,03	0,12	0,08
FeO	3,04	12,55	13,43	1,01	1,73	0,98	1,11
MnO	1,07	1,74	1,62	0,06	0,40	0,02	0,03
ZnO	0,09	0,30	0,13	0,11	0,02	0,11	0,12
CaO	0,01	0,00	0,00	0,32	0,12	0,28	0,20
Na ₂ O	0,25	0,11	0,18	0,07	0,09	0,11	0,12
K ₂ O	10,67	10,14	10,11	9,11	10,10	9,65	9,63
Rb ₂ O	0,31	0,93	1,04	0,25	0,19	0,31	0,18
F	2,35	8,06	7,83	0,62	0,84	0,50	0,53
H ₂ O	3,36	0,31	0,47	4,12	4,17	4,32	4,30
-(O=F)	-0,99	-3,39	-3,30	-0,27	-0,35	-0,22	-0,22
Suma	100,71	99,49	100,94	96,95	100,88	100,28	99,83
Si	3,220	3,284	3,239	3,262	3,281	3,238	3,238
AI	2,510	1,751	1,751	2,653	2,589	2,679	2,678
Ti	0,000	0,003	0,004	0,000	0,000	0,000	0,000
Mg	0,000	0,000	0,000	0,011	0,000	0,011	0,008
Fe	0,171	0,762	0,805	0,057	0,095	0,054	0,061
Mn	0,061	0,107	0,098	0,000	0,022	0,000	0,000
Zn	0,000	0,016	0,000	0,000	0,000	0,000	0,000
Са	0,000	0,000	0,000	0,023	0,008	0,019	0,014
Na	0,032	0,016	0,025	0,009	0,011	0,014	0,015
K	0,912	0,939	0,925	0,788	0,846	0,808	0,810
Rb	0,013	0,043	0,048	0,011	0,000	0,013	0,000
F	0,498	1,849	1,776	0,134	0,174	0,104	0,111
Li (ICP)	0,173	0,829	0,972	0,001	0,001	0,001	0,001
Suma kat.	7,589	9,600	9,643	6,951	7,028	6,946	6,943
TAI	0,780	0,716	0,761	0,738	0,719	0,762	0,762
MAI	1,729	1,035	0,990	1,915	1,870	1,917	1,917
MAI+Ti	1,729	1,039	0,993	1,915	1,870	1,917	1,917
Fe+Mg+Mn	0,171	0,762	0,805	0,068	0,095	0,065	0,069
ТМ	6,133	6,753	6,869	5,984	5,988	5,983	5,993
Vac. M	0,867	0,247	0,131	1,016	1,012	1,017	1,007
K+Na+Rb+Cs	0,957	0,998	0,998	0,808	0,857	0,835	0,825
Mn/Mn+Fe+Mg	0,355	0,141	0,122	0,000	0,231	0,000	0,000

Tabulka T6, pokračování: Chemické složení (hm.%) a přepočtený krystalochem. vzorec sk. slíd (apfu)

Bod	1/1.	4/1.	5/1.	7/1.	15/1.	20/1.	24/1.	33/1.
Vzorek (vrt/hloubka)	C20-178	C20-178	C20-178	C20-178	C20-178	C20-178	C20-178	C20-178
F	46,24	46,07	44,18	45,88	45,39	45,90	46,25	47,83
Са	, 52,14	54,88	56,13	54,10	53,64	, 54,42	55,44	52,03
Y	0,66	0,00	0,00	0,12	0,08	0,05	0,00	0,21
La	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Ce	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Pr	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Nd	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Gd	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Dy	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Yb	0,60	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Si	0,04	0,04	0,03	0,04	0,07	0,09	0,14	0,02
Th	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Al	0,00	0,00	0,00	0,00	0,00	0,02	0,00	0,00
Fe								
Sr	0,00	0,04	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SUMA								
REE+Y	1,26	0,00	0,00	0,12	0,08	0,05	0,00	0,21
Suma	99,68	101,03	100,34	100,14	99,18	100,47	101,82	100,09
F	1,853	1,769	1,659	1,785	1,781	1,773	1,754	1,934
Ca	0,991	0,999	0,999	0,998	0,998	0,997	0,996	0,998
Y	0,006	0,000	0,000	0,001	0,001	0,000	0,000	0,002
La	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ce	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Pr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Nd	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Gd	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Dy	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Yb	0,003	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Si	0,001	0,001	0,001	0,001	0,002	0,002	0,004	0,001
Th	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Al	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Suma								
kationtů	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

Tabulka T7: Chemické složení (hm.%) a přepočtený krystalochemický vzorec fluoritu (apfu)

Bod	38/1.	51/1.	63/1.	68/1.	78/1.	85/1.	90/1.	9/1.
vzorek (vrt/hloubka)	C20-178	P7-335	P7-335	P7-335	P7-335	P7-335	P7-335	P7-332
F	47,73	44,89	43,74	46,28	44,24	48,31	47,29	45,88
Ca	50,81	54,91	55 <i>,</i> 88	53,65	55,34	51,51	52,67	53,40
Υ	1,14	0,00	0,00	0,00	0,00	0,15	0,12	0,00
La	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Ce	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Pr	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Nd	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Gd	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Dy	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Yb	0,11	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Si	0,03	0,00	0,04	0,04	0,00	0,03	0,04	0,08
Th	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Al	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Fe								
Sr	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na	0,00	0,00	0,00	0,00	0,00	0,04	0,00	0,00
SUMA								
REE+Y	1,25	0,00	0,00	0,00	0,00	0,15	0,12	0,00
Suma	99,82	99,80	99,67	99,97	99 <i>,</i> 58	100,03	100,12	99,36
F	1,959	1,724	1,649	1,818	1,686	1,972	1,890	1,809
Ca	0,989	1,000	0,999	0,999	1,000	0,997	0,998	0,998
Y	0,010	0,000	0,000	0,000	0,000	0,001	0,001	0,000
La	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ce	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Pr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Nd	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Gd	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Dy	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Yb	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Si	0,001	0,000	0,001	0,001	0,000	0,001	0,001	0,002
Th	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Al	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000
Suma kationtů	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

Tabulka T7, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec fluoritu (apfu)
Bod Vzorek	11/1.	14/1.	17/1.	73/1.	74/1.	88/1.	92/1.	100/1.
(vrt/hloubka)	P7-332	P7-332	P7-332	P13-133A	P13-133A	P13-133B	P13-133B	P13-133B
F	47,777	48,282	45,535	45,606	46,301	46,476	48,547	47,181
Ca	52,472	52,106	53,845	53,267	52,679	51,636	51,848	52,736
Υ	0	0	0	0	0	0,159	0	0,045
La	0	0	0	0	0	0	0	0
Ce	0	0	0	0	0	0	0	0
Pr	0	0	0	0	0	0	0	0
Nd	0	0	0	0	0	0	0	0
Gd	0	0	0	0	0	0	0	0
Dy	0	0	0	0	0	0	0	0
Yb	0	0	0	0	0	0	0	0
Si	0,038	0,035	0,042	0,033	0,039	0,068	0,041	0,058
Th	0	0	0	0	0	0,066	0	0
AI	0	0	0	0	0,018	0,025	0	0,023
Fe								
Sr	0	0	0	0,046	0	0,06	0	0,047
Na	0	0	0	0	0	0	0	0
SUMA	0	0	0	0	0	0 1 5 0	0	0.045
NEE+1 Sumo	100 297	100 422	00 422	08 052		0,159	100 426	100.00
Dřenočet	100,207	100,423	99,422	90,952	99,000	90,49	100,430	100,09
Flepocei								
F	1.918808	1.95286	1.78199	1.803838	1.849835	1.889783	1.973011	1.881672
Са	0.998968	0.99904	0.99889	0.998723	0.99768	0.995284	0.998873	0.996999
Y	0	, 0	, 0	0	0	0.001382	0	0.000384
La	0	0	0	0	0	0	0	0
Ce	0	0	0	0	0	0	0	0
Pr	0	0	0	0	0	0	0	0
Nd	0	0	0	0	0	0	0	0
Gd	0	0	0	0	0	0	0	0
Dy	0	0	0	0	0	0	0	0
Yb	0	0	0	0	0	0	0	0
Si	0,001032	0,00096	0,00111	0,000883	0,001054	0,00187	0,001127	0,001565
Th	0	0	0	0	0	0,00022	0	0
AI	0	0	0	0	0,000506	0,000716	0	0,000646
Fe	0	0	0	0	0	0	0	0
Sr	0	0	0	0,000395	0	0,000529	0	0,000406
Na	0	0	0	0	0	0	0	0
Suma Kationtů	1	1	1	1	1	1	1	1

Tabulka T7, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec fluoritu (apfu)

(apiu)								
Bod	9/1.	16/1.	26/1.	29/1.	34/1.	38/1.	4/1.	5/1.
(vrt/hloubka)	C20-179	C20-179	C20-179	C20-179	P07-402	P07-402	P7/100	P7/100
F	48,822	47,732	47,335	48,041	46,659	47,498	44,692	46,644
Са	51,77	52,974	52,506	52,185	52,974	51,597	55,371	53,255
Y	0,29	0	0,075	0,102	0	0	0	0,163
La	0	0	0	0	0	0	0	0
Ce	0	0	0	0	0	0	0	0
Pr	0	0	0	0	0	0	0	0
Nd	0	0	0	0	0	0	0	0
Gd	0	0	0	0	0	0	0	0
Dy	0	0	0	0	0	0	0	0
Yb	0	0	0	0	0	0	0	0
Si	0,049	0,044	0,039	0,042	0,03	0,033	0,066	0,053
Th	0	0	0	0	0	0	0	0
AI	0	0	0	0	0	0	0	0
Fe								
Sr	0,041	0,047	0,04	0	0	0	0	0
Na SUMA	0	0	0	0	0	0	0	0
REE+Y	0,29	0	0,075	0,102	0	0	0	0,163
Suma	100,972	100,797	99,995	100,37	99,663	99,128	100,129	100,115
F	1,981024	1,897778	1,897894	1,938094	1,856568	1,940187	1,699802	1,842511
Са	0,99578	0,998411	0,997952	0,997975	0,999193	0,999088	0,998302	0,997208
Υ	0,002515	0	0,000643	0,000879	0	0	0	0,001376
La	0	0	0	0	0	0	0	0
Ce	0	0	0	0	0	0	0	0
Pr	0	0	0	0	0	0	0	0
Nd	0	0	0	0	0	0	0	0
Gd	0	0	0	0	0	0	0	0
Dy	0	0	0	0	0	0	0	0
Yb	0	0	0	0	0	0	0	0
Si	0,001345	0,001183	0,001058	0,001146	0,000807	0,000912	0,001698	0,001416
Th	0	0	0	0	0	0	0	0
AI	0	0	0	0	0	0	0	0
Fe	0	0	0	0	0	0	0	0
Sr	0,000361	0,000405	0,000348	0	0	0	0	0
Na	0	0	0	0	0	0	0	0
Suma kationtů	1	1	1	1	1	1	1	1

Tabulka T7, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec fluoritu (apfu)

(apiu)								
Bod	14/1.	16/1.	23/1.	31/1.	32/1.	54/1.	91/1.	95 / 1 .
(vrt/hloubka)	P7/100	P7/100	P7/100	P7/100	P7/100	P7/289	P7/350	P7/350
F	46,791	46,24	45,662	46,741	46,804	45,385	43,781	47,521
Са	54,569	54,636	54,098	52,675	53,971	53,129	55,073	50,969
Υ	0,094	0	0,059	0	0,062	0,11	0	0,282
La	0	0	0	0	0	0	0	0
Ce	0	0	0	0	0	0	0	0
Pr	0	0	0	0	0	0	0	0
Nd	0	0	0	0	0	0	0	0
Gd	0	0	0	0	0	0	0	0
Dy	0	0	0	0	0	0	0	0
Yb	0	0	0	0	0	0	0	0,111
Si	0,031	0,038	0,032	0,03	0,034	0,041	0,042	0,032
Th	0	0	0	0	0	0	0	0
AI	0	0	0	0	0	0	0	0
Fe								
Sr	0	0	0	0	0	0	0	0,063
Na	0	0	0	0	0	0	0	0
SUMA REE+Y	0,094	0	0,059	0	0,062	0,11	0	0,393
Suma	101,485	100,914	99,851	99,446	100,871	98,665	98,896	98,978
F	1,805995	1,78359	1,7782	1,87037 9	1,82682 3	1,79840 3	1,67518 8	1,95810 4
Са	0,998415	0,99900	0,9980 6 0,0004	0,99918	0,99858	0,99797	0,99891	0,99556
Y	0,000775	0	9	0	0,00051	0,00093	0	0,00248
La	0	0	0	0	0	0	0	0
Ce	0	0	0	0	0	0	0	0
Pr	0	0	0	0	0	0	0	0
Nd	0	0	0	0	0	0	0	0
Gd	0	0	0	0	0	0	0	0
Dy	0	0	0	0	0	0	0	0 0.00050
Yb	0	0	0 0,0008	0	0	0	0	2
Si	0,000809	0,00099	4	0,00081	0,00089	0,00109	0,00108	0,00089
Th	0	0	0	0	0	0	0	0
AI	0	0	0	0	0	0	0	0
Fe	0	0	0	0	0	0	0	0 0,00056
Sr	0	0	0	0	0	0	0	3
Na	0	0	0	0	0	0	0	0
• • • • •				4				

Tabulka T7, pokračování: Chemické složení	(hm.%) a přepočtený	v krystalochemický	vzorec fluoritu
(apfu)			

(apiu)								
Bod	9/1.	10/1.	18/1.	25 / 1 .	31/1.	32/1.	33 / 1 .	34/1.
(vrt/hloubka)	C2 177							
F	48,704	49,415	48,692	48,345	48,919	48,655	48,262	48,142
Са	51,651	50,493	52,001	52,064	51,514	51,62	52,353	52,333
Y	0,108	0,595	0	0,143	0,259	0,16	0	0
La	0	0	0,184	0	0	0	0	0
Ce	0	0	0	0	0	0	0	0
Pr	0	0	0	0	0	0	0	0
Nd	0	0	0	0	0	0	0	0
Gd	0	0	0	0	0	0	0	0
Dy	0	0	0	0	0	0	0	0
Yb								
Si	0,048	0,069	0,107	0,024	0,027	0,048	0,043	0,033
Th	0	0	0	0	0	0	0	0
AI								
Fe	0,093	0,053	0,048	0	0	0	0	0
Sr								
Na	0	0	0	0	0	0	0	0
SUMA REE+Y	0 108	0 595	0 184	0 143	0 259	0.16	0	0
Suma	100.604	100.625	101.032	100.576	100.719	100.483	100.658	100.508
	,		,			,	,	,
F	1.982125	2.048092	1.966225	1.955151	1.997258	1.982974	1.942424	1.938862
Са	0,996452	0,992048	0,995402	0,998108	0,996995	0,997283	0,998829	0,999101
Y	0,000939	0,00527	0	0,001236	0,00226	0,001393	0	0
La	0	0	0,001016	0	0	0	0	0
Ce	0	0	0	0	0	0	0	0
Pr	0	0	0	0	0	0	0	0
Nd	0	0	0	0	0	0	0	0
Gd	0	0	0	0	0	0	0	0
Dy	0	0	0	0	0	0	0	0
Yb	0	0	0	0	0	0	0	0
Si	0,001321	0,001935	0,002923	0,000657	0,000746	0,001323	0,001171	0,000899
Th	0	0	0	0	0	0	0	0
Al	0	0	0	0	0	0	0	0
Fe	0,001288	0,000747	0,000659	0	0	0	0	0
Sr	0	0	0	0	0	0	0	0
Na	0	0	0	0	0	0	0	0
Suma kationtů	1	1	1	1	1	1	1	1
		I	1	I	I			<u> </u>

Tabulka T7, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec fluoritu (apfu)

Bod Vzorek	41/1.	42 / 1 .	43/1.	44 / 1 .	45 / 1 .	51/1.	52 / 1 .	1/1.
(vrt/hloubka)	C2 178	C8-193						
F	48,174	48,352	48,383	48,511	47,958	47,342	47,946	48,083
Ca	49,748	49,96	52,44	50,67	51,142	53,294	52,337	51,234
Y	0,222	0,24	0	0	0	0	0	0
La	0,178	0,175	0	0	0	0	0	0
Ce	0,656	0,719	0	0,151	0	0	0	0
Pr	0,148	0	0	0	0	0	0	0
Nd	0,228	0,222	0	0	0	0	0	0
Gd	0	0	0	0	0	0	0	0
Dy	0,178	0,188	0	0	0	0	0	0
Yb								
Si	0,023	0,028	0,022	0,209	0,042	0,029	0,025	0,064
Th	0,078	0,114	0	0	0	0	0	0
Al								
Fe	0	0	0	0	0	0	0	0
Sr								
Na	0,131	0,068	0	0	0	0	0	0
SUMA REE+Y	1 61	1 544	0	0 151	0	0	0	0
Suma	99 764	100.066	100 845	99,586	99 186	100 665	100 308	99 381
Cullia	00,701	100,000	100,010	00,000	00,100	100,000	100,000	00,001
F	2,01194	2,015404	1,945177	2,003855	1,973699	1,872493	1,931241	1,976281
Са	0,984893	0,987145	0,999402	0,992174	0,99772	0,999224	0,999319	0,998221
Y	0,001981	0,002138	0	0	0	0	0	0
La	0,001017	0,000998	0	0	0	0	0	0
Ce	0,003715	0,004064	0	0,000846	0	0	0	0
Pr	0,000833	0	0	0	0	0	0	0
Nd	0,001254	0,001219	0	0	0	0	0	0
Gd	0	0	0	0	0	0	0	0
Dy	0,000869	0,000916	0	0	0	0	0	0
Yb	0	0	0	0	0	0	0	0
Si	0,00065	0,000789	0,000598	0,00584	0,001169	0,000776	0,000681	0,001779
Th	0,000267	0,000389	0	0	0	0	0	0
AI	0	0	0	0	0	0	0	0
Fe	0	0	0	0	0	0	0	0
Sr	0	0	0	0	0	0	0	0
Na	0,004521	0,002342	0	0	0	0	0	0
Suma Kationtů	1	1	1	1	1	1	1	1
	'	!	!	!	!	!	1	•

Tabulka T7, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec fluoritu (apfu)

Bod Vzorek	5/1.	8/1.	12 / 1 .	13 / 1 .	15 / 1 .	16 / 1 .	19/1.	23 / 1 .
(vrt/hloubka)	C8-193	C8-193	C8-193	C8-193	P1-250,8	P1-250,8	P2-218	P2-218
F	48,327	47,661	47,589	48,203	48,01	48,276	48,286	48,214
Са	51,318	50,817	51,798	50,781	51,136	50,89	50,998	50,937
Υ	0	0,109	0	0,283	0	0	0	0
La	0	0	0	0	0	0	0	0
Ce	0	0	0	0	0	0	0	0
Pr	0	0	0	0	0	0	0	0
Nd	0	0	0	0	0	0	0	0
Gd	0	0	0	0	0	0	0	0
Dy	0	0	0	0	0	0	0	0
Yb								
Si	0,032	0,056	0,026	0,043	0,069	0,036	0,086	0,061
Th	0	0	0	0	0	0	0	0
AI								
Fe	0	0	0	0	0	0	0,105	0
Sr								
Na	0	0	0	0	0	0	0	0
SUMA	0	0 100	0	0 202	0	0	0	0
	00.677	0,109	00 412	0,203	00.215	00.264	00 475	00 212
Suma	99,077	90,043	99,413	99,31	99,215	99,204	99,475	99,212
F	1,98482	1,97352	1,936741	1,995028	1,976781	1,996026	1,989635	1,993367
Са	0,99911	0,997467	0,999284	0,996293	0,998078	0,997421	0,996131	0,998294
Y	0	0,000964	0	0,002503	0	0	0	0
La	0	0	0	0	0	0	0	0
Се	0	0	0	0	0	0	0	0
Pr	0	0	0	0	0	0	0	0
Nd	0	0	0	0	0	0	0	0
Gd	0	0	0	0	0	0	0	0
Dy	0	0	0	0	0	0	0	0
Yb	0	0	0	0	0	0	0	0
Si	0,00089	0,001569	0,000716	0,001204	0,001922	0,001007	0,002397	0,001706
Th	0	0	0	0	0	0	0	0
AI	0	0	0	0	0	0	0	0
Fe	0	0	0	0	0	0	0,001472	0
Sr	0	0	0	0	0	0	0	0
Na	0	0	0	0	0	0	0	0
Suma								
kationtů	1	1	1	1	1	1	1	1

Tabulka T7, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec fluoritu (apfu)

rubund 17, p	on acovam.		02011 (1111.)		iony myoture			
Bod	24/1.	49/1.	50 / 1 .	51/1.	52/1.	53/1.	61/1.	62 / 1 .
(vrt/hloubka)	P2-218	C2-176	C2-176	C2-176	C2-176	C2-176	C2-176	C2-176
F	47,335	47,307	49,176	47,877	47,637	47,847	47,168	48,131
Са	50,335	52,383	51,062	49,731	49,313	50,569	48,884	50,036
Y	0	0	0	0,522	0,319	0,157	1,175	0,552
La	0	0	0	0	0,163	0	0	0
Ce	0	0	0	0,232	0,456	0	0,298	0
Pr	0	0	0	0	0	0	0	0
Nd	0	0	0	0,174	0,194	0	0,223	0
Gd	0	0	0	0,183	0,176	0	0	0
Dy	0	0	0	0	0	0	0	0
Yb								
Si	0,04	0,036	0,034	0,034	0,033	0,025	0,021	0,027
Th	0	0	0	0,046	0	0	0	0
AI								
Fe	0	0	0	0	0	0	0	0,096
Sr								
Na	0	0	0	0	0,136	0	0	0
SUMA	0	0	0		4 000	0 4 5 7	4 000	0.550
REE+1	07.74	00 700	100.070	1,111	1,308	0,157	1,090	0,552
Suma	97,71	99,720	100,272	90,799	90,427	90,590	97,709	90,042
F	1.98157	1.903261	2.0297	2.012563	2.009157	1.991801	2.00648	2.014884
Са	0.99887	0.99902	0.999051	0.990971	0.985921	0.997899	0.985746	0.99293
Y	0,00001	0,00002	0,0000001	0.004689	0.002875	0.001397	0.010681	0.004938
La	0	0	0	0	0.00094	0	0	0
Ce	0	0	0	0.001322	0.002608	0	0.001719	0
Pr	0	0	0	0	0	0	0	0
Nd	0	0	0	0.000963	0.001078	0	0.001249	0
Gd	0	0	0	0.000929	0.000897	0	0	0
Dv	0	0	0	0	0	0	0	0
Yb	0	0	0	0	0	0	0	0
Si	0.001133	0.00098	0.000949	0.000967	0.000941	0.000704	0.000604	0.000765
Th	0	0	0	0.000158	0	0	0	0
AI	0	0	0	0	0	0	0	0
Fe	0	0	0	0	0	0	0	0.001367
Sr	0	0	0	0	0	0	0	0
Na	0	0	0	0	0.00474	0	0	0
Suma kationtů	1	1	1	1	1	1	1	1

Tabulka T7, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec fluoritu (apfu)

	macovani.	Unchillence 3			City Riystal	Chemicky V		u (apiu)
Bod Vzorek	64/1.	67/1.	69/1.	9/1.	10/1.	18/1.	25 / 1 .	31/1.
(vrt/hloubka)	C2-176	C2-176	C2-176	C2 177	C2 177	C2 177	C2 177	C2 177
F	48,305	48,737	48,57	48,704	49,415	48,692	48,345	48,919
Са	50,317	50,574	50,357	51,651	50,493	52,001	52,064	51,514
Υ	0,441	0,459	0,286	0,108	0,595	0	0,143	0,259
La	0	0	0	0	0	0,184	0	0
Ce	0	0	0	0	0	0	0	0
Pr	0	0	0	0	0	0	0	0
Nd	0	0	0	0	0	0	0	0
Gd	0	0	0					
Dy	0	0	0	0	0	0	0	0
Yb								
Si	0,022	0,024	0,029	0,048	0,069	0,107	0,024	0,027
Th	0	0	0	0	0	0	0	0
AI								
Fe	0	0	0	0,093	0,053	0,048	0	0
Sr								
Na	0	0	0	0	0	0	0	0
SUMA REE+Y	0 441	0 459	0 286	0 108	0 595	0 184	0 143	0 259
Suma	99 085	99 794	99 242	100 604	100 625	101 032	100 576	100 719
Cuma	00,000	00,701	00,212	100,001	100,020	101,002	100,010	100,710
F	2,01597	2,023273	2,027827	1,982125	2,048092	1,966225	1,955151	1,997258
Са	0.99545	0.995254	0.996629	0.996452	0.992048	0.995402	0.998108	0.996995
Y	0,00393	0,004072	0,002552	0.000939	0.00527	0	0,001236	0,00226
La	0	0	0	0	0	0,001016	0	0
Ce	0	0	0	0	0	0	0	0
Pr	0	0	0	0	0	0	0	0
Nd	0	0	0	0	0	0	0	0
Gd	0	0	0	0	0	0	0	0
Dy	0	0	0	0	0	0	0	0
Yb	0	0	0	0	0	0	0	0
Si	0,00062	0,000674	0,000819	0,001321	0,001935	0,002923	0,000657	0,000746
Th	0	0	0	0	0	0	0	0
AI	0	0	0	0	0	0	0	0
Fe	0	0	0	0,001288	0,000747	0,000659	0	0
Sr	0	0	0	0	0	0	0	0
Na	0	0	0	0	0	0	0	0
Suma kationtů	1	4	4	4	4	4	4	1
Nationitu	1	1			I		1	1

Tabulka T7, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec fluoritu (apfu)

Bod Vzorek (vrt/hloub	32 / 1 .	33 / 1 .	34 / 1 .	41/1.	42 / 1 .	43 / 1 .	44 / 1 .	45 / 1 .
ka)	C2 177	C2 177	C2 177	C2 178	C2 178	C2 178	C2 178	C2 178
F	48,655	48,262	48,142	48,174	48,352	48,383	48,511	47,958
Ca	51,62	52,353	52,333	49,748	49,96	52,44	50,67	51,142
Υ	0,16	0	0	0,222	0,24	0	0	0
La	0	0	0	0,178	0,175	0	0	0
Ce	0	0	0	0,656	0,719	0	0,151	0
Pr	0	0	0	0,148	0	0	0	0
Nd	0	0	0	0,228	0,222	0	0	0
Gd								
Dy	0	0	0	0,178	0,188	0	0	0
Yb								
Si	0,048	0,043	0,033	0,023	0,028	0,022	0,209	0,042
Th	0	0	0	0,078	0,114	0	0	0
AI								
Fe	0	0	0	0	0	0	0	0
Sr								
Na SUMA	0	0	0	0,131	0,068	0	0	0
REE+Y	0,16	0	0	1,61	1,544	0	0,151	0
Suma	100,483	100,658	100,508	99,764	100,066	100,845	99,586	99,186
F	1,98297	1,94242	1,93886	2,01194	2,015404	1,945177	2,003855	1,973699
Ca	0,99728	0,99883	0,99910	0,98489	0,987145	0,999402	0,992174	0,99772
Y	0,00139	0	0	0,00198	0,002138	0	0	0
La	0	0	0	0,00102	0,000998	0	0	0
Ce	0	0	0	0,00372	0,004064	0	0,000846	0
Pr	0	0	0	0,00083	0	0	0	0
Nd	0	0	0	0,00125	0,001219	0	0	0
Gd	0	0	0	0	0	0	0	0
Dy	0	0	0	0,00087	0,000916	0	0	0
Yb	0	0	0	0	0	0	0	0
Si	0,00132	0,00117	0,00090	0,00065	0,000789	0,000598	0,00584	0,001169
Th	0	0	0	0,00027	0,000389	0	0	0
AI	0	0	0	0	0	0	0	0
Fe	0	0	0	0	0	0	0	0
Sr	0	0	0	0	0	0	0	0
Na Suma	0	0	0	0,00452	0,00234	0	0	0
kationtů	1	1	1	1	1	1	1	1

Bod	51/1.	52/1.	
Vzorek			
(vrt/hloub ka)	C2 178	C2 178	
F	47,34	47,95	
Ca	53,29	52,34	
Y	0	0	
La	0	0	
Ce	0	0	
Pr	0	0	
Nd	0	0	
Gd			
Dy	0	0	
Yb			
Si	0,03	0,03	
Th	0	0	
AI			
Fe	0	0	
Sr			
Na	0	0	
SUMA REE+Y	0	0	
Suma	100,66	100,30	
	·		
F	1,872	1,931	
Ca	0,999	0,999	
Υ	0	0	
La	0	0	
Ce	0	0	
Pr	0	0	
Nd	0	0	
Gd	0	0	
Dy	0	0	
Yb	0	0	
Si	0,0007	0,0006	
Th	0	0	
AI	0	0	
Fe	0	0	
Sr	0	0	
Na Suma	0	0	
Kationtů	1	1	

Tabulka T7, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec fluoritu (apfu)

Datum	2016_	2016_	2016_	2016_	2016_	2016_	2016_	2016_	2016_
Bod	05_15 71/1.	05_16 38 / 1 .	05_16 39 / 1 .	53 / 1 .	05_16 54 / 1 .	05_16 55 / 1 .	05_16 58 / 1 .	05_16 59/1.	05_16 66 / 1 .
Vzorek	P7-	P13-	P13-	P13-	P13-	P13-	P13-	P13-	P13-
(vrt/hloubka)	335	133A	133A	133A	133A	133A	133A	133A	133A
WO ₃	0,00	0,00	0,18	0,00	1,30	0,00	0,00	1,33	0,00
Nb ₂ O ₅	2,76	0,00	2,17	0,00	0,00	0,52	0,00	0,96	0,00
Ta₂O₅	0,99	0,36	1,49	0,32	0,22	0,37	0,30	0,33	0,30
SiO ₂	0,46	0,02	0,03	0,02	0,03	0,02	0,03	0,02	0,02
SnO ₂	92,48	100,29	94,37	100,34	99,18	97,88	100,09	97,56	99,90
TiO ₂	0,41	0,00	0,27	0,00	0,00	0,38	0,00	0,13	0,00
ZrO ₂	0,67	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sc ₂ O ₃	0,00	0,00	0,29	0,00	0,00	0,24	0,00	0,05	0,00
FeO	1,30	0,19	1,13	0,13	0,00	0,62	0,19	0,51	0,66
MgO	0,11	0,10	0,11	0,11	0,11	0,10	0,10	0,10	0,11
Suma	99,54	101,22	100,04	100,92	101,12	100,11	100,70	100,97	101,00
W	0,000	0,000	0,001	0,000	0,008	0,000	0,000	0,009	0,000
Nb	0,030	0,000	0,024	0,000	0,000	0,006	0,000	0,011	0,000
Та	0,007	0,002	0,010	0,002	0,001	0,002	0,002	0,002	0,002
Si	0,011	0,001	0,001	0,000	0,001	0,001	0,001	0,000	0,001
Sn	0,897	0,982	0,926	0,991	0,978	0,963	0,990	0,961	0,980
Ti	0,007	0,000	0,005	0,000	0,000	0,007	0,000	0,002	0,000
Zr	0,008	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sc	0,000	0,000	0,006	0,000	0,000	0,005	0,000	0,001	0,000
Fe	0,026	0,004	0,023	0,003	0,000	0,013	0,004	0,011	0,014
Mg	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004
Suma kat.	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Ta/(Ta+Nb)	0,178	1,000	0,291	1,000	1,000	0,300	1,000	0,172	1,000

Tabulka T8: Chemické složení (hm.%) a přepočtený krystalochem. vzorec kasiteritu (apfu)

Datum	2016_	2016_	2016_	2016_	2016_	2016_	2016_	2016_	2016_
_ .	05_16	05_16	05_16	05_16	05_16	05_17	05_17	05_17	05_17
Bod	75/1.	78/1.	79/1.	80/1.	81/1.	73/1.	74/1.	75/1.	77/1.
Vzorek	P13-	P13-	P13-	P13-	P13-	C20-	C20-	C20-	C20-
WO ₃	0.81	0.38	0.00	0.19	0.19	0.00	0.00	0.00	0.00
Nb ₂ O ₅	0,12	2,25	2,50	2,61	0,94	1,66	2,67	2,63	4,65
Ta ₂ O ₅	0,31	0,99	1,09	0,88	0,53	1,39	2,15	1,86	2,82
SiO ₂	0,03	0,04	0,03	0,02	0,05	0,03	0,03	0,07	0,04
SnO ₂	99,39	96,59	96,96	96,45	98,23	96,58	94,08	94,20	89,29
TiO ₂	0,00	0,00	0,00	0,09	0,16	0,23	0,21	0,23	0,62
ZrO ₂	0,00	0,00	0,00	0,00	0,00	0,13	0,23	0,21	0,20
Sc ₂ O ₃	0,00	0,11	0,11	0,12	0,11	0,04	0,06	0,08	0,13
FeO	0,10	0,71	0,75	0,76	0,47	1,06	1,41	1,45	2,50
MgO	0,11	0,10	0,09	0,11	0,10	0,12	0,13	0,12	0,09
Suma	101,18	101,18	101,55	101,22	100,78	101,23	100,95	101,23	100,43
W	0,005	0,002	0,000	0,001	0,001	0,000	0,000	0,000	0,000
Nb	0,001	0,025	0,028	0,029	0,010	0,018	0,029	0,029	0,051
Та	0,002	0,007	0,007	0,006	0,004	0,009	0,014	0,012	0,018
Si	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,002	0,001
Sn	0,976	0,944	0,943	0,940	0,965	0,939	0,915	0,906	0,858
Ti	0,000	0,000	0,000	0,002	0,003	0,004	0,004	0,004	0,011
Zr	0,000	0,000	0,000	0,000	0,000	0,002	0,003	0,002	0,002
Sc	0,000	0,002	0,002	0,003	0,002	0,001	0,001	0,002	0,003
Fe	0,002	0,015	0,015	0,016	0,010	0,022	0,029	0,029	0,050
Mg	0,004	0,004	0,003	0,004	0,004	0,005	0,005	0,004	0,003
Suma kat.	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Ta/(Ta+Nb)	0,603	0,209	0,208	0,169	0,254	0,335	0,326	0,299	0,267

Tabulka T8, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec kasiteritu (apfu)

Datum	2016_	2016_	2016_	2016_	2016_	2016_	2016_	2016_	2016_
Bod	05_17 78/1.	05_17 79/1.	05_22 2/1.	05_22 3/1.	05_22 7/1.	05_22 19/1.	05_22 20 / 1 .	05_22 28/1.	05_22 29 / 1 .
Vzorek (vrt/hloubka)	C20- 10	C20- 10	P7/100	P7/100	P7/100	P7/100	P7/100	P7/100	P7/100
WO ₃	0,00	0,00	0,25	0,00	0,25	0,18	0,16	0,00	0,38
Nb ₂ O ₅	1,73	2,61	4,89	3,28	7,42	5,55	3,87	3,55	4,12
Ta ₂ O ₅	1,46	1,91	1,48	1,42	3,57	1,86	1,28	0,89	0,98
SiO ₂	0,04	0,03	0,06	0,05	0,19	0,08	0,08	0,05	0,03
SnO ₂	95,92	93,31	90,41	91,71	83,25	88,04	90,34	92,05	91,68
TiO ₂	0,20	0,21	0,43	0,59	0,73	0,60	0,71	0,67	0,36
ZrO ₂	0,11	0,19	0,47	0,43	0,57	0,53	0,45	0,46	0,36
Sc ₂ O ₃	0,00	0,05	0,10	0,11	0,32	0,14	0,12	0,09	0,12
FeO	0,88	1,41	2,27	1,92	2,87	2,73	2,25	2,33	1,87
MgO	0,11	0,10	0,11	0,10	0,09	0,09	0,10	0,10	0,10
Suma	100,44	99,83	100,50	99,87	99,91	99,81	99,39	100,22	100,01
W	0,000	0,000	0,002	0,000	0,002	0,001	0,001	0,000	0,002
Nb	0,019	0,029	0,053	0,036	0,080	0,060	0,043	0,039	0,045
Та	0,010	0,013	0,010	0,009	0,023	0,012	0,008	0,006	0,006
Si	0,001	0,001	0,001	0,001	0,005	0,002	0,002	0,001	0,001
Sn	0,943	0,917	0,868	0,886	0,790	0,846	0,875	0,884	0,890
Ti	0,004	0,004	0,008	0,011	0,013	0,011	0,013	0,012	0,007
Zr	0,001	0,002	0,005	0,005	0,007	0,006	0,005	0,005	0,004
Sc	0,000	0,001	0,002	0,002	0,007	0,003	0,002	0,002	0,003
Fe	0,018	0,029	0,046	0,039	0,057	0,055	0,046	0,047	0,038
Mg	0,004	0,004	0,004	0,004	0,003	0,003	0,004	0,004	0,004
Suma kat.	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Ta/(Ta+Nb)	0,338	0,306	0,154	0,207	0,225	0,168	0,166	0,130	0,125

Tabulka T8, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec kasiteritu (apfu)

Datum	2016_	2016_	2016_	2016_	2016_	2016_	2016_	2016_	2016_
Bod	42/1.	43/1.	44/1.	45 / 1 .	46/1.	47 / 1 .	48/1.	49/1.	50 / 1.
Vzorek	P7/289	P7/289	P7/289	P7/289	P7/289	P7/289	P7/289	P7/289	P7/289
(vrt/hloubka)									
WO ₃	0,15	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Nb ₂ O ₅	1,48	0,14	0,11	1,05	1,28	1,11	0,42	0,00	1,69
Ta ₂ O ₅	0,38	0,30	0,35	0,34	0,38	0,33	0,26	0,33	0,29
SiO ₂	0,05	0,05	0,06	0,04	0,00	0,02	0,04	0,02	0,05
SnO ₂	98,06	99,69	99,25	98,42	97,80	98,50	99,63	99,48	98,48
TiO ₂	0,00	0,06	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZrO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sc ₂ O ₃	0,04	0,07	0,03	0,03	0,04	0,04	0,04	0,00	0,05
FeO	0,35	0,24	0,14	0,20	0,28	0,23	0,15	0,08	0,42
MgO	0,11	0,12	0,09	0,11	0,07	0,10	0,09	0,09	0,09
Suma	100,60	100,65	100,30	100,18	100,12	100,33	100,91	100,00	101,07
W	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Nb	0,017	0,002	0,001	0,012	0,014	0,012	0,005	0,000	0,019
Та	0,003	0,002	0,002	0,002	0,003	0,002	0,002	0,002	0,002
Si	0,001	0,001	0,001	0,001	0,000	0,000	0,001	0,001	0,001
Sn	0,967	0,984	0,981	0,976	0,966	0,975	0,978	0,992	0,965
Ti	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sc	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,000	0,001
Fe	0,007	0,005	0,003	0,004	0,006	0,005	0,003	0,002	0,009
Mg	0,004	0,004	0,003	0,004	0,003	0,004	0,003	0,003	0,003
Suma kat.	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Ta/(Ta+Nb)	0,133	0,558	0,655	0,162	0,151	0,151	0,275	1,000	0,094

Tabulka T8, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec kasiteritu (apfu)

Datum	2016_	2016_	2016_	2016_	2016_	2016_	2016_	2016_	2016_
Bod	55 / 1 .	60/1.	61/1.	65 / 1 .	66/1.	67/1.	68/1.	69/1.	79/1.
Vzorek	P7/289	P7/289	P7/289	P7/289	P7/289	P7/289	P7/289	P7/289	P7/289
(vrt/hloubka)									
WO ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Nb ₂ O ₅	0,18	0,00	0,19	0,07	0,10	0,09	0,00	0,11	2,26
Ta ₂ O ₅	0,35	0,30	0,29	0,35	0,27	0,25	0,25	0,28	1,03
SiO ₂	0,04	0,00	0,03	0,00	0,05	0,03	0,04	0,05	0,07
SnO ₂	99,71	99,77	99,26	99,13	99,09	98,94	100,58	98,81	94,93
TiO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,68
ZrO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sc ₂ O ₃	0,00	0,06	0,05	0,06	0,04	0,08	0,00	0,06	0,07
FeO	0,07	0,00	0,15	0,22	0,21	0,22	0,08	0,24	1,05
MgO	0,11	0,10	0,10	0,09	0,09	0,10	0,09	0,09	0,07
Suma	100,74	100,23	100,07	100,19	99,87	99,71	101,04	99,65	100,15
W	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Nb	0,002	0,000	0,002	0,001	0,001	0,001	0,000	0,001	0,025
Та	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,007
Si	0,001	0,000	0,001	0,000	0,001	0,001	0,001	0,001	0,002
Sn	0,982	0,993	0,987	0,980	0,987	0,987	0,992	0,986	0,928
Ti	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,012
Zr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sc	0,000	0,001	0,001	0,001	0,001	0,002	0,000	0,001	0,001
Fe	0,001	0,000	0,003	0,004	0,004	0,005	0,002	0,005	0,022
Mg	0,004	0,004	0,004	0,003	0,003	0,004	0,003	0,003	0,003
Suma kat.	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Ta/(Ta+Nb)	0,541	1,000	0,473	0,744	0,612	0,635	1,000	0,605	0,215

Tabulka T8, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec kasiteritu (apfu)

Datum	2016	2016	2016	2016	2016	2016	2016	2016	2016
	05_22	05_22	05_22	05_23	05_23	05_23	05_23	05_23	05_23
Bod	83/1.	85/1.	102 / 1	1/1.	2/1.	6/1.	7/1.	13/1.	19/1.
Vzorek	P7/350	P7/350	P7/350	P7/281	P7/281	P7/281	P7/281	P7/281	P7/281
(vrt/hloubka)									
WO ₃	0,00	0,00	0,00	0,00	0,87	0,00	0,24	0,32	0,88
Nb ₂ O ₅	3,97	3,05	2,05	0,32	0,52	0,16	3,29	2,05	0,98
Ta ₂ O ₅	6,51	4,56	1,34	0,47	0,30	0,22	0,34	0,54	0,24
SiO ₂	0,04	0,06	0,05	0,05	0,03	0,05	0,02	0,05	0,05
SnO ₂	86,41	90,26	95,91	99,28	97,72	99,42	95,70	96,98	97,61
TiO ₂	0,46	0,57	0,24	0,16	0,17	0,21	0,00	0,13	0,20
ZrO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sc ₂ O ₃	0,31	0,27	0,04	0,03	0,00	0,16	0,09	0,09	0,04
FeO	2,11	2,01	1,21	0,27	0,28	0,22	0,94	0,56	0,31
MgO	0,09	0,08	0,10	0,11	0,10	0,12	0,10	0,11	0,11
Suma	100,01	100,94	101,27	100,69	100,00	100,55	100,72	100,82	100,42
W	0,000	0,000	0,000	0,000	0,006	0,000	0,002	0,002	0,006
Nb	0,044	0,034	0,022	0,004	0,006	0,002	0,036	0,023	0,011
Та	0,044	0,030	0,009	0,003	0,002	0,001	0,002	0,004	0,002
Si	0,001	0,002	0,001	0,001	0,001	0,001	0,000	0,001	0,001
Sn	0,847	0,873	0,926	0,979	0,973	0,979	0,935	0,951	0,966
Ti	0,008	0,010	0,004	0,003	0,003	0,004	0,000	0,002	0,004
Zr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sc	0,007	0,006	0,001	0,001	0,000	0,004	0,002	0,002	0,001
Fe	0,043	0,041	0,024	0,006	0,006	0,005	0,019	0,011	0,006
Mg	0,003	0,003	0,004	0,004	0,004	0,004	0,004	0,004	0,004
Suma kat.	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Ta/(Ta+Nb)	0,497	0,473	0,283	0,465	0,257	0,455	0,059	0,137	0,130

Tabulka T8, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec kasiteritu (apfu)

Datum	2016_	2016_	2016_	2016_	2016_	2016_	2016_	2016_	2016_
	05_23	05_23	05_23	05_23	05_23	05_23	05_23	05_23	05_23
Bod	31/1.	46/1.	49/1.	50/1.	51/1.	52/1.	54/1.	59/1.	64/1.
Vzorek	P7/281	P2-							
	0.42	245	245	245	245	245	245	245	245
	2.05	1.06	0,00	1.00	0,00	1.61	0,00	4 4 0	1.65
	3,05	1,90	0,10	1,99	0,94	1,01	0,61	1,10	
Ia_2O_5	2,05	1,40	0,41	1,47	0,61	1,64	0,47	0,34	0,67
SiO ₂	0,00	0,04	0,00	0,00	0,00	0,04	0,00	0,03	0,02
SnO ₂	92,69	95,72	100,14	95,71	98,08	96,36	98,70	98,26	97,42
TiO ₂	0,23	0,00	0,00	0,00	0,18	0,00	0,14	0,00	0,00
ZrO ₂	0,19	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sc ₂ O ₃	0,07	0,08	0,00	0,08	0,06	0,03	0,08	0,00	0,07
FeO	1,62	0,73	0,14	0,75	0,48	0,68	0,41	0,34	0,52
MgO	0,08	0,11	0,11	0,12	0,09	0,10	0,12	0,11	0,10
Suma	100,46	100,03	100,98	100,12	100,42	100,46	100,53	100,61	100,45
W	0,003	0,000	0,000	0,000	0,000	0,000	0,000	0,003	0,000
Nb	0,034	0,022	0,002	0,022	0,010	0,018	0,007	0,012	0,018
Та	0,014	0,009	0,003	0,010	0,004	0,011	0,003	0,002	0,005
Si	0,000	0,001	0,000	0,000	0,000	0,001	0,000	0,001	0,001
Sn	0,905	0,947	0,988	0,946	0,968	0,952	0,973	0,971	0,961
Ti	0,004	0,000	0,000	0,000	0,003	0,000	0,003	0,000	0,000
Zr	0,002	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sc	0,002	0,002	0,000	0,002	0,001	0,001	0,002	0,000	0,001
Fe	0,033	0,015	0,003	0,016	0,010	0,014	0,008	0,007	0,011
Mg	0,003	0,004	0,004	0,004	0,003	0,004	0,004	0,004	0,004
Suma kat.	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Ta/(Ta+Nb)	0,288	0,301	0,573	0,308	0,283	0,380	0,320	0,158	0,196

Tabulka T8, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec kasiteritu (apfu)

Datum	2016_	2016_	2016_	2016_	2016_	2016_	2016_	2016_	2016_
Pod	05_23	05_23	05_23	05_26	05_26	05_26	05_26	05_26	05_26
BUU	05/1.	00/1.	12/1.	9771.	90/1.	99/1.	10071	10171	102 / 1
Vzorek	P2-	P2-	P2-	C1-	C1-	C1-	C1-	C1-	C1-
(vrt/hloubka)	245	245	245	205	205	205	205	205	205
WO ₃	0,16	0,00	1,24	0,28	0,00	0,00	0,20	0,00	0,36
Nb ₂ O ₅	2,50	1,39	2,01	0,93	0,00	0,00	0,82	2,01	0,13
Ta ₂ O ₅	0,60	0,39	0,25	0,29	0,27	0,25	0,29	2,38	0,25
SiO ₂	0,05	0,03	0,04	0,04	0,02	0,02	0,05	0,03	0,04
SnO ₂	96,21	97,35	95,51	98,87	99,56	99,18	98,32	94,68	99,23
TiO ₂	0,00	0,00	0,00	0,00	0,00	0,10	0,08	0,00	0,00
ZrO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sc ₂ O ₃	0,10	0,03	0,06	0,00	0,00	0,06	0,00	0,07	0,00
FeO	0,71	0,45	0,80	0,26	0,06	0,27	0,23	0,89	0,07
MgO	0,09	0,10	0,11	0,13	0,13	0,13	0,13	0,12	0,14
Suma	100,40	100,06	100,01	100,80	100,36	100,01	100,12	100,24	100,21
W	0,001	0,000	0,008	0,002	0,000	0,000	0,001	0,000	0,002
Nb	0,028	0,015	0,022	0,010	0,000	0,000	0,009	0,023	0,001
Та	0,004	0,003	0,002	0,002	0,002	0,002	0,002	0,016	0,002
Si	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001
Sn	0,946	0,959	0,945	0,975	0,983	0,984	0,975	0,935	0,987
Ti	0,000	0,000	0,000	0,000	0,000	0,002	0,001	0,000	0,000
Zr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sc	0,002	0,001	0,001	0,000	0,000	0,001	0,000	0,002	0,000
Fe	0,015	0,009	0,017	0,005	0,001	0,006	0,005	0,018	0,001
Mg	0,003	0,004	0,004	0,005	0,005	0,005	0,005	0,004	0,005
Suma kat.	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Ta/(Ta+Nb)	0,125	0,144	0,071	0,157	1,000	1,000	0,178	0,416	0,545

Tabulka T8, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec kasiteritu (apfu)

Datum	2016_	2017_	2017_	2017_	2017_	2017_	2017_	2017_	2017_
Pod	05_26	08_25	08_26	08_27	08_28	08_29	08_29	08_29	08_29
BUU	10371	32/1.	42/1.	40/1.	49/1.	10/1.	19/1.	33/1.	52/1.
Vzorek	C1-	P02-							
(vrt/hloubka)	205	301	301	301	301	410	410	410	218
WO ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Nb ₂ O ₅	0,00	1,41	3,01	5,93	3,57	0,18	2,15	2,83	6,65
Ta ₂ O ₅	0,22	1,10	1,98	3,99	2,18	0,49	1,47	2,13	4,30
SiO ₂	0,04	0,08	0,00	0,04	0,32	0,06	0,07	0,00	0,00
SnO ₂	100,67	97,83	93,22	87,31	92,62	99,71	95,70	93,51	84,12
TiO ₂	0,00	0,20	0,31	0,30	0,27	0,00	0,20	0,25	0,86
ZrO ₂	0,00	0,10	0,16	0,00	0,30	0,00	0,17	0,21	0,35
Sc ₂ O ₃	0,00	0,00	0,06	0,25	0,08	0,00	0,00	0,07	0,25
FeO	0,00	0,77	1,81	2,31	1,75	0,17	1,07	1,45	3,47
MgO	0,13	0,12	0,10	0,10	0,09	0,11	0,10	0,10	0,09
Suma	101,06	101,62	100,65	100,23	101,17	100,71	100,92	100,56	100,24
W	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Nb	0,000	0,016	0,033	0,065	0,039	0,002	0,024	0,031	0,072
Та	0,001	0,007	0,013	0,026	0,014	0,003	0,010	0,014	0,028
Si	0,001	0,002	0,000	0,001	0,008	0,002	0,002	0,000	0,000
Sn	0,993	0,950	0,904	0,846	0,891	0,986	0,934	0,912	0,800
Ti	0,000	0,004	0,006	0,005	0,005	0,000	0,004	0,005	0,015
Zr	0,000	0,001	0,002	0,000	0,003	0,000	0,002	0,002	0,004
Sc	0,000	0,000	0,001	0,005	0,002	0,000	0,000	0,002	0,005
Fe	0,000	0,016	0,037	0,047	0,035	0,004	0,022	0,030	0,069
Mg	0,005	0,004	0,004	0,004	0,003	0,004	0,004	0,004	0,003
Suma kat.	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Ta/(Ta+Nb)	1,000	0,320	0,284	0,288	0,269	0,622	0,292	0,311	0,280

Tabulka T8, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec kasiteritu (apfu)

Datum	2017_	2017_	2017_	2017_	2017_	2017_	2017_	2017_	2017_
Bod	08_29 60 / 1 .	08_29 61/1.	08_29 66 / 1 .	08_29 67 / 1 .	08_29 71/1.	08_29 72/1.	08_29 73/1.	08_29 74 / 1 .	08_29 81 / 1 .
Vzorek (vrt/hloubka)	P02- 218	P02- 218	P02- 218	P02- 218	P02- 218	P02- 218	P02- 218	P02- 218	P02- 218
WO ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Nb ₂ O ₅	6,48	5,75	4,23	2,38	1,76	3,29	3,65	0,45	2,98
Ta ₂ O ₅	4,45	3,19	0,92	0,69	1,44	2,43	0,85	0,63	2,16
SiO ₂	0,00	0,00	0,00	0,00	0,04	0,00	0,00	0,05	0,00
SnO ₂	84,03	86,57	91,75	95,69	96,59	91,89	92,90	100,12	93,53
TiO ₂	0,72	0,42	0,20	0,19	0,16	0,27	0,29	0,00	0,31
ZrO ₂	0,36	0,24	0,21	0,20	0,14	0,23	0,20	0,00	0,19
Sc ₂ O ₃	0,22	0,15	0,10	0,07	0,05	0,10	0,10	0,00	0,10
FeO	3,45	2,94	1,79	1,20	0,92	1,76	1,57	0,36	1,58
MgO	0,08	0,09	0,08	0,10	0,11	0,10	0,12	0,11	0,11
Suma	99,91	99,42	99,27	100,52	101,21	100,07	99,66	101,72	101,02
W	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Nb	0,070	0,063	0,047	0,026	0,019	0,036	0,040	0,005	0,033
Та	0,029	0,021	0,006	0,005	0,010	0,016	0,006	0,004	0,014
Si	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,001	0,000
Sn	0,804	0,838	0,899	0,934	0,941	0,898	0,908	0,978	0,905
Ti	0,013	0,008	0,004	0,003	0,003	0,005	0,005	0,000	0,006
Zr	0,004	0,003	0,003	0,002	0,002	0,003	0,002	0,000	0,002
Sc	0,005	0,003	0,002	0,001	0,001	0,002	0,002	0,000	0,002
Fe	0,069	0,060	0,037	0,025	0,019	0,036	0,032	0,007	0,032
Mg	0,003	0,003	0,003	0,004	0,004	0,004	0,004	0,004	0,004
Suma kat.	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Ta/(Ta+Nb)	0,293	0,250	0,116	0,147	0,330	0,308	0,123	0,458	0,304

Tabulka T8, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec kasiteritu (apfu)

Datum	2017_	2017_	2017_	2017_	2017_	2017_	2017_	2017_	2017_
Bod	38/1.	41/1.	42/1.	45 / 1 .	46/1.	49/1.	50 / 1 .	54 / 1 .	66 / 1 .
Vzorek (vrt/hloubka)	P2_ 199	C20- 142							
WO ₃	0,00	0,00	0,00	0,00	0,00	0,33	0,00	0,00	0,00
Nb ₂ O ₅	3,09	2,30	2,13	4,90	3,68	3,09	2,82	1,15	3,39
Ta ₂ O ₅	1,70	1,10	0,68	3,19	1,33	2,02	2,04	0,87	1,14
SiO ₂	0,00	0,00	0,04	0,05	0,00	0,06	0,00	0,00	0,00
SnO ₂	93,45	95,62	95,96	87,46	92,27	93,33	92,97	96,98	94,70
TiO ₂	0,28	0,27	0,29	0,36	0,45	0,26	0,26	0,20	0,00
ZrO ₂	0,24	0,16	0,16	0,37	0,22	0,11	0,27	0,00	0,00
Sc ₂ O ₃	0,07	0,07	0,00	0,16	0,12	0,08	0,06	0,00	0,10
FeO	1,52	1,26	1,16	2,65	2,32	1,49	1,58	0,76	1,05
MgO	0,10	0,10	0,11	0,10	0,09	0,10	0,11	0,10	0,10
Suma	100,45	100,88	100,53	99,23	100,50	101,04	100,11	100,06	100,48
W	0,000	0,000	0,000	0,000	0,000	0,002	0,000	0,000	0,000
Nb	0,034	0,025	0,024	0,054	0,040	0,034	0,031	0,013	0,038
Та	0,011	0,007	0,005	0,021	0,009	0,013	0,014	0,006	0,008
Si	0,000	0,000	0,001	0,001	0,000	0,002	0,000	0,000	0,000
Sn	0,910	0,930	0,936	0,851	0,887	0,904	0,909	0,958	0,927
Ti	0,005	0,005	0,005	0,007	0,008	0,005	0,005	0,004	0,000
Zr	0,003	0,002	0,002	0,004	0,003	0,001	0,003	0,000	0,000
Sc	0,001	0,002	0,000	0,003	0,002	0,002	0,001	0,000	0,002
Fe	0,031	0,026	0,024	0,054	0,047	0,030	0,032	0,016	0,022
Mg	0,004	0,004	0,004	0,004	0,003	0,004	0,004	0,004	0,004
Suma kat.	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Ta/(Ta+Nb)	0,249	0,223	0,161	0,282	0,179	0,282	0,303	0,313	0,169

Tabulka T8, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec kasiteritu (apfu)

Datum	2017_	2017_	2017_	2017_	2017_	2017_	2017_	2017_	2017_
_ .	08_16	08_17	08_18	08_19	08_20	08_21	08_22	08_23	08_24
Bod	69/1.	71/1.	72/1.	73/1.	74/1.	75/1.	76/1.	77/1.	78/1.
Vzorek	C20-								
WO ₃	0.23	0.00	0.00	0.41	0.00	0.00	0.42	0.40	0.43
Nb ₂ O ₅	3,19	0,00	0,13	0,97	0,00	0,60	0,59	1,14	0,45
Ta ₂ O ₅	1,02	0,34	0,32	0,52	0,34	0,56	0,46	0,35	0,40
SiO ₂	0,04	0,00	0,04	0,00	0,00	0,00	0,00	0,00	0,00
SnO ₂	95,03	100,69	100,72	98,84	101,23	99,12	98,80	98,48	99,39
TiO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZrO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sc ₂ O ₃	0,13	0,07	0,09	0,00	0,05	0,00	0,00	0,00	0,00
FeO	0,91	0,21	0,13	0,33	0,10	0,30	0,18	0,33	0,11
MgO	0,12	0,11	0,11	0,09	0,11	0,11	0,09	0,10	0,11
Suma	100,67	101,42	101,53	101,16	101,84	100,69	100,53	100,80	100,88
W	0,001	0,000	0,000	0,003	0,000	0,000	0,003	0,003	0,003
Nb	0,035	0,000	0,001	0,011	0,000	0,007	0,007	0,013	0,005
Та	0,007	0,002	0,002	0,003	0,002	0,004	0,003	0,002	0,003
Si	0,001	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000
Sn	0,929	0,988	0,987	0,973	0,991	0,979	0,980	0,972	0,983
Ti	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sc	0,003	0,001	0,002	0,000	0,001	0,000	0,000	0,000	0,000
Fe	0,019	0,004	0,003	0,007	0,002	0,006	0,004	0,007	0,002
Mg	0,004	0,004	0,004	0,003	0,004	0,004	0,003	0,004	0,004
Suma kat.	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Ta/(Ta+Nb)	0,162	1,000	0,598	0,244	1,000	0,357	0,321	0,157	0,349

Tabulka T8, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec kasiteritu (apfu)

Datum	2017_08_25
Bod	79/1.
Vzorek	C20-142
	0.40
	1 28
	0.71
	0,71
	0,00
SnO ₂	97,40
TiO ₂	0,00
ZrO ₂	0,00
Sc ₂ O ₃	0,06
FeO	0,44
MgO	0,10
Suma	100,39
10/	0.003
VV Nib	0,003
	0,014
la Si	0,005
Si	0,000
ті	0,904
11 7r	0,000
21	0,000
SC Fo	0,001
г с Ма	0,009
iviy Suma kat	0,004
Juilla Kal.	0.250
1a/(1a+1ND)	0,230

Tabulka T8, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec kasiteritu (apfu)

Bod	45/1.	46 / 1 .	47/1.	48/1.	49/1.	50/1.	61/1.	62/1.	63/1.
Vzorek	P01-	P01-	P01-	P01-	P01-	P01-	P01-	P01-	P01-
(vrt/hloubka)	250	250	250	250	250	250	250	250	250
WO ₃	73,42	73,90	73,32	72,04	72,99	73,10	73,47	72,34	73,86
Nb ₂ O ₅	0,00	0,00	0,00	0,56	0,11	0,13	0,62	0,76	0,67
Ta ₂ O ₅	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SiO ₂	0,05	0,05	0,07	0,05	0,00	0,06	0,00	0,08	0,06
TiO ₂	0,11	0,00	0,00	0,00	0,14	0,00	0,00	0,00	0,00
ZrO ₂	0,69	0,54	0,54	0,63	0,69	0,63	0,58	0,47	0,51
SnO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sc ₂ O ₃	0,07	0,00	0,05	0,28	0,00	0,07	0,26	0,07	0,11
FeO	2,74	2,38	1,88	5,13	2,63	2,63	5,61	4,60	2,93
MnO	22,11	22,93	22,90	19,53	21,94	22,20	19,13	20,33	21,78
Suma	99,51	100,17	99,23	98,80	98,89	99,03	99,90	98,85	100,21
W	0,938	0,933	0,942	0,925	0,937	0,937	0,935	0,925	0,940
Nb	0,000	0,000	0,000	0,013	0,002	0,003	0,014	0,017	0,015
Та	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Si	0,003	0,003	0,003	0,003	0,000	0,003	0,000	0,004	0,003
Ti	0,004	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,000
Zr	0,017	0,013	0,013	0,015	0,017	0,015	0,014	0,011	0,012
Sn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sc	0,003	0,000	0,002	0,012	0,000	0,003	0,011	0,003	0,005
Fe	0,113	0,097	0,078	0,212	0,109	0,109	0,230	0,190	0,120
Mn	0,923	0,947	0,962	0,820	0,920	0,930	0,796	0,850	0,906
Suma kat.	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
Mn/(Mn+Fe)	0,891	0,907	0,925	0,794	0,894	0,895	0,776	0,817	0,883

Tabulka T9: Chemické složení (hm.%) a přepočtený krystalochemický vzorec skupiny wolframitu (apfu)

Bod	64/1.	65 / 1 .	66/1.	67/1.	68/1.	69/1.	70/1.	71/1.	72/1.
Vzorek	P01-	P01-	P01-	P01-	P01-	P01-	P01-	P01-	P01-
(vrt/hloubka)	250	250	250	250	250	250	250	250	250
WO ₃	74,43	72,42	72,47	75,87	73,20	72,02	73,13	72,85	72,87
Nb ₂ O ₅	0,00	0,67	0,81	0,00	0,18	1,33	0,62	0,33	0,45
Ta ₂ O ₅	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SiO ₂	0,07	0,05	0,09	0,00	0,16	0,00	0,00	0,00	0,00
TiO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZrO ₂	0,59	0,64	0,56	0,47	0,55	0,55	0,57	0,56	0,69
SnO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sc ₂ O ₃	0,00	0,06	0,00	0,00	0,06	0,00	0,00	0,07	0,06
FeO	2,76	4,44	4,20	2,81	2,89	4,40	4,40	4,49	4,47
MnO	22,20	20,65	21,15	22,78	22,12	20,79	20,58	20,44	20,59
Suma	100,14	99,10	99,68	102,15	99,47	99,51	99,60	98,84	99,67
W	0,946	0,923	0,918	0,947	0,931	0,915	0,933	0,934	0,929
Nb	0,000	0,015	0,018	0,000	0,004	0,029	0,014	0,007	0,010
Та	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Si	0,003	0,003	0,004	0,000	0,008	0,000	0,000	0,000	0,000
Ti	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zr	0,014	0,015	0,013	0,011	0,013	0,013	0,014	0,014	0,017
Sn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sc	0,000	0,002	0,000	0,000	0,002	0,000	0,000	0,003	0,002
Fe	0,113	0,182	0,172	0,113	0,119	0,180	0,181	0,186	0,184
Mn	0,923	0,860	0,875	0,929	0,920	0,863	0,858	0,857	0,858
Suma kat.	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
Mn/(Mn+Fe)	0,891	0,825	0,836	0,891	0,886	0,827	0,826	0,822	0,823

Tabulka T9, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec skupiny wolframitu (apfu)

Bod	73/1.	74/1.	75/1.	76/1.	77/1.	78/1.	79/1.	80/1.	87/1.
Vzorek	P01-	P01-	P01-	P01-	P01-	P01-	P01-	P01-	P01-
(vrt/hloubka)	250	250	250	250	250	250	250	250	250
WO ₃	73,72	73,03	74,21	73,18	73,57	73,16	74,23	72,88	72,32
Nb ₂ O ₅	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,82	0,57
Ta ₂ O ₅	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SiO ₂	0,05	0,00	0,06	0,13	0,11	0,14	0,06	0,06	0,00
TiO ₂	0,00	0,00	0,00	0,12	0,09	0,15	0,00	0,00	0,00
ZrO ₂	0,54	0,56	0,49	0,54	0,61	0,53	0,61	0,66	0,52
SnO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sc ₂ O ₃	0,09	0,00	0,00	0,00	0,05	0,08	0,00	0,29	0,06
FeO	4,83	2,17	3,92	2,92	2,85	3,64	3,25	5,74	4,16
MnO	20,30	22,85	21,00	22,20	22,06	21,29	21,72	19,15	20,81
Suma	100,04	99,04	100,03	99,35	99,67	99,51	100,16	99,76	98,57
W	0,938	0,938	0,948	0,930	0,937	0,932	0,945	0,923	0,928
Nb	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,018	0,013
Та	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Si	0,003	0,000	0,003	0,006	0,005	0,007	0,003	0,003	0,000
Ti	0,000	0,000	0,000	0,004	0,003	0,005	0,000	0,000	0,000
Zr	0,013	0,013	0,012	0,013	0,015	0,013	0,015	0,016	0,012
Sn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sc	0,004	0,000	0,000	0,000	0,002	0,004	0,000	0,012	0,003
Fe	0,198	0,090	0,161	0,120	0,117	0,149	0,133	0,235	0,172
Mn	0,844	0,959	0,876	0,922	0,918	0,886	0,904	0,793	0,872
Suma kat.	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
Mn/(Mn+Fe)	0,810	0,914	0,845	0,885	0,887	0,856	0,871	0,772	0,835

Tabulka T9, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec skupiny wolframitu (apfu)

Bod	88/1.	89/1.	90/1.	91/1.	92/1.	93/1.	94/1.	95/1.	96/1.
Vzorek	P01-								
(vrt/hloubka)	250	250	250	250	250	250	250	250	250
WO ₃	72,54	71,69	72,97	72,63	73,49	72,55	71,69	72,38	72,25
Nb ₂ O ₅	0,76	0,72	1,20	0,69	0,26	0,73	0,88	0,64	0,32
Ta ₂ O ₅	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SiO ₂	0,00	0,08	0,00	0,00	0,00	0,00	0,06	0,00	0,05
TiO ₂	0,00	0,00	0,00	0,00	0,14	0,00	0,00	0,00	0,00
ZrO ₂	0,54	0,50	0,51	0,55	0,60	0,67	0,61	0,52	0,47
SnO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sc ₂ O ₃	0,00	0,00	0,21	0,05	0,06	0,06	0,05	0,00	0,09
FeO	4,21	3,88	5,34	4,17	5,57	3,21	5,20	4,47	4,53
MnO	21,03	21,42	19,49	20,90	19,29	21,91	19,98	20,68	20,59
Suma	99,22	98,53	99,89	99,06	99,62	99,28	98,59	99,02	98,50
W	0,923	0,915	0,926	0,926	0,938	0,923	0,914	0,925	0,926
Nb	0,017	0,016	0,027	0,015	0,006	0,016	0,020	0,014	0,007
Та	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Si	0,000	0,004	0,000	0,000	0,000	0,000	0,003	0,000	0,003
Ti	0,000	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,000
Zr	0,013	0,012	0,012	0,013	0,014	0,016	0,015	0,012	0,011
Sn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sc	0,000	0,000	0,009	0,002	0,002	0,002	0,002	0,000	0,004
Fe	0,173	0,160	0,219	0,172	0,230	0,132	0,214	0,184	0,187
Mn	0,874	0,893	0,808	0,871	0,804	0,911	0,833	0,864	0,862
Suma kat.	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
Mn/(Mn+Fe)	0,835	0,848	0,787	0,835	0,778	0,874	0,796	0,824	0,822

Tabulka T9, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec skupiny wolframitu (apfu)

Bod	115 / 1	116 / 1	117 / 1	118/1	119/1	120 / 1	121 / 1	122 / 1	123 / 1
Vzorek (vrt/hloubka)	C1- 205								
WO ₃	73,29	72,62	72,28	72,07	72,49	73,28	72,15	72,19	72,44
Nb ₂ O ₅	0,33	0,73	0,56	0,72	0,87	0,53	0,77	0,93	1,16
Ta ₂ O ₅	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SiO ₂	0,00	0,00	0,06	0,06	0,05	0,05	0,05	0,00	0,00
TiO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZrO ₂	0,70	0,55	0,52	0,57	0,58	0,68	0,63	0,62	0,52
SnO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sc ₂ O ₃	0,11	0,22	0,17	0,15	0,20	0,18	0,31	0,24	0,31
FeO	12,31	10,54	12,76	12,58	11,16	12,22	13,41	12,24	12,39
MnO	12,65	14,36	12,14	12,56	13,88	12,68	11,55	12,72	12,74
Suma	99,55	99,14	98,62	98,85	99,39	99,65	98,93	99,13	99,78
W	0,936	0,927	0,927	0,919	0,922	0,933	0,919	0,920	0,916
Nb	0,007	0,016	0,013	0,016	0,019	0,012	0,017	0,021	0,026
Та	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Si	0,000	0,000	0,003	0,003	0,002	0,003	0,002	0,000	0,000
Ti	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zr	0,017	0,013	0,013	0,014	0,014	0,016	0,015	0,015	0,012
Sn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sc	0,005	0,009	0,007	0,006	0,008	0,008	0,013	0,010	0,013
Fe	0,507	0,434	0,528	0,518	0,458	0,502	0,552	0,504	0,506
Mn	0,528	0,599	0,509	0,524	0,577	0,527	0,481	0,530	0,527
Suma kat.	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
Mn/(Mn+Fe)	0,510	0,580	0,491	0,503	0,557	0,512	0,466	0,513	0,510

Tabulka T9, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec skupiny wolframitu (apfu)

Bod	124 / 1 .	125/1.	35 / 1 .	36/1.	48/1.	51/1.	52/1.	56/1.	57/1.
Vzorek	C1-205	C1-205	P13-	P13-	P13-	P13-	P13-	P13-	P13-
(vrt/hloubka)			133A	133A	133A	133A	133A	133A	133A
WO ₃	73,51	72,27	70,32	69,88	65,80	69,11	67,83	69,71	70,54
Nb ₂ O ₅	0,73	0,85	2,87	2,96	5,94	3,25	4,38	3,31	2,62
Ta ₂ O ₅	0,00	0,00	0,00	0,00	1,03	0,28	0,37	0,00	0,00
SiO ₂	0,07	0,00	0,00	0,07	0,07	0,04	0,11	0,05	0,04
TiO ₂	0,00	0,00	0,00	0,00	0,12	0,00	0,00	0,00	0,00
ZrO ₂	0,59	0,60	0,27	0,00	0,20	0,22	0,24	0,00	0,18
SnO ₂	0,00	0,00	0,30	0,24	0,95	0,62	0,64	0,31	0,34
Sc ₂ O ₃	0,32	0,15	0,56	0,55	0,90	0,65	0,71	0,63	0,55
FeO	12,66	12,71	11,76	11,67	11,85	12,38	11,86	11,83	11,40
MnO	12,27	12,40	13,09	13,16	12,51	12,09	12,53	13,16	13,24
Suma	100,16	99,30	99,45	98,92	99,37	98,91	99,06	99,24	99,05
W	0,929	0,921	0,885	0,884	0,813	0,873	0,851	0,874	0,893
Nb	0,016	0,019	0,063	0,065	0,128	0,072	0,096	0,072	0,058
Та	0,000	0,000	0,000	0,000	0,013	0,004	0,005	0,000	0,000
Si	0,004	0,000	0,000	0,003	0,003	0,002	0,005	0,002	0,002
Ti	0,000	0,000	0,000	0,000	0,004	0,000	0,000	0,000	0,000
Zr	0,014	0,014	0,006	0,000	0,005	0,005	0,006	0,000	0,004
Sn	0,000	0,000	0,006	0,005	0,018	0,012	0,012	0,006	0,007
Sc	0,014	0,006	0,024	0,023	0,037	0,027	0,030	0,027	0,023
Fe	0,517	0,523	0,477	0,476	0,472	0,505	0,480	0,479	0,466
Mn	0,507	0,517	0,538	0,544	0,505	0,500	0,514	0,539	0,548
Suma kat.	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
Mn/(Mn+Fe)	0,495	0,497	0,530	0,533	0,517	0,497	0,517	0,530	0,540

Tabulka T9, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec skupiny wolframitu (apfu)

Bod	60/1.	62/1.	64/1.	77/1.	82/1.	3/1.	4/1.	14/1.	23/1.
Vzorek	P13-	P13-	P13-	P13-	P13-	P7/	P7/	P7/	P7/
(vrt/hloubka)	133A	133A	133A	133B	133B	281	281	281	281
WO ₃	70,28	71,09	70,92	71,38	67,29	72,73	73,29	73,04	70,82
Nb ₂ O ₅	2,46	2,03	1,82	2,50	4,76	0,61	0,71	0,65	2,45
Ta ₂ O ₅	0,00	0,00	0,00	0,00	0,78	0,00	0,00	0,00	0,00
SiO ₂	0,05	0,04	0,05	0,04	0,05	0,17	0,13	0,06	0,13
TiO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZrO ₂	0,00	0,00	0,00	0,20	0,29	0,71	0,60	0,58	0,74
SnO ₂	0,25	0,00	0,00	0,29	0,75	0,00	0,00	0,00	0,00
Sc ₂ O ₃	0,48	0,42	0,35	0,60	0,89	0,15	0,17	0,12	0,46
FeO	11,48	11,48	11,70	11,55	11,84	12,04	12,42	12,33	10,64
MnO	13,21	13,58	13,51	13,30	12,64	12,61	12,55	12,63	14,17
Suma	98,46	99,13	98,90	100,12	99,38	99,17	99,96	99,76	99,56
W	0,895	0,902	0,901	0,895	0,837	0,930	0,929	0,931	0,890
Nb	0,055	0,045	0,040	0,055	0,103	0,014	0,016	0,014	0,054
Та	0,000	0,000	0,000	0,000	0,010	0,000	0,000	0,000	0,000
Si	0,003	0,002	0,002	0,002	0,003	0,008	0,007	0,003	0,006
Ti	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zr	0,000	0,000	0,000	0,005	0,007	0,017	0,014	0,014	0,017
Sn	0,005	0,000	0,000	0,006	0,014	0,000	0,000	0,000	0,000
Sc	0,021	0,018	0,015	0,025	0,037	0,007	0,007	0,005	0,019
Fe	0,472	0,470	0,480	0,467	0,475	0,497	0,508	0,507	0,431
Mn	0,550	0,563	0,561	0,545	0,514	0,527	0,520	0,526	0,582
Suma kat.	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
Mn/(Mn+Fe)	0,538	0,545	0,539	0,538	0,520	0,515	0,506	0,509	0,574

Tabulka T9, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec skupiny wolframitu (apfu)

Bod	24/1.	26/1.	27/1.	28/1.	30/1.	32/1.	34/1.	36/1.	42/1.
Vzorek	P7/								
(vrt/hloubka)	281	281	281	281	281	281	281	281	281
WO ₃	69,64	71,32	72,56	72,53	72,64	72,20	69,48	69,69	69,47
Nb ₂ O ₅	2,86	1,98	0,76	0,63	0,71	1,46	2,46	2,96	2,99
Ta ₂ O ₅	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,23	0,00
SiO ₂	0,00	0,00	0,05	0,00	0,00	0,05	0,06	0,00	0,00
TiO ₂	0,12	0,15	0,00	0,00	0,00	0,00	0,35	0,13	0,15
ZrO ₂	0,60	0,47	0,54	0,55	0,55	0,59	0,72	0,64	0,71
SnO ₂	0,31	0,26	0,00	0,00	0,00	0,00	0,62	0,41	0,00
Sc ₂ O ₃	0,52	0,49	0,14	0,20	0,22	0,38	0,62	0,74	0,65
FeO	10,85	10,83	12,45	12,77	12,46	11,23	10,05	10,03	10,99
MnO	14,04	13,96	12,62	12,28	12,77	13,67	14,48	14,45	13,50
Suma	98,98	99,55	99,18	99,35	99,60	99,76	99,18	99,37	98,67
W	0,875	0,899	0,924	0,926	0,922	0,912	0,873	0,875	0,878
Nb	0,063	0,044	0,017	0,014	0,016	0,032	0,054	0,065	0,066
Та	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,003	0,000
Si	0,000	0,000	0,002	0,000	0,000	0,003	0,003	0,000	0,000
Ti	0,004	0,005	0,000	0,000	0,000	0,000	0,013	0,005	0,005
Zr	0,014	0,011	0,013	0,013	0,013	0,014	0,017	0,015	0,017
Sn	0,006	0,005	0,000	0,000	0,000	0,000	0,012	0,008	0,000
Sc	0,022	0,021	0,006	0,009	0,009	0,016	0,026	0,031	0,028
Fe	0,440	0,440	0,512	0,526	0,510	0,458	0,407	0,406	0,448
Mn	0,577	0,575	0,525	0,512	0,530	0,565	0,595	0,593	0,558
Suma kat.	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
Mn/(Mn+Fe)	0,567	0,566	0,506	0,493	0,509	0,552	0,593	0,593	0,554

Tabulka T9, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec skupiny wolframitu (apfu)

Bod	60/1.	61/1.	62/1.	63/1.	23/1.	24/1.	25/1.	26/1.	27/1.
Vzorek	P2-	P2-	P2-	P2-	P1_	P1_	P1_	P1_	P1_
(vrt/hloubka)	245	245	245	245	250	250	250	250	250
WO ₃	73,89	73,63	73,95	72,07	72,58	71,09	73,05	72,27	73,29
Nb ₂ O ₅	0,32	0,64	0,58	1,76	1,21	2,11	1,09	0,85	0,55
Ta ₂ O ₅	0,00	0,00	0,00	0,47	0,00	0,00	0,00	0,00	0,00
SiO ₂	0,06	0,08	0,00	0,00	n.m.	n.m.	n.m.	n.m.	n.m.
TiO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZrO ₂	0,57	0,50	0,54	0,51	0,00	0,00	0,00	0,00	0,00
SnO ₂	0,00	0,00	0,00	0,29	0,00	0,19	0,00	0,00	0,00
Sc ₂ O ₃	0,09	0,16	0,17	0,43	0,25	0,43	0,21	0,06	0,06
FeO	13,50	12,32	12,47	12,37	13,29	13,40	13,14	5,24	4,44
MnO	11,83	12,91	12,79	12,50	11,15	11,07	11,46	19,16	19,87
Suma	100,54	100,25	100,68	100,69	98,47	98,30	98,94	97,58	98,21
W	0,934	0,929	0,933	0,905	0,937	0,912	0,940	0,942	0,953
Nb	0,007	0,014	0,013	0,039	0,027	0,047	0,025	0,019	0,013
Та	0,000	0,000	0,000	0,006	0,000	0,000	0,000	0,000	0,000
Si	0,003	0,004	0,000	0,000	n.m.	n.m.	n.m.	n.m.	n.m.
Ti	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zr	0,014	0,012	0,013	0,012	0,000	0,000	0,000	0,000	0,000
Sn	0,000	0,000	0,000	0,006	0,000	0,004	0,000	0,000	0,000
Sc	0,004	0,007	0,007	0,018	0,011	0,019	0,009	0,003	0,003
Fe	0,550	0,502	0,508	0,501	0,554	0,555	0,545	0,221	0,186
Mn	0,489	0,533	0,527	0,513	0,471	0,464	0,482	0,816	0,845
Suma kat.	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
Mn/(Mn+Fe)	0,470	0,515	0,509	0,506	0,459	0,456	0,469	0,787	0,819

Tabulka T9, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec skupiny wolframitu (apfu)

Bod	28/1.	29/1.	30/1.	31/1.	32/1.	33/1.	34/1.	35 / 1 .
Vzorek	P1_250							
(vrt/hloubka)								
WO ₃	72,22	71,29	71,72	71,38	73,39	72,74	72,89	73,07
Nb ₂ O ₅	0,76	1,78	1,92	1,54	0,56	1,22	0,80	0,00
Ta₂O₅	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SiO ₂	n.m.							
TiO ₂	0,00	0,00	0,09	0,00	0,00	0,00	0,00	0,00
ZrO ₂	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SnO ₂	0,00	0,16	0,00	0,00	0,00	0,00	0,00	0,00
Sc ₂ O ₃	0,08	0,37	0,53	0,21	0,00	0,00	0,00	0,00
FeO	4,39	10,75	7,93	4,56	4,29	4,24	4,19	2,80
MnO	19,74	13,81	16,13	19,43	19,87	20,30	20,30	21,20
Suma	97,18	98,15	98,32	97,11	98,10	98,59	98,18	97,07
W	0,947	0,916	0,923	0,933	0,959	0,937	0,946	0,965
Nb	0,017	0,040	0,043	0,035	0,013	0,027	0,018	0,000
Та	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Si	n.m.							
Ti	0,000	0,000	0,003	0,000	0,000	0,000	0,000	0,000
Zr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sn	0,000	0,003	0,000	0,000	0,000	0,000	0,000	0,000
Sc	0,003	0,016	0,023	0,009	0,000	0,000	0,000	0,000
Fe	0,186	0,446	0,329	0,192	0,181	0,176	0,175	0,119
Mn	0,846	0,580	0,679	0,830	0,848	0,855	0,861	0,915
Suma kat.	2,000	2,000	2,000	2,000	2,000	1,996	2,000	2,000
Mn/(Mn+Fe)	0,820	0,565	0,673	0,812	0,824	0,829	0,831	0,885

Tabulka T9, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec skupiny wolframitu (apfu)

Vzorek (vrt/hloubka)	P13/133A	P13/133A	P13/133A	P13/133A	P13/133A	P07/402	P7/281	P7/281	P7/281
Bod	32/1.	33 / 1 .	44/1.	45/1.	47/1.	33/1.	38/1.	43/1.	45 / 1 .
Poznámka	ixiolit	ixiolit	ixiolit	ixiolit	ixiolit	qitianlin.	qitianlin.	ixiolit	ixiolit
WO3	48,23	42,70	56,506	32,44	40,42	24,84	26,84	21,46	22,00
Nb2O5	13,20	13,97	8,006	18,04	13,98	34,05	35,03	33,94	33,04
Ta2O5	1,47	1,61	1,912	4,45	3,47	5,60	14,36	6,33	5,82
SiO2	0,83	0,83	0,754	2,24	1,34	0,13	0,05	2,84	3,18
TiO2	0,15	0,14	0,138	0,28	0,20	1,05	1,56	1,58	1,56
ZrO2	0,62	0,66	0,431	0,66	0,70	1,29	0,42	1,50	1,46
SnO2	0,99	0,98	1,375	2,29	1,98	5,81	0,99	1,06	1,15
PbO	0,39	0,00	0,000	0,44	0,00	0,00	0,00	0,00	0,00
ThO2	1,22	1,09	1,949	5,63	3,34	0,00	0,00	0,00	0,00
UO2	0,31	0,36	0,170	0,49	0,54	0,00	0,00	0,31	0,26
AI2O3	0,20	0,18	0,058	0,15	0,12	0,00	0,00	1,36	3,75
Sc2O3	1,99	2,20	1,322	2,24	2,54	1,27	1,05	4,86	4,44
Sb2O3	0,00	0,00	0,426	0,00	0,00	0,00	0,00	0,00	0,00
Bi2O3	1,06	0,87	0,613	1,74	1,14	0,00	0,00	0,00	0,00
FeO	5,18	5,59	8,706	4,48	5,02	19,51	10,18	1,86	1,96
MnO	8,35	9,22	10,686	7,27	9,15	3,05	10,69	10,45	10,69
MgO	0,05	0,00	0,036	0,04	0,03	0,00	0,00	0,00	0,00
CaO	1,51	0,00	0,000	0,00	0,00	0,00	0,00	0,00	0,00
Na2O	0,17	0,26	0,089	0,22	0,21	0,00	0,00	0,18	0,14
F	0,00	0,00	0,000	0,00	0,00	0,01	0,00	0,12	0,13
Total	85,92	81,01	93,297	83,34	84,33	96,68	101,21	88,06	89,78
W	0,683	0,630	0,751	0,468	0,577	0,682	0,740	0,250	0,242
Nb	0,326	0,360	0,186	0,454	0,348	1,629	1,685	0,690	0,635
Та	0,022	0,025	0,027	0,067	0,052	0,161	0,415	0,077	0,067
Si	0,046	0,047	0,039	0,124	0,074	0,014	0,006	0,128	0,135
Ti	0,006	0,006	0,005	0,012	0,008	0,084	0,125	0,053	0,050
Zr	0,016	0,018	0,011	0,018	0,019	0,067	0,022	0,033	0,030
Sn	0,021	0,022	0,028	0,051	0,044	0,245	0,042	0,019	0,019
Pb	0,006	0,000	0,000	0,007	0,000	0,000	0,000	0,000	0,000
Th	0,015	0,014	0,023	0,071	0,042	0,000	0,000	0,000	0,000
U	0,004	0,005	0,002	0,006	0,007	0,000	0,000	0,003	0,002
AI	0,013	0,012	0,004	0,010	0,008	0,000	0,000	0,072	0,188
Sc	0,094	0,109	0,059	0,109	0,122	0,118	0,097	0,191	0,165
Sb	0,000	0,000	0,009	0,000	0,000	0,000	0,000	0,000	0,000
Bi	0,015	0,013	0,008	0,025	0,016	0,000	0,000	0,000	0,000
Fe	0,237	0,266	0,373	0,208	0,231	1,727	0,906	0,070	0,070
Mn	0,386	0,445	0,464	0,343	0,427	0,274	0,963	0,398	0,385
Mg	0,004	0,000	0,003	0,003	0,003	0,000	0,000	0,000	0,000
Са	0,089	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,018	0,028	0,009	0,023	0,023	0,000	0,000	0,016	0,012
Sum. cat.	2,000	2,000	2,000	2,000	2,000	5,000	5,000	2,000	2,000
F	0,000	0,000	0,000	0,000	0,000	0,002	0,000	0,017	0,017
0	4,047	4,002	3,964	4,061	4,009	9,516	9,872	4,003	3,936

Tabulka T10: Chemické složení (hm.%) a přepočtený krystalochemický vzorec ixiolitu a qitianlingitu (apfu)

Vzorek	P13/133	P13/133	P13/133	P13/133	P13/133	P01/25	P01/25	P01/25
(vrt/hloubka)	А	А	В	В	В	0	0	0
Bod	30/1.	72/1.	86/1.	96/1.	101/1.	42/1.	43/1.	44/1.
MoO3	0,00	0,00	0,14	0,00	0,00	3,08	0,00	0,00
WO3	76,79	79,14	77,16	79,77	77,42	76,46	78,76	78,42
Nb2O5	0,47	0,00	0,00	0,11	0,00	0,00	0,00	0,00
SiO2	0,11	0,06	0,05	0,05	0,04	0,11	0,04	0,15
PbO	0,00	0,20	0,00	0,00	0,15	0,00	0,00	0,00
AI2O3	0,00	0,00	0,00	0,00	0,00	0,05	0,00	0,04
Sc2O3	0,00	0,06	0,00	0,00	0,07	0,00	0,00	0,00
FeO	0,00	0,00	0,25	0,10	0,00	0,00	0,00	0,00
MnO	0,14	0,00	0,00	0,10	0,00	0,00	0,00	0,00
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,15	0,16
CaO	19,75	19,40	20,19	18,60	21,09	18,90	19,26	19,01
Na2O	0,00	0,00	0,00	0,06	0,00	0,00	0,00	0,00
F	0,63	0,22	1,23	0,31	1,44	0,09	0,69	0,81
Total	97,88	99,07	99,02	99,10	100,21	98,68	98,91	98,59
Мо	0,000	0,000	0,003	0,000	0,000	0,061	0,000	0,000
W	0,974	0,994	0,974	1,004	0,967	0,945	0,994	0,992
Nb	0,010	0,000	0,000	0,002	0,000	0,000	0,000	0,000
Si	0,005	0,003	0,002	0,002	0,002	0,005	0,002	0,008
Pb	0,000	0,003	0,000	0,000	0,002	0,000	0,000	0,000
AI	0,000	0,000	0,000	0,000	0,000	0,003	0,000	0,002
Sc	0,000	0,002	0,000	0,000	0,003	0,000	0,000	0,000
Fe	0,000	0,000	0,010	0,004	0,000	0,000	0,000	0,000
Mn	0,006	0,000	0,000	0,004	0,000	0,000	0,000	0,000
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,011	0,012
Са	1,036	1,007	1,054	0,967	1,089	0,966	1,004	0,994
Na	0,000	0,000	0,000	0,005	0,000	0,000	0,000	0,000
Sum cat.	2,031	2,009	2,044	1,990	2,063	1,980	2,011	2,007
F	0,098	0,033	0,189	0,048	0,219	0,014	0,107	0,124

Tabulka T11: Chemické složení (hm.%) a přepočtený krystalochemický vzorec scheelitu (apfu)

Ded			/ /	/ /		- / /		
Bod	28/1.	29/1.	35/1.	37/1.	8/1.	9/1.	14/1.	16/1.
Vzorek (vrt/hloubka)	C2 177	C2 177	C2-176	C2-176	4693	4693	4693	4693
Poznámka	Bas-Ce							
SO3	0,006	0,006	0,118	0,042	0,024	0,024	0	0
P2O5	0,081	0,078	7,423	0,108	0,016	0,209	0	0
As2O5	0,12	0,133	0,031	0,003	0	0	0,002323	0
ThO2	4,017	3,713	5,367	5,808	0,317	2,243	0,328	1,962
UO2	0,139	0,123	0	0,065	0	0,004	0,055	0,019
SiO2	0.724	0.519	0.376	0.241	0.174031	0.142258	0.144273	0.264801
Y2O3	1.055	1.42	0.892	1.542	11.528	3.111	4.844	0.434
La2O3	9,489	8.951	16.664	19.092	7,909	8.021	13,776	20,785
Ce2O3	33 364	31 594	25 219	21.8	20,654	21.87	30 344	34 611
Pr2O3	/ 110	3 807	3 744	3 503	3 16	3 075	3 031	2 / 2
Nd2O3	11 613	12 744	9,744	0,535	11 613	1/ 13/	10 070	2, 7 2 8 3 3 3
Sm2O2	2 240	2 926	3,307	9,071	4 022	6 6 9 9	2 9 1 1	0,525
511205	2,249	2,020	1,029	0,981	4,032	0,000	2,011	0,579
Eu2O3	0	0	0	0,023	0,234936	0,378266	0,124002	0
Gd2O3	0,853	1,515	0,569	0,636	5,512773	8,128101	2,063972	0,509751
Dy2O3	0,491	0,769	0,232	0,334	5,04	4,795	0,936	0,022
CaO	1,933	2,532	2,776	3,686	2,721	1,483	4,329	2,972
SrO	0	0	0,142	0,218	0	0,209	0	0
BaO	0	0	0	0,005	0	0	0,061	0
PbO	0,094	0,072	0,056	0,156	0,108	0,177	0,007	0,11
FeO	0	0	1,128	0,847	0,02	0	0	0,647
Na2O	0	0	0,03	0,091	0,074	0	0	0
F	7,19	7,043	5,702	7,057	8,445462	7,727291	9,028879	8,240552
CO2*	17,70424	17,8756	12,38525	17,24372	19,60958	19,15223	18,91126	18,63033
-O=F	-3,02751	-2,96561	-2,40095	-2,97151	-3,55615	-3,25375	-3,80181	-3,46987
Total	92,21374	92,84499	90,9893	90,17121	97,63664	98,3174	97,9739	97,05957
Suma REE+Y	63,233	63,716	57,856	57,572	69,68371	70,20037	68,90897	67,68375
	,	, -	- ,	- ,-	,	-,	,	- ,
S6+	0.00018	0.00018	0.003741	0.001318	0.000668	0.00068	0	0
P5+	0.00274	0.002635	0.265449	0.003824	0.000502	0.006681	0	0
As5+	0.002507	0.002774	0.000685	6 56E-05	0,00000	0	4 68E-05	0
Th4+	0.03652	0.033711	0.051589	0.055283	0 002674	0 019272	0.002875	0 017373
114+	0.001236	0.001092	0,001000	0,000200	0,002071	3 36E-05	0.000471	0,000165
Si/L	0.028925	0.020707	0.015882	0,000000	0 006451	0.005371	0,000477	0,000100
V21	0,020323	0,020101	0,010002	0,010001	0,000401	0,000071	0,000007	0,010004
	0,02243	0,03013	0,020031	0,034324	0,227403	0,00231	0,099204	0,000907
	0,139623	0,131721	0,259019	0,294341	0,10013	0,111702	0,195094	0,290290
	0,466004	0,461503	0,390007	0,33364	0,260296	0,302321	0,427674	0,493059
P13+	0,059958	0,056651	0,057622	0,054756	0,042678	0,042303	0,042534	0,034309
Nd3+	0,165695	0,181591	0,143419	0,142974	0,153736	0,190591	0,151016	0,11566
Sm3+	0,030963	0,038855	0,014978	0,01414	0,051503	0,08702	0,037308	0,007764
Eu3+	0	0	0	0,000328	0,002974	0,004877	0,001631	0
Gd3+	0,011297	0,020038	0,007968	0,008819	0,067741	0,101737	0,026352	0,006575
Dy3+	0,00632	0,009885	0,003157	0,004501	0,060188	0,058328	0,011614	0,000276
Ca2+	0,082744	0,108241	0,125638	0,165194	0,108069	0,059995	0,178644	0,123906
Sr2+	0	0	0,003478	0,005287	0	0,004576	0	0
Ba2+	0	0	0	8,2E-05	0	0	0,000921	0
Fe2+	0	0	0,039847	0,029628	0,00062	0	0	0,021054
Pb2+	0,001011	0,000773	0,000637	0,001757	0,001078	0,001799	7,26E-05	0,001152
Na+	0	0	0,002457	0,00738	0,005318	0	0	0
F-	0,908455	0,888702	0,76173	0,933534	0,990068	0,922731	1,099779	1,014075
O2-	1,163276	1,185336	1,946696	1,216825	1,130877	1,115184	1,137632	1,142145
С	0,965649	0,973704	0,714243	0,984711	0,992379	0,987268	0,994397	0,989696
O2- corr.	3.094575	3.132744	3.375182	3.186247	3.115636	3.089719	3.126425	3.121537
U+Th	0.037755	0.034803	0.051589	0.055888	0.002674	0.019306	0.003346	0.017537
Ce/La	3 490158	3 503648	1 502229	1 133424	2 592209	2 706498	2 186438	1 652919
	5,	5,000010	.,	.,	_,	_,	_,	.,

Tabulka T12: Chemické složení (hm.%) a přepočtený krystalochemický vzorec minerálů skupiny bastnäsitu (apfu)
<u> </u>								
Bod	33/1.	37/1.	42/1.	11/1.	1/1.	7/1.	32/1.	42/1.
Vzorek (vrt/hloubka)	4937	4937	4937	C8-193	P1/208	P1/208	C23/375	C23/375
Poznámka	Bas-Ce	Bas-Ce	Bas-Ce	Bas-Ce	Bas-Ce	Bas-Ce	Bas-Ce	Bas-Ce
SO3	0,193	0,193	0	0,303	0	0,095	0,061	0,238
P2O5	0,013	0,166	0,052	0,315	0,121	0	0,065	0,388
As2O5	0,760939	0,170776	0,051117	0,062734	0,067	0	0,074	0
ThO2	10,867	23,852	5,993	12,379	3,655	5,811	0,998	16,022
UO2	0,367	0,596	0,254	0,265	0	0,17	0	0,625
SiO2	0,448648	2,818358	0,146378	0,483	0,296	1,364	0,263	0,398
Y2O3	1,175	3,182	2,449	0,506	0,619	0,347	1,237	1,249
La2O3	19,903	3,484	15,168	6,327	9,606	14,619	14,334	11,047
Ce2O3	24,939	25,167	29,703	29,746	32,601	42,531	24,367	20,275
Pr2O3	3,126	1,13	3,39	3,016	4,063	3,071	5,238	3,49
Nd2O3	8,104	4,434	9,894	9,902	12,693	7,585	16,644	8,694
Sm2O3	0,877	0,801	2,345	3,316	2,407	1,008	2,882	2,182
Eu2O3	, 0	, 0	0.090125	0.04	, 0	0	, 0	0
Gd2O3	0.123547	0.663641	2,310869	1.774	0.75	0.348	1.038	1.304
Dv2O3	0.309	0.36	1.406	0.302	0,10	0,010	0	0.406
CaO	3 757	10 002	2 504	3.36	3 025	2 716	1 858	4 813
SrO	0,101	0	0.08	0.29	0,020	_,0	1,000	1,010
BaO	0 172	0.627	0.126	0,20	0	0	0	0 384
PhO	0,172	0.028	0,120	0,000	0	0 397	0	0,004
FeO	0,334	0,020	0,217	0	0	0,007	0	0
No2O	0,124	0,004	0	0	0	0	0	0
Na2O	0,015	5 022042	7 1651 19	7 150259	7 1 2 6	5 044	7 024	0 0 0 4 2
Г СО2*	1,000703	16 64704	10.0205	10 10002	17 67417	0,944 10 57200	17 65010	0,042
0.5	10,00920	0,04704	19,9393	10,10093	2 00050	19,57399	17,00010	17,9591
	-3,16089	-2,11927	-3,01704	-3,01456	-3,00056	-2,50285	-2,96182	-3,38626
	98,76329	97,89959	100,2671	94,93536	91,70261	103,0771	90,78936	94,12983
Suma REE+Y	58,55655	39,22164	66,75599	54,929	62,739	69,509	65,74	48,647
0.0								
S6+	0,005428	0,005588	0	0,00884	0	0,002532	0,001868	0,007025
P5+	0,000412	0,005422	0,001604	0,010368	0,00417	0	0,002245	0,01292
As5+	0,014911	0,003445	0,000974	0,001275	0,001426	0	0,001579	0
Th4+	0,092681	0,209402	0,049701	0,109515	0,033861	0,046961	0,009266	0,143408
U4+	0,003061	0,005116	0,00206	0,002292	0	0,001343	0	0,00547
Si4+	0,016815	0,108731	0,005335	0,018778	0,012051	0,04844	0,01073	0,015655
Y3+	0,023435	0,065329	0,047496	0,010469	0,013411	0,006558	0,026858	0,026144
La3+	0,275127	0,049575	0,203883	0,090723	0,14424	0,191484	0,215698	0,160263
Ce3+	0,342201	0,355472	0,396314	0,423386	0,485918	0,552979	0,363972	0,291969
Pr3+	0,042687	0,015884	0,045014	0,042722	0,060268	0,039737	0,077864	0,050016
Nd3+	0,108473	0,061093	0,128775	0,137483	0,18455	0,096201	0,242518	0,122128
Sm3+	0,011327	0,010649	0,02945	0,044425	0,033768	0,012336	0,040519	0,029576
Eu3+	0	0	0,001122	0,000531	0	0	0	0
Gd3+	0,001535	0,008487	0,027918	0,022863	0,010122	0,004097	0,014039	0,017003
Dv3+	0,003731	0,004475	0,016508	0,003783	0	0	0	0,005145
Ca2+	0.150869	0.413446	0.097776	0.139961	0.131952	0.103345	0.081221	0.202838
Sr2+	, 0	, 0	0.001691	0.006537	, 0	, 0	, 0	0
Ba2+	0.002526	0.009479	0.001799	0.004616	0	0	0	0.005919
Fe2+	0.003887	0.021423	0	0.21.21.0	0	0 0	0	0
Pb2+	0.00337	0.000291	0.002129	0	0	0.003795	0	0 0
Na+	0 00100	0,000 <u>2</u> 01	0,002120 N	0	0 0	0,0007.00 N	0	0
F-	0 880782	0 61/002	0 825835	0 880245	0 017501	0 667502	0 007607	1 000380
∩?-	1 202702	1 670/67	1 155920	1 107265	1 177/22	1 320516	1 15/775	1 1//260
02-	1,200/0/	0 07604 4	0.000007	0 06074	0.000050	010000	1,104//0	0.0644
	0,302434	0,070014	0,33200/	0,90074	0,302303	0,349020	0,3000/9	0,9044
	3,133654	3,433096	3,140006	3,113844	3,142138	3,22/5/2	3,121932	3,073169
U+IN	0,095/42	0,214518	0,051/61	0,111808	0,033861	0,048304	0,009266	0,148878
Ce/La	1.243/93	7.170357	1.943835	4.666/89	3.368804	2.88/855	1.68/416	1.821814

Tabulka T12, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec minerálů skupiny bastnäsitu (apfu)

Bod	46 / 1 .	47/1.
Vzorek	C00/075	C02/275
(VII/IIIOUDKa) Doznámka	C23/375	C23/375
	Das-La	Das-Ce
SU3	0,384	0,381
P205	0,203	0,251
AS205	0	0
ThO2	8,99	11,563
002	0,222	0,28
5102	0,19	0,184
1203	0,988	1,042
La2O3	20,554	17,094
Ce2O3	16,561	20,331
PrzO3	4,94	3,899
Nd2U3	11,705	9,552
Sm2O3	1,833	1,8
Eu2O3	0	0
Gd2O3	0,841	0,822
Dy203	0	0
CaU	3,683	4,493
SIU D-O	0	0
BaO	0,352	0,22
PbO F=O	0	0
FeO	0	0
Na2O	0	0
F	7,996	7,253
0.5	18,01933	18,11558
-U=F	-3,36689	-3,05404
Total Suma	94,09444	94,22655
REE+Y	57,422	54,54
S6+	0,011412	0,01125
P5+	0,006806	0,008361
As5+	0	0
Th4+	0,081018	0,103534
U4+	0,001956	0,002451
Si4+	0,007524	0,00724
Y3+	0,020822	0,021819
La3+	0,300225	0,248077
Ce3+	0,240118	0,29288
Pr3+	0,071281	0,055897
Nd3+	0,16555	0,134228
Sm3+	0,025015	0,024406
Eu3+	0	0
Gd3+	0,011041	0,010722
Dy3+	0	0
Ca2+	0,156278	0,18942
Sr2+	0	0
Ba2+	0,005463	0,003392
Fe2+	0	0
Pb2+	0	0
Na+	0	0
F-	1,001475	0,902562
O2-	1,144331	1,204679
С	0,974257	0,973149
O2- corr.	3,092845	3,150976
U+Th	0,082974	0,105985
Ce/La	0.799793	1.180599

Tabulka T12, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec minerálů skupiny bastnäsitu (apfu)

Bod	6/1.	7/1.	8/1.	11/1.	13/1.	16/1.	17/1.	26/1.
Vzorek (vrt/hloubka)	C2 177	C2 177	C2 177	C2 177	C2 177	C2 177	C2 177	C2 177
Poznámka	Syn-Y	Syn-Y	Syn-Y	Syn-Y	Syn-Ce	Syn-Ce	Syn-Ce	Syn-Ce
SO3	0,00	0,07	0,04	0,03	0,08	0,06	0,03	0,05
P2O5	0,02	0,00	0,00	0,14	0,07	0,00	0,00	0,00
As2O5	0,00	0,00	0,00	5,79	5,45	0,00	0,00	0,00
ThO2	0,65	0,63	0,75	7,72	5,91	0,45	0,42	0,46
002	0,06	0,02	0,06	0,12	0,14	0,01	0,00	0,00
5102	12 22	12.42	0,38	0,42	0,30	0,18	0,17	0,17
1203	12,22	12,42	2 50	0,41	9,10	9,07	9,00	4,00
	1/ 02	1/ 00	2,59	12 18	2,09	15 68	4,20	16.00
Pr2O3	1 58	1 29	1 52	1 10	1 21	2 03	2 27	3.04
Nd2O3	4.90	4.84	5.36	4.03	4.25	6.98	8.34	11.90
Sm2O3	1.81	1.81	2.05	0.95	1.21	2.61	3.16	4.49
Eu2O3	0,18	0,01	0,01	0,00	0,00	0,05	0.02	0,03
Gd2O3	2,86	2,49	3,17	1,78	1,69	3,04	3,04	3,57
Dy2O3	4,11	3,88	4,13	2,38	2,73	3,29	3,05	2,48
CaO	18,45	18,43	18,34	16,83	17,09	18,30	18,13	16,66
SrO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
PbO	0,15	0,10	0,07	0,05	0,09	0,10	0,08	0,04
FeO	0,07	0,33	0,30	4,19	2,18	0,00	0,00	0,00
BaO	0,08	0,00	0,00	0,00	0,10	0,00	0,00	0,00
Na2O	0,02	0,03	0,05	0,05	0,00	0,07	0,06	0,00
F	5,97	5,68	6,03	4,88	4,87	6,04	5,66	5,33
0.5	26,77	26,40	27,18	22,02	23,03	27,31	27,76	28,36
-U=F	-2,51	-2,39	-2,54	-2,05	-2,05	-2,54	-2,38	-2,25
Suma REE+Y	<u>44</u> 94	44 04	45 85	33,17	36.45	47 18	48 45	51 57
ound REET	44,00	,0	40,00	00,00	00,40	47,10	-0,-0	01,07
S6+	0,000	0,003	0,002	0,001	0,003	0,003	0,001	0,002
P5+	0,001	0,000	0,000	0,007	0,003	0,000	0,000	0,000
As5+	0,000	0,000	0,000	0,180	0,164	0,000	0,000	0,000
Th4+	0,008	0,008	0,009	0,104	0,077	0,005	0,005	0,005
U4+	0,001	0,000	0,001	0,002	0,002	0,000	0,000	0,000
SI4+	0,016	0,011	0,020	0,025	0,021	0,010	0,009	0,009
Y3+	0,353	0,364	0,339	0,266	0,280	0,280	0,251	0,133
Las+	0,047	0,047	0,051	0,048	0,057	0,072	0,081	0,099
Dr2	0,290	0,302	0,294	0,200	0,200	0,300	0,295	0,301
Nd3+	0,031	0,020	0,029	0,024	0,025	0,039	0,043	0,057
Sm3+	0,035	0,033	0,102	0,000	0,007	0,133	0,150	0.079
Eu3+	0.003	0.000	0.000	0.000	0.000	0.001	0.000	0.000
Gd3+	0.052	0.046	0.056	0.035	0.032	0.054	0.053	0.061
Dy3+	0,072	0,069	0,071	0,046	0,051	0,057	0,052	0,041
Ca2+	1,072	1,088	1,048	1,072	1,053	1,045	1,020	0,917
Sr2+	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ba2+	0,002	0,000	0,000	0,000	0,002	0,000	0,000	0,000
Fe2+	0,003	0,015	0,013	0,208	0,105	0,000	0,000	0,000
Pb2+	0,002	0,002	0,001	0,001	0,001	0,001	0,001	0,000
Na+	0,002	0,004	0,005	0,006	0,000	0,007	0,006	0,000
F-	1,024	0,989	1,016	0,916	0,886	1,018	0,940	0,866
02-	2,096	2,135	2,092	2,740	2,609	2,063	2,071	2,002
C C	1,982	1,986	1,978	1,787	1,809	1,988	1,990	1,989
U2- COIL	6,060	6,107	0,048	0,314	0,220	6,039	6,050	5,981
0+111	0,009	0,008	0,010	0,100	0,079	0,006	0,005	0,005

Tabulka T13: Chemické složení (hm.%) a přepočtený krystalochemický vzorec minerálů skupiny synchysitu (apfu)

Bod	27/1.	30/1.	60/1.	63/1.	65/1.	66 / 1 .	68/1.	10/1.	11/1.
Vzorek (vrt/hloubka)	C2 177	C2 177	C2-176	C2-176	C2-176	C2-176	C2-176	4693	4693
Poznámka	Syn-Ce	Syn-Ce	Syn-Y	Syn-Y	Syn-Y	Syn-Ce	Syn-Ce	Syn-Y	Syn-Ce
SO3	0,00	0,02	0,00	0,01	0,01	0,07	0,00	0,01	0,17
P2O5	0,00	0,06	0,00	0,00	0,00	0,11	0,00	0,00	0,00
As2O5	0,00	0,06	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ThO2	0,37	1,14	0,69	0,36	0,50	0,57	0,22	0,75	1,14
002	0,00	0,05	0,02	0,00	0,02	0,04	0,06	0,01	0,03
SiO2	0,21	0,20	0,11	0,14	0,11	0,17	0,11	0,01	0,37
Y2O3	5,28	4,76	13,31	13,93	14,74	5,74	7,87	18,23	2,21
La2O3	4,78	6,05	3,24	3,47	3,24	2,92	1,59	3,42	7,96
Ce2O3	17,41	11,97	11,58	10,76	10,81	13,46	26,22	8,01	21,50
Pr2O3	2,94	3,64	1,52	1,54	1,48	2,08	1,21	1,25	2,95
Nd2O3	10,20	12,85	6,27	6,07	5,28	10,02	5,19	5,29	10,84
Sm2O3	3,72	4,28	2,53	2,36	2,25	5,16	1,49	2,78	2,89
Eu2O3	0,00	0,00	0,92	0,88	0,88	0,70	0,39	0,25	0,07
Gd2O3	3,31	2,89	3,97	4,05	3,70	5,67	1,70	5,06	1,95
Dy203	2,65	1,85	4,26	3,98	3,80	3,12	1,51	4,33	0,24
CaO	17,40	19,30	17,91	18,21	18,54	17,47	17,77	20,41	17,38
SIU	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	0,03	0,05	0,00	0,05	0,00	0,02	0,00	0,00	0,02
FeO BeO	0,13	0,41	0,00	0,00	0,10	0,00	0,00	0,00	0,00
DaU No2O	0,09	0,03	0,00	0,00	0,00	0,05	0,00	0,14	0,00
	0,01 5 1 1	0,00	0,03	0,03	0,00	0,04 5 02	0,04 5 20	0,00	0,01
Г СО2*	0,11	27.06	20,00	0,29 20 12	20,00	0,00	0,29	20.22	0,20
0_6	21,10	27,00	20,00	20,12	20,02	20,90	27,01	30,3Z	21,10
-O=r	-2,10	100.92	-2,30	-2,23	-2,40	-2,40	-2,23	102 22	-2,04 101 12
	99,24 50.29	100,03	47 61	97,02 47.04	90,00 46 19	91,14 19 96	95,45 47 17	103,32	50.60
	50,20	40,27	47,01	47,04	40,10	40,00	47,17	40,05	50,00
S6+	0 000	0.001	0 000	0 000	0 000	0.003	0 000	0 000	0.006
P5+	0,000	0,003	0,000	0,000	0,000	0,005	0,000	0,000	0,000
As5+	0,000	0,000	0,000	0,000	0,000	0,000	0,000	Ő	0,000
Th4+	0.004	0.014	0,008	0.004	0,006	0,007	0,003	0 008	0.014
U4+	0.000	0.001	0.000	0.000	0.000	0.001	0.001	0.000	0.000
Si4+	0.011	0.011	0.006	0.007	0.006	0.009	0.006	0.001	0.019
Y3+	0.147	0.136	0.363	0.385	0.409	0.164	0.227	0.469	0.061
La3+	0.093	0.120	0.061	0.066	0.062	0.058	0.032	0.061	0.153
Ce3+	0.335	0.235	0.217	0.205	0.206	0.265	0.519	0.142	0.410
Pr3+	0,056	0,071	0,028	0,029	0,028	0,041	0,024	0,022	0,056
Nd3+	0,191	0,246	0,115	0,113	0,098	0,193	0,100	0,091	0,202
Sm3+	0,067	0,079	0,045	0,042	0,040	0,096	0,028	0,046	0,052
Eu3+	0,000	0,000	0,016	0,016	0,016	0,013	0,007	0,004	0,001
Gd3+	0,057	0,051	0,067	0,070	0,064	0,101	0,030	0,081	0,034
Dy3+	0,045	0,032	0,070	0,067	0,064	0,054	0,026	0,067	0,004
Ca2+	0,978	1,110	0,984	1,013	1,035	1,008	1,030	1,056	0,970
Sr2+	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0	0
Ba2+	0,002	0,001	0,000	0,000	0,000	0,001	0,000	0,003	0
Fe2+	0,006	0,018	0,000	0,000	0,005	0,000	0,000	0	0
Pb2+	0,000	0,001	0,000	0,001	0,000	0,000	0,000	0	0,000
Na+	0,001	0,000	0,003	0,003	0,000	0,004	0,004	0,007	0,001
F-	0,848	1,229	0,908	0,869	0,965	0,992	0,905	0,783	1,034
02-	2,080	2,036	2,035	2,091	2,064	2,047	2,088	2,165	1,999
С	1,989	1,984	1,994	1,993	1,994	1,983	1,994	1,999	1,974
O2- corr.	6,059	6,004	6,023	6,076	6,052	6,013	6,076	6,163	5,947
U+Th	0.004	0.015	0.008	0.004	0.006	0.007	0.003	0.008	0.014

Tabulka T13, pokračování: Chemické složení (hm.%) a přepočtený krystalochemický vzorec minerálů skupiny synchysitu (apfu)

Bod	12/1.	13/1.	15/1.	17/1.
Vzorek	4693	4693	4693	4693
Si	0,00	0,00	0,00	0,04
Th	0,56	0,80	0,69	0,42
Y	0,13	0,00	0,13	0,16
La	24,17	23,09	20,78	21,38
Ce	36,90	37,24	37,91	38,63
Pr	3,08	2,73	3,30	3,02
Nd	7,96	7,92	9,27	7,88
Sm	0,65	0,65	0,84	0,66
Gd	0,00	0,00	0,33	0,00
Ca	0,32	0,37	0,33	0,36
Fe	0,59	0,00	0,34	0,32
F	27,60	27,40	26,76	25,73
Suma	101,96	100,20	100,66	98,60
Si	0,000	0,000	0,000	0,003
Th	0,004	0,007	0,006	0,003
Y	0,003	0,000	0,003	0,003
La	0,321	0,318	0,280	0,291
Ce	0,487	0,508	0,506	0,520
Pr	0,040	0,037	0,044	0,041
Nd	0,102	0,105	0,120	0,103
Sm	0,008	0,008	0,010	0,008
Gd	0,000	0,000	0,004	0,000
Са	0,015	0,018	0,016	0,017
Fe	0,020	0,000	0,011	0,011
F	2,685	2,756	2,637	2,556
Suma kat.	1,000	1,000	1,000	1,000

Tabulka T14: Chemické složení (hm.%) a přepočtený krystalochemický vzorec minerálů fluoceritu-(Ce) (apfu)

Bod	21/1.	22/1.	25 / 1 .	13/1.	33 / 1 .
(vrt/hloubka)	P2-218	P2-218	P2-218	C23/375	C8/197
SO3	2,60	1,46	2,48	2,06	1,79
P2O5	2,68	1,85	5,00	1,75	1,42
As2O5	31,11	34,17	26,73	32,67	32,01
SiO2	0,23	0,94	1,84	0,50	0,78
AI2O3	29,45	28,61	28,59	28,41	29,10
ThO2	0,00	0,00	0,46	0,00	0,19
La2O3	3,88	4,68	3,42	8,73	2,77
Ce2O3	8,87	7,83	7,77	1,13	8,31
Pr2O3	0,71	1,04	0,94	2,16	0,79
Nd2O3	1,11	2,24	2,06	4,34	1,93
CaO	0,88	0,50	0,90	0,63	0,28
MnO	0,18	0,00	0,00	0,00	0,00
FeO	0,00	0,24	0,20	0,17	0,00
SrO	7,09	5,66	8,19	6,12	5,69
F	1,01	0,71	0,92	0,39	1,43
H2O (calc.)	10,31	10,04	10,54	10,23	9,51
Total	100,11	99,95	100,02	99,29	96,01
REE	14,58	15,78	14,18	16,36	13,81
S6+	0,177	0,101	0,168	0,144	0,128
P5+	0,207	0,144	0,381	0,138	0,114
As5+	1,480	1,650	1,256	1,591	1,593
Si4+	0,021	0,087	0,166	0,047	0,074
Al3+	3,157	3,114	3,028	3,119	3,264
Th4+	0,000	0,000	0,009	0,000	0,004
La3+	0,130	0,159	0,113	0,300	0,097
Ce3+	0,295	0,265	0,256	0,038	0,289
Pr3+	0,023	0,035	0,031	0,073	0,028
Nd3+	0,036	0,074	0,066	0,144	0,066
Ca2+	0,085	0,050	0,087	0,063	0,029
Mn2+	0,014	0,000	0,000	0,000	0,000
Fe2+	0,000	0,018	0,015	0,013	0,000
Sr2+	0,374	0,303	0,427	0,331	0,314
F-	0,291	0,207	0,261	0,114	0,429
O2-	10,581	10,700	10,581	10,708	10,553
H+	6,256	6,185	6,317	6,357	6,037
suma kat.	6,000	6,000	6,000	6,000	6,000
REE+alk.	0,958	0,904	1,003	0,962	0,827

Tabulka T15: Chemické složení (hm.%) a přepočtený krystalochemický vzorec minerálů skupiny dussertitu (apfu)