Přírodovědecká fakulta Masarykovy univerzity v Brně

Ústav geologických věd

Stavba intruze benešovského typu středočeského plutonu

Bakalářská práce

ONDŘEJ BÁRTA

Vedoucí bakalářské práce: doc. RNDr. Rostislav Melichar, Dr.

Brno 2009

© Ondřej Bárta

2009

Všechna práva vyhrazena

Jméno a příjmení autora: Ondřej Bárta

Název bakalářské práce:Stavba intruze benešovského typu středočeského plutonuNázev v angličtině:Tectonics of the Benešov type from the Central Bohemian Pluton

Studijní program:	Geologie, bakalářský
Studijní obor:	Geologie
Vedoucí diplomové práce:	doc. RNDr. Rostislav Melichar, Dr.
Rok obhajoby:	2009

Anotace česky

Práce přibližuje tektonickou stavbu hornin náležících k benešovskému typu středočeského plutonu. Obsahuje soubor tektonických údajů naměřených na studovaném území. Pro vyhodnocení dat byly použity metody orientační a paleonapjatostní analýzy. Orientace byla určena u puklin, lineace a foliace horniny. Na základě naměřených údajů ploch zlomů a jejich rýhování byly zjištěny orientace normálových napětí.

Anotace anglicky

The work is focused on tectonics of the Benešov type from the Central Bohemian Pluton. It contains file of tectonic data from studied area. Data were evaluated by methods of orientation and paleostress analysis. The orientation of joints, lineations and foliations were specified. On the basis of measured data of fault planes and their striation were found orientation of principal stresses.

Klíčová slova: napětí, tektonické pohyby, benešovský granodiorit, orientační analýza

Keywords: stress, tectonics movements, Benešov type, orientation analysis

MDT: 551.244 551.242

Masarykova univerzita

Přírodovědecká fakulta

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student	: Ondřej Bárta
Studijní program	: Geologie
Studijní obor	: Geologie

Ředitel Ústavu geologických věd PřF MU Vám ve smyslu Studijního a zkušebního řádu MU určuje bakalářskou práci s tématem:

Stavba intruze benešovského typu středočeského plutonu

Tectonics of the Benešov type from the Central Bohemian Pluton

Zásady pró vypracování: Benešovský typ středočeského plutonu je deformovaný biotitický granitoid, cílem práce je vyhodnotit deformační a popř. i magmatickou stavbu tělesa.Posluchač zpracuje rešerši na téma týkající se výzkumů benešovského typu.V terénu posluchač naměří přednostní orientaci plošně paralelní stavby granitoidu a ostatních strukturních prvků tělesa.Naměřená data vyhodnotí v diagramech orientace a podle možností vyhodnotí.

Doporučená literatura

Melichar, Rostislav. Metody strukturní geologie : orientační analýza. 1. vyd. Brno : Rektorát Masarykovy university, 1991. 180 s. ISBN 80-210-0319-7.

 Vedoucí bakalářské práce
 : doc. RNDr. Ros

 Datum zadání bakalářské práce
 : 31. října 2008

 Datum odevzdání bakalářské práce
 : 30. dubna 2009

: doc. RNDr. Rostislav Melichar, Dr.
: 31. října 2008
: 30. dubna 2009

MASARYKOVA UNIVERZITA Réirodověcecká fakulta 315010 ÚSTAV GEOLOGICKÝCH VĚD

V Brně dne 31.10.2008

doc. RNDr. Jaromie Leichmann, Dr. rer. nat. ředitel Ústavu geologických věd PřF MU

Zadání bakalářské práce převzal dne:

19. 11. 2003

Podpis studenta The Salta

Předmluva

Cílem mé bakalářské práce, která byla zadána doc. RNDr. Rostislavem Melicharem, Dr. je orientační a paleonapjatostní analýza, a tedy vyhodnocení orientace sklonu puklin, lineací, foliací a určení hlavních normálových napětí. Studované území je z geologického hlediska velmi málo prozkoumané, přestože je tektonicky i petrograficky zajímavou a komplikovanou částí moldanubika. Chtěl bych touto cestou také poděkovat za poskytnuté informace, konzultace výsledků a půjčení potřebných materiálů svému školiteli doc. RNDr. Rostislavu Melicharovi, Dr. Za cenné rady při řešení problémů spojených s tvorbou této práce děkuji Mgr. Alici Zavřelové.

Prohlašuji, že tuto práci jsem vypracoval samostatně a veškerou literaturu, použitou k vyhotovení práce, řádně cituji.

V Brně dne 10. dubna 2009

Ondřej Bárta

Obsah

1	ÚVC)D	7
	1.1	GEOGRAFIE A GEOMORFOLOGIE	. 8
	1.2	REGIONÁLNÍ GEOLOGIE	. 9
	1.3	CHARAKTERISTIKA HORNIN BENEŠOVSKÉHO TYPU	10
	1.4	Tektonika	11
2	MET	ГОДІКА	12
	2.1	TERÉNNÍ PRÁCE	12
	2.2	VYHODNOCENÍ NAMĚŘENÝCH DAT	12
	2.2.1	Databáze	12
	2.2.2	<i>Vyhodnocení kompasových dat programem Spheristat</i>	13
	2.2.3	B Použití programu MARK 2006	14
3	VÝS	SLEDKY STRUKTURNÍ ANALÝZY	15
	3.1	ORIENTAČNÍ ANALÝZA	15
	3.2	PALEONAPJATOSTNÍ ANALÝZA	17
4	DIS	KUSE A ZÁVĚR	18
5	ΡΟΙ	JŽITÁ LITERATURA	20
6	PŘÍ	LOHY	21
	6.1	SEZNAM DOKUMENTAČNÍCH BODŮ	21
	6.2	MAPA DOKUMENTAČNÍCH BODŮ	22
	6.3	ORIENTACE STRUKTURNÍCH PRVKŮ	23

1 Úvod

Studované území (obr. 1) leží ve středních Čechách, jjv. od Prahy. Na severu je oblast ohraničena hlubokým údolím Sázavy, na východě zlomy blanické brázdy, procházejícími přes město Divišov, na jihu intruze benešovského typu určuje omezení popovického komplexu (Müller, 2002) – tato hranice prochází jižně od obce Postupice ve směru SZ–JV. Na západě se horniny benešovského typu střídají s horninami sázavského typu, obě horniny se spolu setkávají přibližně podél linie měst Vranov, Soběhrdy, Benešov a Postupice (Kodym, 1997).

Obr. 1: Geologická mapa studovaného území (upraveno dle geologické mapy ČR, list 13-33 Benešov; Kodym, 1997).

1.1 Geografie a geomorfologie

Oblast s výskytem hornin patřících k benešovskému granodioritu leží na východ od okresního města Benešov. Celé území podle geomorfologického členění (Demek, 1987) spadá ke Středočeské pahorkatině. Zastoupena je zde Dobříšskou pahorkatinou, která je sv. částí pahorkatiny Benešovské. Dominantním morfologickým prvkem je údolí řeky Sázavy, jejíž hladina se nachází v nadmořské výšce 260 m. Nejvyšší vrchol oblasti je kopec Březák s nadmořskou výškou 533 m. Celý reliéf je poměrně členitý, zpestřený výrazným hřbetem s-j. směru tvořeným drcenými granity. Území je středně zalesněno, převážnou část povrchu tvoří zemědělsky obdělávaná půda (obr. 2).

Obr. 2: Fotomapa studovaného území (www.mapy.cz).

Největším vodním tokem je vodohospodářsky významná řeka Sázava tvořící severní hranici studované oblasti. Území je protkáno mnoha dalšími menšími toky, největší z nich jsou: Chotýšanka, a dále Postupický, Bílovický, Drahanský, Vodslivký, Křešický a Okrouhlický potok.

1.2 Regionální geologie

Středočeský pluton (3200 m²) patří mezi největší intruzivní komplexy variského orogénu (Mísař et al., 1983). Intrudoval podél středočeského hlubinného zlomu, který jej odděluje od středočeské oblasti. Samotný pluton náleží do moldanubika, od kterého je oddělen systémem zlomů blanické brázdy. Petrografické složení této oblasti je neobyčejně pestré s četným výskytem žilných hornin. Nejtypičtější magmatické horniny plutonu tvoří tonalitová skupina: gabra, tonality, granodiority a granity (Mísař et al., 1983). Celé těleso (obr. 3) bylo rozděleno na několik menších jednotek spojujících horniny podobného charakteru. Severovýchodní část plutonu je tvořena petrograficky velmi variabilní oblastí nazvanou benešovským granodioritem. Hranice benešovského typu s okolními typy středočeského plutonu je značně komplikovaná, horniny se složitě zastupují. Vztah a relativní stáří těchto hornin zůstává stále otázkou. Výzkumy prováděné na studovaném území byly podrobně zpracovány v rešerši k bakalářské práci (Bárta, 2009).

Obr. 3: Zjednodušené schéma středočeského plutonického komplexu (Holub et al. 1997).

1.3 Charakteristika hornin benešovského typu

Petrograficky velmi pestrá oblast je reprezentována především granodioritem benešovského typu (obr. 4). Tato hornina byla charakterizována jako jemně až středně zrnitý, často porfyrický amfibol-biotitický až biotitický granodiorit, místy přecházející ke křemenným dioritům, granodioritům až granosyenitům a granitům (obr. 7; Žežulková, 1963). Je většinou usměrněný, drcený až břidličnatý. Jižní část území benešovského typu je budována amfibolicko-biotitickými a amfibolickými horninami granodioritového a syenodioritového složení s porfyroblasty draselného živce, horniny jsou zde kataklastické s paralelní strukturou. Podél východní hranice benešovského typu převládají amfibolické horniny dioritového charakteru a biotitické migmatity oftalmitického typu (Žežulková, 1971). K hojným uzavřeninám patří muskoviticko-biotitické a biotitické rohovcovité ruly s cordieritem, přecházející až do cordieritických migmatitů oftalmitového typu. Směr protažení uzavřenin a rozhraní jednotlivých hornin je souhlasné, směru SV-JZ. V severozápadní části území se nachází velké množství těles gabrodioritů a amfibolovců (Žežulková, 1971). Celá oblast obsahuje řadu žilných hornin (obr. 5, 6), jako jsou bezslídné aplity, často turmalinické, biotitické dvojslídné granity, lamprofyry, granodioritové porfyrity, a také křemenné a pegmatitové žíly (Kodym, 1963).

Obr. 4: Benešovský granodiorit (Sembratec, DB 16).

Obr. 6: Žilná aplitická hornina (lom u Dlouhého Pole, DB 10).

Obr. 5: Biotitický porfyr (Dlouhé pole, DB 11).

Obr. 7:Leukogranit (les Peklo u Chotýšan, DB 3).

1.4 Tektonika

Tektonické postižení benešovského granodioritu je značně proměnlivé. Nejvíce je hornina postižena ve východní části území (obr. 8, 9), kterou prochází systém zlomů blanické brázdy ve směru SSV-JJZ. Celé území je porušeno zlomy příčného směru V-Z až SZ-JV. Většina hornin je kataklasticky postižená. Místy byla prokázána i protokláza (Hejtman, 1957). Většina hornin je usměrněná (obr. 10) ve směru JJV-SSZ až S-J (Žežulková, 1971).

Obr. 8: Nejvíce je hornina tektonicky postižena na východě studovaného území. Lom u Bílkovic.

Obr. 10: Rýhování na ploše zlomu, 0,5 km západně od lomu u Bílkovic.

Obr. 9: Deformace granitoidu z lomu u Bílkovic.

2 Metodika

V této práci byla použita pouze vlastní data, naměřená na vybraných skalních výchozech a odkryvech na celém území benešovského granodioritu. Následně získaná data byla zpracována pomocí programu *Spheristat for Windows Version 2.2, MARK 2007* a vyhodnocena.

2.1 Terénní práce

Kompasová měření byla uskutečněna na 29 lokalitách záměrně rozmístěných na celém území benešovského typu. Všechna měření byla provedena na jaře 2009 kompasem typu Freiberg. Mezi lokality patří přírodní výchozy hornin i odkryvy. Množství získaných dat z jedné lokality odpovídá čitelnosti strukturních prvků horniny, a tedy velikosti skalního výchozu, zvětrání povrchu horniny a náročnosti získání objektivních údajů z měření. Nalezený výchoz hornin byl stručně charakterizován a pomocí GPS přístroje byly získány zeměpisné souřadnice. Ke všem lokalitám byla pořízena fotodokumentace a byl odebrán vzorek horniny reprezentující daný výchoz. V případě nejasné magmatické foliace byl odebrán orientovaný vzorek pro možnost dodatečného určení.

2.2 Vyhodnocení naměřených dat

2.2.1 Databáze

Hodnoty získané měřením v terénu byly shromažďovány v prostředí programu *Microsoft Excel*, kde byly rozděleny na naměřená data puklin, zlomů a rýhovaní, minerálních lineací a foliací. Následně byla roztříděná data převedena do formátu *Poznámkového bloku* (txt) pro kompatibilitu s programem *Spheristat for Windows Version 2.2*.

2.2.2 Vyhodnocení kompasových dat programem Spheristat

Všechna kompasová měření byla zpracována programem *Spheristat for Windows Version 2.2.* Pro vyhodnocení dat byla použita Lambertova rovnoplochá azimutální projekce na spodní polokouli. Výsledkem byly bodové (obr. 11), konturové (obr. 12) a synoptické (obr. 13) diagramy. Byla použita konturační metoda Gaussova s vyhlazením K=100, při nízkém počtu měření bylo použito vyhlazení E=Sigma.

Obr. 11: Bodový diagram. Body znázorňují póly ploch puklin.

Obr. 12: Konturový diagram pólů ploch puklin. Hustota bodů je vynesena konturami (Gaussova metoda). Vyhlazení K=100.

Obr. 13: Synoptický diagram. Znázorňuje dva strukturní prvky, oblouky představují zlomové plochy a body ukazují lineace (rýhování na zlomech).

2.2.3 Použití programu MARK 2006

Kompasová data získaná na zlomech byla použita k paleonapjatostní analýze, vyhodnocené programem MARK 2006. Výsledkem zpracování těchto dat jsou informace o paleonapjatostních polích, především o směrech hlavních normálových napětí σ_1 , σ_2 , σ_3 (obr. 14), přibližujících tektonickou situaci, které bylo zkoumané území vystaveno. V případě odlišnosti dat ze zlomových ploch lze usoudit na vícefázovou deformaci hornin (Kernstocková, 2007). Data pak lze separovat a samostatně vyhodnotit. V případě reaktivace starších zlomů vzniká na jejich plochách nové rýhování, které nám pomůže k získání relativního stáří deformačních fází.

Obr. 14: Grafické znázornění Andersonovy teorie. Závislost orientace zlomů, žil a stylolitů na směrech hlavních normálových napětí σ_1 , σ_2 , σ_3 (Kernstocková, 2007).

3 Výsledky strukturní analýzy

Získávání dat a jejich zpracování bylo zaměřeno na přiblížení tektonické stavby hornin na území benešovského typu. Byla vyhodnocena lineární i planární stavba hornin a jejich rozpukanost. Zpracováno bylo i měření na zlomech, a tedy kompasová data ploch zlomů a jejich rýhování.

3.1 Orientační analýza

Výsledkem měření orientace a sklonu puklin bylo zjištění tří maxim s podobnými hodnotami velikosti sklonu (obr. 15). Nejčetnější skupina puklin ve směru SZ-JV se strmě uklání k jihozápadu. Další skupina puklin orientována ve směru SV-JZ je téměř vertikální, mírně uklánějící se k severozápadu. Poslední skupina puklin s orientací V-Z se strmě uklání k jihu i severu.

Obr. 15: Konturový diagram pólů puklin Obr. 16: Konturový diagram lineací v hornině (Gaussova konturační metoda, použité vyhlazení (Gaussova konturační metoda, použité vyhlazení K=100). E=Sigma).

Lineace hornin vykazuje dvě zřetelná maxima (obr. 16). Většina lineací se mírně uklání k jihu se sklonem kolem 30°. Druhá skupina lineací se uklání k SZZ se sklonem kolem 35°. Stejně jako lineace i foliace vykazuje dvě maxima. Většina foliací má směr S-J a téměř vertikální sklon. Druhé maximum foliací se sklání pod úhlem 65° k severu.

Obr. 17: Konturový diagram pólů foliací s vynesenými charakteristickými směry a plochami (Gaussova konturační metoda, použité vyhlazení E=Sigma).

Obr. 18: Mapa strukturních prvků s podkladem geologické mapy (upraveno dle geologické mapy ČR, list 13-33 Benešov; Kodym, 1997).

3.2 Paleonapjatostní analýza

Výsledkem paleonapjatostní analýzy je zjištění polyfázově reaktivovaných zlomů na zkoumaném území. Po separaci souborů dat naměřených na zlomech byly vyhodnoceny dvě skupiny zlomů patřících k různým napjatostem (obr. 19). V prvním případě (fáze A) se jedná o horizontální posuny (σ_2 je vertikální) a v druhém případě (fáze B) o sklonové posuny (σ_1 nebo σ_3 je vertikální). Vzhledem ke špatné čitelnosti kinematických indikátorů na plochách zlomů nebyl určen smysl pohybu hornin, a tedy nelze rozlišit σ_1 a σ_3 , jejich směry tedy mohou být prohozeny.

Obr. 19: Hustotní diagramy směrů hlavních normálových napětí pro jednotlivé separované fáze ze zlomů na studovaném území.

4 Diskuse a závěr

Benešovský granodiorit nebyl dosud podrobně zkoumán z hlediska tektonických struktur, a proto zatím nelze korelovat většinu naměřených dat. Celá oblast je především po tektonické a petrografické stránce velmi složitá. Velké množství žilných hornin, uzavřenin okolních typů hornin a téměř všudypřítomné tektonické postižení poukazuje na nutnost rozsáhlejšího průzkumu pro učinění objektivních názorů na vznik této geologické stavby.

Tato práce obsahuje soubor tektonických údajů naměřených na 29 vyhledaných výchozech a odkryvech na studovaném území. K vyhodnocení naměřených dat bylo použito strukturně-geologických programů *Spheristat for Windows Version 2.2* a *MARK 2006*.

Vyhodnocení orientační analýzy poukazuje na vícefázovou deformaci a nejednotnost území z hlediska strukturně geologických prvků. Vyhodnocením foliací byla zjištěna dvě maxima. Z důvodu nízkého počtu měření není doposud možné jednoznačně vysvětlit příčinu vzniku dvou typů foliací, a tedy, zdali se jedná o vrásu nebo o dvě generace foliací. Většina naměřených lineací se mírně uklání k jihu až k SZ. Různorodost lineací poukazuje na komplikovanou geologickou stavbu a její vývoj.

Obr. 20: Dva typy rýhování (horizontální a strmě ukloněné) na ploše zlomu (lom u Třebešic, DB 14).

Z křehkých poruch se zde vyskytují tři skupiny vertikálních puklin směrů SZ-JV, SV-JZ a V-Z. Taktéž byly měřeny plochy zlomů a jejich rýhování. Většina rýhování je horizontální, což vypovídá o převaze horizontálních posunů na tomto území. Pohyb podle zlomových ploch byl numericky ověřen programem *MARK 2006*, který určil normálové napětí σ_2 (fáze A) jako vertikální, což potvrdilo horizontální posuny. V druhém případě (fáze B) je vertikální σ_1 (σ_3) a jedná se tedy o sklonové posuny. Výsledky po separaci dat opět poukázaly na vícefázovou deformaci území, která byla v terénu ověřena nálezem dvou typů rýhování (obr. 20) na zlomových plochách. Otázkou stále zůstává smysl pohybu na zlomech, nelze tedy rozlišit σ_1 a σ_3 v obou případech zjištěných fází deformace.

5 Použitá literatura

- Bárta, O. (2009): Přehled výzkumů benešovského typu středočeského plutonu. MS, rešerše k bakalářské práci. Přírodovědecká fakulta Masarykovy univerzity. Brno.
- Demek, J., ed. (1987): Zeměpisný lexikon ČSR. Československá akademie věd. Praha.
- Hejtman, B. (1957): Systematická petrografie vyvřelých hornin. Československá akademie věd. Praha.
- Holub, F. V., Machart, J. & Manová, M. (1997): Středočeský plutonický komplex: geologie, chemické složení a genetická interpretace. — Sborník geologických věd, Ložisková geologie-mineralogie, **31**, 27–50, Praha.
- Müller, V., *ed.* (2002): Vysvětlivky k souboru geologických a ekologických účelových map přírodních zdrojů v měřítku 1:50 000. Česká geologická služba. Praha.
- Kernstocková, M. (2007): Paleonapjatostní analýza heterogenních souborů dat. MS, bakalářská práce. Přírodovědecká fakulta Masarykovy univerzity. Brno.
- Kodym, O. ml. (1963): Kontaktní působení plutonu. *In*: Kodym, O. ml. (*red.*): Vysvětlivky k přehledné geologické mapě ČSSR 1:200000 M-33-XXI Tábor, *111–113*. Praha.
- Kodym, O. ml., *red.* (1997): Geologická mapa ČR list 13-33 Benešov. Český geologický ústav. Praha.
- Mísař, Z., Dudek, A., Havlena, V. & Weiss, J. (1983): Geologie ČSSR I. Český masív. Státní pedagogické nakladatelství. Praha.
- Žežulková, V. (1963): Zpráva o geologickém mapování v severní části blanické brázdy. Zprávy o geologických výzkumech v roce 1962, *52–53*. Praha.
- Žežulková, V. (1971): Ke genezi benešovského granodioritu. Sborník geologických věd, Geologie, **21**, *37–75*. Praha.

6 Přílohy

6.1 Seznam dokumentačních bodů

- 1. Kalamajka, GPS 49°43′54,93′′ S, 14°50′14,78′′ V, skalní výchoz 10 x 6m, granodiorit.
- 2. Bílkovice, GPS 49°45'32,36'' S, 14°51'10,69''V, lom, granodiorit.
- 3. Peklo, GPS 49° 45'33,62'' S, 14°48'57,56'' V, výchoz 6 x 2m, leukogranit.
- 4. Peklo, GPS 49° 45'28,74'' S, 14°49'16,08'' V, skalní výchoz 2 x 1m, granodiorit.
- 5. Lhota Veselka pila, GPS 49° 43'31,54'' S, 14°47'58,37'' V, skalní výchoz 20 x 2m, jemnozrnný granodiorit.
- 6. Lhota Veselka chaty, GPS 49° 43'35,14'' S, 14°48'16,84'' V, aplitická žilná hornina.
- 7. Chaloupky, GPS 49° 43'40,08'' S, 14°48'34,41'' V, skalní výchoz 30x10 m, granodiorit.
- 8. Chaloupky, GPS 49° 43'28,37' S, 14°48'21,65' V, aplitická žilná hornina s muskovitem.
- 9. Dolní Podhájí, GPS 49°45′10,69′′ S, 14°43′06,80′′ V, lom 20x20m, jemnozrnný načervenalý granit, křemenné a aplitické žíly, středně zrnný biotitický granitoid.
- 10. Dlouhé Pole, GPS 49°47′10,36′′ S, 14°44′27,91′′ V, lom 30x20m, aplitické horniny.
- 11. Dlouhé Pole, GPS 49°46′55,85′′ S, 14°44′35,79′′ V, roztroušené výchozy 1x1m, biotitický jemnozrnný granitoid.
- 12. Okrouhlice, GPS 49°47′15,98′′ S, 14°44′44,22′′ V, odkryv u silnice 2x2m, šedý drobně okatý ? drcený granitoid.
- 13. Střížkov, GPS 49°47′06,87′′ S, 14°46′32,81′′ V, odkryv u silnice 20x3m, biotitický granitoid.
- 14. Třebešice, GPS 49°47′00,96′′ S, 14°49′24,88′′ V, lom 20x8m, tmavě šedý granitoid.
- 15. Čeňovice, GPS 49°47′10,36′′ S, 14°44′27,91′′ V, drobné odkryvy u silnice, jemnozrnný biotitický granitoid.
- 16. Sembratec, GPS 49°48'41,83'' S, 14°46'37,87'' V, odkryv u silnice 2x1m, granodiorit, žíly křemene.
- 17. Petroupim, GPS 49°48′48,32′′ S, 14°45′59,87′′ V, výchoz u potoka, 2x2m, granitoid.
- 18. Soběhrdy, GPS 49°49′27,63′′ S, 14°44′48,16′′ V, lom 10x3m, biotitický jemnozrnný granit.
- 19. Kozmice, GPS 49°49′45,56′′ S, 14°46′31,97′′ V, lom 15x8m, aplitické žilné horniny a křemenné žíly.
- 20. Klokočná, GPS 49°50'34,05'' S, 14°46'02,99'' V, odkryv 10x2m, silně zvětralý granitoid.
- 21. Vranov, GPS 49°51′25,39′′ S, 14°47′01,02′′ V, odkryv u silnice, 8x3m, drobnozrná biotitická pararula.
- 22. Vranov, GPS 49°51'33,80'' S, 14°47'06,11'' V, výchoz u silnice, 10x5m, metabazit.
- 23. Komorní Hrádek, GPS 49°52'05,22'' S, 14°48'12,48'' V, 12x4m, granodiorit.
- 24. Bělčický potok, GPS 49°51'43,62'' S, 14°48'33,60'' V, výchoz 1x1m, porfyrit.
- 25. Bělčický potok, GPS 49°51'30,92' S, 14°48'52,13' V, roztroušené skalní výchozy 50x10m, leukokrátní granit s muskovitem.
- 26. Bělčický potok, GPS 49°51′04,32′′ S, 14°44′27,91′′ V, granodiorit.
- 27. Vestec, GPS 49°51'26,14'' S, 14°50'00,23'' V, lom 10x 4m, tmavý drcený granitoid.
- 28. Teplýšovice, GPS 49°48'33,51' S, 14°49'27,45'', roztroušené skalní výchozy 2x2m, biotitický granitoid s vyrostlicemi křemene.
- 29. Divišov, GPS 49°47′50,85′′ S, 14°52′08,09′′, odkryv 15x3m, ohlazy, šedý granitoid.

6.2 Mapa dokumentačních bodů

Upraveno dle geologické mapy ČR, list 13-33 Benešov (Kodym et al., 1997).

6.3 Orientace strukturních prvků

Kompasové údaje určují velikost sklonu a jeho azimut, hodnoty jsou ve stupních. S – foliace, L – lineace, P – puklina, Z – plocha zlomu, R – rýhování na zlomu, DB – dokumentační bod.

	Zlomy (Z)	Rýhování na zlomech (R)		
DB	azimut	azimut	skĺon	
DB 2	245	45	308	20
DB 2	258	70	245	60
DB 5	146	84	236	10
DB 5	358	88	264	10
DB 5	132	85	224	10
DB 7	256	86	349	5
DB 8	290	25	172	2
DB 9	168	70	82	15
DB 9	144	75	55	10
DB 14	22	80	90	5
DB 14	22	80	303	47
DB 14	35	85	180	10
DB 19	325	74	42	21
DB 22	100	50	18	12
DB 25	300	80	210	60
DB 28	264	78	186	5

Lineace (L)			Foliace (S)		
DB	směr	sklon	DB	směr	sklon
DB 2	314	38	DB 2	68	40
DB 2	292	20	DB 4	255	60
DB 3	166	15	DB 6	180	20
DB 4	172	30	DB 7	4	32
DB 6	189	8	DB 7	306	36
DB 7	212	42	DB 8	26	25
DB 7	18	3	DB 10	90	88
DB 8	356	28	DB 11	273	78
DB 10	178	34	DB 11	140	70
DB 11	120	85	DB 14	28	68
DB 11	212	28	DB 19	14	60
DB 14	174	15	DB 19	346	50
DB 14	170	30	DB 20	8	26
DB 15	237	40	DB 21	102	75
DB 15	282	25	DB 22	273	72
DB 17	256	40	DB 23	62	60
DB 19	16	65	DB 24	108	50
DB 19	292	40	DB 25	110	70
DB 20	71	15			
DB 21	22	35			
DB 22	350	45			
DB 23	36	43			
DB 24	72	60			
DB 27	302	40			

Pukliny (P)					
DB	směr	sklon	DB	směr	sklon
DB 1	284	88	DB 13	246	63
DB 1	180	80	DB 14	70	75
DB 1	40	55	DB 14	159	60
DB 1	32	85	DB 14	218	88
DB 1	106	50	DB 14	25	76
DB 2	225	86	DB 14	269	88
DB 2	239	80	DB 16	342	85
DB 2	230	80	DB 17	274	65
DB 2	260	65	DB 18	240	82
DB 2	75	76	DB 18	157	56
DB 2	186	56	DB 19	295	76
DB 2	356	53	DB 19	168	45
DB 2	120	88	DB 19	22	70
DB 2	250	73	DB 19	299	82
DB 3	256	70	DB 19	215	77
DB 4	6	85	DB 19	215	66
DB 5	138	66	DB 20	292	80
DB 5	138	86	DB 20	346	70
DB 5	4	85	DB 21	306	85
DB 5	180	80	DB 21	38	80
DB 5	136	85	DB 22	360	85
DB 5	196	75	DB 22	273	78
DB 5	92	65	DB 23	308	45
DB 6	117	40	DB 23	314	85
DB 6	171	88	DB 24	22	82
DB 6	105	57	DB 24	258	30
DB 6	107	55	DB 25	130	57
DB 7	250	80	DB 25	8	70
DB 7	289	89	DB 26	31	28
DB 7	250	75	DB 26	212	78
DB 7	226	89	DB 26	314	72
DB 7	124	70	DB 27	36	67
DB 8	102	80	DB 27	300	82
DB 8	215	66	DB 28	242	75
DB 9	174	85	DB 28	222	62
DB 9	122	75	DB 28	350	70
DB 9	24	88	DB 28	0	75
DB 10	312	88	DB 27	300	82
DB 10	230	65	DB 28	242	75
DB 11	34	80	DB 28	222	62
DB 11	162	68	DB 28	350	70
DB 11	190	75	DB 28	0	75
DB 11	256	75	DB 28	222	62
DB 11	130	70	DB 28	350	70
DB 12	304	83	DB 28	0	75
DB 12	240	80	DB 28	0	75
DB 13	126	50	DB 28	0	75