Adventures in Supersingularland: A Look at Supersingular Isogeny Graphs

Jana Sotáková

QuSoft / UvA

November 15, 2019, Amsterdam

Isogenies in post-quantum cryptography

Why should we care about isogenies?
We can do post-quantum crypto with isogenies:

1. SIKE (KEM, in the NIST competition),
2. CSIDH (key exchange),
3. signatures (SeaSign, CSI-FiSh),
4. other constructions (VDFs, threshold schemes, ...?)

The time to understand isogenies is now

About elliptic curves

Elliptic curves

They are given by an equation

$$
y^{2}=x^{3}+a x+b \quad \text { for some } a, b \text { such that } 4 a^{3}+27 b^{2} \neq 0
$$

together with a point at infinity ∞.
In crypto
Usually, we ask that $a, b \in \mathbb{F}_{p}(=\mathbb{Z} / p$ finite field with p elements) And that also $x, y \in \mathbb{F}_{p}$: clearly only finitely many solutions.

Fact
We can count the number of solutions $\# E\left(\mathbb{F}_{p}\right)$ efficiently.

Group law

Group law

1. add two points: draw a line through them, flip the third intersection point over the x-axis,
2. double a point: draw a tangent, flip the intersection point over the x-axis.

$P+Q+R=0$

$$
P+Q+Q=0
$$

$$
P+Q+0=0
$$

$$
P+P+0=0
$$

We want to understand $E[2]=\{P \in E:[2] P=\infty\}$.
Inverse of a point
If $P=(x, y)$ then $-P=(x,-y)$.
Hence points of order 2 satisfy $y=0$.

Points of order 2

Need to find points for which $y=0$.
$E: y^{2}=x^{3}-x$
Factor $x^{3}-x=x \cdot(x-1) \cdot(x+1)$ so points of order 2 are:

$$
P=(0,0), Q=(1,0), R=(-1,0)
$$

$E: y^{2}=x^{3}-2 x$
Factor $x^{3}-4 x=x\left(x^{2}-2\right)$. We still have 3 points of order 2 :

$$
P=(0,0), Q=(\sqrt{2}, 0), R=(-\sqrt{2}, 0)
$$

Fact
For any N, we have

$$
E[N]=\{P:[N] P=\infty\} \cong \mathbb{Z} / N \times \mathbb{Z} / N
$$

Isogenies

Algebraic formula for multiplication by 2 :
Multiplication by [2] on the elliptic curve $y^{2}=x^{3}-x$ is given by:

$$
\begin{aligned}
P & \mapsto[2] P \\
(x, y) & \mapsto\left(\frac{x^{4}+2 x^{2}+1}{4\left(x^{3}-x\right)}, y \cdot \frac{8 x^{6}-40 x^{4}-40 x^{2}+8}{64\left(x^{3}-x\right)^{2}}\right)
\end{aligned}
$$

Not defined at ∞ and points where $x^{3}-x=0$:

$$
\begin{gathered}
\infty, P, Q, R \mapsto \infty \\
\operatorname{ker}[2]=\{\infty, P, Q, R\}=E[2]
\end{gathered}
$$

Properties:

1. group homomorphism,
2. given by algebraic formulas,
3. has a finite kernel.

Isogenies: a definition

Definition of isogenies

A map $\phi: E \rightarrow E^{\prime}$ of elliptic curves is an isogeny if:

- it is given by rational functions in the coordinates x, y on E,
- preserves the group law of elliptic curves,
- has a finite kernel (which is always a subgroup). In particular, only finitely many points map to ∞.
The degree of the isogeny ϕ is defined to be $\# \operatorname{ker} \phi$.
Existence of isogenies
For any finite subgroup H, there exists an isogeny $\phi: E \rightarrow E^{\prime}$ with kernel exactly H :

$$
E \rightarrow E^{\prime}=: E / H
$$

and there are formulas for it.

Isogenies have a factoring property

Isogenies have a universal property:
Let $\phi: E \rightarrow E^{\prime}$ be an isogeny. If $P \in \operatorname{ker} \phi$, then there exist isogenies ψ, φ such that $\operatorname{ker} \psi=\langle P\rangle$ and

$$
\begin{aligned}
\phi & =\varphi \circ \psi \\
\operatorname{deg} \phi & =\operatorname{deg} \varphi \cdot \operatorname{deg} \psi
\end{aligned}
$$

Isogenies have a factoring property

Isogenies have a universal property:
Let $\phi: E \rightarrow E^{\prime}$ be an isogeny. If $P \in \operatorname{ker} \phi$, then there exist isogenies ψ, φ such that ker $\psi=\langle P\rangle$ and

$$
\phi=\varphi \circ \psi
$$

$E: y^{2}=x^{3}-x$ and $\phi=[2]$ multiplication by 2
Then $(0,0) \in \operatorname{ker}[2]=\{\infty,(0,0),(1,0),(-1,0)\}$ and

One can check that $\hat{\psi} \circ \psi=[2]$ by composing the formulae.

Detour on the j-invariant

The factorization is unique up to composing with isomorphisms of elliptic curves.
For an elliptic curve

$$
E: y^{2}=x^{3}+a x+b
$$

define j-invariant $j(E)=1728 \cdot \frac{4 a^{3}}{4 a^{3}+27 b^{2}} \in \mathbb{F}_{p^{2}}$.
$E: y^{2}=x^{3}-x$
has $b=0$ and so $j(E)=1728$.
j-invariant
is an isomorphism invariant: if E and E^{\prime} can be obtained from each other by a change of coordinates then

$$
j(E)=j\left(E^{\prime}\right)
$$

Small recap

So far

1. There are always 3 isogenies of degree 2,
2. we can compute them efficiently using Vélu's formulas.

Points of larger degree

Let P be a point on $E\left(\mathbb{F}_{p}\right)$ of order N, assume $N=2^{n}$.

1. There is an isogeny of degree 2^{n} with $\operatorname{ker} \phi=\langle P\rangle$:

$$
\phi: E \rightarrow E^{\prime}=E /\langle P\rangle
$$

2. But Velu's formulas are no longer efficient.
3. but $Q=\left[2^{n-1}\right] P$ has order 2 and we can decompose:

Isogeny-based Diffie-Hellman

set-up

Choose an elliptic curve E defined over some \mathbb{F}_{q} that satisfies that $E\left[2^{r}\right], E\left[3^{s}\right] \subset E\left(\mathbb{F}_{q}\right)$.

1. Alice chooses a secret $P \in E\left[2^{r}\right]$ and computes the isogeny $\phi_{A}: E \rightarrow E /\langle P\rangle=: E_{A}$
2. Bob chooses a secret $Q \in E\left[3^{s}\right]$ and computes $\phi_{B}: E \rightarrow E /\langle Q\rangle=: E_{B}$
3. Alice and Bob exchange E_{A}, E_{B} (+ a bit more of extra information)
4. They both are able to compute $j\left(E_{A B}\right)=j(E /\langle P, Q\rangle)$.

Finally, isogeny graphs

Alice's secret is an isogeny $\phi_{A}: E \rightarrow E /\langle P\rangle$ of degree 2^{r}. We saw we can decompose this into a sequence of a isogenies of degree 2.
Definiton of an ℓ-isogeny graph
Let \mathbb{F}_{q} be a finite field. Let S be a set of isomorphism classes (or j-invariants) of elliptic curves defined over \mathbb{F}_{q}. We define the following graph $G_{\ell}\left(\mathbb{F}_{q}\right)$:

- the set of vertices is S,
- there is an edge between $j, j^{\prime} \in S$ if and only if there is a ℓ-isogeny between curves with j-invariants j and j^{\prime}.

For Alice's secret to be safe
it needs to be difficult to find paths between the vertices $j(E)$ and $j\left(E_{A}\right)$ in the graph $G_{2}\left(\mathbb{F}_{q}\right)$.
Same for Bob in $G_{3}\left(\mathbb{F}_{q}\right)$.

Supersingular elliptic curves

We choose to use supersingular elliptic curves:

1. all supersingular elliptic curves have j-invariant in $\mathbb{F}_{p^{2}}$, and hence have equations over $\mathbb{F}_{p^{2}}$,
2. all supersingular elliptic curves have $E\left(\mathbb{F}_{p^{2}}\right) \cong \mathbb{Z} /(p+1) \times \mathbb{Z} /(p+1)$ so if we choose

$$
p=2^{r} \cdot 3^{s}-1
$$

we obtain $E\left[2^{r}\right]$ and $E\left[3^{s}\right]$ already defined over $\mathbb{F}_{p^{2}}$
3. so there are $3 \cdot 2^{r-1}$ different choices for Alice and $4 \cdot 3^{s-1}$ different choices for Bob.
4. moreover, path finding seems to be hard.

Supersingular isogeny graphs

Supersingular ℓ-isogeny graphs $G_{\ell}\left(\mathbb{F}_{p^{2}}\right)$
Vertices: all supersingular j-invariants.

$$
p=1223 \text { and } \ell=2
$$

$$
p=827 \text { and } \ell=3
$$

Examples and properties

Properties

1. exponentially-large graphs ($\approx p / 12$ vertices)
2. connected, $\ell+1$-regular graphs (except for at most 2 vertices),
3. short diameters: $d=\Theta(\log (p))$,
4. expander graphs: taking random walks of length $\log (p)$ is almost as good as uniform sampling of vertices
5. path finding is hard (exponentially hard both classically and quantumly)

Path finding

For $p=1223$ and $\ell=2$, shortest path between two random vertices:

The Spine of $G_{\ell}\left(\mathbb{F}_{p^{2}}\right)$

Path finding is not hard for all pairs of vertices
Between vertices labelled with j-invariants $j \in \mathbb{F}_{p}$, path finding is easier (subexponential).

Definition
The spine \mathcal{S} is the induced subgraph with vertices

$$
\left\{j: j \in \mathbb{F}_{p}\right\}
$$

It is a subgraph of size approximately \sqrt{p}.

How do these vertices sit inside the graph?
For crypto, we usually assume that they are randomly distributed throughout the graph.
$p=1103$, random
subgraph of the expected size

$p=1103$, the subgraph of \mathbb{F}_{p} vertices

Examples of the spine

The spine for $\ell=3$

$p=167$

$p=179$

$$
p=227
$$

Visible structure
In the last picture, we see the nice cycle with 5 vertices and another component also with 5 vertices.

The CSIDH-land: the graph $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$

Fix ℓ a small prime and p a large prime.
Definition of $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$

1. vertices: elliptic curves defined over \mathbb{F}_{p}, up to \mathbb{F}_{p}-isomorphism,
2. edges: ℓ-isogenies defined over \mathbb{F}_{p}.

j-invariants

is not an \mathbb{F}_{p}-isomorphism invariant, every j-invariant will be there twice! (\#quadratictwists)

Example with $p=179$ and $\ell=3$
labels $=j$-invariants of the curves

Quick road to the CSIDH

Example with $p=179$ and $\ell=3$
labels $=j$-invariants of the curves

1. Any ℓ-isogeny graph $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$ for $\ell>2$ will be a union of cycles,
2. their sizes can be explained by class-group actions of $\mathbb{Z}[\sqrt{-p}]$ or $\mathbb{Z}\left[\frac{1+\sqrt{-p}}{2}\right]$,
3. this abelian group actions makes navigation between vertices of these graphs subexponential
4. CSIDH takes a union of the graphs for several ℓ and argues that subexponential does not mean practical.

How to pass from $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$ to the Spine \mathcal{S}

Two-step process

1. Identify vertices with the same j-invariant,
2. add edges that were not defined over \mathbb{F}_{p}.

For $\ell=3$ and $p=101$

Lemma
Whenever we add an edge that does not correspond to an isogeny defined over \mathbb{F}_{p}, we get a double edge.

Neighbours

$$
\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right) \text { for } p=179, \ell=3
$$

The Neighbour Lemma
Whenever the two vertices in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$ with j-invariant a do not have the same neighbours,

$$
a=1728 .
$$

Moreover, the two neighbours of one vertex with $j=1728$

For $p=179$, we have
$1728 \equiv 117$ and we see the two double edges from 1728.
 have the same j-invariant.

Main theorems

Let p be a prime such that the primes above ℓ in $(-4 p)$ have odd order (i.e., all the connected components are cycles containing an odd number of vertices).
Theorem for $\ell>2$
In the graph $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$:

1. for any connected component V of $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$ that does not contain 1728 , there exists a 'twist' component W such that if we consider V, W as cycles labelled by the j-invariants, V and W become identical,

For $p=179$ and $\ell=3$, we have $1728 \equiv 117$.

Main theorems, continued

2. the connected components of 1728 are symmetric: the vertices farthest away from 1728 are two curves with the same j-invariants connected by an ℓ-isogeny.

This is the only arrangement in which:

- two vertices with the same j-invariant share an edge,
- two components include vertices with the same j-invariant without being identical as in (1.)

For $p=179$ and $\ell=3$, we have $1728 \equiv 117$.

Main theorems, continued a bit longer

When we pass to the spine \mathcal{S}, the following happens:

1. the two components containing 1728 first collapse into simple paths with 1728 at one end and with a loop at opposite ends,
2. these two looped-paths are then attached at the vertex 1728 ,
3. all other components get identified with their twist twins and form perfect cycles,
4. fewer than $4 \ell^{2}$ new edges are added, and the newly-added edges always come in pairs.

2-Isogenies: the graph $\mathcal{G}_{2}\left(\mathbb{F}_{p}\right)$

It depends on $p \bmod 8$:

1. $p \equiv 1 \bmod 4:$ bunch of edges

2. $p \equiv 3 \bmod 8:$ claws

Example for $\ell=2$ and $p=431$

Example

The graph above is $\mathcal{G}_{2}\left(\mathbb{F}_{p}\right)$ and the graph below is the spine in $\mathcal{G}_{2}\left(\overline{\mathbb{F}}_{p}\right)$.

We have
$1728 \bmod 431=4$
$8000 \bmod 431=242$
and 189 and 150 are the two roots of the polynomial $\left(X^{2}+\right.$ 191025 X - 121287375) that we saw as a factor of $\operatorname{Res}_{2}(X)$.

Summary of what the Spine looks like for $\ell=2$

The \mathbb{F}_{p}-subgraph $\mathcal{S} \subset \mathcal{G}_{2}\left(\overline{\mathbb{F}}_{p}\right)$:

1. for $p \equiv 1 \bmod 4$, we see single edges, with a possible vertex with a loop at $j=8000$ and one possible component of size 4 ,
2. for $p \equiv 3 \bmod 8$, we see claws, with one claw collapsed to an edge ($j=1728$), and a possible pair of claws joined by a double edge,
3. for $p \equiv 7 \bmod 8$, we see volcanoes, one of the volcanoes will be collapsed and possibly two volcanoes will get attached by a double edge to form a large component.

Adventures in Supersingularland

Thank you for your attention!

For more, go to: eprint 2019/1056

