
Adventures in Supersingularland:
A Look at Supersingular Isogeny Graphs

Jana Sotáková
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Isogenies in post-quantum cryptography

Why should we care about isogenies?

We can do post-quantum crypto with isogenies:

1. SIKE (KEM, in the NIST competition),

2. CSIDH (key exchange),

3. signatures (SeaSign, CSI-FiSh),

4. other constructions (VDFs, threshold schemes, ...?)

The time to understand isogenies is now



About elliptic curves

Elliptic curves

They are given by an equation

y2 = x3 + ax + b for some a, b such that 4a3 + 27b2 6= 0

together with a point at infinity ∞.

In crypto

Usually, we ask that a, b ∈ Fp(= Z/p finite field with p elements)
And that also x , y ∈ Fp: clearly only finitely many solutions.

Fact
We can count the number of solutions #E (Fp) efficiently.



Group law

Group law

1. add two points: draw a line through them, flip the third
intersection point over the x-axis,

2. double a point: draw a tangent, flip the intersection point
over the x-axis.

We want to understand E [2] = {P ∈ E : [2]P =∞}.

Inverse of a point

If P = (x , y) then −P = (x ,−y).
Hence points of order 2 satisfy y = 0.



Points of order 2
Need to find points for which y = 0.

E : y 2 = x3 − x

Factor x3 − x = x · (x − 1) · (x + 1) so points of order 2 are:

P = (0, 0), Q = (1, 0), R = (−1, 0)

E : y 2 = x3 − 2x

Factor x3 − 4x = x(x2 − 2). We still have 3 points of order 2 :

P = (0, 0), Q = (
√

2, 0), R = (−
√

2, 0).

Fact
For any N, we have

E [N] = {P : [N]P =∞} ∼= Z/N × Z/N



Isogenies

Algebraic formula for multiplication by 2:

Multiplication by [2] on the elliptic curve y2 = x3 − x is given by:

P 7→ [2]P

(x , y) 7→
(
x4 + 2x2 + 1

4(x3 − x)
, y · 8x6 − 40x4 − 40x2 + 8

64(x3 − x)2

)
Not defined at ∞ and points where x3 − x = 0:

∞,P,Q,R 7→ ∞
ker[2] = {∞,P,Q,R} = E [2]

Properties:

1. group homomorphism,

2. given by algebraic formulas,

3. has a finite kernel.



Isogenies: a definition

Definition of isogenies

A map φ : E → E ′ of elliptic curves is an isogeny if:

I it is given by rational functions in the coordinates x , y on E ,

I preserves the group law of elliptic curves,

I has a finite kernel (which is always a subgroup). In particular,
only finitely many points map to ∞.

The degree of the isogeny φ is defined to be # ker φ.

Existence of isogenies

For any finite subgroup H, there exists an isogeny φ : E → E ′ with
kernel exactly H:

E → E ′ =: E/H

and there are formulas for it.



Isogenies have a factoring property

Isogenies have a universal property:

Let φ : E → E ′ be an isogeny. If P ∈ ker φ, then there exist
isogenies ψ,ϕ such that kerψ = 〈P〉 and

φ = ϕ ◦ ψ
deg φ = degϕ · degψ

E
φ //

ψ

��

E ′

Ẽ

ϕ
??



Isogenies have a factoring property

Isogenies have a universal property:

Let φ : E → E ′ be an isogeny. If P ∈ ker φ, then there exist
isogenies ψ,ϕ such that kerψ = 〈P〉 and

φ = ϕ ◦ ψ

E : y 2 = x3 − x and φ = [2] multiplication by 2

Then (0, 0) ∈ ker[2] = {∞, (0, 0), (1, 0), (−1, 0)} and

E

(
x4+2x2+1
4(x3−x)

, 8x
6y−40x4y−40x2y+8y

64(x6−2x4+x2)

)
//

(
x2−1

x
, x

2y+y

x2

)ψ

**

E

y2 = x3 + 4x

ψ̂(
1
4 x

2+1

x
,
1
8 x

2y− 1
2 y

x2

)
44

One can check that ψ̂ ◦ ψ = [2] by composing the formulae.



Detour on the j-invariant

The factorization is unique up to composing with isomorphisms of
elliptic curves.
For an elliptic curve

E : y2 = x3 + ax + b

define j-invariant j(E ) = 1728 · 4a3

4a3+27b2
∈ Fp2 .

E : y 2 = x3 − x

has b = 0 and so j(E ) = 1728.

j-invariant

is an isomorphism invariant: if E and E ′ can be obtained from
each other by a change of coordinates then

j(E ) = j(E ′).



Small recap

So far

1. There are always 3 isogenies of degree 2,

2. we can compute them efficiently using Vélu’s formulas.

Points of larger degree

Let P be a point on E (Fp) of order N, assume N = 2n.

1. There is an isogeny of degree 2n with ker φ = 〈P〉:

φ : E → E ′ = E/〈P〉

2. But Velu’s formulas are no longer efficient.

3. but Q = [2n−1]P has order 2 and we can decompose:

E
φ

deg=2n //

ψ

deg=2 ""

E/〈P〉

E/〈Q〉
deg=2n−1

::



Isogeny-based Diffie-Hellman

set-up

Choose an elliptic curve E defined over some Fq that satisfies that
E [2r ],E [3s ] ⊂ E (Fq).

1. Alice chooses a secret P ∈ E [2r ] and computes the isogeny
φA : E → E/〈P〉 =: EA

2. Bob chooses a secret Q ∈ E [3s ] and computes
φB : E → E/〈Q〉 =: EB

3. Alice and Bob exchange EA,EB (+ a bit more of extra
information)

4. They both are able to compute j(EAB) = j(E/〈P,Q〉).

E
Alice using her secret //

Bob
��

EA

Alice using Bob’s public key
��

EB Bob
// j(EAB) (← shared key)



Finally, isogeny graphs

Alice’s secret is an isogeny φA : E → E/〈P〉 of degree 2r . We saw
we can decompose this into a sequence of a isogenies of degree 2.

Definiton of an `-isogeny graph

Let Fq be a finite field. Let S be a set of isomorphism classes (or
j-invariants) of elliptic curves defined over Fq. We define the
following graph G`(Fq):

I the set of vertices is S ,

I there is an edge between j , j ′ ∈ S if and only if there is a
`-isogeny between curves with j-invariants j and j ′.

For Alice’s secret to be safe
it needs to be difficult to find paths between the vertices j(E ) and
j(EA) in the graph G2(Fq).

Same for Bob in G3(Fq).



Supersingular elliptic curves

We choose to use supersingular elliptic curves:

1. all supersingular elliptic curves have j-invariant in Fp2 , and
hence have equations over Fp2 ,

2. all supersingular elliptic curves have
E (Fp2) ∼= Z/(p + 1)× Z/(p + 1) so if we choose

p = 2r · 3s − 1,

we obtain E [2r ] and E [3s ] already defined over Fp2

3. so there are 3 · 2r−1 different choices for Alice and 4 · 3s−1
different choices for Bob.

4. moreover, path finding seems to be hard.



Supersingular isogeny graphs

Supersingular `-isogeny graphs G`(Fp2)

Vertices: all supersingular j-invariants.

p = 1223 and ` = 2 p = 827 and ` = 3



Examples and properties

Properties

1. exponentially-large graphs (≈ p/12 vertices)

2. connected, `+ 1-regular graphs (except for at most 2 vertices),

3. short diameters: d = Θ(log(p)),

4. expander graphs: taking random walks of length log(p) is
almost as good as uniform sampling of vertices

5. path finding is hard (exponentially hard both classically and
quantumly)



Path finding

For p = 1223 and ` = 2, shortest path between two random
vertices:



The Spine of G`(Fp2)

Path finding is not hard for all pairs of vertices

Between vertices labelled with j-invariants j ∈ Fp, path finding is
easier (subexponential).

Definition
The spine S is the induced subgraph with vertices

{j : j ∈ Fp}

It is a subgraph of size approximately
√
p.



How do these vertices sit inside the graph?

For crypto, we usually assume that they are randomly distributed
throughout the graph.

p = 1103, random
subgraph of the
expected size

p = 1103, the subgraph
of Fp vertices



Examples of the spine

The spine for ` = 3

p = 167
p = 179

p = 227

Visible structure
In the last picture, we see the nice cycle with 5 vertices and
another component also with 5 vertices.



The CSIDH-land: the graph G`(Fp)
Fix ` a small prime and p a large prime.

Definition of G`(Fp)

1. vertices: elliptic curves defined over Fp, up to Fp-isomorphism,

2. edges: `-isogenies defined over Fp.

j-invariants

is not an Fp-isomorphism invariant, every j-invariant will be there
twice! (#quadratictwists)

Example with p = 179 and ` = 3

labels = j-invariants of the curves



Quick road to the CSIDH

Example with p = 179 and ` = 3

labels = j-invariants of the curves

1. Any `-isogeny graph G`(Fp) for ` > 2 will be a union of cycles,

2. their sizes can be explained by class-group actions of Z[
√
−p]

or Z
[
1+
√
−p

2

]
,

3. this abelian group actions makes navigation between vertices
of these graphs subexponential

4. CSIDH takes a union of the graphs for several ` and argues
that subexponential does not mean practical.



How to pass from G`(Fp) to the Spine S
Two-step process

1. Identify vertices with the same j-invariant,

2. add edges that were not defined over Fp.

For ` = 3 and p = 101

Lemma
Whenever we add an edge that does not correspond to an isogeny
defined over Fp, we get a double edge.



Neighbours

G`(Fp) for p = 179, ` = 3

The Neighbour Lemma

Whenever the two vertices in
G`(Fp) with j-invariant a do not
have the same neighbours,

a = 1728.

Moreover, the two neighbours
of one vertex with j = 1728
have the same j-invariant.

For p = 179, we have
1728 ≡ 117 and we see the two
double edges from 1728.



Main theorems

Let p be a prime such that the primes above ` in (−4p) have odd
order (i.e., all the connected components are cycles containing an
odd number of vertices).

Theorem for ` > 2
In the graph G`(Fp):

1. for any connected component V of G`(Fp) that does not
contain 1728, there exists a ‘twist’ component W such that if
we consider V ,W as cycles labelled by the j-invariants, V and
W become identical,

For p = 179 and ` = 3, we have 1728 ≡ 117.



Main theorems, continued

2. the connected components of 1728 are symmetric: the
vertices farthest away from 1728 are two curves with the same
j-invariants connected by an `-isogeny.

This is the only arrangement in which:
I two vertices with the same j-invariant share an edge,
I two components include vertices with the same j-invariant

without being identical as in (1.)

For p = 179 and ` = 3, we have 1728 ≡ 117.



Main theorems, continued a bit longer
When we pass to the spine S, the following happens:

1. the two components containing 1728 first collapse into simple
paths with 1728 at one end and with a loop at opposite ends,

2. these two looped-paths are then attached at the vertex 1728,

3. all other components get identified with their twist twins and
form perfect cycles,

4. fewer than 4`2 new edges are added, and the newly-added
edges always come in pairs.



2-Isogenies: the graph G2(Fp)

It depends on p mod 8:

1. p ≡ 1 mod 4: bunch of edges

2. p ≡ 3 mod 8: claws

3. p ≡ 7 mod 8: volcanoes



Example for ` = 2 and p = 431

Example

The graph above is G2(Fp)
and the graph below is the
spine in G2(Fp).

We have
1728 mod 431 = 4
8000 mod 431 = 242
and 189 and 150 are the
two roots of the
polynomial (X 2 +
191025X − 121287375)
that we saw as a factor of
Res2(X ).



Summary of what the Spine looks like for ` = 2

The Fp-subgraph S ⊂ G2(Fp):

1. for p ≡ 1 mod 4, we see single edges, with a possible vertex
with a loop at j = 8000 and one possible component of size 4,

2. for p ≡ 3 mod 8, we see claws, with one claw collapsed to an
edge (j = 1728), and a possible pair of claws joined by a
double edge,

3. for p ≡ 7 mod 8, we see volcanoes, one of the volcanoes will
be collapsed and possibly two volcanoes will get attached by a
double edge to form a large component.



Adventures in Supersingularland

Thank you for your attention!

For more, go to: eprint 2019/1056


