Adventures in Supersingularland: A Look at Supersingular Isogeny Graphs

Jana Sotáková

 $\mathsf{QuSoft}\ /\ \mathsf{UvA}$

November 15, 2019, Amsterdam

Isogenies in post-quantum cryptography

Why should we care about isogenies?

We can do post-quantum crypto with isogenies:

- 1. SIKE (KEM, in the NIST competition),
- 2. CSIDH (key exchange),
- 3. signatures (SeaSign, CSI-FiSh),
- 4. other constructions (VDFs, threshold schemes, ...?)

The time to understand isogenies is now

About elliptic curves

Elliptic curves

They are given by an equation

 $y^2 = x^3 + ax + b$ for some a, b such that $4a^3 + 27b^2 \neq 0$

together with a point at infinity ∞ .

In crypto

Usually, we ask that $a, b \in \mathbb{F}_p(=\mathbb{Z}/p \text{ finite field with } p \text{ elements})$ And that also $x, y \in \mathbb{F}_p$: clearly only finitely many solutions.

Fact

We can count the number of solutions $\#E(\mathbb{F}_p)$ efficiently.

Group law

Group law

- 1. add two points: draw a line through them, flip the third intersection point over the *x*-axis,
- 2. double a point: draw a tangent, flip the intersection point over the *x*-axis.

We want to understand $E[2] = \{P \in E : [2]P = \infty\}.$

Inverse of a point

If
$$P = (x, y)$$
 then $-P = (x, -y)$.
Hence points of order 2 satisfy $y = 0$.

Points of order 2

Need to find points for which y = 0.

$$E: y^{2} = x^{3} - x$$

Factor $x^{3} - x = x \cdot (x - 1) \cdot (x + 1)$ so points of order 2 are:
 $P = (0, 0), Q = (1, 0), R = (-1, 0)$

$$E: y^2 = x^3 - 2x$$

Factor $x^3 - 4x = x(x^2 - 2)$. We still have 3 points of order 2 :
 $P = (0,0), Q = (\sqrt{2},0), R = (-\sqrt{2},0).$

Fact

For any N, we have

$$E[N] = \{P : [N]P = \infty\} \cong \mathbb{Z}/N \times \mathbb{Z}/N$$

Isogenies

Algebraic formula for multiplication by 2:

Multiplication by [2] on the elliptic curve $y^2 = x^3 - x$ is given by:

$$P \mapsto [2]P$$

(x,y) $\mapsto \left(\frac{x^4 + 2x^2 + 1}{4(x^3 - x)}, y \cdot \frac{8x^6 - 40x^4 - 40x^2 + 8}{64(x^3 - x)^2}\right)$

Not defined at ∞ and points where $x^3 - x = 0$:

$$\infty, P, Q, R \mapsto \infty$$

ker[2] = { ∞, P, Q, R } = E[2]

Properties:

- 1. group homomorphism,
- 2. given by algebraic formulas,
- 3. has a finite kernel.

Isogenies: a definition

Definition of isogenies

A map $\phi: E \to E'$ of elliptic curves is an isogeny if:

- it is given by rational functions in the coordinates x, y on E,
- preserves the group law of elliptic curves,
- ► has a finite kernel (which is always a subgroup). In particular, only finitely many points map to ∞.

The degree of the isogeny ϕ is defined to be $\# \ker \phi$.

Existence of isogenies

For any finite subgroup H, there exists an isogeny $\phi: E \to E'$ with kernel exactly H:

$$E \rightarrow E' =: E/H$$

and there are formulas for it.

Isogenies have a factoring property

Isogenies have a universal property:

Let $\phi: E \to E'$ be an isogeny. If $P \in \ker \phi$, then there exist isogenies ψ, φ such that $\ker \psi = \langle P \rangle$ and

$$\phi = arphi \circ \psi$$
deg $\phi = \deg arphi \cdot \deg \psi$

Isogenies have a factoring property

Isogenies have a universal property:

Let $\phi: E \to E'$ be an isogeny. If $P \in \ker \phi$, then there exist isogenies ψ, φ such that $\ker \psi = \langle P \rangle$ and

$$\phi = \varphi \circ \psi$$

 $E: y^2 = x^3 - x \text{ and } \phi = [2] \text{ multiplication by } 2$ Then $(0,0) \in \text{ker}[2] = \{\infty, (0,0), (1,0), (-1,0)\}$ and

One can check that $\hat\psi\circ\psi=[\mathbf{2}]$ by composing the formulae.

Detour on the *j*-invariant

The factorization is unique up to composing with isomorphisms of elliptic curves. For an elliptic curve

$$E: y^2 = x^3 + ax + b$$

define *j*-invariant $j(E) = 1728 \cdot \frac{4a^3}{4a^3+27b^2} \in \mathbb{F}_{p^2}$.

$$E: y^2 = x^3 - x$$

has $b = 0$ and so $j(E) = 1728$.

j-invariant

is an isomorphism invariant: if E and E' can be obtained from each other by a change of coordinates then

$$j(E)=j(E').$$

Small recap

So far

- 1. There are always 3 isogenies of degree 2,
- 2. we can compute them efficiently using Vélu's formulas.

Points of larger degree

- Let P be a point on $E(\mathbb{F}_p)$ of order N, assume $N = 2^n$.
 - 1. There is an isogeny of degree 2^n with ker $\phi = \langle P \rangle$:

$$\phi: E \to E' = E/\langle P \rangle$$

- 2. But Velu's formulas are no longer efficient.
- 3. but $Q = [2^{n-1}]P$ has order 2 and we can decompose:

Isogeny-based Diffie-Hellman

set-up

Choose an elliptic curve E defined over some \mathbb{F}_q that satisfies that $E[2^r], E[3^s] \subset E(\mathbb{F}_q).$

- 1. Alice chooses a secret $P \in E[2^r]$ and computes the isogeny $\phi_A : E \to E/\langle P \rangle =: E_A$
- 2. Bob chooses a secret $Q \in E[3^s]$ and computes $\phi_B : E \to E/\langle Q \rangle =: E_B$
- 3. Alice and Bob exchange E_A , E_B (+ a bit more of extra information)
- 4. They both are able to compute $j(E_{AB}) = j(E/\langle P, Q \rangle)$.

Finally, isogeny graphs

Alice's secret is an isogeny $\phi_A : E \to E/\langle P \rangle$ of degree 2^r . We saw we can decompose this into a sequence of *a* isogenies of degree 2.

Definiton of an ℓ -isogeny graph

Let \mathbb{F}_q be a finite field. Let S be a set of isomorphism classes (or *j*-invariants) of elliptic curves defined over \mathbb{F}_q . We define the following graph $G_{\ell}(\mathbb{F}_q)$:

- ▶ the set of vertices is *S*,
- ► there is an edge between j, j' ∈ S if and only if there is a ℓ-isogeny between curves with j-invariants j and j'.

For Alice's secret to be safe

it needs to be difficult to find paths between the vertices j(E) and $j(E_A)$ in the graph $G_2(\mathbb{F}_q)$. Same for Bob in $G_3(\mathbb{F}_q)$.

Supersingular elliptic curves

We choose to use supersingular elliptic curves:

- 1. all supersingular elliptic curves have *j*-invariant in \mathbb{F}_{p^2} , and hence have equations over \mathbb{F}_{p^2} ,
- 2. all supersingular elliptic curves have $E(\mathbb{F}_{p^2})\cong \mathbb{Z}/(p+1) imes \mathbb{Z}/(p+1)$ so if we choose

$$p=2^r\cdot 3^s-1,$$

we obtain $E[2^r]$ and $E[3^s]$ already defined over \mathbb{F}_{p^2}

- 3. so there are $3 \cdot 2^{r-1}$ different choices for Alice and $4 \cdot 3^{s-1}$ different choices for Bob.
- 4. moreover, path finding seems to be hard.

Supersingular isogeny graphs

Supersingular ℓ -isogeny graphs $G_{\ell}(\mathbb{F}_{p^2})$

Vertices: all supersingular *j*-invariants.

p = 827 and $\ell = 3$

Examples and properties

Properties

- 1. exponentially-large graphs (pprox p/12 vertices)
- 2. connected, ℓ + 1-regular graphs (except for at most 2 vertices),
- 3. short diameters: $d = \Theta(\log(p))$,
- expander graphs: taking random walks of length log(p) is almost as good as uniform sampling of vertices
- 5. path finding is hard (exponentially hard both classically and quantumly)

Path finding

For p = 1223 and $\ell = 2$, shortest path between two random vertices:

The Spine of $G_{\ell}(\mathbb{F}_{p^2})$

Path finding is not hard for all pairs of vertices

Between vertices labelled with *j*-invariants $j \in \mathbb{F}_p$, path finding is easier (subexponential).

Definition

The spine \mathcal{S} is the induced subgraph with vertices

```
\{j: j \in \mathbb{F}_p\}
```

It is a subgraph of size approximately \sqrt{p} .

How do these vertices sit inside the graph?

For crypto, we usually assume that they are randomly distributed throughout the graph.

p = 1103, random subgraph of the expected size

Examples of the spine

The spine for $\ell = 3$

Visible structure

In the last picture, we see the nice cycle with 5 vertices and another component also with 5 vertices.

The CSIDH-land: the graph $\mathcal{G}_{\ell}(\mathbb{F}_p)$

Fix ℓ a small prime and p a large prime.

Definition of $\mathcal{G}_{\ell}(\mathbb{F}_p)$

1. vertices: elliptic curves defined over \mathbb{F}_p , up to \mathbb{F}_p -isomorphism,

2. edges: ℓ -isogenies defined over \mathbb{F}_p .

j-invariants

is not an \mathbb{F}_p -isomorphism invariant, every *j*-invariant will be there twice! (#quadratictwists)

Example with p = 179 and $\ell = 3$

labels = j-invariants of the curves

Quick road to the CSIDH

Example with p = 179 and $\ell = 3$

labels = j-invariants of the curves

- 1. Any ℓ -isogeny graph $\mathcal{G}_{\ell}(\mathbb{F}_{p})$ for $\ell > 2$ will be a union of cycles,
- 2. their sizes can be explained by class-group actions of $\mathbb{Z}[\sqrt{-p}]$ or $\mathbb{Z}\left[\frac{1+\sqrt{-p}}{2}\right]$,
- 3. this abelian group actions makes navigation between vertices of these graphs subexponential
- 4. CSIDH takes a union of the graphs for several ℓ and argues that subexponential does not mean practical.

How to pass from $\mathcal{G}_{\ell}(\mathbb{F}_p)$ to the Spine \mathcal{S} Two-step process

- 1. Identify vertices with the same *j*-invariant,
- 2. add edges that were not defined over \mathbb{F}_p .

Lemma

Whenever we add an edge that does not correspond to an isogeny defined over \mathbb{F}_p , we get a double edge.

Neighbours

The Neighbour Lemma

Whenever the two vertices in $\mathcal{G}_{\ell}(\mathbb{F}_p)$ with *j*-invariant *a* do not have the same neighbours,

$$a = 1728$$

Moreover, the two neighbours of one vertex with j = 1728 have the same *j*-invariant.

For p = 179, we have $1728 \equiv 117$ and we see the two double edges from 1728.

Main theorems

Let p be a prime such that the primes above ℓ in (-4p) have odd order (i.e., all the connected components are cycles containing an odd number of vertices).

Theorem for $\ell > 2$

In the graph $\mathcal{G}_{\ell}(\mathbb{F}_p)$:

 for any connected component V of G_ℓ(F_p) that does not contain 1728, there exists a 'twist' component W such that if we consider V, W as cycles labelled by the j-invariants, V and W become identical,

For p = 179 and $\ell = 3$, we have $1728 \equiv 117$.

Main theorems, continued

 the connected components of 1728 are symmetric: the vertices farthest away from 1728 are two curves with the same j-invariants connected by an ℓ-isogeny.

This is the only arrangement in which:

- two vertices with the same j-invariant share an edge,
- two components include vertices with the same *j*-invariant without being identical as in (1.)

For p = 179 and $\ell = 3$, we have $1728 \equiv 117$.

Main theorems, continued a bit longer

When we pass to the spine \mathcal{S} , the following happens:

- 1. the two components containing 1728 first collapse into simple paths with 1728 at one end and with a loop at opposite ends,
- 2. these two looped-paths are then attached at the vertex 1728,
- all other components get identified with their twist twins and form perfect cycles,
- 4. fewer than $4\ell^2$ new edges are added, and the newly-added edges always come in pairs.

2-Isogenies: the graph $\mathcal{G}_2(\mathbb{F}_p)$

3. $p \equiv 7 \mod 8$: volcanoes

Example for $\ell = 2$ and p = 431

Example

The graph above is $\mathcal{G}_2(\mathbb{F}_p)$ and the graph below is the spine in $\mathcal{G}_2(\overline{\mathbb{F}}_p)$.

We have $1728 \mod 431 = 4$ $8000 \mod 431 = 242$ and 189 and 150 are the two roots of the polynomial (X^2 + 191025X - 121287375) that we saw as a factor of $\text{Res}_2(X)$.

Summary of what the Spine looks like for $\ell = 2$

The \mathbb{F}_p -subgraph $\mathcal{S} \subset \mathcal{G}_2(\overline{\mathbb{F}}_p)$:

- 1. for $p \equiv 1 \mod 4$, we see single edges, with a possible vertex with a loop at j = 8000 and one possible component of size 4,
- 2. for $p \equiv 3 \mod 8$, we see claws, with one claw collapsed to an edge (j = 1728), and a possible pair of claws joined by a double edge,
- 3. for $p \equiv 7 \mod 8$, we see volcanoes, one of the volcanoes will be collapsed and possibly two volcanoes will get attached by a double edge to form a large component.

Adventures in Supersingularland

Thank you for your attention!

For more, go to: eprint 2019/1056