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The purpose of this seminar is to explain several results concerning the bounded approx-
imation property for Fréchet spaces. We give a full detailed proof of an important result due
to Pelczynski [Pel71] (see also [Mat77]) that asserts that every separable Fréchet space with
the bounded approximation property is isomorphic to a complemented subspace of a Fréchet
space with a Schauder basis. We also explain Vogt’s example (cf. [Vog83]) of a nuclear Fréchet
space without the bounded approximation property. This example was much simpler than
the original counterexample due to Dubinski. These examples solved a long standing problem
of Grothendieck. Vogt [Vog10] obtained another simple example of a nuclear Fréchet function
space without the bounded approximation property. The relation of the bounded approxima-
tion property for Fréchet spaces with a continuous norm and the countably normable spaces,
including several results due to Dubinski and Vogt [DuV85], is also explained.

1 Introduction

A topological vector space I is a Fréchet space if it is metrizable, complete and locally
convex. We use below the abbreviation “lcs” for “locally convex space”. The topology of
E is defined by a fundamental system of seminorms p; < py < ... < p, < ... satisfying
that for each © € E,x # 0, there exists n € N such that p, (x) > 0. Recall that for
every neighbourhood of the origin U € Uy (FE), there exist n € N and ¢ > 0 such that
{r €U :p,(x) <e} C U. We may assume that a basis of neighborhoods of the origin is
given by U, := {x € E:p, (z) <1}, n € N. We say that B is a bounded set in F, and we
write B € B (E), if supycg pn (b) < 0o for every n € N.

Let (pn), and (¢m),, be fundamental system of seminorms in E and F' respectively. A
linear operator 17" : E — F' is continuous operator if and only if for every m € N there exists
n € Nand C > 0 such that g, (T (z)) < py, (z) for every 2 € E. We denote L (E, F') the space
of linear and continuous operators from E to F. A set H C L (E, F) is equicontinuous if for
every m € N there exists n € N and C > 0 such that ¢, (T (z)) < p, (z) for every z € E and
for every T € H. Note that this condition is equivalent to the fact that NpegT 1 (V) € Uy (E)
for every V € Uy (F'). It is also important to recall Banach-Steinhaus’ theorem for Fréchet
spaces: Let E be a Fréchet space. H C L(E,F) is equicontinuous if and only if for every
x€FE, H(x):={T(x):T € H} is a bounded set of F'.

Definition 1.1 We say that E admits a continuous norm if there exists a norm ||-|| : £ — R



that is continuous for the topology of E; that is there exists a norm ||-|| : £ — R such that
there exists n € N and C > 0 with ||z|| < Cp,, (x) for every x € E. If E has a continuous
norm, we can choose a fundamental system of seminorms p; < ps <...<p, <...in FE such
that pi is a norm for every k € N.

Example 1.2 1. The space H (Q2) with  C C an connected open set in the complex
plane endowed with the topology of uniform convergence on the compact subsets of €2
is a Fréchet space that admits a continuous norm and is not normable.

2. The space Fréchet C* ([0, 1]) endowed by the topology given by the seminorms

. (@)
)= s sup |7 0]

also admits a continuous norm.

3. The space w := KN endowed by the topology given by the seminorms

pn (@) = max [z;], with z = (z;);,

does not admit a continuous norm.

4. The space C* (2) endowed by the topology given by the seminorms

)

_ (o)
()= sup [0

where K1 C Ko C ... C K, C ... is a fundamental sequence of compact subsets in €2,
does not admit a continuous norm.

There are two important results concerning Fréchet spaces with does not have a continuous
norm.

Theorem 1.3 (Bessaga, Petczyriski) A Fréchet space does not have a continuous norm if
and only if w is isomorphic to a complemented subspace of E.

Theorem 1.4 (Eidelheit) If E is a Fréchet space that is not normable then E have a iso-
morphic quotient in w.

Example 1.5 Here is a concrete example of a not normable Fréchet space with a quotient
isomorphic to w: Consider the Fréchet space H (C) of entire functions endowed with the
compact open topology. Select a sequence (z,) in C such that |z,11| > |2,| for each n € N
and limy,_,o |2n| = 00. The linear map T : H (C) — w defined by f — f (zy) is surjective by
Weierstrass interpolation Theorem. The map 7' is clearly continuous and it is open by the
open mapping theorem for Fréchet spaces.

Definition 1.6 A lcs E has the bounded approzimation property (BAP) if there exists an
equicontinuous net (4;),c ; C L (E) with dim(4; (E)) < oo for every j € J and lim;ey 4; () =
x for every x € E. In other words, the net (Aj)je ; converges to the identity in the space
L (E), i.e. for the topology of pointwise or simple convergence.



Remark 1.7 Let H C L(E,F) be equicontinuous. If N C E is a total subset of E (i.e.
span (N) = E), then the topologies of simple convergence on E (T, (E)) and on N (T5(N))
coincide in H ([K6t79, 39.4.(1)]). In particular, if E is separable and F' is metrizable, then
the topology ¥ (E) of simple convergence on F is metrizable on every equicontinuous subset
H oh L(E,F) ([Kot79, 39.4.(7))).

Consequence 1.8 If E is a separable, metrizable lcs then E has the BAP if and only if there
exists (Ayn),, C L (E) (a sequence) which is equicontinuous, dim(Ay (E)) < oo for everyn € N
and lim,,_, Ay, (x) = x for each x € E.

In case that E is barrelled metrizable and separable, E has BAP if and only if there exists
(Ap),, C L(E) with dim(Ay, (E)) < oo for every n € N and lim,,_,o A, () = x for each
x € E. This is a consequence of Banach-Steinhaus Theorem.

Remark 1.9 Let H be an equicontinuous subset of L (E, F'). By [K6t79, 39.4.(2)] the topol-
ogy Ts(E) and the topology T.(FE) of uniform convergence of precompact subsets of E
coincide on H.

Consequence 1.10 If E has the BAP, A; — I with j € J uniformly on the precompact
subsets of E. Accordingly, the BAP implies approximation property.

In what follows E is a separable Fréchet space, and py <pa < ... <ppr <pry1 < ...1sa
fundamental system of seminorms in E.

We assume, without loss of generality, that Uy := {x € E : p; (x) < 1}, with & € N, form
a basis of 0-neighborhoods in F.

In case F is a Fréchet space with a continuous norm, we assume without loss of generality
that all the elements of the fundamental system of seminorms p; < ps < ... <pp < pr11 < ...
are in fact norms.

Remark 1.11 If F is a separable Fréchet space with a fundamental system of seminorms
(pk);, has the BAP, we can find (4,),, C L(FE), with dim(A, (F)) < oo for every n €
N and lim, o A, (x) = « for each x € E. By the Banach-Steinhaus Theorem, (4,),, is

equicontinuous. Therefore, for every k € N there exists [ > k and Cj, > 0 with py (A, (z)) =
Crkpyk) () for every x € E and for every n € N.

Proposition 1.12 Let E be a separable Fréchet space, then the following conditions are
equivalent:

1. The BAP holds in E,

2. There exists (Ay), C L(E), with dim(A, (E)) < oo for everyn € N and lim,_, Ay, (z) =
x for each x € F,

3. There exists (By), C L(E), with dim(B,, (E)) < co for everyn € N and Y > By, (v) =
x for each x € E.

Proof. (1) = (2) Since E is a separable space, there exists a countable dense subset F' of F
Accordingly, the following topologies coincide on the equicontinuous subsets of L (E):

e Uniform convergence over the compact sets of E,



e Pointwise convergence on F,
e Pointwise convergence on F.

As the topology of pointwise convergence on F' is metrizable, the results holds.

(2) = (1) Since A, (z) converges to  when n tends to infinity, then {A,, (z)}, is bounded
in E for every x € E. By Banach-Steinhaus’ theorem, {A,}, is equicontinuous.

(2) = (3) Take By := Ay and Bj11 := Any1 — Ay, for every n € N, to get the result.

(3) = (2) Now set A, := By + ...+ B,, for every n € N. O

Remark 1.13 Let (p;), be a fundamental system of seminorms in E. Define g (z) :=
sup,en Pk (X iy Bi (z)), for every « € E and for every k € N.

Since z = limy,—y00 Y1y Bi (), we have py, () = limy, 00 p (37—, Bi (x)) and this implies
that pg (x) < g (x) for every z € E and for every k € N.

Observe that > " | B; = A, for each n € N. Hence p; (31~ Bi (z)) = pi (4 (z)) <
Ckpyk) (z) for each n € N. Thus g (z) < Cgpyr) (x) for every x € E and for every k € N.
And the sequence of seminorms (gj),, is a fundamental system of seminorms in £.

Definition 1.14 We say that {z,,} C E is a Schauder basis in £ with coefficient functionals
{z } if:
e For every k,n € N, (2}, zn) = 0p

9]
n=1

e Forevery z € E, x =Y -~ (2}, x)x,, the series converging in E.

Example 1.15 Some spaces with Schauder basis are Kothe echelon spaces, and the Banach
sequence spaces £, 1 < p < oo, and co.

Proposition 1.16 The following results holds:
(1) If E is a lcs with the BAP and F C E is complemented, then F has the BAP, too.
(2) If E is a barrelled lcs with a Schauder basis, then E has the BAP.

Proof. (1) Let (A;)_cp C L(E) be an equicontinuous net such that dimA, (E) < oo for
every 7 € T and lim,;ecp A, (z) = x for each x € E. Let F C E be complemented. Denote
by J : FF — FE the canonical inclusion and by P : E — F the projection. For each 7 € T,
define B, : F — F by B; := PA.J. Clearly, dimB; (F) < dimA, (F) < oo and for every
q € cs(E) there exists ¢’ € cs(E) such that ¢ (A, (z)) < ¢ () for every x € FE and for every
7 € E. Moreover, as P : E — F is continuous, given p € cs(E) there exists ¢ € cs(E) such
that p (Pz) < q(z) for every x € E. Then

p (B (2)) = p(PA-J (2)) = p(PA; (v)) < ¢(Ar (2)) < ¢ (2)
for every x € I and for every 7 € T. Thus (B;),.p is equicontinuous in L (F'). Finally, for
z € F,

lim B = lim PA =P(limA =P =z.
li B () = iy PA (5) = P (Iig A- 0)) = P () =
(2) Let (z,),, C E be a Schauder basis with coefficient functionals (z7,), C E’. That is
(z),xp) = O and x =Y 7 | ), (z) x, converges in E for each € E. Denote by P, : E — E

n=1*n



the map P, (z) := > ;_, z} () zx, which is a continuous projection onto span(zi,...,Zn).
Since E is barrelled, (P,),, is equicontinuous. As lim, o P, (z) = « for every x € E, we
conclude that F has the BAP. O

Theorem 1.17 (Petczyriski. 1971) Every separable Fréchet space E with the BAP is
isomorphic to a complemented subspace of a Fréchet space Ey with a Schauder basis. If E
has a continuous norm, Ey can be chosen with a continuous norm.

Proof. Fix a fundamental sequence of seminorms, |-|; <[, < ... <[, < || < ... in E.
By assumption there is (4,), C L(E), dim(A, (F)) < oo for each n € N, such that, A, # 0
for each n € N, and limy, 00 > Ay (¥) = 7 in E for every z € E.

We first select another (more suitable) fundamental sequence of seminorms. Set E, :=
A, (E), p=1,2,... and m, :=dim(E,), p = 1,2,... with mg := 0. Since dim(E,) < oo,
for each p there is k (p) € N such that k(p — 1) < k(p) and |-[,) is a norm in E,. We set
ll;, := [y~ Clearly, [|-[l,, < ||l,,41 for each n and (|-||,,),, is a fundamental sequence of

]+1
each j, we have " | C F}' , C ... C F[' C Ej,. They are all closed in F,, and, since they are

finite dimensional, each one is complemented in the previous one.

We select a complement in each step F/* o = F/' (@ H! o, F' o = (Fr & H! ,)®H!_,
and E, = F' © Hy. We can write £, = H @ H' © ... H! s ®F ;. Selectlng a element
in each component and writing the projections, each x € E, can be uniquely written as

— -1 l
=3 Zk(ﬁnite) L+
Fix a seminorm ||-[|; with j < n and consider each projection abofw. If 1> j, 2l € H' C
l : l . -1 l o
FI' = ( Ker||-[|,)NE, then 2} € Ker(H-Hj) (ice. [J4]|, = 0): therefore ]z;;j > k(tinite kaJ -
0. On the other hand, [|-||; is a norm on Hy & ... & Hj' ;. This implies that the projection

seminorms in E. Fix n € N and for j < n, set F}' := < Ker HH]) NEn. As ||l < [l

Zf;(l) (finite) xy, — xfk is continuous for 0 <1 < j and each k. So we can find C; > 0 such
that

fo’“H < Cj Z Z x| =C; Z Z xy|| , for 0 <1 < j and each k.

r=0 k(finite) j r=0 k(finite) j

Accordingly, we have found for E), and m, a family of 1-dimensional operators Bf B, —
E, with j =1,...,m, such that

Mp
_ D
e= ZBje for every e € E,,

j=1

and
max HB%H < Ry |le|l,, for every e € E, and for every k=1,...,p.
1<j<mp 17 "k

In fact, R, = max (C1,...,C)), selected as above.

oo
Now, since lim; 00 >0 1 Ay (z) = o for every € X, the sequence (ZZZI Ap> is
n=

1
equicontinuous in L (E), this means that, for every k € N, there exists My > 0 and [ (k) > k



such that HZZZI A, (ac)HlC < My |||y for every 2 € X and for every n € N. This implies

[An (@)l < ZA + ZAP ()| < 2Mg|lz], for eachn € Nand z € E.
P k

For each p € N select N, € N with m,R, < N, and set Ny = 0. Set C? := Np_le with
it=rmp+j,r=0,1,...,N,—1and j =1,...,mp. Observe that there are N,m, rank-1
operators.

r=0, 1Bp...pr

r=1, IBP...lBP

r=N,—1, B{...q B,
If e € E,, we get

mypNp Np—1 my Np—1

Z Cle= ZZ ! Bpe—— Ze—eforeverypEN

i=1 rOglp r=0

Moreover, for k = 1,2,...,p,e € E,, and 1 < g < m,N,, we get r and w with 0 < r <
N, —1,1 <w < m, such that

q mp w

P _ —1 pp —1 pp
Zci _TZNP B +ZNP B;.
i=1 j=1 j=1

Thus, for £k =1,2,...,p we have
il s 1 |— r 1 —
p p ¢ D
ZCe ZBje +Fp ZBje SﬁpHer NpZHBjerS
J=1 J=1 k J=1 k J=1

1 w
lelly, + > Bpllell, < ( 1+
Ny~

since 1 < w < m, and m,R, < N,. We then obtain

Zc’p

i=1

IA

k

IN

whi,
2 el < 2l

max

o max <2|lel|, foreveryeec E,and k=1,...,p

Define now A, := CPA, for s = moNo + ... + mp_1Np—1 + i, p = 1,2,... and i =
—~ A c?
1,2,...,m,N,. Observe that As € L (E) since E =% E, % E, — E.

—\ OO
Claim 1.18 (Zgzl As) . is equicontinuous in L (E).
n=

If n > m1 Ny there are t, ¢ with 1 < ¢ < myy1Npyq such that

n t mpN, q
Z Ay = Z pr CYAp () + Z CIt A
s=1 p=1 i=1 =1



Fix k € N; for x € E we have, if K <t+ 1,

n t mpNp q
S A@)| < D0 D CPA @) +|D_CiT A ()| =
s=1 k p=1 i=1 k 1=1 k
t
= Do A4 @) +2[4m @), <
p:1 k
<

My (|2 llyry + 4M (|2]lyry = 5Mi |2 lyr) -

And the claim follows, since this estimates holds for all n such that k¥ < ¢ + 1, hence for
all except a finite number. Consequently, we have

> A

s=1

< K |2y for every z € E.

Vk e N, 3w (k), K > 0 : sup
" k

Claim 1.19 lim,_,00 > 0y ;lvs (x) =z for every x € E.

First, select t € N and ¢ with 1 < ¢ < myy11Np1, for n > mq Ny then

n t mpNp q
YA —a < DD CPA ) -2 +||D CIT A ()| <
s=1 L p=1 i=1 i i=1 k
t
< IDoAp (@) x| +2[| A (@) ik <t+ 1
p=1 k

Now,
t+1 t
Ay (z) = (Z Ay (x) — x> - (Z A, (z) — x) ,
r=1 r=1

where the two expressions tends to 0 as t tends to infinity. Then, lim;_,o || A1 (2)]|, = O.
As n tends to infinity, then t tends also to infinity, therefore, there exists

Z As(z) —x
s=1

t
= lim |34, ()~ 2+ Jim 4, @), =0

t—o0 1
k p= k

lim
n—oo

Denote by Ey := {y = (Y (5))sen:¥(s) € A, (E) and Y o2, y(s) converges in E}, en-
dowed with the fundamental system of seminorms

n

> yl(s)

s=1

Il (w () Ik := sup 'y = (y(s)), € Eo.

n

It is not difficult to prove that Ey is a Fréchet space. We prove that Ey has a Schauder basis.
Since dim(As (E)) = 1 for each s € N, we choose ys € A, (E), ys # 0, for each s € N.

For cach y € A (E) there is ¢ € K such that y = cy,. Given s € N, define ey := (7 () en



by y(t) =0if t # s and ys (s) = ys. It is easy to see that span (es,s € N) = Ey. Moreover,
150 eseslle < IS0 eseslx, for each n,k € N and each ¢y, ..., ¢,11 € K. Then Theorem
14.3.6 in [Jar81, p. 298] implies that {es} .y is a Schauder basis of Xj.

Now define I : E — Ey by I (z) := (;42 (x)) . Since x = > o2, A, (z) in E, it follows
s€
that I () is well-defined. Moreover, I and I~!: I (E) — E are continuous by the estimates
I (z) llx < Kk ||zl],, (that were proved when we showed the equicontinuity of (ZZZI ;1;) )
n
n —
Jim, > A @

and
> A (x)
s=1 s=1

Observe that 11 ((y (5)),) = X2, 4 (5), if (y/(5)), € I (E). B
Finally, we define a projection L : Ey — I (E) by L((y(s)),) == <AS >y y(t)))s. To

check that L is continuous, if > o2, y (s) converges in E, using

> y(s) > y(s) > y(s)
s=1 s=1 s=1

for each | € N and for each y € Ep, then

= 17 (2) lx-
k

2l =

< sup
n
k

= [I (v () Il

= lim
n—oo

< sup
l n

l l

o n [e.e] e}
I (As (Z?J (75))) I = sup || As <Zy(t)> <K|[D oy < Eill (v (9); ey
t=1 s ™o ls=1 t=1 k t=1 Wi
Finally, L? = L, since Y oo, A, (z) = z for every z € E. O

2 Extension of injective maps. Vogt’s Example of a nuclear
Fréchet space without the BAP

In this section we present Vogt’s counterexample [Vog83] of a nuclear Fréchet space which does
not satisfy the bounded approximation property. Some results on the extension of injective
continuous linear maps between normed spaces are needed first.

Let E, F' be two normed spaces and let T € L (FE,F). We denote E,ﬁ the completion
of E, F respectively. We know that T : ¥ — F'is a continuous map. There exists a unique

continuous linear map T : E — F such that the restriction 7| E of T to E coincides T. Tt is

defined as f(m) i=limj 00 T'(25), with (z;); C E and ; — x in E as j — co. In general, T
need not to be injective.

Example 2.1 Let (X, ||||) be an infinite dimensional Banach space. Take u € X*\X' (

ie. u: X — K is a non-continuous linear form ), and define ||z| := |u(z)| + ||z| (observe
that [|-]] < | - || in X). Clearly the identity T : (X,|-|) — (X,||-]|) is continuous and
injective. Then, there exists a unique continuous linear map T : (X, |- [) — (X, ||| such

that 7| X = T. Clearly T is surjective since T (X) =T (X) =X c T ((X, Il - ”])) Assume

that T is injective. By the closed graph theorem, (f)_ would be continuous. This would

imply ||z|| = |U (z)| + ||z|| < C|z|, for every € X, then u € X', a contradiction.



Proposition 2.2 Let X, Y be normed spaces and let A : (X, [|-]]) = (Y, || - ||) be a continuous
injective linear operator. The unique continuous linear extension A : (m) — (m\)
of A is injective if and only if for every (a:j)j C X, which is ||-||-Cauchy in X such that
im0 ||Azj]| = 0 we have lim;_, ||z;|| = 0.

Proof. Let = € (m) such that AZ = 0 in (m\) Then, there exists a (z;); C X, where
(2;); is [|-|-Cauchy in X, such that z; — ' in (m) Using that A is continuous A\xj = Az,
converges AZ = 0 in (m\), hence Az; — 0in (Y, | - ||) as j — oco. By assumption z; — 0
in X, hence T = 0. And A is injective.

In order to show the converse, let (z;); be a Cauchy sequence in X such that lim;, || Az;|| =
0. There is € X such that r; — T in (m), thus Az; — AZ in (mb This implies
AZ = 0 and, since A is injective, = 0 . Therefore lim;_, ||z;|| = 0. O

Lemma 2.3 (Vogt’s main Lemma) Let E be a Fréchet space with a fundamental system
of seminorms (||-,),. Assume that E has a continuous norm and the BAP. Then, there
exists k (0) such that for every k > k(0) exists | > k such that for every (x;); C E that is
||-||;-Cauchy such that lim;_, Hx]’”k(o) = 0 we have lim; . ||z, = 0.

Proof. Let (A;) . be an equicontinuous net in L (E) such that A; (E) is finite dimensional
for every 7 € T and A,;x converges to = for each x € E.

Let ||| 1y be a norm. Select k(0) > k(1) and C' > 0 such that [|A-z|[,) < C ||zl for
each x € P and each 7 € T

Since ”‘Hk(l) is a norm and A, (F) is finite dimensional, for each 7 € T and k € N there
is Cr 1 > 0 such that

[Arzll, < Cri HArafHku) < CrpC Hx”k(o) .

Fix now k£ > k(0) and select | > k and D > 0 such that ||A,z||, < D ||z||, for every x € E
and for every 7 € T Let (x;); C E be a ||-[|-Cauchy sequence such that lim;_ Hxi”k(o) =0.

Given € > 0, choose j (0) € N such that Hmj — xj(O)Hz <eif j > j(0). Given ;) € E, select
7 € T such that H%‘(o) - ATCL‘j(O)Hk < e. For j > j(0), we have

IN

1251 25 = 250 |l + lzj0) = Arzjo)l| + [[Ar (2j00) — 25) || + 14725 <

IN

25 = zj)ll, + & + CraC |50 = 23[9 + CrnC 125 l10) <
< (26 4+ CrpCe) + CrpC H%‘Hk(o) :

Selecting j (1) > j (0) with Hajok(o) <e, we get ||z, < (2+2C5,)¢ forall j > j(1). O

Example 2.4 (Vogt’s example) Take 0 < p,, < 1, p,v € N, with lim, 0 pu., = 0 for

every v € N. Denote z = (a2} € KN*NXN "For p € N, define
’LL’I/ n?“?” ’
o n n+pu+v n _ n+l| ntutv
Hpr T Z }xlw‘ p + Z ‘p“v”xuﬂ/ Tpy |P :
n, 1,V <p T,V >P



Set E := {x = (zﬁ’y)nu7V€N3 t||lz[l, < oo for every p € N}. It is a Fréchet space and

lell, <2 > lapa ™™ D0 o, — it P | = el
n,pu,v<p+1 n,pu,v>p+1

To see this, use the inequality

Z ‘pu,usz,y _ n+1‘pn+ﬂ+(13+1) < Z (]% p+1] + |z
n,p,v=p+1 nH

mp+1

n+1 D pn—l-/ﬁ-(p—&-l).

The canonical map (E, H-||p+1> — (E, ||H;>) is nuclear, then F is a nuclear space. Indeed,

T = Z (€n7/~L7V ® unﬂu,)y)(@‘),

n,u,v

where e, are the canonical unit vectors in £ C KN and w,,, are the canonical unit
vectors in the dual. Exactly in the same positions we obtain

_ { prHY, or

1
||€n,u,1/||p Pu, pn—i—u—i—u

o then 3 flennll Bl < oo
_ p

Hun,uw”pﬂ =9 - 71 n,pY
Py (1) Y

Now, observe that ||-|,, is a norm in £ for all p. Indeed, assume z = (z}.,) € E satisfies
[z]l, =0 then zj,, =0 for all n, pu if v < p. In that case, p, 21! with v > p for every n,
then Ty = Pu,T Ztl with v > p for every u € N. Suppose there are y € N and v > p such

that acf # 0. Select ¢ € N with ¢gp,,,, > 1 and ¢ > v. Then, since z € F,

qzv B B
0% ol € 3 o] 5 = 3 () ko 4 = o] 3 (s 4 = 0
n n

n

and this is a contradiction. Then :1:# , = 0 for each p and each v > p implies that zj; , =0
for every pu,n € N and for every v > p. Therefore x = 0.

To prove that E does not have the BAP, we use Vogt’s main lemma and we will prove for
every pog and for every ¢ > p = pg + 1 there exists (2,,),, C E, which is ||| ,~Cauchy, with
[|mll,, converging 0 as m tends to infinity, but |[2y,[|, does not converge to 0. To prove this
fact, given ¢ > po + 1, select p € N such that p,pq < 1. Define @z, = > 0" 1 (Pup)” €npups

where e, ;,, are the canonical unit vectors in E. For [ < m we get

m - m m
a>p
|2 — ﬂleq = Z (Pup)" enpp|| = Z pz,pqnﬂLﬂ) = ¢"*P Z (Pp?)”
n=I+1 I+1 I+1

q

And (zm),, is [|-||,-Cauchy, since p;, g < 1. On the other hand,

m
|’$m|’p0 = Z ‘Pu,pxz,p n+1|pn+u+p7
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where, forn=1,...,m =1, pu ), — xﬁj,l = Pupllp — pﬁj,l = 0, therefore
_ m+1 _m+tptp _  put+p—1 m~+1
Zmll,, = Ppp Po = (Puppo)™" — 0 as m — oo,

since pyppo < pupq < 1.
Finally,

m m
Jomll, = S Pl o4 = 42 S ()" > pPHp,  for every m € N.

n=1 n=1

Therefore ||z, ||, does not converge to 0 as m tends to infinity.

3 Countably normable Fréchet Spaces

Definition 3.1 A Fréchet space E is countably normable (or countably normed) if there exists
a fundamental sequence of norms (||-||,,), defining the topology of E such that the inclusions

L —

it (B Illi1) = (B, |]lx) can be extended (uniquely) to an injection ¢y : (E, |||z41) —

—

(E,|I|l) (i.e. E is an intersection of Banach spaces).

The following result is a consequence of proposition 2.2.

Lemma 3.2 Let X be a vector space with two norms ||| < ||-||. The inclusioni: (X,||-||) —
(X, ||]I) extends uniquely to an injective continuous map if and only if for every (x,), C X,
which is || - ||-Cauchy, such that |z,| — 0 as n tends to infinity then ||z,|| — 0.

Remark 3.3 A Fréchet space E with a continuous norm is countably normable if and only
if there exists a fundamental system (||-[[;), of norms on E such that for every k € N there
exists j > k such that if (z,,),, C X is [|-[|;-Cauchy and lim, ||2,[[, = 0, then lim, ||2,[; = 0.

Indeed, if we suppose that F is countably normable then it is enough to take j = k + 1.
If the condition is satisfied, it is enough to pass to a subsequence.

As a consequence, if F is a Fréchet space which is countably normable and F' C F is a
closed subspace, then F' is a countably normable Fréchet space. To prove it we just take the
restriction to F' of the norms given by the remark on FE.

Proposition 3.4 Fvery Fréchet space EE with a Schauder basis and a continuous norm is
countably normable. Consequently, every separable Fréchet space with a continuous norm
and the bounded approximation property is countably normable.

Proof. Let (z,),, be a Schauder basis in E with coefficient functionals (z7,),,. We write

A,: E— FE

We have dim(A,, (E)) =1, AyAm = 0pmAnifn#mand e =3 " A, () =Y 07 (2}, z)zy
converging in F for every x € E.

Given a fundamental sequence of norms (||-||;),cy in E, define |y[, := sup, 312, Ayll,
for every y € E and k € N. Then (|-|,), is a fundamental sequence of seminorms in E. Indeed,

], = lim ZlAi () Z;AZ- W) =zl

k

< sup
n
k
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for every k € N and for every z € E. In particular ||, is a norm for each k. On the other
hand, since (D7 A;),, is equicontinuous in L (E) by Banach-Steinhaus’ Theorem, for every
k € N, there exists I (k) > k and Cj > 0 such that |37, A; (z)]|, < Ck [ for every

n € N and for every x € E. This implies that for every k& € N there exists [ (k) > k and

J

k

i=1

Ck > 0 such that [z[, < Cy ||zl

DA =) Aiy)

)
Consider that map A; : (E,|-|,) — (E,|-|,) between these normed spaces. It is continuous
j—1
S 2 ’y‘k ’

= [14; @)l <

i=1

n
1A ()], = sup || D> AiA; ()
™ li=1 k
and if j = 1 then |Ay (y)|;, < |yl Then there exists a unique continuous extension A? :

(ﬂ) — (ﬂ) such that Af‘E = A; for each j € N. Moreover, since Aé? (E) is fi-
nite dimensional (in fact 1-dimensional), it is closed and A;‘? {(E, || k)} C Aj (E) =span(z;).

Since A;A; = 9;;A; on E, by density Af;“Aé-C = 0;;A%. We show now that (31" | A;) is
S ’y‘k ]

equicontinuous on L (E,||,). If y € E, m € N,
S n
m-=n
=" D45 )
j=1 k

Z A; Z Aj | (v)
=1 =1 .

since
n m n
YA = sw|D oD A4 W] =
X moli=1 \j=1 k
m m
+ osup (DA [ DA W) <2yl
1<m<n =1 =1 N

=1

ZAi ZAj (y)
m2n || j=1 .

= sup
This implies that the extensions (Z?Zl Af) form also an equicontinuous set in L ( (E, || k))

Since » 0, A;‘? — I pointwise in E and (Z?:l A;“) is equicontinuous in L ((E, || k)) then,
n

for every x € (B, ||}.), 227, Aé?f 52 in (B, |,,)-
We finally prove that the unique extension ¢, : (E,|-[,,1) — (E,|-],) of the identity
(B, |"l41) = (E,]];) is injective. Fix § € (E, |-[,,) such that ¢, =0 in (m) We know

y =Yoo AE17 the series converging in (E,|-|,, ) and the decomposition is unique, since
A?HA?H = 6, ;AMTVif § £ j. Moreover, AEt1 (§) € E, since A, (E) is finite dimensional in

E, hence closed in (E, ||, ).
Now 0 = ¢k (7) = >.0°, A% (¢4 (1)), the series converging in (E,|-|,). Since the decom-
position is unique, we have A% (o4 (7)) = 0 for each n € N. We are done if we show that

ARG = AF (o1 (9)) (= 0), because this will imply 7 = >0 | Ak15 = 0.
To prove AMt = A (¢4, (), select (ys) C E such that ys — 7 in (E,|[,,;). Then
O

ys converges to ¢k (¥) in (E/,m) Now AF is the extension of A, and AKT! of A,. Thus

AR (Y) = limgoo An (ys) = A (91 (9))-
12



The advantage of the next characterization is that it is formulated in terms of an arbitrary
fundamental sequence of seminorms.

Theorem 3.5 (Dubinski, Vogt, 1985) Let E be a Fréchet space with a continuous norm.
Let (||-]|,) be a increasing sequence of norms which define the topology of E. Denote Ej =
(E, ||'llx) and @k, : Exy1 — Ej, the unique extension of the identity i : (E,||[|,.1) = (B, |]l)-
Then, the following are equivalent:

1. E is countably normable

2. There exists ko € N such that for every k > ko there exists j > k such that if (zy,), C E
is ||| ;-Cauchy and ||zn ||, — 0, then ||z |, — 0.

Proof. In order to show (1) = (2), let (|-|,),cyn be a fundamental sequence of norms in E

such that the extensions ¢y : (E, ||, 1) —= (B, |];) of the identity i : (E,|],,,) — (E,|-];)
are injective for each k.

Select ko € N such that |-[; < C'[|-[|, for some C > 0 (recall that both (|-|;) and (]|-[|),
are fundamental systems of seminorms of E). Fix k > ko and choose &’ such that [-||,, < D|-|,,
for some D > 0. Now choose j such that ||, < E|-[|;.

Take (v), C E, which is ||-[|,-Cauchy and satisfies |[zy[;, — 0 as n tends to infinity.
Since |-[; < C || ||, we get |zn|; — 0 as n — co. Moreover (z,),, is |-[,,-Cauchy in £ and the
unique extension @ro. ..o _1 ¢ (B, |[y) = (B, ],) of the identity i : (B, ||-[l) — (&, |I[l,) is
injective. By the lemma, |2,|,, — 0 as n — oo. Since ||-||, < D|-|,.,, we conclude ||z, — 0.

Then, the proof of (2) is complete.
Now, in order to show (2) = (1) we first prove the following

Claim 3.6 Condition (2) implies that there ezists ko € N such that, for every element x €
NP Pho - - - Pk (Ek+1), there exist x, € Ey, k € N, such that xy, = x and xp = prTrs1 for
every k > ko (i.e. x belongs to Proji>i, (Ek)i ¥k : Ext1 — Ex)).

Proof. For each k > kg, we choose ji > k satisfying (2), we may select it satisfying jrr1 > Jk
for each k € N. Given x € M2, @k - - - Pk (Eg+1), we can find for each k > ko, yr € Eg
such that o = g, ... @r—1Yk- By (2), @iy .. pr—1 is injective on ¢y ... ;1 (E;,). Indeed,
Pko -+ - Pk—1 * E. — Ekg and Pk Pjp—1 Ejk — Fp and ((Pkg . Sok—l) (gok A (ij—l) : Ej —
Ey, is the unique continuous extension of the identity i : (E, HH]k) — (E, HHko) By (2) if
(zn), is [|]|;, -Cauchy and ||z, ||, — 0, therefore ||z, ||, — 0.

Suppose (@ry - - - Pr—1) (@ ---@je—1) (2) = 0 with z € Ej,. Select (2,),, C E, which is
[[]|;,-Cauchy with z, — 2 in Ej,. We obtain

(Pro - - - Ph—1) (k- - Pji—1) (2n) = 2n = (ko - - - Ph=1) (P - - - Pjy—1) (2) = 0 in B,

then ||z, = 0; therefore, ||z, — 0.

On the other hand, as z, — z in Ej, then z, = (¢g ... @j—1) (zn) = (Pk -+ Pj—1) (2) in
Ej,. Therefore z, = Ok - ju—1 (2) in By but ||z, ||, — 0 and this implies (¢y . .. ¢j,—1) (2) =
0.

We define now xy, := = and z, := @i ... ;-1 (y;,) for each k € N. Observe first that the

injectivity of ¢p, ... k-1 on @i ... —1 (Ej,) implies ¢k ... 051 (Yj.) = @k---pj—1 (y;)
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for all j > ji. Both belong to ¢j...¢;,—1(E;,) C Ej, and both are mapped to z by
Ok - - - Pr—1. In particular, for j = jr11 we get vk ... 051 (Yj.) = @k --- @), (yjk+1)' Now
Th+1 = Pk+1--- Py (yjkﬂ)’ thus Yrrrr1 = CrPrrt - - - @5y, (yij) = Pk P -1 (yjk) = Xf.

And Lho+1 = Pho+1 -+ Pirgy1—1 \ Yirg+1 and PhoTho+1 = PkoPko+1 -+ - Pirg41 yjk0+1) =T =
T, And the claim is proved. O

We may assume that kg = 1 in the claim. So, for every x € N 1 ... ¢k (Eky1), there
exists (xy), such that x, € Ej, with 21 =  and x;, = @grp4q for each k > 1. Set Fj, :=
©1 ... ¢k (Fry1) with the quotient norm induced by Fyy1. The space F' = NiFy with the
projective topology is a countably normed Fréchet space. Observe that F' C F; algebraically
and the injection is continuous, since each map ¢y ... ¢ : Exy+1 — E7 is continuous.

We denote by P;, : E — Ej the canonical inclusion. Recall that ||-||; is a norm, hence
P, : E — (mk) is injective. We show that P{E = F ( in E;). By definition of E,
Py =¢1...0pP;y1 for each k € Nthen PLE = ¢1...05Pp 1 E Cop1...0k (Ek—H) for each k;
therefore, PiE = F. On the other hand, if y € F C E1, y = N2 91 ... ¢k (Ext1) we apply
the claim to find (z),, 1 € E} for each k such that 1 = y and ¢gx41 = xy, for each k € N.
Since FE is a Fréchet space and E = proji (Fy, @), there is € E with Py () = xy for each
k. In particular P () =y and FF C PLE. Thus P, : E — F C Ej is bijective. We know
that P, : E — F4 is continuous and the inclusion F' C Fj is also continuous. If we prove
that P; has closed graph as a map from E to F, the closed graph theorem implies that P;
is a continuous and (being bijective) by the open graph theorem an isomorphism. Suppose
zn, — x in E and Pz, — y in F, then Pz, — y in E; (since F' — Ej is continuous) and
Pyx,, — Px in F; (since P : E < FEj is continuous), therefore F; is Banach/Hausdorff and
then Pz =y. O

Consequence 3.7 Vogt’s Example 2./ is not countably normable.
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