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The purpose of this seminar is to explain several results concerning the bounded approx-
imation property for Fréchet spaces. We give a full detailed proof of an important result due
to Pe lczyński [Pel71] (see also [Mat77]) that asserts that every separable Fréchet space with
the bounded approximation property is isomorphic to a complemented subspace of a Fréchet
space with a Schauder basis. We also explain Vogt’s example (cf. [Vog83]) of a nuclear Fréchet
space without the bounded approximation property. This example was much simpler than
the original counterexample due to Dubinski. These examples solved a long standing problem
of Grothendieck. Vogt [Vog10] obtained another simple example of a nuclear Fréchet function
space without the bounded approximation property. The relation of the bounded approxima-
tion property for Fréchet spaces with a continuous norm and the countably normable spaces,
including several results due to Dubinski and Vogt [DuV85], is also explained.

1 Introduction

A topological vector space E is a Fréchet space if it is metrizable, complete and locally
convex. We use below the abbreviation “lcs” for “locally convex space”. The topology of
E is defined by a fundamental system of seminorms p1 ≤ p2 ≤ . . . ≤ pn ≤ . . . satisfying
that for each x ∈ E, x 6= 0, there exists n ∈ N such that pn (x) > 0. Recall that for
every neighbourhood of the origin U ∈ U0 (E), there exist n ∈ N and ε > 0 such that
{x ∈ U : pn (x) < ε} ⊂ U . We may assume that a basis of neighborhoods of the origin is
given by Un := {x ∈ E : pn (x) < 1} , n ∈ N. We say that B is a bounded set in E, and we
write B ∈ B (E), if supb∈B pn (b) <∞ for every n ∈ N.

Let (pn)n and (qm)m be fundamental system of seminorms in E and F respectively. A
linear operator T : E → F is continuous operator if and only if for every m ∈ N there exists
n ∈ N and C > 0 such that qm (T (x)) ≤ pn (x) for every x ∈ E. We denote L (E,F ) the space
of linear and continuous operators from E to F . A set H ⊂ L (E,F ) is equicontinuous if for
every m ∈ N there exists n ∈ N and C > 0 such that qm (T (x)) ≤ pn (x) for every x ∈ E and
for every T ∈ H. Note that this condition is equivalent to the fact that ∩T∈HT−1 (V ) ∈ U0 (E)
for every V ∈ U0 (F ). It is also important to recall Banach-Steinhaus’ theorem for Fréchet
spaces: Let E be a Fréchet space. H ⊂ L (E,F ) is equicontinuous if and only if for every
x ∈ E, H (x) := {T (x) : T ∈ H} is a bounded set of F .

Definition 1.1 We say that E admits a continuous norm if there exists a norm ‖·‖ : E → R
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that is continuous for the topology of E; that is there exists a norm ‖·‖ : E → R such that
there exists n ∈ N and C > 0 with ‖x‖ ≤ Cpn (x) for every x ∈ E. If E has a continuous
norm, we can choose a fundamental system of seminorms p1 ≤ p2 ≤ . . . ≤ pn ≤ . . . in E such
that pk is a norm for every k ∈ N.

Example 1.2 1. The space H (Ω) with Ω ⊂ C an connected open set in the complex
plane endowed with the topology of uniform convergence on the compact subsets of Ω
is a Fréchet space that admits a continuous norm and is not normable.

2. The space Fréchet C∞ ([0, 1]) endowed by the topology given by the seminorms

pn (f) := max
1≤α≤n

sup
x∈[0,1]

∣∣∣f (α) (x)
∣∣∣ ,

also admits a continuous norm.

3. The space ω := KN endowed by the topology given by the seminorms

pn (x) := max
1≤j≤n

|xj | , with x = (xj)j ,

does not admit a continuous norm.

4. The space C∞ (Ω) endowed by the topology given by the seminorms

pn (f) := max
1≤x≤n

sup
x∈Kn

∣∣∣f (α) (x)
∣∣∣ ,

where K1 ⊂ K2 ⊂ . . . ⊂ Kn ⊂ . . . is a fundamental sequence of compact subsets in Ω,
does not admit a continuous norm.

There are two important results concerning Fréchet spaces with does not have a continuous
norm.

Theorem 1.3 (Bessaga, Pe lczyński) A Fréchet space does not have a continuous norm if
and only if ω is isomorphic to a complemented subspace of E.

Theorem 1.4 (Eidelheit) If E is a Fréchet space that is not normable then E have a iso-
morphic quotient in ω.

Example 1.5 Here is a concrete example of a not normable Fréchet space with a quotient
isomorphic to ω: Consider the Fréchet space H (C) of entire functions endowed with the
compact open topology. Select a sequence (zn) in C such that |zn+1| > |zn| for each n ∈ N
and limn→∞ |zn| =∞. The linear map T : H (C)→ ω defined by f 7→ f (zn) is surjective by
Weierstrass interpolation Theorem. The map T is clearly continuous and it is open by the
open mapping theorem for Fréchet spaces.

Definition 1.6 A lcs E has the bounded approximation property (BAP) if there exists an
equicontinuous net (Aj)j∈J ⊂ L (E) with dim(Aj (E)) <∞ for every j ∈ J and limj∈J Aj (x) =
x for every x ∈ E. In other words, the net (Aj)j∈J converges to the identity in the space
Ls (E), i.e. for the topology of pointwise or simple convergence.
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Remark 1.7 Let H ⊂ L (E,F ) be equicontinuous. If N ⊂ E is a total subset of E (i.e.
span (N) = E), then the topologies of simple convergence on E (Ts (E)) and on N (Ts (N))
coincide in H ([Köt79, 39.4.(1)]). In particular, if E is separable and F is metrizable, then
the topology Ts (E) of simple convergence on E is metrizable on every equicontinuous subset
H oh L (E,F ) ([Köt79, 39.4.(7)]).

Consequence 1.8 If E is a separable, metrizable lcs then E has the BAP if and only if there
exists (An)n ⊂ L (E) (a sequence) which is equicontinuous, dim(An (E)) <∞ for every n ∈ N
and limn→∞An (x) = x for each x ∈ E.

In case that E is barrelled metrizable and separable, E has BAP if and only if there exists
(An)n ⊂ L (E) with dim(An (E)) < ∞ for every n ∈ N and limn→∞An (x) = x for each
x ∈ E. This is a consequence of Banach-Steinhaus Theorem.

Remark 1.9 Let H be an equicontinuous subset of L (E,F ). By [Köt79, 39.4.(2)] the topol-
ogy Ts (E) and the topology Tc (E) of uniform convergence of precompact subsets of E
coincide on H.

Consequence 1.10 If E has the BAP, Aj → I with j ∈ J uniformly on the precompact
subsets of E. Accordingly, the BAP implies approximation property.

In what follows E is a separable Fréchet space, and p1 ≤ p2 ≤ . . . ≤ pk ≤ pk+1 ≤ . . . is a
fundamental system of seminorms in E.

We assume, without loss of generality, that Uk := {x ∈ E : pk (x) ≤ 1}, with k ∈ N, form
a basis of 0-neighborhoods in E.

In case E is a Fréchet space with a continuous norm, we assume without loss of generality
that all the elements of the fundamental system of seminorms p1 ≤ p2 ≤ . . . ≤ pk ≤ pk+1 ≤ . . .
are in fact norms.

Remark 1.11 If E is a separable Fréchet space with a fundamental system of seminorms
(pk)k has the BAP, we can find (An)n ⊂ L (E), with dim(An (E)) < ∞ for every n ∈
N and limn→∞An (x) = x for each x ∈ E. By the Banach-Steinhaus Theorem, (An)n is
equicontinuous. Therefore, for every k ∈ N there exists l ≥ k and Ck > 0 with pk (An (x)) =
Ckpl(k) (x) for every x ∈ E and for every n ∈ N.

Proposition 1.12 Let E be a separable Fréchet space, then the following conditions are
equivalent:

1. The BAP holds in E,

2. There exists (An)n ⊂ L (E), with dim(An (E)) <∞ for every n ∈ N and limn→∞An (x) =
x for each x ∈ E,

3. There exists (Bn)n ⊂ L (E), with dim(Bn (E)) <∞ for every n ∈ N and
∑∞

n=1Bn (x) =
x for each x ∈ E.

Proof. (1)⇒ (2) Since E is a separable space, there exists a countable dense subset F of E
Accordingly, the following topologies coincide on the equicontinuous subsets of L (E):

• Uniform convergence over the compact sets of E,

3



• Pointwise convergence on E,

• Pointwise convergence on F .

As the topology of pointwise convergence on F is metrizable, the results holds.
(2)⇒ (1) Since An (x) converges to x when n tends to infinity, then {An (x)}n is bounded

in E for every x ∈ E. By Banach-Steinhaus’ theorem, {An}n is equicontinuous.
(2)⇒ (3) Take B1 := A1 and Bn+1 := An+1 −An, for every n ∈ N, to get the result.
(3)⇒ (2) Now set An := B1 + . . .+Bn for every n ∈ N. 2

Remark 1.13 Let (pk)k be a fundamental system of seminorms in E. Define qk (x) :=
supn∈N pk (

∑n
i=1Bi (x)), for every x ∈ E and for every k ∈ N.

Since x = limn→∞
∑n

i=1Bi (x), we have pk (x) = limn→∞ pk (
∑n

i=1Bi (x)) and this implies
that pk (x) ≤ qk (x) for every x ∈ E and for every k ∈ N.

Observe that
∑n

i=1Bi = An for each n ∈ N. Hence pk (
∑n

i=1Bi (x)) = pk (An (x)) ≤
Ckpl(k) (x) for each n ∈ N. Thus qk (x) ≤ Ckpl(k) (x) for every x ∈ E and for every k ∈ N.
And the sequence of seminorms (qk)k is a fundamental system of seminorms in E.

Definition 1.14 We say that {xn} ⊂ E is a Schauder basis in E with coefficient functionals
{x′n} if:

• For every k, n ∈ N, 〈x′k, xn〉 = δn,k

• For every x ∈ E, x =
∑∞

n=1〈x′n, x〉xn, the series converging in E.

Example 1.15 Some spaces with Schauder basis are Köthe echelon spaces, and the Banach
sequence spaces `p, 1 ≤ p <∞, and c0.

Proposition 1.16 The following results holds:

(1) If E is a lcs with the BAP and F ⊂ E is complemented, then F has the BAP, too.

(2) If E is a barrelled lcs with a Schauder basis, then E has the BAP.

Proof. (1) Let (Aτ )τ∈T ⊂ L (E) be an equicontinuous net such that dimAτ (E) < ∞ for
every τ ∈ T and limτ∈T Aτ (x) = x for each x ∈ E. Let F ⊂ E be complemented. Denote
by J : F → E the canonical inclusion and by P : E → F the projection. For each τ ∈ T ,
define Bτ : F → F by Bτ := PAτJ . Clearly, dimBτ (F ) ≤ dimAτ (F ) < ∞ and for every
q ∈ cs(E) there exists q′ ∈ cs(E) such that q (Aτ (x)) ≤ q′ (x) for every x ∈ E and for every
τ ∈ E. Moreover, as P : E → F is continuous, given p ∈ cs(E) there exists q ∈ cs(E) such
that p (Px) ≤ q (x) for every x ∈ E. Then

p (Bτ (x)) = p (PAτJ (x)) = p (PAτ (x)) ≤ q (Aτ (x)) ≤ q′ (x)

for every x ∈ F and for every τ ∈ T . Thus (Bτ )τ∈T is equicontinuous in L (F ). Finally, for
x ∈ F ,

lim
τ∈T

Bτ (x) = lim
τ∈T

PAτ (x) = P

(
lim
τ∈T

Aτ (x)

)
= P (x) = x.

(2) Let (xn)n ⊂ E be a Schauder basis with coefficient functionals (x′n)n ⊂ E′. That is
〈x′k, xn〉 = δk,n and x =

∑∞
n=1 x

′
n (x)xn converges in E for each x ∈ E. Denote by Pn : E → E
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the map Pn (x) :=
∑n

k=1 x
′
k (x)xk, which is a continuous projection onto span(x1, . . . , xn).

Since E is barrelled, (Pn)n is equicontinuous. As limn→∞ Pn (x) = x for every x ∈ E, we
conclude that E has the BAP. 2

Theorem 1.17 (Pe lczyński. 1971) Every separable Fréchet space E with the BAP is
isomorphic to a complemented subspace of a Fréchet space E0 with a Schauder basis. If E
has a continuous norm, E0 can be chosen with a continuous norm.

Proof. Fix a fundamental sequence of seminorms, |·|1 ≤ |·|2 ≤ . . . ≤ |·|k ≤ |·|k+1 ≤ . . . in E.
By assumption there is (An)n ⊂ L (E), dim(An (E)) <∞ for each n ∈ N, such that, An 6= 0
for each n ∈ N, and limn→∞

∑n
p=1Ap (x) = x in E for every x ∈ E.

We first select another (more suitable) fundamental sequence of seminorms. Set Ep :=
Ap (E), p = 1, 2, . . . and mp :=dim(Ep), p = 1, 2, . . . with m0 := 0. Since dim(Ep) < ∞,
for each p there is k (p) ∈ N such that k (p− 1) < k (p) and |·|k(p) is a norm in Ep. We set
‖·‖n := |·|k(n). Clearly, ‖·‖n ≤ ‖·‖n+1 for each n and (‖·‖n)n is a fundamental sequence of

seminorms in E. Fix n ∈ N and for j < n, set Fnj :=
(

Ker ‖·‖j
)
∩ En. As ‖·‖j ≤ ‖·‖j+1 for

each j, we have Fnn−1 ⊂ Fnn−2 ⊂ . . . ⊂ Fn1 ⊂ En. They are all closed in En and, since they are
finite dimensional, each one is complemented in the previous one.

We select a complement in each step Fnn−2 = Fnn−1⊕Hn
n−2, Fnn−3 =

(
Fnn−1 ⊕Hn

n−2

)
⊕Hn

n−3

and En = Fn1 ⊕Hn
0 . We can write En = Hn

0 ⊕Hn
1 ⊕ . . .⊕Hn

n−2 ⊕ Fnn−1. Selecting a element
in each component and writing the projections, each x ∈ En can be uniquely written as
x =

∑n−1
l=0

∑
k(finite) x

l
k.

Fix a seminorm ‖·‖j with j < n and consider each projection xlk of x. If l ≥ j, xlk ∈ Hn
l ⊂

Fnl = ( Ker‖·‖l)∩En then xlk ∈ Ker
(
‖·‖j

)
(i.e.

∥∥xlk∥∥j = 0); therefore
∥∥∥∑n−1

l=j

∑
k(finite) x

l
k

∥∥∥
j

=

0. On the other hand, ‖·‖j is a norm on Hn
0 ⊕ . . . ⊕Hn

j−1. This implies that the projection∑j−1
r=0

∑
k(finite) x

r
k → xlk is continuous for 0 ≤ l < j and each k. So we can find Cj > 0 such

that

∥∥∥xlk∥∥∥
j
≤ Cj

∥∥∥∥∥∥
j−1∑
r=0

∑
k(finite)

xrk

∥∥∥∥∥∥
j

= Cj

∥∥∥∥∥∥
n−1∑
r=0

∑
k(finite)

xrk

∥∥∥∥∥∥
j

, for 0 ≤ l < j and each k.

Accordingly, we have found for Ep and mp a family of 1-dimensional operators Bp
j : Ep →

Ep with j = 1, . . . ,mp such that

e =

mp∑
j=1

Bp
j e for every e ∈ Ep,

and
max

1≤j≤mp

∥∥∥Bp
j e
∥∥∥
k
≤ Rp ‖e‖k for every e ∈ Ep and for every k = 1, . . . , p.

In fact, Rp = max (C1, . . . , Cp), selected as above.

Now, since limn→∞
∑n

p=1Ap (x) = x for every x ∈ X, the sequence
(∑n

p=1Ap

)∞
n=1

is

equicontinuous in L (E), this means that, for every k ∈ N, there exists Mk > 0 and l (k) ≥ k
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such that
∥∥∥∑n

p=1Ap (x)
∥∥∥
k
≤Mk ‖x‖l(k) for every x ∈ X and for every n ∈ N. This implies

‖An (x)‖k ≤

∥∥∥∥∥∥
n∑
p=1

Ap (x)

∥∥∥∥∥∥
k

+

∥∥∥∥∥∥
n−1∑
p=1

Ap (x)

∥∥∥∥∥∥
k

≤ 2Mk ‖x‖l(k) for each n ∈ N and x ∈ E.

For each p ∈ N select Np ∈ N with mpRp ≤ Np and set N0 = 0. Set Cpi := N−1
p Bp

j with
i = rmp + j, r = 0, 1, . . . , Np − 1 and j = 1, . . . ,mp. Observe that there are Npmp rank-1
operators.

r = 0, 1
Np
Bp

1 . . .
1
Np
Bp
mp

r = 1, 1
Np
Bp

1 . . .
1
Np
Bp
mp

. . . . . .
r = Np − 1, 1

Np
Bp

1 . . .
1
Np
Bp
mp

If e ∈ Ep, we get

mpNp∑
i=1

Cpi e =

Np−1∑
r=0

mp∑
j=1

1

Np
Bp
j e =

1

Np

Np−1∑
r=0

e = e for every p ∈ N.

Moreover, for k = 1, 2, . . . , p , e ∈ Ep, and 1 ≤ q ≤ mpNp, we get r and w with 0 ≤ r ≤
Np − 1, 1 ≤ w ≤ mp such that

q∑
i=1

Cpi = r

mp∑
j=1

N−1
p Bp

j +

w∑
j=1

N−1
p Bp

j .

Thus, for k = 1, 2, . . . , p we have∥∥∥∥∥∥
q∑
j=1

Cpi e

∥∥∥∥∥∥
k

≤ r

Np

∥∥∥∥∥∥
mp∑
j=1

Bp
j e

∥∥∥∥∥∥
k

+
1

Np

∥∥∥∥∥∥
w∑
j=1

Bp
j e

∥∥∥∥∥∥
k

≤ r

Np
‖e‖k ‘

1

Np

w∑
j=1

∥∥∥Bp
j e
∥∥∥
k
≤

≤ ‖e‖k +
1

Np

w∑
j=1

Rp ‖e‖k ≤
(

1 +
wRp
Np

)
‖e‖k ≤ 2 ‖e‖k ,

where
wRp
Np
≤ 1 since 1 ≤ w ≤ mp and mpRp ≤ Np. We then obtain

max
1≤q≤mpNp

∥∥∥∥∥
q∑
i=1

Cpi e

∥∥∥∥∥
k

≤ 2 ‖e‖k for every e ∈ Ep and k = 1, . . . , p.

Define now Ãs := Cpi Ap for s = m0N0 + . . . + mp−1Np−1 + i, p = 1, 2, . . . and i =

1, 2, . . . ,mpNp. Observe that Ãs ∈ L (E) since E
Ap→ Ep

Cpi→ Ep ↪→ E.

Claim 1.18
(∑n

s=1 Ãs

)∞
n=1

is equicontinuous in L (E).

If n ≥ m1N1 there are t, q with 1 ≤ q ≤ mt+1Nt+1 such that

n∑
s=1

Ãs =
t∑

p=1

mpNp∑
i=1

Cpi Ap (x) +

q∑
i=1

Ct+1
i At+1.
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Fix k ∈ N; for x ∈ E we have, if k ≤ t+ 1,∥∥∥∥∥
n∑
s=1

Ãs (x)

∥∥∥∥∥
k

≤

∥∥∥∥∥∥
t∑

p=1

mpNp∑
i=1

Cpi Ap (x)

∥∥∥∥∥∥
k

+

∥∥∥∥∥
q∑
i=1

Ct+1
i At+1 (x)

∥∥∥∥∥
k

=

=

∥∥∥∥∥∥
t∑

p=1

Ap (x)

∥∥∥∥∥∥
k

+ 2 ‖At+1 (x)‖k ≤

≤ Mk ‖x‖l(k) + 4Mk ‖x‖l(k) = 5Mk ‖x‖l(k) .

And the claim follows, since this estimates holds for all n such that k ≤ t + 1, hence for
all except a finite number. Consequently, we have

∀k ∈ N,∃ω (k) ,Kk > 0 : sup
n

∥∥∥∥∥
n∑
s=1

Ãs (x)

∥∥∥∥∥
k

≤ Kk ‖x‖ω(k) for every x ∈ E.

Claim 1.19 limn→∞
∑n

s=1 Ãs (x) = x for every x ∈ E.

First, select t ∈ N and q with 1 ≤ q ≤ mt+1Nt+1, for n ≥ m1N1 then∥∥∥∥∥
n∑
s=1

Ãs (x)− x

∥∥∥∥∥
k

≤

∥∥∥∥∥∥
t∑

p=1

mpNp∑
i=1

Cpi Ap (x)− x

∥∥∥∥∥∥
k

+

∥∥∥∥∥
q∑
i=1

Ct+1
i At+1 (x)

∥∥∥∥∥
k

≤

≤

∥∥∥∥∥∥
t∑

p=1

Ap (x)− x

∥∥∥∥∥∥
k

+ 2 ‖At+1 (x)‖k if k ≤ t+ 1.

Now,

At+1 (x) =

(
t+1∑
r=1

Ar (x)− x

)
−

(
t∑

r=1

Ar (x)− x

)
,

where the two expressions tends to 0 as t tends to infinity. Then, limt→∞ ‖At+1 (x)‖k = 0.
As n tends to infinity, then t tends also to infinity, therefore, there exists

lim
n→∞

∥∥∥∥∥
n∑
s=1

As (x)− x

∥∥∥∥∥
k

= lim
t→∞

∥∥∥∥∥∥
t∑

p=1

Ap (x)− x

∥∥∥∥∥∥
k

+ lim
t→∞
‖At (x)‖k = 0

Denote by E0 :=
{
y = (y (s))s∈N : y (s) ∈ Ãs (E) and

∑∞
s=1 y (s) converges in E

}
, en-

dowed with the fundamental system of seminorms

||| (y (s))s |||k := sup
n

∥∥∥∥∥
n∑
s=1

y (s)

∥∥∥∥∥ , y = (y (s))s ∈ E0.

It is not difficult to prove that E0 is a Fréchet space. We prove that E0 has a Schauder basis.

Since dim
(
Ãs (E)

)
= 1 for each s ∈ N, we choose ys ∈ Ãs (E), ys 6= 0, for each s ∈ N.

For each y ∈ Ãs (E) there is c ∈ K such that y = cys. Given s ∈ N, define es := (ŷ (t))t∈N
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by ŷ (t) = 0 if t 6= s and ŷs (s) = ys. It is easy to see that span (es, s ∈ N) = E0. Moreover,
|||
∑n

s=1 cses|||k ≤ |||
∑n+1

s=1 cses|||k, for each n, k ∈ N and each c1, . . . , cn+1 ∈ K. Then Theorem
14.3.6 in [Jar81, p. 298] implies that {es}s∈N is a Schauder basis of X0.

Now define I : E → E0 by I (x) :=
(
Ãs (x)

)
s∈N

. Since x =
∑∞

s=1 Ãs (x) in E, it follows

that I (x) is well-defined. Moreover, I and I−1 : I (E) → E are continuous by the estimates

|||I (x) |||k ≤ Kk ‖x‖wk (that were proved when we showed the equicontinuity of
(∑n

s=1 Ãs

)
n

)

and

‖x‖k =

∥∥∥∥∥ lim
n→∞

n∑
s=1

Ãs (x)

∥∥∥∥∥
k

≤ sup
n

∥∥∥∥∥
n∑
s=1

Ãs (x)

∥∥∥∥∥
k

= |||I (x) |||k.

Observe that I−1 ((y (s))s) =
∑

s y (s), if (y (s))s ∈ I (E).

Finally, we define a projection L : E0 → I (E) by L ((y (s))s) :=
(
Ãs (

∑∞
t=1 y (t))

)
s
. To

check that L is continuous, if
∑∞

s=1 y (s) converges in E, using∥∥∥∥∥
∞∑
s=1

y (s)

∥∥∥∥∥
l

= lim
n→∞

∥∥∥∥∥
n∑
s=1

y (s)

∥∥∥∥∥
l

≤ sup
n

∥∥∥∥∥
n∑
s=1

y (s)

∥∥∥∥∥
l

= ||| (y (s))s |||l,

for each l ∈ N and for each y ∈ E0, then

|||

(
As

( ∞∑
t=1

y (t)

))
s

|||k = sup
n

∥∥∥∥∥
n∑
s=1

Ãs

( ∞∑
t=1

y (t)

)∥∥∥∥∥
k

≤ Kk

∥∥∥∥∥
∞∑
t=1

y (t)

∥∥∥∥∥
ωk

≤ Kk||| (y (s))s |||ωk .

Finally, L2 = L, since
∑∞

n=1 Ãn (z) = z for every z ∈ E. 2

2 Extension of injective maps. Vogt’s Example of a nuclear
Fréchet space without the BAP

In this section we present Vogt’s counterexample [Vog83] of a nuclear Fréchet space which does
not satisfy the bounded approximation property. Some results on the extension of injective
continuous linear maps between normed spaces are needed first.

Let E,F be two normed spaces and let T ∈ L (E,F ). We denote Ê, F̂ the completion
of E,F respectively. We know that T : E → F̂ is a continuous map. There exists a unique

continuous linear map T̂ : Ê → F̂ such that the restriction T̂
∣∣∣E of T̂ to E coincides T . It is

defined as T̂ (x) := limj→∞ T (xj), with (xj)j ⊂ E and xj → x in Ê as j →∞. In general, T̂
need not to be injective.

Example 2.1 Let (X, ‖·‖) be an infinite dimensional Banach space. Take u ∈ X∗\X ′ (
i.e. u : X → K is a non-continuous linear form ), and define |||x||| := |u (x)| + ‖x‖ (observe
that ‖·‖ ≤ ||| · ||| in X). Clearly the identity T : (X, ||| · |||) → (X, ‖·‖) is continuous and

injective. Then, there exists a unique continuous linear map T̂ : ̂(X, ||| · |||) → (X, ‖·‖) such

that T̂
∣∣∣X = T . Clearly T is surjective since T̂ (X) = T (X) = X ⊂ T̂

(
̂(X, ||| · |||)

)
. Assume

that T is injective. By the closed graph theorem,
(
T̂
)−1

would be continuous. This would

imply |||x||| = |U (x)|+ ‖x‖ ≤ C |x| , for every x ∈ X, then u ∈ X ′, a contradiction.
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Proposition 2.2 Let X,Y be normed spaces and let A : (X, ‖·‖)→ (Y, ||| · |||) be a continuous

injective linear operator. The unique continuous linear extension Â : ̂(X, ‖·‖) → ̂(Y, ||| · |||)
of A is injective if and only if for every (xj)j ⊂ X, which is ‖·‖-Cauchy in X such that
limj→∞ |||Axj ||| = 0 we have limj→∞ ‖xj‖ = 0.

Proof. Let x̂ ∈ ̂(X, ‖·‖) such that Âx̂ = 0 in ̂(Y, ||| · |||). Then, there exists a (xj)j ⊂ X, where

(xj)j is ‖·‖-Cauchy in X, such that xj → x̂ in ̂(X, ‖·‖). Using that Â is continuous Âxj = Axj

converges Âx̂ = 0 in ̂(Y, ||| · |||), hence Axj → 0 in (Y, ||| · |||) as j →∞. By assumption xj → 0

in X, hence x̂ = 0. And Â is injective.
In order to show the converse, let (xj)j be a Cauchy sequence inX such that limj→∞ |||Axj ||| =

0. There is x̂ ∈ X̂ such that xj → x̂ in ̂(X, ‖·‖), thus Axj → Âx̂ in ̂(Y, ||| · |||). This implies

Âx̂ = 0 and, since Â is injective, x̂ = 0 . Therefore limj→∞ ‖xj‖ = 0. 2

Lemma 2.3 (Vogt’s main Lemma) Let E be a Fréchet space with a fundamental system
of seminorms (‖·‖k)k. Assume that E has a continuous norm and the BAP. Then, there
exists k (0) such that for every k ≥ k (0) exists l ≥ k such that for every (xj)j ⊂ E that is
‖·‖l-Cauchy such that limj→∞ ‖xj‖k(0) = 0 we have limj→∞ ‖xj‖k = 0.

Proof. Let (Aτ )τ∈T be an equicontinuous net in L (E) such that Aτ (E) is finite dimensional
for every τ ∈ T and Aτx converges to x for each x ∈ E.

Let ‖·‖k(1) be a norm. Select k (0) ≥ k (1) and C > 0 such that ‖Aτx‖k(1) ≤ C ‖x‖k(0) for
each x ∈ E and each τ ∈ T .

Since ‖·‖k(1) is a norm and Aτ (E) is finite dimensional, for each τ ∈ T and k ∈ N there
is Cτ,k > 0 such that

‖Aτx‖k ≤ Cτ,k ‖Aτx‖k(1) ≤ Cτ,kC ‖x‖k(0) .

Fix now k ≥ k (0) and select l ≥ k and D > 0 such that ‖Aτx‖k ≤ D ‖x‖l for every x ∈ E
and for every τ ∈ T . Let (xj)j ⊂ E be a ‖·‖l-Cauchy sequence such that limj→∞ ‖xj‖k(0) = 0.

Given ε > 0, choose j (0) ∈ N such that
∥∥xj − xj(0)

∥∥
l
< ε if j ≥ j (0). Given xj(0) ∈ E, select

τ ∈ T such that
∥∥xj(0) −Aτxj(0)

∥∥
k
< ε. For j ≥ j (0), we have

‖xj‖k ≤
∥∥xj − xj(0)

∥∥
k

+
∥∥xj(0) −Aτxj(0)

∥∥+
∥∥Aτ (xj(0) − xj

)∥∥+ ‖Aτxj‖ ≤
≤

∥∥xj − xj(0)

∥∥
l
+ ε+ Cτ,kC

∥∥xj(0) − xj
∥∥
k(0)

+ Cτ,kC ‖xj‖k(0) ≤

≤ (2ε+ Cτ,kCε) + Cτ,kC ‖xj‖k(0) .

Selecting j (1) > j (0) with ‖xj‖k(0) < ε, we get ‖xj‖k ≤ (2 + 2Cτ,k) ε for all j ≥ j (1). 2

Example 2.4 (Vogt’s example) Take 0 < ρµ,ν ≤ 1, µ, ν ∈ N, with limµ→0 ρµ,ν = 0 for
every ν ∈ N. Denote x =

(
xnµ,ν

)
n,µ,ν

∈ KN×N×N. For p ∈ N, define

‖x‖p :=
∑

n,µ,ν≤p

∣∣xnµ,ν∣∣ pn+µ+ν +
∑

n,µ,ν>p

∣∣ρµ,νxnµ,ν − xn+1
µ,ν

∣∣ pn+µ+ν .
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Set E :=
{
x =

(
xnµ,ν

)
n,µ,ν∈N3 : ‖x‖p <∞ for every p ∈ N

}
. It is a Fréchet space and

‖x‖p ≤ 2

 ∑
n,µ,ν≤p+1

∣∣xnµ,ν∣∣ pn+µ+ν +
∑

n,µ,ν>p+1

∣∣ρµ,νxnµ,ν − xn+1
µ,ν

∣∣ pn+µ+ν

 =: ‖x‖′p .

To see this, use the inequality∑
n,µ,ν=p+1

∣∣ρµ,νxnµ,ν − xn+1
µ,ν

∣∣ pn+µ+(p+1) ≤
∑
n,µ

(∣∣xnµ,p+1

∣∣+
∣∣∣xn+1
µ,p+1

∣∣∣) pn+µ+(p+1).

The canonical map
(
E, ‖·‖p+1

)
7→
(
E, ‖·‖′p

)
is nuclear, then E is a nuclear space. Indeed,

x =
∑
n,µ,ν

(en,µ,ν ⊗ un,µ,ν)(x),

where en,µ,ν are the canonical unit vectors in E ⊂ KN3
and un,µ,ν are the canonical unit

vectors in the dual. Exactly in the same positions we obtain

‖en,µ,ν‖′p =

{
pn+µ+ν , or
ρµ,νp

n+µ+ν

‖un,µ,ν‖p+1 =

{
1

(p+1)n+µ+ν
, or

1
ρµ,ν(p+1)n+µ+ν

then
∑
n,µ,ν

‖en,µ,ν‖′p ‖un,µ,ν‖p+1 <∞.

Now, observe that ‖·‖p is a norm in E for all p. Indeed, assume x =
(
xnµ,ν

)
∈ E satisfies

‖x‖p = 0 then xnµ,ν = 0 for all n, µ if ν ≤ p. In that case, ρµ,νx
n+1
µ,ν with ν > p for every n, µ

then xnµ,ν = ρnµ,νx
n+1
µ,ν with ν > p for every µ ∈ N. Suppose there are µ ∈ N and ν > p such

that x1
µ,ν 6= 0. Select q ∈ N with qρµ,ν > 1 and q > ν. Then, since x ∈ E,

∞
q≥ν
≥ ‖x‖q ≤

∑
n

∣∣xnµ,ν∣∣ qn+µ+ν =
∑
n

(ρµ,ν)n−1
∣∣x1
µ,ν

∣∣ qn+µ,ν =
∣∣x1
µ,ν

∣∣∑
n

(ρµ,νq)
n−1 qµ+ν+1 =∞,

and this is a contradiction. Then x1
µ,ν = 0 for each µ and each ν > p implies that xnµ,ν = 0

for every µ, n ∈ N and for every ν > p. Therefore x = 0.
To prove that E does not have the BAP, we use Vogt’s main lemma and we will prove for

every p0 and for every q ≥ p = p0 + 1 there exists (xm)m ⊂ E, which is ‖·‖q-Cauchy, with
‖xm‖p0 converging 0 as m tends to infinity, but ‖xm‖p does not converge to 0. To prove this
fact, given q ≥ p0 + 1, select µ ∈ N such that ρµ,pq < 1. Define xm :=

∑m
n=1 (ρµ,p)

n en,µ,p,
where en,µ,ν are the canonical unit vectors in E. For l < m we get

‖xm − xl‖q =

∥∥∥∥∥
m∑

n=l+1

(ρµ,p)
n en,µ,p

∥∥∥∥∥
q

q≥p
=

m∑
l+1

ρnµ,pq
n+µ+p = qµ+p

m∑
l+1

(ρµ,pq)
n .

And (xm)m is ‖·‖q-Cauchy, since ρµ,pq < 1. On the other hand,

‖xm‖p0 =
m∑
n=1

∣∣ρµ,pxnµ,p − xn+1
µ,p

∣∣ pn+µ+p
0 ,
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where, for n = 1, . . . ,m− 1, ρµ,px
n
µ,p − xn+1

µ,p = ρµ,pρ
n
µ,p − ρn+1

µ,p = 0, therefore

‖xm‖p0 = ρm+1
µ,p pm+µ+p

0 = pµ+p−1
0 (ρµ,pp0)m+1 → 0 as m→∞,

since ρµ,pp0 < ρµ,pq < 1.
Finally,

‖xm‖p =

m∑
n=1

ρnµ,pp
n+µ+p = pµ+p

m∑
n=1

(ρµ,pp)
n ≥ pµ+p+1ρµ,p for every m ∈ N.

Therefore ‖xm‖p does not converge to 0 as m tends to infinity.

3 Countably normable Fréchet Spaces

Definition 3.1 A Fréchet space E is countably normable (or countably normed) if there exists
a fundamental sequence of norms (‖·‖k)k defining the topology of E such that the inclusions

ik :
(
E, ‖·‖k+1

)
→ (E, ‖·‖k) can be extended (uniquely) to an injection ϕk : ̂(

E, ‖·‖k+1

)
→

̂(E, ‖·‖k) (i.e. E is an intersection of Banach spaces).

The following result is a consequence of proposition 2.2.

Lemma 3.2 Let X be a vector space with two norms ‖·‖ ≤ |||·|||. The inclusion i : (X, ||| · |||)→
(X, ‖·‖) extends uniquely to an injective continuous map if and only if for every (xn)n ⊂ X,
which is ||| · |||-Cauchy, such that ‖xn‖ → 0 as n tends to infinity then |||xn||| → 0.

Remark 3.3 A Fréchet space E with a continuous norm is countably normable if and only
if there exists a fundamental system (‖·‖k)k of norms on E such that for every k ∈ N there
exists j > k such that if (xn)n ⊂ X is ‖·‖j-Cauchy and limn ‖xn‖k = 0, then limn ‖xn‖j = 0.

Indeed, if we suppose that E is countably normable then it is enough to take j = k + 1.
If the condition is satisfied, it is enough to pass to a subsequence.

As a consequence, if E is a Fréchet space which is countably normable and F ⊂ E is a
closed subspace, then F is a countably normable Fréchet space. To prove it we just take the
restriction to F of the norms given by the remark on E.

Proposition 3.4 Every Fréchet space E with a Schauder basis and a continuous norm is
countably normable. Consequently, every separable Fréchet space with a continuous norm
and the bounded approximation property is countably normable.

Proof. Let (xn)n be a Schauder basis in E with coefficient functionals (x′n)n. We write

An : E −→ E
x −→ 〈x′n, x〉xn.

We have dim(An (E)) = 1, AnAm = δn,mAn if n 6= m and x =
∑∞

n=1An (x) =
∑∞

n=1〈x′n, x〉xn
converging in E for every x ∈ E.

Given a fundamental sequence of norms (‖·‖k)k∈N in E, define |y|k := supn ‖
∑n

i=1Aiy‖k
for every y ∈ E and k ∈ N. Then (|·|k)k is a fundamental sequence of seminorms in E. Indeed,

‖x‖k = lim
n→∞

∥∥∥∥∥
n∑
i=1

Ai (x)

∥∥∥∥∥
k

≤ sup
n

∥∥∥∥∥
n∑
i=1

Ai (y)

∥∥∥∥∥
k

= |x|k ,

11



for every k ∈ N and for every x ∈ E. In particular |·|k is a norm for each k. On the other
hand, since (

∑n
i=1Ai)n is equicontinuous in L (E) by Banach-Steinhaus’ Theorem, for every

k ∈ N, there exists l (k) > k and Ck > 0 such that ‖
∑n

i=1Ai (x)‖k ≤ Ck ‖x‖l(k) for every
n ∈ N and for every x ∈ E. This implies that for every k ∈ N there exists l (k) > k and
Ck > 0 such that |x|k ≤ Ck ‖x‖l(k).

Consider that map Aj : (E, |·|k)→ (E, |·|k) between these normed spaces. It is continuous

|Aj (y)|k = sup
n

∥∥∥∥∥
n∑
i=1

AiAj (y)

∥∥∥∥∥
k

= ‖Aj (y)‖k ≤

∥∥∥∥∥
j∑
i=1

Aj (y)−
j−1∑
i=1

Aj (y)

∥∥∥∥∥
k

≤ 2 |y|k ,

and if j = 1 then |A1 (y)|k ≤ |y|k. Then there exists a unique continuous extension Akj :

̂(E, |·|k) → ̂(E, |·|k) such that Akj

∣∣∣E = Aj for each j ∈ N. Moreover, since Akj (E) is fi-

nite dimensional (in fact 1-dimensional), it is closed and Akj

[
̂(E, |·|k)

]
⊂ Aj (E) =span(xj).

Since AiAj = δi,jAj on E, by density AkiA
k
j = δi,jA

k
i . We show now that (

∑n
i=1Aj)n is

equicontinuous on L (E, |·|k). If y ∈ E, m ∈ N,∥∥∥∥∥∥
m∑
i=1

Ai

 n∑
j=1

Aj

 (y)

∥∥∥∥∥∥
k

m≥n
=

∥∥∥∥∥∥
n∑
j=1

Aj (y)

∥∥∥∥∥∥
k

≤ |y|k ,

since∥∥∥∥∥∥
n∑
j=1

Aj (y)

∥∥∥∥∥∥
k

= sup
m

∥∥∥∥∥∥
m∑
i=1

 n∑
j=1

Aj

 (y)

∥∥∥∥∥∥
k

=

= sup
m≥n

∥∥∥∥∥∥
m∑
i=1

Ai

 m∑
j=1

Aj

 (y)

∥∥∥∥∥∥
k

+ sup
1≤m<n

∥∥∥∥∥∥
m∑
i=1

Ai

 m∑
j=1

Aj

 (y)

∥∥∥∥∥∥
k

≤ 2 |y|k .

This implies that the extensions
(∑n

j=1A
k
j

)
n

form also an equicontinuous set in L
(

̂(E, |·|k)
)

.

Since
∑n

j=1A
k
j → I pointwise in E and

(∑n
j=1A

k
j

)
n

is equicontinuous in L
(

̂(E, |·|k)
)

then,

for every x ∈ ̂(E, |·|k),
∑n

j=1A
k
j x̂

n→ x̂ in ̂(E, |·|k).

We finally prove that the unique extension ϕk : ̂(E, |·|k+1

)
→ ̂(E, |·|k) of the identity(

E, |·|k+1

)
→ (E, |·|k) is injective. Fix ŷ ∈ ̂(E, |·|k+1

)
such that ϕkŷ = 0 in ̂(E, |·|k). We know

ŷ =
∑∞

n=1A
k+1
n ŷ the series converging in ̂(E, |·|k+1

)
and the decomposition is unique, since

Ak+1
i Ak+1

j = δi,jA
k+1
i if i 6= j. Moreover, Ak+1

n (ŷ) ∈ E, since An (E) is finite dimensional in

E, hence closed in ̂(E, |·|k+1

)
.

Now 0 = ϕk (ŷ) =
∑∞

n=1A
k
n (ϕk (ŷ)), the series converging in ̂(E, |·|k). Since the decom-

position is unique, we have Akn (ϕk (ŷ)) = 0 for each n ∈ N. We are done if we show that
Ak+1
n ŷ = Akn (ϕk (ŷ)) (= 0), because this will imply ŷ =

∑∞
n=1A

k+1
n ŷ = 0.

To prove Ak+1
n = Akn (ϕk (ŷ)), select (ys) ⊂ E such that ys → ŷ in ̂(E, |·|k+1

)
. Then

ys converges to ϕk (ŷ) in ̂(E, |·|k). Now Akn is the extension of An and Ak+1
n of An. Thus

Ak+1
n (ŷ) = lims→∞An (ys) = Akn (ϕk (ŷ)). 2
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The advantage of the next characterization is that it is formulated in terms of an arbitrary
fundamental sequence of seminorms.

Theorem 3.5 (Dubinski, Vogt, 1985) Let E be a Fréchet space with a continuous norm.
Let (‖·‖k) be a increasing sequence of norms which define the topology of E. Denote Ek =
̂(E, ‖·‖k) and ϕk : Ek+1 → Ek the unique extension of the identity i :

(
E, ‖·‖k+1

)
→ (E, ‖·‖k).

Then, the following are equivalent:

1. E is countably normable

2. There exists k0 ∈ N such that for every k ≥ k0 there exists j > k such that if (xn)n ⊂ E
is ‖·‖j-Cauchy and ‖xn‖k0 → 0, then ‖xn‖k → 0.

Proof. In order to show (1) ⇒ (2), let (|·|k)k∈N be a fundamental sequence of norms in E

such that the extensions ϕk : ̂(E, |·|k+1

)
→ ̂(E, |·|k) of the identity i :

(
E, |·|k+1

)
→ (E, |·|k)

are injective for each k.
Select k0 ∈ N such that |·|1 ≤ C ‖·‖k0 for some C > 0 (recall that both (|·|k) and (‖·‖k)k

are fundamental systems of seminorms of E). Fix k ≥ k0 and choose k′ such that ‖·‖k ≤ D |·|k′
for some D > 0. Now choose j such that |·|k′ ≤ E ‖·‖j .

Take (xn)n ⊂ E, which is ‖·‖j-Cauchy and satisfies ‖xn‖k0 → 0 as n tends to infinity.
Since |·|1 ≤ C ‖·‖k0 , we get |xn|1 → 0 as n→∞. Moreover (xn)n is |·|k′-Cauchy in E and the

unique extension ϕ1◦. . .◦ϕk′−1 : ̂(E, |·|k′)→ ̂(E, |·|1) of the identity i : (E, ‖·‖k′)→ (E, ‖·‖1) is

injective. By the lemma, |xn|k′ → 0 as n→∞. Since ‖·‖k ≤ D |·|k′ , we conclude ‖xn‖k
n→ 0.

Then, the proof of (2) is complete.
Now, in order to show (2)⇒ (1) we first prove the following

Claim 3.6 Condition (2) implies that there exists k0 ∈ N such that, for every element x ∈
∩∞k=k0

ϕk0 . . . ϕk (Ek+1), there exist xk ∈ Ek, k ∈ N, such that xk0 = x and xk = ϕkxk+1 for
every k ≥ k0 (i.e. x belongs to Projk≥k0 ((Ek)k , ϕk : Ek+1 → Ek)).

Proof. For each k ≥ k0, we choose jk > k satisfying (2), we may select it satisfying jk+1 > jk
for each k ∈ N. Given x ∈ ∩∞k=k0

ϕk0 . . . ϕk (Ek+1), we can find for each k > k0, yk ∈ Ek
such that x = ϕk0 . . . ϕk−1yk. By (2), ϕk0 . . . ϕk−1 is injective on ϕk . . . ϕjk−1 (Ejk). Indeed,
ϕk0 . . . ϕk−1 : Ek → Ek0 and ϕk . . . ϕjk−1 : Ejk → Ek and (ϕk0 . . . ϕk−1) (ϕk . . . ϕjk−1) : Ej →
Ek0 is the unique continuous extension of the identity i :

(
E, ‖·‖jk

)
→
(
E, ‖·‖k0

)
. By (2) if

(xn)n is ‖·‖jk -Cauchy and ‖xn‖k0 → 0, therefore ‖xn‖k → 0.
Suppose (ϕk0 . . . ϕk−1) (ϕk . . . ϕjk−1) (z) = 0 with z ∈ Ejk . Select (zn)n ⊂ E, which is

‖·‖jk -Cauchy with zn → z in Ejk . We obtain

(ϕk0 . . . ϕk−1) (ϕk . . . ϕjk−1) (zn) = zn → (ϕk0 . . . ϕk−1) (ϕk . . . ϕjk−1) (z) = 0 in Ek0 ,

then ‖zn‖k0
n→ 0; therefore, ‖zn‖k

n→ 0.

On the other hand, as zn
n→ z in Ejk then zn = (ϕk . . . ϕjk−1) (zn) =

n→ (ϕk . . . ϕjk−1) (z) in

Ek. Therefore zn
k→ ϕk . . . ϕjk−1 (z) in Ek but ‖zn‖k

n→ 0 and this implies (ϕk . . . ϕjk−1) (z) =
0.

We define now xk0 := x and xk := ϕk . . . ϕjk−1 (yjk) for each k ∈ N. Observe first that the
injectivity of ϕk0 . . . ϕk−1 on ϕk . . . ϕjk−1 (Ejk) implies ϕk . . . ϕjk−1 (yjk) = ϕk . . . ϕj−1 (yj)
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for all j ≥ jk. Both belong to ϕk . . . ϕjk−1 (Ejk) ⊂ Ek and both are mapped to x by
ϕk0 . . . ϕk−1. In particular, for j = jk+1 we get ϕk . . . ϕjk−1 (yjk) = ϕk . . . ϕjk

(
yjk+1

)
. Now

xk+1 = ϕk+1 . . . ϕjk
(
yjk+1

)
, thus ϕkxk+1 = ϕkϕk+1 . . . ϕjk

(
yjk+1

)
= ϕk . . . ϕjk−1 (yjk) = xk.

And xk0+1 = ϕk0+1 . . . ϕjk0+1−1

(
yjk0+1

)
and ϕk0xk0+1 = ϕk0ϕk0+1 . . . ϕjk0+1

(
yjk0+1

)
= x =

xk0 . And the claim is proved. 2

We may assume that k0 = 1 in the claim. So, for every x ∈ ∩∞k=1ϕ1 . . . ϕk (Ek+1), there
exists (xk)k such that xk ∈ Ek, with x1 = x and xk = ϕkxk+1 for each k ≥ 1. Set Fk :=
ϕ1 . . . ϕk (Ek+1) with the quotient norm induced by Ek+1. The space F = ∩kFk with the
projective topology is a countably normed Fréchet space. Observe that F ⊂ E1 algebraically
and the injection is continuous, since each map ϕ1 . . . ϕk : Ek+1 → E1 is continuous.

We denote by Pk : E → Ek the canonical inclusion. Recall that ‖·‖1 is a norm, hence

Pk : E → ̂(E, ‖·‖k) is injective. We show that P1E = F ( in E1). By definition of E,
P1 = ϕ1 . . . ϕkPk+1 for each k ∈ N then P1E = ϕ1 . . . ϕkPk+1E ⊂ ϕ1 . . . ϕk (Ek+1) for each k;
therefore, P1E = F . On the other hand, if y ∈ F ⊂ E1, y = ∩∞k=1ϕ1 . . . ϕk (Ek+1) we apply
the claim to find (xk)k, xk ∈ Ek for each k such that x1 = y and ϕkxk+1 = xk for each k ∈ N.
Since E is a Fréchet space and E = projk (Ek, ϕk), there is x ∈ E with Pk (x) = xk for each
k. In particular P1 (x) = y and F ⊂ P1E. Thus P1 : E → F ⊂ E1 is bijective. We know
that P1 : E → E1 is continuous and the inclusion F ⊂ E1 is also continuous. If we prove
that P1 has closed graph as a map from E to F , the closed graph theorem implies that P1

is a continuous and (being bijective) by the open graph theorem an isomorphism. Suppose
xn → x in E and P1xn → y in F , then P1xn → y in E1 (since F ↪→ E1 is continuous) and
P1xn → Px in E1 (since P1 : E ↪→ E1 is continuous), therefore E1 is Banach/Hausdorff and
then Px = y. 2

Consequence 3.7 Vogt’s Example 2.4 is not countably normable.
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