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CS 373 Homework 0 (due 1/26/99) Spring 1999

CS 373: Combinatorial Algorithms, Spring 1999

http://www-courses.cs.uiuc.edu/ cs373
Homework 0 (due January 26, 1999 by the beginning of class)

Name:
Net ID: Alias:

Neatly print your name (first name first, with no comma), your network ID, and a short alias into
the boxes above. Do not sign your name. Do not write your Social Security number. Staple this
sheet of paper to the top of your homework. Grades will be listed on the course web site by alias,
so your alias should not resemble your name (or your Net ID). If you do not give yourself an alias,
you will be stuck with one we give you, no matter how much you hate it.

Everyone must do the problems marked ». Problems marked > are for 1-unit grad students
and others who want extra credit. (There’s no such thing as “partial extra credit”!) Unmarked
problems are extra practice problems for your benefit, which will not be graded. Think of them as
potential exam questions.

Hard problems are marked with a star; the bigger the star, the harder the problem.

This homework tests your familiarity with the prerequisite material from CS 225 and CS 273
(and their prerequisites)—many of these problems appeared on homeworks and/or exams in those
classes—primarily to help you identify gaps in your knowledge. You are responsible for filling
those gaps on your own.

Undergrad/.75U Grad/1U Grad Problems

»1. [173/273]

(a) Prove that any positive integer can be written as the sum of distinct powers of 2. (For
example: 42 = 25 + 23 421 25 =24 1 23 120 17 =24 4-20)
(b) Prove that any positive integer can be written as the sum of distinct nonconsecutive Fi-

bonacci numbers—if F),, appears in the sum, then neither F,,; nor F,,_; will. (For
example: 42 = Fy + Fg, 25 = Fg + Fy + F5, 17T = F7 + Fy + Fy.)

(c) Prove that any integer can be written in the form Y, +£3%, where the exponents i are
distinct non-negative integers. (For example: 42 = 3* — 3% — 32 — 3!, 25 = 33 — 31 430,
17=33-3>-3%)

»2. [225/273] Sort the following functions from asymptotically smallest to largest, indicating
ties if there are any: n, lgn, lglg*n, 1g*lgn, 1g*n, nlgn, lg(nlgn), n™/ 187, plen (1gn)",
(lg n)lgn’ 2@} on, nlglgn’ 100%’ (1 + ﬁ)n’ (1 _ 10100)n’ lgIOOO n, lg(1000) n, 10g1000 n,
1g" 1000, 1.
[To simplify notation, write f(n) < g(n) to mean f(n) = o(g(n)) and f(n) = g(n) to

mean f(n) = ©(g(n)). For example, the functions n?, n, (}), n® could be sorted as follows:
n<n?=(}) <nl]
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3. [273/225] Solve the following recurrences. State tight asymptotic bounds for each function
in the form O(f(n)) for some recognizable function f(n). You do not need to turn in proofs
(in fact, please don’t turn in proofs), but you should do them anyway just for practice. Assume
reasonable (nontrivial) base cases. Extra credit will be given for more exact solutions.

»(@) A(n) =An/2)+n

(b) B(n) =2B(n/2)+n
»(c) C(n)=3C(n/2)+n

(d) D(n) = n/gg}fzgn/?) (D(k:) +D(n—k)+ n)
»(e) E(n) = Og}cign (E(k)+ E(n—k)+1)

() F(n)=4F(|n/2] +5)+n
»() G(n)=G(n—1)+1/n

*(h) H(n) = H(n/2)+ H(n/4)+ H(n/6) + H(n/12) +n [Hint: $ + 14+ 1+ L =1]

»*({) I(n)=2I(n/2) +n/lgn

»4. [273] Alice and Bob each have a fair n-sided die. Alice rolls her die once. Bob then repeatedly
throws his die until the number he rolls is at least as big as the number Alice rolled. Each
time Bob rolls, he pays Alice $1. (For example, if Alice rolls a 5, and Bob rolls a 4, then a 3,
then a 1, then a 5, the game ends and Alice gets $4. If Alice rolls a 1, then no matter what
Bob rolls, the game will end immediately, and Alice will get $1.)

Exactly how much money does Alice expect to win at this game? Prove that your answer
is correct. (If you have to appeal to “intuition” or “common sense”, your answer is probably
wrong.)

»5. [225] George has a 26-node binary tree, with each node labeled by a unique letter of the
alphabet. The preorder and postorder sequences of nodes are as follows:

preorder: MNHCRSKWTGDXIYAJPOEZVBULAQF
postorder: CWTKSGRHDNAOEPJYZIBQLFUVIXM

Draw George’s binary tree.

Only 1U Grad Problems

>*1. [225/273] A tournament is a directed graph with exactly one edge between every pair of
vertices. (Think of the nodes as players in a round-robin tournament, where each edge points
from the winner to the loser.) A Hamiltonian path is a sequence of directed edges, joined end
to end, that visits every vertex exactly once.

Prove that every tournament contains at least one Hamiltonian path.

2
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A six-vertex tournament containing the Hamiltonian path6 — 4 —5 — 2 — 3 — 1.

Practice Problems

1. [173/273] Recall the standard recursive definition of the Fibonacci numbers: Fy = 0, I} = 1,
and F,, = F,,_1 + F,_5 for all n > 2. Prove the following identities for all positive integers
n and m.

(a) F, is even if and only if n is divisible by 3.

(b) ZE:Fn-i-Q_l
=0

7
(C) Fr% - Fn+1Fn—1 = (_1)n+1

*(d) If n is an integer multiple of m, then F), is an integer multiple of F,,.

2. [225/273]
(a) Prove that 2Mlenl+len) /p — @(n).
(b) Is 2lsn) = ©(2M'8m1)? Justify your answer.

(c) Is 228" — @(22rlg 5] )? Justify your answer.

3. [273]

(a) Adominoisa?2 x 1 or1 x 2rectangle. How many different ways are there to completely
fill a 2 x n rectangle with n dominos?

(b) A slab is a three-dimensional box with dimensions 1 x 2 x 2,2 x 1 x 2, or 2 x 2 x 1. How
many different ways are there to fill a 2 x 2 x n box with n slabs? Set up a recurrence
relation and give an exact closed-form solution.

A 2 x 10 rectangle filled with ten dominos, and a 2 x 2 x 10 box filled with ten slabs.

4. [273] Penn and Teller have a special deck of fifty-two cards, with no face cards and nothing
but clubs—the ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ..., 52 of clubs. (They're big cards.) Penn
shuffles the deck until each each of the 52! possible orderings of the cards is equally likely. He
then takes cards one at a time from the top of the deck and gives them to Teller, stopping as
soon as he gives Teller the three of clubs.
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(a) On average, how many cards does Penn give Teller?

(b) On average, what is the smallest-numbered card that Penn gives Teller?

*(c) On average, what is the largest-numbered card that Penn gives Teller?

Prove that your answers are correct. (If you have to appeal to “intuition” or “common
sense”, your answers are probably wrong.) [Hint: Solve for an n-card deck, and then set n to

52.]

5. [273/225] Prove that for any nonnegative parameters a and b, the following algorithms

terminate and produce identical output.

SLOWEUCLID(a, b) :
ifb>a
return SLOWEUCLID(b, a)
else if b ==
return a
else
return SLOWEUCLID(a,b — a)

FASTEUCLID(a, b) :

ifb==
return a
else
return FASTEUCLID(b, @ mod b)
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CS 373: Combinatorial Algorithms, Spring 1999

http://www-courses.cs.uiuc.edu/"cs373
Homework 1 (due February 9, 1999 by noon)

Name:
Net ID: Alias:

Everyone must do the problems marked ». Problems marked > are for 1-unit grad students
and others who want extra credit. (There’s no such thing as “partial extra credit”!) Unmarked
problems are extra practice problems for your benefit, which will not be graded. Think of them as
potential exam questions.

Hard problems are marked with a star; the bigger the star, the harder the problem.

Note: When a question asks you to “give/describe/present an algorithm”, you need to do four
things to receive full credit:

1. Design the most efficient algorithm possible. Significant partial credit will be given for less
efficient algorithms, as long as they are still correct, well-presented, and correctly analyzed.

2. Describe your algorithm succinctly, using structured English/pseudocode. We don’t want full-
fledged compilable source code, but plain English exposition is usually not enough. Follow
the examples given in the textbooks, lectures, homeworks, and handouts.

3. Justify the correctness of your algorithm, including termination if that is not obvious.

4. Analyze the time and space complexity of your algorithm.

Undergrad/.75U Grad/1U Grad Problems

» 1. Consider the following sorting algorithm:

STUPIDSORT(A[0..n —1]) :
if n =2 and A[0] > A[1]
swap A[0] < A[1]
else if n > 2
m = [2n/3]

STUPIDSORT(A[0..m — 1))
STUPIDSORT(A[n — m..n — 1))
STUPIDSORT(A[0..m — 1))

(a) Prove that STUPIDSORT actually sorts its input.

(b) Would the algorithm still sort correctly if we replaced m = [2n/3] with m = [2n/3]?
Justify your answer.

(c) State a recurrence (including the base case(s)) for the number of comparisons executed
by STUPIDSORT.
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(d) Solve the recurrence, and prove that your solution is correct. [Hint: Ignore the ceiling.]
Does the algorithm deserve its name?

*(e) Show that the number of swaps executed by STUPIDSORT is at most (g)

» 2. Some graphics hardware includes support for an operation called blit, or block transfer, which
quickly copies a rectangular chunk of a pixelmap (a two-dimensional array of pixel values)
from one location to another. This is a two-dimensional version of the standard C library
function memcpy ().

Suppose we want to rotate an n x n pixelmap 90° clockwise. One way to do this is to
split the pixelmap into four n/2 x n/2 blocks, move each block to its proper position using
a sequence of five blits, and then recursively rotate each block. Alternately, we can first
recursively rotate the blocks and blit them into place afterwards.

ClA
o8]~ 3
AlB D
C|D O|lw
L_[>[=__4

Two algorithms for rotating a pixelmap.
Black arrows indicate blitting the blocks into place.
White arrows indicate recursively rotating the blocks.

The following sequence of pictures shows the first algorithm (blit then recurse) in action.

In the following questions, assume n is a power of two.

(a) Prove that both versions of the algorithm are correct.

(b) Exactly how many blits does the algorithm perform?

(c) What is the algorithm’s running time if a k x k blit takes O(k?) time?
(d) What if a k& x k blit takes only O(k) time?
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»3.

»4.

»5.

Dynamic Programming: The Company Party

A company is planning a party for its employees. The organizers of the party want it to be a
fun party, and so have assigned a ‘fun’ rating to every employee. The employees are organized
into a strict hierarchy, i.e. a tree rooted at the president. There is one restriction, though, on
the guest list to the party: both an employee and their immediate supervisor (parent in the
tree) cannot both attend the party (because that would be no fun at all). Give an algorithm
that makes a guest list for the party that maximizes the sum of the ‘fun’ ratings of the guests.

Dynamic Programming: Longest Increasing Subsequence (LIS)

Give an O(n?) algorithm to find the longest increasing subsequence of a sequence of numbers.
Note: the elements of the subsequence need not be adjacent in the sequence. For example,
the sequence (1,5, 3,2,4) has an LIS (1, 3,4).

Nut/Bolt Median

You are given a set of n nuts and n bolts of different sizes. Each nut matches exactly one bolt
(and vice versa, of course). The sizes of the nuts and bolts are so similar that you cannot
compare two nuts or two bolts to see which is larger. You can, however, check whether a nut
is too small, too large, or just right for a bolt (and vice versa, of course).

In this problem, your goal is to find the median bolt (i.e., the |n/2]th largest) as quickly
as possible.

(a) Describe an efficient deterministic algorithm that finds the median bolt. How many
nut-bolt comparisons does your algorithm perform in the worst case?

(b) Describe an efficient randomized algorithm that finds the median bolt.
i. State a recurrence for the expected number of nut/bolt comparisons your algorithm
performs.
ii. What is the probability that your algorithm compares the ith largest bolt with the
jth largest nut?
iii. What is the expected number of nut-bolt comparisons made by your algorithm?
[Hint: Use your answer to either of the previous two questions.]

Only 1U Grad Problems

>1.

You are at a political convention with n delegates. Each delegate is a member of exactly one
political party. It is impossible to tell which political party a delegate belongs to. However,
you can check whether any two delegates are in the same party or not by introducing them
to each other. (Members of the same party always greet each other with smiles and friendly
handshakes; members of different parties always greet each other with angry stares and
insults.)

(a) Suppose a majority (more than half) of the delegates are from the same political party.
Give an efficient algorithm that identifies a member of the majority party.

*(b) Suppose exactly k political parties are represented at the convention and one party has
a plurality: more delegates belong to that party than to any other. Give an efficient
algorithm that identifies a member of the plurality party.

3
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*(0)

*(d)

Suppose you don’t know how many parties there are, but you do know that one party
has a plurality, and at least p people in the plurality party are present. Present a prac-
tical procedure to pick a person from the plurality party as parsimoniously as possible.
(Please.)

Finally, suppose you don’t know how many parties are represented at the convention,
and you don’t know how big the plurality is. Give an efficient algorithm to identify a
member of the plurality party. How is the running time of your algorithm affected by
the number of parties (k)? By the size of the plurality (p)?

Practice Problems

1. Second Smallest
Give an algorithm that finds the second smallest of n elements in at most n + [lgn]| — 2
comparisons. Hint: divide and conquer to find the smallest; where is the second smallest?

2. Linear in-place 0-1 sorting
Suppose that you have an array of records whose keys to be sorted consist only of 0’s and 1’s.
Give a simple, linear-time O(n) algorithm to sort the array in place (using storage of no more
than constant size in addition to that of the array).

3. Dynamic Programming: Coin Changing
Consider the problem of making change for n cents using the least number of coins.

(a)
(b)
©
(d
(e)

*(H

Describe a greedy algorithm to make change consisting of quarters, dimes, nickels, and
pennies. Prove that your algorithm yields an optimal solution.

Suppose that the available coins have the values ¥, ¢!, ..., c* for some integers ¢ > 1
and k£ > 1. Show that the greedy algorithm always yields an optimal solution.

Give a set of 4 coin values for which the greedy algorithm does not yield an optimal
solution, show why.

Give a dynamic programming algorithm that yields an optimal solution for an arbitrary
set of coin values.

Prove that, with only two coins a, b whose gcd is 1, the smallest value n for which change
can be given for all values greater than or equal ton is (a — 1)(b — 1).

For only three coins a, b, c whose gcd is 1, give an algorithm to determine the smallest
value n for which change can be given for all values greater than n. (note: this problem
is currently unsolved for n > 4.
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4. Dynamic Programming: Paragraph Justification

Consider the problem of printing a paragraph neatly on a printer (with fixed width font).
The input text is a sequence of n words of lengths I1,1ls,...,l,. The line length is M (the
maximum # of characters per line). We expect that the paragraph is left justified, that all first
words on a line start at the leftmost position and that there is exactly one space between any
two words on the same line. We want the uneven right ends of all the lines to be together as
‘neat’ as possible. Our criterion of neatness is that we wish to minimize the sum, over all lines
except the last, of the cubes of the numbers of extra space characters at the ends of the lines.
Note: if a printed line contains words ¢ through j, then the number of spaces at the end of
the lineis M — j +i— > 7 _; li.

(a) Give a dynamic programming algorithm to do this.

(b) Prove that if the neatness function is linear, a linear time greedy algorithm will give an
optimum ‘neatness’.

5. Comparison of Amortized Analysis Methods
A sequence of n operations is performed on a data structure. The ith operation costs ¢ if 7 is
an exact power of 2, and 1 otherwise. That is operation i costs f(z), where:

ro={i in

otherwise
Determine the amortized cost per operation using the following methods of analysis:

(a) Aggregate method
(b) Accounting method
*(c) Potential method
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CS 373: Combinatorial Algorithms, Spring 1999

http://www-courses.cs.uiuc.edu/ " cs373
Homework 2 (due Thu. Feb. 18, 1999 by noon)

Name:
Net ID: Alias:

Everyone must do the problems marked ». Problems marked > are for 1-unit grad students
and others who want extra credit. (There’s no such thing as “partial extra credit”!) Unmarked
problems are extra practice problems for your benefit, which will not be graded. Think of them as
potential exam questions.

Hard problems are marked with a star; the bigger the star, the harder the problem.

Note: When a question asks you to “give/describe/present an algorithm”, you need to do four
things to receive full credit:

1. Design the most efficient algorithm possible. Significant partial credit will be given for less
efficient algorithms, as long as they are still correct, well-presented, and correctly analyzed.

2. Describe your algorithm succinctly, using structured English/pseudocode. We don’t want full-
fledged compilable source code, but plain English exposition is usually not enough. Follow
the examples given in the textbooks, lectures, homeworks, and handouts.

3. Justify the correctness of your algorithm, including termination if that is not obvious.

4. Analyze the time and space complexity of your algorithm.

Undergrad/.75U Grad/1U Grad Problems

» 1. Faster Longest Increasing Subsequence (LIS)
Give an O(nlogn) algorithm to find the longest increasing subsequence of a sequence of
numbers. Hint: In the dynamic programming solution, you don’t really have to look back at
all previous items.

»2. SELECT(A, k)
Say that a binary search tree is augmented if every node v also stores |v|, the size of its subtree.

(a) Show that a rotation in an augmented binary tree can be performed in constant time.

(b) Describe an algorithm SCAPEGOATSELECT(k) that selects the kth smallest item in an
augmented scapegoat tree in O(logn) worst-case time. (The scapegoat trees presented
in class were already augmented.)

(c) Describe an algorithm SPLAYSELECT(k) that selects the kth smallest item in an aug-
mented splay tree in O(logn) amortized time.

(d) Describe an algorithm TREAPSELECT(k) that selects the kth smallest item in an aug-
mented treap in O(logn) expected time.
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»3. Scapegoat trees

(a) Prove that only one tree gets rebalanced at any insertion.

(b) Prove that I(v) = 0 in every node of a perfectly balanced tree (I(v) = maz(0, |0] — |9]),
where ¢ is the child of greater height and © the child of lesser height, |v| is the number
of nodes in subtree v, and perfectly balanced means each subtree has as close to half the
leaves as possible and is perfectly balanced itself.

*(c) Show that you can rebuild a fully balanced binary tree in O(n) time using only O(1)
additional memory.

»4. Memory Management
Suppose we can insert or delete an element into a hash table in constant time. In order to
ensure that our hash table is always big enough, without wasting a lot of memory, we will
use the following global rebuilding rules:

e After an insertion, if the table is more than 3/4 full, we allocate a new table twice as big
as our current table, insert everything into the new table, and then free the old table.

e After a deletion, if the table is less than 1/4 full, we we allocate a new table half as big
as our current table, insert everything into the new table, and then free the old table.

Show that for any sequence of insertions and deletions, the amortized time per operation
is still a constant. Do not use the potential method (it makes it much more difficult).

Only 1U Grad Problems

>>1. Detecting overlap

(a) You are given a list of ranges represented by min and max (e.g. [1,3], [4,5], [4,9], [6,8],
[7,10]). Give an O(nlogn)-time algorithm that decides whether or not a set of ranges
contains a pair that overlaps. You need not report all intersections. If a range completely
covers another, they are overlapping, even if the boundaries do not intersect.

(b) You are given a list of rectangles represented by min and max z- and y- coordinates. Give
an O(nlogn)-time algorithm that decides whether or not a set of rectangles contains a
pair that overlaps (with the same qualifications as above). Hint: sweep a vertical line
from left to right, performing some processing whenever an end-point is encountered.
Use a balanced search tree to maintain any extra info you might need.
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Practice Problems

1. Amortization

(a) Modify the binary double-counter (see class notes Feb. 2) to support a new operation
Sign, which determines whether the number being stored is positive, negative, or zero,
in constant time. The amortized time to increment or decrement the counter should still
be a constant.

[Hint: Suppose p is the number of significant bits in P, and n is the number of significant
bits in N. For example, if P = 17 = 10001, and N = 0, then p = 5 and n = 0. Then
p —n always has the same sign as P — N. Assume you can update p and n in O(1) time.]

*(b) Do the same but now you can’t assume that p and n can be updated in O(1) time.

*2. Amortization

Suppose instead of powers of two, we represent integers as the sum of Fibonacci numbers.
In other words, instead of an array of bits, we keep an array of ”fits”, where the ith least
significant fit indicates whether the sum includes the ith Fibonacci number F;. For example,
the fit string 101110 represents the number Fs + Fy + F5+ F» = 8+ 3+ 2+ 1 = 14. Describe
algorithms to increment and decrement a fit string in constant amortized time. [Hint: Most
numbers can be represented by more than one fit string. This is not the same representation
as on Homework 0.]

3. Rotations

(a) Show that it is possible to transform any n-node binary search tree into any other n-node
binary search tree using at most 2n — 2 rotations.

*(b) Use fewer than 2n — 2 rotations. Nobody knows how few rotations are required in the
worst case. There is an algorithm that can transform any tree to any other in at most
2n — 6 rotations, and there are pairs of trees that are 2n — 10 rotations apart. These are
the best bounds known.

4. Fibonacci Heaps: SECONDMIN
We want to find the second smallest of a set efficiently.

(a) Implement SECONDMIN by using a Fibonacci heap as a black box. Remember to justify
its correctness and running time.

*(b) Modify the Fibonacci Heap data structure to implement SECONDMIN in constant time.

5. Give an efficient implementation of the operation Fib-Heap-Change-Key(H, x, k), which changes
the key of a node z in a Fibonacci heap H to the value k. The changes you make to Fibonacci
heap data structure to support your implementation should not affect the amortized running
time of any other Fibonacci heap operations. Analyze the amortized running time of your
implementation for cases in which k is greater than, less than, or equal to key|x].



CS 373 Homework 2 (due 2/18/99) Spring 1999

CS 373: Combinatorial Algorithms, Spring 1999

http://www-courses.cs.uiuc.edu/ " cs373
Homework 2 (due Thu. Feb. 18, 1999 by noon)

Name:
Net ID: Alias:

Everyone must do the problems marked ». Problems marked > are for 1-unit grad students
and others who want extra credit. (There’s no such thing as “partial extra credit”!) Unmarked
problems are extra practice problems for your benefit, which will not be graded. Think of them as
potential exam questions.

Hard problems are marked with a star; the bigger the star, the harder the problem.

Note: When a question asks you to “give/describe/present an algorithm”, you need to do four
things to receive full credit:

1. Design the most efficient algorithm possible. Significant partial credit will be given for less
efficient algorithms, as long as they are still correct, well-presented, and correctly analyzed.

2. Describe your algorithm succinctly, using structured English/pseudocode. We don’t want full-
fledged compilable source code, but plain English exposition is usually not enough. Follow
the examples given in the textbooks, lectures, homeworks, and handouts.

3. Justify the correctness of your algorithm, including termination if that is not obvious.

4. Analyze the time and space complexity of your algorithm.

Undergrad/.75U Grad/1U Grad Problems

» 1. Faster Longest Increasing Subsequence (LIS)
Give an O(nlogn) algorithm to find the longest increasing subsequence of a sequence of
numbers. Hint: In the dynamic programming solution, you don’t really have to look back at
all previous items.

»2. SELECT(A, k)
Say that a binary search tree is augmented if every node v also stores |v|, the size of its subtree.

(a) Show that a rotation in an augmented binary tree can be performed in constant time.

(b) Describe an algorithm SCAPEGOATSELECT(k) that selects the kth smallest item in an
augmented scapegoat tree in O(logn) worst-case time. (The scapegoat trees presented
in class were already augmented.)

(c) Describe an algorithm SPLAYSELECT(k) that selects the kth smallest item in an aug-
mented splay tree in O(logn) amortized time.

(d) Describe an algorithm TREAPSELECT(k) that selects the kth smallest item in an aug-
mented treap in O(logn) expected time.
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»3. Scapegoat trees

(a) Prove that only one tree gets rebalanced at any insertion.

(b) Prove that I(v) = 0 in every node of a perfectly balanced tree (I(v) = maz(0, |0] — |9]),
where ¢ is the child of greater height and © the child of lesser height, |v| is the number
of nodes in subtree v, and perfectly balanced means each subtree has as close to half the
leaves as possible and is perfectly balanced itself.

*(c) Show that you can rebuild a fully balanced binary tree in O(n) time using only O(1)
additional memory.

»4. Memory Management
Suppose we can insert or delete an element into a hash table in constant time. In order to
ensure that our hash table is always big enough, without wasting a lot of memory, we will
use the following global rebuilding rules:

e After an insertion, if the table is more than 3/4 full, we allocate a new table twice as big
as our current table, insert everything into the new table, and then free the old table.

e After a deletion, if the table is less than 1/4 full, we we allocate a new table half as big
as our current table, insert everything into the new table, and then free the old table.

Show that for any sequence of insertions and deletions, the amortized time per operation
is still a constant. Do not use the potential method (it makes it much more difficult).

Only 1U Grad Problems

>>1. Detecting overlap

(a) You are given a list of ranges represented by min and max (e.g. [1,3], [4,5], [4,9], [6,8],
[7,10]). Give an O(nlogn)-time algorithm that decides whether or not a set of ranges
contains a pair that overlaps. You need not report all intersections. If a range completely
covers another, they are overlapping, even if the boundaries do not intersect.

(b) You are given a list of rectangles represented by min and max z- and y- coordinates. Give
an O(nlogn)-time algorithm that decides whether or not a set of rectangles contains a
pair that overlaps (with the same qualifications as above). Hint: sweep a vertical line
from left to right, performing some processing whenever an end-point is encountered.
Use a balanced search tree to maintain any extra info you might need.
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Practice Problems

1. Amortization

(a) Modify the binary double-counter (see class notes Feb. 2) to support a new operation
Sign, which determines whether the number being stored is positive, negative, or zero,
in constant time. The amortized time to increment or decrement the counter should still
be a constant.

[Hint: Suppose p is the number of significant bits in P, and n is the number of significant
bits in N. For example, if P = 17 = 10001, and N = 0, then p = 5 and n = 0. Then
p —n always has the same sign as P — N. Assume you can update p and n in O(1) time.]

*(b) Do the same but now you can’t assume that p and n can be updated in O(1) time.

*2. Amortization

Suppose instead of powers of two, we represent integers as the sum of Fibonacci numbers.
In other words, instead of an array of bits, we keep an array of ”fits”, where the ith least
significant fit indicates whether the sum includes the ith Fibonacci number F;. For example,
the fit string 101110 represents the number Fs + Fy + F5+ F» = 8+ 3+ 2+ 1 = 14. Describe
algorithms to increment and decrement a fit string in constant amortized time. [Hint: Most
numbers can be represented by more than one fit string. This is not the same representation
as on Homework 0.]

3. Rotations

(a) Show that it is possible to transform any n-node binary search tree into any other n-node
binary search tree using at most 2n — 2 rotations.

*(b) Use fewer than 2n — 2 rotations. Nobody knows how few rotations are required in the
worst case. There is an algorithm that can transform any tree to any other in at most
2n — 6 rotations, and there are pairs of trees that are 2n — 10 rotations apart. These are
the best bounds known.

4. Fibonacci Heaps: SECONDMIN
We want to find the second smallest of a set efficiently.

(a) Implement SECONDMIN by using a Fibonacci heap as a black box. Remember to justify
its correctness and running time.

*(b) Modify the Fibonacci Heap data structure to implement SECONDMIN in constant time.

5. Give an efficient implementation of the operation Fib-Heap-Change-Key(H, x, k), which changes
the key of a node z in a Fibonacci heap H to the value k. The changes you make to Fibonacci
heap data structure to support your implementation should not affect the amortized running
time of any other Fibonacci heap operations. Analyze the amortized running time of your
implementation for cases in which k is greater than, less than, or equal to key|x].
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CS 373: Combinatorial Algorithms, Spring 1999

http://www-courses.cs.uiuc.edu/"cs373
Homework 3 (due Thu. Mar. 11, 1999 by noon)

Name:
Net ID: Alias:

Everyone must do the problems marked ». Problems marked > are for 1-unit grad students
and others who want extra credit. (There’s no such thing as “partial extra credit”!) Unmarked
problems are extra practice problems for your benefit, which will not be graded. Think of them as
potential exam questions.

Hard problems are marked with a star; the bigger the star, the harder the problem.

Note: When a question asks you to “give/describe/present an algorithm”, you need to do four
things to receive full credit:

1.

(New!) If not already done, model the problem appropriately. Often the problem is stated in
real world terms; give a more rigorous description of the problem. This will help you figure
out what is assumed (what you know and what is arbitrary, what operations are and are not
allowed), and find the tools needed to solve the problem.

Design the most efficient algorithm possible. Significant partial credit will be given for less
efficient algorithms, as long as they are still correct, well-presented, and correctly analyzed.

Describe your algorithm succinctly, using structured English/pseudocode. We don’t want full-
fledged compilable source code, but plain English exposition is usually not enough. Follow
the examples given in the textbooks, lectures, homeworks, and handouts.

Justify the correctness of your algorithm, including termination if that is not obvious.

Analyze the time and space complexity of your algorithm.

Undergrad/.75U Grad/1U Grad Problems

» 1. Hashing

(a) (2 pts) Consider an open-address hash table with uniform hashing and a load factor
a = 1/2. What is the expected number of probes in an unsuccessful search? Successful
search?

(b) (3 pts) Let the hash function for a table of size m be
h(z) = |Amz] mod m

where A = ¢ = @ Show that this gives the best possible spread, i.e. if the = are
hashed in order, = 4+ 1 will be hashed in the largest remaining contiguous interval.
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»2. (5 pts) Euler Tour:
Given an undirected graph G = (V, E), give an algorithm that finds a cycle in the graph that
visits every edge exactly once, or says that it can’t be done.

» 3. (5 pts) Makefiles:
In order to facilitate recompiling programs from multiple source files when only a small num-
ber of files have been updated, there is a UNIX utility called ‘make’ that only recompiles those
files that were changed, and any intermediate files in the compiliation that depend on those
changed. Design an algorithm to recompile only those necessary.

»4. (5 pts) Shortest Airplane Trip:
A person wants to fly from city A to city B in the shortest possible time. S/he turns to the
traveling agent who knows all the departure and arrival times of all the flights on the planet.
Give an algorithm that will allow the agent to choose an optimal route. Hint: rather than
modify Dijkstra’s algorithm, modify the data. The time is from departure to arrival at the
destination, so it will include layover time (time waiting for a connecting flight).

»5. (9 pts, 3 each) Minimum Spanning Tree changes Suppose you have a graph G and an MST of
that graph (i.e. the MST has already been constructed).

(a) Give an algorithm to update the MST when an edge is added to G.
(b) Give an algorithm to update the MST when an edge is deleted from G.

(c) Give an algorithm to update the MST when a vertex (and possibly edges to it) is added
to G.

Only 1U Grad Problems

>>1. Nesting Envelopes
You are given an unlimited number of each of n different types of envelopes. The dimensions
of envelope type i are z; X y;. In nesting envelopes inside one another, you can place envelope
A inside envelope B if and only if the dimensions A are strictly smaller than the dimensions
of B. Design and analyze an algorithm to determine the largest number of envelopes that can
be nested inside one another.
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Practice Problems
1. The incidence matrix of an undirected graph G = (V, E) is a |[V'| x |E| matrix B = (b;;) such

that
b [ 1 (Li)€E,
Y0 (6,4) ¢ E.

(a) Describe what all the entries of the matrix product BB represent (B is the matrix
transpose). Justify.

(b) Describe what all the entries of the matrix product B” B represent. Justify.

*(c) Let C = BBT — 2A. Let ' be C with the first row and column removed. Show that
det C’ is the number of spanning trees. (A is the adjacency matrix of GG, with zeroes on
the diagonal).

2. o(V?) Adjacency Matrix Algorithms

(a) Give an O(V) algorithm to decide whether a directed graph contains a sink in an adja-
cency matrix representation. A sink is a vertex with in-degree V' — 1.

(b) An undirected graph is a scorpion if it has a vertex of degree 1 (the sting) connected
to a vertex of degree two (the tail) connected to a vertex of degree V' — 2 (the body)
connected to the other V' — 3 vertices (the feet). Some of the feet may be connected to
other feet.

Design an algorithm that decides whether a given adjacency matrix represents a scorpion
by examining only O(V') of the entries.

(c) Show that it is impossible to decide whether G has at least one edge in O(V) time.

3. Shortest Cycle:
Given an undirected graph G = (V, F), and a weight function f : F — R on the edges, give
an algorithm that finds (in time polynomial in V' and E) a cycle of smallest weight in G.

4. Longest Simple Path:
Let graph G = (V, E), |V| = n . A simple path of G, is a path that does not contain the same
vertex twice. Use dynamic programming to design an algorithm (not polynomial time) to
find a simple path of maximum length in G. Hint: It can be done in O(n®2") time, for some
constant c.

5. Minimum Spanning Tree:
Suppose all edge weights in a graph G are equal. Give an algorithm to compute an MST.

6. Transitive reduction:
Give an algorithm to construct a transitive reduction of a directed graph G, i.e. a graph GT%
with the fewest edges (but with the same vertices) such that there is a path from a to b in G
iff there is also such a path in GT%.

0 1 2 3 .4
9205 4234 41737 41127 451

N

(a) Whatis 5 mod 6?
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(b) What is the capital of Nebraska? Hint: It is not Omaha. It is named after a famous
president of the United States that was not George Washington. The distance from the
Earth to the Moon averages roughly 384,000 km.
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CS 373: Combinatorial Algorithms, Spring 1999

http://www-courses.cs.uiuc.edu/"cs373
Homework 4 (due Thu. Apr. 1, 1999 by noon)

Name:
Net ID: Alias:

Everyone must do the problems marked ». Problems marked > are for 1-unit grad students
and others who want extra credit. (There’s no such thing as “partial extra credit”!) Unmarked
problems are extra practice problems for your benefit, which will not be graded. Think of them as
potential exam questions.

Hard problems are marked with a star; the bigger the star, the harder the problem.

Note: When a question asks you to “give/describe/present an algorithm”, you need to do four
things to receive full credit:

1.

(New!) If not already done, model the problem appropriately. Often the problem is stated in
real world terms; give a more rigorous description of the problem. This will help you figure
out what is assumed (what you know and what is arbitrary, what operations are and are not
allowed), and find the tools needed to solve the problem.

Design the most efficient algorithm possible. Significant partial credit will be given for less
efficient algorithms, as long as they are still correct, well-presented, and correctly analyzed.

Describe your algorithm succinctly, using structured English/pseudocode. We don’t want full-
fledged compilable source code, but plain English exposition is usually not enough. Follow
the examples given in the textbooks, lectures, homeworks, and handouts.

Justify the correctness of your algorithm, including termination if that is not obvious.

. Analyze the time and space complexity of your algorithm.

Undergrad/.75U Grad/1U Grad Problems

>1.

»2.

(5 pts total) Collinearity
Give an O(n?logn) algorithm to determine whether any three points of a set of n points are
collinear. Assume two dimensions and exact arithmetic.

(4 pts, 2 each) Convex Hull Recurrence
Consider the following generic recurrence for convex hull algorithms that divide and conquer:

T(’I’L, h) = T(nl, hl) + T(TLQ, hg) + O(’I’L)

where n > ni + ng, h = hy + he and n > h. This means that the time to compute the convex
hull is a function of both n, the number of input points, and h, the number of convex hull
vertices. The splitting and merging parts of the divide-and-conquer algorithm take O(n) time.
When n is a constant, 7'(n, h) is O(1), but when h is a constant, T'(n, k) is O(n). Prove that
for both of the following restrictions, the solution to the recurrence is O(nlog h):
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(a) hl,hg < %h

(b) ny1,n < 3n

»3. (5 pts) Circle Intersection
Give an O(nlogn) algorithm to test whether any two circles in a set of size n intersect.

»4. (5 pts total) Staircases
You are given a set of points in the first quadrant. A left-up point of this set is defined to be a
point that has no points both greater than it in both coordinates. The left-up subset of a set
of points then forms a staircase (see figure).

(a) (3 pts) Give an O(nlogn) algorithm to find the staircase of a set of points.

(b) (2 pts) Assume that points are chosen uniformly at random within a rectangle. What is
the average number of points in a staircase? Justify. Hint: you will be able to give an
exact answer rather than just asymptotics. You have seen the same analysis before.

Only 1U Grad Problems

>1. (6 pts, 2 each) Ghostbusters and Ghosts
A group of n ghostbusters is battling n ghosts. Each ghostbuster can shoot a single energy
beam at a ghost, eradicating it. A stream goes in a straight line and terminates when it hits a
ghost. The ghostbusters must all fire at the same time and no two energy beams may cross.
The positions of the ghosts and ghostbusters is fixed in the plane (assume that no three points
are collinear).

(a) Prove that for any configuration ghosts and ghostbusters there exists such a non-crossing
matching.

(b) Show that there exists a line passing through one ghostbuster and one ghost such that
the number of ghostbusters on one side of the line equals the number of ghosts on the
same side. Give an efficient algorithm to find such a line.

(c) Give an efficient divide and conquer algorithm to pair ghostbusters and ghosts so that
no two streams Cross.
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Practice Problems

1.

*5

Basic Computation (assume two dimensions and exact arithmetic)
(a) Intersection: Extend the basic algorithm to determine if two line segments intersect by
taking care of all degenerate cases.

(b) Simplicity: Give an O(nlogn) algorithm to determine whether an n-vertex polygon is
simple.

(c) Area: Give an algorithm to compute the area of a simple n-polygon (not necessarily
convex) in O(n) time.

(d) Inside: Give an algorithm to determine whether a point is within a simple n-polygon
(not necessarily convex) in O(n) time.

. External Diagonals and Mouths

(a) A pair of polygon vertices defines an external diagonal if the line segment between them
is completely outside the polygon. Show that every nonconvex polygon has at least one
external diagonal.

(b) Three consective polygon vertices p,q,r form a mouth if p and r define an external
diagonal. Show that every nonconvex polygon has at least one mouth.

. On-Line Convex Hull

We are given the set of points one point at a time. After receiving each point, we must
compute the convex hull of all those points so far. Give an algorithm to solve this problem
in O(n?) (We could obviously use Graham’s scan n times for an O(n? log n) algorithm). Hint:
How do you maintain the convex hull?

. Another On-Line Convex Hull Algorithm

(a) Given an n-polygon and a point outside the polygon, give an algorithm to find a tangent.

*(b) Suppose you have found both tangents. Give an algorithm to remove the points from
the polygon that are within the angle formed by the tangents (as segments!) and the
opposite side of the polygon.

(c) Use the above to give an algorithm to compute the convex hull on-line in O(nlogn)

. Order of the size of the convex hull

The convex hull on n > 3 points can have anywhere from 3 to n points. The average case
depends on the distribution.

(a) Prove that if a set of points is chosen randomly within a given rectangle. then the average
size of the convex hull is O(log n).

(b) Prove that if a set of points is chosen randomly within a given circle. then the average
size of the convex hull is O(y/n).
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CS 373: Combinatorial Algorithms, Spring 1999
http://www-courses.cs.uiuc.edu/"cs373
Homework 5 (due Thu. Apr. 22, 1999 by noon)

Name:
Net ID: Alias:

Everyone must do the problems marked ». Problems marked > are for 1-unit grad students
and others who want extra credit. (There’s no such thing as “partial extra credit”!) Unmarked
problems are extra practice problems for your benefit, which will not be graded. Think of them as
potential exam questions.

Hard problems are marked with a star; the bigger the star, the harder the problem.

Note: You will be held accountable for the appropriate responses for answers (e.g. give models,
proofs, analyses, etc)

Undergrad/.75U Grad/1U Grad Problems

»1. (5 pts) Show how to find the occurrences of pattern P in text 7" by computing the prefix
function of the string PT (the concatenation of P and T').

»2. (10 pts total) Fibonacci strings and KMP matching
Fibonacci strings are defined as follows:

F =“b”, F, =“a”, and Fy, = Fy_1Fy—9, (n > 2)

where the recursive rule uses concatenation of strings, so F; is “ab”, F3 is “aba”. Note that
the length of F), is the nth Fibonacci number.
(a) (2 pts) Prove that in any Fibonacci string there are no two b’s adjacent and no three a’s.
(b) (2 pts) Give the unoptimized and optimized ‘prefix’ (fail) function for F7.

(c) (3 pts) Prove that, in searching for a Fibonacci string of length m using unoptimized
KMB it may shift up to [log, m| times, where ¢ = (1 + v/5)/2, is the golden ratio. (Hint:
Another way of saying the above is that we are given the string F;, and we may have to
shift n times. Find an example text T that gives this number of shifts).

(d) (3 pts) What happens here when you use the optimized prefix function? Explain.

» 3. (5 pts) Prove that finding the second smallest of n elements takes n + [lgn]| — 2 comparisons
in the worst case. Prove for both upper and lower bounds. Hint: find the (first) smallest using
an elimination tournament.

»4. (4 pts, 2 each) Lower Bounds on Adjacency Matrix Representations of Graphs

(a) Prove that the time to determine if an undirected graph has a cycle is Q(V?).
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(b) Prove that the time to determine if there is a path between two nodes in an undirected
graph is Q(V?).

Only 1U Grad Problems

>1.

(5 pts) Prove that [3n/2] — 2 comparisons are necessary in the worst case to find both the
minimum and maximum of n numbers. Hint: Consider how many are potentially either the
min or max.

Practice Problems

1.

String matching with wild-cards

Suppose you have an alphabet for patterns that includes a ‘gap’ or wild-card character; any
length string of any characters can match this additional character. For example if ‘«’ is the
wild-card, then the pattern ‘foo*bar*nad’ can be found in ‘foofoowangbarnad’. Modify the
computation of the prefix function to correctly match strings using KMP.

Prove that there is no comparison sort whose running time is linear for at least 1/2 of the n!
inputs of length n. What about at least 1/n? What about at least 1/2"?.

. Prove that 2n — 1 comparisons are necessary in the worst case to merge two sorted lists

containing n elements each.

Find asymptotic upper and lower bounds to lg(n!) without Stirling’s approximation (Hint: use
integration).

Given a sequence of n elements of n/k blocks (k elements per block) all elements in a block
are less than those to the right in sequence, show that you cannot have the whole sequence
sorted in better than Q(nlg k). Note that the entire sequence would be sorted if each of the
n/k blocks were individually sorted in place. Also note that combining the lower bounds for
each block is not adequate (that only gives an upper bound).

Some elementary reductions
(a) Prove that if you can decide whether a graph G has a clique of size & (or less) then you
can decide whether a graph G’ has an independent set of size k (or more).

(b) Prove that if you can decide whether one graph G, is a subgraph of another graph G,
then you can decide whether a graph G has a clique of size k (or less).

There is no Proof but We are pretty Sure
Justify (prove) the following logical rules of inference:
(a) Classical - If ¢ — b and « hold, then b holds.

(b) Fuzzy - Prove: If a — b holds, and a holds with probability p, then b holds with proba-
bility less than p. Assume all probabilities are independent.

(c) Give formulas for computing the probabilities of the fuzzy logical operators ‘and’, ‘or’,
‘not’, and ‘implies’, and fill out truth tables with the values T (true, p = 1), L (likely,
p=0.9), M (maybe, p = 0.5), N (not likely, p = 0.1), and F (false, p = 0).

2
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(d) If you have a poly time (algorithmic) reduction from problem B to problem A (i.e. you
can solve B using A with a poly time conversion), and it is very unlikely that A has
better than lower bound ©(2") algorithm, what can you say about problem A. Hint: a
solution to A implies a solution to B.



CS 373: Combinatorial Algorithms, Spring 1999
Midterm 1 (February 23, 1999)

Name:
Net ID: Alias:

‘This is a closed-book, closed-notes exam!

If you brought anything with you besides writing instruments and your
l// 17 .
85 x 11" cheat sheet, please leave it at the front of the classroom.

Don’t panic!
Print your name, netid, and alias in the boxes above, and print your name at the top of every
page.

Answer four of the five questions on the exam. Each question is worth 10 points. If you
answer more than four questions, the one with the lowest score will be ignored. 1-unit
graduate students must answer question #5.

Please write your answers on the front of the exam pages. Use the backs of the pages as
scratch paper. Let us know if you need more paper.

Read the entire exam before writing anything. Make sure you understand what the questions
are asking. If you give a beautiful answer to the wrong question, you’ll get no credit. If any
question is unclear, please ask one of us for clarification.

Don’t spend too much time on any single problem. If you get stuck, move on to something
else and come back later.

Write something down for every problem. Don’t panic and erase large chunks of work. Even
if you think it’s nonsense, it might be worth partial credit.

Don’t panic!

Score | Grader

U D W N | 3
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1. Multiple Choice

Every question below has one of the following answers.
() O(1) (b) ©(log n) (c) ©(n) (d) ©(nlogn) (e) ©(n?)

For each question, write the letter that corresponds to your answer. You do not need to justify
your answer. Each correct answer earns you 1 point, but each incorrect answer costs you 3
point. (You cannot score below zero.)

n
What is 3 i?
i=1

?

Whatis )

=1

<. | =

What is the solution of the recurrence T'(n) = T'(y/n) + n?

What is the solution of the recurrence T'(n) = T'(n — 1) +1gn?

What is the solution of the recurrence T'(n) = 27 ([24%]) + 5n — 7y/Ign + 12292

The amortized time for inserting one item into an n-node splay tree is O(log n). What is
the worst-case time for a sequence of n insertions into an initially empty splay tree?

The expected time for inserting one item into an n-node randomized treap is O(logn).
What is the worst-case time for a sequence of n insertions into an initially empty treap?

What is the worst-case running time of randomized quicksort?

How many bits are there in the binary representation of the nth Fibonacci number?

What is the worst-case cost of merging two arbitrary splay trees with n items total into
a single splay tree with n items.

Suppose you correctly identify three of the answers to this question as obviously wrong.
If you pick one of the two remaining answers at random, what is your expected score
for this problem?
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2. (a) [5 pt] Recall that a binomial tree of order k, denoted By, is defined recursively as
follows. By is a single node. For any k& > 0, By consists of two copies of Bj_; linked
together.

Prove that the degree of any node in a binomial tree is equal to its height.

(b) [5 ptl Recall that a Fibonacci tree of order k, denoted Fj, is defined recursively as
follows. F; and F5, are both single nodes. For any k > 2, F}. consists of an F}_5 linked
to an Fj,_1.

Prove that for any node v in a Fibonacci tree, height(v) = [degree(v)/2].

B
k Fr

k-1 F
k-1
Byt Frz

Recursive definitions of binomial trees and Fibonacci trees.
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3. Consider the following randomized algorithm for computing the smallest element in an array.

RANDOMMIN(A[1 .. n]):

min < oo

if Afi] < min
min — Ali]
return min

for ¢ + 1 to n in random order

(%)

(a) [1 pt] In the worst case, how many times does RANDOMMIN execute line (x)?
(b) [3 pt] What is the probability that line () is executed during the nth iteration of the for

loop?

(c) [6 pt] What is the exact expected number of executions of line (x)? (A correct ©/()

bound is worth 4 points.)

CS 373 Midterm 1
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4. Suppose we have a stack of n pancakes of different sizes. We want to sort the pancakes so
that smaller pancakes are on top of larger pancakes. The only operation we can perform is a
flip — insert a spatula under the top k pancakes, for some k between 1 and n, and flip them
all over.

Flipping the top three pancakes

(a) [3 pt] Describe an algorithm to sort an arbitrary stack of n pancakes.
(b) [3 pt] Prove that your algorithm is correct.

(c) [2 pt] Exactly how many flips does your algorithm perform in the worst case? (A correct
©() bound is worth one point.)

(d) [2 pt] Suppose one side of each pancake is burned. Exactly how many flips do you
need to sort the pancakes and have the burned side of every pancake on the bottom? (A
correct ©() bound is worth one point.)
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5. You are given an array A[l..n| of integers. Describe and analyze an algorithm that finds the
largest sum of of elements in a contiguous subarray Afi .. j|.

For example, if the array contains the numbers (—6,12, —7,0, 14, —7,5), then the largest sum
is19=12-74+0+ 14.

|—6[12]|-7]0]14]-T7][5]
————

19

To get full credit, your algorithm must run in ©(n) time — there are at least three different
ways to do this. An algorithm that runs in ©(n?) time is worth 7 points.
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Midterm 2 (April 6, 1999)

Name:
Net ID: Alias:

‘This is a closed-book, closed-notes exam!

If you brought anything with you besides writing instruments and your
l// 17 .
85 x 11" cheat sheet, please leave it at the front of the classroom.

Don’t panic!
Print your name, netid, and alias in the boxes above, and print your name at the top of every
page.

Answer four of the five questions on the exam. Each question is worth 10 points. If you
answer more than four questions, the one with the lowest score will be ignored. 1-unit
graduate students must answer question #5.

Please write your answers on the front of the exam pages. You can use the backs of the pages
as scratch paper. Let us know if you need more paper.

Read the entire exam before writing anything. Make sure you understand what the questions
are asking. If you give a beautiful answer to the wrong question, you'll get no credit. If any
question is unclear, please ask one of us for clarification.

Don’t spend too much time on any single problem. If you get stuck, move on to something
else and come back later.

Write something down for every problem. Don’t panic and erase large chunks of work. Even
if you think it’s nonsense, it might be worth partial credit.

Don’t panic!

Score | Grader

U D W N | 3
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1. Bipartite Graphs

A graph (V, E) is bipartite if the vertices V' can be partitioned into two subsets L and R, such
that every edge has one vertex in L and the other in R.

(a) Prove that every tree is a bipartite graph.

(b) Describe and analyze an efficient algorithm that determines whether a given connected,
undirected graph is bipartite.



Name: CS 373 Midterm 2

2. Manhattan Skyline

The purpose of the following problem is to compute the outline of a projection of rectangular
buildings. You are given the height, width, and left z-coordinate of n rectangles. The bottom
of each rectangle is on the z-axis. Describe and analyze an efficient algorithm to compute the
vertices of the “skyline”.

A set of rectangles and its skyline.
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3. Least Cost Vertex Weighted Path

Suppose you want to drive from Champaign to Los Angeles via a network of roads connecting
cities. You don’t care how long it takes, how many cities you visit, or how much gas you use.
All you care about is how much money you spend on food. Each city has a possibly different,
but fixed, value for food.

More formally, you are given a directed graph G = (V, F') with nonnegative weights on the
vertices w: V — IR, a source vertex s € V, and a target vertex t € V. Describe and analyze
an efficient algorithm to find a minimum-weight path from s to ¢. [Hint: Modify the graph.]
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4. Union-Find with Alternate Rule

In the UNION-FIND data structure described in CLR and in class, each set is represented by a
rooted tree. The UNION algorithm, given two sets, decides which set is to be the parent of the

other by comparing their ranks, where the rank of a set is an upper bound on the height of
its tree.

Instead of rank, we propose using the weight of the set, which is just the number of nodes in
the set. Here’s the modified UNION algorithm:

UNION(A, B):
if weight(A) > weight(B)
parent(B) «— A
weight(A) « weight(A) + weight(B)
else
parent(A4) «— B
weight(B) «— weight(A) 4+ weight(B)

Prove that if we use this method, then after any sequence of n MAKESETs, UNIONS, and FINDs
(with path compression), the height of the tree representing any set is O(logn).

[Hint: First prove it without path compression, and then argue that path compression doesn’t
matter (for this problem).]
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5. Motorcycle Collision

One gang, Hell’s Ordinates, start west of the arena facing directly east; the other, The Vicious
Abscissas of Death, start south of the arena facing due north. All the motorcycles start moving
simultaneously at a prearranged signal. Each motorcycle moves at a fixed speed—no speeding
up, slowing down, or turning is allowed. Each motorcycle leaves an oil trail behind it. If
another motorcycle crosses that trail, it falls over and stops leaving a trail.

More formally, we are given two sets H and V, each containing n motorcycles. Each motor-
cycle is represented by three numbers (s, z,y): its speed and the z- and y-coordinates of its
initial location. Bikes in H move horizontally; bikes in V' move vertically.

Assume that the bikes are infinitely small points, that the bike trails are infinitely thin lie
segments, that a bike crashes stops exactly when it hits a oil trail, and that no two bikes
collide with each other.

Gﬂ)—»

oO—

TO—p -

OO

O -
TO— -

Two sets of motorcycles and the oil trails they leave behind.

(a) Solve the case n = 1. Given only two motorcycles moving perpendicular to each other,
determine which one of them falls over and where in O(1) time.

(b) Describe an efficient algorithm to find the set of all points where motorcycles fall over.
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5. Motorcycle Collision (continued)

Incidentally, the movie Tron is being shown during Roger Ebert’s Forgotten Film Festival at
the Virginia Theater in Champaign on April 25. Get your tickets now!



CS 373: Combinatorial Algorithms, Spring 1999
Final Exam (May 7, 1999)

Name:
Net ID: Alias:

‘This is a closed-book, closed-notes exam!

If you brought anything with you besides writing instruments and your
! .
two 8%/ x 11” cheat sheets, please leave it at the front of the classroom.

Print your name, netid, and alias in the boxes above, and print your name at the top of every
page.

Answer six of the seven questions on the exam. Each question is worth 10 points. If
you answer every question, the one with the lowest score will be ignored. 1-unit graduate
students must answer question #7.

Please write your answers on the front of the exam pages. Use the backs of the pages as
scratch paper. Let us know if you need more paper.

Read the entire exam before writing anything. Make sure you understand what the questions
are asking. If you give a beautiful answer to the wrong question, you’ll get no credit. If any
question is unclear, please ask one of us for clarification.

Don’t spend too much time on any single problem. If you get stuck, move on to something
else and come back later.

Write something down for every problem. Don’t panic and erase large chunks of work. Even
if you think it’s nonsense, it might be worth partial credit.

Score | Grader
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1. Short Answer

sorting induction Master theorem divide and conquer
randomized algorithm amortization brute force hashing
binary search depth-first search splay tree Fibonacci heap
convex hull sweep line minimum spanning tree shortest paths
shortest path adversary argument NP-hard reduction
string matching evasive graph property | dynamic programming H,

Choose from the list above the best method for solving each of the following problems. We do
not want complete solutions, just a short description of the proper solution technique! Each
item is worth 1 point.

(a) Given a Champaign phone book, find your own phone number.

(b) Given a collection of n rectangles in the plane, determine whether any two intersect in
O(nlogn) time.

(c) Given an undirected graph G and an integer k, determine if G has a complete subgraph
with k edges.

(d) Given an undirected graph G, determine if G has a triangle — a complete subgraph with
three vertices.

(e) Prove that any n-vertex graph with minimum degree at least n/2 has a Hamiltonian
cycle.

(f) Given a graph G and three distinguished vertices u, v, and w, determine whether G
contains a path from u to v that passes through w.

(g) Given a graph G and two distinguished vertices u and v, determine whether GG contains
a path from u to v that passes through at most 17 edges.

(h) Solve the recurrence T'(n) = 5T (n/17) + O(n*/?).
(i) Solve the recurrence T'(n) = 1/n + T'(n — 1), where T'(0) = 0.

(j) Given an array of n integers, find the integer that appears most frequently in the array.

(a) ®

(b) (8)

(c) (h)

(d) (i)

(e) G)
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2. Convex Layers

Given a set ) of points in the plane, define the convex layers of @) inductively as follows: The
first convex layer of @ is just the convex hull of ). For all i > 1, the ith convex layer is the
convex hull of () after the vertices of the first i — 1 layers have been removed.

Give an O(n?)-time algorithm to find all convex layers of a given set of n points. [Partial
credit for a correct slower algorithm; extra credit for a correct faster algorithm.]

A set of points with four convex layers.
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3. Suppose you are given an array of n numbers, sorted in increasing order.

(a) [3 pts] Describe an O(n)-time algorithm for the following problem:
Find two numbers from the list that add up to zero, or report that there is no such pair.
In other words, find two numbers a and b such that ¢ + b = 0.

(b) [7 pts] Describe an O(n?)-time algorithm for the following problem:

Find three numbers from the list that add up to zero, or report that there is no such
triple. In other words, find three numbers a, b, and ¢, such that a + b+ ¢ = 0. [Hint: Use
something similar to part (a) as a subroutine.]
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4. Pattern Matching

(a) [4 pts] A cyclic rotation of a string is obtained by chopping off a prefix and gluing it at the
end of the string. For example, ALGORITHM is a cyclic shift of RITHMALGO. Describe
and analyze an algorithm that determines whether one string P[1 ..m] is a cyclic rotation

of another string T'[1 .. n].

(b) [6 pts] Describe and analyze an algorithm that decides, given any two binary trees P
and T, whether P equals a subtree of T'. [Hint: First transform both trees into strings.]

P T

P occurs exactly once as a subtree of T'.
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5. Two-stage Sorting

(a) [1 pt] Suppose we are given an array A[l .. n| of distinct integers. Describe an algorithm
that splits A into n/k subarrays, each with & elements, such that the elements of each
subarray A[(i — 1)k + 1..ik] are sorted. Your algorithm should run in O(nlog k) time.

(b) [2 pts] Given an array A[l..n| that is already split into n/k sorted subarrays as in part
(a), describe an algorithm that sorts the entire array in O(n log(n/k)) time.

(c) [3 pts] Prove that your algorithm from part (a) is optimal.
(d) [4 pts] Prove that your algorithm from part (b) is optimal.

[4]14]7[3[1[20[11]9[5[13[12[19]10][16]17[2][8][6][18]15]

@

[1]4[3]7[145]9[11[13][20[[10[12[16[17[19][2][6]8]15] 18]

[l

[1]2]3]4[5]6[7[8][9[10[11[12[13[14[15]16]17][18[19]20]
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6. SAT Reduction

Suppose you are have a black box that magically solves SAT (the formula satisfiability prob-
lem) in constant time. That is, given a boolean formula of variables and logical operators
(A, V,—), the black box tells you, in constant time, whether or not the formula can be satis-
fied. Using this black box, design and analyze a polynomial-time algorithm that computes
an assignment to the variables that satisfies the formula.
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7. Knapsack

You're hiking through the woods when you come upon a treasure chest filled with objects.
Each object has a different size, and each object has a price tag on it, giving its value. There
is no correlation between an object’s size and its value. You want to take back as valuable a
subset of the objects as possible (in one trip), but also making sure that you will be able to
carry it in your knapsack which has a limited size.

In other words, you have an integer capacity K and a target value V/, and you want to decide
whether there is a subset of the objects whose total size is at most K and whose total value is
at least V.

(a) [5 pts] Show that this problem is NP-hard. [Hint: Restate the problem more formally,
then reduce from the NP-hard problem PARTITION: Given a set S of nonnegative integers,
is there a partition of S into disjoint subsets A and B (where A U B = S) whose sums

are equal, i.e., ) .. a=> ;.pb.]

(b) [5 pts] Describe and analyze a dynamic programming algorithm to solve the knapsack
problem in O(nK) time. Prove your algorithm is correct.



CS 373: Combinatorial Algorithms, Fall 2000
Homework 0, due August 31, 2000 at the beginning of class

Name:
Net ID: Alias:

Neatly print your name (first name first, with no comma), your network ID, and a short alias into
the boxes above. Do not sign your name. Do not write your Social Security number. Staple this
sheet of paper to the top of your homework.

Grades will be listed on the course web site by alias give us, so your alias should not resemble your
name or your Net ID. If you don’t give yourself an alias, we’ll give you one that you won'’t like.

Before you do anything else, read the Homework Instructions and FAQ on the CS 373 course web
page (http://www-courses.cs.uiuc.edu/~cs373/hw/faq.html), and then check the box below. This
web page gives instructions on how to write and submit homeworks—staple your solutions together
in order, write your name and netID on every page, don’t turn in source code, analyze everything,
use good English and good logic, and so forth.

I have read the CS 373 Homework Instructions and FAQ.

This homework tests your familiarity with the prerequisite material from CS 173, CS 225, and

CS 273—many of these problems have appeared on homeworks or exams in those classes—primarily
to help you identify gaps in your knowledge. You are responsible for filling those gaps on your

own. Parberry and Chapters 1-6 of CLR should be sufficient review, but you may want to consult

other texts as well.

Required Problems

1. Sort the following 25 functions from asymptotically smallest to asymptotically largest, indi-
cating ties if there are any:

! n n? lgn lg(nlgn)
lg*n 1g* 2n olg* n lglg* n le* lg n
nie" (gn)"  (gn)en  pl/len lglgn

log1p00 ™ 1g1000 1g(1000) n (1 + %)" 1, 1/1000

To simplify notation, write f(n) < g(n) to mean f(n) = o(g(n)) and f(n) = g(n) to mean

f(n) = ©(g(n)). For example, the functions n?, n, (), n® could be sorted either as n < n? =

(3) <ndorasn < (3) =n* < n
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2.

3.

(a) Prove that any positive integer can be written as the sum of distinct powers of 2. For
example: 42 = 25 + 23 4 21 25 = 24 4 23 420 17 = 2% 4 20, [Hint: “Write the number
in binary” is not a proof; it just restates the problem.]

(b) Prove that any positive integer can be written as the sum of distinct nonconsecutive Fi-
bonacci numbers—if F;, appears in the sum, then neither F;, 1 nor F,_; will. For exam-
ple: 42 = Fy + Fg, 25 = Fg + Fy + F5, 17 = F7 + Fy + Fo.

(c) Prove that any integer (positive, negative, or zero) can be written in the form ), +3¢,

where the exponents i are distinct non-negative integers. For example: 42 = 3* — 33 —
32 -31,25=3% -3 +30,17 =33 — 32 - 30,

Solve the following recurrences. State tight asymptotic bounds for each function in the form
©(f(n)) for some recognizable function f(n). You do not need to turn in proofs (in fact,
please don’t turn in proofs), but you should do them anyway just for practice. If no base cases
are given, assume something reasonable but nontrivial. Extra credit will be given for more
exact solutions.

(@ A(n) =3A(n/2)+n

(b) B(n) = n/3gfgn/3 (B(k) + B(n— k) +n)

(©) C(n) =4C(|n/2] +5) +n?
*(d) D(n)=2D(n/2)+n/lgn
E(n—-1)
E(n —2)

3

*(e) E(n) = , where F(1) =1 and E(2) = 2.

. Penn and Teller have a special deck of fifty-two cards, with no face cards and nothing but

clubs—the ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ..., 52 of clubs. (They’re big cards.) Penn
shuffles the deck until each each of the 52! possible orderings of the cards is equally likely. He
then takes cards one at a time from the top of the deck and gives them to Teller, stopping as
soon as he gives Teller the three of clubs.

(a) On average, how many cards does Penn give Teller?

(b) On average, what is the smallest-numbered card that Penn gives Teller?
*(c) On average, what is the largest-numbered card that Penn gives Teller?

[Hint: Solve for an n-card deck, and then set n = 52.] Prove that your answers are correct. If
you have to appeal to “intuition” or “common sense”, your answers are probably wrong!
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5. Suppose you have a pointer to the head of singly linked list. Normally, each node in the list
only has a pointer to the next element, and the last node’s pointer is NULL. Unfortunately,
your list might have been corrupted by a bug in somebody else’s code?, so that the last node
has a pointer back to some other node in the list instead.

é@»&»@»@»&»@»@}
NI ISR

Top: A standard singly-linked list. Bottom: A corrupted singly linked list.

Describe an algorithm? that determines whether the linked list is corrupted or not. Your
algorithm must not modify the list. For full credit, your algorithm should run in O(n) time,
where n is the number of nodes in the list, and use O(1) extra space (not counting the list
itself).

6. [This problem is required only for graduate students taking CS 373 for a full unit; anyone
else can submit a solution for extra credit.]

An ant is walking along a rubber band, starting at the left end. Once every second, the ant
walks one inch to the right, and then you make the rubber band one inch longer by pulling on
the right end. The rubber band stretches uniformly, so stretching the rubber band also pulls
the ant to the right. The initial length of the rubber band is n inches, so after ¢ seconds, the
rubber band is n + ¢ inches long.

=2 9

Every second, the ant walks an inch, and then the rubber band is stretched an inch longer.

(a) How far has the ant moved after ¢ seconds, as a function of n and ¢? Set up a recurrence
and (for full credit) give an exact closed-form solution. [Hint: What fraction of the
rubber band’s length has the ant walked?]

*(b) How long does it take the ant to get to the right end of the rubber band? For full credit,
give an answer of the form f(n) + ©(1) for some explicit function f(n).

! After all, your code is always completely 100% bug-free. Isn’t that right, Mr. Gates?
2Since you've read the Homework Instructions, you know what the phrase “describe an algorithm” means. Right?
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Practice Problems

These remaining practice problems are entirely for your benefit. Don’t turn in solutions—we’ll
just throw them out—but feel free to ask us about these questions during office hours and review
sessions. Think of these as potential exam questions (hint, hint).

1. Recall the standard recursive definition of the Fibonacci numbers: Fy = 0, F; = 1, and
F, = F, 1 + F,_» for all n > 2. Prove the following identities for all positive integers
n and m.

(a) F, is even if and only if n is divisible by 3.

i=0

1=
(C) Fy% - Fn+1Fn—1 = (_1)n+1

*(d) If n is an integer multiple of m, then F,, is an integer multiple of F,,,.

2. Atournament is a directed graph with exactly one edge between every pair of vertices. (Think
of the nodes as players in a round-robin tournament, where each edge points from the winner
to the loser.) A Hamiltonian path is a sequence of directed edges, joined end to end, that visits
every vertex exactly once. Prove that every tournament contains at least one Hamiltonian
path.

A six-vertex tournament containing the Hamiltonian path6 -4 -5 —2 —-3 — 1.

3. (a) Prove the following identity by induction:

n) kE)\n—k)
k=0
(b) Give a non-inductive combinatorial proof of the same identity, by showing that the two

sides of the equation count exactly the same thing in two different ways. There is a
correct one-sentence proof.
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4. (a) Prove that 2Menl+len] 1 — 9(n).
(b) Is2lsnl = (9(2[lg ”1)? Justify your answer.
(©) Is 225" — (9(22rlg el )? Justify your answer.
(d) Prove that if f(n) = O(g(n)), then 2/(") = O(29(")). Justify your answer.
(e) Prove that f(n) = O(g(n)) does not imply that log(f(n)) = O(log(g(n)))?.
*(f) Prove that log® n = o(n!/*) for any positive integer k.

5. Solve the following recurrences. State tight asymptotic bounds for each function in the form
©(f(n)) for some recognizable function f(n). You do not need to turn in proofs (in fact,
please don’t turn in proofs), but you should do them anyway just for practice. If no base cases
are given, assume something reasonable (but nontrivial). Extra credit will be given for more
exact solutions.

(@ A(n) =A(n/2)+n

(b) B(n) =2 (n/2)—|—n
(©) C(n) = (C’(k:) + C(n—k) + 1), where C(1) = 1.
(d) D(n) = D(n —1)+1/n
*(e) E(n)=8E(n—1)—15E(n—2) + 1
) F(n) =(n—1)(F(n—1)+ F(n—2)), where FF(0) = F(1) =1
*(@) G(n) =G(n/2) +G(n/4) + G(n/6) + G(n/12) +n [Hint: 3 +1+ 1+ L =1]

6. (a) Adominoisa?2x1or1 x2rectangle. How many different ways are there to completely
fill a 2 x n rectangle with n dominos? Set up a recurrence relation and give an exact
closed-form solution.

(b) A slab is a three-dimensional box with dimensions 1 x 2 x 2,2 x 1 x 2, or 2 x 2 x 1. How
many different ways are there to fill a 2 x 2 x n box with n slabs? Set up a recurrence
relation and give an exact closed-form solution.

A 2 x 10 rectangle filled with ten dominos, and a 2 x 2 x 10 box filled with ten slabs.
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7. Professor George O’Jungle has a favorite 26-node binary tree, whose nodes are labeled by
letters of the alphabet. The preorder and postorder sequences of nodes are as follows:

preorder: MNHCRSKWTGDXIYAJPOEZVBULAQTF
postorder: CWTKSGRHDNAOEPJYZIBQLFUVIXM

Draw Professor O’Jungle’s binary tree, and give the inorder sequence of nodes.

8. Alice and Bob each have a fair n-sided die. Alice rolls her die once. Bob then repeatedly
throws his die until he rolls a number at least as big as the number Alice rolled. Each time
Bob rolls, he pays Alice $1. (For example, if Alice rolls a 5, and Bob rolls a 4, then a 3, then a
1, then a 5, the game ends and Alice gets $4. If Alice rolls a 1, then no matter what Bob rolls,
the game will end immediately, and Alice will get $1.)

Exactly how much money does Alice expect to win at this game? Prove that your answer
is correct. If you have to appeal to “intuition” or “common sense”, your answer is probably

wrong!

9. Prove that for any nonnegative parameters a and b, the following algorithms terminate and

produce identical output.

SLowEucCLID(a, b) :
ifb>a
return SLOWEUCLID(b, a)
elseif b=10
return a
else
return SLOWEUCLID(b, a — b)

FASTEUCLID(a, b) :

ifb=0
return a
else
return FASTEUCLID(b, @ mod b)




CS 373: Combinatorial Algorithms, Fall 2000
Homework 1 (due September 12, 2000 at midnight)

Name:
Net ID: Alias: U3, 1

Name:
Net ID: Alias: U3, 1

Name:
Net ID: Alias: U3, 1

Starting with Homework 1, homeworks may be done in teams of up to three people. Each team
turns in just one solution, and every member of a team gets the same grade. Since 1-unit graduate
students are required to solve problems that are worth extra credit for other students, 1-unit grad
students may not be on the same team as 3/4-unit grad students or undergraduates.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework O in the boxes
above. Please also tell us whether you are an undergraduate, 3/4-unit grad student, or 1-unit grad
student by circling U, 3/, or 1, respectively. Staple this sheet to the top of your homework.

Required Problems

1. Suppose we want to display a paragraph of text on a computer screen. The text consists of
n words, where the ith word is p; pixels wide. We want to break the paragraph into several
lines, each exactly P pixels long. Depending on which words we put on each line, we will
need to insert different amounts of white space between the words. The paragraph should be
fully justified, meaning that the first word on each line starts at its leftmost pixel, and except
for the last line, the last character on each line ends at its rightmost pixel. There must be at
least one pixel of whitespace between any two words on the same line.

Define the slop of a paragraph layout as the sum over all lines, except the last, of the cube
of the number of extra white-space pixels in each line (not counting the one pixel required
between every adjacent pair of words). Specifically, if a line contains words i through j, then
the amount of extra white space on that line is P — j +i — > 5 _.py. Describe a dynamic
programming algorithm to print the paragraph with minimum slop.
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2. Consider the following sorting algorithm:

STUPIDSORT(A[0..n —1]) :

if n =2 and A[0] > A[1]
swap A[0] — A[l]

else if n > 2
m «— [2n/3]
STUPIDSORT(A[0..m — 1])
STUPIDSORT(A[n — m..n — 1])
STUPIDSORT(A[0..m — 1])

(a) Prove that STUPIDSORT actually sorts its input.

(b) Would the algorithm still sort correctly if we replaced the line m «— [2n/3] with m «— |2n/3]?
Justify your answer.

(c) State a recurrence (including the base case(s)) for the number of comparisons executed
by STUPIDSORT.

(d) Solve the recurrence, and prove that your solution is correct. [Hint: Ignore the ceiling.]
Does the algorithm deserve its name?

*(e) Show that the number of swaps executed by STUPIDSORT is at most (}).

3. The following randomized algorithm selects the rth smallest element in an unsorted array
All..n]. For example, to find the smallest element, you would call RANDOMSELECT(A, 1); to
find the median element, you would call RANDOMSELECT(A, |n/2]). Recall from lecture that
PARTITION splits the array into three parts by comparing the pivot element A[p] to every other
element of the array, using n — 1 comparisons altogether, and returns the new index of the
pivot element.

RANDOMSELECT(A[l .. n],7) :
p — RANDOM(1, p)
k < PARTITION(AJL ..n}, p)

ifr<k

return RANDOMSELECT(A[1.. k — 1],7)
elseifr > k

return RANDOMSELECT(A[k + 1..n],7 — k)
else

return A[k]

(a) State a recurrence for the expected running time of RANDOMSELECT, as a function of n
and r.

(b) What is the exact probability that RANDOMSELECT compares the ith smallest and jth
smallest elements in the input array? The correct answer is a simple function of 4, j, and
r. [Hint: Check your answer by trying a few small examples.]

*(c) What is the expected running time of RANDOMSELECT, as a function of n and r? You
can use either the recurrence from part (a) or the probabilities from part (b). For extra
credit, give the exact expected number of comparisons.

(d) What is the expected number of times that RANDOMSELECT calls itself recursively?
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4. Some graphics hardware includes support for an operation called blit, or block transfer, which
quickly copies a rectangular chunk of a pixelmap (a two-dimensional array of pixel values)
from one location to another. This is a two-dimensional version of the standard C library
function memcpy ().

Suppose we want to rotate an n x n pixelmap 90° clockwise. One way to do this is to
split the pixelmap into four n/2 x n/2 blocks, move each block to its proper position using
a sequence of five blits, and then recursively rotate each block. Alternately, we can first
recursively rotate the blocks and blit them into place afterwards.

ClA
[ [oB~ 3
AlB o[>
C|D O|lw
L_[>[=__4

Two algorithms for rotating a pixelmap.
Black arrows indicate blitting the blocks into place.
White arrows indicate recursively rotating the blocks.

The following sequence of pictures shows the first algorithm (blit then recurse) in action.

In the following questions, assume n is a power of two.

(a) Prove that both versions of the algorithm are correct. [Hint: If you exploit all the avail-
able symmetries, your proof will only be a half of a page long.]

(b) Exactly how many blits does the algorithm perform?
(c) What is the algorithm’s running time if a k x k blit takes O(k?) time?
(d) What if a k& x k blit takes only O(k) time?
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5. The traditional Devonian/Cornish drinking song “The Barley Mow” has the following pseu-
dolyrics!, where container]i] is the name of a container that holds 2! ounces of beer.?

(a)

(b)

()

BARLEYMOW (n):
“Here's a health to the barley-mow, my brave boys,"
“Here's a health to the barley-mow!”

“We'll drink it out of the jolly brown bowl,”

“Here's a health to the barley-mow!”

“Here's a health to the barley-mow, my brave boys,”
“Here's a health to the barley-mow!”

fori—1ton

“We'll drink it out of the containerli], boys,”

“Here's a health to the barley-mow!”

for j < i downto 1
“The container[j]

“And the jolly brown bowl!"

“Here's a health to the barley-mow!”

“Here's a health to the barley-mow, my brave boys,”

“Here's a health to the barley-mow!”

”
7

Suppose each container name container[i] is a single word, and you can sing four words
a second. How long would it take you to sing BARLEYMoOW (n)? (Give a tight asymptotic
bound.)

If you want to sing this song for n > 20, you’ll have to make up your own container
names, and to avoid repetition, these names will get progressively longer as n increases>.
Suppose container|n| has ©(logn) syllables, and you can sing six syllables per second.
Now how long would it take you to sing BARLEYMOW (n)? (Give a tight asymptotic

bound.)

Suppose each time you mention the name of a container, you drink the corresponding
amount of beer: one ounce for the jolly brown bowl, and 2! ounces for each container]i].
Assuming for purposes of this problem that you are at least 21 years old, exactly how
many ounces of beer would you drink if you sang BARLEYMow (n)? (Give an exact
answer, not just an asymptotic bound.)

Ipseudolyrics are to lyrics as pseudocode is to code.

20One version of the song uses the following containers: nipperkin, gill pot, half-pint, pint, quart, pottle, gallon, half-
anker, anker, firkin, half-barrel, barrel, hogshead, pipe, well, river, and ocean. Every container in this list is twice as big
as its predecessor, except that a firkin is actually 2.25 ankers, and the last three units are just silly.

3“We’ll drink it out of the hemisemidemiyottapint, boys!”

4
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6. [This problem is required only for graduate students taking CS 373 for a full unit; anyone else
can submit a solution for extra credit.]

A company is planning a party for its employees. The employees in the company are
organized into a strict hierarchy, that is, a tree with the company president at the root. The
organizers of the party have assigned a real number to each employee measuring how ‘fun’
the employee is. In order to keep things social, there is one restriction on the guest list:
an employee cannot attend the party if their immediate supervisor is present. On the other
hand, the president of the company must attend the party, even though she has a negative
fun rating; it's her company, after all. Give an algorithm that makes a guest list for the party
that maximizes the sum of the ‘fun’ ratings of the guests.

Practice Problems

1. Give an O(n?) algorithm to find the longest increasing subsequence of a sequence of numbers.
The elements of the subsequence need not be adjacent in the sequence. For example, the
sequence (1,5,3,2,4) has longest increasing subsequence (1, 3, 4).

2. You are at a political convention with n delegates. Each delegate is a member of exactly one
political party. It is impossible to tell which political party a delegate belongs to. However,
you can check whether any two delegates are in the same party or not by introducing them
to each other. (Members of the same party always greet each other with smiles and friendly
handshakes; members of different parties always greet each other with angry stares and
insults.)

(a) Suppose a majority (more than half) of the delegates are from the same political party.
Give an efficient algorithm that identifies a member of the majority party.

(b) Suppose exactly k political parties are represented at the convention and one party has
a plurality: more delegates belong to that party than to any other. Present a practi-
cal procedure to pick a person from the plurality party as parsimoniously as possible.
(Please.)

3. Give an algorithm that finds the second smallest of n elements in at most n + [lgn] — 2
comparisons. [Hint: divide and conquer to find the smallest; where is the second smallest?]

4. Suppose that you have an array of records whose keys to be sorted consist only of 0’s and 1’s.
Give a simple, linear-time O(n) algorithm to sort the array in place (using storage of no more
than constant size in addition to that of the array).
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5. Consider the problem of making change for n cents using the least number of coins.

(a)
(b)
©
(d
(e)

*(H

Describe a greedy algorithm to make change consisting of quarters, dimes, nickels, and
pennies. Prove that your algorithm yields an optimal solution.

Suppose that the available coins have the values ¥, ¢!, ..., c* for some integers ¢ > 1

and k£ > 1. Show that the obvious greedy algorithm always yields an optimal solution.

Give a set of 4 coin values for which the greedy algorithm does not yield an optimal
solution.

Describe a dynamic programming algorithm that yields an optimal solution for an arbi-
trary set of coin values.

Suppose we have only two types of coins whose values a and b are relatively prime.
Prove that any value of greater than (a — 1)(b — 1) can be made with these two coins.

For only three coins a, b, c whose greatest common divisor is 1, give an algorithm to
determine the smallest value n such that change can be given for all values greater
than n. [Note: this problem is currently unsolved for more than four coins!]

6. Suppose you have a subroutine that can find the median of a set of n items (i.e., the [n/2]
smallest) in O(n) time. Give an algorithm to find the kth biggest element (for arbitrary k) in
O(n) time.

7. You're walking along the beach and you stub your toe on something in the sand. You dig
around it and find that it is a treasure chest full of gold bricks of different (integral) weight.
Your knapsack can only carry up to weight n before it breaks apart. You want to put as much
in it as possible without going over, but you cannot break the gold bricks up.

(@

(b)

(0

Suppose that the gold bricks have the weights 1,2,4,8,...,2, k > 1. Describe and prove
correct a greedy algorithm that fills the knapsack as much as possible without going over.

Give a set of 3 weight values for which the greedy algorithm does not yield an optimal
solution and show why.

Give a dynamic programming algorithm that yields an optimal solution for an arbitrary
set of gold brick values.
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Homework 2 (due September 28, 2000 at midnight)

Name:
Net ID: Alias: U3, 1

Name:
Net ID: Alias: U3, 1

Name:
Net ID: Alias: U3, 1

Starting with Homework 1, homeworks may be done in teams of up to three people. Each team
turns in just one solution, and every member of a team gets the same grade. Since 1-unit graduate
students are required to solve problems that are worth extra credit for other students, 1-unit grad
students may not be on the same team as 3/4-unit grad students or undergraduates.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework O in the boxes
above. Please also tell us whether you are an undergraduate, 3/4-unit grad student, or 1-unit grad
student by circling U, 3/, or 1, respectively. Staple this sheet to the top of your homework.

Required Problems

1. Faster Longest Increasing Subsequence (15 pts)
Give an O(nlogn) algorithm to find the longest increasing subsequence of a sequence of
numbers. [Hint: In the dynamic programming solution, you don'’t really have to look back at
all previous items. There was a practice problem on HW 1 that asked for an O(n?) algorithm
for this. If you are having difficulty, look at the HW 1 solutions.]

2. SELECT(A, k) (10 pts)
Say that a binary search tree is augmented if every node v also stores |v|, the size of its subtree.

(a) Show that a rotation in an augmented binary tree can be performed in constant time.

(b) Describe an algorithm SCAPEGOATSELECT(k) that selects the kth smallest item in an
augmented scapegoat tree in O(logn) worst-case time.

(c) Describe an algorithm SPLAYSELECT(k) that selects the kth smallest item in an aug-
mented splay tree in O(logn) amortized time.
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(d) Describe an algorithm TREAPSELECT(k) that selects the kth smallest item in an aug-
mented treap in O(logn) expected time.

[Hint: The answers for (b), (c), and (d) are almost exactly the same!]

3. Scapegoat trees (15 pts)

(a) Prove that only one subtree gets rebalanced in a scapegoat tree insertion.

(b) Prove that I(v) = 0 in every node of a perfectly balanced tree. (Recall that I(v) =
max{0, |T'| — |s| — 1}, where T is the child of greater height and s the child of lesser
height, and |v| is the number of nodes in subtree v. A perfectly balanced tree has two
perfectly balanced subtrees, each with as close to half the nodes as possible.)

*(c) Show that you can rebuild a fully balanced binary tree from an unbalanced tree in O(n)
time using only O(logn) additional memory. For 5 extra credit points, use only O(1)
additional memory.

4. Memory Management (10 pts)
Suppose we can insert or delete an element into a hash table in constant time. In order to
ensure that our hash table is always big enough, without wasting a lot of memory, we will
use the following global rebuilding rules:

e After an insertion, if the table is more than 3/4 full, we allocate a new table twice as big
as our current table, insert everything into the new table, and then free the old table.

e After a deletion, if the table is less than 1/4 full, we we allocate a new table half as big
as our current table, insert everything into the new table, and then free the old table.

Show that for any sequence of insertions and deletions, the amortized time per operation
is still a constant. Do not use the potential method—it makes the problem much too hard!

5. Fibonacci Heaps: SECONDMIN (10 pts)

(a) Implement SECONDMIN by using a Fibonacci heap as a black box. Remember to justify
its correctness and running time.

*(b) Modify the Fibonacci Heap data structure to implement the SECONDMIN operation in
constant time, without degrading the performance of any other Fibonacci heap opera-
tion.



CS 373 Homework 2 (due 9/28/00) Fall 2000

Practice Problems

1.

*2.

5.

Amortization

(a) Modify the binary double-counter (see class notes Sept 12) to support a new operation
SIGN, which determines whether the number being stored is positive, negative, or zero,
in constant time. The amortized time to increment or decrement the counter should still
be a constant.

[Hint: Suppose p is the number of significant bits in P, and n is the number of significant
bits in N. For example, if P = 17 = 100012 and N = 0, then p = 5 and n = 0. Then
p —n always has the same sign as P — N. Assume you can update p and n in O(1) time.]

*(b) Do the same but now you can’t assume that p and n can be updated in O(1) time.

Amortization

Suppose instead of powers of two, we represent integers as the sum of Fibonacci numbers.
In other words, instead of an array of bits, we keep an array of ‘fits’, where the ith least
significant fit indicates whether the sum includes the ith Fibonacci number F;. For example,
the fit string 101110 represents the number Fg + Fy + F5 + F» = 8 + 3 4+ 2 4+ 1 = 14. Describe
algorithms to increment and decrement a fit string in constant amortized time. [Hint: Most
numbers can be represented by more than one fit string. This is not the same representation
as on Homework 0!]

. Rotations

(a) Show that it is possible to transform any n-node binary search tree into any other n-node
binary search tree using at most 2n — 2 rotations.

*(b) Use fewer than 2n — 2 rotations. Nobody knows how few rotations are required in the
worst case. There is an algorithm that can transform any tree to any other in at most
2n — 6 rotations, and there are pairs of trees that are 2n — 10 rotations apart. These are
the best bounds known.

. Give an efficient implementation of the operation CHANGEKEY(x, k), which changes the key

of a node z in a Fibonacci heap to the value k. The changes you make to Fibonacci heap data
structure to support your implementation should not affect the amortized running time of any
other Fibonacci heap operations. Analyze the amortized running time of your implementation
for cases in which k is greater than, less than, or equal to key[z].

Detecting overlap

(a) You are given a list of ranges represented by min and max (e.g., [1,3], [4,5], [4,9], [6,8],
[7,10]). Give an O(nlogn)-time algorithm that decides whether or not a set of ranges
contains a pair that overlaps. You need not report all intersections. If a range completely
covers another, they are overlapping, even if the boundaries do not intersect.

3
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(b) You are given a list of rectangles represented by min and max z- and y-coordinates. Give
an O(nlogn)-time algorithm that decides whet her or not a set of rectangles contains a
pair that overlaps (with the same qualifications as above). [Hint: sweep a vertical line
from left to right, performing some processing whenever an end-point is encountered.
Use a balanced search tree to maintain any extra info you might need.]

6. Comparison of Amortized Analysis Methods
A sequence of n operations is performed on a data structure. The ith operation costs ¢ if 7 is
an exact power of 2, and 1 otherwise. That is operation i costs f(z), where:

. i, i=2F
1) = { 1, otherwise

Determine the amortized cost per operation using the following methods of analysis:

(a) Aggregate method
(b) Accounting method
*(c) Potential method
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Homework 3 (due October 17, 2000 at midnight)

Name:
Net ID: Alias: U3, 1

Name:
Net ID: Alias: U3, 1

Name:
Net ID: Alias: U3, 1

Starting with Homework 1, homeworks may be done in teams of up to three people. Each team
turns in just one solution, and every member of a team gets the same grade. Since 1-unit graduate
students are required to solve problems that are worth extra credit for other students, 1-unit grad
students may not be on the same team as 3/4-unit grad students or undergraduates.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework O in the boxes
above. Please also tell us whether you are an undergraduate, 3/4-unit grad student, or 1-unit grad
student by circling U, 3/, or 1, respectively. Staple this sheet to the top of your homework.

Required Problems
1. Suppose you have to design a dictionary that holds 2048 items.

(a) How many probes are used for an unsuccessful search if the dictionary is implemented
as a sorted array? Assume the use of Binary Search.

(b) How large a hashtable do you need if your goal is to have 2 as the expected number of
probes for an unsuccessful search?

(c) How much more space is needed by the hashtable compared to the sorted array? Assume
that each pointer in a linked list takes 1 word of storage.

2. In order to facilitate recompiling programs from multiple source files when only a small num-
ber of files have been updated, there is a UNIX utility called ‘make’ that only recompiles those
files that were changed after the most recent compilation, and any intermediate files in the
compilation that depend on those that were changed. A Makefile is typically composed of a
list of source files that must be compiled. Each of these source files is dependent on some of
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the other files which are listed. Thus a source file must be recompiled if a file on which it
depends is changed.

Assuming you have a list of which files have been recently changed, as well as a list for
each source file of the files on which it depends, design an algorithm to recompile only those
necessary. Don’t worry about the details of parsing a Makefile.

3. A person wants to fly from city A to city B in the shortest possible time. She turns to the
traveling agent who knows all the departure and arrival times of all the flights on the planet.
Give an algorithm that will allow the agent to choose a route with the minimum total travel
time—initial takeoff to final landing, including layovers. [Hint: Modify the data and call a
shortest-path algorithm. ]

4. During the eighteenth century the city of Konigsberg in East Prussia was divided into four
sections by the Pregel river. Seven bridges connected these regions, as shown below. It was
said that residents spent their Sunday walks trying to find a way to walk about the city so as
to cross each bridge exactly once and then return to their starting point.

e —
e

(a) Show how the residents of the city could accomplish such a walk or prove no such walk
exists.

(b) Given any undirected graph G = (V, E), give an algorithm that finds a cycle in the graph
that visits every edge exactly once, or says that it can’t be done.

5. Suppose you have a graph G and an MST of that graph (i.e. the MST has already been
constructed).

(a) Give an algorithm to update the MST when an edge is added to G.
(b) Give an algorithm to update the MST when an edge is deleted from G.

(c) Give an algorithm to update the MST when a vertex (and possibly edges to it) is added
to G.

6. [This problem is required only for graduate students taking CS 373 for a full unit; anyone else
can submit a solution for extra credit.]

You are given an unlimited number of each of n different types of envelopes. The di-
mensions of envelope type i are x; X y;. In nesting envelopes inside one another, you can
place envelope A inside envelope B if and only if the dimensions A are strictly smaller than
the dimensions of B. Design and analyze an algorithm to determine the largest number of
envelopes that can be nested inside one another.
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Practice Problems

*1.

2.

3.

Let the hash function for a table of size m be
h(z) = |Amz] mod m

where A = ¢ = @ Show that this gives the best possible spread, i.e. if the x are hashed
in order, = + 1 will be hashed in the largest remaining contiguous interval.

The incidence matrix of an undirected graph G = (V, E) is a |V/| x |E| matrix B = (b;;) such
that
. 1 if(i,5) € E,
bij = [(i,j) € E] = . ( )
0 if(i,j) ¢ E.
(a) Describe what all the entries of the matrix product BB represent (B is the matrix
transpose).

(b) Describe what all the entries of the matrix product B” B represent.

*(c) Let C = BBT — 2A, where A is the adjacency matrix of G, with zeroes on the diagonal.
Let C’ be C with the first row and column removed. Show that det C’ is the number of
spanning trees.

(a) Give an O(V) algorithm to decide whether a directed graph contains a sink in an adja-
cency matrix representation. A sink is a vertex with in-degree V' — 1.

(b) An undirected graph is a scorpion if it has a vertex of degree 1 (the sting) connected
to a vertex of degree two (the tail) connected to a vertex of degree V' — 2 (the body)
connected to the other V' — 3 vertices (the feet). Some of the feet may be connected to
other feet.

Design an algorithm that decides whether a given adjacency matrix represents a scorpion
by examining only O(V') of the entries.

(c) Show that it is impossible to decide whether G has at least one edge in O(V) time.

Given an undirected graph G = (V, E), and a weight function f : £ — IR on the edges, give
an algorithm that finds (in time polynomial in V' and FE) a cycle of smallest weight in G.

. Let G = (V, E) be a graph with n vertices. A simple path of G, is a path that does not contain

the same vertex twice. Use dynamic programming to design an algorithm (not polynomial
time) to find a simple path of maximum length in G. Hint: It can be done in O(n°2") time,
for some constant c.

. Suppose all edge weights in a graph G are equal. Give an algorithm to compute a minimum

spanning tree of G.

. Give an algorithm to construct a transitive reduction of a directed graph G, i.e. a graph GF

with the fewest edges (but with the same vertices) such that there is a path from a to b in G
iff there is also such a path in GT%,



CS 373 Homework 3 (due 10/17/00) Fall 2000

8. (a) Whatis 522950+2341+1732+1123+514 mod 6?
(b) What is the capital of Nebraska? Hint: It is not Omaha. It is named after a famous
president of the United States that was not George Washington. The distance from the
Earth to the Moon averages roughly 384,000 km.
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Homework 4 (due October 26, 2000 at midnight)

Name:
Net ID: Alias: U3, 1

Name:
Net ID: Alias: U3, 1

Name:
Net ID: Alias: U3, 1

Homeworks may be done in teams of up to three people. Each team turns in just one solution, and
every memeber of a team gets the same grad. Since 1-unit graduate students are required to solve
problems that are worth extra credit for other students, 1-unit grad students may not be on the
same team as 3/4-unit grad students or undergraduates.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework O in the boxes
above. Please also tell us whether you are an undergraduate, 3/4-unit grad student, or 1-unit grad
student by circling U, 3/, or 1, respectively. Staple this sheet to the top of your homework.

RequiredProblems

1. (10 points) A certain algorithms professor once claimed that the height of an n-node Fibonacci
heap is of height O(logn). Disprove his claim by showing that for a positive integer n, a
sequence of Fibonacci heap operations that creates a Fibonacci heap consisting of just one
tree that is a (downward) linear chain of n nodes.

2. (20 points) Fibonacci strings are defined as follows:

i =b
F2 =4
F,=F, 1F,_» foralln > 2

where the recursive rule uses concatenation of strings, so F3 = ab, F; = aba, and so on. Note
that the length of F,, is the nth Fibonacci number.

(a) Prove that in any Fibonacci string there are no two b’s adjacent and no three a’s.
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(b) Give the unoptimized and optimized failure function for F7.

(c) Prove that, in searching for the Fibonacci string F},, the unoptimized KMP algorithm may
shift [k/2] times on the same text character. In other words, prove that there is a chain
of failure links j — fail[j] — fail[fail[j]] — ... of length [k/2], and find an example
text T' that would cause KMP to traverse this entire chain on the same position in the
text.

(d) What happens here when you use the optimized prefix function? Explain.

3. (10 points) Show how to extend the Rabin-Karp fingerprinting method to handle the problem
of looking for a given m x m pattern in an n x n array of characters. The pattern may be
shifted horizontally and vertically, but it may not be rotated.

4. (10 points)

(a) A cyclic rotation of a string is obtained by chopping off a prefix and gluing it at the end
of the string. For example, ALGORITHM is a cyclic shift of RITHMALGO. Describe and
analyze an algorithm that determines whether one string P[1..m] is a cyclic rotation of
another string T'[1..n|.

(b) Describe and analyze an algorithm that decides, given any two binary trees P and T,
whether P equals a subtree of 7. We want an algorithm that compares the shapes of the
trees. There is no data stored in the nodes, just pointers to the left and right children.
[Hint: First transform both trees into strings. ]

P T

P occurs exactly once as a subtree of T.

5. (10 points) [This problem is required only for graduate students taking CS 373 for a full unit;
anyone else can submit a solution for extra credit.]

Refer to the notes for lecture 11 for this problem. The GENERICSSSP algorithm described
in class can be implemented using a stack for the ‘bag’. Prove that the resulting algorithm
can be forced to perform in Q(2") relaxation steps. To do this, you need to describe, for any
positive integer n, a specific weighted directed n-vertex graph that forces this exponential
behavior. The easiest way to describe such a family of graphs is using an algorithm!
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Practice Problems

1.

String matching with wild-cards

Suppose you have an alphabet for patterns that includes a ‘gap’ or wild-card character; any
length string of any characters can match this additional character. For example if *’ is
the wild-card, then the pattern foo*bar*nad can be found in foofoowangbarnad. Modify the
computation of the prefix function to correctly match strings using KMP

. Prove that there is no comparison sort whose running time is linear for at least 1/2 of the n!

inputs of length n. What about at least 1/n? What about at least 1/2"?.

. Prove that 2n — 1 comparisons are necessary in the worst case to merge two sorted lists

containing n elements each.

Find asymptotic upper and lower bounds to lg(n!) without Stirling’s approximation (Hint: use
integration).

. Given a sequence of n elements of n/k blocks (k elements per block) all elements in a block

are less than those to the right in sequence, show that you cannot have the whole sequence
sorted in better than Q(nlg k). Note that the entire sequence would be sorted if each of the
n/k blocks were individually sorted in place. Also note that combining the lower bounds for
each block is not adequate (that only gives an upper bound).

. Show how to find the occurrences of pattern P in text 7' by computing the prefix function of

the string PT (the concatenation of P and T').

. Lower Bounds on Adjacency Matrix Representations of Graphs

(a) Prove that the time to determine if an undirected graph has a cycle is Q(V?).

(b) Prove that the time to determine if there is a path between two nodes in an undirected
graph is Q(V?2).
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Homework 1 (due November 16, 2000 at midnight)

Name:
Net ID: Alias: U3, 1

Name:
Net ID: Alias: U3, 1

Name:
Net ID: Alias: U3, 1

Starting with Homework 1, homeworks may be done in teams of up to three people. Each team
turns in just one solution, and every member of a team gets the same grade. Since 1-unit graduate
students are required to solve problems that are worth extra credit for other students, 1-unit grad
students may not be on the same team as 3/4-unit grad students or undergraduates.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework O in the boxes
above. Please also tell us whether you are an undergraduate, 3/4-unit grad student, or 1-unit grad
student by circling U, 3/, or 1, respectively. Staple this sheet to the top of your homework.

Required Problems

1. Give an O(n?logn) algorithm to determine whether any three points of a set of n points are
collinear. Assume two dimensions and exact arithmetic.

2. We are given an array of n bits, and we want to determine if it contains two consecutive 1
bits. Obviously, we can check every bit, but is this always necessary?

(a) (4 pts) Show that when n» mod 3 = 0 or 2, we must examine every bit in the array.
that is, give an adversary strategy that forces any algorithm to examine every bit when
n=23,56809,....

(b) (4 pts) Show that when n = 3k + 1, we only have to examine n — 1 bits. That is, describe
an algorithm that finds two consecutive 1s or correctly reports that there are none after
examining at most n — 1 bits, when n = 1,4,7,10,....

(c) (2 pts) How many n-bit strings are there with two consecutive ones? For which n is this
number even or odd?
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3. You are given a set of points in the plane. A point is maximal if there is no other point both
both above and to the right. The subset of maximal points of points then forms a staircase.

The staircase of a set of points. Maximal points are black.

(a) (O pts) Prove that maximal points are not necessarily on the convex hull.
(b) (6 pts) Give an O(nlogn) algorithm to find the maximal points.

(c) (4 pts) Assume that points are chosen uniformly at random within a rectangle. What is
the average number of maximal points? Justify. Hint: you will be able to give an exact
answer rather than just asymptotics. You have seen the same analysis before.

4. Given a set () of points in the plane, define the convex layers of () inductively as follows: The
first convex layer of @ is just the convex hull of Q. For all i > 1, the ith convex layer is the
convex hull of @ after the vertices of the first i — 1 layers have been removed.

Give an O(n?)-time algorithm to find all convex layers of a given set of n points.

A set of points with four convex layers.

5. Prove that finding the second smallest of n elements takes n + [lgn| — 2 comparisons in the
worst case. Prove for both upper and lower bounds. Hint: find the (first) smallest using an

elimination tournament.
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6. [This problem is required only for graduate students taking CS 373 for a full unit; anyone
else can submit a solution for extra credit.]

Almost all computer graphics systems, at some level, represent objects as collections of
triangles. In order to minimize storage space and rendering time, many systems allow objects
to be stored as a set of triangle strips. A triangle strip is a sequence of vertices (vy, vo, ..., V),
where each contiguous triple of vertices v;, v;+1,v; 12 represents a triangle. As the rendering
system reads the sequence of vertices and draws the triangles, it keeps the two most recent
vertices in a cache.

Some systems allow triangle strips to contain swaps: special flags indicating that the order
of the two cached vertices should be reversed. For example, the triangle strip (a, b, ¢, d, swap, e,

f,swap, g, h, i) represents the sequence of triangles (a, b, ¢), (b,¢c,d), (d,c,e), (c,e, ), (f,e,g)-

d
b € h

g

Two triangle strips are disjoint if they share no triangles (although they may share ver-
tices). The length of a triangle strip is the length of its vertex sequence, including swaps; for
example, the example strip above has length 11. A pure triangle strip is one with no swaps.
The adjacency graph of a triangle strip is a simple path. If the strip is pure, this path alternates
between left and right turns.

Suppose you are given a set .S of interior-disjoint triangles whose adjacency graph is a tree.
(In other words, S is a triangulation of a simple polygon.) Describe a linear-time algorithm
to decompose S into a set of disjoint triangle strips of minimum total length.

Practice Problems
1. Consider the following generic recurrence for convex hull algorithms that divide and conquer:
T(n,h) =T(n1,h1) + T(n2, ha) + O(n)

where n > ny + ng, h = hy + he and n > h. This means that the time to compute the convex
hull is a function of both n, the number of input points, and h, the number of convex hull
vertices. The splitting and merging parts of the divide-and-conquer algorithm take O(n) time.
When n is a constant, T'(n, h) = O(1), but when h is a constant, 7'(n, h) = O(n). Prove that
for both of the following restrictions, the solution to the recurrence is O(nlog h):

(@) hi,he < 3h

(b) ni,ng < %’I’L

2. Circle Intersection
Give an O(nlogn) algorithm to test whether any two circles in a set of size n intersect.

3
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3. Basic polygon computations (assume exact arithmetic)

(a) Intersection: Extend the basic algorithm to determine if two line segments intersect by
taking care of all degenerate cases.

(b) Simplicity: Give an O(nlogn) algorithm to determine whether an n-vertex polygon is
simple.

(c) Area: Give an algorithm to compute the area of a simple n-polygon (not necessarily
convex) in O(n) time.

(d) Inside: Give an algorithm to determine whether a point is within a simple n-polygon
(not necessarily convex) in O(n) time.

4. We are given the set of points one point at a time. After receiving each point, we must
compute the convex hull of all those points so far. Give an algorithm to solve this problem
in O(n?) total time. (We could obviously use Graham’s scan n times for an O(n?logn)-time
algorithm). Hint: How do you maintain the convex hull?

5. *(a) Given an n-polygon and a point outside the polygon, give an algorithm to find a tangent.

(b) Suppose you have found both tangents. Give an algorithm to remove the points from
the polygon that are within the angle formed by the tangents (as segments!) and the
opposite side of the polygon.

(c) Use the above to give an algorithm to compute the convex hull on-line in O(nlogn)

6. (a) A pair of polygon vertices defines an external diagonal if the line segment between them
is completely outside the polygon. Show that every nonconvex polygon has at least one
external diagonal.

(b) Three consective polygon vertices p, g, r form a mouth if p and r define an external diag-
onal. Show that every nonconvex polygon has at least one mouth.

Two external diagonals Two mouths

7. A group of n ghostbusters is battling n ghosts. Each ghostbuster can shoot a single energy
beam at a ghost, eradicating it. A stream goes in a straight line and terminates when it hits
the ghost. The ghostbusters all fire at the same time and no two energy beams may cross.
The positions of the ghosts and ghostbusters are fixed points in the plane.

(a) Prove that for any configuration of ghosts and ghostbusters, there is such a non-crossing
matching. (Assume that no three points are collinear.)

4



CS 373 Homework 5 (due 11/16/00) Fall 2000

(b) Show that there is a line passing through one ghostbuster and one ghost such that the
number of ghostbusters on one side of the line equals the number of ghosts on the same
side. Give an efficient algorithm to find such a line.

(c) Give an efficient divide and conquer algorithm to pair ghostbusters and ghosts so that
no two streams cross.



CS 373: Combinatorial Algorithms, Fall 2000
Homework 6 (due December 7, 2000 at midnight)

Name:
Net ID: Alias: U3, 1

Name:
Net ID: Alias: U3, 1

Name:
Net ID: Alias: U3, 1

Starting with Homework 1, homeworks may be done in teams of up to three people. Each team
turns in just one solution, and every member of a team gets the same grade. Since 1-unit graduate
students are required to solve problems that are worth extra credit for other students, 1-unit grad
students may not be on the same team as 3/4-unit grad students or undergraduates.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework O in the boxes
above. Please also tell us whether you are an undergraduate, 3/4-unit grad student, or 1-unit grad
student by circling U, 3/, or 1, respectively. Staple this sheet to the top of your homework.

Required Problems

1. (a) Prove that P C co-NP
(b) Show that if NP # co-NB then no NP-complete problem is a member of co-NP

2. 2sAT is a special case of the formula satisfiability problem, where the input formula is in
conjunctive normal form and every clause has at most two literals. Prove that 2SAT is in P

3. Describe an algorithm that solves the following problem, called 3sum, as quickly as possible:
Given a set of n numbers, does it contain three elements whose sum is zero? For example,
your algorithm should answer TRUE for the set {—5, —17,7,—4,3, —2,4}, since —5+7+(—2) =
0, and FALSE for the set {—6,7,—4,—13,—2,5,13}.
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4. (a) Show that the problem of deciding whether one undirected graph is a subgraph of an-
other is NP-complete.

(b) Show that the problem of deciding whether an unweighted undirected graph has a path
of length greater than & is NP-complete.

5. (a) Consider the following problem: Given a set of axis-aligned rectangles in the plane,
decide whether any point in the plane is covered by k£ or more rectangles. Now also
consider the CLIQUE problem. Describe and analyze a reduction of one problem to the
other.

(b) Finding the largest clique in an arbitrary graph is NP-hard. What does this fact imply
about the complexity of finding a point that lies inside the largest number of rectangles?

6. [This problem is required only for graduate students taking CS 373 for a full unit; anyone
else can submit a solution for extra credit.]

PARTITION is the problem of deciding, given a set S = {s1, s9, ..., s, } of numbers, whether
there is a subset 7" containing half the 'weight of S, i.e., such that > 7' = 1 >~ S. SUBSETSUM
is the problem of deciding, given a set S = {sy, so,...,s,} of numbers and a target sum ¢,

whether there is a subset 7' C S such that " 7" = t. Give two reductions between these two
problems, one in each direction.
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Practice Problems

1. What is the exact worst case number of comparisons needed to find the median of 5 numbers?
For 6 numbers?

2. The EXACTCOVERBYTHREES problem is defined as follows: given a finite set X and a collec-
tion C of 3-element subsets of X, does C contain an exact cover for X, that is, a subcollection
C’ C C where every element of X occurs in exactly one member of C’? Given that EXACT-
COVERBYTHREES is NP-complete, show that the similar problem EXACTCOVERBYFOURS is also
NP-complete.

3. Using 3CoLoOR and the ‘gadget’ below, prove that the problem of deciding whether a planar
graph can be 3-colored is NP-complete. [Hint: Show that the gadget can be 3-colored, and
then replace any crossings in a planar embedding with the gadget appropriately.]

Crossing gadget for PLANAR3COLOR.

4. Using the previous result, and the ‘gadget’ below, prove that the problem of deciding whether
a planar graph with no vertex of degree greater than four can be 3-colored is NP-complete.
[Hint: Show that you can replace any vertex with degree greater than 4 with a collection of
gadgets connected in such a way that no degree is greater than four.]

Degree gadget for DEGREE4PLANAR3COLOR

5. Show that an algorithm that makes at most a constant number of calls to polynomial-time
subroutines runs in polynomial time, but that a polynomial number of calls to polynomial-
time subroutines may result in an exponential-time algorithm.

6. (a) Prove thatif G is an undirected bipartite graph with an odd number of vertices, then G is
nonhamiltonian. Give a polynomial time algorithm algorithm for finding a hamiltonian
cycle in an undirected bipartite graph or establishing that it does not exist.

(b) Show that the hamiltonian-path problem can be solved in polynomial time on directed
acyclic graphs.

(c) Explain why the results in previous questions do not contradict the fact that both HAMIL-
TONIANCYCLE and HAMILTONIANPATH are NP-complete problems.

7. Consider the following pairs of problems:
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(a) MIN SPANNING TREE and MAX SPANNING TREE

(b) SHORTEST PATH and LONGEST PATH

(c) TRAVELING SALESMAN and VACATION TOUR (the longest tour is sought).
(d) MIN CUT and MAX CUT (between s and t)

(e) EDGE COVER and VERTEX COVER

(f) TRANSITIVE REDUCTION and MIN EQUIVALENT DIGRAPH

(All of these seem dual or opposites, except the last, which are just two versions of minimal
representation of a graph.) Which of these pairs are polytime equivalent and which are not?

*8. Consider the problem of deciding whether one graph is isomorphic to another.

(a) Give a brute force algorithm to decide this.
(b) Give a dynamic programming algorithm to decide this.
(c) Give an efficient probabilistic algorithm to decide this.

Y (d) Either prove that this problem is NP-complete, give a poly time algorithm for it, or prove
that neither case occurs.

*9. Prove that PRIMALITY (Given n, is n prime?) is in NP N co-NP Showing that PRIMALITY is in
co-NP is easy. (What’s a certificate for showing that a number is composite?) For NB consider
a certificate involving primitive roots and recursively their primitive roots. Show that this tree
of primitive roots can be checked to be correct and used to show that n is prime, and that this
check takes polynomial time.

10. How much wood would a woodchuck chuck if a woodchuck could chuck wood?
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Midterm 1 — October 3, 2000

Name:
Net ID: Alias: U3, 1

‘This is a closed-book, closed-notes exam! ‘

If you brought anything with you besides writing instruments and your
84" x 11” cheat sheet, please leave it at the front of the cl
5 , please leave it at the front of the classroom.

Print your name, netid, and alias in the boxes above. Circle U if you are an undergrad, 3/, if
you are a 3/4-unit grad student, or 1 if you are a 1-unit grad student. Print your name at the
top of every page (in case the staple falls out!).

Answer four of the five questions on the exam. Each question is worth 10 points. If you
answer more than four questions, the one with the lowest score will be ignored. 1-unit
graduate students must answer question 5.

Please write your final answers on the front of the exam pages. Use the backs of the pages as
scratch paper. Let us know if you need more paper.

Unless we specifically say otherwise, proofs are not required. However, they may help us give
you partial credit.

Read the entire exam before writing anything. Make sure you understand what the questions
are asking. If you give a beautiful answer to the wrong question, you'll get no credit. If any
question is unclear, please ask one of us for clarification.

Don’t spend too much time on any single problem. If you get stuck, move on to something
else and come back later.

Write something down for every problem. Don’t panic and erase large chunks of work. Even
if you think it’s absolute nonsense, it might be worth partial credit.

Relax. Breathe. Kick some ass.

Score | Grader

U1 D W N | 3%

Total
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1. Multiple Choice

Every question below has one of the following answers.
() O(1) (b) ©(log n) (c) ©(n) (d) ©(nlogn) (e) ©(n?)

For each question, write the letter that corresponds to your answer. You do not need to justify
your answers. Each correct answer earns you 1 point, but each incorrect answer costs you 3
point. You cannot score below zero.

n
What is 3 logi?
i=1

RN
What is > —?

=11

How many digits do you need to write 2" in decimal?

What is the solution of the recurrence 7'(n) = 257(n/5) + n?

. 1
What is the solution of the recurrence T'(n) = T'(n — 1) + 2—n?

What is the solution of the recurrence T'(n) = 37" ([2£2L]) +17n— ¥/Iglgn— 924" " 4 17

What is the worst-case running time of randomized quicksort?

The expected time for inserting one item into an n-node randomized treap is O(logn).
What is the worst-case time for a sequence of n insertions into an initially empty treap?

The amortized time for inserting one item into an n-node scapegoat tree is O(logn).
What is the worst-case time for a sequence of n insertions into an initially empty scape-
goat tree?

In the worst case, how many nodes can be in the root list of a Fibonacci heap storing n
keys, immediately after a DECREASEKEY operation?

Every morning, an Amtrak train leaves Chicago for Champaign, 200 miles away. The
train can accelerate or decelerate at 10 miles per hour per second, and it has a maximum
speed of 60 miles an hour. Every 50 miles, the train must stop for five minutes while
a school bus crosses the tracks. Every hour, the conductor stops the train for a union-
mandated 10-minute coffee break. How long does it take the train to reach Champaign?
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2. Suppose we have n points scattered inside a two-dimensional box. A kd-tree recursively
subdivides the rectangle as follows. First we split the box into two smaller boxes with a vertical
line, then we split each of those boxes with horizontal lines, and so on, always alternating
between horizontal and vertical splits. Each time we split a box, the splitting line passes
through some point inside the box (not on the boundary) and partitions the rest of the interior
points as evenly as possible. If a box doesn’t contain any points, we don’t split it any more;
these final empty boxes are called cells.

A kd-tree for 15 points. The dashed line crosses four cells.

(a) [2 points] How many cells are there, as a function of n? Prove your answer is correct.

(b) [8 points] In the worst case, exactly how many cells can a horizontal line cross, as a
function of n? Prove your answer is correct. Assume that n = 2¥ — 1 for some integer k.

[For full credit, you must give an exact answer. A tight asymptotic bound (with proof) is
worth 5 points. A correct recurrence is worth 3 points.]

(c) [5 points extra credit] In the worst case, how many cells can a diagonal line cross?

Incidentally, ‘kd-tree’ originally meant ‘k-dimensional tree’—for example, the specific data structure described here used to
be called a 2d-tree’—but current usage ignores this etymology. The phrase ‘d-dimensional kd-tree’ is now considered perfectly
standard, even though it’s just as redundant as ATM machine’, ‘PIN number’, ‘HIV virus’, ‘PDF format’, ‘Mt. Fujiyama’, ‘Sahara
Desert’, ‘The La Brea Tar Pits’, or ‘and etc.” On the other hand, ‘BASIC code’ is not redundant; 'Beginner’s All-Purpose Instruction
Code’ is a backronym. Hey, aren’t you supposed to be taking a test?
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3. A multistack consists of an infinite series of stacks Sy, S1, S, ..., where the ith stack S; can
hold up to 3 elements. Whenever a user attempts to push an element onto any full stack S;,
we first move all the elements in .S; to stack S;; 1 to make room. But if S;, is already full, we
first move all its members to S;;2, and so on. Moving a single element from one stack to the
next takes O(1) time.

(<9

= = =
H|I L T

Making room for one new element in a multistack.

(a) [1 point] In the worst case, how long does it take to push one more element onto a
multistack containing n elements?

(b) [9 points] Prove that the amortized cost of a push operation is O(log n), where n is the
maximum number of elements in the multistack. You can use any method you like.
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4. After graduating with a computer science degree, you find yourself working for a software
company that publishes a word processor. The program stores a document containing n char-
acters, grouped into p paragraphs. Your manager asks you to implement a ‘Sort Paragraphs’
command that rearranges the paragraphs into alphabetical order.

Design and analyze and efficient paragraph-sorting algorithm, using the following pair of
routines as black boxes.

* COMPAREPARAGRAPHS(i,j) compares the ith and jth paragraphs, and returns ¢ or j de-
pending on which paragraph should come first in the final sorted output. (Don’t worry
about ties.) This function runs in O(1) time, since almost any two paragraphs can be
compared by looking at just their first few characters!

* MOVEPARAGRAPH(1, j) ‘cuts’ out the ith paragraph and ‘pastes’ it back in as the jth para-
graph. This function runs in O(n;) time, where n; is the number of characters in the ith
paragraph. (So in particular, n; +ng + - - - +n, =n.)

Here is an example of MOVEPARAGRAPH(7, 2):

Congress shall make no law respecting. .. Congress shall make no law respecting. ..

No soldier shall, in time of peace. ..
The right of the people to be secure. ..
No person shall be held to answer for. ..
In all criminal prosecutions, the. ..

In suits at common law, where the. ..

A well regulated militia, being. ..
Excessive bail shall not be required. ..
The enumeration in the Constitution. ..
The powers not delegated to the. ..

A well regulated militia, being. ..

No soldier shall, in time of peace...
The right of the people to be secure. ..
No person shall be held to answer for. ..
In all criminal prosecutions, the. ..

In suits at common law, where the. ..
Excessive bail shall not be required. ..
The enumeration in the Constitution. . .
The powers not delegated to the. ..

[Hint: For full credit, your algorithm should run in o(nlogn) time when p = o(n).]

5. [1-unit grad students must answer this question. ]

Describe and analyze an algorithm to randomly shuffle an array of n items, so that each of
the n! possible permutations is equally likely. Assume that you have a function RANDOM (3, j)
that returns a random integer from the set {i,7 + 1,...,j} in constant time.

[Hint: As a sanity check, you might want to confirm that for n = 3, all six permuta-
tions have probability 1/6. For full credit, your algorithm must run in ©(n) time. A correct
algorithm that runs in ©(nlogn) time is worth 7 points.]
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Fall 2000

From: "Josh Pepper" <jwpepper@uiuc.edu>
To: "Chris Neihengen" <neihengeQuiuc.edu>
Subject: FW: proof

Date: Fri, 29 Sep 2000 09:34:56 -0500

thought you might like this.
Problem: To prove that computer science 373 is indeed the work of Satan.

Proof: First, let us assume that everything in "Helping Yourself with
Numerology", by Helyn Hitchcock, is true.

Second, let us apply divide and conquer to this problem. There are main
parts:
1. The name of the course: "Combinatorial Algorithms"
2. The most important individual in the course, the "Recursion Fairy"
3. The number of this course: 373.

We examine these sequentially.

The name of the course. "Combinatorial Algorithms" can actually be
expressed as a single integer - 23 - since it has 23 letters.

The most important individual, the Recursion Fairy, can also be
expressed as a single integer - 14 - since it has 14 letters. In other
words:

COMBINATORIAL ALGORITHMS = 23
RECURSION FAIRY = 14

As a side note, a much shorter proof has already been published showing
that the Recursion Fairy is Lucifer, and that any class involving the
Fairy is from Lucifer, however, that proofs numerological significance
is slight.

Now we can move on to an analysis of the number of course, which holds
great meaning. The first assumtion we make is that the number of the
course, 373, is not actually a base 10 number. We can prove this
inductively by making a reasonable guess for the actual base, then
finding a new way to express the nature of the course, and if the answer

confirms what we assumed, then we’re right. That’s the way induction
works.

What is a reasonable guess for the base of the course? The answer is
trivial, since the basest of all beings is the Recursion Fairy, the base
is 14. So a true base 10 representation of 373 (base 14) is 689. So we
see:

373 (base 14) = 689 (base 10)
Now since the nature of the course has absolutely nothing to do with
combinatorial algorithms (instead having much to do with the work of the
devil), we can subtract from the above result everything having to do
with combinatorial algorithms just by subtracting 23. Here we see that:

689 - 23 = 666

QED.
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1. Using any method you like, compute the following subgraphs for the weighted graph below.
Each subproblem is worth 3 points. Each incorrect edge costs you 1 point, but you cannot get
a negative score for any subproblem.

(a) a depth-first search tree, starting at the top vertex;
(b) a breadth-first search tree, starting at the top vertex;
(c) a shortest path tree, starting at the top vertex;

(d) the minimum spanning tree.

2. Suppose you are given a weighted undirected graph G (represented as an adjacency list)
and its minimum spanning tree 7' (which you already know how to compute). Describe and
analyze and algorithm to find the second-minimum spanning tree of G, i.e., the spanning tree
of G with smallest total weight except for 7.

The minimum spanning tree and the second-minimum spanning tree differ by exactly one
edge. But which edge is different, and how is it different? That’s what your algorithm has to
figure out!

The minimum spanning tree and the second-minimum spanning tree of a graph.

3. (a) [4 pts] Prove that a connected acyclic graph with V' vertices has exactly V' — 1 edges.
(“It’s a tree!” is not a proof.)

(b) [4 pts] Describe and analyze an algorithm that determines whether a given graph is a
tree, where the graph is represented by an adjacency list.

(c) [2 pts] What is the running time of your algorithm from part (b) if the graph is repre-
sented by an adjacency matrix?
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4. Mulder and Scully have computed, for every road in the United States, the exact probability
that someone driving on that road won’t be abducted by aliens. Agent Mulder needs to drive
from Langley, Virginia to Area 51, Nevada. What route should he take so that he has the least
chance of being abducted?

More formally, you are given a directed graph G = (V, E'), where every edge ¢ has an inde-
pendent safety probability p(e). The safety of a path is the product of the safety probabilities
of its edges. Design and analyze an algorithm to determine the safest path from a given start
vertex s to a given target vertex ¢.

Las Vegas, NV

S0

Langley, VA

Area’51, AZ

With the probabilities shown above, if Mulder tries to drive directly from Langley to Area 51,
he has a 50% chance of getting there without being abducted. If he stops in Memphis, he has
a 0.7 x 0.9 = 63% chance of arriving safely. If he stops first in Memphis and then in Las Vegas,
hehasa 1 — 0.7 x 0.1 x 0.5 = 96.5% chance of being abducted!!

5. [1-unit grad students must answer this question.]

Many string matching applications allow the following wild card characters in the pattern.

* The wild card ? represents an arbitrary single character. For example, the pattern s?r?ng
matches the strings string, sprung, and sarong.

* The wild card * represents an arbitrary string of zero or more characters. For example,
the pattern texst* matches the strings test, tensest, and technostructuralism.

Both wild cards can occur in a single pattern. For example, the pattern f*a?? matches the
strings face, football, and flippityfloppitydingdongdang. On the other hand, neither
wild card can occur in the text.

Describe how to modify the Knuth-Morris-Pratt algorithm to support patterns with these wild
cards, and analyze the modified algorithm. Your algorithm should find the first substring in
the text that matches the pattern. An algorithm that supports only one of the two wild cards
is worth 5 points.

IThat’s how they got Elvis, you know.



CS 373 Final Exam (December 15, 2000) Fall 2000

1. True, False, or Maybe

Indicate whether each of the following statments is always true, sometimes true, always
false, or unknown. Some of these questions are deliberately tricky, so read them carefully.
Each correct choice is worth +1, and each incorrect choice is worth —1. Guessing will hurt
you!

(a) Suppose SMARTALGORITHM runs in ©(n?) time and DUMBALGORITHM runs in ©(2") time
for all inputs of size n. (Thus, for each algorithm, the best-case and worst-case running
times are the same.) SMARTALGORITHM is faster than DUMBALGORITHM.

D True D False D Sometimes D Nobody Knows

(b) QUICKSORT runs in O(n%) time.

D True D False D Sometimes D Nobody Knows

(©) [logyn| > [logyn]

D True D False D Sometimes D Nobody Knows

(d) The recurrence F'(n) = n + 2y/n - F(y/n) has the solution F'(n) = ©(nlogn).

D True D False D Sometimes D Nobody Knows

(e) A Fibonacci heap with n nodes has depth Q(logn).

D True D False D Sometimes D Nobody Knows

(f) Suppose a graph G is represented by an adjacency matrix. It is possible to determine
whether G is an independent set without looking at every entry of the adjacency matrix.

D True D False D Sometimes D Nobody Knows

(g) NP # co-NP

D True D False D Sometimes D Nobody Knows

(h) Finding the smallest clique in a graph is NP-hard.

D True D False D Sometimes D Nobody Knows

(i) A polynomial-time reduction from X to 3SAT proves that X is NP-hard.

D True D False D Sometimes D Nobody Knows

(j) The correct answer for exactly three of these questions is “False”.

D True D False
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2. Convex Hull

Suppose you are given the convex hull of a set of n points, and one additional point (z, y).
The convex hull is represented by an array of vertices in counterclockwise order, starting from
the leftmost vertex. Describe how to test in O(log n) time whether or not the additional point
(x,y) is inside the convex hull.

3. Finding the Largest Block

In your new job, you are working with screen images. These are represented using two
dimensional arrays where each element is a 1 or a 0, indicating whether that position of the
screen is illuminated. Design and analyze an efficient algorithm to find the largest rectangular
block of ones in such an array. For example, the largest rectangular block of ones in the array
shown below is in rows 2—4 and columns 2-3. [Hint: Use dynamic programming.]

= O = =
[y ) g Fo )
R QESY puy ja—
el el Ne]
Ol = O

4. The Hogwarts Sorting Hat

Every year, upon their arrival at Hogwarts School of Witchcraft and Wizardry, new stu-
dents are sorted into one of four houses (Gryffindor, Hufflepuff, Ravenclaw, or Slytherin) by
the Hogwarts Sorting Hat. The student puts the Hat on their head, and the Hat tells the stu-
dent which house they will join. This year, a failed experiment by Fred and George Weasley
filled almost all of Hogwarts with sticky brown goo, mere moments before the annual Sorting.
As a result, the Sorting had to take place in the basement hallways, where there was so little
room to move that the students had to stand in a long line.

After everyone learned what house they were in, the students tried to group together by
house, but there was too little room in the hallway for more than one student to move at a
time. Fortunately, the Sorting Hat took CS 373 many years ago, so it knew how to group the
students as quickly as possible. What method did the Sorting Hat use?

More formally, you are given an array of n items, where each item has one of four possible
values, possibly with a pointer to some additional data. Design and analyze an algorithm that
rearranges the items into four clusters in O(n) time using only O(1) extra space.

G|H| R R|G|G|R|G|H|H|R|S|R|R|H|G|S|H|G|C

Harry | Ann | Bob | Tina | Chad | Bill | Lisa | Ekta | Bart | Jim [ John | Jeff | Liz | Mary | Dawn | Nick | Kim | Fox | Dana | Mel

¢|6¢d|G|G|G|G|G|H|H|H|H|\H|R|IR|R|R|R|R|S|S

Harry | Ekta | Bill | Chad | Nick | Mel | Dana | Fox | Ann | Jim | Dawn | Bart | Lisa | Tina | John | Bob | Liz | Mary [ Kim | Jeff
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5. The Egyptian Skyline

Suppose you are given a set of n pyramids in the plane. Each pyramid is a isosceles
triangle with two 45° edges and a horizontal edge on the z-axis. Each pyramid is represented
by the z- and y-coordinates of its topmost point. Your task is to compute the “skyline” formed
by these pyramids (the dark line shown below).

The skyline formed by these 12 pyramids has 16 vertices.

(a) Describe and analyze an algorithm that determines which pyramids are visible on the
skyline. These are the pyramids with black points in the figure above; the pyramids with
white points are not visible. [Hint: You've seen this problem before.]

(b) One you know which pyramids are visible, how would you compute the shape of the
skyline? Describe and analyze an algorithm to compute the left-to-right sequence of
skyline vertices, including the vertices between the pyramids and on the ground.

6. DNF-SAT

A boolean formula is in disjunctive normal form (DNF) if it consists of clauses of conjunc-
tions (ANDs) joined together by disjunctions (ORs). For example, the formula

@AbAT)V (bAC)V (aAbDAT)

is in disjunctive normal form. DNF-SAT is the problem that asks, given a boolean formula in
disjunctive normal form, whether that formula is satisfiable.

(a) Show that DNF-SAT is in P
(b) What is wrong with the following argument that P=NP?

Suppose we are given a boolean formula in conjunctive normal form with at most three
literals per clause, and we want to know if it is satisfiable. We can use the distributive law
to construct an equivalent formula in disjunctive normal form. For example,

(aVbVE) A@Vbh) < (anb)V (bAG)V(EAT)V (EAD)

Now we can use the answer to part (a) to determine, in polynomial time, whether the
resulting DNF formula is satisfiable. We have just solved 3SAT in polynomial time! Since
3SAT is NP-hard, we must conclude that P=NP.

7. Magic 3-Coloring [1-unit graduate students must answer this question. ]

The recursion fairy’s distant cousin, the reduction genie, shows up one day with a magical
gift for you—a box that determines in constant time whether or not a graph is 3-colorable. (A
graph is 3-colorable if you can color each of the vertices red, green, or blue, so that every edge
has do different colors.) The magic box does not tell you how to color the graph, just whether
or not it can be done. Devise and analyze an algorithm to 3-color any graph in polynomial
time using this magic box.



CS 373: Combinatorial Algorithms, Spring 2001
Homework 0, due January 23, 2001 at the beginning of class

Name:
Net ID: Alias:

Neatly print your name (first name first, with no comma), your network ID, and a short alias into
the boxes above. Do not sign your name. Do not write your Social Security number.
Staple this sheet of paper to the top of your homework.

Grades will be listed on the course web site by alias give us, so your alias should not resemble your
name or your Net ID. If you don’t give yourself an alias, we’ll give you one that you won’t like.

This homework tests your familiarity with the prerequisite material from CS 173, CS 225, and
CS 273—many of these problems have appeared on homeworks or exams in those classes—primarily
to help you identify gaps in your knowledge. You are responsible for filling those gaps on
your own. Parberry and Chapters 1-6 of CLR should be sufficient review, but you may want to
consult other texts as well.

Before you do anything else, read the Homework Instructions and FAQ on the CS 373 course web
page (http://www-courses.cs.uiuc.edu/~cs373/hw/faq.html), and then check the box below. This
web page gives instructions on how to write and submit homeworks—staple your solutions together
in order, write your name and netID on every page, don’t turn in source code, analyze everything,
use good English and good logic, and so forth.

I have read the CS 373 Homework Instructions and FAQ).

Required Problems

1. (a) Prove that any positive integer can be written as the sum of distinct powers of 2. For
example: 42 = 2% + 23 421 25 =24 4+ 23 4 20 17 = 2% 4 20, [Hint: ‘Write the number
in binary’ is not a proof; it just restates the problem.]

(b) Prove that any positive integer can be written as the sum of distinct nonconsecutive
Fibonacci numbers—if F;, appears in the sum, then neither F,; nor F,,_; will. For
example: 42 = Fg + Fg, 25 = Fg+ Fy + F5, 17 = F7 + F, + Fs.

(c) Prove that any integer (positive, negative, or zero) can be written in the form 3, £3%,
where the exponents i are distinct non-negative integers. For example: 42 = 3* — 33 —
323125 =3 -3 +39 17=3% - 32 - 30,
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2. Sort the following 20 functions from asymptotically smallest to asymptotically largest, indi-
cating ties if there are any. You do not need to turn in proofs (in fact, please don’t turn in
proofs), but you should do them anyway just for practice.

1 n n? lgn Ig*n
g2ElEnt! lg* 2n ole™n llg(n!)] llgn]!
nlgn (lg n)n (lg n)lgn nl/lgn nlglgn
1081000 7 151000 1g(1000) ,, (1 4 ﬁ)n 1, 1/1000

To simplify notation, write f(n) < g(n) to mean f(n) = o(g(n)) and f(n) = g(n) to mean

f(n) = ©(g(n)). For example, the functions n?, n, (3), n® could be sorted either as n <
n?=(5) <ndorasn< (y) =n?<n’

3. Solve the following recurrences. State tight asymptotic bounds for each function in the form
O(f(n)) for some recognizable function f(n). You do not need to turn in proofs (in fact,
please don’t turn in proofs), but you should do them anyway just for practice. Assume
reasonable but nontrivial base cases if none are supplied. Extra credit will be given for more
exact solutions.

(a) A(n) =5A(n/3) +nlogn
(b) B(n)—og}glil (B(k)+B(n—Fk)+1).
(c) C(n) =4C(|n/2| + 5) +n?
(d) D(n)=D(n—-1)+1/n
) E(n)

(e n+ 2y E(v/n)

n

4. This problem asks you to simplify some recursively defined boolean formulas as much as
possible. In each case, prove that your answer is correct. Each proof can be just a few
sentences long, but it must be a proof.

(a) Suppose ag = p, a1 = ¢, and o, = (@p—2 A a,—1) for all n > 2. Simplify «;, as much as
possible. [Hint: What is as?]

(b) Suppose By = p, B1 = q, and 3, = (Bn—2 & Bn—1) for all n > 2. Simplify 3, as much as
possible. [Hint: What is (57]

(c) Suppose vo =p, 71 = ¢, and v, = (Yn—2 = Yn—1) for all n > 2. Simplify ~,, as much as
possible. [Hint: What is ;7]

(d) Suppose dyp = p, 61 = ¢, and 0, = (0,2 X §,,—1) for all n > 2, where X is some boolean
function with two arguments. Find a boolean function X such that §,, = d,, if and only
if n —m is a multiple of 4. [Hint: There is only one such function.]
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5. Every year, upon their arrival at Hogwarts School of Witchcraft and Wizardry, new students
are sorted into one of four houses (Gryffindor, Hufflepuff, Ravenclaw, or Slytherin) by the
Hogwarts Sorting Hat. The student puts the Hat on their head, and the Hat tells the student
which house they will join. This year, a failed experiment by Fred and George Weasley filled
almost all of Hogwarts with sticky brown goo, mere moments before the annual Sorting. As
a result, the Sorting had to take place in the basement hallways, where there was so little
room to move that the students had to stand in a long line.

After everyone learned what house they were in, the students tried to group together by
house, but there was too little room in the hallway for more than one student to move at a
time. Fortunately, the Sorting Hat took CS 373 many years ago, so it knew how to group the
students as quickly as possible. What method did the Sorting Hat use?

More formally, you are given an array of n items, where each item has one of four pos-
sible values, possibly with a pointer to some additional data. Describe an algorithm! that
rearranges the items into four clusters in O(n) time using only O(1) extra space.

G|H| R R|G|G|R|G|H|H|R|S|R|R|H|G|S|H|G |G

Harry | Ann | Bob | Tina | Chad | Bill | Lisa | Ekta | Bart | Jim [ John | Jeff [ Liz | Mary | Dawn | Nick | Kim | Fox | Dana | Mel

¢|6d|G|G|G|G|G|H|H|H|H|H|R|IR|R|R|R|R|S|S

Harry | Ekta | Bill | Chad | Nick | Me Dana | Fox | Ann | Jim | Dawn | Bart | Lisa | Tina | John | Bob | Liz | Mary | Kim [ Jeff

6. [This problem is required only for graduate students taking CS 373 for a full unit; anyone
else can submit a solution for extra credit.]

Penn and Teller have a special deck of fifty-two cards, with no face cards and nothing but
clubs—the ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ..., 52 of clubs. (They’re big cards.) Penn
shuffles the deck until each each of the 52! possible orderings of the cards is equally likely. He
then takes cards one at a time from the top of the deck and gives them to Teller, stopping as
soon as he gives Teller the three of clubs.

(a) On average, how many cards does Penn give Teller?

(b) On average, what is the smallest-numbered card that Penn gives Teller?
*(c) On average, what is the largest-numbered card that Penn gives Teller?

[Hint: Solve for an n-card deck and then set n = 52.] In each case, give eract answers and

prove that they are correct. If you have to appeal to “intuition” or “common sense”, your
answers are probably wrong!

!Since you’ve read the Homework Instructions, you know what the phrase ‘describe an algorithm’ means. Right?
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Practice Problems

The remaining problems are entirely for your benefit; similar questions will appear in every home-
work. Don’t turn in solutions—we’ll just throw them out—but feel free to ask us about practice
questions during office hours and review sessions. Think of them as potential exam questions (hint,
hint). We’ll post solutions to some of the practice problems after the homeworks are due.

1. Recall the standard recursive definition of the Fibonacci numbers: Fy = 0, F; = 1, and
F, = F,_ 1+ F, 5 for all n > 2. Prove the following identities for all positive integers
n and m.

(a) F, is even if and only if n is divisible by 3.
(b) X F=Fup—1
i=0

(¢) F2 — Fyi1Fpq = (—1)"!

*(d) If n is an integer multiple of m, then F}, is an integer multiple of F},.

2. (a) Prove the following identity by induction:

G20

(b) Give a non-inductive combinatorial proof of the same identity, by showing that the two
sides of the equation count exactly the same thing in two different ways. There is a
correct one-sentence proof.

3. A tournament is a directed graph with exactly one edge between every pair of vertices. (Think
of the nodes as players in a round-robin tournament, where each edge points from the winner
to the loser.) A Hamiltonian path is a sequence of directed edges, joined end to end, that visits
every vertex exactly once. Prove that every tournament contains at least one Hamiltonian
path.

A six-vertex tournament containing the Hamiltonian path 6 -4 —5 —2 — 3 — 1.
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4. Solve the following recurrences. State tight asymptotic bounds for each function in the form
O(f(n)) for some recognizable function f(n). You do not need to turn in proofs (in fact,
please don’t turn in proofs), but you should do them anyway just for practice. Assume
reasonable but nontrivial base cases if none are supplied. Extra credit will be given for more
exact solutions.

(a) A(n)=A(n/2)+n
(b) B(n) =2B(n/2) +n
*(c) C(n) =n+3(C(n—1)+C(3n/4))
(d) D(n) = n/31<r]1€a<>§n/3 (D(k) + D(n — k) +n)
*(e) E(n) =2E(n/2)+n/lgn
*(f) F(n) = % where F(1) = 1 and F(2) =
*(g) G(n) =G(n/2) + G(n/4) + G(n/6) + G(n/12) +n [Hint: 3+ 14+ 1+ L =1]
“(h) H(n)=n+ i H(ym)
*(i) In) =(n—1)I(n—1)+I(n—2)), where F(0) = F(1) =1
*(j) J(n)=8J(n—1)—15J(n —2)+1

5. (a) Prove that 2Men1+len] — g(n?).
(b) Prove or disprove: 2U8") = @ (2[en).
(c) Prove or disprove: g2tieten) @(22%1“]).
)
)
)

(d) Prove or disprove: If f(n) = O(g(n)), then log(f(n)) = O(log(g(n))).
(e) Prove or disprove: If f(n) = O(g(n)), then 2/ = O(29(").
*(f) Prove that log® n = o(n'/*) for any positive integer k.

6. Evaluate the following summations; simplify your answers as much as possible. Significant
partial credit will be given for answers in the form ©(f(n)) for some recognizable function

f(n).
n 7 i 1
DI
i=1 j=1 k—j

ZZZ—

lelk]

Tyl

i=1 j=1 k=j
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7. Suppose you have a pointer to the head of singly linked list. Normally, each node in the list
only has a pointer to the next element, and the last node’s pointer is NULL. Unfortunately,
your list might have been corrupted by a bug in somebody else’s code?, so that the last node
has a pointer back to some other node in the list instead.

5»&»&»@»@»%
CRNCINC ST

Top: A standard linked list. Bottom: A corrupted linked list.

Describe an algorithm that determines whether the linked list is corrupted or not. Your
algorithm must not modify the list. For full credit, your algorithm should run in O(n) time,
where n is the number of nodes in the list, and use O(1) extra space (not counting the list
itself).

*8. An ant is walking along a rubber band, starting at the left end. Once every second, the ant
walks one inch to the right, and then you make the rubber band one inch longer by pulling on
the right end. The rubber band stretches uniformly, so stretching the rubber band also pulls
the ant to the right. The initial length of the rubber band is n inches, so after ¢ seconds, the
rubber band is n 4 ¢ inches long.

t=2 (__ —

Every second, the ant walks an inch, and then the rubber band is stretched an inch longer.

(a) How far has the ant moved after ¢ seconds, as a function of n and t? Set up a recurrence
and (for full credit) give an ezact closed-form solution. [Hint: What fraction of the
rubber band’s length has the ant walked?]

(b) How long does it take the ant to get to the right end of the rubber band? For full credit,
give an answer of the form f(n)+ ©(1) for some explicit function f(n).

9. (a) A dominoisa2x1or1x2rectangle. How many different ways are there to completely
fill a 2 x n rectangle with n dominos? Set up a recurrence relation and give an exact
closed-form solution.

2 After all, your code is always completely 100% bug-free. Isn’t that right, Mr. Gates?
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10.

11.

12.

(b) A slab is a three-dimensional box with dimensions 1 x2x2,2x1x 2, or 2x 2 x 1. How
many different ways are there to fill a 2 X 2 x n box with n slabs? Set up a recurrence
relation and give an ezact closed-form solution.

A 2 x 10 rectangle filled with ten dominos, and a 2 x 2 x 10 box filled with ten slabs.

Professor George O’Jungle has a favorite 26-node binary tree, whose nodes are labeled by
letters of the alphabet. The preorder and postorder sequences of nodes are as follows:

preorder: MNHCRSKWTGDXIYAJPOEZVBULAQF
postorder: CWTKSGRHDNAOEPJYZIBQLFUVIXM

Draw Professor O’Jungle’s binary tree, and give the inorder sequence of nodes.

Alice and Bob each have a fair n-sided die. Alice rolls her die once. Bob then repeatedly
throws his die until he rolls a number at least as big as the number Alice rolled. Each time
Bob rolls, he pays Alice $1. (For example, if Alice rolls a 5, and Bob rolls a 4, then a 3, then
a 1, then a 5, the game ends and Alice gets $4. If Alice rolls a 1, then no matter what Bob
rolls, the game will end immediately, and Alice will get $1.)

Ezactly how much money does Alice expect to win at this game? Prove that your answer
is correct. If you have to appeal to ‘intuition’ or ‘common sense’, your answer is probably
wrong!

Prove that for any nonnegative parameters a and b, the following algorithms terminate and
produce identical output.

SLowEucLID(a, b) :
ifb>a FastEucLID(a, b) :
return SLOWEUCLID(b, a) ifb=0
elseif b=10 return a
return a else
else return FASTEUCLID (b, a mod b)
return SLOWEUCLID(b, a — b)




CS 373: Combinatorial Algorithms, Spring 2001
Homework 1 (due Thursday, February 1, 2001 at 11:59:59 p.m.)

Name:
Net 1ID: Alias: U3 1

Name:

Net ID: Alias: U3, 1

Name:
Net 1ID: Alias: U3 1

Starting with Homework 1, homeworks may be done in teams of up to three people. Each team
turns in just one solution, and every member of a team gets the same grade. Since 1-unit graduate
students are required to solve problems that are worth extra credit for other students, 1-unit grad
students may not be on the same team as 3/4-unit grad students or undergraduates.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Please also tell us whether you are an undergraduate, 3/4-unit grad student, or 1-unit grad student
by circling U, 3/;, or 1, respectively. Staple this sheet to the top of your homework.

Required Problems

1. Suppose you are a simple shopkeeper living in a country with n different types of coins, with
values 1 = ¢[1] < ¢[2] < -+ < ¢[n]. (In the U.S., for example, n = 6 and the values are
1,5,10,25,50 and 100 cents.) Your beloved and belevolent dictator, El Generalissimo, has
decreed that whenever you give a customer change, you must use the smallest possible number
of coins, so as not to wear out the image of El Generalissimo lovingly engraved on each coin
by servants of the Royal Treasury.

(a) In the United States, there is a simple greedy algorithm that always results in the
smallest number of coins: subtract the largest coin and recursively give change for the
remainder. El Generalissimo does not approve of American capitalist greed. Show that
there is a set of coin values for which the greedy algorithm does not always give the
smallest possible of coins.

(b) Describe and analyze a dynamic programming algorithm to determine, given a target
amount A and a sorted array c[1..n| of coin values, the smallest number of coins needed
to make A cents in change. You can assume that c[1] = 1, so that it is possible to make
change for any amount A.
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2. Consider the following sorting algorithm:

STUPIDSORT(A[0..n — 1]) :

if n =2 and A[0] > A[1]
swap A[0] < A[1]

else if n > 2
m «— [2n/3]
STUPIDSORT(A[0..m — 1))
STUPIDSORT(A[n —m ..n — 1))
STUPIDSORT(A[0..m — 1))

(a) Prove that STUPIDSORT actually sorts its input.

(b) Would the algorithm still sort correctly if we replaced the line m « [2n/3] with
m « [2n/3]7 Justify your answer.

(c) State a recurrence (including the base case(s)) for the number of comparisons executed
by STUPIDSORT.

(d) Solve the recurrence, and prove that your solution is correct. [Hint: Ignore the ceiling.]
Does the algorithm deserve its name?

*(e) Show that the number of swaps executed by STUPIDSORT is at most (5).

3. The following randomized algorithm selects the rth smallest element in an unsorted array
A[l..n]. For example, to find the smallest element, you would call RANDOMSELECT(A,1);
to find the median element, you would call RANDOMSELECT(A, |[n/2]). Recall from lecture
that PARTITION splits the array into three parts by comparing the pivot element A[p] to every
other element of the array, using n — 1 comparisons altogether, and returns the new index of
the pivot element.

RANDOMSELECT(A[l .. n|,r) :
p <— RANDOM(1,n)
k «— PARTITION(A[L .. n], p)

ifr<k

return RANDOMSELECT(A[l ..k — 1],7)
else if r > k

return RANDOMSELECT(A[k + 1..n],r — k)
else

return A[k]

(a) State a recurrence for the expected running time of RANDOMSELECT, as a function of
n and r.

(b) What is the ezact probability that RANDOMSELECT compares the ith smallest and jth
smallest elements in the input array? The correct answer is a simple function of 4, j,
and r. [Hint: Check your answer by trying a few small examples.]

(c) Show that for any n and r, the expected running time of RANDOMSELECT is ©(n). You
can use either the recurrence from part (a) or the probabilities from part (b). For extra
credit, find the exact expected number of comparisons, as a function of n and .

(d) What is the expected number of times that RANDOMSELECT calls itself recursively?
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4. What excitement! The Champaign Spinners and the Urbana Dreamweavers have advanced to
meet each other in the World Series of Basketweaving! The World Champions will be decided
by a best-of- 2n—1 series of head-to-head weaving matches, and the first to win n matches will
take home the coveted Golden Basket (for example, a best-of-7 series requiring four match
wins, but we will keep the generalized case). We know that for any given match there is a
constant probability p that Champaign will win, and a subsequent probability ¢ = 1 — p that
Urbana will win.

Let P(i,j) be the probability that Champaign will win the series given that they still need
i more victories, whereas Urbana needs j more victories for the championship. P(0,7) = 1,
1 < j < n, because Champaign needs no more victories to win. P(i,0) = 0, 1 < i < n, as
Champaign cannot possibly win if Urbana already has. P(0,0) is meaningless. Champaign
wins any particular match with probability p and loses with probability g, so

for any ¢ > 1 and j > 1.

Create and analyze an O(n?)-time dynamic programming algorithm that takes the pa-
rameters n, p and ¢ and returns the probability that Champaign will win the series (that is,
calculate P(n,n)).
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5. The traditional Devonian/Cornish drinking song “The Barley Mow” has the following pseu-
dolyrics!, where container[i] is the name of a container that holds 2 ounces of beer.?

(a)

(b)

BARLEYMoOW(n):
“Here's a health to the barley-mow, my brave boys,"
“Here's a health to the barley-mow!”

“We'll drink it out of the jolly brown bowl,”

“Here's a health to the barley-mow!”

“Here's a health to the barley-mow, my brave boys,”
“Here's a health to the barley-mow!”

fori — 1 ton

“We'll drink it out of the container]i], boys,”

“Here's a health to the barley-mow!”

for j <+ ¢ downto 1
“The container|j]

“And the jolly brown bowl!!"”

“Here's a health to the barley-mow!”

“Here's a health to the barley-mow, my brave boys,”

“Here's a health to the barley-mow!”

”
’

Suppose each container name container[i| is a single word, and you can sing four words a
second. How long would it take you to sing BARLEYMow(n)? (Give a tight asymptotic
bound.)

If you want to sing this song for n > 20, you’ll have to make up your own container
names, and to avoid repetition, these names will get progressively longer as n increases?.
Suppose container|[n] has O(logn) syllables, and you can sing six syllables per second.
Now how long would it take you to sing BARLEYMow(n)? (Give a tight asymptotic

bound.)

Suppose each time you mention the name of a container, you drink the corresponding
amount of beer: one ounce for the jolly brown bowl, and 2¢ ounces for each container]i].
Assuming for purposes of this problem that you are at least 21 years old, exactly how
many ounces of beer would you drink if you sang BARLEYMow(n)? (Give an exact
answer, not just an asymptotic bound.)

!Pseudolyrics are to lyrics as pseudocode is to code.

20One version of the song uses the following containers: nipperkin, gill pot, half-pint, pint, quart, pottle, gallon,
half-anker, anker, firkin, half-barrel, barrel, hogshead, pipe, well, river, and ocean. Every container in this list is
twice as big as its predecessor, except that a firkin is actually 2.25 ankers, and the last three units are just silly.

3«We’ll drink it out of the hemisemidemiyottapint, boys!”
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6. [This problem is required only for graduate students taking CS 373 for a full unit; anyone else
can submit a solution for extra credit.]

Suppose we want to display a paragraph of text on a computer screen. The text consists
of n words, where the ith word is p; pixels wide. We want to break the paragraph into several
lines, each exactly P pixels long. Depending on which words we put on each line, we will
need to insert different amounts of white space between the words. The paragraph should be
fully justified, meaning that the first word on each line starts at its leftmost pixel, and ezcept
for the last line, the last character on each line ends at its rightmost pixel. There must be at
least one pixel of whitespace between any two words on the same line.

Define the slop of a paragraph layout as the sum over all lines, except the last, of the cube
of the number of extra white-space pixels in each line (not counting the one pixel required
between every adjacent pair of words). Specifically, if a line contains words i through j, then
the amount of extra white space on that line is P — j +i — Y 7 _.pg. Describe a dynamic
programming algorithm to print the paragraph with minimum slop.
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Practice Problems

1. Give an O(n?) algorithm to find the longest increasing subsequence of a sequence of numbers.
The elements of the subsequence need not be adjacent in the sequence. For example, the
sequence (1,5,3,2,4) has longest increasing subsequence (1,3, 4).

2. You are at a political convention with n delegates. Each delegate is a member of exactly
one political party. It is impossible to tell which political party a delegate belongs to. How-
ever, you can check whether any two delegates are in the same party or not by introducing
them to each other. (Members of the same party always greet each other with smiles and
friendly handshakes; members of different parties always greet each other with angry stares
and insults.)

(a) Suppose a majority (more than half) of the delegates are from the same political party.
Give an efficient algorithm that identifies a member of the majority party.

(b) Suppose exactly k political parties are represented at the convention and one party has
a plurality: more delegates belong to that party than to any other. Present a practi-
cal procedure to pick a person from the plurality party as parsimoniously as possible.
(Please.)

3. Give an algorithm that finds the second smallest of n elements in at most n + [lgn] — 2
comparisons. [Hint: divide and conquer to find the smallest; where is the second smallest?]

4. Some graphics hardware includes support for an operation called blit, or block transfer, which
quickly copies a rectangular chunk of a pixelmap (a two-dimensional array of pixel values)
from one location to another. This is a two-dimensional version of the standard C library
function memcpy ().

Suppose we want to rotate an n x n pixelmap 90° clockwise. One way to do this is to split the
pixelmap into four n/2 x n/2 blocks, move each block to its proper position using a sequence
of five blits, and then recursively rotate each block. Alternately, we can first recursively rotate
the blocks and blit them into place afterwards.

ClA
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Two algorithms for rotating a pixelmap.
Black arrows indicate blitting the blocks into place.
White arrows indicate recursively rotating the blocks.

The following sequence of pictures shows the first algorithm (blit then recurse) in action.
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In the following questions, assume n is a power of two.

(a) Prove that both versions of the algorithm are correct. [Hint: If you exploit all the
available symmetries, your proof will only be a half of a page long.]

(b) Ezactly how many blits does the algorithm perform?
(c) What is the algorithm’s running time if a k x k blit takes O(k?) time?
(d) What if a k x k blit takes only O(k) time?

5. A company is planning a party for its employees. The employees in the company are organized
into a strict hierarchy, that is, a tree with the company president at the root. The organizers
of the party have assigned a real number to each employee measuring how ‘fun’ the employee
is. In order to keep things social, there is one restriction on the guest list: an employee cannot
attend the party if their immediate supervisor is present. On the other hand, the president
of the company must attend the party, even though she has a negative fun rating; it’s her
company, after all. Give an algorithm that makes a guest list for the party that maximizes
the sum of the ‘fun’ ratings of the guests.

6. Suppose you have a subroutine that can find the median of a set of n items (i.e., the |n/2]
smallest) in O(n) time. Give an algorithm to find the kth biggest element (for arbitrary k)
in O(n) time.

7. You're walking along the beach and you stub your toe on something in the sand. You dig
around it and find that it is a treasure chest full of gold bricks of different (integral) weight.
Your knapsack can only carry up to weight n before it breaks apart. You want to put as
much in it as possible without going over, but you cannot break the gold bricks up.

(a) Suppose that the gold bricks have the weights 1,2, 4, 8,...,2% k > 1. Describe and
prove correct a greedy algorithm that fills the knapsack as much as possible without
going over.

(b) Give a set of 3 weight values for which the greedy algorithm does not yield an optimal
solution and show why.

(¢) Give a dynamic programming algorithm that yields an optimal solution for an arbitrary
set of gold brick values.
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Homework 2 (due Thu. Feb. 15, 2001 at 11:59 PM)

Name:
Net 1ID: Alias: U3 1

Name:

Net ID: Alias: U3, 1

Name:
Net 1ID: Alias: U3 1

Starting with Homework 1, homeworks may be done in teams of up to three people. Each team
turns in just one solution, and every member of a team gets the same grade. Since 1-unit graduate
students are required to solve problems that are worth extra credit for other students, 1-unit grad
students may not be on the same team as 3/4-unit grad students or undergraduates.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Please also tell us whether you are an undergraduate, 3/4-unit grad student, or 1-unit grad student
by circling U, 3/;, or 1, respectively. Staple this sheet to the top of your homework.

Required Problems

1. Suppose we are given two sorted arrays A[l..n| and B[l..n] and an integer k. Describe an
algorithm to find the kth smallest element in the union of A and B. (For example, if k = 1,
your algorithm should return the smallest element of AU B; if & = n, our algorithm should
return the median of AU B.) You can assume that the arrays contain no duplicates. For full
credit, your algorithm should run in ©(logn) time. [Hint: First try to solve the special case
k=n.]

2. Say that a binary search tree is augmented if every node v also stores |v|, the size of its
subtree.

(a) Show that a rotation in an augmented binary tree can be performed in constant time.

(b) Describe an algorithm SCAPEGOATSELECT(k) that selects the kth smallest item in an
augmented scapegoat tree in O(logn) worst-case time.

(c) Describe an algorithm SPLAYSELECT(k) that selects the kth smallest item in an aug-
mented splay tree in O(logn) amortized time.
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(d) Describe an algorithm TREAPSELECT(k) that selects the kth smallest item in an aug-
mented treap in O(logn) expected time.

3. (a) Prove that only one subtree gets rebalanced in a scapegoat tree insertion.

(b) Prove that I(v) = 0 in every node of a perfectly balanced tree. (Recall that I(v) =
max{0, |T'| — |s| — 1}, where T is the child of greater height and s the child of lesser
height, and |v| is the number of nodes in subtree v. A perfectly balanced tree has two
perfectly balanced subtrees, each with as close to half the nodes as possible.)

*(c) Show that you can rebuild a fully balanced binary tree from an unbalanced tree in O(n)
time using only O(logn) additional memory.

4. Suppose we can insert or delete an element into a hash table in constant time. In order to
ensure that our hash table is always big enough, without wasting a lot of memory, we will
use the following global rebuilding rules:

e After an insertion, if the table is more than 3/4 full, we allocate a new table twice as big
as our current table, insert everything into the new table, and then free the old table.

e After a deletion, if the table is less than 1/4 full, we we allocate a new table half as big
as our current table, insert everything into the new table, and then free the old table.

Show that for any sequence of insertions and deletions, the amortized time per operation
is still a constant. Do not use the potential method (it makes it much more difficult).

5. A multistack consists of an infinite series of stacks Sy, S1,S52, ..., where the ith stack S; can
hold up to 3’ elements. Whenever a user attempts to push an element onto any full stack S;,
we first move all the elements in S; to stack S;1+1 to make room. But if S;1 is already full,
we first move all its members to S;12, and so on. Moving a single element from one stack to
the next takes O(1) time.

(<9
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Making room for one new element in a multistack.

(a) [1 point] In the worst case, how long does it take to push one more element onto a
multistack containing n elements?

(b) [9 points] Prove that the amortized cost of a push operation is O(logn), where n is the
maximum number of elements in the multistack. You can use any method you like.
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6. [This problem is required only for graduate students taking CS 373 for a full unit; anyone else
can submit a solution for extra credit.]

Death knocks on your door one cold blustery morning and challenges you to a game.
Death knows that you are an algorithms student, so instead of the traditional game of chess,
Death presents you with a complete binary tree with 4™ leaves, each colored either black or
white. There is a token at the root of the tree. To play the game, you and Death will take
turns moving the token from its current node to one of its children. The game will end after
2n moves, when the token lands on a leaf. If the final leaf is black, you die; if it’s white, you
will live forever. You move first, so Death gets the last turn.

You can decide whether it’s worth playing or not as follows. Imagine that the nodes at
even levels (where it’s your turn) are OR gates, the nodes at odd levels (where it’s Death’s
turn) are and gates. Each gate gets its input from its children and passes its output to its
parent. White and black stand for TRUE and FALSE. If the output at the top of the tree is
TRUE, then you can win and live forever! If the output at the top of the tree is FALSE, you
should challenge Death to a game of Twister instead.

(a) (2 pts) Describe and analyze a deterministic algorithm to determine whether or not you
can win. [Hint: This is easy!]

(b) (8 pts) Unfortunately, Death won’t let you even look at every node in the tree. Describe
a randomized algorithm that determines whether you can win in ©(3") expected time.
[Hint: Consider the case n = 1.]

O
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Practice Problems

1.

*4.

5.

(a) Show that it is possible to transform any n-node binary search tree into any other n-node
binary search tree using at most 2n — 2 rotations.

*(b) Use fewer than 2n — 2 rotations. Nobody knows how few rotations are required in the
worst case. There is an algorithm that can transform any tree to any other in at most
2n — 6 rotations, and there are pairs of trees that are 2n — 10 rotations apart. These are
the best bounds known.

. Faster Longest Increasing Subsequence(LIS)

Give an O(nlogn) algorithm to find the longest increasing subsequence of a sequence of
numbers. [Hint: In the dynamic programming solution, you don’t really have to look back at
all previous items. There was a practice problem on HW 1 that asked for an O(n?) algorithm
for this. If you are having difficulty, look at the solution provided in the HW 1 solutions.]

. Amortization

(a) Modify the binary double-counter (see class notes Sept 12) to support a new operation
SIGN, which determines whether the number being stored is positive, negative, or zero,
in constant time. The amortized time to increment or decrement the counter should still
be a constant.

[Hint: Suppose p is the number of significant bits in P, and n is the number of significant
bits in N. For example, if P = 17 = 100015 and N = 0, then p = 5 and n = 0. Then
p—n always has the same sign as P — N. Assume you can update p and n in O(1) time.]

*(b) Do the same but now you can’t assume that p and n can be updated in O(1) time.

Amortization

Suppose instead of powers of two, we represent integers as the sum of Fibonacci numbers.
In other words, instead of an array of bits, we keep an array of ‘fits’, where the ith least
significant fit indicates whether the sum includes the ith Fibonacci number F;. For example,
the fit string 101110 represents the number Fg+ Fy + F5+ F» =8+ 3+ 2+ 1 = 14. Describe
algorithms to increment and decrement a fit string in constant amortized time. [Hint: Most
numbers can be represented by more than one fit string. This is not the same representation
as on Homework 0.]

Detecting overlap

(a) You are given a list of ranges represented by min and max (e.g., [1,3], [4,5], [4,9], [6,8],
[7,10]). Give an O(nlogn)-time algorithm that decides whether or not a set of ranges
contains a pair that overlaps. You need not report all intersections. If a range completely
covers another, they are overlapping, even if the boundaries do not intersect.

(b) You are given a list of rectangles represented by min and max x- and y-coordinates. Give
an O(nlogn)-time algorithm that decides whet her or not a set of rectangles contains a
pair that overlaps (with the same qualifications as above). [Hint: sweep a vertical line
from left to right, performing some processing whenever an end-point is encountered.
Use a balanced search tree to maintain any extra info you might need.]
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6. Comparison of Amortized Analysis Methods
A sequence of n operations is performed on a data structure. The ith operation costs i if i is
an exact power of 2, and 1 otherwise. That is operation i costs f(i), where:

={3 o

otherwise
Determine the amortized cost per operation using the following methods of analysis:

(a) Aggregate method
(b) Accounting method
*(c) Potential method



CS 373: Combinatorial Algorithms, Spring 2001
Homework 3 (due Thursday, March 8, 2001 at 11:59.99 p.m.)

Name:
Net 1ID: Alias: U3 1

Name:

Net ID: Alias: U3, 1

Name:
Net 1ID: Alias: U3 1

Starting with Homework 1, homeworks may be done in teams of up to three people. Each team
turns in just one solution, and every member of a team gets the same grade. Since 1-unit graduate
students are required to solve problems that are worth extra credit for other students, 1-unit grad
students may not be on the same team as 3/4-unit grad students or undergraduates.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Please also tell us whether you are an undergraduate, 3/4-unit grad student, or 1-unit grad student
by circling U, 3/;, or 1, respectively. Staple this sheet to the top of your homework.

Required Problems

1. Hashing:
A hash table of size m is used to store n items with n < m/2. Open addressing is used for
collision resolution.

(a) Assuming uniform hashing, show that for i = 1,2,...,n, the probability that the 7*"
insertion requires strictly more than k probes is at most 2%,

(b) Show that for i = 1,2,...,n, the probability that the it" insertion requires more than
21g n probes is at most 1/n?.

Let the random variable X; denote the number of probes required by the i** insertion.
You have shown in part (b) that Pr{X; > 2lgn} < 1/n% Let the random variable X =
maxij<j<n X; denote the maximum number of probes required by any of the n insertions.

(c) Show that Pr{X > 2lgn} < 1/n.

(d) Show that the expected length of the longest probe sequence is E[X| = O(lgn).
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2. Reliable Network:
Suppose you are given a graph of a computer network G = (V, E) and a function r(u,v) that
gives a reliability value for every edge (u,v) € E such that 0 < r(u,v) < 1. The reliability
value gives the probability that the network connection corresponding to that edge will not
fail. Describe and analyze an algorithm to find the most reliable path from a given source
vertex s to a given target vertex t.

3. Aerophobia:
After graduating you find a job with Aerophobes-R’-Us, the leading traveling agency for
aerophobic people. Your job is to build a system to help customers plan airplane trips from
one city to another. All of your customers are afraid of flying so the trip should be as short
as possible.

In other words, a person wants to fly from city A to city B in the shortest possible time.
S/he turns to the traveling agent who knows all the departure and arrival times of all the
flights on the planet. Give an algorithm that will allow the agent to choose an optimal route
to minimize the total time in transit. Hint: rather than modify Dijkstra’s algorithm, modify
the data. The total transit time is from departure to arrival at the destination, so it will
include layover time (time waiting for a connecting flight).

4. The Seven Bridges of Konigsberg:
During the eighteenth century the city of Konigsberg in East Prussia was divided into four
sections by the Pregel river. Seven bridges connected these regions, as shown below. It was
said that residents spent their Sunday walks trying to find a way to walk about the city so
as to cross each bridge exactly once and then return to their starting point.

?@@T:
B e /s

(a) Show how the residents of the city could accomplish such a walk or prove no such walk
exists.

(b) Given any undirected graph G = (V, E), give an algorithm that finds a cycle in the
graph that visits every edge exactly once, or says that it can’t be done.

5. Minimum Spanning Tree changes:
Suppose you have a graph G and an MST of that graph (i.e. the MST has already been
constructed).
(a) Give an algorithm to update the MST when an edge is added to G.
(b) Give an algorithm to update the MST when an edge is deleted from G.

(¢) Give an algorithm to update the MST when a vertex (and possibly edges to it) is added
to G.
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6.

Nesting Envelopes

[This problem is required only for graduate students taking CS 373 for a full unit; anyone
else can submit a solution for extra credit.] You are given an unlimited number of each of
n different types of envelopes. The dimensions of envelope type ¢ are x; X y;. In nesting
envelopes inside one another, you can place envelope A inside envelope B if and only if the
dimensions A are strictly smaller than the dimensions of B. Design and analyze an algorithm
to determine the largest number of envelopes that can be nested inside one another.

Practice Problems

1.

*9

4.

Makefiles:

In order to facilitate recompiling programs from multiple source files when only a small
number of files have been updated, there is a UNIX utility called ‘make’ that only recompiles
those files that were changed after the most recent compilation, and any intermediate files in
the compilation that depend on those that were changed. A Makefile is typically composed
of a list of source files that must be compiled. Each of these source files is dependent on some
of the other files which are listed. Thus a source file must be recompiled if a file on which it
depends is changed.

Assuming you have a list of which files have been recently changed, as well as a list for
each source file of the files on which it depends, design an algorithm to recompile only those
necessary. DO NOT worry about the details of parsing a Makefile.

. Let the hash function for a table of size m be

h(z) = [Amz] mod m

where A = (JAS = @ Show that this gives the best possible spread, i.e. if the x are hashed

in order, z 4+ 1 will be hashed in the largest remaining contiguous interval.

. The incidence matrix of an undirected graph G = (V, E) is a [V| x |E| matrix B = (b;;) such

that

0 (i,j) ¢ E.

(a) Describe what all the entries of the matrix product BBT represent (BT is the matrix
transpose). Justify.

by :{ 1 (i,5) € E,

(b) Describe what all the entries of the matrix product B” B represent. Justify.

*(c) Let C = BBT — 2A. Let C' be C with the first row and column removed. Show that
det C” is the number of spanning trees. (A is the adjacency matrix of G, with zeroes on
the diagonal).

o(V?) Adjacency Matrix Algorithms

(a) Give an O(V) algorithm to decide whether a directed graph contains a sink in an adja-
cency matrix representation. A sink is a vertex with in-degree V — 1.
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(b) An undirected graph is a scorpion if it has a vertex of degree 1 (the sting) connected
to a vertex of degree two (the tail) connected to a vertex of degree V' — 2 (the body)
connected to the other V' — 3 vertices (the feet). Some of the feet may be connected to
other feet.

Design an algorithm that decides whether a given adjacency matrix represents a scorpion
by examining only O(V) of the entries.

(c) Show that it is impossible to decide whether G has at least one edge in O(V') time.

5. Shortest Cycle:
Given an undirected graph G = (V| E), and a weight function f : E — R on the edges,
give an algorithm that finds (in time polynomial in V' and E) a cycle of smallest weight in G.

6. Longest Simple Path:
Let graph G = (V,E), |V| = n . A simple path of G, is a path that does not contain the
same vertex twice. Use dynamic programming to design an algorithm (not polynomial time)
to find a simple path of maximum length in G. Hint: It can be done in O(n2") time, for
some constant c.

7. Minimum Spanning Tree:
Suppose all edge weights in a graph G are equal. Give an algorithm to compute an MST.

8. Transitive reduction:
Give an algorithm to construct a transitive reduction of a directed graph G, i.e. a graph GT*
with the fewest edges (but with the same vertices) such that there is a path from a to bin G
iff there is also such a path in GT%.

0 1 2 3 4
42347 1737 $112° 451

9. (a) What is 522 mod 67

(b) What is the capital of Nebraska? Hint: It is not Omaha. It is named after a famous
president of the United States that was not George Washington. The distance from the
Earth to the Moon averages roughly 384,000 km.
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http://www-courses.cs.uiuc.edu/"cs373
Homework 4 (due Thu. March 29, 2001 at 11:59:59 pm)

Name:

Net ID: Alias: U3, 1

Name:
Net 1ID: Alias: U1

Name:
Net 1ID: Alias: U341

Homeworks may be done in teams of up to three people. Each team turns in just one solution, and
every member of a team gets the same grade. Since 1-unit graduate students are required to solve
problems that are worth extra credit for other students, 1-unit grad students may not be on
the same team as 3/4-unit grad students or undergraduates.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Please also tell us whether you are an undergraduate, 3/4-unit grad student, or 1-unit grad student
by circling U, 3/;, or 1, respectively. Staple this sheet to the top of your homework.

Required Problems

1. Suppose we have n points scattered inside a two-dimensional box. A kd-tree recursively
subdivides the rectangle as follows. First we split the box into two smaller boxes with a
vertical line, then we split each of those boxes with horizontal lines, and so on, always
alternating between horizontal and vertical splits. Each time we split a box, the splitting line
partitions the rest of the interior points as evenly as possible by passing through a median
point inside the box (not on the boundary). If a box doesn’t contain any points, we don’t
split it any more; these final empty boxes are called cells.

Lot

— — —
Successive divisions of a kd-tree for 15 points. The dashed line crosses four cells.
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An example staircase as in problem 3.

(a) How many cells are there, as a function of n? Prove your answer is correct.

(b) In the worst case, exactly how many cells can a horizontal line cross, as a function of n?
Prove your answer is correct. Assume that n = 2 — 1 for some integer k.

(¢) Suppose we have n points stored in a kd-tree. Describe an algorithm that counts the
number of points above a horizontal line (such as the dashed line in the figure) in O(y/n)
time.

*(d) [Optional: 5 pts extra credit/ Find an algorithm that counts the number of points that
lie inside a rectangle R and show that it takes O(y/n) time. You may assume that the
sides of the rectangle are parallel to the sides of the box.

2. Circle Intersection [This problem is worth 20 points]
Describe an algorithm to decide, given n circles in the plane, whether any two of them
intersect, in O(nlogn) time. Each circle is specified by three numbers: its radius and the z-
and y-coordinates of its center.

We only care about intersections between circle boundaries; concentric circles do not
intersect. What general position assumptions does your algorithm require? [Hint: Modify
an algorithm for detecting line segment intersections, but describe your modifications very
carefully! There are at least two very different solutions.]

3. Staircases
You are given a set of points in the first quadrant. A left-up point of this set is defined to be
a point that has no points both greater than it in both coordinates. The left-up subset of a
set of points then forms a staircase (see figure).

(a) Prove that left-up points do not necessarily lie on the convex hull.

(b) Give an O(nlogn) algorithm to find the staircase of a set of points.
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(c) Assume that points are chosen uniformly at random within a rectangle. What is the
average number of points in a staircase? Justify. Hint: you will be able to give an exact
answer rather than just asymptotics. You have seen the same analysis before.

4. Convex Layers
Given a set Q of points in the plane, define the convex layers of Q) inductively as follows: The
first convex layer of () is just the convex hull of (). For all ¢ > 1, the ith convex layer is the
convex hull of Q) after the vertices of the first ¢ — 1 layers have been removed.

Give an O(n?)-time algorithm to find all convex layers of a given set of n points.

A set of points with four convex layers.

5. [This problem is required only for graduate students taking CS 373 for a full unit; anyone else
can submit a solution for extra credit.] Solve the travelling salesman problem for points in
convex position (ie, the vertices of a convex polygon). Finding the shortest cycle that visits
every point is easy — it’s just the convex hull. Finding the shortest path that visits evey point
is a little harder, because the path can cross through the interior.

(a) Show that the optimal path cannot be one that crosses itself.

(b) Describe an O(n?) time dynamic programming algorithm to solve the problem.
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Practice Problems

1. Basic Computation (assume two dimensions and ezact arithmetic)

(a) Intersection: Extend the basic algorithm to determine if two line segments intersect by
taking care of all degenerate cases.

(b) Simplicity: Give an O(nlogn) algorithm to determine whether an n-vertex polygon is
simple.

(c) Area: Give an algorithm to compute the area of a simple n-polygon (not necessarily
convex) in O(n) time.

(d) Inside: Give an algorithm to determine whether a point is within a simple n-polygon
(not necessarily convex) in O(n) time.

2. External Diagonals and Mouths

(a) A pair of polygon vertices defines an external diagonal if the line segment between them
is completely outside the polygon. Show that every nonconvex polygon has at least one
external diagonal.

(b) Three consective polygon vertices p,q,r form a mouth if p and r define an external
diagonal. Show that every nonconvex polygon has at least one mouth.

An external diagonal A mouth

3. On-Line Convex Hull
We are given the set of points one point at a time. After receiving each point, we must
compute the convex hull of all those points so far. Give an algorithm to solve this problem in
O(n?) (We could obviously use Graham’s scan n times for an O(n?logn) algorithm). Hint:
How do you maintain the convex hull?

4. Another On-Line Convex Hull Algorithm

(a) Given an n-polygon and a point outside the polygon, give an algorithm to find a tangent.

*(b) Suppose you have found both tangents. Give an algorithm to remove the points from
the polygon that are within the angle formed by the tangents (as segments!) and the
opposite side of the polygon.
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(c) Use the above to give an algorithm to compute the convex hull on-line in O(nlogn)

5. Order of the size of the convex hull
The convex hull on n > 3 points can have anywhere from 3 to n points. The average case
depends on the distribution.

(a) Prove that if a set of points is chosen randomly within a given rectangle then the average
size of the convex hull is O(log n).

*(b) Prove that if a set of points is chosen randomly within a given circle then the average
size of the convex hull is O(n'/3).

6. Ghostbusters and Ghosts
A group of n ghostbusters is battling n ghosts. Each ghostbuster can shoot a single energy
beam at a ghost, eradicating it. A stream goes in a straight line and terminates when it hits
a ghost. The ghostbusters must all fire at the same time and no two energy beams may cross
(it would be bad). The positions of the ghosts and ghostbusters is fixed in the plane (assume
that no three points are collinear).

(a) Prove that for any configuration of ghosts and ghostbusters there exists such a non-
crossing matching.

(b) Show that there exists a line passing through one ghostbuster and one ghost such that
the number of ghostbusters on one side of the line equals the number of ghosts on the
same side. Give an efficient algorithm to find such a line.

(¢) Give an efficient divide and conquer algorithm to pair ghostbusters and ghosts so that
no two streams cross.
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http://www-courses.cs.uiuc.edu/"cs373
Homework 5 (due Tue. Apr. 17, 2001 at 11:59 pm)

Name:

Net ID: Alias: U3, 1

Name:
Net 1ID: Alias: U1

Name:
Net 1ID: Alias: U341

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Please also tell us whether you are an undergraduate, 3/4-unit grad student, or 1-unit grad student
by circling U, 3/;, or 1, respectively. Staple this sheet to the top of your homework.

RequiredProblems

1. Prove that finding the second smallest of n elements takes EXACTLY n + [lgn] — 2 com-
parisons in the worst case. Prove for both upper and lower bounds. Hint: find the (first)
smallest using an elimination tournament.

2. Fibonacci strings are defined as follows:
Fy = “b”, Fy, = “a”, and F,, = F,,_1F,_o, (Tl > 2)

where the recursive rule uses concatenation of strings, so F3 is “ab”, Fy is “aba”. Note that
the length of F}, is the nth Fibonacci number.

(a) Prove that in any Fibonacci string there are no two b’s adjacent and no three a’s.
(b) Give the unoptimized and optimized ‘prefix’ (fail) function for Fx.

(¢) Prove that, in searching for the Fibonacci string Fj, the unoptimized KMP algorithm
can shift [k/2] times in a row trying to match the last character of the pattern. In other
words, prove that there is a chain of failure links m — fail[m| — fail[fail[m]] — ... of
length [k/2], and find an example text 7' that would cause KMP to traverse this entire
chain at a single text position.
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(d) Prove that the unoptimized KMP algorithm can shift k£ — 2 times in a row at the same
text position when searching for Fj. Again, you need to find an example text T" that
would cause KMP to traverse this entire chain on the same text character.

(e) How do the failure chains in parts (c) and (d) change if we use the optimized failure
function instead?

3. T'wo-stage sorting

(a) Suppose we are given an array A[l..n] of distinct integers. Describe an algorithm that
splits A into n/k subarrays, each with & elements, such that the elements of each subarray
Al(i — 1)k + 1..ik] are sorted. Your algorithm should run in O(nlog k) time.

(b) Given an array A[l..n| that is already split into n/k sorted subarrays as in part (a),
describe an algorithm that sorts the entire array in O(nlog(n/k)) time.

(c) Prove that your algorithm from part (a) is optimal.

(d) Prove that your alogrithm from part (b) is optimal.

[4]14]7]3]1]20]11]9[5[13]12]19[10]16]17][2[8]6][18[15]

@

[1[3]4]7]14][5]9]11]13]20]J10]12]16[17[19]2[6[8]15] 18]

G

[1]2[3[4]5]6][7[8[9[10[11[12[13[14[15] 1617 18[19]20]

4. Show how to extend the Rabin-Karp fingerprinting method to handle the problem of looking
for a given m x m pattern in an n x n array of characters. (The pattern may be shifted
horizontally and vertically, but it may not be rotated.)
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5. Death knocks on your door once more on a warm spring day. He remembers that you are an
algorithms student and that you soundly defeated him last time and are now living out your
immortality. Death is in a bit of a quandry. He has been losing a lot and doesn’t know why.
He wants you to prove a lower bound on your deterministic algorithm so that he can reap
more souls. If you have forgotten, the game goes like this: It is a complete binary tree with
4" leaves, each colored black or white. There is a toke at the root of the tree. To play the
game, you and Death took turns movin the token from its current node to one of its children.
The game ends after 2n moves, when the token lands on a leaf. If the final leaf is black, the
player dies; if it’s white, you will live forever. You move first, so Death gets the last turn.

You decided whether it’s worth playing or not as follows. Imagine that the nodes at even
levels (where it’s your turn) are OR gates, the nodes at odd levels (where it’s Death’s turn)
are and gates. Each gate gets its input from its children and passes its output to its parent.
White and black stand for TRUE and FALSE. If the output at the top of the tree is TRUE,
then you can win and live forever! If the output at the top of the tree is FALSE, you should’ve
challenge Death to a game of Twister instead.

Prove that any deterministic algorithm must examine every leaf of the tree in the worst
case. Since there are 4" leaves, this implies that any deterministic algorithm must take 2(4™)
time in the worst case. Use an adversary argument, or in other words, assume Death cheats.

O
O D
() © () 9
@ & @y L) o) o) )0 ()
WOWOOOWOOOWOWOOGE

6. [This problem is required only for graduate students taking CS 373 for a full unit; anyone else
can submit a solution for extra credit.]

Lower Bounds on Adjacency Matrix Representations of Graphs

(a) Prove that the time to determine if an undirected graph has a cycle is Q(V?).

(b) Prove that the time to determine if there is a path between two nodes in an undirected
graph is Q(V?).

Practice Problems

1. String matching with wild-cards
Suppose you have an alphabet for patterns that includes a ‘gap’ or wild-card character; any
length string of any characters can match this additional character. For example if ‘x’ is the
wild-card, then the pattern ‘foo*bar*nad’ can be found in ‘foofoowangbarnad’. Modify the
computation of the prefix function to correctly match strings using KMP.
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2. Prove that there is no comparison sort whose running time is linear for at least 1/2 of the n!
inputs of length n. What about at least 1/n? What about at least 1/2™7.

3. Prove that 2n — 1 comparisons are necessary in the worst case to merge two sorted lists
containing n elements each.

4. Find asymptotic upper and lower bounds to lg(n!) without Stirling’s approximation (Hint:
use integration).

5. Given a sequence of n elements of n/k blocks (k elements per block) all elements in a block
are less than those to the right in sequence, show that you cannot have the whole sequence
sorted in better than Q(nlgk). Note that the entire sequence would be sorted if each of the
n/k blocks were individually sorted in place. Also note that combining the lower bounds for
each block is not adequate (that only gives an upper bound).

6. Show how to find the occurrences of pattern P in text T by computing the prefix function of
the string PT" (the concatenation of P and T').
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http://www-courses.cs.uiuc.edu/"cs373
Homework 6 (due Tue. May 1, 2001 at 11:59.99 p.m.)

Name:

Net ID: Alias: U3, 1

Name:
Net 1ID: Alias: U1

Name:
Net 1ID: Alias: U341

Starting with Homework 1, homeworks may be done in teams of up to three people. Each team
turns in just one solution, and every member of a team gets the same grade. Since 1-unit graduate
students are required to solve problems that are worth extra credit for other students, 1-unit grad
students may not be on the same team as 3/4-unit grad students or undergraduates.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Please also tell us whether you are an undergraduate, 3/4-unit grad student, or 1-unit grad student
by circling U, 3/;, or 1, respectively. Staple this sheet to the top of your homework.

Note: You will be held accountable for the appropriate responses for answers (e.g. give models,
proofs, analyses, etc). For NP-complete problems you should prove everything rigorously, i.e. for
showing that it is in NP, give a description of a certificate and a poly time algorithm to verify it,
and for showing NP-hardness, you must show that your reduction is polytime (by similarly proving
something about the algorithm that does the transformation) and proving both directions of the
‘if and only if’ (a solution of one is a solution of the other) of the many-one reduction.

Required Problems

1. Complexity

(a) Prove that P C co-NP.
(b) Show that if NP # co-NP, then every NP-complete problem is not a member of co-NP.

2. 2-CNF-SAT
Prove that deciding satisfiability when all clauses have at most 2 literals is in P.

3. Graph Problems
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(a) SUBGRAPH-ISOMORPHISM
Show that the problem of deciding whether one graph is a subgraph of another is NP-
complete.

(b) LONGEST-PATH
Show that the problem of deciding whether an unweighted undirected graph has a path
of length greater than k is NP-complete.

4. PARTITION, SUBSET-SUM
PARTITION is the problem of deciding, given a set of numbers, whether there exists a subset
whose sum equals the sum of the complement, i.e. given S = s1,89...,5,, does there exist a
subset S” such that Y .o/ 5 =>",cq_g t. SUBSET-SUM is the problem of deciding, given a
set of numbers and a target sum, whether there exists a subset whose sum equals the target,
ie. given S = s1,52...,s, and k, does there exist a subset S’ such that .o s = k. Give
two reduction, one in both directions.

5. BIN-PACKING Consider the bin-packing problem: given a finite set U of n items and the
positive integer size s(u) of each item u € U, can U be partitioned into k disjoint sets

Ui, ...,Us such that the sum of the sizes of the items in each set does not exceed B? Show
that the bin-packing problem is NP-Complete. [Hint: Use the result from the previous
problem.]

6. 3SUM

[This problem is required only for graduate students taking CS 373 for a full unit; anyone else
can submit a solution for extra credit.]

Describe an algorithm that solves the following problem as quickly as possible: Given a set of
n numbers, does it contain three elements whose sum is zero? For example, your algorithm
should answer TRUE for the set {—5, —17,7,—4,3, —2,4}, since =5+ 74 (—2) = 0, and FALSE
for the set {—6,7,—4,—-13,—2,5,13}.
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Figure 1. Gadget for PLANAR-3-COLOR.

Figure 2. Gadget for DEGREE-4-PLANAR-3-COLOR.

Practice Problems

1.

Consider finding the median of 5 numbers by using only comparisons. What is the exact
worst case number of comparisons needed to find the median. Justify (exhibit a set that
cannot be done in one less comparisons). Do the same for 6 numbers.

. EXACT-COVER-BY-4-SETS

The EXACT-COVER-BY-3-SETS problem is defines as the following: given a finite set X
with |X| = 3¢ and a collection C' of 3-element subsets of X, does C' contain an ezact cover
for X, that is, a subcollection C’ C C such that every element of X occurs in exactly one
member of C'?

Given that EXACT-COVER-BY-3-SETS is NP-complete, show that EXACT-COVER-BY-
4-SETS is also NP-complete.

. PLANAR-3-COLOR

Using 3-COLOR, and the ‘gadget’ in figure 3, prove that the problem of deciding whether a
planar graph can be 3-colored is NP-complete. Hint: show that the gadget can be 3-colored,
and then replace any crossings in a planar embedding with the gadget appropriately.

. DEGREE-4-PLANAR-3-COLOR

Using the previous result, and the ‘gadget’ in figure 4, prove that the problem of deciding
whether a planar graph with no vertex of degree greater than four can be 3-colored is NP-
complete. Hint: show that you can replace any vertex with degree greater than 4 with a
collection of gadgets connected in such a way that no degree is greater than four.

. Poly time subroutines can lead to exponential algorithms

Show that an algorithm that makes at most a constant number of calls to polynomial-time
subroutines runs in polynomial time, but that a polynomial number of calls to polynomial-
time subroutines may result in an exponential-time algorithm.
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6. (a) Prove that if G is an undirected bipartite graph with an odd number of vertices, then G is
nonhamiltonian. Give a polynomial time algorithm algorithm for finding a hamiltonian
cycle in an undirected bipartite graph or establishing that it does not exist.

(b) Show that the hamiltonian-path problem can be solved in polynomial time on directed
acyclic graphs by giving an efficient algorithm for the problem.

(c) Explain why the results in previous questions do not contradict the facts that both
HAM-CYCLE and HAM-PATH are NP-complete problems.

7. Consider the following pairs of problems:

(a) MIN SPANNING TREE and MAX SPANNING TREE
(b) SHORTEST PATH and LONGEST PATH

(¢) TRAVELING SALESMAN PROBLEM and VACATION TOUR PROBLEM (the longest
tour is sought).

(d) MIN CUT and MAX CUT (between s and t)
(e) EDGE COVER and VERTEX COVER
(f) TRANSITIVE REDUCTION and MIN EQUIVALENT DIGRAPH

(all of these seem dual or opposites, except the last, which are just two versions of minimal
representation of a graph).

Which of these pairs are polytime equivalent and which are not? Why?

*8. GRAPH-ISOMORPHISM
Consider the problem of deciding whether one graph is isomorphic to another.

Give a brute force algorithm to decide this.

(a)
(b)
(c)
(d) Either prove that this problem is NP-complete, give a poly time algorithm for it, or
prove that neither case occurs.

Give a dynamic programming algorithm to decide this.

Give an efficient probabilistic algorithm to decide this.

9. Prove that PRIMALITY (Given n, is n prime?) is in NP N co-NP. Hint: co-NP is easy
(what’s a certificate for showing that a number is composite?). For NP, consider a certificate
involving primitive roots and recursively their primitive roots. Show that knowing this tree
of primitive roots can be checked to be correct and used to show that n is prime, and that
this check takes poly time.

10. How much wood would a woodchuck chuck if a woodchuck could chuck wood?
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Write your answers in the separate answer booklet.

1. Multiple Choice: Each question below has one of the following answers.
() O(1) (b) ©(log n) (c) ©(n) (d) ©(nlogn) (e) ©(n?)

For each question, write the letter that corresponds to your answer. You do not need to justify
your answers. Each correct answer earns you 1 point, but each incorrect answer costs you 3
point. You cannot score below zero.

(a) Whatis > H;?
i=1

Ilgn
(b) Whatis ) 2'?
i=1
(c) How many digits do you need to write n! in decimal?
(d) What is the solution of the recurrence 7'(n) = 167'(n/4) + n?
(e) What is the solution of the recurrence 7'(n) = T'(n — 2) + lgn?
(f) What is the solution of the recurrence T'(n) = 47 ([242] — \/n) 4+ 17n — 98log™(n?) 4 G2

(g) What is the worst-case running time of randomized quicksort?

(h) The expected time for inserting one item into a treap is O(logn). What is the worst-case
time for a sequence of n insertions into an initially empty treap?

(i) The amortized time for inserting one item into an n-node splay tree is O(log n). What is
the worst-case time for a sequence of n insertions into an initially empty splay tree?

(j) In the worst case, how long does it take to solve the traveling salesman problem for
10,000, 000, 000, 000, 000 cities?

2. What is the exact expected number of nodes in a skip list storing n keys, not counting the
sentinel nodes at the beginning and end of each level? Justify your answer. A correct O()
bound (with justification) is worth 5 points.
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3. Suppose we have a stack of n pancakes of all different sizes. We want to sort the pancakes so
that smaller pancakes are on top of larger pancakes. The only operation we can perform is a
flip — insert a spatula under the top k£ pancakes, for some & between 1 and n, turn them all
over, and put them back on top of the stack.

Flipping the top three pancakes

(a) (3 pts) Describe an algorithm to sort an arbitrary stack of n pancakes using flips.
(b) (3 pts) Prove that your algorithm is correct.

(c) (2 pts) Exactly how many flips does your sorting algorithm perform in the worst case?
A correct O() bound is worth one point.

(d) (2 pts) Suppose one side of each pancake is burned. Exactly how many flips do you
need to sort the pancakes, so that the burned side of every pancake is on the bottom? A
correct ©() bound is worth one point.

4. Suppose we want to maintain a set of values in a data structure subject to the following
operations:

* INSERT(z): Add x to the set (if it isn’t already there).

* DELETERANGE (a,b): Delete every element z in the range a < = < b. For example, if the
set was {1,5, 3,4, 8}, then DELETERANGE (4, 6) would change the set to {1, 3, 8}.

Describe and analyze a data structure that supports these operations, such that the amortized
cost of either operation is O(logn). [Hint: Use a data structure you saw in class. If you use
the same INSERT algorithm, just say so—you don’t need to describe it again in your answetr. ]

5. [1-unit grad students must answer this question. ]
A shuffle of two strings X and Y is formed by interspersing the characters into a new string,
keeping the characters of X and Y in the same order. For example, ‘bananaananas’ is a shuffle
of ‘banana’ and ‘ananas’ in several different ways.

bananaanam)S bananaananas bananaananas

The strings ‘prodgyrnamammiincg’ and ‘dyprongarmammicing’ are both shuffles of ‘dynamic’ and
‘programming’:

d

pro®gYrnam

ammiincg dyprongarmammicing
Given three strings A[l1..m], B[1..n], and C[1..m + n], describe and analyze an algorithm to

determine whether C is a shuffle of A and B. For full credit, your algorithm should run in
©(mn) time.
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1. Using any method you like, compute the following subgraphs for the weighted graph below.
Each subproblem is worth 3 points. Each incorrect edge costs you 1 point, but you cannot get
a negative score for any subproblem.

(a) a depth-first search tree, starting at the top vertex;
(b) a breadth-first search tree, starting at the top vertex;
(c) a shortest path tree, starting at the top vertex;

(d) the maximum spanning tree.

2. (a) [4 pts] Prove that a connected acyclic undirected graph with V" vertices has exactly V' —1
edges. (“It’s a tree!” is not a proof.)

(b) [4 pts] Describe and analyze an algorithm that determines whether a given undirected
graph is a tree, where the graph is represented by an adjacency list.

(c) [2 pts] What is the running time of your algorithm from part (b) if the graph is repre-
sented by an adjacency matrix?

3. Suppose we want to sketch the Manhattan skyline (minus the interesting bits like the Empire
State and Chrysler builings). You are given a set of n rectangles, each rectangle represented
by its left and right xz-coordinates and its height. The bottom of each rectangle is on the
x-axis. Describe and analyze an efficient algorithm to compute the vertices of the skyline.

A set of rectangles and its skyline. Compute the sequence of white points.
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4. Suppose we model a computer network as a weighted undirected graph, where each ver-
tex represents a computer and each edge represents a direct network connection between
two computers. The weight of each edge represents the bandwidth of that connection—the
number of bytes that can flow from one computer to the other in one second.! We want to
implement a point-to-point network protocol that uses a single dedicated path to communi-
cate between any pair of computers. Naturally, when two computers need to communciate,
we should use the path with the highest bandwidth. The bandwidth of a path is the minimum
bandwidth of its edges.

Describe an algorithm to compute the maximum bandwidth path between every pair of com-
puters in the network. Assume that the graph is represented as an adjacency list.

5. [1-unit grad students must answer this question.]

Let P be a set of points in the plane. Recall that the staircase of P contains all the points in P
that have no other point in P both above and to the right. We can define the staircase layers
of P recursively as follows. The first staircase layer is just the staircase; for all ¢ > 1, the ith
staircase layer is the staircase of P after the first i — 1 staircase layers have been deleted.

Describe and analyze an algorithm to compute the staircase layers of P in O(n?) time.? Your
algorithm should label each point with an integer describing which staircase layer it belongs
to. You can assume that no two points have the same z- or y-coordinates.

A set of points and its six staircase layers.

!Notice the bandwidth is symmetric; there are no cable modems or wireless phones. Don’t worry about systems-level
stuff like network load and latency. After all, this is a theory class!
2This is not the fastest possible running time for this problem.

2
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You must turn in this question sheet with your answers.

1. Déja vu

Prove that any positive integer can be written as the sum of distinct nonconsecutive Fibonacci
numbers—if F,, appears in the sum, then neither F,,; nor F,,_; will. For example: 42 =
Fy+ Fg, 25 = Fg+ Fy + Fy, and 17 = F; + F, + F». You must give a complete, self-contained
proof, not just a reference to the posted homework solutions.

2. Lesprit d’escalier

Recall that the staircase of a set of points consists of the points with no other point both above
and to the right. Describe a method to maintain the staircase as new points are added to
the set. Specifically, describe and analyze a data structure that stores the staircase of a set of
points, and an algorithm INSERT(z,y) that adds the point (z,y) to the set and returns TRUE
or FALSE to indicate whether the staircase has changed. Your data structure should use O(n)

space, and your INSERT algorithm should run in O(logn) amortized time.

-~ -

(xy) TRUE
o i

3. Engage le jeu que je le gagne

-

(x(,)y)

FALSE
¢

A palindrome is a text string that is exactly the same as its reversal, such as DEED, RACECAR,

or SATPPUAKAUPPIAS.!

(a) Describe and analyze an algorithm to find the longest prefix of a given string that is also a
palindrome. For example, the longest palindrome prefix of ILLINOISURBANACHAMPAIGN
is ILLI, and the longest palindrome prefix of HYAKUGOJYUUICHI? is the single letter S.
For full credit, your algorithm should run in O(n) time.

(b) Describe and analyze an algorithm to find the length of the longest subsequence of a given
string that is also a palindrome. For example, the longest palindrome subsequence of
ILLINOISURBANACHAMPAIGN is NTAACAAIN (or NTAAHAAIN), and the longest palindrome
subsequence of HYAKUGOJYUUICHI is HUUUH® (or HUGUH or HUYUH or. . .). You do not need
to compute the actual subsequence; just its length. For full credit, your algorithm should

run in O(n?) time.

Finnish for ‘soap dealer’.
2Japanese for ‘one hundred fifty-one’.
3English for ‘What the heck are you talking about?’
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4. Toute votre base sont appartiennent a nous

Prove that exactly 2n — 1 comparisons are required in the worst case to merge two sorted
arrays, each with n distinct elements. Describe and analyze an algorithm to prove the upper
bound, and use an adversary argument to prove the lower bound. You must give a complete,
self-contained solution, not just a reference to the posted homework solutions.*

5. Plus ca change, plus ca méme chose

A domino is a 2 x 1 rectangle divided into two squares, with a certain number of pips (dots) in
each square. In most domino games, the players lay down dominos at either end of a single
chain. Adjacent dominos in the chain must have matching numbers. (See the figure below.)

Describe and analyze an efficient algorithm, or prove that it is NP-hard, to determine whether
a given set of n dominos can be lined up in a single chain. For example, for the set of dominos
shown below, the correct output is TRUE.

AE R

| RN BN | I RS
Top: A set of nine dominos
Bottom: The entire set lined up in a single chain

[ .

| B

...I[...

i .H- .

-

6. Ceci n’est pas une pipe

Consider the following pair of problems:

e BOXDEPTH: Given a set of n axis-aligned rectangles in the plane and an integer k, decide
whether any point in the plane is covered by k£ or more rectangles.

e MAXCLIQUE: Given a graph with n vertices and an integer k, decide whether the graph
contains a clique with k£ or more vertices.

(a) Describe and analyze a reduction of one of these problems to the other.

(b) MAXCLIQUE is NP-hard. What does your answer to part (a) imply about the complexity
of BOXDEPTH?

7. C’est magique! [1-unit graduate students must answer this question. ]

The recursion fairy’s cousin, the reduction genie, shows up one day with a magical gift for
you—a box that determines in constant time the size of the largest clique in any given graph.
(Recall that a clique is a subgraph where every pair of vertices is joined by an edge.) The
magic box does not tell you where the largest clique is, only its size. Describe and analyze an
algorithm to actually find the largest clique in a given graph in polynomial time, using this
magic box.

“The posted solution for this Homework 5 practice problem was incorrect. So don’t use it!
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Homework 0, due September 5, 2002 at the beginning of class

Name:

Net ID: Alias: U G

Neatly print your name (first name first, with no comma), your network ID, and an alias of your
choice into the boxes above. Circle U if you are an undergraduate, and G if you are a graduate
student. Do not sign your name. Do not write your Social Security number. Staple this
sheet of paper to the top of your homework.

Grades will be listed on the course web site by alias give us, so your alias should not resemble your
name or your Net ID. If you don’t give yourself an alias, we’ll give you one that you won'’t like.

Before you do anything else, please read the Homework Instructions and FAQ on the CS 373
course web page (http://www-courses.cs.uiuc.edu/ cs373 /hwx/faq.html) and then check the box
below. There are 300 students in CS 373 this semester; we are quite serious about giving zeros to
homeworks that don’t follow the instructions.

I have read the CS 373 Homework Instructions and FAQ.

Every CS 373 homework has the same basic structure. There are six required problems, some with
several subproblems. Each problem is worth 10 points. Only graduate students are required to
answer problem 6; undergraduates can turn in a solution for extra credit. There are several practice
problems at the end. Stars indicate problems we think are hard.

This homework tests your familiarity with the prerequisite material from CS 173, CS 225, and
CS 273, primarily to help you identify gaps in your knowledge. You are responsible for filling
those gaps on your own. Rosen (the 173/273 textbook), CLRS (especially Chapters 1-7, 10,
12, and A—C), and the lecture notes on recurrences should be sufficient review, but you may want
to consult other texts as well.
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Required Problems

1. Sort the following functions from asymptotically smallest to asymptotically largest, indicating
ties if there are any. Please don’t turn in proofs, but you should do them anyway to make
sure you're right (and for practice).

1 n n? Ign nlgn
nlgn (lg n)n (lg n)lgn nlglgn nl/lgn

1000 n lg(IOOO) n lg(nIOOO) (1 + Wlo())n

logipoon  1g
To simplify notation, write f(n) < g(n) to mean f(n) = o(g(n)) and f(n) = g(n) to mean
f(n) = ©(g(n)). For example, the functions n?, n, (;), n® could be sorted either as n <
n*=(y) <n®orasn< () =n*<n’

2. Solve these recurrences. State tight asymptotic bounds for each function in the form O(f(n))
for some recognizable function f(n). Please don’t turn in proofs, but you should do them
anyway just for practice. Assume reasonable but nontrivial base cases, and state them if they
affect your solution. Extra credit will be given for more exact solutions. [Hint: Most of these
are very easy.]

A(n) = 2A(n/2) +n F(n) =9F(|n/3] +9) +n?

B(n) =3B(n/2) +n G(n) =3G(n—1)/5G(n —2)
C(n)=2C(n/3)+n H(n)=2H(v/n) +1
D(n)=2D(n—1) +1 I(n) = 1<r]£1§i%/2 (I(k)+I(n—k)+k)
E(n) = 1<r}€12?>1</2 (E(k) + E(n—k) +n) *J(n) = 1&12;(/2 (J(k)+ J(n— k) + k)

3. Recall that a binary tree is full if every node has either two children (an internal node) or no
children (a leaf). Give at least four different proofs of the following fact:

In any full binary tree, the number of leaves is exactly one more than the number
of internal nodes.

For full credit, each proof must be self-contained, the proof must be substantially different
from each other, and at least one proof must not use induction. For each n, your nth correct
proof is worth n points, so you need four proofs to get full credit. Each correct proof beyond
the fourth earns you extra credit. [Hint: I know of at least six different proofs.]
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4. Most of you are probably familiar with the story behind the Tower of Hanoi puzzle:!

At the great temple of Benares, there is a brass plate on which three vertical diamond
shafts are fixed. On the shafts are mounted n golden disks of decreasing size.? At the time
of creation, the god Brahma placed all of the disks on one pin, in order of size with the
largest at the bottom. The Hindu priests unceasingly transfer the disks from peg to peg,
one at a time, never placing a larger disk on a smaller one. When all of the disks have been
transferred to the last pin, the universe will end.

Recently the temple at Benares was relocated to southern California, where the monks are
considerably more laid back about their job. At the “Towers of Hollywood”, the golden disks
were replaced with painted plywood, and the diamond shafts were replaced with Plexiglas.
More importantly, the restriction on the order of the disks was relaxed. While the disks are
being moved, the bottom disk on any pin must be the largest disk on that pin, but disks
further up in the stack can be in any order. However, after all the disks have been moved,
they must be in sorted order again.

N = = |

[ 1L 1L ]

= I |l =1 | =V |
=L | =4 || =

The Towers of Hollywood.

Describe an algorithm?® that moves a stack of n disks from one pin to the another using the
smallest possible number of moves. For full credit, your algorithm should be non-recursive,
but a recursive algorithm is worth significant partial credit. Ezactly how many moves does
your algorithm perform? [Hint: The Hollywood monks can bring about the end of the universe
quite a bit faster than the original monks at Benares could.]

The problem of computing the minimum number of moves was posed in the most recent issue
of the American Mathematical Monthly (August/September 2002). No solution has been
published yet.

!The puzzle and the accompanying story were both invented by the French mathematician Eduoard Lucas in 1883.
See http://www.cs.wm.edu/ pkstoc/toh.html

2In the original legend, n = 64. In the 1883 wooden puzzle, n = 8.

3Since you’ve read the Homework Instructions, you know exactly what this phrase means.

3
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5. On their long journey from Denmark to England, Rosencrantz and Guildenstern amuse them-
selves by playing the following game with a fair coin. First Rosencrantz flips the coin over
and over until it comes up tails. Then Guildenstern flips the coin over and over until he gets
as many heads in a row as Rosencrantz got on his turn. Here are three typical games:

Rosencrantz: HH T
Guildenstern: H T HH

Rosencrantz: T
Guildenstern: (no flips)

Rosencrantzz: HHH T
Guildenstern: THHTHHTHTHHH

(a) What is the expected number of flips in one of Rosencrantz’s turns?

(b) Suppose Rosencrantz flips k£ heads in a row on his turn. What is the expected number
of flips in Guildenstern’s next turn?

(c) What is the expected total number of flips (by both Rosencrantz and Guildenstern) in
a single game?

Prove your answers are correct. If you have to appeal to “intuition” or “common sense”, your
answer is almost certainly wrong! You must give exact answers for full credit, but asymptotic
bounds are worth significant partial credit.

6. [This problem is required only for graduate students (including I2CS students); undergrads
can submit a solution for extra credit.]

Tatami are rectangular mats used to tile floors in traditional Japanese houses. Exact dimen-
sions of tatami mats vary from one region of Japan to the next, but they are always twice as
long in one dimension than in the other. (In Tokyo, the standard size is 180cmx90cm.)

(a) How many different ways are there to tile a 2 x n rectangular room with 1 x 2 tatami
mats? Set up a recurrence and derive an ezact closed-form solution. [Hint: The answer
involves a familiar recursive sequence.]

(b) According to tradition, tatami mats are always arranged so that four corners never meet.
Thus, the first two arrangements below are traditional, but not the third.

P

Two traditional tatami arrangements and one non-traditional arrangement.

How many different traditional ways are there to tile a 3 X n rectangular room with 1 x 2
tatami mats? Set up a recurrence and derive an ezxact closed-form solution.

*(c) [ points extra credit] How many different traditional ways are there to tile an n x n
square with 1 x 2 tatami mats? Prove your answer is correct.
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Practice Problems

These problems are only for your benefit; other problems can be found in previous semesters’
homeworks on the course web site. You are strongly encouraged to do some of these problems as
additional practice. Think of them as potential exam questions (hint, hint). Feel free to ask about
any of these questions on the course newsgroup, during office hours, or during review sessions.

1. Removing any edge from a binary tree with n nodes partitions it into two smaller binary
trees. If both trees have at least [(n — 1)/3] nodes, we say that the partition is balanced.

(a) Prove that every binary tree with more than one vertex has a balanced partition. [Hint:
I know of at least two different proofs.]

(b) If each smaller tree has more than |n/3] nodes, we say that the partition is strictly
balanced. Show that for every n, there is an n-node binary tree with no strictly balanced
partition.

2. Describe an algorithm COUNTTOTENTOTHE(n) that prints the integers from 1 to 10™.

Assume you have a subroutine PRINTDIGIT(d) that prints any integer d between 0 and 9,
and another subroutine PRINTSPACE that prints a space character. Both subroutines run in
O(1) time. You may want to write (and analyze) a separate subroutine PRINTINTEGER to
print an arbitrary integer.

Since integer variables cannot store arbitrarily large values in most programming lan-
guages, your algorithm must not store any value larger than max{10,n} in any single integer
variable. Thus, the following algorithm is not correct:

BoGcusCoUNTTOTENTOTHE(n):
for i «— 1 to POWER(10,n)
PRINTINTEGER(%)

(So what exactly can you pass to PRINTINTEGER?)

What is the running time of your algorithm (as a function of n)? How many digits and
spaces does it print? How much space does it use?

3. I'm sure you remember the following simple rules for taking derivatives:

e Simple cases: %a = 0 for any constant «, and d%x =1

Linearity: %(f(z) +g(x) = f'(z) + ¢ (2)
e The product rule: %(f(w) cg(x)) = f'(z) - g(x) + f(z) - ¢'(2)
e The chain rule: 4 (f(9(x)) = f/(9(z)) - ¢'(x)
Using only these rules and induction, prove that %xc = cx¢! for any integer ¢ # —1. Do

not use limits, integrals, or any other concepts from calculus, except for the simple identities
listed above. [Hint: Don’t forget about negative values of c!]

5
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4. This problem asks you to calculate the total resistance between two points in a series-parallel
resistor network. Don’t worry if you haven’t taken a circuits class; everything you need to
know can be summed up in two sentences and a picture.

e The total resistance of two resistors in series is the sum of their individual resistances.

e The total resistance of two resistors in parallel is the reciprocal of the sum of the recip-
rocals of their individual resistances.

Equivalence laws for series-parallel resistor networks.

What is the ezact total resistance? of the following resistor networks as a function of n? Prove
your answers are correct. [Hint: Use induction. Duh.]

(a) A complete binary tree with depth n, with a 12 resistor at every node, and a common
wire joining all the leaves. Resistance is measured between the root and the leaves.

A balanced binary resistor tree with depth 3.

(b) A totally unbalanced full binary tree with depth n (every internal node has two children,
one of which is a leaf) with a 1) resistor at every node, and a common wire joining all
the leaves. Resistance is measured between the root and the leaves.

A totally unbalanced binary resistor tree with depth 4.

*(c) A ladder with n rungs, with a 19 resistor on every edge. Resistance is measured between
the bottom of the legs.

A resistor ladder with 5 rungs.

1The ISO standard unit of resistance is the Ohm, written with the symbol €. Don’t confuse this with the
asymptotic notation Q(f(n))!
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Homework 1, due September 17, 2002 at 23:59:59

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Name:

Net ID: Alias:
Undergrads Grads

This homework is to be submitted in groups of up to three people. Graduate and undergraduate
students are not allowed to work in the same group. Please indicate above whether you are
undergraduate or graduate students. Only one submission per group will be accepted.

Required Problems

1. The traditional Devonian/Cornish drinking song “The Barley Mow” has the following pseu-
dolyrics, where container[i] is the name of a container ! that holds 2 ounces of beer.

BARLEYMow(n):
“Here's a health to the barley-mow, my brave boys,”
“Here's a health to the barley-mow!”

“We’'ll drink it out of the jolly brown bowl,”

“Here's a health to the barley-mow!”

“Here's a health to the barley-mow, my brave boys,”
“Here's a health to the barley-mow!”

fori+ 1ton

“We'll drink it out of the container[i], boys,”

“Here's a health to the barley-mow!”

for j < ¢ downto 1
“The container(j]

“And the jolly brown bowl!”

“Here's a health to the barley-mow, my brave boys,”

“Here's a health to the barley-mow!”

”
’

(a) Suppose each container name container|t] is a single word, and you can sing four words a
second. How long would it take you to sing BARLEYMoOw(n)? (Give a tight asymptotic
bound.)

1One version of the song uses the following containers: nipperkin, gill pot, half-pint, pint, quart, pottle, gallon,
half-anker, anker, firkin, half-barrel, barrel, hogshead, pipe, well, river, and ocean. Every container in this list is
twice as big as its predecessor, except that a firkin is actually 2.25 ankers, and the last three units are just silly.
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(b) Suppose container[n| has ©(logn) syllables, and you can sing six syllables per second.
Now how long would it take you to sing BARLEYMoOw(n)? (Give a tight asymptotic
bound.)

(c) Suppose each time you mention the name of a container, you drink the corresponding
amount of beer: one ounce for the jolly brown bowl, and 2¢ ounces for each container][s).
Assuming for purposes of this problem that you are over 21, exactly how many ounces
of beer would you drink if you sang BARLEYMoOwW(n)? (Give an ezact answer, not just
an asymptotic bound.)

2. Suppose you have a set S of n numbers. Given two elements you cannot determine which
is larger. However, you are given an oracle that will tell you the median of a set of three
elements.

(a) Give a linear time algorithm to find the pair of the largest and smallest numbers in S.

(b) Give an algorithm to sort S in O(nlgn) time.

3. Given a black and white pixel image A[1...m][1...n], our task is to represent A with a search
tree T. Given a query (z,y), a simple search on 7' should return the color of pixel A[z]|[y].
The algorithm to construct 7" will be as follows.

CONSTRUCTSEARCHTREE(A[1...m][1...n]):
//Base Case
if A contains only one color
return a leaf node labeled with that color

//Recurse on Subtrees

(2,7) < CHOOSECUT(A[Ll...m][1...n])

Ty < CONSTRUCTSEARCHTREE(A[1...4][1...7])

Ty < CONSTRUCTSEARCHTREE(A[L...¢][j +1...n])

T3 < CONSTRUCTSEARCHTREE(A[i + 1...mJ[1...]])

Ty + CONSTRUCTSEARCHTREE(A[i +1...m|[j+1...n])

//Construct the Root
T.cut < (i,7)

T.children < Tl, T2, T3, Ty
return T'

That is, this algorithm divides a multicolor image into quadrants and recursively constructs
the search tree for each quadrant. Upon a query (z,y) of T' (assuming 1 < z < m and
1 <y < n), the appropriate subtree is searched. When the correct leaf node is reached, the
pixel color is returned. Here’s a toy example.

2
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© 0 N 0~ W|IN P

=
o

(a)

(a) An image A and the chosen cuts. (b) The corresponding search tree.

Your job in this problem is to give an algorithm for CHOOSECUT. The sequence of chosen
cuts must result in an optimal search tree T'. That is, the expected search depth of a uniformly
chosen pixel must be minimized. You may use any external data structures (i.e.a global table)
that you find necessary. You may also preprocess in order to initialize these structures before
the initial call to CONSTRUCTSEARCHTREE(A[L...m|[1...n]).

4. Let A be a set of n positive integers, all of which are no greater than some constant M > 0.
Give an O(n?M) time algorithm to determine whether or not it is possible to split A into two
subsets such that the sum of the numbers in each subset are equal.

5. Let S and T be two binary trees. A matching of S and T is a tree M which is isomorphic to
some subtree in each of S and T'. Here’s an illustration.

S T M(ST)

A matching M (S, T) of binary trees S and T

A mazximal matching is a matching which contains at least as many vertices as any other
matching. Give an algorithm to compute a maximal matching given the roots of two binary
trees. Your algorithm should return the size of the match as well as the two roots of the
matched subtrees of S and T
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6. [This problem is required only for graduate students (including I2CS students); undergrads
can submit a solution for extra credit.]

Let P[1,...,n] be a set of n convezr points in the plane. Intuitively, if a rubber band were
stretched to surround P then each point would touch the rubber band. Furthermore, suppose
that the points are labeled such that P[1],..., P[n] is a simple path along the convex hull
(i.e.P[i] is adjacent to P[i + 1] along the rubber band).

(a) Give a simple algorithm to compute a shortest cyclic tour of P.

(b) A monotonic tour of P is a tour that never crosses itself. Here’s an illustration.

P[2] P[2]

Pl4]

Pl6) Pl
PI7]
(b)

(a) A monotonic tour of P. (b) A non-monotonic tour of P.

Prove that any shortest tour of P must be monotonic.

(c) Given an algorithm to compute a shortest tour of P starting at point P[1] and finishing
on point P[| 5 [].
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Practice Problems

These remaining practice problems are entirely for your benefit. Don’t turn in solutions—we’ll
just throw them out—but feel free to ask us about these questions during office hours and review
sessions. Think of these as potential exam questions (hint, hint).

1. Suppose that you are given an n x n checkerboard and a checker. You must move the checker
from the bottom edge of the board to the top edge of the board according to the following
rule. At each step you may move the checker to one of three squares:

(a) the square immediately above,

(b) the square that is one up and one left (but only if the checker is not already in the
leftmost column),

(c) the square that is one up and one right (but only if the checker is not already in the
rightmost column).

Each time you move from square x to square y, you receive p(x,y) dollars. You are given
p(z,y) for all pairs (x,y) for which a move from z to y is legal. Do not assume that p(z,y) is
positive.

Give an algorithm that figures out the set of moves that will move the checker from somewhere
along the bottom edge to somewhere along the top edge while gathering as many dollars as
possible. Your algorithm is free to pick any square along the bottom edge as a starting point
and any square along the top edge as a destination in order to maximize the number of dollars
gathered along the way. What is the running time of your algorithm?

2. (CLRS 15-1) The euclidean traveling-salesman problem is the problem of determining the
shortest closed tour that connects a given set of n points in the plane. Figure (a) below shows
the solution to a 7-point problem. The general problem is NP-complete, and its solution is
therefore believed to require more than polynomial time.

J.L. Bentley has suggested that we simplify the problem by restricting our attention to bitonic
tours (Figure (b) below). That is, tours that start at the leftmost point, go strictly left to
right to the rightmost point, and then go strictly right to left back to the starting point. In
this case, a polynomial-time algorithm is possible.

4?\;;\\\.//\ *\\\ /.//\
/ L ,./} \\ R }
= -

@ (b)

Seven points in the plane, shown on a unit grid. (a) The shortest closed tour, with length approximately 24.89.
This tour is not bitonic. (b) The shortest bitonic tour for the same set of points. It’s length is approximately 25.58.
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Describe an O(n?)-time algorithm for determining an optimal bitonic tour. You may assume
that no two points have the same z-coordinate. [Hint: Scan left to right, maintaining optimal
possibilities for the two parts of the tour.]

3. You are given a polygonal line v made out of n vertices in the plane. Namely, you are given a
list of n points in the plane p1, ..., pn, where p; = (z;,¥;). You need to display this polygonal
line on the screen, however, you realize that you might be able to draw a polygonal line with
considerably less vertices that looks identical on the screen (because of the limited resolution
of the screen). It is crucial for you to minimize the number of vertices of the polygonal line.
(Because, for example, your display is a remote Java applet running on the user computer,
and for each vertex of the polygon you decide to draw, you need to send the coordinates of
the points through the network which takes a long long long time. So the fewer vertices you
send, the snappier your applet would be.)

So, given such a polygonal line -, and a parameter k, you would like to select k vertices of y
that yield the “best” polygonal line that looks like 7.

14

@ (b) ©
(a) The original polygonal line with 14 vertices. (b) A new polygonal line with 6 vertices. (c) The distance
between ps on the original polygonal line and the simplification segment pape. The error of ps is
error(ps) = dist(ps, pape)-

Namely, you need to build a new polygonal line 4/ and minimize the difference between the
two polygonal-lines. The polygonal line ' is built by selecting k vertices {pi, , Dis, ---, i, } from
. It is required that 41 = 1, ¢y = n, and i; < ¢j4q for j =1,2,...,k = 1.

We define the error between v and «' by how far from +/ are the vertices of yv. More formally,

The difference between the two polygonal lines is

k-1 ij41—1

eTTOT(’Y, Fyl) = Z Z diSt(pm7pijpi]'+1)-

Namely, for every vertex not in the simplification, its associated error, is the distance to the
corresponding simplified segment (see (c) in above figure). The overall error is the sum over
all vertices.

You can assume that you are provided with a subroutine that can calculate dist(u,vw) in
constant time, where dist(u,vw) is the distance between the point v and the segment vw.

Give an O(n?) time algorithm to find the 4/ that minimizes error(y,v').
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Name:
Net ID: Alias: UG

Name:

Net ID: Alias: UG

Name:
Net ID: Alias: UG

Homeworks may be done in teams of up to three people. Each team turns in just one solution,
and every member of a team gets the same grade. Since graduate students are required to solve
problems that are worth extra credit for other students, Grad students may not be on the
same team as undergraduates.

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Please also tell us whether you are an undergraduate or 1-unit grad student by circling U or G,
respectively. Staple this sheet to the top of your homework. NOTE: You must use different
sheet(s) of paper for each problem assigned.

Required Problems

1. For each of the following problems, the input is a set of n nuts and n bolts. For each bolt,
there is exactly one nut of the same size. Direct comparisons between nuts or between bolts
are not allowed, but you can compare a nut and a bolt in constant time.

(a) Describe and analyze a deterministic algorithm to find the largest bolt. Ezactly how
many comparisons does your algorithm perform in the worst case? [Hint: This is very
easy.|

(b) Describe and analyze a randomized algorithm to find the largest bolt. What is the ezact
expected number of comparisons performed by your algorithm?

(c) Describe and analyze an algorithm to find the largest and smallest bolts. Your algo-
rithm can be either deterministic or randomized. What is the ezact worst-case expected
number of comparisons performed by your algorithm? [Hint: Running part (a) twice is
definitely not the most efficient algorithm.]

In each case, to receive full credit, you need to describe the most efficient algorithm
possible.
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2. Consider the following algorithm:

SLOWSHUFFLE(A[1..n]) :

fori+ 1ton
Bli] «Null

fori < 1ton
index + Random(1,n)
while Blindex] # Null

index + Random(1,n)

Blindex] + A[i]

fori+ 1ton
Ali] < BJi]

Suppose that Random(4,7) will return a random number between ¢ and j inclusive in con-
stant time. SLOWSHUFFLE will shuffle the input array into a random order such that every
permutation is equally likely.

(a) What is the expected running time of the above algorithm. Justify your answer and give
a tight asymptotic bound.

(b) Describe an algorithm that randomly shuffles an n-element array, so that every permu-
tation is equally likely, in O(n) time.

3. Suppose we are given an undirected graph G = (V, E) together with two distinguished vertices
s and t. An s-t min-cut is a set of edges that once removed from the graph, will disconnect
s from t. We want to find such a set with the minimum cardinality(The smallest number of
edges). In other words, we want to find the smallest set of edges that will seperate s and ¢

To do this we repeat the following step |V| — 2 times: Uniformly at random, pick an edge
from the set E which contains all edges in the graph excluding those that directly connects
vertices s and t. Merge the two vertices that is connected by this randomly selected edge.
If as a result there are several edges between some pair of vertices, retain them all. Edges
that are between the two merged vertices are removed so that there are never any self-loops.
We refer to this process of merging the two end-points of an edge into a single vertex as the
contraction of that edge. Notice with each contraction the number of vertices of G decreases
by one.

As this algorithm proceeds, the vertex s may get merged with a new vertex as the result
of an edge being contracted. We call this vertex the s-vertex. Similarly, we have a t-vertex.
During the contraction algorithm, we ensure that we never contract an edge between the
s-vertex and the t-vertex.
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edge (S,B)

G\ a Contraction of

1 7 Contraction of
s.B \@/ ) “edgeCTA) ~  (SB) (rAC

(a) Give an example of a graph in which the probability that this algorithm finds an s-t
min-cut is exponentially small(O(1/a™)). Justify your answers.
( Hint: Think multigraphs)

(b) Give an example of a graph such that there are O(2") number of s-t min-cuts. Justify
your answers.

4. Describe a modification of treaps that supports the following operations, each in O(logn)
expected time:
o INSERT(z): Insert a new element z into the data structure.
e DELETE(z): Delete an element x from the data structure.

e COMPUTERANK(z): Return the number of elements in the data structure less than or
equal to x.

o FINDBYRANK(r): Return the kth smallest element in the data structure.

Describe and analyze the algorithms that implement each of these operations. [Hint: Don’t
reinvent the wheel!]
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5. A meldable priority queue stores a set of keys from some totally ordered universe (such as the
integers) and supports the following operations:

¢ MAKEQUEUE: Return a new priority queue storing the empty set.
e FINDMIN(Q): Return the smallest element stored in @ (if any).

e DELETEMIN(Q): Delete the smallest element stored in @ (if any).
o INSERT(Q, x): Insert element x into Q.

e MELD(Q1,Q2): Return a new priority queue containing all the elements stored in
and Q2. The component priority queues are destroyed.

o DECREASEKEY(Q, z,y): Replace an element z of @ with a smaller key y. (If y > z, the
operation fails.) The input is a pointer directly to the node in @ storing z.

e DELETE(Q, z): Delete an element z € Q. The input is a pointer directly to the node in
Q storing x.

A simple way to implement this data structure is to use a heap-ordered binary tree, where
each node stores an element, a pointer to its left child, a pointer to its right child, and a
pointer to its parent. MELD(Q1,Q2) can be implemented with the following randomized
algorithm.

e If either one of the queues is empty, return the other one.

e If the root of ()1 is smaller than the root of QJ2, then recursively MELD Q2 with either
right(Q1) or left(Q1), each with probability 1/2.

e Similarly, if the root of Q)2 is smaller than the root of @)1, then recursively MELD Q3
with a randomly chosen child of Q.

(a) Prove that for any heap-ordered trees Q1 and @2, the expected running time of MELD(Q1, Q2)
is O(log n), where n = |Q1|+|Q2|. [Hint: How long is a random path in an n-node binary
tree, if each left/right choice is made with equal probability?] For extra credit, prove
that the running time is O(logn) with high probability.

(b) Show that each of the operations DELETEMIN, INSERT, DECREASEKEY, and DELETE
can be implemented with one call to MELD and O(1) additional time. (This implies that
every operation takes O(logn) with high probability.)

6. [This problem is required only for graduate students taking CS 873 for a full unit; anyone else
can submit a solution for extra credit.]

The following randomized algorithm selects the rth smallest element in an unsorted array
A[l,..,n]. For example, to find the smallest element, you would call RANDOMSELECT(A4, 1);
to find the median element, you would call RANDOMSELECT(A, [n/2]). Recall from lecture
that PARTITION splits the array into three parts by comparing the pivot element A[p] to every
other element of the array, using n — 1 comparisons altogether, and returns the new index of
the pivot element.
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RANDOMSELECT(A[l..n],7) :
p < RAaNDOM(1,n)
k < PARTITION(A[1..n],p)

ifr<k

return RANDOMSELECT(A[1..k — 1],7)
elseif r > k

return RANDOMSELECT(A[k + 1..n],7 — k)
else

return A[k]

(a) State a recurrence for the expected running time of RANDOMSELECT, as a function of
both n and 7.

(b) What is the ezact probability that RANDOMSELECT compares the ith smallest and jth
smallest elements in the input array? The correct answer is a simple function of i, 7,
and r. [Hint: Check your answer by trying a few small examples.]

(c) Show that for any n and r, the expected running time of RANDOMSELECT is ©(n). You
can use either the recurrence from part (a) or the probabilities from part (b). For extra
credit, find the ezact expected number of comparisons, as a function of n and r.

(d) What is the expected number of times that RANDOMSELECT calls itself recursively?
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Practice Problems

1. Death knocks on your door one cold blustery morning and challenges you to a game. Death
knows that you are an algorithms student, so instead of the traditional game of chess, Death
presents you with a complete binary tree with 4" leaves, each colored either black or white.
There is a token at the root of the tree. To play the game, you and Death will take turns
moving the token from its current node to one of its children. The game will end after 2n
moves, when the token lands on a leaf. If the final leaf is black, you die; if it’s white, you will
live forever. You move first, so Death gets the last turn.

You can decide whether it’s worth playing or not as follows. Imagine that the nodes at even
levels (where it’s your turn) are OR gates, the nodes at odd levels (where it’s Death’s turn)
are and gates. Each gate gets its input from its children and passes its output to its parent.
White and black stand for TRUE and FALSE. If the output at the top of the tree is TRUE,
then you can win and live forever! If the output at the top of the tree is FALSE, you should
challenge Death to a game of Twister instead.

(a) Describe and analyze a deterministic algorithm to determine whether or not you can
win. [Hint: This is easy!]

(b) Unfortunately, Death won’t let you even look at every node in the tree. Describe a
randomized algorithm that determines whether you can win in ©(3") expected time.
[Hint: Consider the case n =1.]

O
(M) (M)
(V) (V) (V) (V)
VNN B B OB N O
WOWOOOWOOOOLWOOOGE

2. WHat is the ezact number of nodes in a skip list storing n keys, not counting the sentinel
nodes at the beginning and end of each level? Justify your answer.

3. Suppose we are given two sorted arrays A[l..n] and B[1l..n| and an integer k. Describe an
algorithm to find the kth smallest element in the union of A and B. (For example, if k =1,
your algorithm should return the smallest element of A U B; if £ = n, our algorithm should
return the median of AU B.) You can assume that the arrays contain no duplicates. Your
algorithm should be able to run in O(logn) time. [Hint: First try to solve the special case

k=mn.]
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Homework 3, due October 17, 2002 at 23:59:59

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Name:

Net ID: Alias:
Undergrads Grads

This homework is to be submitted in groups of up to three people. Graduate and undergraduate
students are not allowed to work in the same group. Please indicate above whether you are
undergraduate or graduate students. Only one submission per group will be accepted.

Required Problems

1. (a) Prove that only one subtree gets rebalanced in a scapegoat tree insertion.

(b) Prove that I(v) = 0 in every node of a perfectly balanced tree. (Recall that I(v) =
max{0, |T'| — |s| — 1}, where T is the child of greater height and s the child of lesser
height, and |v| is the number of nodes in subtree v. A perfectly balanced tree has two
perfectly balanced subtrees, each with as close to half the nodes as possible.)

*(c) Show that you can rebuild a fully balanced binary tree from an unbalanced tree in O(n)
time using only O(logn) additional memory.

2. Suppose we can insert or delete an element into a hash table in constant time. In order to
ensure that our hash table is always big enough, without wasting a lot of memory, we will
use the following global rebuilding rules:

e After an insertion, if the table is more than 3/4 full, we allocate a new table twice as big
as our current table, insert everything into the new table, and then free the old table.

e After a deletion, if the table is less than 1/4 full, we we allocate a new table half as big
as our current table, insert everything into the new table, and then free the old table.

Show that for any sequence of insertions and deletions, the amortized time per operation is
still a constant. Do not use the potential method (it makes it much more difficult).

3. A stack is a FILO/LIFO data structure that represents a stack of objects; access is only
allowed at the top of the stack. In particular, a stack implements two operations:

e PUSH(z): adds z to the top of the stack.
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e POP: removes the top element and returns it.

A queue is a FIFO/LILO data structure that represents a row of objects; elements are added
to the front and removed from the back. In particular, a queue implements two operations:

o ENQUEUE(z): adds z to the front of the queue.

e DEQUEUE: removes the element at the back of the queue and returns it.

Using two stacks and no more than O(1) additional space, show how to simulate a queue for
which the operations ENQUEUE and DEQUEUE run in constant amortized time. You should
treat each stack as a black box (i.e., you may call PUSH and PoP, but you do not have access
to the underlying stack implementation). Note that each PusH and PoP performed by a
stack takes O(1) time.

4. A data structure is insertion-disabled if there is no way to add elements to it. For the purposes
of this problem, further assume that an insertion-disabled data structure implements the
following operations with the given running times:

e INITIALIZE(S): Return an insertion-disabled data structure that contains the elements
of S. Running time: O(nlogn).

e SEARCH(D,z): Return TRUE if z is in D; return FALSE if not. Running time:
O(logn).

e RETURNALL(D, z): Return an unordered set of all elements in D. Running time: O(n).
e DELETE(D, z): Remove z from D if z is in D. Running time: O(logn).

Using an approach known as the Bentley-Saxe Logarithmic Method (BSLM), it is possible to
represent a dynamic (i.e., supports insertions) data structure with a collection of insertion-
disabled data structures, where each insertion-disabled data structure stores a number of
elements that is a distinct power of two. For example, to store 39 = 20+ 21 4+ 22 4 25 elements
in a BSLM data structure, we use four insertion-disabled data structures with 20, 21, 22, and
25 elements.

To find an element in a BSLM data structure, we search the collection of insertion-disabled
data structures until we find (or don’t find) the element.

To insert an element into a BSLM data structure, we think about adding a 2°-size insertion-
disabled data structure. However, an insertion-disabled data structure with 2° elements may
already exist. In this case, we can combine two 20-size structures into a single 2'-size structure.
However, there may already be a 2l-size structure, so we will need to repeat this process. In
general, we do the following: Find the smallest ¢ such that for all nonnegative k < %, there is
a 2F-sized structure in our collection. Create a 2i-sized structure that contains the element to
be inserted and all elements from 2*-sized data structures for all k < i. Destroy all 2-sized
data structures for k < 1.



CS 373 Homework 3 (due 10/17/02) Fall 2002

Before insertion: 39 elements total

»H After insertion: 40 elements total

Inserting an element into a BSLM data structure.

We delete elements from the BSLM data structure lazily. To delete an element, we first
search the collection of insertion-disabled data structures for it. Then we call DELETE to
remove the element from its insertion-disabled data structure. This means that a 2i-sized
insertion-disabled data structure might store less than 2! elements. That’s okay; we just
say that it stores 2' elements and say that 2° is its pretend size. We keep track of a single
variable, called Waste, which is initially 0 and is incremented by 1 on each deletion. If Waste
exceeds three-quarters of the total pretend size of all insertion-disabled data structures in our
collection (i.e., the total number of elements stored), we rebuild our collection of insertion-
disabled data structures. In particular, we create a 2™-sized insertion-disabled data structure,
where 2™ is the smallest power that is greater than or equal to the total number of elements
stored. All elements are stored in this 2™-sized insertion-disabled data structure, and all
other insertion-disabled data structures in our collection are destroyed. Waste is reset to
2™ — n, where n is the total number of elements stored in the BSLM data structure.

Your job is to prove the running times of the following three BSLM operations:

e SEARCHBSLM(D, z): Search for z in the collection of insertion-disabled data structures
that represent the BSLM data structure D. Running time: O(log?n) worst-case.

e INSERTBSLM(D, z): Insert x into the collection of insertion-disabled data structures
that represent the BSLM data structure D, modifying the collection as necessary. Run-
ning time: O(log®n) amortized.

e DELETEBSLM(D, z): Delete = from the collection of insertion-disabled data structures
that represent the BSLM data structure D, rebuilding when there is a lot of wasted
space. Running time: O(log®n) amortized.

5. Except as noted, the following sub-problems refer to a Union-Find data structure that uses
both path compression and union by rank.

(a) Prove that in a set of n elements, a sequence of n consecutive FIND operations takes
O(n) total time.

(b) Show that any sequence of m MAKESET, FIND, and UNION operations takes only O(m)
time if all of the UNION operations occur before any of the FIND operations.

3
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(c) Now consider part b with a Union-Find data structure that uses path compression but
does not use union by rank. Is O(m) time still correct? Prove your answer.

6. [This problem is required only for graduate students (including I2CS students); undergrads
can submit a solution for extra credit.]

Suppose instead of powers of two, we represent integers as the sum of Fibonacci numbers.
In other words, instead of an array of bits, we keep an array of ‘fits’, where the ith least
significant fit indicates whether the sum includes the ith Fibonacci number F;. For example,
the fit string 101110 represents the number Fg + Fy + F3+ F» =8+ 3+ 241 = 14. Describe
algorithms to increment and decrement a fit string in constant amortized time. [Hint: Most
numbers can be represented by more than one fit string.
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Practice Problems

These remaining practice problems are entirely for your benefit. Don’t turn in solutions—we’ll
just throw them out—but feel free to ask us about these questions during office hours and review
sessions. Think of these as potential exam questions (hint, hint).

1. A multistack consists of an infinite series of stacks Sg, S1, 59, ..., where the ith stack S; can
hold up to 3¢ elements. Whenever a user attempts to push an element onto any full stack .S;,
we first move all the elements in S; to stack S;;1 to make room. But if S;; is already full,
we first move all its members to S;12, and so on. Moving a single element from one stack to
the next takes O(1) time.

@

x3

> >
N | et | I

Making room for one new element in a multistack.

(a) In the worst case, how long does it take to push one more element onto a multistack
containing n elements?

(b) Prove that the amortized cost of a push operation is O(logn), where n is the maximum
number of elements in the multistack. You can use any method you like.

2. A hash table of size m is used to store n items with n < m/2. Open addressing is used for
collision resolution.

(a) Assuming uniform hashing, show that for 4 = 1,2,...,n, the probability that the 7*?
insertion requires strictly more than k probes is at most 27%.

(b) Show that for i = 1,2,...,n, the probability that the i** insertion requires more than
21gn probes is at most 1/n2.

Let the random variable X; denote the number of probes required by the i** insertion.
You have shown in part (b) that Pr{X; > 2Ign} < 1/n?. Let the random variable X =
maxi<i<n X; denote the maximum number of probes required by any of the n insertions.

(c) Show that Pr{X > 2Ign} < 1/n.

(d) Show that the expected length of the longest probe sequence is E[X]| = O(lgn).
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3. A sequence of n operations is performed on a data structure. The ith operation costs 7 if 7 is
an exact power of 2, and 1 otherwise. That is operation i costs f(i), where:

. . k
N e, =27
fi) = { 1, otherwise
Determine the amortized cost per operation using the following methods of analysis:

(a) Aggregate method
(b) Accounting method
*(c) Potential method
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Homework 4, due Thursday, October 31, 2002 at 23:59.99

Name:

Net ID: Alias:

Name:

Net ID: Alias:

Name:

Net ID: Alias:
Undergrads Grads

This homework is to be submitted in groups of up to three people. Graduate and undergraduate
students are not allowed to work in the same group. Please indicate above whether you are
undergraduate or graduate students. Only one submission per group will be accepted.

Required Problems

1. Tournament:
A tournament is a directed graph with exactly one edge between every pair of vertices.
(Think of the nodes as players in a round-robin tournament, where each edge points from
the winner to the loser.) A Hamailtonian path is a sequence of directed edges, joined end to
end, that visits every vertex exactly once.

Prove that every tournament contains at least one Hamiltonian path.

A six-vertex tournament containing the Hamiltonian path 6 -4 —+5 —»2 — 3 — 1.

2. Acrophobia:
Consider a graph G = (V, E) whose nodes are cities, and whose edges are roads connecting the
cities. For each edge, the weight is assigned by h., the maximum altitude encountered when
traversing the specified road. Between two cities s and ¢, we are interested in those paths
whose maximum altitude is as low as possible. We will call a subgraph, G’, of G an acrophobic
friendly subgraph, if for any two nodes s and ¢ the path of minimum altitude is always
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included in the subgraph. For simplicity, assume that the maximum altitude encountered on
each road is unique.

(a) Prove that every graph of n nodes has an acrophobic friendly subgraph that has only
n — 1 edges.

(b) Construct an algorithm to find an acrophobic friendly subgraph given a graph G =
(V, E).

3. Refer to the lecture notes on single-source shortest paths. The GENERICSSSP algorithm
described in class can be implemented using a stack for the ‘bag’. Prove that the resulting
algorithm, given a graph with n nodes as input, could perform 2(2") relaxation steps before
stopping. You need to describe, for any positive integer n, a specific weighted directed n-
vertex graph that forces this exponential behavior. The easiest way to describe such a family
of graphs is using an algorithm!

4. Neighbors:
Two spanning trees T and 7" are defined as meighbors if T' can be obtained from T by
swapping a single edge. More formally, there are two edges e and f such that 7" is obtained
from T by adding edge ¢ and deleting edge f.

(a) Let T' denote the minimum cost spanning tree and suppose that we want to find the
second cheapest tree 7' among all trees. Assuming unique costs for all edges, prove that
T and T" are neighbors.

(b) Given a graph G = (V, E), construct an algorithm to find the second cheapest tree, T".

(c) Consider a graph, H, whose vertices are the spanning trees of the graph G. T'wo vertices
are connected by an edge if and only if they are neighbors as previously defined. Prove
that for any graph G this new graph H is connected.

5. Network Throughput:

Suppose you are given a graph of a (tremendously simplified) computer network G = (V, E)
such that a weight, b., is assigned to each edge representing the communication bandwidth
of the specified channel in Kb/s and each node is assigned a value, [,, representing the
server latency measured in seconds/packet. Given a fixed packet size, and assuming all edge
bandwidth values are a multiple of the packet size, your job is to build a system to decide
which paths to route traffic between specfied servers.

More formally, a person wants to route traffic from server s to server ¢ along the path of
maximum throughput. Give an algorithm that will allow a network design engineer to choose
an optimal path by which to route data traffic.

2
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6. All-Pairs-Shortest-Path:
[This problem is required only for graduate students taking CS 373 for a full unit,
anyone else can submit a solution for extra credit.]
Given an undirected, unweighted, connected graph G = (V, E), we wish to solve the distance
version of the all-pairs-shortest-path problem. The algorithm APD takes the n x n 0-1
adjacency matrix A and returns an n x n matrix D such that d;; represents the shortest path
between vertices ¢ and j.

APD(A)
Z+— A-A
let B be an n x n matrix, where b;; = 1 iff ¢ # j and (a;; = 1 or z;; > 0)
ifbjj=1foralli#j
return D < 2B — A
T «+ APD(B)
X+«T-A
foreach z;;
if x;; > t;; - degree(j)
dij — 2ty
else
dij < 2t;5 — 1

return D

(a) In the APD algorithm above, what do the matrices Z, B, T, and X represent? Justify
your answers.

(b) Prove that the APD algorithm correctly computes the matrix of shortest path distances.
In other words, prove that in the output matrix D, each entry d;; represents the shortest
path distance between node ¢ and node j.

(c) Suppose we can multiply two n x n matrices in M (n) time, where M(n) = Q(n?).!
Prove that APD runs in O(M (n)logn) time.

!The matrix multiplication algorithm you already know runs in O(n®) time, but this is not the fastest known.
The current record is M(n) = O(n**7®), due to Don Coppersmith and Shmuel Winograd. Determinign the smallest
possible value of M (n) is a long-standing open problem.



CS 373 Homework 4 (due 10/31/2002) Fall 2002

Practice Problems

1. Makefiles:

In order to facilitate recompiling programs from multiple source files when only a small
number of files have been updated, there is a UNIX utility called ‘make’ that only recompiles
those files that were changed after the most recent compilation, and any intermediate files in
the compilation that depend on those that were changed. A Makefile is typically composed
of a list of source files that must be compiled. Each of these source files is dependent on some
of the other files which are listed. Thus a source file must be recompiled if a file on which it
depends is changed.

Assuming you have a list of which files have been recently changed, as well as a list for
each source file of the files on which it depends, design an algorithm to recompile only those
necessary. DO NOT worry about the details of parsing a Makefile.

2. The incidence matrix of an undirected graph G = (V, E) is a |V| x | E| matrix B = (b;;) such
that
{1 if vertex v; is an endpoint of edge e;
ij =

0 otherwise

(a) Describe what all the entries of the matrix product BB represent (B” is the matrix
transpose). Justify.

(b) Describe what all the entries of the matrix product B’ B represent. Justify.

*(c) Let C = BBT —2A. Let C' be C with the first row and column removed. Show that
det C’ is the number of spanning trees. (A is the adjacency matrix of G, with zeroes on
the diagonal).

3. Reliable Network:
Suppose you are given a graph of a computer network G = (V, E) and a function r(u, v) that
gives a reliability value for every edge (u,v) € E such that 0 < r(u,v) < 1. The reliability
value gives the probability that the network connection corresponding to that edge will not
fail. Describe and analyze an algorithm to find the most reliable path from a given source
vertex s to a given target vertex t.

4. Aerophobia:
After graduating you find a job with Aerophobes-R/-Us, the leading traveling agency for
aerophobic people. Your job is to build a system to help customers plan airplane trips from
one city to another. All of your customers are afraid of flying so the trip should be as short
as possible.

In other words, a person wants to fly from city A to city B in the shortest possible time.
S/he turns to the traveling agent who knows all the departure and arrival times of all the
flights on the planet. Give an algorithm that will allow the agent to choose an optimal route
to minimize the total time in transit. Hint: rather than modify Dijkstra’s algorithm, modify
the data. The total transit time is from departure to arrival at the destination, so it will
include layover time (time waiting for a connecting flight).

4
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5. The Seven Bridges of Konigsberg:
During the eighteenth century the city of Konigsberg in East Prussia was divided into four
sections by the Pregel river. Seven bridges connected these regions, as shown below. It was
said that residents spent their Sunday walks trying to find a way to walk about the city so
as to cross each bridge exactly once and then return to their starting point.

?@@T:
B e /i

(a) Show how the residents of the city could accomplish such a walk or prove no such walk
exists.

(b) Given any undirected graph G = (V, E), give an algorithm that finds a cycle in the
graph that visits every edge exactly once, or says that it can’t be done.

6. Given an undirected graph G = (V, E) with costs ¢, > 0 on the edges e € E give an O(|E|)
time algorithm that tests if there is a minimum cost spanning tree that contains the edge e.

7. Combining Boruvka and Prim:
Give an algorithm that find the MST of a graph G in O(mloglogn) time by combining
Boruvka’s and Prim’s algorithm.

8. Minimum Spanning Tree changes:
Suppose you have a graph G and an MST of that graph (i.e. the MST has already been
constructed).

(a) Give an algorithm to update the MST when an edge is added to G.

(b) Give an algorithm to update the MST when an edge is deleted from G.

(c) Give an algorithm to update the MST when a vertex (and possibly edges to it) is added
to G.

9. Nesting Envelopes
You are given an unlimited number of each of n different types of envelopes. The dimensions
of envelope type ¢ are z; X y;. In nesting envelopes inside one another, you can place envelope
A inside envelope B if and only if the dimensions A are strictly smaller than the dimensions
of B. Design and analyze an algorithm to determine the largest number of envelopes that
can be nested inside one another.

10. o(V?) Adjacency Matrix Algorithms

(a) Give an O(V) algorithm to decide whether a directed graph contains a sink in an adja-
cency matrix representation. A sink is a vertex with in-degree V — 1.

5
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11.

12.

13.

14.

15.

(b) An undirected graph is a scorpion if it has a vertex of degree 1 (the sting) connected
to a vertex of degree two (the tail) connected to a vertex of degree V' — 2 (the body)
connected to the other V' — 3 vertices (the feet). Some of the feet may be connected to
other feet.

Design an algorithm that decides whether a given adjacency matrix represents a scorpion
by examining only O(V') of the entries.

(c) Show that it is impossible to decide whether G has at least one edge in O(V') time.

Shortest Cycle:
Given an undirected graph G = (V, E), and a weight function f : £ — R on the edges, give
an algorithm that finds (in time polynomial in V and E) a cycle of smallest weight in G.

Longest Simple Path:

Let graph G = (V,E), |[V| = n . A simple path of G, is a path that does not contain the
same vertex twice. Use dynamic programming to design an algorithm (not polynomial time)
to find a simple path of maximum length in G. Hint: It can be done in O(n°2") time, for
some constant c.

Minimum Spanning Tree:
Suppose all edge weights in a graph G are equal. Give an algorithm to compute an MST.

Transitive reduction:
Give an algorithm to construct a transitive reduction of a directed graph G, i.e. a graph
GTE with the fewest edges (but with the same vertices) such that there is a path from a to

b in G iff there is also such a path in GT%.

0 1 2 3 .4
52295 42347 11737 41127 451

(a) What is mod 67

(b) What is the capital of Nebraska? Hint: It is not Omaha. It is named after a famous
president of the United States that was not George Washington. The distance from the
Earth to the Moon averages roughly 384,000 km.
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http://www-courses.cs.uiuc.edu/"cs373
Homework 5 (due Thur. Nov. 21, 2002 at 11:59 pm)

Name:
Net ID: Alias: U3yl
Name:
Net ID: Alias: U3, 1
Name:
Net ID: Alias: U3, 1

Neatly print your name(s), NetID(s), and the alias(es) you used for Homework 0 in the boxes above.
Please also tell us whether you are an undergraduate, 3/4-unit grad student, or 1-unit grad student
by circling U, 3/, or 1, respectively. Staple this sheet to the top of your homework.

Required Problems

1. (10 points) Given two arrays, A[l..n] and B[l..m| we want to determine whether there is an
i > 0 such that B[1] = A[i + 1|,B[2] = A[i + 2],...,B[m]| = A[i + m]. In other words, we want
to determine if B is a substring of A. Show how to solve this problem in O(nlogn) time with
high probability.

2. (5 points) Let a,b,c € Z*.

(a) Prove that ged(a,bd) - lem(a, b) = ab.
(b) Prove lem(a, b, ¢) = lcm(lem(a, b),c).
(c) Prove gecd(a, b, c)lcm(ab, ac,be) = abe.

3. (5 points) Describe an efficient algorithm to compute multiplicative inverses modulo a prime
p. Does your algorithm work if the modulos is composite?

4. (10 points) Describe an efficient algorithm to compute F,, mod m, given integers n and m as
input.
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5. (10 points) Let n have the prime factorization p’fl p’§2 e pft, where the primes p; are distinct
and have exponents k; > 0. Prove that

B(n) = pri_l(pi —-1).

Conclude that ¢(n) can be computed in polynomial time given the prime factorization of n.

6. (10 points) Suppose we want to compute the Fast Fourier Transform of an intger vector
P[0..n—1]. We could choose an integer m larger than any coefficient P[i], and then perform
all arithmetic modulo m (or more formally, in the ring Z,,). In order to make the FFT
algorithm work, we need to find an integer that functions as a ”primitive nth root of unity
modulo m”.

For this problem, let’s assume that m = 2%/2 + 1, where as usual n is a power of two.

(a) Prove that 2" =1 (mod m).

(b) Prove that ZZ;& 2% =0 (mod m). These two conditions imply that 2 is a primitive nth
root of unity in Z,,.

(c) Given (a), (b), and (c), briefly argue that the "FFT modulo m” of P is well-defined and
be computed in O(nlogn) arithmetic operations.

(d) Prove that n has a multiplicative inverse in Z,,. [Hint: n is a power of 2, and m is odd.]
We need this property to implement the inverse FF'T modulo m.

(e) What is the FFT of the sequence [3,1,3,3,7,3,7,3] modulo 17?7

7. (10 points) [This problem is required only for graduate students taking CS 373 for a full unit;
anyone else can submit a solution for extra credit.]

(a) Prove that for any integer n > 1, if the n-th Fibonacci number F;, is prime then either
n is prime or n = 4.

(b) Prove that if a divides b, then F;, divides Fj,.

(c) Prove that gcd(Fy, Fy) = Fyeq(ap)- This immediately implies parts (a) and (b), so if you

solve this part, you don’t have to solve the other two.

2
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Practice Problems
1. Let a,b,n € Z \ {0}. Assume gcd(a,b)|n. Prove the entire set of solutions to the equation
n = azx + by

is given by:
tb ta

I ={zo+ —0yo— —2 .
ot (@)Y ged(arb)

te Z}.

2. Show that in the RSA cryptosystem the decryption exponent d can be chosen such that de = 1
mod lem(p — 1,9 — 1).

3. Let (n,e) be a public RSA key. For a plaintext m € {0,1,...,n — 1}, let ¢ = m® mod n be the
corresponding ciphertext. Prove that there is a positive integer k£ such that
k
€

m® = m mod n.

For such an integer k, prove that

Is this dangerous for RSA?

4. Prove that if Alice’s RSA public exponent e is 3 and an adversary obtains Alice’s secret
exponent d, then the adversary can factor Alice’s modulus n in time polynomial in the number
of bits in n.
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http://www-courses.cs.uiuc.edu/ cs373
Homework 6 (Do not hand in!)

Name:
Net ID: Alias: Uusd,1

Name:
Net ID: Alias: Uusd,i1

Name:
Net ID: Alias: Usd,i

Neatly print your name(s), NetlD(s), and the alias(es) you used for Homework O in the boxes above. Please also tell
us whether you are an undergraduatd; @it grad student, or 1-unit grad student by circlingdJ, or 1, respectively.
Staple this sheet to the top of your homework.

Required Problems

1. (10 points) Prove that SAT is still a NP-complete problem even under the following constraints: each variable
must show up once as a positive literal and once or twice as a negative literal in the whole expression. For
instance, AVB)A(AVCVD) A (AvBVCvVD) satisfies the constraints, whil&YB)A(AvCvD) A (AvBvCvD)
does not, because positive literal A appears twice.

2. (10 points) A domino is X 1 rectanble divided into two squares, with a certain number of pips(dots) in each
square. In most domino games, the players lay down dominos at either end of a single chain. Adjacent dominos
in the chain must have matching numbers. (See the figure below.)

Describe and analyze affieient algorithm, or prove that itis NP-complete, to determine wheter a given set of n
dominos can be lined up in a single chain. For example, for the sets of dominos shown below, the correct output

is TRUE.
° ° ° ° ° °
) ° ° ° ° °
° ° ° °
° ° ° o o [ ] o o L N ] ° e o
° ° o o ° ° o o
o o ° ° o o o o ° o o ° L I ]
e o|le o ° o|lo o||le o L] (] ® (IE XX AAEX X ) (] o|le o
] ] ° [ ° ° ° o [ °
® Oo|le oo ° o o||leo o ° ° ° ° eooco||oce|e ° [ )

Top: A set of nine dominos
Bottom:The entire set lined up in a single chain



3. (10 points) Prove that the following 2 problems are NP-complete. Given an undirected@raplV, E), a
subset of vertice¥’CV, and a positive integec.

(a) determine whether there is a spanning re# G whose leaves are the same\és
(b) determine whether there is a spanning fesf G whose degree of vertices are all less than k.

4. (10 points) An optimized version of Knapsack problem is defined as follows. Given a finite set of eléments

where each element of the s&tU has its own size(u) > 0 and the valug(u) > 0, maximizeA(U’) = Y, w(u)
uey’

under the condition), s(u)<B andU’cU. This problem is NP-hard. Consider the following polynomial time
uelU’

approximation algorithm. Determine the worst case approximation Réti)y = max Opt(U)/Approx(U) and
prove it.

GREEDY:
Put all the elementseU into an arrayA[i]
SortA[i] by v(u)/s(u) in a decreasing orde
APPROXIMATIONA LGORITHM: S0
V<0

Ag = G.reedy() for i « 0to NumOfElements
A, « SingleElement() if (S + SU[i]) > B)
return maxAl, A2) break

S « S+ s(U[i])

V «— V+v(U[i])
return V

SINGLEELEMENT:
Put all the elementseU into an arrayA[i]
V0
fori « 0to NumOfElements
if (s(U[i]) < B& V < v(U[i])
V « v(u[i])
return V

5. (10 points) The recursion fairy’s distant cousin, the reduction genie, shows up one day with a magical gift for
you: a box that determines in constant time whether or not a graph is 3-colorable.(A graph is 3-colorable if you
can color each of the vertices red, green, or blue, so that every edge hasedentlicolors.) The magic box
does not tell you how to color the graph, just wheter or not it can be done. Devise and analyze an algorithm to
3-color any graph ipolynomial time using the magic box.

6. (10 points) The following is an NP-hard version of PARTITION problem.

PARTITION(NP+4RD):
Given a set of n positive intege®= {ajli =0... n— 1},

minimize may >, a, 2, a.)
aeT aeS-T

whereT is a subset 08.

A polynomial time approximation algorithm is given in what follows. Determine the worst case approximation
ratio rginApprox(S)/Opt(S) and prove it.



APPROXIMATIONALGORITHM:
Sort S in an increasing orde
sl 0
2«0
fori < Oton
if s1<s2
sl sl+aq

=

else
2 — 2+ g
result « max(sl, s2)

Practice Problems

1. Construct a linear time algorithm for 2 SAT problem.

2. Assume thaP # NP. Prove that there is no polynomial time approximation algorithm for an optimized version
of Knapsack problem, which outputgl) s.t. |Opt(l) — A(l)| < K for any instance, whereK is a constant.

3. Your friend Toidi is planning to hold a party for the coming Christmas. He wants to take a picture of all the
participants including himself, but he is quiley and thus cannot take a picture of a person whom he does not
know very well. Since he has ongny friends, every participant coming to the party is athy. After a long
struggle of thought he came up with a seemingly good idea:

¢ At the beginning, he has a camera.

e A person, holding a camera, is able to take a picture of another participant whom the person knows very
well, and pass a camera to that participant.

¢ Since he does not want to waste films, everyone has to be taken a picture exactly once.

Although there can be some people whom he does not know very well, he knows completely who knows whom
well. Therefore, in theory, given a list of all the participants, he can determine if it is possible to take all the
pictures using this idea. Since it takes only linear time to take all the pictures if he is brave enough (say “Say
cheese!” N times, where N is the number of people), as a student taking CS373, you are highly expected to give
him an advice:

¢ show him an #icient algorithm to determine if it is possible to take pictures of all the participants using
his idea, given a list of people coming to the party.

e or prove that his idea is essentially facing a NP-complete problem, make him give up his idea, and give
him an dficient algorithm to practice saying “Say cheese!”:
fori < OtoN
Make him say “Say cheese!" imes

e.g., 0ops, it takes exponential time...

4. Show, given a set of numbers, that you can decide wheter it has a subset of size 3 that adds to zero in polynomial
time.



5. Given a CNF-normalized form that has at most one negative literal in each clause, constffictert algo-
rithm to solve the satisfiability problem for these clauses. For instance,

(AVBVC)A(BVA),
(AVBVC)A(BVAVD)A(AVD),
(AVB)A(BVAVC)A(CVD)

satisfy the condition, while
(AVBVC)A(BVA),

(AVBVC)A(BVAVD)A(AVD),
(AVB)A(BVAVC)A(CVD)

do not.

6. The ExactCoverByThrees problem is defined as follows: given a finit¥ setd a collectiorC of 3-element
subsets ofX, doesC contain an exact cover fof, that is, a sub-collectio@” C C where every element of
occurs in exactly one member 6f? Given that ExactCoverByThrees is NP-complete, show that the similar
problem ExactCoverByFours is also NP-complete.

7. TheLongestSimpleCycle problem is the problem of finding a simple cycle of maximum length in a graph.
Convert this to a formal definition of a decision problem and show that it is NP-complete.



CS 373 Midterm 1 Questions (October 1, 2002) Fall 2002

’Write your answers in the separate answer booklet. ‘

1. Multiple Choice: Each question below has one of the following answers.
A: ©(1) B: ©(logn) C:O(n) D:O(nlogn) E:O(n?) X:Idon’t know.

For each question, write the letter that corresponds to your answer. You do not need to
justify your answers. Each correct answer earns you 1 point. Each X earns you % point.
Each incorrect answer costs you % point. Your total score will be rounded down to an

integer. Negative scores will be rounded up to zero.

(a) What is > Lo
=17

non
(b) What is > =7
i=1"?
How many bits do you need to write 10” in binary?

)
(d) What is the solution of the recurrence T'(n) = 97'(n/3) + n?
(e) What is the solution of the recurrence T'(n) = T'(n — 2) + 27
(f) What is the solution of the recurrence T'(n) = 5T ([ %52 | —Iglgn) +mn+ 9Vlog™n _ g7
(g) What is the worst-case running time of randomized quicksort?
(h) The expected time for inserting one item into a randomized treap is O(logn). What is

the worst-case time for a sequence of n insertions into an initially empty treap?

(i) Suppose STUPIDALGORITHM produces the correct answer to some problem with proba-
bility 1/n. How many times do we have to run STUPIDALGORITHM to get the correct
answer with high probability?

(j) Suppose you correctly identify three of the possible answers to this question as obviously
wrong. If you choose one of the three remaining answers at random, each with equal
probability, what is your expected score for this question?

2. Consider the following algorithm for finding the smallest element in an unsorted array:

RANDOMMIN(A[L .. n)):
MmN <— 00

for i + 1 to n in random order
if Ali] < min
min — Ali] (%)
return min

(a) [1 point] In the worst case, how many times does RANDOMMIN execute line (x)?

(b) [3 points] What is the probability that line (*) is executed during the nth iteration of
the for loop?

(c) [6 points] What is the exact expected number of executions of line (x)? (A correct O()
bound is worth 4 points.)



CS 373 Midterm 1 Questions (October 1, 2002) Fall 2002

3. Algorithms and data structures were developed millions of years ago by the Martians, but
not quite in the same way as the recent development here on Earth. Intelligent life evolved
independently on Mars’ two moons, Phobos and Deimos.! When the two races finally met
on the surface of Mars, after thousands of Phobos-orbits? of separate philosophical, cultural,
religious, and scientific development, their disagreements over the proper structure of binary
search trees led to a bloody (or more accurately, ichorous) war, ultimately leading to the
destruction of all Martian life.

A Phobian binary search tree is a full binary tree that stores a set X of search keys. The
root of the tree stores the smallest element in X. If X has more than one element, then the
left subtree stores all the elements less than some pivot value p, and the right subtree stores
everything else. Both subtrees are nonempty Phobian binary search trees. The actual pivot
value p is never stored in the tree.

A Phobian binary search tree for the set {M, A, R,T,I,N,B,Y,S,C,H, E}.

(a) [2 points] Describe and analyze an algorithm FIND(z,7T') that returns TRUE if z is
stored in the Phobian binary search tree 7', and FALSE otherwise.

(b) [2 points] Show how to perform a rotation in a Phobian binary search tree in O(1)
time.

(c) [6 points] A Deimoid binary search tree is almost exactly the same as its Phobian
counterpart, except that the largest element is stored at the root, and both subtrees are
Deimoid binary search trees. Describe and analyze an algorithm to transform an n-node
Phobian binary search tree into a Deimoid binary search tree in O(n) time, using as
little additional space as possible.

4. Suppose we are given an array A[l..n] with the special property that A[l] > A[2] and
Aln — 1] < A[n]. We say that an element A[z] is a local minimum if it is less than or equal
to both its neighbors, or more formally, if A[z — 1] > A[z] and A[z] < Az +1]. For example,
there are five local minima in the following array:

[of7[7[2]1]3][7[5][4]7]3[8]4[8]6]9]

We can obviously find a local minimum in O(n) time by scanning through the array. Describe
and analyze an algorithm that finds a local minimum in O(logn) time. [Hint: With the given
boundary conditions, the array must have at least one local minimum. Why?]

1Greek for “fear” and “panic”, respectively. Doesn’t that make you feel better?
21000 Phobos orbits ~ 1 Earth year



CS 373 Midterm 1 Questions (October 1, 2002) Fall 2002

5. [Graduate students must answer this question.|

A common supersequence of two strings A and B is a string of minimum total length that
includes both the characters of A in order and the characters of B in order. Design and
analyze and algorithm to compute the length of the shortest common supersequence of two
strings A[1..m| and B[l..n]. For example, if the input strings are ANTHROHOPOBIOLOGICAL
and PRETERDIPLOMATICALLY, your algorithm should output 31, since a shortest common
supersequence of those two strings is PREANTHEROHODPOBIOPLOMATGICALLY. You do not need
to compute an actual supersequence, just its length. For full credit, your algorithm must run
in ©(nm) time.




CS 373 Midterm 2 Questions (November 5, 2002) Fall 2002

Write your answers in the separate answer booklet.
This is a 90-minute exam. The clock started when you got the questions.

1. Professor Quasimodo has built a device that automatically rings the bells in the tower of the
Cathédrale de Notre Dame de Paris so he can finally visit his true love Esmerelda. Every
hour exactly on the hour (when the minute hand is pointing at the 12), the device rings at
least one of the n bells in the tower. Specifically, the ith bell is rung once every ¢ hours.

For example, suppose n = 4. If Quasimodo starts his device just after midnight, then his
device rings the bells according to the following twelve-hour schedule:
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What is the amortized number of bells rung per hour, as a function of n? For full credit, give
an exact closed-form solution; a correct ©() bound is worth 5 points.

2. Let G be a directed graph, where every edge u — v has a weight w(u — v). To compute the
shortest paths from a start vertex s to every other node in the graph, the generic single-source
shortest path algorithm calls INITSSSP once and then repeatedly calls RELAX until there are
no more tense edges.

INITSSSP(s):
dist(s) < 0 RELAX(u — v):
pred(s) < NULL if dist(v) > dist(u) + w(u — v)
for all vertices v # s dist(v) « dist(u) + w(u — v)
dist(v) « oo pred(v) «— u
pred(v) < NuLL

Suppose the input graph has no negative cycles. Let v be an arbitrary vertex in the input
graph. Prove that after every call to RELAX, if dist(v) # oo, then dist(v) is the total weight
of some path from s to v.

3. Suppose we want to maintain a dynamic set of values, subject to the following operations:

e INSERT(z): Add z to the set (if it isn’t already there).

e PRINT&DELETERANGE(a, b): Print and delete every element x in the range a < x < b.
For example, if the current set is {1, 5, 3,4, 8}, then PRINT& DELETERANGE(4, 6) prints
the numbers 4 and 5 and changes the set to {1, 3, 8}.

Describe and analyze a data structure that supports these operations, each with amortized
cost O(logn).



CS 373

Midterm 2 Questions (November 5, 2002) Fall 2002

4. (a)

()

[4 pts] Describe and analyze an algorithm to compute the size of the largest connected
component of black pixels in an n x n bitmap B[l..n,1..n].

For example, given the bitmap below as input, your algorithm should return the num-
ber 9, because the largest conected black component (marked with white dots on the
right) contains nine pixels.

| [ | (] | o || | (W] |
(] | [« [] {]o/ (] |
EOEEECCE [e/m] | | [wu(m] |
IDDDIDID.‘,DDDDIDID
NN [ [o] o [/MIN[ [N
EECOEC O [ [o[N[ [HO/mm[ M
([ W[ [
| [l [ IIDEPDDD

[4 pts] Design and analyze an algorithm BLACKEN(i, j) that colors the pixel B[i, j] black
and returns the size of the largest black component in the bitmap. For full credit, the
amortized running time of your algorithm (starting with an all-white bitmap) must be
as small as possible.

For example, at each step in the sequence below, we blacken the pixel marked with an X.
The largest black component is marked with white dots; the number underneath shows
the correct output of the BLACKEN algorithm.

QOCOMECE EODOEECOD EOCDCOEECE oOoCOmEcE aoocmEcm
oomocoOm ECaoooia mEoaoooon i i

(oM [ | [X(H] N [Wilefe]eloflo Ry [Milofejolofejofuuuelml [ | | [ | Wil [ ]| []]
[« [N/N(ON] N[ [N /O] o [N o [N O[] o [ON[ « [N o [NN/NNN] [N N o [N (W [W
gooliCOED EEECCOOOD EEECDOCOO0 opobormc] apotcrimo
OoCNCCED EECOECOCOQ0 EESECOCR0 o | o [NN(NN] NI o (o]« (MMM [N
N[N/ ] I O I I I/ o [N/ [N o [[O[ - [/ [
ERCOECOOO0 EEOED0O00 EEOED000 aadacdnind aasacoon

9 14 14 16 17

[2 pts] What is the worst-case running time of your BLACKEN algorithm?

5. [Graduate students must answer this question.|

After a grueling 373 midterm, you decide to take the bus home. Since you planned ahead, you
have a schedule that lists the times and locations of every stop of every bus in Champaign-
Urbana. Unfortunately, there isn’t a single bus that visits both your exam building and your
home; you must transfer between bus lines at least once.

Describe and analyze an algorithm to determine the sequence of bus rides that will get you
home as early as possible, assuming there are b different bus lines, and each bus stops n
times per day. Your goal is to minimize your arrival time, not the time you actually spend
travelling. Assume that the buses run exactly on schedule, that you have an accurate watch,
and that you are too tired to walk between bus stops.



CS 373 Final Exam Questions (December 16, 2002) Fall 2002

Write your answers in the separate answer booklet.
This is a 180-minute exam. The clock started when you got the questions.

1. The d-dimensional hypercube is the graph defined as follows. There are 2¢ vertices, each
labeled with a different string of d bits. Two vertices are joined by an edge if their labels

differ in exactly one bit.
|'
@ @
‘ (010)—|—fou)
© (0——19) o

The 1-dimensional, 2-dimensional, and 3-dimensional hypercubes.

(a) [8 pts] Recall that a Hamiltonian cycle passes through every vertex in a graph exactly
once. Prove that for all d > 2, the d-dimensional hypercube has a Hamiltonian cycle.

(b) [2 pts] Which hypercubes have an Eulerian circuit (a closed walk that visits every edge
exactly once)? [Hint: This is very easy.|

2. A looped tree is a weighted, directed graph built from a binary tree by adding an edge from
every leaf back to the root. Every edge has a non-negative weight. The number of nodes in

the graph is n.

e

100 373

(a) How long would it take Dijkstra’s algorithm to compute the shortest path between two
vertices u and v in a looped tree?

(b) Describe and analyze a faster algorithm.

3. Prove that (z + y)? = 2P 4+ P (mod p) for any prime number p.



CS 373 Final Exam Questions (December 16, 2002) Fall 2002

4. A palindrome is a string that reads the same forwards and backwards, like X, 373, noon,
redivider, or amanaplanacatahamayakayamahatacanalpanama. Any string can be written as a
sequence of palindromes. For example, the string bubbaseesabanana (‘Bubba sees a banana.’)
can be decomposed in several ways; for example:

bub + baseesab + anana
b+ u+ bb+ a+ sees + aba 4+ nan + a
b+ u-+ bb+ a-+ sees+ a+ b+ anana
b+u+b+b+a+s+et+e+s+a+b+a+n+a+n+a

Describe an efficient algorithm to find the minimum number of palindromes that make up
a given input string. For example, given the input string bubbaseesabanana, your algorithm
would return the number 3.

5. Your boss wants you to find a perfect hash function for mapping a known set of n items into
a table of size m. A hash function is perfect if there are no collisions; each of the n items is
mapped to a different slot in the hash table. Of course, this requires that m > n.

After cursing your 373 instructor for not teaching you about perfect hashing, you decide to
try something simple: repeatedly pick random hash functions until you find one that happens
to be perfect. A random hash function h satisfies two properties:

e Pr[h(z)

e Pr [h(z) = Z] = % for any item x and any integer 1 < i < m.

h(y)] = L for any pair of items = # y.

(a) [2 pts] Suppose you pick a random hash function h. What is the ezact expected number
of collisions, as a function of n (the number of items) and m (the size of the table)? Don’t
worry about how to resolve collisions; just count them.

(b) [2 pts] What is the ezact probability that a random hash function is perfect?

(c) [2 pts] What is the ezact expected number of different random hash functions you have
to test before you find a perfect hash function?

(d) [2 pts] What is the ezact probability that none of the first N random hash functions
you try is perfect?

(e) [2 pts] How many random hash functions do you have to test to find a perfect hash
function with high probability?

To get full credit for parts (a)—(d), give exact closed-form solutions; correct ©(-) bounds are
worth significant partial credit. Part (e) requires only a O(-) bound; an exact answer is worth
extra credit.



CS 373 Final Exam Questions (December 16, 2002) Fall 2002

6. Your friend Toidi is planning to hold a Christmas party. He wants to take a picture of all the

participants, including himself, but he is quite shy and thus cannot take a picture of a person
whom he does not know very well. Since he has only shy friends!, everyone at the party is
also shy. After thinking hard for a long time, he came up with a seemingly good idea:

e Toidi brings a disposable camera to the party.

e Anyone holding the camera can take a picture of someone they know very well, and then
pass the camera to that person.

e In order not to waste any film, every person must have their picture taken exactly once.

Although there can be some people Toidi does not know very well, he knows completely who
knows whom well. Thus, in principle, given a list of all the participants, he can determine
whether it is possible to take all the pictures using this idea. But how quickly?

Either describe an efficient algorithm to solve Toidi’s problem, or show that the problem is
NP-complete.

. The recursion fairy’s cousin, the reduction genie, shows up one day with a magical gift for
you: a box that can solve the NP-complete PARTITION problem in constant time! Given a
set of positive integers as input, the magic box can tell you in constant time it can be split
into two subsets whose total weights are equal.

For example, given the set {1,4,5,7,9} as input, the magic box cheerily yells “YES!”, because
that set can be split into {1,5,7} and {4,9}, which both add up to 13. Given the set
{1,4,5,7,8}, however, the magic box mutters a sad “Sorry, no.”

The magic box does not tell you how to partition the set, only whether or not it can be done.
Describe an algorithm to actually split a set of numbers into two subsets whose sums are
equal, in polynomial time, using this magic box.?

'Except you, of course. Unfortunately, you can’t go to the party because you’re taking a final exam. Sorry!
2Your solution to problem 4 in homework 1 does not solve this problem in polynomial time.
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