
Artificial Intelligence in Design '96

Artificial Intelligence
in Design '96

Edited by

John S. Gero

and

Fay Sudweeks
Department of Architectural and Design Science,
University of Sydney,
Australia

KLUWER ACADEMIC PUBLISHERS
DORDRECHT I BOSTON I LONDON

A C.I.P. Catalogue record for this book is available from the Library of Congress

ISBN-13: 978-94-010-6610-5 e-ISBN-13: 978-94-009-0279-4
DOl: 10.1007/ 978-94-009-0279-4

Published by Kluwer Academic Publishers,
P.O. Box 17,3300 AA Dordrecht, The Netherlands.

Kluwer Academic Publishers incorporates
the publishing programmes of
D. Reidel, Martinus Nijhoff, Dr W. Junk and MTP Press.

Sold and distributed in the U.S.A. and Canada
by Kluwer Academic Publishers,
101 Philip Drive, Norwell, MA 02061, U.S.A.

In all other countries, sold and distributed
by Kluwer Academic Publishers Group,
P.O. Box 322, 3300 AH Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved
© 1996 Kluwer Academic Publishers
Softcover reprint of the hardcover 1 st edition 1996
No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage and
retrieval system, without written permission from the copyright owner.

contents

Preface

Part 1 Representations in Design
Multi-level molecular representation
Patrick Olivier, Keiichi Nakata, Malcolm Landon
Text analysis for constructing design representations
Andy Dong, Alice M. Agogino
Learning genetic representations as alternative to hand-coded shape
grammars
Thorsten Schnier, John Gero

ix

1
3

21

39

Part 2 Design Objects 59
Reactive design agents in solid modelling 61
Bruno Feijo, Nick Lehtola, Joao Bento, Sergio Scheer
A framework for design object evolution 77
Nigel R. Ball, Tim N. S. Murdoch, Ken M. Wallace
Creating design objects from cases for interactive spatial composition 97
Ian Smith, Ruth Stalker, Claudio Lottaz

Part 3: Genetic Algorithms/Genetic Programming in Design 117
Integrating a genetic algorithm into a knowledge-based system
for ordering complex design processes 119
James L. Rogers, Collin M. McCulley, Christina L. Bloebaum
AI in control system design using a new paradigm for design
representation
Sourav Kundu, Seiichi Kawata
Automated design of both the topology and sizing of analog
electrical circuits using genetic programming
John Koza, Forrest H. Bennett lll, David Andre, Martin A. Keane

Part 4: Case-Based Design
A study of case adaptation systems
Angi Voss, Brigitte Bartsch-Sporl, Rivka Oxman
Applying formal methods to case based design aids
Mario de Grassi, Alberto Giretti, Luca Spalazzi
Designing nutritional menus using case-based and rule-based
reasoning
Cynthia Marling, Leon Sterling

135

151

171
173

191

211

VI

Part 5: Reuse of Designs 229
On design formalization and retrieval of reuse candidates 231
Joachim Altmeyer, Bernd Schiirmann
Design rationale and design patterns in reusable software design 251
Feniosky Peiia-Mora, Sanjeev Vadhavkar
Constraint-based retrieval of engineering design cases 269
Taner Bilgic, Mark S. Fox

Part 6: Grammars in Design 289
A networks approach for representation and evolution of shape
grammars
Sourav Kundu, Michael Hellgardt
Variable-complexity evolution of shape grammars for
engineering design
Peter J. Gage
Grammars for machine design
Linda C. Schmidt, Jonathan Cagan

291

311

325

Part 7: Design Spaces 345
Design sheet: A system for exploring design space 347
Sudhakar Y. Reddy and Kenneth W. Fertig
Using modeling knowledge to guide design space search 367
Andrew Gelsey, Mark Schwabacher, Don Smith
Explanatory interface in interactive design environments 387
Ashok Goel, Andres Gomez de Silva Garza, Nathalie Grne,
J. William Murdock, Margaret Recker, T. Govindaraj

Part 8: Learning in Design 407
Learning by single function agents during spring design 409
Dan L. Grecu, David C. Brown
A machine learning approach to design automated classification,
association and retrieval 429
Anil Varma, William H. Wood Ill, Alice Agogino
Learning to choose a reformulation for numerical optimization of
engineering design 447
Mark Schwabacher, Thomas Ellman, Haym Hirsh, Gerard Richter

Part 9: Distributed Design 463
Virtual building site: Supporting building design by multiple
methods in FABEL 465
Carl-Helmut Coulon, Wolfgang Griither, Barbara Schmidt-Belz. Angi
Voj3, Friedrich Gebhardt, Eckehard Groj3 and jorg Walter Schaaf
A mobile-agent oriented approach to a distributed design support
system 485
Haruyuki Fujii, Shoichi Nakai, Hiroshi Katukura, Keiichi Hirose
VisionManager: A computer environment for design evolution
capture 505
Renate Fruchter, Kurt Reiner, Larry Leifer, George Toye

Part 10: Rules, Models and Theories in Design
Elicitation of rules for graphic design evaluation
George Glaze, Jeff Johnson, Nigel Cross
A model-based tool for finding faults in hardware designs
Markus Stumptner, Franz Wotawa
On knowledge level theories of design process
Tim Smithers

vii

525
527

541

561

Part 11: Conceptual Design 581
A representation scheme to support conceptual design of
mechatronic systems 583
Martin K. Stacey, Helen C. Sharp, Marian Petre, George Rzevski,
Rodney A. Buckland
Generating conceptual solutions on FuncSION: Evolution of a
functional synthesiser 603
Amaresh Chakrabarti, Ming Xi Tang
Adopting a minimum commitment principle for computer aided
geometric design systems 623
Xiaohong Guan, Ken J. MacCallum

Part 12: Spatial and Layout Planning in Design 641
The generation of form using an evolutionary approach 643
Michael A. Rosenman
Evolutionary layout design 663
Walter Hower, Manfred Rosendahl, Derrick Kostner
DOM-ARCADE: Assistance services for construction, evaluation,
and adaptation of design layouts 681
Shirin Bakhtari, Brigitte Bartsch-Sporl, Wolfgang Oertel

Part 13: Creativity and Innovation in Design 701
Emergent behaviour in co-evolutionary design 703
Josiah Poon, Mary Lou Maher
Innovative design based on sharable physical knowledge 723
Valeri V. Sushkov, Lammert K. Alberts, Nicholaas J. I Mars
Assisting creativity by composite representation 743
Ewa Grabska, Adam Borkowski
Skeleton-based techniques for the creative synthesis of structural
shapes 761
Derek M. Stat, George M. Turkiyyah

First author electronic addresses
Author index

781
782

preface

Change is one of the most significant parameters in our society. Designers are
amongst the primary change agents for any society. As a consequence design is an
important research topic in engineering and architecture and related disciplines,
since design is not only a means of change but is also one of the keystones to
economic competitiveness and the fundamental precursor to manufacturing. The
development of computational models founded on the artificial intelligence
paradigm has provided an impetus for much of current design research - both
computational and cognitive.

These forms of design research have only been carried out in the last decade or
so and in the temporal sense they are still immature. Notwithstanding this
immaturity, noticeable advances have been made both in extending our
understanding of design and in developing tools based on that understanding. Whilst
many researchers in the field of artificial intelligence in design utilise ideas about
how humans design as one source of concepts there is normally no attempt to
model human designers. Rather the results of the research presented in this volume
demonstrate approaches to increasing our understanding of design as a process.
The goal in most of this research is to make the computer more useful in design
since it is clear when looking at designs produced by unaided humans that they
often fail to perform satisfactorily. The expectation is that computer-aided human
designers will produce better designs. The research methods employed are closely
linked to the scientific method but that does not imply that the activity of designing
is scientific.

The papers in this volume are from the Fourth International Conference on
Artificial Intelligence in Design held in June 1996 in Stanford, California. They
represent the state-of-the-art and the cutting edge of research and development in
this field. They are of particular interest to researchers, developers and users of
computer systems in design. This volume demonstrates both the breadth and depth
of artificial intelligence in design and points the way forward for our understanding
of design as a process and for the development of computer-based tools to aid
designers. The papers describe advances in both theory and application.

The forty papers are grouped under the following headings:

ix

x

Case-Based Design
Conceptual Design
Creativity and Innovation in Design
Design Objects
Design Spaces
Distributed Design
Genetic Algorithms/Genetic Programming in Design
Grammars in Design
Learning in Design
Representations in Design
Reuse of Designs
Rules, Models and Theories in Design
Spatial and Layout Planning in Design

All papers were extensively reviewed by three referees drawn from a large
international panel. Thanks go to them, for the quality of these papers depends on
their efforts. They are listed below. After the papers were reviewed, a small panel
considered the reviews prior to making a final recommendation.

International Panel of Referees

Alice Agogino, University of California-Berkeley,
USA

Orner Akin, Carnegie Mellon University, USA
Mert Alberts, University of Twente, The Netherlands
Tomasz Arciszewski, George Mason University,

USA
Nigel Ball, University of Cambridge, UK
Peter Bemus, Griffith University, Australia
Dave Brown, Worcester Polytechnic Institute, USA
Mark Clayton, Texas A&M University, USA
Dave Corne, University of Reading, UK
Per Christiansson, Lund University, Sweden
Mark Cutkosky, Stanford University, USA
Jose Damski, University of Sydney, Austra1ia
Eric Domeshek, Northwestern University, USA
Alex Duffy, University of Strathclyde, UK
Chuck Eastman, University of California-Los

Angeles, USA
Stephen Ervin, Harvard University, USA
Boi Faltings, Swiss Federal Institute of Technology,

Switzerland
Susan Finger, Carnegie Mellon University, USA
John Gero, University of Sydney, Austra1ia

John S. Gero
University of Sydney

March 1996

Ashok Goel, Georgia Institute of Technology, USA
Don Grierson, University of Waterloo, Canada
Mark Gross, University of Colorado, USA
Torn Gruber, Stanford University, USA
David Gunaratnam, University of Sydney, Australia
Tony Holden, University of Carnbridge, UK
Mike Huhns, MCC, USA
Marwan Jahri, University of Sydney, Australia
Leo Joskowicz, Hebrew University of Jerusalem,

Israel
Vladimir Kazakov, University of Sydney, Australia
John Lansdown, Middlesex University, UK
Yu-Tung Liu, National Chiao Tung University,

China
Brian Logan, University of Birmingham, UK
Sushil Louis, University of Nevada, USA
Ken MacCallum, University of Strathclyde, UK
Bonnie MacKellar, Western Connecticut State

University, USA
Mary Lou Maher, University of Sydney, Australia
Andras Markus, Academy of Sciences, Hungary
Hari Narayanan, Georgia Institute of Technology,

USA

Navin Navin-chandra, Carnegie Mellon University,
USA

Rivka Oxman, Technion Israel Institute of Technol-
ogy, Israel

Yoram Reich, Tel Aviv University, Israel
Michael Rosenman, University of Sydney, Australia
Thorsten Schnier, University of Sydney, Australia
Ian Smith, Swiss Federal Institute of Technology,

Switzerland
Doris Smith Shaw, Construction Engineering

Research Lab, USA

Tim Smithers, Universidad del Pais Vasco, Spain
Ram Sriram, NIST, USA
Louis Steinberg, Rutgers University, USA
Hideaki Takeda, Nara Institute of Science and

Technology, Japan
Phil Tomlinson, University of Sydney, Australia
Iris Tommelein, University of Michigan, USA
Jan Treur, Vrije Universiteit Amsterdam, The

Netherlands
Ken Wallace, Cambridge University, UK
Xiu-Tian Yan, University of Strathclyde, UK

xi

1
representation in design

Multi-level molecular representation
Patrick Olivier, Keiichi Nakata, Malcolm Landon

Text analysis for constructing design representations
Andy Dong, Alice M. Agogino

Learning genetic representations as alternative to hand-coded shape
grammars

Thorsten Schnier, John Gem

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 3-20.
© 1996 Kluwer Academic Publishers.

MULTI-LEVEL MOLECULAR REPRESENTATION

Kinematic synthesis using an object-centred spatial decomposition

PATRICK OLIVIER, KEIICHI NAKATA AND MALCOLM LANDON

Centre for Intelligent Systems
University of Wales
Aberystwyth Dyfed SY23 3DB
United Kingdom

Abstract. In the initial molecular representation proposal for kinematic reasoning (Gupta
and Jakiela, 1994), object contours were represented using a list of touching circles each
of equal diameter. Gupta and lakiela characterise procedures by which: (1) kinematic
analysis can be performed by advancing the driving contour through a small displace­
ment and moving the driven object in such a manner as to minimise divergence in the
spatial relationship between the two contours; and (2) kinematic synthesis can be effected
by deforming a blank component with respect to the known half of a kinematic pair, We
have further developed this approach and employed a multi-level molecular representa­
tion, and have considerably improved both the synthesis and analysis procedures, In this
we paper we describe our kinematic synthesis and analysis algorithms, and give an ac­
count of how the multi-level representation can be maintained with minimum effort dur­
ing the synthesis process.

1. Approaches to Kinematic Analysis and Synthesis

Kinematic pairs are pairs of objects whose motion is dependent on each other
by virtue of their position, shape and the contact that results from their relative
motion. Lower pairs maintain a constant contact over the whole mating surface,
for example, bearings and prismatic joints are typical lower pairs. Higher pairs,
however, are characterized by the absence of full contact over their mating sur­
faces. That is, the points of contact between components of a higher pair change
in the course of their relative motion, as is the case in meshing gears and cam­
follower mechanisms.

Established approaches in engineering include special case analytical tech­
niques, which are highly tuned for the class of higher pair to be either analyzed
or synthesized; and graphical techniques based on the the interference constraint,
that is, that neither component of the pair can occupy the same space. The latter
constraint is the motivation for our approach, as it also is for all approaches ori-

4 PATRICK OLIVIER ET AL.

ginating in computer graphics l . Kinematic reasoning in artificial intelligence has
been primarily motivated by two subfields: robot-motion planning and qualitative
reasoning. In classical robot motion planning chains of lower kinematic pairs (or
one or more mobile robots and a fixed environment (Erdmann and Lozano-Perez,
1986» are analyzed with the aim of computing obstacle-free paths in the robot
workspace. Whereas in qualitative reasoning the aim is to obtain a high-level de­
scription of mechanism behavior (eg. (Faltings, 1990; Faltings, 1992; Forbus et
aI., 1987; 10skowicz, 1988; 10skowicz and Sacks, 1991». Both problems are ad­
dressed using configuration space calculations (Lozano-Perez, 1983).

Most approaches to kinematic analysis that originate in computer graphics are
based upon checks for interpenetration between the object models (see (Hahn,
1988; Baraff, 1989) and for an example of a relevant application (Garcia-Alonso
et al., 1994». Objects themselves are typically represented by piece-wise con­
tinuous segments, and when interpenetration occurs rules for determining the res­
ulting motion are invoked. Most of these approaches simplify the interpenetra­
tion computation using the assumptions that vertex-to-vertex, vertex-to-edge and
edge-to-vertex penetrations occur with a very low probability, an assumption that
has been shown to be overly simplistic in the domain of real mechanisms (Krish­
nasamy and lakiela, 1993). Quadtree and octree representations have been used
before to speed up interpenetration determination for polygon models, but not, as
the actual representation with which the analysis and synthesis is performed.

2. Multi-level Molecular Approach: Interference Detection and Analysis

In the initial molecular approach (Gupta and lakiela, 1994), objects contours are
represented using points of notional diameters (which resemble a chain of mo­
lecules, hence the naming). Gupta and lakiela characterise procedures both by
which kinematic synthesis and analysis can be performed. In their analysis pro­
cedure the driving contour is advanced through some through a small virtual dis­
placement and the driven object is displaced in such a manner as to minimise di­
vergence in the spatial relationship between the two contours. We have developed
our own analysis and synthesis procedures based on a multi-level representation,
and show in the following sections the considerable benefits to be gained from
such an approach.

2.1. INTERFERENCE DETERMINATION

Contact is detected within a kinematic pair when one of the molecules of one ob­
ject contour overlaps (interferes) with one of the molecule of the other. That is,
molecules interfere when the distance between their centres is less than one dia-

1 However, in section 3 we diverge markedly from established techniques in outlining how this
very constraint can be utilized to use an multi-level molecular for component synthesis.

MULTI-LEVEL MOLECULAR REPRESENTATION 5

meter in length. The maximum number of checks to identify contact is the product
of the number of molecules comprising each object. Interference determination
will prove to be the crucial component of both kinematic analysis and synthesis,
and in this this section we discuss improvements on the worst case brute force
comparison.

2.2. INTERFERENCE: SINGLE-LEVEL MOLECULAR REPRESENTATION

Gupta and Jakiela (1994) describe a method of reducing the number of checks
needed to identify interfering molecules. On checking the distance between two
molecules (distance, in units of molecule diameters), if it is less than one diameter
then the molecules interfere. If the molecules do not interfere, then the argument
can be used that even if the second object's contour ran in a straight line directly
towards the molecule of the first object, it could not interfere with it for at least
(distance - 1) molecules.

This is shown in Figure 1. The two black molecules are checked for overlap
and clearly do not interfere. The second object's contour runs in a straight line to­
wards the molecule in the first object. Knowing that the objects are a continuous
chains of touching molecules we therefore know that the next (distance - 2) mo­
lecules of the second object can not interfere with the black molecule on the first
object. We can therefore skip along the second object contour by (distance - 1)
molecules, greatly reducing the number of interference checks required in gen­
eral.

First
Object

Distance I Diameter -1 th
Successive Molecule

Distance

Second
Object

Figure 1. Molecule skipping during interference checking.

6 PA1RICK OLIVIER ET AL.

2.3. MULTI-LEVEL REPRESENTATION

In the multi-level approach the contour of each object is represented at the base
level by a continuous chain of circles, not overlapping, but just touching. Fig­
ure 2(a) shows a small square represented in this manner using thirty six mo­
lecules. These base level molecules are then contained inside a level of larger
molecules. Each larger molecule has a diameter three times that of its immedi­
ate children. Its centre is the centre ofthe middle molecule contained within it.2

Figure 2(b) shows the square with the addition of larger molecules. This process
of creating larger molecules to contain three smaller ones is continued until the
whole object is contained within one or two molecules (Figures 2(c) and 2(d) il­
lustrate this).

(a) (b) (c) (d)

Figure 2. An example of multi-level molecular decomposition.

2.4. INTERFERENCE: MULTI-LEVEL MOLECULAR REPRESENTATION

Using a multi-level molecular representation leads to a great reduction in the num­
ber of molecules which have to be checked to establish interference between com­
ponents. In this approach the largest molecules of two objects are first checked
for overlap. Interference between these molecules does not mean that contact has
been detected, but that the smaller molecules contained within them should be
compared. Only the smaller molecules contained within the interfering larger mo­
lecules need to be checked. Smaller molecules contained within larger molecules
that do not interfere can not themselves interfere with each other.

Figure 3 illustrates this; only two of the initial six molecules in Figure 3(a)
interfere; consequently only the molecules contained within them are checked
against each other in Figure 3(b). This procedure is applied recursively (see Fig­
ure 3(c» until either interference at the base level has been established, or no in­
terference is detected.

2Tbe choice of the number of molecules to be contained in a larger molecule, in this case three,
is rather arbitrary. However, by choosing an odd number, we do not have to recompute the centre
of the larger circle, and three is the smallest reasonable odd number.

MULTI-LEVEL MOLECULAR REPRESENTATION 7

(a) (b) (c)

Figure 3. Exploiting molecular decomposition in interference determination.

To reduce the number of checks needed even further, the single- and multi­
level approaches can be combined. When checking the three smaller molecules
contained in a larger molecule against the three smaller molecules contained in an
interfering larger molecule, nine checks for interference are needed. But within
each of the three molecules, there is a linear ordering and Gupta and Jakiela's
skipping algorithm can be applied. At best the number of checks within the pair
of three molecules is reduced from nine to three (see Figure 4).

(a) (b)

Figure 4. Exploiting linear ordering in the multi-level interference checking. Figure (a) illustrates
the best case performance (3 checks) and Figure (b) worst case (9 checks).

Whilst precise comparison of performance is very much dependent on the
geometry of the interference problem at hand, Table 1 contrasts the number of
interference checks required using both the single-level and the multi-level mo­
lecular representations on the problem depicted in Figure 5, at varying granularit­
ies.

2.5. MOTION INFERENCE

In analysis the driving object is advanced in each simulation increment by an
angle that will displace the molecule farthest from the the centre of rotation (for

8 PATRICK OLIVIER ET AL.

Figure 5. Test case for comparison of the single- and multi-level molecular representations.

TABLE 1. Number of interference checks for the single- and
multi-level molecular representations.

I No. molecules per object I 324 972 2916 8748

I Single-level checks
Multi-level checks I 2349

414
7044 21132
507 688

63418
849

rotational degree of freedom objects) by no more than one molecule diameter.
Thus the granularity and component geometry of the model place a constraint on
the number of angular increments to perfonn a complete analysis. When interfer­
ence is detected at the base level in the molecular representation, the nature of the
resulting motion must be inferred.

Unlike the virtual motion mentioned in the previous section, we preprocess
each object and encode on each molecule the sense of the motion that contact
with it gives rise to. For example, for a molecular representation of a gear, the
motion resulting from contacting any molecule of the contour is independent of
the orientation or position of the gear in a mechanism, it is dependent on the re­
lationship between the nonnal at the point on the contour and its vector position
relative to the degree of freedom. We therefore precompile this qualitative mo­
tion (anti- or clockwise) into each molecule. In the case where multiple overlaps
occur at the base level and the driven object molecules have different qualitative
motions compiled into them, it can be inferred that the motion of the driver is
blocked.

MULTI-LEVEL MOLECULAR REPRESENTATION

3. Multi-level Approach: Synthesis

3.1. OVERVIEW

9

We propose a synthesis algorithm that differs in many respects from that proposed
by Gupta and Jakiela (1994). The class of synthesis problem addressed assumes
full knowledge of one component in the pair, the nature and location of the degree
of freedom of the component to be synthesised, and the input/output function for
the pair. The multi-level properties of the representation are once again exploited
in the interference detection problem, but in this approach we avoid the need to
compress and expand the contour of the component being synthesised and adopt
a simpler procedure. In our procedure the unknown contour (initially a feature­
less circle) and the known contour are overlaid in some relative position and ori­
entation satisfying the required input/output function. Molecules in the unknown
contour that overlap with the known object contour are deleted and replaced with
molecules that precisely trace the known contour between consecutive overlaps
(see Figure 6). This trace is the external contour of the known object and is pre­
compiled prior to synthesis.

(a)

(b)

(e) (d)

o known contour o unknown contour exterior or known contour

Figure 6. Molecular synthesis. In (a) the known contour is depicted with its associated exterior
contour; (b) shows the overlap of an unknown contour, of the component being synthesized and
the known contour; in (c) the overlapping molecules have been deleted; in (d) the new contour is
formed using the molecules in the exterior contour of the known component.

3.2. EXAMPLE OF SYNTHESIS PROCEDURE

Synthesis starts by placing the known shape and the unknown shape into their ini­
tial positions and cutting the unknown to the known shape as shown in Figure 8.

10 PATRICK OLIVIER ET AL.

Foreach angular displacement of known and unknown component

Locate intersections and overlaps
Create a blank list to contain 'cut' sections

For each pair of intersections on known contour

If corresponding unknown contour molecules
are on unknown contours list then

Remove section from between corresponding molecules

on the unknown contour.
Place the 'cut' section on the cut list
Generate new section, following the known contour
between the two intersections and put it into the

unknown contour to replace the 'cut'
Elseif corresponding unknown contour molecules

are on unknown contours list then

Remove section from between corresponding molecules

on the unknown contour in the cut list - the remaining
sections become two lists on the cut list
Generate new section, following the known contour

between the two intersections, making the section
just 'cut' a complete contour
Add the new contour to the unknown contour list

Endif
Endfor

For each overlapping section

Remove overlapping section of the unknown contour
Generate a new section, following the known contour
for the length or the overlap, and place it into tbe

unknown contour to replace section removed
Endfor

Endforeach

Figure 7. Synthesis algorithm.

Figure 8. Initial positions of unknown and known shapes.

MULTI-LEVEL MOLECULAR REPRESENTATION 11

Both shapes are then rotated, resulting in a number of intersections between
them. The intersections are labelled, first by following the known shape as shown
in Figure 9 and then by following the unknown contour as shown in Figure 10.
Table 2 shows how these labels correspond.

Figure 9. Intersections numbered by following known contour.

Figure 10. Intersections labelled by following unknown contour.

TABLE 2. Corresponding labels between
known and unknown contours.

I Known Shape I a
Unknown Shape f

b

e
c
d

d e
a b ! I

12 PATRICK OLNIER ET AL.

The intersections can be thought of as nodes and the contours between them
as arcs. The following explains the notation used to refer to the nodes and arcs in
this example.

/'i,a Known shape molecule at node A. It is the last interfering molecule when the
known contour moves from the outside to the inside of the unknown shape.
It is the first interfering molecule when the known contour moves from the
inside to the outside of the unknown shape.

/'i,a+1 ... /'i,b-l The molecules making the arc between molecules /'i,a and /'i,b.
Vc Unknown shape molecule at node C. It is the first interfering molecule when

the unknown contour moves from the outside to the inside of the known
shape. It is the last interfering molecule when the unknown contour moves
from the inside to the outside of the known shape.

Vc+1 ... Vd-l The molecules making the arc between molecules Vc and Vd.
v; The new node molecule after cutting the unknown contour. It is the outside

molecule related to /'i,i where i is the corresponding intersection on the known
contour.

v;+1,,,vh-l The molecules making the new arc between molecules v; and vh'

At the start of the example the contours are as in Table 3. It then follows the
algorithm outlined in Figure 7.

TABLE 3. Contours at the initial position.

I Known Contours:

I Unknown Contours:

I Cut Contours:

STEPl

"'0' "'0+1 .. ·"'b-1 , "'b, "'b+1"''''e-1, "'e, "'e+1"''''d-1 ,

"'d, "'d+1"''''e-1''''e) "'e+1"''''f-1,'''f, "'f+1"''''a-1

Va, Va+1 ... Vb-1, Vb, Vb+1 ... Vc-1, VOl Ve+1 .. ·Vd-1,

Vd, Vd+1",Ve-1, V., Ve+1",Vf-1, Vi> Vf+1",Va-1

I Empty.

Known contour nodes /'i,a and /'i,b match with unknown contour nodes VI and Ve.
Unknown contour nodes VI and Ve are on a contour in the unknown contour list.
Remove the nodes and the contour between them placing them on the cut list.
Generate new nodes vj and v; and anew arc v;+1 ... vj_l to follow arc /'i,a+1 .. /'i,b-l

and place them into the unknown contour.
Figure 11 shows this in detail. At the intersection between /'i,a and v I the

known contour moves from outside to inside the unknown shape. /'i,a is therefore
the last interfering molecule on the known contour. The unknown contour moves
from outside to inside the known shape. v I is therefore the first interfering mo­
lecule on the unknown contour. At the intersection between /'i,b and Ve the known

MULTI-LEVEL MOLECULAR REPRESENTATION 13

TABLE 4. Contours after Step 1.

I Unknown Contours: I Va, Va+l ••• Vb-l, Vb, Vb+l ••• Vc-l, Vc, Vc+l ... Vd-l,

Vd, Vd+l ... Ve-l, V;, V;+l ••• vi-ll vi, Vf+l ... Va-l

I Cut Contours:

contour moves from inside to outside the unknown shape. Kb is therefore the first
interfering molecule on the known contour. The unknown contour moves from in­
side to outside the known shape. Ve is therefore the last interfering molecule on
the unknown contour. The molecules vI and Ve together with all the molecules
between them are removed from the unknown contour and placed on the cut list.
vj is the outside molecule associated with Ka and v; is the outside molecule as­
sociated with Kb. These molecules, together with all the molecules on the outside
contour between them, replace the cut section in the unknown contour. Figure 12
shows the changes to the two contours during Step 1. The result is summarised in
Table 4.

U *f- l

lea

.......
............

: I

..... .

Figure 11. A close up of the intersections for Step 1.

U *e+l

"....... '-". '" U * e
,~

~I '
)- "

U e

14 PATRICK OLNIER ET AL.

Figure 12. After Step 1.

STEP 2
Known contour nodes /'i,c and /'i,d match with unknown contour nodes Vd and Va.

Unknown contour nodes Vd and Va are on an unknown contour. Remove the nodes
and the contour between them placing them on the cut list. Generate new nodes
v;j and v~ and a new arc v~+1 ... v;j_l to follow arc /'i,c+1 •• /'i,d-l and place them into
the unknown contour. Figure 13 shows this in detail. At the intersection between
/'i,c and Vd the known contour moves from outside to inside the unknown shape.
/'i,c is therefore the last interfering molecule on the known contour. The unknown
contour moves from outside to inside the known shape. Vd is therefore the first in­
terfering molecule on the unknown contour. At the intersection between /'i,d and Va

the known contour moves from inside to outside the unknown shape. /'i,d is there­
fore the first interfering molecule on the known contour. The unknown contour
moves from inside to outside the known shape. Va is therefore the last interfering
molecule on the unknown contour.

The molecules Vd and Va together with all the molecules between them are re­
moved from the unknown contour and placed on the cut list. v;j is the outside mo­
lecule associated with /'i,c and v~ is the outside molecule associated with /'i,d. These
molecules, together with all the molecules on the outside contour between them,
replace the cut section in the unknown contour. Figure 3.2 shows the changes to
the two contours during Step 2, and Table 5 summarises the result.

STEP 3
Known contour nodes /'i,e and /'i,f match with unknown contour nodes Vb and VC.

Unknown contour nodes Vb and Vc are not on an unknown contour; they are on
a cut contour. The contour between the nodes is removed from the cut contour,
leaving behind the two end molecules. What is removed is placed into the blank
contour list as a separate contour. New nodes vb and v~ are generated and a new

MULTI-LEVEL MOLECULAR REPRESENTATION

Ud / ,I;)
, -'r '

, U *d

U *d-l

....

.......
....

'.

.

Figure 13. A close up of the intersections for Step 2.

TABLE 5. Contours after Step 2.

Unknown Contours:

Cut Contours: v., Ve+l ... V!-l, vI>

U *a+l " * , 1 U a ' ', , ,
, .. \'"" ... ,
~

U a

Va, Va+l ... Vb-l, Vb, Vb+l ••• Vc-l, V c , Vc+l··.Vd-l, Vd

15

16 PATRICK OLIVIER ET AL.

arc v~+1",vb-l to follow arc Ke+1 .. Kf-l is added to them to complete the new
contour. Figure 14 shows this in detail. At the intersection between Ke and Vb the
known contour moves from outside to inside the unknown shape. Ke is therefore
the last interfering molecule on the known contour. The unknown contour moves
from outside to inside the known shape. Vb is therefore the first interfering mo­
lecule on the unknown contour.

At the intersection between K f and Vc the known contour moves from inside
to outside the unknown shape. K f is therefore the first interfering molecule on the
known contour. The unknown contour moves from inside to outside the known
shape. Vc is therefore the last interfering molecule on the unknown contour. The
molecules Vb and Vc are on a cut contour. The molecules between them are re­
stored as a separate contour. vb is the outside molecule associated with Ke and v~
is the outside molecule associated with K f. These molecules, together with all the
molecules on the outside contour between them, are added to the new contour.
There are now two separate contours making up the unknown shape. Figure 15
shows the changes to the two contours during Step 3, and the result is summar­
ised in Table 6.

, -' , , ... ~
, -')

i'"''# *
' ' U c

Figure 14. A close up of the intersections for Step 3.

,-
, ... 1 }

, '" '" , ... \" ' -, ,
t"'Kf

U *c+ l

MULTI-LEVEL MOLECULAR REPRESENTATION 17

Figure 15. After Step 3.

TABLE 6. Contours after Step 3.

I Unknown Contours:

Cut Contours: Ve, Ve+l",Vf-l, Vf,

Va, Va+l ... Vb-l, Vb,

V c , Vc+l ... Vd-l, Vd

4. Reconstructing the Multiple Levels During Synthesis

A crucial factor in the efficient performance of the synthesis procedure is that
interferences must be rapidly detected using the hierarchical procedure detailed
earlier. However, during synthesis, base level molecules of the unknown contour
are constantly being added to and replaced. This section shows how a data struc­
ture, based on a multi-linked B+ tree (i.e., B+ tree with bidirectional links), con­
taining the multiple levels of representation of an object can be maintained effi­
ciently in the course of the contour deletions and insertions during synthesis.

An example object contains twenty seven molecules, but molecules fourteen
to seventeen are to be removed and replaced with twelve new molecules. The ini­
tial state of the data structure is shown in Figure 16.

The four molecules being replaced are overwritten by the first four new mo­
lecules. Molecule 14 is overwritten by the first of the new molecules, 1', 15 by
2', 16 by 3' and 17 by 4'. The intermediate state of the data structure is shown in
Figure 17.

To speed up the process we wish to insert larger molecules containing three of
the smaller ones. A new larger molecule can not be placed inside another larger

18 PATRICK OLIVIER ET AL.

t'---------------~--------------~+
tmJ TIr tmJ

+ -.l~L + + -.lt L + t -.l~L t

ffiffiffiffiffiffiffiffiffi
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27

i i
CUT CUT

Figure 16. Initial data structure.

t'---------------~---------------.+
+ ~ + + ~ t • ~ +

~ffiffiffiffiffiffiffiffi
1 2 3 4 5 6 7 8 9 10 11 12 13 l' 2' 3' 4' 18 19 20 21 22 23 24 25 26 27

I I I I
Overwrite cut molecules

Figure 17. Removed molecules are overwritten.

molecule, so the insertion point must be moved to the start of a larger molecule.
This is done by creating a new larger molecule and placing in it old smaller mo­
lecules after the insertion point. In this example, a new larger molecule is created
and 18 is placed in it. The two larger molecules are then filled, the original with
the next smaller molecules to be inserted, 5' , and the new with the last molecules
to be inserted, 11' and 12'. This is shown in Figure 18. Now the remaining mo­
lecules are built into new larger molecules, in Figure 19.

r----CJ!P----,
~ ~ ~ Newlarermolecule

~~~~~~~~~~ 
1 2 3 4 5 6 7 8 9 10 11 12 13 l' 2' 3' 4' 5' 19 20 21 22 23 24 25 26 27 11'12'18 

t t t 
Next molecule to be inserted Last molecule to be inserted 

Figure 18. Ready to insert larger molecules. 



MULTI-LEVEL MOLECULAR REPRESENTATION 19 

t ~ • Build larger molecules 

~ ~ ~ * ~ 
MMMMMMMMMM~~ 
1 2 3 4 5 6 7 8 9 10 11 12 13 l' 2' 3' 4' S' 19 20 21 22 23 24 25 26 27 6' 7' 8' 9' 10' 11'12'18 

Figure 19. New larger molecules. 

The new larger molecules are then inserted into the list of larger molecules in 
the same way as the smaller molecules were inserted into them. 

There are no molecules to be removed, so none can be overwritten. The in­
sertion point is already at the start of a larger molecule, so the three molecules 
to be inserted are built into a new larger molecule to be inserted into the larger 
molecules, as shown in Figure 20. 

~-----~------~ 
Build a larger molecule 

~~~~ 
~~~~~~~~~~~~ 
123 4 S 6 7 8 9 101112131' 2' 3' 4' 5'1920212223242526276' 7' 8' 9'10' 11'12'18 

Figure 20. New larger molecule. 

No molecules can be overwritten, but the insertion point is not at the start of 
a larger molecule. A new larger molecule is created, and the molecule after the 
insertion point is placed in it. The molecule to be inserted is placed in the original 
larger molecule to fill it, but there are no further molecules to insert which can be 
used to fill the newly created larger molecule. The new molecule is inserted into 
the top level. As the top molecule does not have a parent a new level is created 
containing it and the molecule being inserted. Figure 21 shows the completed data 
structure. 

Molecule created at new level 

~ 
~--------------~I! .-----t ~ 

~~~~ 
~~~~~~~~~~~~ 

1 2 3 4 5 6 7 8 9 10 11 12 13 l' 2' 3' 4' S' 6' 7' 8' 9' 10' 11'12'18 19 20 21 22 23 24 25 26 27 

Figure 21. The completed data structure. 



20 PATRICK OLIVIER ET AL. 

s. Closing Comments 

Our current efforts are directed towards developing the representation for three­
dimensional problems. The original single-level molecular representation depended 
very heavily on the linear ordering of molecules to facilitate the skipping compon­
ent of the interference detection algorithm. In the multi-level case there is no such 
dependence. It is likely that points distributed on the nodes of a regular triangu­
lar mesh may be aggregated into spheres enclosing hexagonal collection of points 
as in the two-dimensional case. Synthesis in three-dimensions will need a further 
extension in the form of a data structure by which areas of such spheres may be 
added and deleted the hierarchical decomposition efficiently maintained. 

References 

Baraff, D.: 1989, Analytical methods for dynamic simulation of non-penetrating rigid bodies, Com­
puter Graphics, 23(3), 223-232. 

Erdmann, M. and Lozano-Perez, T.: 1986, On multiple moving objects, IEEE Robotics and Auto­
mation Conference, pp 1419-1424, 

Faltings, B.: 1990, Qualitative kinematics in mechanisms, Artificial Intelligence, 44, 89-120. 
Faltings, B.: 1992, A symbolic approach to qualitative kinematics, Artificial Intelligence, 56, 139-

170. 
Forbus, K. D., Neilsen, P. and Faltings, B.: 1987, Qualitative kinematics: A framework, Proceed­

ings Tenth International Joint Conference on Artificial Intelligence, Milan, Italy, pp. 430-436. 
Garcia-Alonso, A., Serrano, N. and Flaquer, J.: 1994, Solving the collision detection problem, 

IEEE Computer Graphics and Applications, 14(3),36-43. 
Gupta, R. and Jakiela, M.: 1994, Simulation and shape synthesis of kinematic pairs via small-scale 

interference detection. Research in Engineering Design, 6, 103-123. 
Hahn, J. K.: 1988, Realistic animation of rigid bodies, Computer Graphics, 22(4), 299-308. 
Joskowicz, L. and Sacks, E.: 1991, Computational kinematics, Artificial Intelligence, 51,381-416. 
Joskowicz, L.: 1988, Reasoning about Shape and Kinematic Function in Mechanical Devices, PhD 

Thesis, New York University. 
Krishnasamy, 1. and Jakiela, M.: 1993, Computer simulation of vibratory parts feeding and as­

sembly, Proceedings of the 2nd International Conference on Discrete Element Methods, Cam­
bridge, Massachusetts, pp. 403-411. 

Lozano-Perez, T.: 1983, Spatial planning: A configuration space approach, IEEE Transaction on 
Computers, C·32(2), 289-120. 



J. S. Gero and F. Sudweeks (eds), Anificial Intelligence in Design '96, 21-38. 
© 1996 Kluwer Academic Publishers. 

TEXT ANALYSIS FOR CONSTRUCTING DESIGN 
REPRESENTATIONS 

ANDY DONG AND ALICE M AGOGINO 
University of California at Berkeley 
Department of Mechanical Engineering 
5136 Etcheverry Hall 
Berkeley CA 94720-1740 USA 

Abstract. An emerging model in concurrent product design and manufacturing is the 
federation of workgroups across traditional functional "silos." Along with the benefits of 
this concurrency comes the complexity of sharing and accessing design information. The 
primary challenge in sharing design information across functional workgroups lies in 
reducing the complex expressions of associations between design elements. 
Collaborative design systems have addressed this problem from the perspective of 
formalizing a shared ontology or product model. We share the perspective that the design 
model and ontology are an expression of the "meaning" of the design and provide a 
means by which information sharing in design may be achieved. However, in many 
design cases, formalizing an ontology before the design begins, establishing the 
knowledge sharing agreements or mapping out the design hierarchy is potentially more 
expensive than the design itself. This paper introduces a technique for inducing a 
representation of the design based upon the syntactic patterns contained in the corpus of 
design documents. The association between the design and the representation for the 
design is captured by basing the representation on terminological patterns in the design 
text. In the first stage, we create a "dictionary" of noun-phrases found in the text corpus 
based upon a measurement of the content carrying power of the phrase. In the second 
stage, we cluster the words to discover inter-term dependencies and build a Bayesian 
belief network which describes a conceptual hierarchy specific to the domain of the 
design. We integrate the design document learning system with an agent-based 
collaborative design system for fetching design information based on the "smart 
drawings" paradigm. 

1. Motivation 

The design of complex mechanical systems requires an intimate 
understanding of the interactions among the different disciplines and 
subsystems so that cross-disciplinary tradeoffs can be made. Any change 
that might have been precipitated explicitly by modifying a requirement or 
implicitly by observing a failed simulation will propagate a chain of 
interaction between designers, manufacturing engineers, process planning 



22 ANDY DONG AND ALICE M. AGOGINO 

engineers, and sales and marketing professionals. Knowing the role of 
individual functional and physical design elements and their association to 
other elements in the overall design helps the product design team 
"understand" the design from the perspective of other members. 

In reality, to "know" the interaction between design elements, designers 
expend a considerable amount of effort in accessing and absorbing design 
information. One can characterize this scenario roughly as a three-step 
process. First, the designer looks for possible related elements such as inter­
dependent design functions or physical components. Next, the designer 
analyzes and interprets the relations between them, relations that might be 
explicitly stated in mathematical equations, rules, or implied by design 
standards and "best-practices." Finally, the designer decides which of the 
associations is plausible in some sense. If there is no reason to reject or defer, 
then the association is accepted (Baya et aI., 1993). Unfortunately, few CAD 
applications have begun to address the problem of reducing the time 
designers spend understanding the design, including absorbing design 
information, keeping up with design changes and reconciling problems or 
sharing information (Toye et aI., 1993). According to Akman (1994), only 
systems which embed advanced reasoning capabilities will be able to deal 
with the complexity arising from the management of large quantities of 
design data. 

Since this assessment is typically achieved by reading natural language 
texts such as memos and design specifications associated with the design 
model (Ullman, 1988), we would like to build a program to automate this 
process. This research introduces an automated technique to acquire a 
representation of the design based upon contextual clues in the design 
documents. By allowing the current context of the design to influence the 
representation, we eliminate the a priori determination of a structured 
hierarchy or design language and permit dynamic updating of the design 
vocabulary. 

The research was motivated by a desire to take advantage of existing 
design information to assist in collaborative design. Current CAD tools 
adequately capture the final design details such as specifications and analysis 
results. Still, we need to develop tools that learn the interconnections between 
well-documented design elements so that federated workgroups can have 
access to relevant information without necessarily having to be an expert in 
each area of the design. The underlying aim of the research then is to 
discover the terminological patterns in design text as a basis for constructing 
a meaningful engineering model of the design. 



TEXT ANALYSIS FOR CONSTRUCTING DESIGN REPRESENTATIONS 23 

2. Prior Research 

The kernel of design information systems is the ontology which describes 
the product model. The ontology is a repository of information and 
provides a means by which concurrency in design may be achieved. The 
evolving STEP standard (ISO CD 10303-1) highlights the thrust towards 
product modeling and a common ontology in product models. Product 
modeling-based systems have been quite successful at setting up complex 
rules which describe in detail the possible underlying structures of a design 
(Wong and Sriram, 1993; Szykman and Cagan, 1992); at the same time 
ontology-based systems are trying to define semantic relations and to model 
the functional and behavioral structures underlying the synthesis of a design 
for representing stereotypical information (Olsen et aI., 1995; Shah, 1993). 
A similar design-document learning system to the one proposed here is 
being pursued by Reich (1993) except that the relationships between words 
are not learned but rather negotiated by the designers. How the words fit 
together into a structure communicated an idea. 

We agree that an ontology provides a means for sharing information. 
However, the approach presented in this research differs from that taken by 
other researchers in the design community who developed specialized 
grammars and shared ontologies (Gruber, 1992) or product-models in that it 
derives from the design documents. Information models should capture and 
represent product information to give the reader an "understanding" of the 
design the model represents. But they must also be dynamic to reflect the 
evolutionary nature of design. Even though one could argue that the 
addition of new ontology and negotiated agreements makes the ontology­
based or product modeling-based systems dynamic with the design, since the 
"meaning" of design elements changes with an evolving design, modifying 
the model or adding new ontology to reflect the changes in real-time might 
be difficult. In fact, the evolutionary and uncertain nature of design require 
representations that operate on meaning, not expression (Wood and 
Agogino, 1995). 

Part of the problem of these systems is that they assume that the 
"meaning" of a design could be computed as a function of the constituents. 
To "understand" a design, designers must take advantage of a variety of 
mechanisms that use all sorts of knowledge to fill in any necessary 
information. In making a computer model of design knowledge, this 
presents a serious problem. On the one hand, it is impossible to isolate all 
aspects of domain-dependent knowledge from the others. On the other hand, 
it is clearly undesirable to give the program all the knowledge related to the 
design. In this research, the dilemma is resolved by inferring plausible 
conclusions by relating the various elements of the design using the design 



24 ANDY DONG AND ALICE M. AGOGINO 

documents themselves as a complete and accurate representation of the 
current state of the design. 

We propose the architecture of an intelligent agent in a collaborative 
design environment which dynamically learns the current status of the 
design. One application of the agent is the retrieval of relevant information 
to the current needs of the designer. The system achieves the learning and 
understanding of the design using the design documents as the "model of 
the world." We present a theory of design discourse as a theoretical premise 
for generating a model of the design based on the design documents, and 
illustrate how to integrate learning the design within a collaborative design 
framework for bringing relevant design information to the decision-maker 
based on the "smart drawings" system presented in a prior paper (Dong et 
al., 1995). 

3. Methodology 

3.1. GENERAL THEORY 

In discourse, people take advantage of a variety of mechanisms that depend 
upon the existence of an intelligent hearer who will use all sorts of 
knowledge to fill in any necessary information (Wilensky, 1983). To make 
an intelligent agent understand the design as communicated by the designers 
through design documents, then, we must construct a framework within 
which the agent has a sufficient search space to formulate an adequate 
understanding of the design (Dong et aI., 1995). In order for the agent to fill 
in necessary information regarding the design, though, it must learn the 
connections between the functions or components of the design. Currently, 
the solution strategy is to have experts construct both the ontology and 
describe the decomposition of the design to the agent. However, we argue 
that this information is in fact available and contained in the design 
documents themselves. Research in full-text retrieval systems (Lewis, Croft 
and Bhandaru, 1989) verify how certain syntactic patterns in documents 
refer to meaningful concepts, and how language-oriented techniques for 
information retrieval can build the relationships between categories, category 
instances and relations of those concepts. These categories define a model of 
the design. By reading the design documents periodically, the agent excerpts 
the current connections between the different design elements. 

In building this agent, we assume to a first-approximation that the 
linguistic content (words) of the design documents provide a useful index to 
the composition and structure of key design concepts at the current state of 
the design. Second, it is assumed that every statistical association derives 
from causal interaction; therefore logical coherence is based on statistical 



TEXT ANALYSIS FOR CONSTRUCTING DESIGN REPRESENTATIONS 25 

coherence. Based upon these assumptions, we propose the following theory 
of design discourse as the theoretical foundation for the learning algorithm: 

A theory of design discourse-The content of design 
documents is related to a conceptual structure of the design, 
whose communication comprises the goal of the designer. 

The claim is the agent can induce a model of the design, including the 
functions and components of the design and their relations by learning over 
the design text associated with the product. Eastman (1991) identifies several 
criteria for describing engineering product models: (l) the semantics, which 
describe the functions, components and attributes of the design; and (2) class 
structures, which describe both the generalizations (properties relevant to any 
design element), and the decomposition (how functions and components are 
inter-related) of the design. 

While the product model derived by this method is not the same as that 
proposed by Eastman, these criteria serve as a guideline for learning the 
design. In essence, the sequence of operations in the program are (as shown 
in Figure 1) to: (1) extract the natural language text annotations to CAD 
drawings to excerpt the semantics of the design; (2) generate the class 
structures describing which properties are relevant to any function of a 
design using clustering; and (3) build a decomposition of the design which 
in this method is accomplished with belief networks. 

CAD .. I - Annotate Drawings 
~--------------~ 

NLPIIR 

Machine Learning 

Parse 

Index 

Term Relevance Scoring 

Conceptual Clustering 

Belief Network 

Figure 1. Process Flow Chart-The figure outlines the sequence of operations of the 
program in learning the content and structure of the design. The research proposes a 
methodology for annotating CAD documents to create "smart drawings," techniques for 
extracting the design vocabulary from the design text using natural language processing 
and information retrieval, and model learning and inference by applying machine 
learning. 



26 ANDY DONG AND ALICE M. AGOGINO 

3.2. STAGE 1: TEXT ANALYSIS 

The general method to discover terminological patterns in design 
documents, which act as a basis for constructing the design model, is to parse 
the document text, cluster inter-term dependencies and build a conceptual 
hierarchy. 

First, the text was passed through a parser and indexer, free W AIS-sf1 

(Pfeifer and Huynh, 1994) waisindex, which returns a dictionary of every 
word in the text except for common "stop words.,,2 We then filter this set of 
terms to develop a set of content-carrying terms. The filtering process is 
based upon a word score metric similar to that described by the CLARIT 
method (Evans et aI., 1991). The scoring equation is based on the freeWAIS­
sf term relevance score (TRS) metric shown in Equation 1. The primary 
statistics include (1) a frequency count of the number of times the word was 
encountered in individual documents in the corpus; and (2) an inverted 
weighted distribution measurement for the number of documents containing 
a particular term. The idea is that the frequency measurement correlates with 
the text semantics. Words that occur often in a text are better indicators of 
what the text is about. More terms can always describe the document 
concepts better, but too many terms dilute the importance of any individual 
concept. Thus the distribution (or inverted document frequency) of the 
terms in the documents captures the intuition that words which have high 
frequency across documents are "general" in the domain and do not serve 
as good discriminators of concepts. 

TRS = (log(t!) + 10)xidf 
number _of _terms_in_Q_document 

0.5x I, word 

1/=0.5+ doc 
max I, word 

doc 

. I 
ldf=~ 

,t.. word 
doc 

Equation 1. The free W AIS-sf TRS Metric-The TRS metric is based upon the term 
frequency ifwhich counts the number of times the word appears over all documents, the 
inverted document frequency idfwhich counts the number of documents containing the 
word (a measurement of distribution) and normalized by the number of terms in a 
document, to account for the rarity of a word. 

lOne advantage to using a W AIS (Wide Area Information Server) program such as free W AIS­
sf for full-text document parsing. indexing and retrieval is that documents can be queried and 
retrieved over the Internet using the Z39.50 V2 protocol. 
2 Stop words include conjunctions and articles such as "a", "the," "since" and other words 
frequently used in natural language to connect terms but not necessarily to distinguish topics 
or provide contextual cues for topics. 



TEXT ANALYSIS FOR CONSTRUCTING DESIGN REPRESENTATIONS 27 

The score does not account for variations in author style or the presentation 
of the text. For example, one might score words which are typed in bold face 
or italicized or words from more recent design documents higher than 
others. Other factors such as the person who wrote the document, paragraph 
headers or document titles could be used as additional word weights; 
however, the efficacy and numerical value of these weights is difficult to 
quantify. Further, this complicates the clustering. For example, "recent" 
terms might be associated by time rather than meaning which violates the 
purpose of the algorithm. Thus the algorithm has limited sensitivity to the 
organization and presentation of the text. 

Then, the program computes the average score and standard deviation. 
Words whose score fall above the mean become the inventory of index terms 
for the corpus, the certified terminology. The system filters out words which 
are relatively frequent, have less value in forming good topic discriminators 
than relatively rare words, and words which are seldom used since they are 
probably not conditionally dependent upon the concepts described or vice 
versa. We will explain later why this conditional relevance is important in 
building a dependency matrix of concepts which forms the basis of the 
representation. 

Finally, based on the set of certified, content-carrying terms, the system 
determines their contextual similarity by measuring the frequency of 
occurrence of any two of the certified terms in the documents. That is, the 
program generates a nxn matrix, where n is the number of certified words, 
which scores how "often" the certified words co-occur. This matrix is 
created by executing a waisquery consisting of the query string "[word-A] 
AND [word-B]". The query sums up the score for similarity between the 
query string and the document base. The conjecture is that if the query 
string appears frequently over the entire document base then the words have 
a shared contextual dependency. In freeWAIS-sf, document similarity is 
measured as a vector product formula. The similarity between the query 
string Q and the document D is given by 

similarity(Q,D) = L(Wqk x wdk) 
k 

Equation 2. The freeW AIS-sf Similarity Metric 

where w qk is the weight assigned to term k in the query and w dk is the weight 
assigned to term k in the document D. 

3.3. STAGE 2: CLUSTERING AND INDUCING A BAYESIAN NETWORK 

Once the system has developed a prescribed vocabulary, the program maps 
the terms into context descriptors. The words themselves have no 
"meaning" outside the context in which they appear. In fact, research in 



28 ANDY DONG AND ALICE M. AGOGINO 

full-text infonnation retrieval has shown that words which appear in the same 
context tend to have a shared dependency (Gardiner, Riedl and Slagle, 
1994). Thus, we need to map the relevance between the assigned terms and 
the context in which they appear. 

For this process, we apply two machine learning techniques. In the first 
portion, we classify related tenns into "conceptual cells" using unsupervised 
learning. These cells represent tenns which are self-similar in the documents. 
This detennination is based on the observation that tenns which appear toge­
ther (in the same context) in documents typically connote similar meaning 
(Gardiner, Riedl and Slagle, 1994; Lewis, Croft and Bhandaru, 1989). Since 
the matrix measures closeness based on the spread of data or distance be­
tween words, a convenient distance-based clustering technique is the K­
means algorithm in Table 1 (Duda, 1973). The variable Xi is the score in the 
matrix for the pairwise occurrence of two words in the document collection. 

TABLE 1. K Means Algorithm. 

procedure K_MEANS 

) 

( Initialize the cluster centers Wj' j=1, 2, ... , NJ ) 

( repeat 
; Group the patterns with the closest cluster center 
( for all Xi do 

(Assign Xi to 8 jo, where wjo = mtlh - W j II 

endloop) 
; Compute the sample means 
( for all Wj do 

endloop) 

1 
w.=-~x. 

] ~ I 

mj X;Ej 

until there is no change in cluster assignments from one iteration to the next 

end; { K_MEANS } 

Next, the goal is to obtain a decomposition that explicitly reveals as much 
information regarding the conditional independence of design elements as 
possible. The key feature of belief networks is their explicit representation of 
the conditional independence among events (Pearl, 1988). That is, they can 
explicitly and compactly represent the dependency of design elements. 
Topological transfonnations (through arc reversals and node absorption for 
example) can answer questions concerning possible causal relations or 
dependencies between design elements. Since the Bayesian network conveys 
an intuitive understanding of how the reasoning process works, the designer 
can also follow the reasoning process of the design based upon the 



TEXT ANALYSIS FOR CONSTRUCTING DESIGN REPRESENTATIONS 29 

dependencies/independencies of the events to determine how the change in 
anyone element might affect any other element. 

The general method for constructing belief networks is to draw arcs from 
causal nodes to effect nodes and then attach a probability to that arc (Russell 
and Norvig, 1995). While techniques exist for constructing the most 
probable belief network Bs given a database D of instances (often called the 
maximum a posteriori structure) based on assumptions of a uniform 
distribution of belief network structures (Cooper and Herskovits, 1992), the 
Bayesian Dirichlet likelihood equivalent metric (Heckerman and Geiger, 
1995) and minimum description length (Lam and Bacchus, 1993), we 
generate an initial network using a heuristic approach. We plan to apply one 
of the metrics to optimize the network locally about a network structure 
which correctly represents the design. 

The heuristic used to construct the Bayesian network is based upon the 
conjecture that seeing a lower TRS word with respect to a word that it shares 
contextual similarity causes the system to update the belief that the higher 
TRS word will appear (Evans et aI., 1991). This causal influence and 
contextual similarity is found by pairing words with the highest TRS in the 
co-occurrence matrix. The strategy for building the network is to link the 
highest associated words in their own clusters first then to link the words 
between clusters. The algorithm is outlined in the Table 2. 

TABLE 2. Network Algorithm-In the first box, the table illustrates the general method 
for creating belief networks based on expert knowledge. In the bottom box, the table 
outlines the heuristic algorithm employed by the program. 

General Procedure 

1. Choose the set of relevant variables Xi that describe the domain 
2. Choose an ordering on the variables 
3. While there are variables left: 

(a) Pick a variable Xi and add a node to the network for it 
(b) Set Parents (Xi) to some minimal set of nodes already in the net such that 

the conditional independence property is satisfied (direct causal influence) 
(c) Define the conditional probability table for Xi 

Network Algorithm 

1. Define a variable Xi for each word 
2. Order the variables Xi in their respective clusters by ascending TRS 
3. While there are variables left in the cluster 

(a) Select the variable Xi with the lowest TRS and add as node in the network 
(b) Set Xj as Parent Of (Xi) where Xi and Xj have the highest similarity in the 

co-occurrence matrix and TRS(Xj) > TRS(Xi) 
(c) Select next node in ordering as Xi+ 1 and continue; repeat for each cluster 



30 ANDY DONG AND ALICE M. AGOGINO 

4. Order the clusters by ascending cumulative TRS 
5. While there are variables left in the cluster 

(a) Select a variable Xi from the lowest TRS cluster 
(b) Set Xj as ParentOf(Xi) as the node from the next cluster with the highest 

similarity in the co-occurrence matrix 
(c) Select next node in ordering as Xi+ 1 and continue; repeat for each node and 

cluster 
6. Define the conditional robabili table for X· 

3.4. AGENT ARCHITECTURE FOR DESIGN INFORMATION RETRIEVAL 

Figure 2 depicts the agent architecture for learning the design based on the 
documents. The architecture augments the "smart drawings" system 
presented in a previous paper (Dong, Agogino, Moore and Woods, 1995). 

The agent environment consists of the database of design documents, 
including the CAD drawings, design specifications, design notes and memos 
and e-mails written between designers. The agent reads the text periodically 
to generate the list of content-carrying words. By manipulating the list and 
using the document database for additional data, the agent constructs the 
inter-term clusters and belief networks to build a model of the design. The 
model helps the agent to understand the design by finding out what 
properties are relevant to a function in the design and the decomposition of 
the design. In response to requests from the user, the agent can retrieve 
relevant design information. 

Design Document 
Database 

ICAD Drawingsl 

I Specifications I 

I Design Notes I 

IMemoslE-Maill 

Document Parser 
Word Score 

T 

Annotation 
Tool 

User 
Query 

Inronnltion Nl"Cd$ 

Figure 2. Agent Architecture-The user annotates and adds design documents to the 
document database. The agent interacts with the document database by parsing and 
scoring the words in the document. The agent uses the data to create the clustering and 
belief network to learn the connections between the design elements. The user can then 
ask for relevant information with respect to current information needs by having the 
agent search for related design components. 



TEXT ANALYSIS FOR CONSTRUCTING DESIGN REPRESENT A nONS 31 

4. Experimentation and Results 

For this project, we created a machine-readable form of The Mechanical 
Engineers' Handbook (Kutz, 1986) which was scanned and run through an 
optical character recognition (OCR) software ("dirty,,)3 to output the final 
text. The program was then run on the chapters on controller design to 
derive a model of controllers. 

The cluster results are shown in Figure 3. These clusters indicate which 
properties are relevant to any particular function or element of the design, 
giving the agent knowledge of relevant issues in the design. The clusters 
indicate, for example, that the main content of the documents is the design 
of a controller or the control of a system. The third cluster reveals that the 
performance of the system is influenced by the gain and order of the 
control as well as any damping in the system while the sixth cluster indicates 
that the position seems to be the variable to be controlled in the system as it 
is tightly related to the feedback, input and output. One critique of the 
clusters is that zero appears with performance and root appears with stable, 
whereas it is known that both the zero and root of the system affect the 
stability. However, in the document collection, zero statistically appears 
more often with performance and root with stable since, for example, the 
documents discuss more often that a zero affects steady-state error (a 
measurement of controller performance) whereas the closed-loop roots 
determine the stability of the system. The cluster results agree with known 
knowledge of the relevant properties of the functions and attributes of 
controllers. 

({system design controller control) 
(transfer function time error state signal response plant) 
(zero integral gain order damping performance steady action) 
(stable root frequency process model loop) 
(valve pressure power pneumatic motor displacement) 
(variable value position feedback input output) 
(disturbance diagram constant) ... ) 

Figure 3. Cluster Results-The cluster results for the chapters on controller design. 
'. 

Finally, the system generates the belief network shown in Figure 4 and 
the conditional probability table associated with the network. The states for 
each of the event nodes (words) are 0, when the word (or design element) is 
not present in the document, and 1 otherwise. The conditional probability 
table for the network is based on frequency counts. For example, the 
probability of the word controller co-occurring with the word design is given 
by: 

3 "Dirty" OCR refers to documents un-modified after the OCR process, i.e. no spell check. 



32 ANDY DONG AND ALICE M. AGOGINO 

P( II I d . ) # occurrences controller and design 
contro er eSlgn = . # occurrences desIgn 

Figure 4. Initial Belief Network (partial)-This figure illustrates parts of the belief 
network generated using the heuristic algorithm. For purposes of clarity, not all arcs and 
nodes are shown. 

For clarity, not all nodes and their associated arcs are shown in Figure 4. For 
the nodes shown, the arcs are complete. One can read some interesting 
inferences off of the network. The first inference expresses the dependency 
of the design elements. The expression of dependency describes the 
decomposition of the design. 

1. The system to be controlled is characterized by the desired response and 
the controller design. The control law is conditioned on the transfer 
junction, the error and the desired response of the system. 

The second inference illustrates the degree of dependency between design 
elements. These types of inferences relate both information and the degree 
of relevance based on the amount of evidence available. 



TEXT ANALYSIS FOR CONSTRUCTING DESIGN REPRESENT A TIONS 33 

2. The concept of system response is more dependent upon gain in this 
controller design than the specific input criteria. 

The third is perhaps the most interesting since it shows how the system could 
infer the interaction of several elements in the design which produce a 
certain function. Therefore, if the designer were interested in increasing the 
pressure in the controller, one of the design elements to modify is the motor 
and followed by checking if the valve could handle the increased stress. 
More notable is that without explicitly telling the system these design 
element connections or the design topic, the system correctly extracted from 
the text that these chapters discussed controller design using pneumatic 
devices. 

3. The motor changes the displacement of the valve which affects the 
pressure. 

While the arc directions could change through topological 
transformations, the above network and associated inferences illustrate two 
important ideas. First, inspection of the network indicates that the heuristic 
generates a network with arcs between elements in the direction of physical 
causality, as illustrated by the third example in that the motor causes 
displacement rather than vice versa. Second, the network illustrates the more 
important problem of capturing the dependencies between design elements. 
By capturing these dependencies, the system is more efficient in searching 
for meaningful and relevant design information. The combination of the 
cluster information and the belief network augments the search by finding 
closely associated design elements (cluster information) which may not 
actually appear in the designer's query while removing less relevant 
information if less evidence supports the association between the design 
elements (belief network). 

The program was then integrated with a "smart drawing" (Dong et ai., 
1995) system as shown in Figure 5. Some preliminary tests were conducted 
to test how well the system learned the design data. One of the tests asked the 
system to retrieve relevant information to the "Lyapunov stability of the 
controller.,,4 Based on the clustering results, the program knows that the 
roots of the system affect stability, so that documents which discuss roots 
frequently should also be returned and scored high in relevance. By 
expanding the query to include closely related terms which in this example 
indicate closely related attributes to the stability of the system, the program 
can find documents related to stability that may not mention the word 

4 One aesthetic limitation of the current implementation is that the user is given only the 
path to the document rather than the document title, for example. By selecting one of the 
documents, though, the system automatically brings up a viewer for the document type, such 
as a text file or AutoCAD drawing. 



34 ANDY DONG AND ALICE M. AGOGINO 

stability in the document. Those elements which have shared dependencies 
in the belief network are scored higher. Without expanding the query based 
on the learned data (i.e. a standard freeWAIS query), only documents which 
frequently discuss both stability and controller would have scored high. That 
is, the dynamically learned design structure augmented retrieval to include 
information not explicitly cast in the query but which should be reported 
together by virtue of design dependency. In this case, design documents 
which discuss any property shown relevant based on the clusters to stability 
or controller score high. 

..0.7.1 ItHI)I(k C~t1"" aM (,ofttrolh" toni", 

0--: 

Figure 5. Smart Drawings Desktop---The agent learns the content of the design data 
based on the design documents using the learning methodology outlined above. Then, 
when prompted, the agent can retrieve relevant design information based on the current 
information needs of the designer using the information content of the active document 
as the query. 

The role of the clusters and belief network for design information 
retrieval is similar to the purpose of the decision dependency network 
presented by Garcia, Howard and Steftk (1994) in the Explanation interface 
to their ADD system. The Explanation interface displays related information 



TEXT ANALYSIS FOR CONSTRUCTING DESIGN REPRESENTATIONS 35 

by retrieving documents that are generally reported together. The key 
differentiation is that the dependency network is based on a pre-processed 
parametric design model for the design domain which seems to violate their 
thesis that the evolution of the design description via documents relates to 
the evolution of the design. For example, to capture design rationale, ADD 
prompts the designer for decisions which deviate from the preferred norm. 
This strategy for design rationale capture suggests that changes in the design 
affect how the design should have been modeled or parametrized, that, in 
fact, the design model dynamically evolves with the design. 

Systems such as ADD and the one proposed which address the problem 
of accessing design information by employing a structured design model to 
augment the retrieval of unstructured design documents can improve recall 
over those which have only an unstructured model (such as freeWAIS-sf) or 
only structure (ontology-based systems). However, the important metrics for 
evaluating these systems should include both the overhead for creating the 
structured model to account for the dynamic nature of the design as well as 
the performance in retrieving relevant information compared to baseline 
systems which employ no structure. The design learning methodology 
proposed illustrates a preliminary system which addresses both metrics. 

While this is only a preliminary test of how well the system learns the 
design data, what these tests suggest is the ability to augment design 
information search by finding related information based upon meaning, not 
just how the search request is expressed in the query. Second, the clustering 
and belief network open the possibility of organizing the retrieved data in a 
manner which is more meaningful to the designer than just straight 
frequency metrics, such as ordering by related concepts. We are currently 
investigating how to integrate the utility of the information to the designer 
based on the preferences of the designer and the structure of the design 
model in the belief network to improve the relevance ranking of the returned 
information beyond simple frequency count measures. In particular, we are 
implementing a "concept query" mechanism which more closely analyzes 
what concepts would be interesting to the designer and the cost of obtaining 
that information. 

5. Summary and Future Directions 

This research develops a computable learning method to extract the content 
of the design model to facilitate information sharing among designers. The 
premise of the methodology is that the design specifications and solutions as 
communicated through design documents are related to a model of the 
design. Certain combinations of the chosen properties of the design give rise 
to the corresponding combinations of design descriptions in the design text. 
Therefore, by learning these descriptions (words) through text analysis, the 



36 ANDY DONG AND ALICE M. AGOGINO 

system induces a model of the design. The learning algorithm is based upon 
natural language processing text analysis to extract content-carrying terms, 
and then applying techniques from machine learning to cluster inter­
dependent terms and decompose the design into dependent elements using 
belief networks. The model derived for the controller design example was 
plausible and correct based upon knowledge of controllers. 

What this research emphasizes is that CAD systems cannot ignore the 
communication of design information with respect to the current and 
relevant information needs of the design based on the annotation of the 
drawings (Ullman, 1990). That is, the effect of techniques which implement 
inductive learning techniques such as the one proposed to generate new 
knowledge structures about the design rather than techniques that improve 
the efficiency of problem-solving (explanation-based learning techniques) is 
tantamount to improving CAD systems. By putting the knowledge of design 
components in a form in which we can explicitly express the connections 
between the different parts of the system's knowledge, we enrich the 
possibility of interaction for collaborative design. 

The methodology explored in this paper only begins to explore the 
possibilities of full-text analysis for deriving a model of the design and its 
application. For example, one could augment the learned design structure 
with formally derived ontologies or use the learned structure as the basis for 
a formal ontology (Gruber, 1993). In particular, enhancing the parsing 
ability of the program and augmenting the co-occurrence measurement 
strategy to consider the number of words between two contextually similar 
words (Grefenstette, 1992) promise to improve the efficiency of the 
algorithm and achieve finer granularity in representing the design data. We 
are currently investigating these issues as well as testing the relevance of the 
learned knowledge in design documents from mechanical engineering 
design courses. 

6. Acknowledgements 

The authors would like to acknowledge William H Wood III for his valuable 
comments and converting the scanned document images into ASCII text, 
and John Wiley and Sons, Inc. for their permission to scan and OCR the text 
used for research and testing. We would like to thank in particular our 
industrial partners, Sun Microsystems, Inc., and Autodesk, Inc., not only for 
financial and equipment support but for valuable collaboration. This 
research was sponsored by the NSF Concept Database grant #DDM-
9300025. 



TEXT ANALYSIS FOR CONSTRUCTING DESIGN REPRESENTATIONS 37 

References 

Akman, v., ten Hagen, P. J. W., and Tomiyama, T.: 1994, Desirable functionalities of 
intelligent CAD systems, in C. H. Dagli and A. Kusiak, (eds), Intelligent Systems in 
Design and Manufacturing, New York: ASME Press, pp. 119-138. 

Baya, V., Gevins, J., Baudin, C., Mabogunje, A., Toye, G., and Leifer, L.: 1992, An 
experimental study of design information reuse, Proceedings of the ASME Conference on 
Design Theory and Methodology, DE-Vol. 42, pp. 141-147. 

Cooper, G. R., and Herskovits, E.: 1992, A Bayesian method for the induction of 
probabilistic networks from data, Machine Learning, 9, 309-347. 

Dong, A., Agogino, A. M, Moore, F. Woods, C.: 1995, Managing design knowledge in 
enterprise-wide CAD, in J. S. Gero and F. Sudweeks, (eds), Preprints Advances in Formal 
Design Methods for CAD, Key Centre of Design Computing, University of Sydney, 
Sydney, Australia, pp. 330-347. 

Duda, R. O. and Hart, P. E.: 1973, Pattern Classification and Scene Analysis, New York: 
Wiley. 

Eastman, C. M., Bond, A. H., and Chase, S. C.: 1991, A formal approach for product model 
information, Research in Engineering Design, 2, 65-80. 

David A. E., Ginther-Webster, K., Hart, M., Lefferts, R. G., and Monarch, I. A.: 1991, 
Automatic indexing using selective NLP and First-Order Thesauri, in Intelligent Text and 
Image Handling, in A. Lichnerowicz, (ed.), Proceedings of a Conference on Intelligent 
Text and Image Handling 'RIAO 91, Barcelona, Spain, pp. 624-643. 

Garcia, A. C. B., Howard, H. C., and Stefik, M. J.: 1994, Improving design and 
documentation by using partially automated synthesis, Artificial Intelligence in 
Engineering Design and Manufacturing, 6(1), 335-354. 

Gardiner, D., Riedl, J., and Slagle, J.: 1994, TREC-3: Experience with conceptual relations in 
information retrieval, Proceedings of the Third Text Retrieval Conference (TREC-3), 
Gaithersburg, MD. 

Gruber, T. R.: 1993, Toward principles for the design of ontologies used for knowledge 
sharing, in Guarino and Poli, (eds), Formal Ontology in Conceptual Analysis and 
Knowledge Representation, Kluwer Academic Publishers, Dordrecht; Technical Report 
KSL 93-04, Knowledge Systems Laboratory, Stanford University. 

Gruber, T. R., Tenenbaum, J. M., and Weber, J. c.: 1992, Toward a knowledge medium for 
collaborative product development, in J. S. Gero (ed.), Artificial Intelligence in Design 
'92, Kluwer Academic Publishers, Dordrecht. 

Grefenstette, G.: 1992, Use of syntactic context to produce term association lists for text 
retrieval, in N. Belkin, P. Ingwersen, and A. M. Pejtersen, (eds), Proceedings of the 
Fifteenth Annual International ACM SIGIR Conference on Research and Development in 
Information Retrieval, pp. 89-97. 

Heckerman, D., and Geiger, D.: 1995, Learning Bayesian Networks, Microsoft Corporation 
Technical Report MSR-TR-95-02. 

Mechanical engineers' Handbook, Myer Kutz, (ed), John Wiley, New York. 
Lam, W., and Bacchus, F.: 1993, Using causal information and local measures to learn 

Bayesian Networks, in D. Heckerman and A. Mamdani, (eds), Proceedings of the Ninth 
Conference Uncertainty in Artificial Intelligence, Morgan Kauffman, San Mateo, pp. 
243-250. 

Lewis, D. D., Croft, W. B., and Bhandaru, N.: 1989, Language-oriented information retrieval, 
International Journal of Intelligent Systems, 4, 285-318. 



38 ANDY DONG AND ALICE M. AGOGINO 

Olsen, G. R., Cutkosky, M., Tenenbaum, J. M., and Gruber, T. R.: 1995, Collaborative 
engineering based on knowledge sharing agreements, Concurrent Engineering: Research 
and Applications, 2(3), 145-159. 

Pearl, J.: 1988, Probalistic reasoning in intelligent systems: networks of plausible 
inference, Morgan Kaufmann, San Mateo. 

Reich, Y., Konda, S. L., Levy, S. N., Monarch, I. A., and Subrahmanian, E.: 1993, New roles 
for machine learning in design, Artificial Intelligence in Engineering, 8, 165-181. 

Russell, S. J. and Norvig, P.: 1995, Artificial Intelligence: A Modern Approach, Prentice 
Hall, Englewood Cliffs, New Jersey. 

Shah, J. J., Bliznakov, P. and Urban, S. D.: 1993, Development of a machine understandable 
language for design process representation, Proceedings of the ASME Conference on 
Design Theory and Methodology 1993, DE-Vol. 53, pp. 15-24. 

Szykman, S., and Cagan, J.: 1992, A computational framework to support design 
abstraction, Proceedings of the ASME Conference on Design Theory and Methodology, 
DE-Vol. 42, pp. 27-39. 

Pfeifer, U., and Huynh, T.: FreeW AIS-sf, ftp:l/ls6-www.informatik.uni­
dortmund.de/pub/wais/free W AIS-sf.l.0.tgz. 

Ullman, D. G., Wood, S., and Craig, D.: 1990, The importance of drawing in the mechanical 
design process, Computers and Graphics, 14(2), 263-274. 

Ullman, D. G., Dietterich, T. G., and Stauffer, L. A.: 1988, A model of the mechanical design 
process based on empirical data, Artificial Intelligence in Engineering Design and 
Manufacturing, 2(1), 33-52. 

Wilensky, R.: 1983, Planning and Understanding: A Computational Approach to Human 
Reasoning, Addison-Wesley, Reading, Massachusetts. 

Wood, W. H. and Agogino, A. M.: 1995, A case-based conceptual design information server, 
Journal of Computer Aided Design. 

Wong, A., and Sriram, D.: 1993, SHARED: An information model for cooperative product 
development, Research in Engineering Design,S, 21-39. 



J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 39-57. 

© 1996 Kluwer Academic Publishers. 

LEARNING GENETIC REPRESENTATIONS AS ALTERNATIVE TO HAND­
CODEDSHAPEGRA~ARS 

THORSTEN SCHNIER AND JOHN S. GERO 

Key Centre of Design Computing 
Department of Architectural and Design Science 
University of Sydney NSW 2006 
Australia 

Abstract. Shape grammars have been used to analyze and describe designs, and to create 
new designs that are similar in style to the designs the grammar is based on. The gram­
mars are created by hand, involving a large amount of research about the designs and the 
design process. This paper proposes a different approach, where a system is given design 
examples, and in a bottom-up process learns stylistic features of the examples. This is 
achieved by using an evolutionary system that is able to change the representation it is 
using. With the creation of a more and more complex evolved representation, the search 
space of the evolutionary process is transformed so that the search for new designs is 
biased towards designs similar to the design examples. 

1. Introduction 

Shape grammars (Stiny, 1980) have been introduced as a method for formal de­
scriptions of designs. Shape grammars consist of an alphabet of shapes, a starting 
shape, and shape rules that define spatial relations between shapes. 

The power of shape grammars to analyze and describe designs has been 
shown in a variety of design areas, from architectural design (examples in­
clude Palladian Villas, Frank Lloyd Wright Houses, Wren's City Church de­
signs and Japanese tearooms (Stiny and Mitchell, 1978; Knight, 1981; Kon­
ing and Eizenberg, 1981; Buelinckx, 1993), over garden landscaping (Stiny and 
Mitchell, 1980; Knight, 1990) to de Stijl style paintings (Knight, 1989). 

In all these examples, however, the translation from a set of designs into a 
shape grammar (and the reverse) has been done by hand. Very few attempts have 
been made to automatize the process. Chase (1989) showed how the automatic 
generation of shapes from (given) shape grammars can be realized. Mackenzie 
(1989) described a system that is able to produce grammars from example de-



40 THORSTEN SCHNIER AND JOHN S. GERO 

signs, if the designs are described in tenns of their basic components and their 
topology. The transfonnations used in that paper are not unique, many different 
grammars are possible for any given set of designs. The system uses a 'utility' 
function to distinguish between good and bad representations. This demonstrates 
a general problem: to create a 'sensible' shape grammar, a large amount of high 
level knowledge is required. Intentions of the designer, logical units in the design, 
logical stages in the design process are all represented in the grammars. 

The purpose of this paper is to describe an alternative, more computationally 
oriented view. In the spirit of artificial life research, it uses a bottom-up approach, 
where complex shapes are created by assembling smaller sub-parts. 

2. Evolving coding and Frank Lloyd Wright houses 

In Gero and Schnier (1995), we described an evolutionary system which produces 
problem solutions that are based on example designs. In evolutionary systems, the 
results of a search process are very much influenced by the representation of the 
problem space in the coding. In usual implementations, this can pose a serious 
problem, because the representation might bias the results too much into certain 
directions. The system described in Gero and Schnier (1995), on the other hand, 
makes use of this by intentionally biasing the solution space towards a set of po­
tentially interesting solutions. It does this in a two stage process. In the first step, 
the system is given a set of example designs. The goal of the evolutionary process 
in this step is to create individuals that resemble the example designs as closely 
as possible. To do this, the fitness function measures what and how much of the 
example designs are described by the individuals. The coding of the individuals 
is chosen to be very low-level, using very simple' basic' genes. 

While the individuals are evolved, they are at the same time analyzed, and 
successful combinations of low level genes are identified. For every such gene 
combination, a new gene is created (an 'evolved' gene) and introduced into the 
population. In the course of the evolution, the evolved genes which are produced 
aggregate more and more basic and lower-level evolved genes, encoding more 
and more complex aspects of the example designs. The coding itself, therefore, 
contains infonnation about the example applications. Any evolutionary system 
using this coding is biased towards solutions similar to the design examples. This 
is used in the second step, where a conventional evolutionary system creates solu­
tions to a design problem, using both original basic genes and the evolved genes. 
The system therefore produces solutions that incorporate aspects of the example 
designs, but are adapted to the new design requirements. Figure 1 illustrates the 
idea: beginning with a basic representation, the system creates an evolved cod­
ing based on a set of design examples. This evolved representation is then used to 
create new designs that show design features from the examples. 



LEARNING GENETIC REPRESENTATIONS 41 

~~~<J 
basic reprcscntation~ design examples

evolved represetation
new design

Figure 1. Use of evolved representation to capture and use typical features of a set of example
designs.

2.1. INDIVIDUAL STYLE AND THE STYLE OF FRANK LLOYD WRIGHT'S
PRAIRIE HOUSES

In Chan (1995), the author explained that the distinct features of a design are pro­
duced by both common features and common procedures used by the architect.
Describing a style as a function of how it is generated therefore requires a deep
understanding of the design process, usually supported by comments from the de­
signer. Shape grammars usually take this approach, they represent both the com­
mon procedures (in the rules and the sequences of rules that are possible), and
the common features (in the shapes manipulated by the rules). However, Chan
also noted that "common features present in an architects work are indeed used
by viewers to categorize the architect's style a style is said to be the function
of common features". This means that, even without knowledge about the design
process, it is possible to infer important aspects of a style common to a set of
designs.

Chan (1992) has analyzed the style of Frank Lloyd Wright's prairie houses
more closely. Some of the aspects that are of interest for the work presented here
are:

1. Floorplans are always based on a grid, the grid size depends on the project.
2. The fireplace is at the center of the composition, all spaces extend from there.
3. One major shape in the floorplan is long and narrow, much of the house is

only one room in depth.
4. The prairie houses have similar topological arrangements.
5. The first design step after developing an abstract of the space, is to create a

geometric pattern (based on the grid).
6. The next design step integrates the functional requirements.
7. The elevation follows directly from application of an 'elevation grammar' to

the plan.

Item 1. allows us to use a basic coding that is based on unit length horizontal
and vertical lines. The next two items are aspects that we wish our system to pick

42 THORSTEN SCHNIER AND JOHN S. GERO

up from the example designs, together with some of the topological arrangements
from item 4. Items 5 and 6 describe the first steps in the design process, the plans
used here represent in their level of detail approximately the ones produced after
these steps.

The elevations are not considered in this work. As item 7 states, they are a
result of the development of a ftoorplan. Learning features in elevations without
having a given ftoorplan does therefore not seem sensible.

2.1.1. Shape rules for Frank Lloyd Wright houses
The work in this paper is based on the analysis of Frank Lloyd Wright's Prairie
Houses by Koning and Eizenberg (1981). Based on the layouts of 11 prairie
houses, Koning and Eizenberg develop a shape grammar that can be used to con­
struct 10 of these houses, as well as many others that show a similar style. Their
work is a typical example of the top-down analysis described above. The design
using the rules is separated into 24 different steps. Roughly, the following phases
can be distinguished: starting with the fireplace, a basic composition is created
(18 rules). This composition is further elaborated by adding comers and porches,
and detailing the interior layout (16 rules). More exterior details are added (22
rules), and the design is extended into the third dimension (12 rules). The roof is
established (19 rules), together with some more details (4 rules). With the 8 rules
to manipulate labels, 99 rules are necessary to create the ten different layouts.

The focus of this paper is the designs that are created by the first 34 rules:
2-dimensional layouts, with a developed basic layout, organized into function
zones, and some detailing.

2.2. SEMANTICS

An important aspect of the designs we are looking at is the distinction between
different function zones. The layouts have zones representing living space, ser­
vice space and porches. Of central importance is the location of the fireplace. In
the shape grammar used in Koning and Eizenberg (1981), the zones for service
and living space are established around the fireplace with the first rules, and de­
tailed at the end of the first 38 rules. At the same time, porches are added.

2.2.1. Semantics in basic coding
As described, both shapes and functional organization can be important aspects
of a style of a set of designs. A system like the one described in Gero and Schnier
(1995) that uses only four primitives to describe outlines (line, step, right tum, left
tum) would therefore not be sufficient. To capture information about the func­
tional organization, the evolving coding has to be able to integrate information
about the semantics of the shapes. To do this, the basic coding has to be changed,
so that semantic information can be attached to the outlines.

LEARNING GENETIC REPRESENTATIONS 43

This is done by changing the set of primitives coded by the basic genes. The
elements to change direction (left tum, right tum) remain unchanged. But instead
of having only either a drawn line or a step ahead, the changed basic coding now
includes a set of lines of different types, with the step ahead represented as a line
of type' invisible' . The number of types is not restricted, the number of types used
depends on the application.

The line types in the the basic coding are interpreted to represent the differ­
ent semantics or functions of the rooms. The fitness functions used in both steps
of the evolution reflect this. In the first step, to score for a certain part of a de­
sign, any individual produced has to fit the design not only in line types, but also
in shape. This also means that the number of line types in the basic coding can
be higher than the number used in any specific example. Individuals exhibiting
unused line types don't score any fitness, the evolving genes therefore do not in­
corporate any combinations of basic genes that produce these line types. In the
second phase, the way the results are interpreted depends on the way the line
types are used. If the line types specify the function of an enclosed room, the func­
tion of the room is defined by the line type that has the majority. If the line type
encodes a detail in the outline, e.g. a certain wall type or a window, then the result
can be used directly without further interpretation. Both functions can be mixed,
as seen in the example used here.

The line types can be represented by different colours, the coding then has
some similarities to colour grammars (see e.g. Knight, 1994). In colour gram­
mars, however, the colours don't have any semantics attached, and colours can
be mixed.

3. Learning evolved genes

3.1. GENETIC ENGINEERING

One foundation for evolving representations is genetic engineering. It is derived
from genetic engineering notions related to human intervention in the genetics of
natural organisms. If a group of similar organisms can be seperated into two sets
distinguished by a difference in one particular attribute, then a comparison of the
genetic codes of the organisms in the two groups can reveal what genes or gene
groups are responsible for the difference. This knowledege can be used to modify
that attribute, and introduce it into or eliminate it from organisms by manipulating
its genetic material (see Gero and Schnier (1995) for a more detailled discussion).

A useful notion related to genetic engineering is the definition of ' genotype'
and 'phenotype' . The genotype is the set of genetic instructions that make up the
genetic code, while the phenotype is the structure that is produced as the result of
the interpretation of the genotype (Langton, 1988).

44 THORSTEN SCHNIER AND JOHN S. GERO

3.2. EVOLVING REPRESENTATION

The starting point in the development of a system that creates and makes use of
an evolving coding is a standard evolutionary system. The first step is to create a
population of randomly created individuals. The coding of these individuals, the
'basic' genes, is chosen to be very low-level, putting as little domain knowledge
into the coding as possible, and making sure not to exclude any interesting part of
the search space. The individuals are then subjected to the standard evolutionary
cycle of replication with errors and survival of the fittest. But at the same time,
an additional operation screens the population, identifying particularly successful
combinations of genes. For every such gene combination, a new, 'evolved' gene
is created that represents this combination, and is introduced into the population.
Figure 2 shows pseudo-code describing the algorithm. More detailed explanations
to some of the steps can be found in the following sections.

begin
create-population
while not end-criterion

select 2 parents
create offspring
if offspring not already in population

then add offspring to population
register offspring for shared fitness fi

if n new individuals produced
then select best gene combination

create evolved gene
add evolved gene
replace all occurences of gene combination with evolved gene fi

if m new individuals produced
then recalculate weights

recalculate all fitnesses fi

Figure 2. Pseudocode for an evolutionary system used to produce an evolved representation.

Since the goal during the development of a representation is variety and not
optimization, all offspring created in the variation function are kept if they:

- are not empty, i.e. they draw at least one segment.
- match (as described below) the design case at least at one position.
- no other individual already in the population has a genotype that codes for

the same phenotype as the new individual. If such an individual exists, then
the individual with the shorter genotype is kept. The use of evolved genes

LEARNING GENETIC REPRESENTATIONS 45

is hereby encouraged, since evolved genes usually lead to shorter genotypes.
This is the only instance where an individual in the population can be re­
placed.

As a result, there is no step in the pseudo-code where individuals are deleted.

In the first few cycles, the evolved genes will be composed from basic genes,
but in later cycles most evolved genes will represent combinations of other, lower­
level evolved genes, or combinations of those with basic genes. This growing
hierarchy of representations gives rise to a more and more complex and abstract
coding, which is increasingly adapted to the application. In other words, the pro­
cess gradually collects application-specific knowledge and codes it into the rep­
resentation, rather than being coded into it by the user in the first place.

What does this mean in terms of search space? The length of the genotype is
only restricted by the size of the computer memory. The search space is extremely
large with respect to the number of states that can be evaluated in a limited com­
putation time, and can therefore be seen as having infinite size. However, since the
alphabet used for genotypes is finite at any state during the evolution, the set of
possible designs that can be defined by a genotype of a certain length is limited.
The search space can therefore be illustrated by a number of concentric circles,
each defining the space of designs that can be defined by a genotype of a certain
length. The inner circle contains the genotypes of length one, i.e. the basic build­
ing blocks. The further away a design (or part of design) is from the centre, the
more difficult it is to find by means of generate and search. Every time an evolved
gene is created, the structure of the search space is changed. The state of the new
gene in the search space is moved into the centre, all design states in the next
circle that can be derived from that state are moved into the second circle, and
so on. Figure 3 illustrates this: the original search space is illustrated in Figure
3(a), with the four basic building blocks in the centre. The building blocks code
for vectors of one unit length with the directions up, down, left and right. The ar­
row points to the starting point of the next element drawn (if any). The second
circle shows all designs that can be derived from genes of length two (i.e., using
two building blocks). The other circles give some examples of designs using gen­
otypes of length three, four and five. If now the two closed shapes in the fourth
circle are identified as particularly successful and an evolved gene is introduced
for them, then the search space changes as shown in Figure 3(b). The squares now
become basic building blocks, and the shapes on the fifth circle that are derived
from the squares, can now be found in the second circle. The more evolved genes
a design state involves, the more it is moved towards the centre. For example, the
shape with the four squares that is now on the fifth circle (i.e. can be constructed
from genotypes of length five) would have been on the fourteenth circle before l .

1 fourteen lines, the shape cannot be drawn without drawing two lines twice

46 THORS1EN SCHNIER AND JOHN S. GERO

Since the introduction of a new gene increases the size of the alphabet of the cod­
ing, the size of the circles also grows.

L ~9 @
dacb 2' ~cbc

3 S 4 d 14 r E:dbc @ db cadb-
CJ bdacbca

-.J ~cb c=... dbca EB - dbcc Dbdacc
(a)

i

i

L 83
&'B 2 ,",AB

ffiBCA 5

- d=t}ACB

Figure 3. Example of an evolving representation: (a) original representation and (b) representation
with evolved genes, Some of the corresponding genotypes are give, capital letters denote evolved
genes. The transformation from phenotype to genotype is not always unique, e.g. the genotypes
'ABc' and 'BAc' produce the same phenotype. Arc segments indicate that only part of the space is
shown.

The introduction of evolved genes obviously changes the probability that a
gene sequence maps onto a useful feature. The number of different genes that can
be used in a genotype expands, but at the same time the length of the genotype
that is necessary to describe a feature shrinks, effectively reducing the size of the
search space. For example, the ftoorplan shown in Figure 10 (a) was produced by
a genotype of length eight, using two basic and 326 evolved genes. Expressed in
basic genes only, the genotype has a length of 445. The space of designs that can
be coded by genes of length 445 using two basic genes is about 110 orders of
magnitude larger than the space of genes of length eight using 328 genes.

LEARNING GENETIC REPRESENTATIONS

4. Learning genetic representations of ftoorplans

4.1. EXAMPLE FLOORPLANS

47

In the examples of the Frank Lloyd Wright prairie houses, lines that enclose living
spaces use a different line type from lines that enclose service spaces or porches,
and the fire place has a type of its own. Since only the main floor is considered
here, no bedroom zones occur in the designs.

From the eleven Prairie Houses analyzed by Koning and Eizenberg (1981),
four have been selected as examples for the evolving coding: the Henderson
house, the Thomas house, the Martin house and the Baker house (Koning and
Eizenberg, 1981). Since the basic coding only allows horizontal or vertical lines,
the diagonal lines at the wings of the Henderson house have been changed into
a stepped shape. Figure 4 shows the floorplans used. As a comparison, Figure 5
shows the plans of the Thomas house as given in Koning and Eizenberg (1981).

I----~------.. ,.

! I I L...--.....J--··-----··-----l-·-·-1
~

c::::J Porch c:::::J Service [=~ Living - Fireplace

Figure 4. Frank Lloyd Wright Houses used to create the evolved coding: Henderson house (top
left), Martin house (top right), Baker house (bottom left), Thomas house (bottom right).

4.2. BASIC CODING

The basic coding has to allow for lines with a variable number of line types. The
coding presented in Gero (1994) used four basic genes, each coding for a different
basic element: a left tum, a right tum, a line ahead, and a step ahead. One possib­
ility for including line types is to increase the number of different basic genes,

48 THORSTEN SCHNIER AND JOHN S. GERO

Figure 5. Thomas house defocused and reduced to four function zones, bedroom level, main floor
level, and external form (Koning & Eizenberg 1981).

so that one basic gene is used for every additional type. If the number of types
increases, or if additional basic elements like diagonal lines are introduced, the
number of different basic genes used grows.

Another possibility is to keep the number of different basic genes constant,
and use two or more successive basic genes to code for the elements. The first
basic gene on a genotype would select the type of primitve used, in this case either
tum or line. The following one or more basic genes then code for an attribute
value. If the first gene coded for a tum, the attribute represents either of the two
values 'left' or' right' . For lines, the attribute defines the type of the line, steps
ahead are treated as a line of type 'invisible'. The number of successive basic
genes needed to code for the line types varies depending on the number of line
types and on the number of basic genes used.

The second coding has the advantage that it is easily extensible, for example
to introduce curved lines, only a new type of primitives would be added. This type
could have one or more additional attributes. Similarly, for diagonal lines, one
could change the number of values the tum can represent to eight. At the same
time the coding remains very simple, this is one of the goals in the design of the
basic coding.

A major difference from the first coding is that the meaning of basic genes is
not totally position independent anymore.

In the example presented here, the second approach was chosen. Two basic
genes (values 0 and 1) are used, the basic coding (without evolved genes) is there­
fore a binary coding. The first basic gene selects the type of the primitve:

o A line. The attribute can take five value (five line types, including the 'step
ahead' , requiring three basic genes. The eight possible values are taken mod­
ulo five, three line types are therefore produced by two different values.

t A tum. The following basic genes distinguishes between left and rigth tum.

LEARNING GENETIC REPRESENTATIONS 49

The basic coding is shown in Figure 6.

11 00 01 10

invisible line line + ~
(a)

right turn left turn

0000 0001 0010 0011 0100
0101 0110 0111 - , , --...-.... - .. -~ . , , .

invisible line line type 1 line type 2 line type 3 line type 4

(b) 10 + 11 ~
right turn left turn

Figure 6. Basic coding, (a): original coding, (b) coding expanded to allow for different line types

4.3. CREATING EVOLVED GENES

To create evolved genes, the algorithm shown in Figure 2 is used. A special fitness
function is used that measures what percentage of the examples is represented by
an individual, while at the same time preventing convergence.

4.3.1. Fitness Calculation
The fitness calculation for a new individual during the evolution of the represent­
ation stage involves the following steps.

1. Transform the genotype of the individual into a phenotype, i.e. line-drawing.
2. Find all positions where the phenotype' matches' the design case. A match

is declared if and only if for all line segments in the phenotype there is a
corresponding line segment in the design case (but not necessarily the other
way round).

3. At all matching positions, draw the phenotype as a partial drawing.
4. Create the sum of the weights associated with all line segments in the design

case that are represented in the partial drawing (see below for a description
how the weights are calculated).

5. This sum is the current fitness value for the individual. Whenever the weights
for the segments in the design case are recalculated, the fitness values of all
individuals in the population have to be updated.

As an example, Figure 7(a) shows a design case with associated weights, and
the shapes produced by two different individuals. Both individuals can be applied
at two different positions, resulting in fitnesses of 24 and 18.

This fitness alone would lead to a convergence of individuals that describe
only some aspects of the design case. To prevent this, another analogy from evol­
ution in nature is used. The different aspects of the design case are seen as a re­
source (for example food) that has to be shared between all individuals using it.

50 THORSTEN SCHNIER AND JOHN S. GERO

1 3

88: b EE EE m4
4 3

152
2 1

24

design example Individual individual at different positions segments covered fitness
with weights to score by individual

Figure 7. Example of fitness calculation for two different individuals.

Individuals therefore get high rewards if they describe aspects of the case that are
covered only by few other individuals (evolutionary niches), and only little addi­
tional fitness for aspects that are described by many individuals.

To create the 'niching' effect, every line segment in the design case has a
weight associated with it (the values in Figure 7). This weight is calculated regu­
larly as a fixed value divided by the number of individuals in the population that
can be used to 'stamp' that segment. If for example only two individuals code for
a 'stamp' that can be used for a certain part in the design case, both get 50% of the
constant value as fitness for that part. If 20 individuals do so, each one gets only a
fitness of 5%. This effectively prevents convergence towards only some features
in the design case (e.g. only horizontal lines). The effect can be seen in Figure 8:
without sharing, the evolving genes develop mainly in a very small region, fitness
sharing leads to a much better distribution of evolved individuals.

4.3.2. Results

Figure 9 shows examples of evolved genes created from the four example designs.
Shown are some of the last evolved genes created from the examples. Clearly vis­
ible are the shapes of rooms, and the different line types, associated with the dif­
ferent functions. Two ofthe evolved genes shown (310 and 318) have the fireplace
as part of the line-drawing they code for (in this case from the Henderson house).

4.4. CREATING NEW FLOORPLANS USING THE EVOLVED REPRESENTATION

In the second phase, the representation evolved from the example cases is used to
create new designs that show similarities in style to the example cases. For this,
a standard evolutionary system is used, with the set of basic and evolved genes
used in the coding.

LEARNING GENETIC REPRESENTATIONS 51

Mimimum: 4 individuals. Maximum: 3242 individual
(a)

Mimimum: 16 individua.ls. Maximum: 679 individuals
(b)

Figure 8. Distribution of individuals in population, (a) without fitness sharing, (b) with fitness
sharing. Thicker lines represent more individuals covering that segment.

4.4.1. Fitnesses
The evolved coding, as exemplified in Figure 9, captures information about shape
and function of parts of the example designs. However, the way these parts are
assembled to create new designs is only influenced by the fitness function that

52 THORSTEN SCHNIER AND JOHN S. GERO

J A
m l

304

324

'" I~ ~,

~ r-Ir-
316

310

3O~ 313

312

30

318

314 r

Figure 9. Examples of evolved genes created from the example designs shown in Figure 4. The
labels refer to the numerical sequence in which the genes evolved.

evaluates new designs. This means that any gene that codes for a room of a certain
type, for example, has no influence on what other room is next to it; and there
is nothing preventing a design from using two evolved genes that each include
a fireplace. As a result, topological constraints are not automatically satisfied by
using the evolved coding. If designs created by the evolutionary system are to
fulfil topological constraints, they have to be included in the fitness function (see
Section 5 for how we plan to integrate more topology information into the evolved
coding).

Frank Lloyd Wright's prairie houses follow a number of topological con­
straints, and they all have to be made part of the fitness. For the results presented
here, fourteen different aspects influence the fitness. The following list shows the
fitnesses used:

- One porch, size between 9 and 12 units
- porch connected to living area, and not connected to service area
- two to four rooms in the service area, total size between 45 and 60 units
- two to four rooms in the living area, total size between 55 and 70 units
- only one service and one living area, i.e. all rooms of that type are connected
- one fireplace, two units length, between living and service area
- no' dead ends' , i.e. lines that do not enclose any room.

4.4.2. Pareto optimization
For a human designer, it is relatively easy to find designs that fulfill all the fitness
conditions. For a standard evolutionary system, the fitnesses have to be integrated
into one fitness. This could for example be done by calculating a value between

LEARNING GENETIC REPRESENTATIONS 53

o and 1 for every individual fitness, and adding or mUltiplying them into a single
fitness value. Unfortunately, by integrating all fitnesses into one value, the infonn­
ation about what fitness conditions are fulfilled and what conditions are not is lost
to the system. As a result, the system ends up converging towards a population
that is good in some respects while individuals good in different aspects are lost.
Even after a very high number of individuals have been produced, the system is
not able to find satisfying solutions.

A better way to handle a high number of individuals is therefore to utilize
'Pareto optimization' (see for example Radford and Gero, 1988). In a Pareto op­
timization process, only a partial ranking between two individuals can be estab­
lished. If two individuals are compared, one individual is better than the other
(dominates it) only if it is better or equal in all fitness criteria and better in at least
one criterion. The comparison therefore often ends up in a draw. To select indi­
viduals that are used to produce offspring in the genetic operations, two individu­
als are picked randomly from the population and compared to a randomly picked
reference subset (10% of the population). If one of the individuals is dominated
by one of the reference individuals while the other is not, the second individual is
selected as the parent. Otherwise, neither of the individuals is preferred.

This selection alone is not sufficient to prevent all individuals clustering as a
small subset of possible, good solutions. As an additional measure to prevent con­
vergence, 'niching' is used (Hom and Nafpliotis, 1993). Here, candidate individu­
als are compared with a number of other individuals in the population. For every
individual, the distance between the fitness values is calculated. The number of in­
dividuals with a distance smaller than a threshold value is called the niche-count.
In niching Pareto optimization, in order to select between two individuals that
either both dominate the reference set or are both dominated by at least one indi­
vidual in the reference set, the individual is chosen that has a smaller niche-count.

If a newly created individual dominates another individual in the population,
it replaces it. If not, and the. new individual is dominated by at least one other
individual in the population, it is rejected. The third possibility is that the new in­
dividual populates a new part of the Pareto optimal front, and is therefore neither
dominated nor dominates another individual. In this case, the individual has to be
added to the population without replacing another individual, leading to a grow­
ing population. As an example, in one of the runs presented below, the population
grew from 500 to 1581 individuals.

4.4.3. Results
Two runs where done using a set of 326 individuals created from the floorplans in
Figure 4.

Run 1 ran for 60.677 loops, each loop creating two offspring individuals. The
initial population was l.ooo individuals, the final population consisted of l.652
individuals. From some 120.000 produced and tested individuals, 14.359 indi-

54 THORS1EN SCHNIER AND JOHN S. GERO

viduals where good enough to be introduced into the population.
Run 2 ran for 99.207 loops, the population grew from 500 to 1.581 individu­

als. Of the nearly 200.000 individuals produced, 12.502 made it into the popula­
tion. Again, all 326 evolved genes where used.

The first result from Run 1 (Figure lO(a» has a perfect fitness. The fitness
function does not check if the fireplaces are straight, therefore a comer-fireplace
could result. Since none of the floorplans in the example drawing have a comer
fireplace, this feature cannot have been part of the evolved coding. It therefore
must be coded in basic genes. The second-best result from Run 1 (Figure 1 O(b»
has a penalty due to one segment of 'dead end' close to the fireplace, but fulfills
all other fitness criteria.

Both results of Run 2 (Figure lO(c) and (d» have perfect fitnesses. Again,
the system has taken advantage of a small weakness in the fitness function, that
allowed it to put the porch inside the living space.

(a) (b)

(c) (d)

c:::::J Porch c::J Service c:::::::J Living - Fi replace

Figure 10. Aoorplans created using the evolved genes from the example designs shown in Figure
4, (a) and (b) initial population 1000 individuals, (c) and (d) initial population 500 individuals.

Figure 11 shows how one of the results (the second of Run 1, see Figure
10(b» can be extended into three dimensions by a graphic artist. The resulting
house is obviously quite similar to the Thomas house (see Figure 5).

LEARNING GENETIC REPRESENTATIONS 55

Figure 11. Floorplan from Figure 11 (b) manually extended into three dimensions; shown are
bedroom level, main floor level, and roof view.

5. Discussion

5.1. FRANK LLOYD WRIGHT PRAIRIE HOUSE PLANS

As described above, no aspects of the topology are coded in the evolved coding.
This results in the fact that some aspects of the example design that the system
could have learned have to be added as fitness. It also shows in the results: shapes
that have been outer walls in the original drawings are used in the inside (e.g. the
stepped line separating the right two parts of the living room in Figure lO(b), or
the outer walls ofthe porch in Figure lO(a)).

5.1.1. Possible improvement: more line types
One way to improve the 'knowledge-content' of the evolved coding is to use a
higher number of line types. Different line types could be used depending on the
functions of both of the rooms a wall separates, and again different line types for
outer walls. This way, knowledge that for example three out of four sides of the
porch are outer walls, and the fourth wall is a wall to a living space, could be
integrated into the evolved coding.

An example of the Thomas house drawn with this enhanced coding is shown
in Figure 12.

To realize this, no changes other than changing the parameter for the number
of line types used and modifying the example drawings are required in the first
step. In the second step, the fitness function would have to be added that checks if
lines are used in a correct context.

A system using this coding would avoid problems like the two problems with
the design results in Figure 10. It would also reduce the number of fitness criteria
required.

5.2. LEARNING REPRESENTATIONS

What has been successfully presented has been both the concepts and a demon­
stration example of the evolutionary learning of a genetic representation of a set

56 THORSTEN SCHNIER AND JOHN S. GERO

'- - . --, , ,
~ - - __ I

ervice-Ouler
ervice- ervice
ervice-Living

- Fireplace
- - Porch-Ouler

Porch-Living
Li ing-Ouler
Living-Living

Figure 12. Thomas house drawn as design example with increased number of line types.

of building layouts. This representation can then be used to generate layouts with
a similar style. The approach is based on the use of genetic engineering concepts
to evolve not just the solution to a problem but also to allow the genes which
are used to represent it also to evolve. This results in the evolution of complex
genes, genes which are capable of forming increasingly large and complex parts
of the phenotype or design. Evolutionary systems commence with a knowledge­
lean representation that often contains little or no domain knowledge. What is
happening here is that the evolved genes increasingly contain knowledge about
the domain under consideration. They tum a knowledge-lean representation into
a knowledge-rich representation. From an evolutionary viewpoint there are two
distinct activities. In the first the genes are allowed to evolve with a fitness as­
sociated with the designs which act as exemplars. Then these evolved genes are
used to generate designs with a completely different set of fitnesses. The resulting
designs embody the knowledge which has been encoded in the evolved represent­
ation. This opens up possibilities in case-based design as well as an alternative
approach to the generation of design grammars.

Acknowledgements

This work is supported by a grant from the Australian Research Council and by a
University of Sydney Postgraduate Research Award.

References

Buelinckx, H.: 1993, Wren's language of city search designs: a formal generative classification,
Environment and Planning B 20, 645-676.

Chan, c.-S.: 1992, Exploring individual style through Wright's designs, Journal of Architectural
and Planning Research 9(3),207-238.

LEARNING GENETIC REPRESENTATIONS 57

Chan, C.-S.: 1995, A cognitive theory of style, Environment and Planning B: Planning and Design
22,461-47.

Chase, S. c.: 1989, Shapes and shape grammars: from mathematical model to computer imple­
mentation, Environment and Planning B 16, 215-242.

Gero, J. S.: 1994, Towards a model of exploration in computer-aided design, in J. S. Gero and
E.1)rugu (eds), Formal Design Methods for CAD, North-Holland, Amsterdam, pp. 315-336.

Gero, J. S. and Schnier, T.: 1995, Evolving representations of design cases and their use in creative
design, in J. S. Gero, M. L. Maher and F. Sudweeks (eds), Preprints Computational Models of
Creative Design, Key Centre of Design Computing, University of Sydney, Sydney, Australia,
pp. 343-368.

Horn, J. and Nafpliotis, N.: 1993, Multiobjective optimization using the niched pareto genetic
algorithm, Technical Report 93005, Illinois Genetic Algorithms Laboratory (IlliGAL), Uni­
versity of Illinois at Urbana-Champaign.

Knight, T.: 1989, Transformations of De Stijl art: the paintings of Georges Vantongerloo and Fritz
Glarner, Environment and Planning B 16, 51-98.

Knight, T.: 1990, Mughul gardens revisited, Environment and Planning B 17, 73-84.
Knight, T.: 1994, Shape grammars and color grammars in design, Environment and Planning B:

Planning and Design 21, 705-735.
Knight, T. w.: 1981, The forty-one steps, Environment and Planning B 8, 97-114.
Koning, H. and Eizenberg, J.: 1981, The languages of the prairie: Frank Loyd Wright's prairie

houses, Environment and Planning B 8, 295-323.
Langton, C. G.: 1988, Artificial life, in C. G. Langton (ed.), Artificial Life, Vol. VI of SF! Studies in

the Sciences of Complexity, Addison-Wesley, Reading, pp. 1-47.
Mackenzie, C. A.: 1989, Inferring relational design grammars, Environment and Planning B

16, 253-287.
Radford, A. D. and Gero, J. S.: 1988, Design by Optimization in Architecture and Building, Van

Nostrand Reinhold, New York.
Stiny, G.: 1980, Introduction to shape and shape grammars, Environment and Planning B: Planning

and Design 7, 343-351.
Stiny, G. and Mitchell, W. J.: 1978, The Palladian grammar, Envimoment and Planning B: Plan­

ning and Design 5, 5-18.
Stiny, G. and Mitchell, W. J.: 1980, The grammar of paradise: on the generation of Mughul gardens,

Envimoment and Planning B: Planning and Design 7, 209-226.

2
design objects

Reactive design agents in solid modelling
Bruno Feijo, Nick Lehtola, loao Bento, Sergio Scheer

A framework for design object evolution: Building and cataloging
artefact prototypes

Nigel R. Ball, Tim N. S. Murdoch, Ken M. Wallace
Creating design objects from cases for interactive spatial composition

Ian Smith, Ruth Stalker, Claudio Lottaz

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96,61-75.
© 1996 Kluwer Academic Publishers.

REACTIVE DESIGN AGENTS IN SOLID MODELLING

BRUNO FEU61,2, NICK LEHTOLAI
IIntelligent CAD Laboratory, Dept oj Computing, PUC-Rio
Rua Marques de Sao Vicente, 225, 22453-900, Rio de Janeiro,
RJ, Brasil
2Concurrent Engineering Laboratory, UERJ
Rua Sao Francisco Xavier, 524 - Rio de Janeiro, RJ, Brasil

JOAOBENTO
Department oj Civil Engineering, Instituto Superior T ecnico
Av. Rovisco Pais, 1096 Lisboa Codex, Portugal

AND

SERGIO SCHEER
Center oj Studies in Civil Engineering, UFPR
Curitiba, Parana, Brasil

Abstract. This paper proposes a reactive agent architecture for the integration of solid
modelling processes into more general design processes, The basic idea is to focus on
reactivity rather than on symbolic representations of design knowledge. Also an
Application Programming Interface is proposed to help developers writing intelligent
CAD systems with links to any open architecture geometric modeller. In the proposed
approach, solid modelling processes are formally immersed in the design process with
the concept of modified CSG trees. Furthermore, solids are considered to be reactive
design agents. A working system is also presented.

1. Introduction

In the 1980s, the research in solid modelling focused on geometric and
topological problems of isolated objects. Nowadays, the focus is on complete
engineering models and a number of concepts has been emerged to support
a new generation of CAD systems such as product modelling,Jeature-based
modelling, tolerance modelling, constraint modelling, variational geometry,
geometric reasoning and parametric methods (Wozny et aI., 1990). In the
CAD market, developers have been concentrated on feature-based
parametric modelling and most of them have been using the paradigm of
object-oriented architectures and the techniques of knowledge representation

62 BRUNO FEIJ6 ET AL.

(Haase, 1992). In the design research arena, there are promising proposals
for constraint modelling based on grammar formalisms (Brown et aI., 1994).
However, despite all those advances in the area of CAD systems there is still a
gap between design research and solid modelling. This paper explores some
possibilities to narrow this lacuna with a broader view of objects and
modelling processes. Firstly solid modelling processes are formally
immersed in the design problem space. Secondly, solids are considered
reactive agents whose intelligence emerges mainly from the interactions with
other agents. Thirdly, an Application Programming Interface is proposed to
link the agent environment with generic solid modelling systems.

2. Design Problem Space

Design was first identified with problem solving in Simon (1969). According
to his approach, a state space represents all possible states of the problem
(i.e.: all possible problem descriptions) that need to be considered when a
solution is attempted. Besides, he claims that it is practically computable to
cover all the space.

Design as problem solving is a search process within a state space. In the
context of traditional search, design knowledge is to be expressed in terms of
goals and operators. Such a plain concept of searching does not directly
address the characteristics of the design problem (Maher, 1990). The
difficulties in this case are related to the variations of goals during the
problem solving process and the problem of predetermining the relevant
operators. Therefore, the notion of design as problem solving needs to be
presented in a broader sense. For instance, the proposal of design as
exploration by Smithers and Troxell (1990) can be understood as a meta­
search process within the design problem space. This approach opens a
promising research area to restore the concept of meta-planning for design
perceived by Simon (1969) more than two decades ago. Generally speaking,
the implementation methods for design as problem solving do not need to
use the classical binomial goal-operator or even traditional planning
techniques. In this case, the minimum requirement is to conform to the
general principles of improving upon blind trial-and-error search, that is: (1)
the progress principle (i.e. the ability to detect when progress is being
made); (2) goals and subgoals (i.e. the decomposition procedure that
reduces the problem space); and (3) the use of knowledge (i.e. if one knows
how to solve a problem, then one can avoid search entirely) (Minsky, 1988).
Most of the implementation methods in intelligent CAD systems are strongly
based on a symbolic representation of the design world. In the sake of
efficiency, the authors do not entirely support this approach and believe that
a trade-off between procedural methods and symbolic representation can be

REACTIVE DESIGN AGENTS IN SOLID MODELLING 63

achieved. One possible way of accomplishing this trade-off is through the
use of hybrid agent architectures.

3. Agents

Agent technology has being applied in distributed AI (Bond and Gasser,
1988), in groupware (Baecker, 1993), in virtual environments (Bates et aI,
1992) and in robotics (Brooks, 1990). Also agent-oriented programming
has been proposed as a post-object paradigm (Shoham, 1993). Agent theory
is not mature yet and leads to several definitions of agents and their
properties. A complete survey on agent theories, architectures and languages
can be found elsewhere (Wooldridge and Jennings, 1994).

In this work, the authors adopt the definition of agents as active objects
described by the intentional stance. Indeed the notion of agency is bound to
that of action. Therefore, agents are active objects, because they originate
actions that affect their environment. To ascribe the intentional stance to
agents means that they possess beliefs and desires.

Intention can be formally defined in terms of non-classical logic, such as
the multi-modal logic proposed by Cohen and Levesque (1990) for their
rational agents. However, this is not the scope of the present work.

There are three approaches to build agent-based computer systems:
deliberative, reactive and hybrid architectures. The deliberative architecture
is based on the classical symbolic AI paradigm. Examples of this approach
can be found in Wood (1993) and Vere and Bickmore (1990). In this case,
the symbolic model of the world is explicitly represented and the agents act
via explicit logical reasoning. Usually, in this approach, an AI Planning
system is the central component of the agent. This architecture, however, has
several drawbacks: (1) the frame problem renders the knowledge difficult to
represent in practice; (2) it is computationally inefficient; (3) it cannot cope
with unpredictable events such as the actions of other agents; (4) it always
requires that plans be too detailed, although one generally acknowledges that
no system could produce completely detailed plans in domains of realistic
complexity (Agre and Chapman, 1989). This scenario gets even worst if one
thinks about meta-planning for design as problem solving. Therefore,
alternative approaches to agent architecture have been proposed.

The reactive architecture is an alternative approach that breaks with the
traditional symbolic AI paradigm. This sort of architecture is strongly
advocated by Rodney Brooks who claims that intelligence can emerge
without having explicit manipUlable internal representation or explicit
reasoning systems (Brooks, 1991). This architecture is based on reactive
agents that must respond dynamically to changes in their environment.

The hybrid architecture attempts to harmonize the classical architecture
with the reactive approach (Arkin, 1990; Georgeff, Lansky and Schoppers,

64 BRUNO FEUO ET AL.

1987). The authors support the idea of a hybrid agent architecture for solid
modelling environments, although only the reactive side is presented in this
paper. Also the authors believe that a special agent language for solid
modelling should be developed. However, this is an issue not yet fully
investigated by the authors.

4. The Agency Principles

The principle underlying the reactive agent architecture proposed in this
work are after Brooks (1991), that is: emergence and situatedness. The
principle of emergence states that the intelligence of the agent system
emerges from the interaction of agents among themselves and with their
environment (Steels, 1990). As pointed by Brooks (1991, p.16): "It is hard
to identify the seat of intelligence within any system, as intelligence is
produced by the interactions of many components. Intelligence can only be
determined by the total behavior of the system and how that behavior
appears in relation to the environment. The key idea of emergence is:
Intelligence is in the eye of the observer". This principle can also be
identified in the work by Marvin Minsky (1988) where he proposes that
intelligence emerges from a society of mindless agents.

Situatedness is also an idea proposed by Brooks (1991) who claims that
the agent's intelligence is situated in the world and not in any formal model
of the world built in the agent. Therefore, an agent uses its perception of the
world rather than deductions based upon a symbolic representation of this
world (such as those found in theorem provers or expert systems). This is a
dramatic change from traditional AI paradigm and it is not fully investigated
in the present paper. However, the authors believe that maintaining the
traditional AI means that design agents will always have access to direct and
perfect perceptions/actions and, consequently, no external world will really
exist with its surprises, creative moments and ongoing design history.

5. Design Agents, States and Design History

From the design point of view, goals can be decomposed in terms of form
(mainly physical attributes) or function (functional specifications describing
the functions to be performed by the form). The question of decomposition
(form vs function) may pose a dilemma for goal decomposition. However, as
discussed by Maher (1990), in a problem solving approach to design this
situation does not occur because representations of goals may capture both
the notions of form and function. In this paper, the authors propose to
represent goals by means of reactive design agents as a consequence of the
previous investigation in design process models found in Feij6 and Bento,
(1991), Bento (1992), Scheer (1993), Prates (1993). The following
definitions hold:

REACTIVE DESIGN AGENTS IN SOLID MODELLING 65

Def. design agent is an object ai(I,F,j) where I stands for identification
attributes, F stands for a set of form attributes and f stands for a set of
function attributes.

De! A state Tj is a set of design agents ai.
Def. A design history H is a sequence of states TO, TI, ... , Tn where TO

is the input specification and Tn is the artifact description.
Def. The design problem space DPS is the set of all possible design

histories.
In this context, design is an evolutionary process that starts with a set of

input specifications, TO, generates a kernel idea in the early stages of the
process and refines it (by decomposition, generation or transformation)
towards the artifact description Tn. Relationships between design agents and
constraints within or across design agents may be defined both in terms of F
andf·

6. Design Views

The authors of this paper claim that the solid modelling process can be
viewed as a semantic tree called modified CSG tree. A classical CSG tree can
be viewed in the example of Figure 1 a. The proposed modifications consider
the following changes: (1) the representation is hybrid (CSG/Brep); (2) one­
place nodes are allowed for local operations (e.g. face extrusion); (3) both
local and global operations are implemented based on the same set of
operators (e.g. Euler operators); (4) primitive solids are instances of Brep
(Boundary Representation); (5) the binary tree is exhibited in reverse order;
(6) each modelling state has one of the following relationships with other
solids: part-of, is-a, trans-of and term-of; (7) general nodes are allowed (that
is, other than topological ones). Figure Ib shows a modified CSG tree.

The relation trans-of is associated to local operations found in Brep and
the relation term-of is associated to terms of a global operations (such as the
boolean difference between two solids).

The idea of the modified CSG tree is to permit the integration of solid
modelling process into more general design process models. The nodes of
the tree can be viewed as design agents with specific intentions. Furthermore,
the authors propose the concept of design views where at least two
orthogonal views co-exist when one is carrying out a solid modelling
process. The first one is the geometric view in which lies the modified CSG
tree and the second one is the construction view from where more general
design agents drive the modelling view. Figure 2 illustrates those two views.
Other possible views represent specific relationships such as part-of and is-a.

66

a. Traditional CSG Tree

BRUNO FEU6 ET AL.

Lop = Local operator
Gop = Global operator

Lop1 = split face

Lop2 = extrude face

Lop3 = scale solid

Gop1 = difference.----",----.

InIns-ot

• •

b. Modified CSG Tree

Figure 1. Traditional CSG tree and modified CSG tree.

_ Design Agent

Construction
View

/' ./'

0~.z-/
~ ModinedCSG Tree

Geometric View

Figure 2. Design views.

In a system with those two views, a design agent can inherit properties
from both the geometric view and the construction view. This integration
allows a designer to specify a change in the radius of a cylinder either from
the construction view environment or from a mouse movement in the 3D
environment of the solid modeller. In any case, if the system is reactive, there
will be a chain of dynamic modifications according to pre-established
conditions or intentions.

REACTIVE DESIGN AGENTS IN SOLID MODELLING 67

7. The Object Paradigm

Design agents are based on the object paradigm. However, they do not
commit themselves to any specific object-oriented language. For instance,
inheritance of agent properties is automatically established when an agent is
made child of another agent. Also inheritance is overridden by the explicit
local inclusion of a specific method or attribute, with a null or non-null
value. In this case, searching for a value or a method in the ancestry tree is
prevented by the simple local occurrence of the attribute(s)/method(s) in
question. Furthermore, inheritance is totally dynamic during execution time.
Also design agents are mutable objects in the sense that their properties may
change with the passing of time. Another characteristic of the prop<osed
agents is that an object can be defined as an aggregation of parts which are
themselves other objects. Objects formed in this manner are called, in the
scope of this work, composite agents and the type of relationship amongst
them are called part-of. The method for implementing composite agents is
by defining agent names as the values of composite agents' attributes.

The ability of supporting mutable objects implies the propagation, or at
least the communication, of changes occurring in the mutant object to those
other objects that have references to it. This propagation of changes is
implemented by procedures attached to attributes called attached predicates.
Attached predicates are used for the purpose of triggering procedures on
variable access, drawing on the style of active values and access-oriented
programming techniques (Stefik, Bobrow and Khan, 1986) (Inference
Corporation, 1985). This idea is also motivated by the new concept of active
database systems (Abiteboul et aI., 1995) (Widom and Ceri, 1995) (Picouet
and Vianu, 1995). The understanding of the active objects context used by
DBMS workers might help one situating the present work.

Active database systems provide "trigger systems" that execute actions
in response to specified events according to rules in ECA form, that is: on
<Event> if <Condition> then <Action>. These rules have three methods of
firing: immediate (i.e. a rule is fired as soon as its event and condition
becomes true); deferred (i.e. rule application is delayed until a specific state
is reached); concurrent (i.e. a separate process is spawned for the rule action
and executed concurrently with other processes). In relational active
database systems, the action involves a sequence of insertions, deletions and
modifications, and in object-oriented active systems it involves one or more
method calls. From these definitions, one can notice that DBMS workers and
AI workers share some fundamental concepts, although they use different
sets of terminology. However, the context, problems and goals of those areas
are substantially distinct. Moreover, the lack of extensive theoretical works in
those areas make difficult to look for a common formal framework (e.g., see

68 BRUNO FEU6 ET AL.

Aiken et al. (1992), Beeri and Milo (1991), Hull and Jacobs (1991) and
Picouet (1995) for the case of DBMS).

Only one kind of attached predicate is implemented in this work, called
if-changed. This kind of predicate is a procedure that must be executed in
the case of an attribute value being tentatively changed, before the assertion
of the attribute value takes place. This predicate behaves like "watchdogs"
of the attributes to which they are attached.

The attached predicate if-changed are used to implement internal
reactivity within an agent. For instance, the attempt of changing the radius of
a cylinder may cause a change in the value of its height if some relation is
previously imposed on these attributes (say, height = 5 * radius), as
illustrated in Fig. 3.

I r I

h = 5· r

cylinder1

radius:
ifch: setr

function setr(r)
if r> 0 then

h= 5* r
return add (new value of h in cylinder1)

end
return FALSE

end

Figure 3. Internal reactivity.

However, more interesting cases of reactivity involves several agents. The
rest of the paper considers this kind of reactivity.

8. A Reactive Design Agent Architecture

The authors propose the following taxonomy for the attributes of design
agents:

identification attributes (I): [label] [description] [status]
form attributes (F)

relationship attributes:[is-a] [children] [part-of] [link-to]
[alternative] [version] [trans-of] [term-of]

structure attributes: [physical] [geometric] [behavioural]
function attributes if): [intent] [functional specification] [performance

specification]

In this taxonomy, description is a short note in text format or even in
audio format; status is the current situation of an agent (alive, alternative or
version); trans-of and term-of are used by the modified CSG tree mentioned
above; structure attributes may be physical (e.g. color), geometric (e .g.
radius), behavioural (e.g. temperature = 35 C, obtained from a thermal
analysis); intent describes the designer's intention. In the evolutionary

REACTIVE DESIGN AGENTS IN SOLID MODELLING 69

design process functional specifications (e.g. pleasant temperature) tend to
be transformed into performance specifications (e.g. 18 temperature 25).

The data structure for design agents used in this work follows the
taxonomy above, that is:

agent { label; description; parents; children; parCoClist; link_list;
attribute_list };

attribute { label; datatype; attribute_type; ifch; putfn; value }.

Figure 4 illustrates the proposed agent architecture. In this architecture,
GeoObj is part of the solid modeller application and Hagent is a hybrid
agent representing a class of solids. Hagentl is, for example, an instance of
Hagent. Each hybrid agent in the Geometric view has a counterpart in the
Construction view and the integration between these views is made by
binding them. This binding is established by associating addresses of objects
in the Geometric view (void *) with labels in the Construction view (char *).
In this case, a design agent Hagenti can inherit properties from both the
geometric view and the construction view.

GeoOb

is-a
Ha ent
attr: (void 0) ~------'t------+---~

Geometric
Environment

(G)

Figure 4. Proposed agent architecture.

Construction
Environment

(C)

Design agents are reactive in solid modelling through the relation link-to.
The members linki of the list of links link_list of a design agent are twofold,
that is:

linki = {agentk; reactionk} , i = 1, n

70 BRUNO FEU6 ET AL.

where n is the number of linked agents and reactionk is the reaction of
agentk. For instance, if the agent cylinderl would be linked to the agents
boxl and box2, its link_list could be: {{ boxl ,reactboxl }, {box2 ,reactbox2} }.
In this case, reactionk is defined as follows:

Def. Given the attributes attr and attrk of the agents agent and agentk
and a set of other attributes of these agents {tl, ... ,tn}, reactionk(agent,
agentk) establishes that if the condition attr = f(attrk, t1, .••) is not
satisfied, then the intention of agent should be imposed over agentk
by the inverse attrk = Io(attr, t1, ...) followed by an action and the
addition of new attributes values through the predicate add_value.
action is optional and can be any procedure returning or not a new
attribute value.

Figure 5 presents the pseudo-code version of a generic predicate reactionk
and an example for the case where the radius of cylinder 1 is intended to be
equal to 113 of the height of box2 and an action is imposed in order to move
box2 along the axis X.

Before adding a new value to an attribute of an agent, the predicate
add_value executes every predicate reactionj found in the link_list of the
agent. This mechanism guarantees the full propagation of the changes.

In order to have reciprocity between two agents, one should define the
predicate reaction for both agents. In the example of Figure 5, one should
define another reaction with the condition height = 3.0 * radius and an
inverse radius = height/3.0.

function reactionk (agent, agentj)
get attribute values

if condition is not satisfied then
fmd the inverse of condition and get new attribute value
perfonn action
return add_value (the new attribute values)
...

end
return TRUE

end

(a) General Template

function reactboxl (cylinder l, box2)
get radius of cylinderl
get height of box2
get positionx of box2
if radius < > (height /3.0) then

height = 3.0 * radius
newpos = radius + positionx
return add_value (height to box2) and

add_value (newpos to box2)
end
return TRUE

end

(b) An Example

Figure 5. The function reaction

9. A Development Tool for Design Agents

In this paper, an abstraction layer is proposed for the development of CAD
systems based on an architecture of design agents. The integration of the
construction environment into the geometric one (and vice-versa) is done by

REACTIVE DESIGN AGENTS IN SOLID MODELLING 71

registering functions and manipulating them through their labels. This
abstraction layer is valid for any solid modeller or geometric modeller that
use an open architecture. Two in-house solid modellers were tested and a
commercial one (ACIS, from Spatial Technology) is under investigation.
This abstraction layer .uses the Application Programming Interface (API)
presented in Table 1.

TABLE I. Proposed API.

- Control functions
add_agent
add_attr
add_iCch
add
del_agent
del_attr

(label)
(label, attr, datatype)
(label, attr, ifch)
(label, pred, def)
(label)
(label, attr)

- Information and modification functions
list_agent
list_pred
liscparent
list3hildren
list_parts
lisClinks
lisCattr
has_pred
has_attr
has_attr_ val
has_iCnd
has_iCch
has_parents
has_part
has_link
has_link_pred

()
()
(label)
(label)
(label)
(label)
(label)
(pred)
(label, attr)
(label, attr)
(label, attr)
(label, attr)
(label, prt)
(label, prt)
(label, Ink)
(label, Ink)

- Relationship functions
is_a (chd, prt)
parcof (subpart, part)
link_to (chd, prt, rprt, rchd)
deUs_a (chd, prt)
del_parcof (chd, prt)
del_link_to (chd, prt, rprt, rchd)

- Assignment and retrieval functions
add_value
pucvalue
get_value
jask_value
ask_datatype
ask_number
ask_agent

(label, attr, value)
(label, attr, value)
(label, attr)
(label, attr)
(label, attr)
(value)
(label)

- Auxiliary functions
next_label (list, pos)
nexcagent (pos)
nexcattr (obj, pos)

- Graphics interface functions
hisCforward ()
hisCbackward ()
display_view (view, dc)
display _curcstate (view, dc)
find_mM (view, xm, xM, ym, yM)
pick (view, x, y)
gecnode_level (view, label)
gecnode_depth (view, label)

- Solid modeller interface functions
bind~_modeller (char *appl, void

(*allconst)(void), void(*allgeo)(void))
bind_g_agent (char *Hcagent, void

*Hgagent)
bind~_attr (char *Hcagent, char

*attr, char *datatype, char *putfn)
unbind~modeller (char *appl)
registecg_action (char *name, void *act)
register3_action (char *name, void *act)
do_action ()
secaction (char *appl, void *act)

72 BRUNO FEU6 ET AL.

The hybrid nature of the agents (Figure 4) is established by the solid
modeller interface functions. For instance, bind_g_modeller binds a
geometric modeller to the agent environment by specifying the following
parameters: the application name (e.g. ACIS); a pointer to a function that
registers all predicates in the construction view; and a pointer to a function
that registers all predicates in the geometric view. bind~_agent binds the
geometric agent Hgagent to the construction agent Hcagent. bind_g_attr
binds a geometric attribute to its counterpart in the construction view
through the function putfn. putfn is a procedure to update an attribute in the
geometric view when a change is made in the construction view.
register _g_action registers a function that should be executed by the
geometric modeller to manipulate agents in the construction view. This
function is determined by its name and a pointer to it. register _c_action
registers a function to be executed by the construction environment to
manipulate the geometric modeller.

The authors developed a construction environment called DObEd
(Design Object Editor) integrated into a solid modeller written in C++ and
using the proposed API. Fig. 6a shows the 3D environment of the solid
modeller with 3 solids, HBoxLeft, HCy) and HBoxRight (H standing for
Hybrid), which are instances of the classes HCylinder and HBox. Figure 6b
illustrates the environment to work with the construction view. In this
example, the geometric attributes of the solids are as follows: radius and
height of the cylinder; length, height and width of the boxes; coordinates
posx, posy and posz of the center of mass of the solids. The following agent
intentions are defined:

cyCbxr of Heyl over HBoxRight:
height of HBoxRight = 3.0 * radius of Heyl
push HBoxRight

bxr _cy/ of HBoxRight over Heyl:
radius of HeyJ = height of HBoxRight / 3.0

cyCbx/ of Heyl over HBoxLeft:
height of HBoxLeft = radius of HeyJ / 2.0

bxCcy/ of HBoxLeft over Heyl:
radius of Heyl = 2.0 * height of HBoxLeft

The lists of agents, predicates, attributes and predicates can be browsed
through the Design Object Interface developed with the proposed API, as
illustrated in Figure 7.

REACTIVE DESIGN AGENTS IN SOLID MODELLING

".0. 'bi ,...,..'
llf~g JIII frt

-C-

-=-
,

~"'''~..: ... l~ Mt.to'''-'_ 'l...MI'Il

Figure 6. Geometric and construction environments.

-.­I ql.. 1oe.tl ,. • ~ (Ma..olt ... vd,(c. "'a41ua-))
f::f t : =~ ~:::::~ :: ~\~ ~)
!oed til .. ~(i\e.a..ott.V&U b. "Uldth-))
lou1'"

.it r C t.ll.O) \.hen
t .. 3.0'11"
k • , • ,. • (,,/1:.0)
n add...M.iue(IIi ~t;~, t ~ •

..... ~(b, -..... ·,b)

Figure 7. Design object interface and predicate definition.

10. Conclusions

73

III

.!A' ,
v,..,.,

:;~:;:O"'''' 1
Villi" ••

........ - .1
'VLi~
41>' 11 \,

,."sU JU

The authors of this work believe that design automation systems should have
their focus on reactivity rather than on symbolic representations of design
knowledge. The complexity of the design process, its surprises, creative
insights and large number of variables seem to be more adequately
manipulated within an environment that can be adjusted without
interruptions during design state evolution.

The authors started investigating this sort of reactive environment in the
domain of solid modelling. Traditional constraint solid modelling (Feng and
Kusiak, 1995; Solano and Brunet, 1994) cannot cope gracefully with several
types of events, such as the creation of a new solid as a consequence of
changing the height of another one or the call of an entire design code for

74 BRUNO FEU6 ET AL.

conformance checking. The approach proposed by the authors does not
exclude the use of mathematical programming or any other formalism, once
they can be used in specific tasks. In fact, the authors are investigating the
use of an API based on logic and objects in order to have logical deductions
within the reactive environment. Anyway, the authors do not have the
intention of pursuing optimal solutions from a set of constraints or
preserving completeness properties. However, impossible sets of intention
can be easily identified within few steps of execution. Again the idea here is
to leave tasks and decisions for the reactive nature of the environment.

Future work also include the development of other design views that
could manipulate geometric agents in a more autonomous way. This would
be the case where an agent defines the intention of another agent.

The authors have not carried out extensive tests to compare the agent­
based approach with other symbolic modelling approaches. However, the
prototype reveals high degrees of functionality, speed and very low space
requirements, specially because it uses straightforward procedural
programming. Moreover, in reactive agent-based approaches there are no
time consuming inference processes.

Acknowledgments

The authors would like to acknowledge CNPq, CAPES and JNICT for the financial
support. The authors would also like to thank Dr. Sebastiao A. L. de Andrade and Dr.
Pedro Vellasco for the valuable discussions.

References

Agre, P. E. and Chapmen, D.: 1989, What are plans for?, A.1. Memo 1050a, Artificial
Intelligence Laboratory, MIT.

Aiken, A., Widom, J. and Hellerstein, J. M.: 1992, Behavior of database production rules:
Termination, confluence, and observable determinism, Proceedings ACM-SIGMOD
International Conference on Management of Data, pp. 59-68.

Arkin, R. C.: 1990, Integrating behavioral, perceptual and world knowledge in reactive
navigation, in P. Maes (ed.), Designing Autonomous Agents: Theory and Practice from
Biology to Engineering and Back, MIT Press, Cambridge, MA, pp.105-122.

Baecker, R. M. (ed.): 1993, Readings in Groupware and Computer-Supported Cooperative
Work, Morgan Kaufmann.

Bates, J., Loyall, A. B. and Reilly, W. S.: 1992, Integrating reactivity, goals and emotion in
a broad agent, Technical Report CMU-CS-92-I42, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA.

Beeri, C. and Milo, T.: 1991, A model for active object-oriented databases, Proceedings of
International Conference on Very Large Data Bases, pp. 337-349.

Bento, J.: 1992, Intelligent CAD in Structural Steel: a Cognitive Approach, PhD Thesis,
Expert Systems Laboratory, Imperial College, London, UK.

Bond, A. H. and Gasser, L. (eds.): 1988, Readings in Distributed Artificial Intelligence,
Morgan Kaufmann.

Brooks, R. A.: 1990, Elephants don't play chess, in P. Maes (ed.), Designing Autonomous
Agents: Theory and Practice from Biology to Engineering and Back, MIT Press,
Cambridge, MA.

REACTIVE DESIGN AGENTS IN SOLID MODELLING 75

Brooks, R. A.: 1991, Intelligence without reason, A.I. Memo 1293, Artificial Intelligence
Laboratory, MIT.

Brown, K. N., McMahon, C. A. and Williams, J. H.: 1994, Contraint unification grammars:
specifying languages of parametric designs, in 1.S. Gero and F. Sudweeks (eds.), Artificial
Intelligence in Design '94, Kluwer, Dordrecht, pp. 239-256.

Cohen, P. R. and Levesque, H. J.: 1994, Intention is choice with commitment, Artificial
Intelligence, 42, pp. 213-26l.

Feij6, B. and Bento, J.: 1991, A cognitive approach to design, CMEST Report AI 5/91, 1ST,
Lisbon.

Feng, C. and Kusiak, A.: 1994, Constraint-based design of parts, Computer-Aided Design,
27(5), pp. 343-352.

Georgeff, M. P., Lansky, A. L. and Schoppers, M. J.: 1987, Reasoning and planning in
dynamic domains: an experiment with a mobile robot, Technical Report 380, Artificial
Intelligence Centre, SRI International, Menlo Park, CA.

Haase, B.: 1992. Who and what is smart: Intelligent CAD capabilities range from
associativity to "KBE", Design Net, 1(6), pp. 19-25.

Hull, R. and Jacobs, D.: 1991, Language constructs for programming active databases,
Proceedomgs of International Conference on Very Large Data Bases, pp. 455-468.

Inference Corporation: 1985, ART Programming Manual, Inference Corporation, Los
Angeles.

Maher, M. L.: 1990, Process models of design synthesis, AI Magazine, Winter, pp.49-58.
Minsky, M. L.: 1988, The Society of Mind, Pan Books, London, UK.
Picouet,P.: 1995, Puissance d'expression et Consistance Semantique de Systemes de

Triggers, PhD Thesis, Ecole Nationale Superieure de Telecommunications, Paris.
Picouet,P and Vianu,V.: 1995, Semantics and expressiveness issues in active databases,

Proceedings of the 14th ACM Symposium on Principles of Database Systems (PODS),
San Jose, California, USA, pp. 126-138.

Prates, A. J.: 1993, Fundamentos e Especijicayiio de um Ambiente de Design baseado em
LOgica e Objetos, Tese de Mestrado, Laborat6rio de CAD Inteligente, Dept. de Eng. Civil,
PUC-Rio.

Scheer, S.: 1993, Uma Analise Critica sobre 0 Tratamento Cognitivo de Design em Sistemas
de CAD, Tese de Doutorado, Laborat6rio de CAD Inteligente, Dept. de Informatica, PUC­
Rio.

Shoham, Y.: 1993, Agent-oriented programming, Artificial Intelligence, 60(1), pp. 51-92.
Simon, H. A.: 1969, The Sciences of the Artificial, MIT Press, Massachusets.
Simithers, T. and Troxell,W.: 1990, Design is intelligent behaviour, but what's the

formalism?, AI EDAM, 4(2), pp. 889-98.
Solano, L. and Brunet, P.: 1995, Constructive constraint-based model for parametric CAD

systems, Computer-Aided Design, 26(8), pp. 614-62l.
Steels, L.: 1990, Towards a theory of emergence functionality, Proceedings First

International Conference on Simulation of Adaptive Behavior, MIT Press, Cambridge,
MA, pp. 451-46l.

Stefik, M., Bobrow, D. and Khan, K.: 1986, Integrating access-oriented programming in a
multi-paradigm environment, IEEE Software, IEEE Inc, New Jersey.

Vere, S. and Bickmore, T.: 1990, A basic agent, Computational Intelligence, 6, pp. 41-60.
Widom, 1. and Ceri, S.: 1995, Active Database Systems: Triggers and Rules for Advanced

Database Processing, Morgan Kaufmann, San Francisco, California.
Wood, S.: 1993, Planning and Decision Making in Dynamic Domains, Ellis Horwood Ltd.
Wooldridge, M. J. and Jennings, N. R.: 1994, Agent theories, architectures, and languages: a

survey, Proceedings ECAI94 Workshop on Agent Theories, Architectures and Languages,
Amsterdam, The Netherlands, pp. 1-32.

Wozny, M. 1., Turner, J. U. and Preiss, K. (eds.): 1990, Geometric Modelling for Product
Engineering, Elsevier Science, The Netherlands.

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 77-96.
© 1996 Kluwer Academic Publishers.

A FRAMEWORK FOR DESIGN OBJECT EVOLUTION

Building and cataloging artefact prototypes

NIGEL R. BALL, TIM N. S. MURDOCH AND KEN M. WALLACE
Engineering Design Centre, Department of Engineering,
University of Cambridge, Trumpington Street, Cambridge,
CB21PZ, UK.

Abstract. This paper presents current work on Product Data Modelling in the
Cambridge Engineering Design Centre (EDC) that offers a novel approach to
circumventing some of the known problems with the Object Oriented paradigm in the
design domain. A data driven approach to object based design is described that allows the
designer to build class prototypes during the design process and capture these prototypes
onto a catalogue. Catalogue class entries can be reused in an evolving product
configuration through a process of selection and specialization with new characteristics.
New classes generated during the design can be instantiated as part of the developing
product design object and also written back onto the catalog as new prototypes.
Catalogues implicitly cluster design objects into abstraction hierarchies that are
maintained and developed by the designer rather than a computer programmer. The paper
illustrates the technique with an industrial case study and discusses how the approach is
being used to develop applications within and without the EDC.

1. Introduction

Design problems are multidimensional and highly interdependent. It is rare
for any part of a design to serve only one purpose and it is frequently
necessary to devise a solution which satisfies (not necessarily optimally) a
whole range of requirements. Any attempt to balance design decisions across
an entire product configuration to obtain total functionality and design
optimization involves a complicated process of data processing. For example
modification to an element in one sub-assembly may result in unpredictable
consequences and unresolved conflicts among various others. The task of
synthesizing, analyzing and evaluating a self-contained design system is
difficult as it needs a vast amount of knowledge and information from
diverse sources. Further complications arise when various sub-systems within
a design environment have been implemented using different design
philosophies, computer languages and system platforms. As a result, the

78 NIGEL R. BALL ET AL.

design, implementation and maintenance of such complex design
environments is a costly, lengthy process that has yet to be fully achieved
(Wallace, 1992).

2. Design Data Representations

A design system must be able to represent and supply useful amounts of well
understood and well structured objects for use in design. For example
knowledge base objects can be categorised by their structural, functional and
causal relationships. A structural relationship states how two (geometric)
objects are physically connected. A functional relationship determines how
two or more (not necessarily directly connected) objects contribute to the
behaviour of an overall system in responding to a particular set of initial
states. A causal relationship identifies the dynamic nature of two objects in
qualitative terms ego what is the behaviour of object B if object A behaves in
certain way. It is instructive to consider the types of design knowledge
supported in the CAD domain with respect to required input, output and
constraints. Table 1 presents four distinct generations of CAD tool
functionality with current CAD tools belonging to the second generation
(Burgess and Wallace, 1995).

TABLE 1. Generations of CAD functionality.

GENER- INPUT INPUT OUTPUTS CAD
ATION REQUESTS CONSTRAINTS TOOL TYPE

Fourth Transmit Functional Working Functional
power 3D Geometric principle Synthesiser

Engineering

Third Shaft, keyway 3D Geometric Dimensions Functional
Engineering Materials Modeller

Second Cylinders, 3D Geometric Dimensions Solid Modeller
(present) slots

First Lines,circles 2D Geometric Dimensions 2D Draughting

The types of design objects representing the input to each generation are
characterized by an increasing level of abstraction against a geometric
understanding of product breakdown. Current generation CAD systems
focus on variant design ie. manipulation of object parameters rather than
redefinition of the object itself. However variant design is at the lowest level
of the three levels of design identified by Pahl and Beitz (1984) as
• original design which involves elaborating an original solution principle;

A FRAMEWORK FOR DESIGN OBJECT EVOLUTION 79

• adaptive design which involves elaborating a known system;
• variant design which involves varying the size or arrangement of certain

aspects of the chosen system;
and object manipulations in the design context (Ahmed et aI, 1991) extend
beyond simple parametric change to encompass -
• addition! removal! renaming of a instance or class variable;
• changes to the type of a class variable;
• changes to the default value or range of class variable;
• addition of super! sub classes in a class hierarchy;
• re-ordering of a class hierarchy;
• addition! removal of classes from a class library.

If we consider the types of object manipulation that are needed to
support different design activity (Table 2) then variant design can be seen as
requiring simple parametric change.

TABLE 2. Class manipulation as a function of design.

ORIGINAL ADAPTIVE VARIANT
DESIGN DESIGN DESIGN

change instance variable V V V
change class variable V V x

change class method V V x

change class hierarchy V? x x

change class library v? x x

To support designers beyond variant design new CAD tools require a
flexible class representation that permits manipulation of generic container
classes to support at least the first three types of manipulation without
recourse to library re-compilation. Essentially this library should allow the
designer to construct "design objects" during the process of design in an
evolutionary fashion. Note that original design does not necessarily imply
completely new class representations - much creative design is feasible
without radical changes to the design object representation.

3. Object Oriented Approach

Design can be considered to be object-oriented, constructive and incremental
in that designers use basic components and simple mechanisms to construct
larger and more complicated systems. A thorough understanding of basic
components, their function, behaviour, and relationships in a dynamic
situation forms a good basis for creating new designs. Computer-based
design support systems need sophisticated knowledge representation

80 NIGEL R. BALL ET AL.

schemes, powerful inferencing systems and efficient control methods in
order to cope with the complexity of real world designs.

3.1 OBJECT ORIENTED TECHNOLOGY IN DESIGN

Object Orientation (00) is a paradigm which attempts to overcome the
limitations of conventional computational models by bridging the gap
between a piece of data and its operations (Khoshafian and Abnous, 1990).
In an object-oriented system, objects represent dynamic entities in computer
memory that define data state. An object can typically serve to group data
that pertains to one real world entity and encapsulate both state and
behaviour by having a set of procedures that specify permissible operations.
Sets of similar objects are grouped together under classes. This simplifies
association of knowledge within objects by keeping the implementation
details private within each class, thus allowing interactions between objects of
different classes to be easily controlled and manipulated. The information
about how an object behaves is hidden from the behaviours of other objects,
only their interactions and relationships in different circumstances are
described globally. An Object-Oriented approach is applicable in the design
domain because of features such as abstract data typing and polymorphism
but has significant weaknesses (Nguyen and Rieu, 1991) such as
• generic relationships are fixed at the class level;
• semantic relationships are difficult to represent in composite objects;
• object variants can only be modelled by multiple instantiation;
• object evolution I reclassification requires class library recompilation.
These weaknesses have led to a number of extensions to the paradigm
(Nguyen and Rieu, 1992; Demaid and Zucker, 1992; MacKellar and
Peckham, 1992; Donaldson and MacCallum, 1994) such as
• semantic relationships - extending object relationships beyond IS-A and

HAS-A;
• multiple object perspectives - allowing an object to belong

simultaneously to several points of view;
• dynamic reclassification of objects - support for object migration

through a class hierarchy;
• dynamic evolution of class definitions - changes to class data members

and function members;
The latter is an essential pre-requisite in applications supporting design
synthesis and is the subject of this paper.

3.2 RESEARCH AT THE CAMBRIDGE ENGINEERING DESIGN CENTRE

The research aim of the Cambridge Engineering Design Centre (EDC) is to
support designers and design teams throughout the design process by

A FRAMEWORK FOR DESIGN OBJECT EVOLUTION 81

providing them with knowledge-based tools. Complex mechanical
engineering systems have been targetted because of their large geometric
content and requirements for team-based design that supports evolving
design knowledge at different stages of the design process.
The major research efforts applying Artificial Intelligence-based design
techniques have focused on:
• resolving the tensions between formalising design data and ensuring its
usefulness by developing the Cambridge Product Data Model (CPDM)
(Murdoch and Ball, 1994; Murdoch, 1995) to provide a distinct
representation of generic and domain specific knowledge (using multi-layer
and multi-perspective knowledge structures of design process) and achieve a
high degree of reusability;
• developing a theoretically consistent process model (PROSUS) (Blessing,
1993) that can provide a good basis for systematizing design methodologies
in the mechanical engineering domain;
• validating computational design techniques via case studies involving
actual design data capture and design result evaluation;
• understanding design activities and capturing design experience and
expertise though collaborative projects with industrial partners.
Object-oriented techniques and tools offer a useful way of coping with the
complexity inherent in CAD/CAE projects. Clear strategies are being
adopted at the EDC in the design of object-oriented systems by
• identification of objects (class elicitation);
• identification of class hierarchies (class structuring);
• establishment of message protocols (interactions between objects);
• mappings of methods - functions (reasoning about objects).

3.3 EXAMPLE CASE STUDY

The mature and complex nature of aero engine design has lead to the
development of a wide range of specialist analysis techniques and tools. A
good example of the nature of the tasks undertaken in aero engine design
can be found in the high pressure turbine cooling air system (HPT/CAS), a
portion of which is shown in Figure 1. The disc rim and blade root from the
high pressure turbine are shown shaded. The combustion chamber lies to the
top left of the figure, the centre line of the engine below it and the lower
pressure turbines to the top right. The turbine blade requires extensive
cooling in order not to melt in the main air stream. The high pressures at this
point mean that cooling air must be drawn from the high pressure
compressor situated up-stream of the combustion chamber. The arrows
indicate the main direction of cooling flows for this cooling air
configuration.

82

Combustion
liner

NIGEL R. BALL ET AL.

Figure 1. Section through a 1970's high pressure turbine cooling air system.

The traditional mechanism for grouping product data using a Bill of
Materials breakdown was found to be inadequate to the task of representing
this system. Consequently the EDC initiated a Product Data Modelling
project to address the issues of capturing and indexing complex technical
systems. Figure 2 shows a schematic for part of the HPT/CAS developed
using the CPDM class libraries. The figure shows two groupings of design
information: firstly the geometry of the HPT/CAS components and parts
(represented by a simple 2D view) and secondly the flow of cooling air
through the system (represented by flow lines between key points on each
component). Both groupings represent functional interactions between
physical components, one force transfer and one air flow, which must be
supported by the CPDM representation.
Another important issue in grouping design data presented itself during the
HPT/CAS case study. The HPT/CAS bleeds high pressure cool air from the
last stage of the HP compressor, feeds it inside the combustion annulus and
through to the HP turbine where it is used to cool the shaft, disc and blade.
The design of the system takes advantage of parts from the HP compressor,
combustor and HP turbine assemblies. This implies that these parts are being
designed by two design teams with different functional requirements and
perspectives of the design problem. This is a typical scenario in the design of
complex and mature products where secondary systems are required to
support the overall functionality without increasing cost or reducing
performance. References within the paper to the HPT/CAS are shown in a
bold typeface.

A FRAMEWORK FOR DESIGN OBJECT EVOLUTION

----ll Airflow

~~I r i

i Blade n
~

\
i

Disc

Figure 2. Schematic of HPT/CAS configuration.

4. The Product Data Model Architecture

83

The Cambridge Product Data Model (CPDM) forms the kernel of the
Integrated Design Framework (Ball and Bauert, 1992) that supports the
integration of heterogeneous systems capturing the creation and evolution of
common design information. The following requirements have guided the
design and development of the system architecture :
• support for the simple product breakdown tree;
• support for part decomposition in terms of components and features;
• modelling both physical and functional interactions between assemblies,

parts and components;
• support for multiple perspectives on the product data;
• support for independent but interlinked product breakdowns;
• support the attachment of simple static data;
• capture of geometric data and CAD / CAM files;
• support the attachment of existing methods of representing technical

data;
• adapt to new schema data as the product and the design process develops.

84 NIGEL R. BALL ET AL.

Attempts to satisfy the above list of requirements have produced an
object-oriented system implemented in C++ that represents engineering
design entities such as parts, components and assemblies. Each design entity
has links to resource objects that can be instantiated to capture data for a
specific design application. A neutral 'data entry' application (discussed in
section 5) is built into the CPOM as a design knowledge acquisition tool for
the designers to extend the object classes in the hierarchy or create instances
of design object classes to be used in the new design. The definitions of
objects and the way in which they can be structured in the CPOM also
provides basic guidelines for defining engineering design objects. The
CPOM is intended to form the basis for a number of engineering design
tools being developed to share data through a common object-based
database.

The development of CPOM represents the EOC's formulation of
engineering design knowledge in an object-oriented way so that it can be
shared by domain-specific design application systems. The key issues
addressed in the development of this system are generality and reusability of
engineering design objects. The underlying construct behind this approach
is the prototype (Gero, 1990) - a generalized artefact that can be
manipulated during the design process by the designer allowing co­
development of the design object representation and the actual product. The
design prototype plays two roles in this approach - a representation schema
for collecting and integrating information relating to a design concept and
an operationalization mechanism for the concept. To fulfill these roles a
design prototype must capture descriptions of function, behaviour and
structure as well as embedding knowledge which supports the reasoning
behind design synthesis, analysis and refinement.

The relationship of this work to other research in the field is compared in
Table 3 by considering the types of extension (described in 3.1) to the 00
paradigm offered by three other systems - SHOOO, SORAC and CFS.

TABLE 3. Generations of CAD functionality.

CPDM SHOOD SORAC CFS

semantic relationships ..J ..J ..J ..J
multiple perspectives ..J ..J ..J ..J
dynamic reclassification x ..J x x

class schema evolution ..J ..J x ..J

SHOOO (Nguyen and Rieu, 1992) is an object-oriented data model
designed to support highly dynamic applications. It implements support for
object schema evolution (at both class and instance level), user defined

A FRAMEWORK FOR DESIGN OBJECT EVOLUTION 85

semantic relationships between objects, and support for multiple object
representations.

SORAC (MacKellar and Peckham, 1992) is a semantic modelling tool
that supports active semantic relationships modelling parts and connections
and allows a designer to specify behaviours associated with relationships
within an 00 representation.
CFS (Donaldson and MacCallum, 1994) is an 00 frame system that supports
the evolutionary development of a design concept model and provides a
testbed for prototype-based representation. Each concept in CFS is an
instance of a composite class whose 'slots' point to 'feature' objects.

All of these systems support the development of semantic relationships
and multiple perspectives albeit using different mechanisms. Dynamic
schema evolution is not supported in SORAC because the emphasis is on
rich semantic modelling rather than novel class structures. The issue of
dynamic object reclassification is comprehensively addressed in SHOOD but
not in the other systems. The remainder of this section describes the
architecture of the CPDM and highlights how this architecture supports
• semantic relationships, by specification of Equation objects;
• multiple perspectives by specification of System objects;
• class schema evolution by specification of Resource objects.
The issue of dynamic reclassification is discussed in section 5.

4.1. DESIGN OBJECT HIERARCHY

The framework for indexing a single layer of artefact data is shown in
Figure 3. In common with many product data models the product (three
shaft gas turbine) is broken down into assemblies (HP module) and
assemblies into either parts (turbine blade) or further assemblies (HP
turbine) (Murdoch and Ball, 1994). A part is broken down in terms of
components (aerofoil section) where the actual geometry is defined. The
geometry of a component may be enhanced by the addition of features
(drilled holes). Interfaces (fir tree root - disk connection) are shown
between nodes on the product breakdown and describe the connections
between artefact elements.

The component network supports two different types of perspective. One
is a traditional product hierarchy where parts are collected into assemblies,
and assemblies into further assemblies until the product is complete. This
conforms to a traditional Bill of Materials view of modelling product data in
clustering elements according to physical relationships. The breakdown is
strictly hierarchical with each node being referred to only once in the tree
structure (eg. the core of a three-shaft gas turbine is described in terms of
three compressor assemblies, a combustor assembly and three turbine
assemblies) .

86 NIGEL R. BALL ET AL.

Product Systems

Figure 3. CPDM Framework: A hierarchical network of product elements.

The second type of perspective is product systems, where components are
clustered according to functional relationships (see section 4.3).

4.2. LAYERS

The product schema shown in Figure 3 has been described using an example
from a mechanical breakdown of the product. This combined tree and
network breakdown may also be used to support other types of information.
Figure 4 demonstrates the requirement for multiple layers of artefact data
during the life of a product. The first layer is shown supporting the
functional description of the product and others are shown supporting
embodiment, detail and life cycle information. Each layer uses a entity
structure to support different but compatible breakdowns of a single product
similar to Andreasen's chromosome model (Mortensen and Andreasen,
1993). Links between layers map causal relationships between entities.
Compatibility is defined in terms of a consistent mapping between layers
(eg. the mapping between the function 'compress air' and product
assembly 'HP compressor' is shown by linking the compress air nodes in
the function layer to the HP compressor node in the detail layer).

A FRAMEWORK FOR DESIGN OBJECT EVOLUTION 87

LIFE CYCLE
DETAIL

Figure 4. Multiple Layers of cross linked artefact data.

4.3. MULTIPLE PERSPECTIVES

The product definition (Figure 3) also supports the concept of systems that
provide new groupings of existing nodes in the product breakdown. Systems
(cooling air system) may be broken down into their constituents of
assemblies (compressor, combustor, turbine), parts and components or
further systems (HPT cooling air system). Systems in the CPDM support
"tightly coupled views" in that all processing occurs in the base objects
rather than in the System object itself. This constrasts with more
sophisticated approaches supporting "loosely coupled views" where
processing occurs in the view directly (MacKellar and Peckham, 1994).

The use of multiple layers of data (Figure 4) and multiple perspectives
within each layer (Figure 3) enables management of data ownership. The
design of complex technical systems requires multi-disciplinary design
teams. Each team requires its own perspective on the design data. By
declaring these perspectives in the form of system networks the ownership of
a specific item of product data can be managed effectively.

4.4. RESOURCES

There are at least five types of core product data, found in several of the
stages of the design process :
• Specification: a description of requirements for other product data;

88 NIGEL R. BALL ET AL.

• Function: a description of the behavioural properties defined by the
interaction among and between product elements and users;

• Geometry: a description of shape and material properties;
• Attribute: a description of other physical and abstract properties;
• Production and Use Processes: a description of how, when and where to

make, transport, use, maintain and retire the product.
Specification information is relevant to all stages of the design process

and is applicable to all types of design data. Whether the specification is used
to direct the creation of a product concept or to support the evaluation of
competing layout designs, its key element is the list of requirements.

The description of functionality and behaviour are central to both the
conceptual and embodiment stages of design. Function structures and state­
transition diagrams are frequently used during conceptual design and whilst
working in the process domain. The information held and manipulated
within these methods is also central to embodiment design and whilst
working in the artefact domain, where recognisable, though abstract, physical
shapes are used. Thus product data concerning functionality must be
capable of being shared between tasks and either added to or abstracted
from other types of product information.

Geometry, combined with the structure of a technical system, defines
many physical aspects of the artefact. The definition of geometry can be
divided into shape and dimension. While parameters can be used to define
the specific sizes and material properties, shape requires more sophisticated
methods. Attributes capture the remaining internal properties such as
ergonomics and aesthetics. Recognising the separation of parameter and
attribute properties is important in understanding the difference between
design properties (those which the design team can manipulate) and internal
and external properties (those which the design team can effect). Other
whole-life properties are captured under the production and use processes.

Specification, Function, Geometry and Attribute data has been captured
through the implementation of a number of Resource sub-classes which can
be attached to any Artefact via list structures. These subclasses provide the
basic container objects that designers can use to build specific "design
objects" from the CPDM class library. This permits class schema evolution
using a language defined in terms of Resource sub-classes without requiring
reconstruction of the CPDM libraries. Two Resource subclasses are described
in the following sections: Criteria and Characteristic.

4.4.1. Criteria
In the research literature, specification information is defined in terms of
either a free text design brief or lists of specific design requirements (Pahl &
Beitz, 1984, Hauser & Clausing, 1988). Methodical strategies for developing

A FRAMEWORK FOR DESIGN OBJECT EVOLUTION 89

a specification result in structured text or requirements lists. Free text can be
supported by simply referencing document filenames and directories.
Requirements, however, must be specifically defined. The majority of
specification data is modelled using lists of requirement and exchange rate
objects in the Resource sub-class Criteria. The data definition of the class
Requirement, shown in Figure 5, was developed from that used in the
undergraduate teaching tool SpecBuilder (Thomas & Wallace, 1990) and the
configuration optimisation tool KATE (Murdoch, 1993).

class Requirement: {

} ;

character string
character string
character string
character string

Property

List of real
List of real

Descriptor

keyword;
requirement;
who;
when;

property;

target values;
importance weightings;

type of requirement;

Figure 5. Class requirement embedded in the Resource sub-class Criteria

The first four entries are similar to those found in the SpecBuilder
program which also captures the importance of the requirement in terms of
either a demand or weighted wish. This and further numeric information is
captured here in a list of several importance weightings associated against
target values. The type of requirement captures whether the requirement is
attainment of a specific goal or optimization of a property value. The
pointer to a property is used to reference data stored elsewhere and by
methods within the Requirement class to determine how well the current
property value meets the specified requirement.

4.4.2. Characteristic
The functional, geometric and attribute properties of an artefact are stored in
the class Characteristic shown in Figure 6. The class contains lists of three
properties (function, parameter and attribute) and several items capturing
other geometric information.
Functions capture the potential input and output energy, signal and material
flows to an artefact (labyrinth seal - air-output). Parameters capture the
sizes of certain geometric and material features (radial position).

90 NIGEL R. BALL ET AL.

class Characteristic: public Resource {

} ;

List of Functions
List of Parameters
List of Attributes

List of Points Interest

Origin
Orientation

functions;
parameters;
attributes;

points interest;

origin;
orientation;

Figure 6. Characteristic sub-class of Resource.

Attributes capture information which may be derived or measured from
other artefact properties (seal leakage). The Points Interest capture
physical points in space in and around the artefact and are used to assemble
artefact objects in 3D space. They also define the position of the functional
input and output points. The origin and orientation objects store the position
and orientation of the artefact in local coordinates.

The Parameter class is shown in Figure 7. This class overlays four
different types of information (real, integer, text or object reference) onto a
single data member. Thus a parameter may store wall thickness, number of
holes, name of surface colour or simply point to a class containing further
and more extensive information. This latter option has been provided to
support inter-change of standard shapes and materials. Other entries support
the definition of ranges for variation and tolerances on the current parameter
value and a state descriptor to capture variability and inter-linkage to other
product data. The final item is a list of parametric Equation objects. These
equations may be either equalities or inequalities. To maintain a determinate
shape, only one equality equation is allowed to support parametric
geometry. Any inequalities listed model constraints in the product
parameters.

Equation objects may be used to construct links between any
Characteristic property of an Artefact thus enabling the designer to model
semantic relationships between design objects at any level in the Product
hierarchy (labyrinth seal: maximum-rotation-speed <= maximum­
rubbing-speed/2*1t*radius). Capturing the relationships between parameter
and attribute characteristics constitutes a major design activity and is
supported in the CPDM through mappings based on Equation objects,
Analytical (tabular) Data objects, C++ code subroutines and external
standalone tools.

The list of Parameters in Characteristic define geometric variables which
need to be mapped to an actual physical shape in order to define a specific

A FRAMEWORK FOR DESIGN OBJECT EVOLUTION 91

3D body. The mapping of parameters to geometry within the CPDM has
been implemented by building up a body from intersecting primitives and
swept laminas using the ACIS solid modelling kernel (Spatial Technology,
1995).

class Parameter: {

} ;

character string

union {
real
integer
character string
Pointer
} ;

descriptor

real value
real value

descriptor

List of equation

name;

Rvalue;
Ivalue;
text;
pointer;

code;

min, maxi
tolerance;

state;

parametric equations;

Figure 7. Parameter class.

5. Building Design Objects - The Design Object Catalogues

One of the motivations behind the CPDM research is to enable the evolution
of design representations during the process of design rather than as a pre /
post design activity. Specification of the representation before the process is
often premature since a designer's grasp of the problem will be incomplete
and probably biased towards past solutions. Documentation of the
representation after the design is complete may be too late if there is
pressure to move onto the next problem. Hence the underlying philosophy
is one that "doing the design is capturing the data".

The basic approach taken in the EDC to capture design data has been to
enable direct modelling of design object through
• browsing of existing catalogues (by domain type);
• selecting a catalogue entry on the basis of similarity in Resource space;
• adapting the entry by adding new Resource subclass member definitions;
• saving the new node back onto the catalogue as a new class prototype ;
• adding the entry onto the design product tree as a new leaf node;
• specializing the node by entering variable data (slot filling).

92 NIGEL R. BALL ET AL.

The first four activities are performed using an in-house CPDM
application called Compdef This application supports the building of design
prototypes (as described in section 4) within catalogues classified by product
domain such as aerospace or civil engineering. The last two activities are
performed using a design application that is targetted at instantiating specific
Resource sub-class objects.

Each catalogue entry is a design object prototype that represents an
intermediate state between class and instance. It is a generic object that can
be instantiated within the context of a specific design. The implicit
relationship between different prototypes in a catalogue is equivalent to an
abstraction hierarchy where child members have been constructed by a
designer through specification of new Resource objects rather than
predefined as part of a fixed library. As described in 3.1 dynamic
reclassification of abstraction hierarchies may have a role to play within the
CPDM as a clustering mechanism for catalogue prototypes based of
Resource object configuration. Such hierarchies will be one of a group of
clustering perspectives available to the designer. The efficacy of each
mechanism in the group will be dependent on design context. As yet no
research has been conducted into identifying the membership of this group.

Methods mapping data members within a class prototype are modelled
using the Equation and Analytical Methods subclasses. If these are
inappropiate then a Tool class is available to link in external methods.

6. Integration of design applications using the Cambridge PDM

The CPDM class libraries support the storage of project information on a
series of databases. This information can be accessed directly by workbench
applications developed within the EDC using predefined database query and
access routines. Applications developed outside this environment require a
wrapper to access the database and translate the project information to and
from the CPDM protocol. The wrapper also enables certain workbench tools
to communicate with the stand-alone tools directly as part of the Integrated
Design Framework. The supporting knowledge-base uses the same CPDM
schema and data resources, combined with embedded design knowledge to
provide catalogues of re-usable design objects. These objects are defined
using workbench tools designed specifically for knowledge capture.

6.1 CURRENTLY AVAILABLE APPLICATIONS

Applications possess various levels of design integration. Those developed in
the EDC using the CPDM schema and database query routines can be said to
be fully integrated. Stand-alone applications, however, require other methods

A FRAMEWORK FOR DESIGN OBJECT EVOLUTION 93

of communication and data transfer, aspects which form part of a bespoke
wrapper. The following comprise the operational EDC application set:

Name Description ~
Compdef Design prototype builder CPDM
BuildSite Generic Configuration Builder CPDM
Compgeom Solid Model Visualization CPDM
KATE Configuration Optimization CPDM
CMS Cambridge Materials Selector Stand-alone (PC)
PROS US Design Event capture CPDM
Review Design Guidelines database Stand-alone (PC)
FUNCSION Functional Synthesiser Stand-alone (Unix)
+ commercial CAD and FE systems using IGES interfaces.

6.2 INTEGRATION STRATEGY

This combination of existing stand-alone and newly developed design
applications has been integrated into the IDF design workbench shown in
Figure 8. The project database and supporting knowledge database are
shown as parallel 'object buses' carrying information to and from various
design tools. These databases currently comprise a Lisp environment
supporting a number of functional modelling design tools and a C++
environment supporting the main CPDM data definition and configuration
optimisation and process integration design tools.

The EDC design tools stand between these two databases showing various
levels of integration and data sharing capabilities. Examples of these tools
are listed in the key. Below the project databases are a number of translation
modules. One specifically translates the Lisp based functional information
into the PDM data definition. Others support the transfer of information to
and from the commercial design tools shown at the base of the figure.

No mechanism has yet been developed to maintain the consistency of the
CPDM across the workbench application set. The FUNCSION application
uses an Assumption-Based Truth Maintenance System (Tang, 1995) to
monitor data integrity and this approach may be applied to the CPDM.

6.3. IMPLEMENTATION DETAILS

The system has been implemented on a Local Area Network of Sun SP ARCs
running under SunOS and Solaris. All CPDM class libraries and PDM
applications are written in C++4.0.1 with GUIs built using Sun's DevGuide
tool. Two additional third party libraries are used within the PDM classes -
Sun's XGL (a 2D geometry library) and Spatial Technoloy's ACIS (a 3D
Geometry library). The SPARCWORKS 3.0.1 debugging environment is

94 NIGEL R. BALL ET AL.

used for all C++ development. PC-based applications are currently supported
under the Solaris Windows emulator W ABI.

fa Theory Dl
tb4JM_~

EDC

Commercial

I. LISP classes
2. CompDef
3. FUNCSION
4. Dui IdSile
S. SpecDuildcr

Knowledge-Base

6. PROSUS
7 LISP I c++ Brid~e

Examples

8. C++ PDM I Applicallon SpecIfic A CII
9. 10 and II SpecIfic Appbcalions wllh
various level orimcl!rallOn

Figure 8. EDC Design environment.

The database supporting this work is Quillion Systems Limited's Object­
Based system called QuikTrieve (Quillion, 1992). Object persistence is
supported on the CPDM through the development of a C++ interface (QT­
IDF) that maps objects in an EDC application's virtual memory space onto
Quiktrieve data objects. This interface does not require bespoke coding
within each application and enables rapid linkage of an application to the
database via a few simple function calls - open, close, get, put, delete.
The schema and data definition described in this report results in very fine
granularity of data that allows participants to select only the information
specifically required for their activity.

6.4. PROJECT STATUS

Projects involving the CPDM are both industrially and academically driven.
A number of Design for X projects are being pursued in conjunction with

A FRAMEWORK FOR DESIGN OBJECT EVOLUTION 95

industrial clients in aerospace and civil engineering. Most of this work is
categorised under the theme of 'Configuration Optimization' and the
application of CPDM libraries is providing a focussed approach to a number
of diverse projects such as 'design of reliability' and 'design for technical
merit' (Stephenson and Wallace, 1995; Murdoch and Wallace, 1995).

A case study from an undergraduate design course, the Integrated
Design Project, is being used to demonstrate some of the key requirements
of product data modelling. Teams of six students design, build and test
autonomous vehicles that are able to navigate a course marked out by a
white lines and perform various pallet handling tasks. The three distinct
systems of these vehicles - mechanical, electronic and software - are being
analysed and modelled using the CPDM with CompdeJ and Buildsite tools
(Murdoch and Ball, 1995).

7. Conclusions

The CPDM class libraries are a research laboratory for experimentation into
the evolution of design objects during the design process. The underlying
aim of the research is to empower the designer by allowing flexible class
definition as well as instantiation without recourse to rebuilding the systems
environment. The output of the research is to extend the level of design
activity beyond that currently offered by CAD systems from variant into
adaptive design.

Since being made persistent through the application of an 00 Database
Management System, the CPDM libraries have also become an integration
medium that supports interfaces between EDC and commercial applications.
Rapid prototyping of new applications (particularly in the DFX domain) is
becoming possible through the addition of new Resource sub-classes to the
base CPDM libraries. This is giving significant leverage to the
implementation effort within the EDC and providing an software
environment for research students to construct experimental systems.

Acknowledgements

This work is supported by funding from the Engineering and Physical
Sciences Research Council.

References

Ahmed, S., Wong, A., Sririam, D. and Logcher, R.: 1991, A comparison of object-oriented
database management systems for engineering applications, Research Report R91-92,
Intelligent Engineering Systems Laboratory, MIT.

96 NIGEL R. BALL ET AL.

Ball, N. and Bauert, F.: 1992, The integrated design framework: supporting the design
process using a blackboard system, in J. S. Gero (ed.), Artificial Intelligence in Design
'92, Kluwer, Dordrecht, pp. 327-348.

Blessing, L. T. M.: 1993, A Process-Based Approach to Computer Supported Engineering
Design, PhD Thesis, University of Twente, The Netherlands.

Burgess, S. C. and Wallace, K. M.: 1995, An overview of the functionality needed in CAD
tools, Proceedings of the International Conference on Engineering Design ICED95,
Heurista, Zurich, pp. 1296-130l.

Demaid, A. and Zucker, J.: 1992, Prototype-oriented representation of engineering design
knowledge, Artificial Intelligence in Engineering, 7, 47-6l.

Donaldson, I. and MacCallum, K.: 1994, The role of computational prototypes in conceptual
models for engineering design, in J. S. Gero, and F. Sudweeks (eds), Artificial
Intelligence in Design '94, Kluwer, Dordrecht, pp. 3-20.

Gero, J. S.: 1990, Design prototypes: A knowledge representation schema for design, Al
Magazine, 11(4), 26-36.

Hauser, J. R. and Clausing, D.: 1988, The house of quality, Harvard Business Review, May­
June, 63-73.

Khoshafian, S. and Abnous, R.: 1990, Object-Orientation - Concepts, Languages, Databases,
User Interfaces, Wiley, New York.

MacKellar, B. K. and Peckham, J.: 1992, Representing design objects in SORAC: a data
model with semantic objects, relationships and constraints, in J. S. Gero (ed.), Artificial
Intelligence in Design '92, Kluwer, Dordrecht, pp. 201-220.

MacKellar, B. K. and Peckham, J.: 1994, Specifying multiple representations of design
objects in SORAC, in 1. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design
'94, Kluwer, Dordrecht, pp. 555-572.

Mortensen, N. and Andreasen, M.: 1993, Structuring product data based on the chromosome
model, Technical Report, Technical University of Denmark.

Murdoch T.: 1993, Configuration Evaluation and Optimisation of Technical Systems, PhD
Thesis, University of Cambridge.

Murdoch T.:1995, Sharing design data, Technical Report CUEDIC-EDCITR28, Cambridge
University.

Murdoch, T. and Ball, N.: 1994, Developing an EDC product data model, Technical Report
CUEDIC-EDCITR21, Cambridge University.

Murdoch, T. and Ball, N.: 1995, A layered framework for sharing design data, Proceedings of
the International Conference on Engineering Design ICED95 , Heurista, Zurich, pp.
1471-1476.

Murdoch, T. and Wallace, K.: 1995, Design for technical merit, in G. Q. Huang (ed.), Design
for x: Concurrent Engineering Imperatives, Chapman Hall (in press).

Nguyen, G. T. and Rieu, D.: 1991, SHOOD: a design object model, in 1. S. Gero (ed.),
Artificial Intelligence in Design '91, Butterworth-Heinemann, pp. 367-386.

Nguyen, G. T. and Rieu D.: 1992, Representing design objects, in 1. S. Gero (ed.), Artificial
Intelligence in Design '92, Kluwer, Dordrecht, pp. 221-240.

Pabl, G. and Beitz, W.: 1984, Engineering Design, The Design Council.
QuikTrieve Reference Manual: 1992, Quillion Systems Limited
ACIS Geometric Modeller Application Guide: 1995, Spatial Technology Inc.
Stephenson, J. and Wallace, K.: 1995, Design for reliability, in G. Q. Huang (ed.), Design for

X : Concurrent Engineering Imperatives, Chapman Hall (in press).
Tang, M. X.: 1995, Development of an integrated ai system for conceptual design support, in

J. Sharpe (ed.), AI System Support for Concept Design, Springer-Verlag, pp. 153-169.
Thomas, R. and Wallace, K.: 1990, Specbuilder, Cambridge University Engineering

Department, Teaching Software.
Wallace, K.: 1992, Some observations on design thinking, in N. Cross, K. Dorst and N.

Roozenberg (eds), Research in Design Thinking, Delft University Press.

J. S. Gero and F. Sudweeks (eds), Anijiciallntelligence in Design '96,97-116.
© 1996 Kluwer Academic Publishers.

CREATING DESIGN OBJECTS FROM CASES FOR INTERACTIVE SPATIAL
COMPOSITION

IAN SMITH, RUTH STALKER AND CLAUDIO LOTTAZ

AI Lab (LlA)
Computer Science Department (DI - Ecublens)
Federal Institute of Technology (EPFL)
1015 Lausanne, Switzerland

Abstract. This paper describes IDIOM, a system for composing layouts using cases.
Layouts are interactively composed by users rather than automatically generated as has
been proposed by previous research. The design is incrementally parameterized as cases
are added and therefore, case adaptation, user interpretation and model activation can oc­
cur at any stage. IDIOM supports designers through reducing constraint complexity and
through managing design preferences, thereby restraining proposed solutions and further
adaptation within globally feasible design spaces. Improvements to the algorithm over
previous implementations have increased reliability. In general, designers, who currently
carry out spatial composition tasks using standard drawing tools, have reacted favourably
to the system, providing useful feedback for further work.

1. Introduction

Design systems that support case-based design (CBD) have the potential to help
designers reuse previous designs in new contexts. This approach is one that they
have always employed for creative and routine design activities. Therefore, CBD
has been studied extensively and applied to a range of fields. For example, CBD
systems are proposed for mechanical engineering, civil engineering and architec­
ture (Bahktari and Bartsch-Sporl, 1993; Flemming, 1994; Goel and Chandrasek­
aran, 1989; Goel and Kolodner, 1991; Maher and Zhang, 1991; Navinchandra,
1988; Sycara and Navinchandra, 1991). Although early adaptation work did not
concentrate upon support for geometrical aspects, recent research, particularly
studies associated with building design, have included geometrical aspects and
much progress has been made, e.g. (Adani, 1995; Coulon, 1995; Dave et aI., 1994;
Gero and Schnier, 1995; Giretti et al., 1994; Hua, 1994; Zhang and Maher, 1993).
We provide a further contribution by concentrating on interactivity, use of prefer-

98 IAN SMITH ET AL.

ences and sound computational algorithms for continuous variables.
Designers usually employ information from several designs in order to com­

plete tasks. Therefore, research into case adaptation has evolved into studies of
case combination (Dave et aI., 1994; Purvis and Pu, 1995; Sycara and Navin­
chandra, 1991; Zhao and Maher, 1992) which involves three processes (Smith et
al., 1995) analysis of cases for applicable information, interpretation of this in­
formation in the new context and resolution of conflicts between the case and the
new context for a feasible solution. Since the efficiency of the analysis depends
upon the way cases are interpreted and how conflicts are resolved, our work fo­
cuses upon the last two of these processes, interpretation and resolution.

In many fields, the spatial configuration of design components determines design
cost and in-service functionality. In multi-story apartment building design, once
the floor layouts have been determined, it is estimated that 90% of the final cost is
fixed for "standard" construction.! Computer support for layout configuration has
been studied for more than twenty years. Studies include techniques such as math­
ematical programming (Mitchell et al., 1976), optimization (Mitchell et aI., 1976),
space discretizations (Voss, 1994), genetic evolution (Gero and Schnier, 1995),
graphs (Coulon, 1995; Choi and Flemming, 1995), hierarchical generate and test
(Flemming et aI., 1988), natural language declarations (Fujii, 1995) and constraint
satisfaction (Baykan and Fox, 1992; Medjdoub and Yannou, 1996; Tommelein,
1989). Rather than automate the configuration task, we have developed a system
which supports designers as they compose designs themselves from parts of previ­
ous designs. As discussed later, practicing designers who were interviewed within
the scope of this study emphatically did not wish to have computer systems per­
form automatic layout generation.

Some design requirements are expressed as preferences. Preferences reflect
requirements that cannot be modelled more precisely, such as social and political
considerations, as well as control knowledge that helps designers explore design
spaces. Preferences differ from default information because if deactivated, they
may be reinstated as opportunities arise. Models have been proposed which use
assumption-based truth maintenance (Logan et al., 1991) for discrete variables.
Borning (Borning et al., 1992; Wilson and Borning, 1993) used hierarchies of
constraint sets in order to resolve contradictions in an interactive drawing sys­
tem. Preferences have also been employed for complex Pareto optimality prob­
lems (D' Ambrosio and Birmingham, 1995). In WRIGHT, Baykan and Fox (1992)
allow for constraint weakening in over-constrained situations. Deactivating re­
quirements in order to explore design spaces was first proposed by N avinchandra
(1991). Although design exploration has been investigated by several other re­
searchers (Gero and Kazakov, 1996; Logan and Smithers, 1993; Maher and Poon,
1995), it is agreed that more work is needed; few validated and tested implement-

l"Standard" construction is intended to refer to construction that is most commonly found in a
given socio-economic region.

CREATING DESIGN OBJECTS FROM CASES 99

ations are available that support practical design tasks. In our research, prefer­
ences are used to support exploration of alternatives for adaptation of spatial con­
figurations.

We combine new ideas with successful parts of previous work (Hua, 1994;
Hua et al., 1992) to support interactive spatial composition using existing designs
and explicitly defined domain models. Preferences are included in these models
and are combined with reliable and fast algorithms for constraint solving in or­
der to produce an interactive system. Various aspects of this system are illustrated
using apartment layouts. The next section contains a general description of the
system and describes the cases employed. Section 3 describes how case combin­
ation is carried out using algorithms that have been improved over previous im­
plementations. Section 4 discusses how the system has been conceived to interact
with the designer and the last three sections discuss implementation details, test­
ing with users, and related work.

2. IDIOM

We have developed a system called Interactive Design using Intelligent Objects
and Models (IDIOM) in order to study design interactivity, the use of prefer­
ences, and explicit domain modelling for case adaptation. Model-based adapta­
tion was first proposed by Goel (1989) for discrete variables. The term, IDIOM,
was chosen because its meaning reflects a goal of this research. A dictionary defin­
ition (from Longman) for the word "Idiom" is

A phrase which means something different from the meaning of the separate
words

This definition provides a useful analogy. We aim to support incremental com­
position of design cases while employing user interaction and domain models to
include holistic considerations of groups of objects. Models are applied to designs
several ways. They are activated when certain groups of objects are present in the
design, they are used to interpret designs in certain contexts and they are incre­
mentally introduced by the designer as the design is composed.

Our current research into case-based building design is motivated by two factors.
The first factor is the observation that although building designers frequently re­
use designs, they rarely wish to adapt whole building cases. Often, the cases which
are most useful are spaces and collections of spaces (Schmitt, 1993).

The second factor is that most design domains cannot be modelled completely
due to a complex consideration of social, political and economic factors. As a res­
ult, it can be frustrating to designers when a system performs automatic design
and proposes just one solution. A much better role for computer systems is to
provide support for defining allowable spaces of acceptable designs. When ex­
ploring these spaces, designers are able to introduce their interpretation of what
is not modelled through user interaction.

100 IAN SMITH ET AL.

Figure 1. An example of a case in IDIOM.

These two factors lead to the definition of an inteUigent object that is used
in this paper: an intelligent object is a part of a successful design which has been
interpreted by designers for each new design task through constraint posting, de­
claration of neighbourhood relationships, adaptation and model activation. There­
fore, an object becomes intelligent at run-time. This interpretation is used to ac­
commodate additional objects during subsequent design stages. The notion of an
intelligent object is not new, for example see Rigopoulos and Oppenheim (1992).
An example of an intelligent object is a living room taken from a design of a pre­
viously built apartment building. This living room becomes an intelligent object
when i) the user interprets it in a new context by imposing conditions such as
neighbourhood relationships and ii) when the user activates domain models to add
additional constraints, such as the size of the living room needed for the number
of inhabitants in the apartment. More detail of the models employed is provided
in Section 2.2.

2.1. CASES IN IDIOM

Cases in IDIOM are parts of designs of constructed apartment buildings. Cases
have been carefully selected by an architect for flexibility, compatibility and suc­
cess as designs of parts of existing bUildings. They are grouped into types such
as living rooms, kitchens, bathrooms and bedrooms. They contain windows, fur­
niture and doors. An example of a case is shown in Figure 1.

Grey rectangles within spaces represent furniture elements. The size of these
rectangles include the size of the element plus additional space necessary for ad­
equate use. For example, the size of a rectangle representing a dining room table
includes an allowance for chairs as well as adequate room for sitting in them.
Other elements shown in Figure 1 are the window in the right wall and the door on
the left wall. The outer dimensions of the case as well as the positions of elements
such as windows, doors and furniture are treated as variables. Sizes of elements
within cases are fixed. All variables start with default values that correspond to

CREATING DESIGN OBJECTS FROM CASES 101

their values in the original design. The origins of the case are described by the
location of the building and the name of the architect.

2.2. MODELS IN IDIOM

Models in IDIOM are causal mappings from structural parameters to behaviour
related to individual objects (interpreted cases) and object groups. Behaviour is
interpreted for a given context to correspond to a desired function. Therefore,
model formulation follows the no function-in-structure principle (de Kleer and
Brown, 1984; Gero, 1990). The definition of function, behaviour and structure
follows (Gero, 1990).

We employ models to provide domain knowledge as configurations are com­
posed. Models are abductively implemented through causal inversion (desired be­
havior to required structure). Since abduction is unreliable when a closed-world
assumption is inaccurate, models in IDIOM are interactively activated, thereby
providing one of several ways for the designer to introduce a problem-specific
interpretation of the context.

In order to illustrate these mappings and their interpretations, four examples
of models used are given below. These models reflect the scope of domain know­
ledge that can be included in the system. Models may cover strict rules which are
simplified from physical principles (adequate natural lighting), guidelines (sub­
sidized housing), technological considerations (economical facades) and personal
designer preferences (luxury construction).

- Subsidized housing Government authorities publish specifications for build­
ings to qualify for registration as subsidized housing. Since designers know
that the value of a building is reduced if these specifications are not met, they
often consider them to be minimum requirements. For example, minimum
room sizes are specified for the number of people living in an apartment.

- Economical facades When facades are continuous along one face, that is,
no discontinuities or intermediate comers, the building envelope behaves bet­
ter (reduced risk of leaking, deterioration, etc.) than if intermediate comers
are present.

- Adequate natural lighting Local authorities specify a minimum ratio of
window area to floor area in order to ensure that there is adequate natural
lighting in rooms.

- Luxury construction Most building designers can provide specifications re­
lated to what they believe to correspond to above average construction stand­
ards. Parameters such as sizes of rooms and widths of hallways are linked to
a behaviour which provides above average comfort.

Figure 2 shows the same design with and without activation of a model for lux­
ury construction. Examples of constraints included when this model is activated
are : minimum area of single room = 16m2 (top object in Figure 2) and min-

102 IAN SMITH ET AL.

Figure 2. The same design without (left) and with (right) activation of a model for luxury con­
struction. (Text annotations have been disabled.)

imum area of kitchen = 12m2 (bottom right object in Figure 2). Since this model
reflects personal preferences, it should be elaborated upon and modified for each
user. The use of preferences is discussed further in the next two sections.

3. Case Combination through Constraint Solving

Spatial composition of intelligent objects requires consideration of many interact­
ing relationships between variables. Case combination is supported through incre­
mentally solving relevant constraints, thus taking advantage of inter-relationships
to reduce complexity.

Arrangements of intelligent objects and their elements such as doors, win­
dows and pieces of furniture are defined by sets of constraints. Constraint sets
have to be solved rapidly in order to allow interactive use, therefore we restrict
these to linear and simple non-linear relationships. Relationships can be equalit­
ies or inequalities.

One of the most important aspects of the solver in IDIOM is its compatibility
with interactive adaptation. When another case is added, IDIOM finds a solution
whilst maintaining positions and sizes in the current design wherever possible.
Many algorithms in linear programming cannot do this. For example, those which
employ pre-defined objective functions cannot dynamically add parametric values
to the optimization criteria.

3.1. SOURCES OF CONSTRAINTS

There are three sources of constraints: the library of cases, the interpretation of the
design by the user and domain models. When a case is introduced into a design,
all its associated constraints are added to the current set of constraints. The user
can then add further constraints in order to interpret the case in its new environ-

CREATING DESIGN OBJECTS FROM CASES

ymax ..

"
, .
,
,

,
: :

y min --+---!-----.-.~------........... =".~-
" '

Figure 3. Linear approximation of y = ~

103

ment. The most important constraint is the specification of the topology of the
design, done by defining neighbourhood relations between objects (as described
in Section 4). In addition, the user can specify constraints on the sizes, distances
and alignments between objects and their elements. Before a new solution is cal­
culated for the layout, constraints from active domain models are added to the
current set of constraints. All constraints restrict values of continuous variables.

When all the constraints present in the system are linear, calculations can be
completed in a reasonable time (less than five seconds). Certain non-linear con­
straints, such as minimum areas can be approximated by linear relationships. Con­
sider the constraint, xy ~ Amin, where x and y are the length and width of an ob­
ject and Amin is the minimum area imposed by the constraint (illustrated in Fig­
ure 3). Using the minimum sizes, all objects must have, together with the above
constraint, a maximum value for x for consideration of the constraint as follows:
Xmax = Amin/Ymin. If values of x are larger than Xmax , then the constraint defin­
ing a minimum on Y implies that there are always acceptable values for xy. Thus,
it is sufficient to approximate xy ~ Amin in the interval [Xminl xmax}. IDIOM
employs a logarithmic relationship, to determine the points, Xl and X2 for linear
approximations as shown in Figure 3. Typical constraints in IDIOM which have
a form similar to xy ~ Amin can be approximated with an error of less than 5%
using only three linear constraints.

3.2. DIMENSIONALITY REDUCTION

Equalities in the constraint set reduce the degrees of freedom of design spaces.
This approach has been used in statistics (Krishnaiah and Kanal, 1982) and im­
age recognition (Saund, 1989) and was proposed for case-based design (Faltings,
1991). Subsequent development established that equalities can be used to reduce

104 IAN SMITH ET AL.

the number of variables occurring in inequalities (Hua, 1994).
IDIOM uses Gauss-Jordan elimination to perform dimensionality reduction

and to identify dependent and independent variables. In the inequalities, depend­
ent variables are substituted by independent ones, thereby finding the matrix of
coefficients of the equalities and inequalities.

1 0 0 0 ane+l,l anv,l
0 1 0 0 a ne +l,2 a nv ,2

0 0 1 0 ane+l,ne-l anv,ne-l
0 0 0 1 ane+l,ne anv,ne

0 0 0 0 ane+l,ne+l anv,ne+l

0 0 0 0 ane+l,ne+ni anv,ne+ni

where nv is the number of variables, ne is the number of linear independent equal­
ities and ni is the number of inequalities. After the elimination, inequalities con­
tain a reduced number of variables; thus increasing system performance.

Gauss-Jordan elimination has been proved to be a polynomial time method for
exact calculus (Schrijver, 1986), while for floating-point arithmetic its complexity
is O(n3). In IDIOM, the algorithm is implemented using sparse matrices, thus
improving efficiency (more than 95% of the coefficients in typical problems are
zero).

3.3. TREATMENT OF INEQUALITIES

Design spaces are defined by inequalities that have been simplified using dimen­
sionality reduction. CADRE employs recursive transformation (RT) of all viol­
ated inequalities into equalities in order to define the parameterization for adapta­
tion (Hua, 1994). This method may omit correct solutions.

For example, consider two objects in a design having minimum vertical di­
mensions, Ylmin and Y2min, as shown on the left-hand side of Figure 4. The neigh­
bourhood relationship in the middle of the figure requires that Object 2 has at least
the same size as Object 1. The right hand side of Figure 4 gives an obvious solu­
tion. Among the inequalities describing this example the following three cause
RT to report a conflict although there isn't one.

Yl ~ Ylmin

Y2 ~ Y2min

Y2 ~ Yl

Ylmin and Y2min are constants, Yl and Y2 are the vertical sizes of Object I and
Object 2. When RT is used, it detects that the current values shown on the left

CREATING DESIGN OBJECTS FROM CASES 105

of Figure 4 violate the second and third inequality and will transform these into
equalities. This forces both objects to take a size of Y2min, resulting in a conflict
with the minimum size of Object 1. No solution is reported. However in reality,
one exists as shown on the right-hand side of Figure 4.

Y"}:':-I D Y_- Ob~l '-'

U
Figure 4. Example of two violated inequalities.

IDIOM avoids this by using the Fourier-Motzkin elimination method which is
an algorithm for solving inequality-systems (Motzkin, 1936). The procedure in­
volves eliminating all variables one by one until a simple inequality-system with
only one variable is found (Schrijver, 1986). For each variable, the Fourier-Motzkin
elimination calculates the following inequalities:

nv

Xi S 2: CkjXj + bk k = 1 .. . li
j=i+l

nv

Xi ~ 2: CkjXj + bk k = li + 1 ... mi

j=i+l

where c, b, 1 and m are constants determined by the Fourier-Motzkin elimination
and nv is the number of variables. These inequalities allow the solver to calculate
an interval of possible values for variable Xi the bounds of which depend only on
Xi+! ••• X nv ' where the interval for xnv is given by constants. To find a solution
for the inequalities, the solver starts by choosing a value for xnv' If this value
is chosen within the interval for xnv the Fourier-Motzkin elimination guarantees
that, for Xnv-b an interval of possible values can also be found. Therefore the
solver can recursively determine values for all variables.

Using intervals of possible values, it is easy to find a solution which is as
near to the current solution as possible. The solver chooses a value for a variable
by checking its interval of possible values. If the current value of the variable is
within the interval the solver will use this value. If the value is outside it will be
set to the nearest interval boundary.

In general, this algorithm generates an exponential number of inequalities.
However, Nelson (Schrijver, 1986) showed that if each inequality involves only
two variables, the Fourier-Motzkin elimination method has a complexity of
O(mn(2logn+3)logn). Unfortunately the form of inequalities in IDIOM cannot be

106 IAN SMITH ET AL.

restricted in this way. Nevertheless, the use of sparse matrices and the reduction of
redundant constraints (Lassez et al., 1993), have improved performance for prob­
lems treated by IDIOM. Table 1 shows the effect of redundancy reduction on a
small example. It involves 3 rooms with few elements; 20 variables, 7 equalities
and 41 inequalities.

TABLE 1. Constraints generated by Fourier-Motzkin elimination, with and
without redundancy reduction (IT).

Generated constraints
Stored constraints

3.4. PREFERENCE ACTIVATION

wlo redundancy reduction (IT) with IT

1.6e06
2784

132
58

Constraints in IDIOM may be fixed or preferred, hereafter referred to respectively
as fixed constraints and preferences. Fixed constraints must be fulfilled while pref­
erences may be deactivated if they are in conflict with other preferences or fixed
constraints. Preferences are reactivated when possible. The priority of a prefer­
ence can be defined and preferences may have equal priority. IDIOM fulfils all
fixed constraints and as many preferences as possible using the following heurist­
ics:

- A preference that conflicts with fixed constraints is deactivated
- If two preferences with different priorities conflict, the higher priority pref-

erence is activated
- If two preferences with the same priority conflict, IDIOM activates the pref­

erence which conflicts with fewer lower priority preferences
- IDIOM re-activates preferences whenever possible

Preferences are divided into groups of equal priority and activated in order of
importance. For example, six preferences are divided into three groups according
to priority. The most important group 91 contains PI. P2 and P3, the second group
92 contains P4 and P5 and the least important group 93 contains P6·

The activation of preferences starts with none activated; as many preferences
as possible are activated in the first group through checking feasibility with all
fixed constraints. This is performed incrementally for each preference. Several
feasible combinations of preferences may have the maximum number of prefer­
ences activated and therefore these are stored into a list of solutions. In this ex­
ample, two preferences out of 91 can be activated and the following combinations
are possible: {PI, P3} and {P2, P3}. Then L, the list of solutions after treatment of
91. is:

CREATING DESIGN OBJECTS FROM CASES 107

The activation of preferences then sequentially considers all entries in the list with
additions from g2, and stores all combinations which have the maximum num­
ber of preferences activated. Thus the combination {pi, P3} is considered first
and IDIOM finds that only P4 can be added. Then preference activation treats the
combination {P2,P3} and finds for instance, that only Ps can be activated together
with this second combination. Thus two solutions are found and a new list is cre­
ated:

After treating all preference-groups in this manner, preference activation termin­
ates with a list of feasible combinations which contain as many important prefer­
ences as possible. One of these is then used to recalculate the new values of the
design's parameters and for subsequent adaptation. For example the preference in
g3 can be added with the second combination in L, but not with the first combina­
tion. The final list contains one combination of feasible preferences which is used
in further calculations.

4. Designer Interaction

Since it is impossible to model everything which influences complex design tasks,
interactive design systems are essential. Interactivity must not be understood to
indicate an absence of reliable computational methods for automating certain tasks.
Users wish to interpret designs and their contexts at intermediate stages and such
input is essential for successful designs. Moreover, this interpretation is what de­
signers enjoy doing best and because of this, they will never use a system which
does not allow for such interaction.

When constructing intelligent design systems, the following three decisions
must be taken:

- How much of the design task will be completely automated ?
- What tasks will be supported through interaction between the system and the

designer?
- When will users be required to perform tasks independent of computer sup-

port ?

No two systems propose the same answers to these questions. Our goal is to de­
velop conditions where designers feel encouraged to explore the space of feas­
ible design solutions. Support for design exploration is an essential element of
intelligent design support (Gero and Kazakov, 1996; Logan and Smithers, 1993;
Maher and Poon, 1995; Navinchandra, 1991). In our work, constraints are viewed
as useful representations of the boundaries of possible design spaces. Since it is
impossible to model all design knowledge, these constraints cannot sufficiently

108 IAN SMITH ET AL.

Figure 5. Examples of primitive topologies. These topologies form the basis for neighbourhood
relationships.

define what is feasible - instead they are a partial description of what is not feas­
ible. User interpretation is employed to refine the definition of design spaces for
particular contexts.

IDIOM supports interaction with designers in the following ways:

- User interpretation
- Active design support
- Design critiquing

The next three subsections describe these aspects in more detail.

4.1. USER INTERPRETATION

A designer can interpret a given design, or a group of objects by activating mod­
els. This is done by choosing the desired model from a pull-down menu. For ex­
ample, if the designer wishes to have a lUXUry apartment by introducing the rel­
evant model, the minimum amount of space required for certain objects in the
apartment would increase.

The designer may define neighbourhood relationships between two rooms and
cause the design to change. A neighbourhood relationship can be specified for
each pair of adjoining objects and is done so according to primitive topologies, as
in Figure 5. These relationships are declared, changed and removed by choosing
two objects consecutively with the mouse. The choice of neighbourhood relation­
ship may affect the size and shape of both of the two adjoining objects. The most
direct method of user interpretation is constraint posting. This is done by double
clicking on an object which produces a dialog box containing the current values of
the object. The designer posts constraints into the box. The constraints that can be
fixed for each object are specifications such as minimum width and length, fixed
and therefore absolute, width and length and fixed minimum area. Preferences are
posted similarly and are given a priority. In this way, the designer can specify that
the minimum area of a dining room is more important than the preferred size of
a single bedroom. The designer can weaken and strengthen priorities as required
by reorganizing their order in a dialog box. For example, if the user decides that
amongst the preferences given in Section 3.4, group g2 is more important than gl,

CREATING DESIGN OBJECTS FROM CASES

The site constrains the height of the arrow.
A room cannot overlap the site boundary.

Here the bed Is the
factor which
constrains the arrow.

Figure 6. The double arrow indicates the range of permitted adaptation

the list of feasible preference sets becomes :

L = ({Pl,P4,P5}, {P2,P4,P5})

109

The list, L is determined because P4 and P5 are activated together (being the most
important and not in mutual conflict), P3 and P6 are in conflict with P4 and P5 and
only one of PI and P2 is compatible at a time. Since L is now different from the
solution given in Section 3.4, a new design space is available for exploration.

4.2. ACTIVE DESIGN SUPPORT

Active design support is most apparent in the displaying of arrows to indicate
how far a given wall, window or piece of furniture can be moved. The element is
clicked on with the mouse, an arrow appears indicating the permitted range and,
the element is moved using the mouse. Figure 6 shows an arrow whose length was
calculated through consideration of the site boundary and the position of the bed
in the room.

Arrows were also used in Dave et al. (1994). IDIOM reuses the idea of arrows
but extends them to deal with elements as well as walls in a design.

Active support is also provided in the form of hints. These hints give advice
mainly on topology. For example, it may be suggested that the user puts the living
room on the south side of the building, or placing the bathroom in the night zone
of the apartment. These hints can be toggled on and off as requested. If hints have
been provided and then not followed, then the system will notify the user in terms
of critiquing.

4.3. DESIGN CRITIQUING

Design critiquing is a well established form of user interaction (Stolz, 1994). Users
are advised of non-critical inconsistencies in their design. Critiques are provided
immediately after the user has declared a neighbourhood relationship that pre­
cludes compliance with a hint provided prior to this declaration. Currently, hints

110 IAN SMITH ET AL.

and critiques are available in a dialog box that can be turned on and off by the
user.

5. Implementation and Design Scenario

IDIOM is implemented in C and C++ with OpenGL and Motif as the user in­
terface platform. The following is an example of a possible design scenario using
the system (each step performed by the user):

1. Define the dimensions of the site where the layout must be placed
2. Choose a case from the case browser and place it into the site. At this point,

constraints contained in the case and those activated by models are added to
the constraint set

3. Define neighbourhood relationships with adjacent objects. This action auto­
matically adds more constraints to the constraint set

4. Where needed, post additional constraints
5. Request solution. Here the system calculates the feasible solution space through

conflict resolution with preferences and dimensionality reduction and selects
a solution that involves minimal changes to the case and to the current design

6. Interactively adapt positions of walls, furniture, windows and doors to obtain
configuration required

7. Return to step two

The screens shown in Figure 7 refer to step 2 on the left and step 5 on the right.
On the left, a double bedroom is being added to the design. After user interpret­
ation, in this case specifying that the hall should share the length of the right
wall through declaration of a neighbourhood relationship, the solution proposed
is shown on the right. Note that the vertical dimensions of both the hall and the
bedroom have changed.

Once a solution is proposed, the user may wish to change positions of walls
and elements within objects. This is carried out through clicking on a wall or ele­
ment. The results of the dimensionality reduction are used to calculate the range
of adaptation possible, as described in Section 3. The screens in Figure 8 show
that moving a wall may change other dimensions that are linked in the paramet­
erization. Here, the living room has been constrained to have the same length to
width ratio, the bathroom dimensions have been fixed and the kitchen wall is re­
quired to share the whole right wall of the living room. Therefore, moving the
living room wall results in a reduction in size of the single room at the top.

6. Testing and Validation

Testing with architects has produced mixed reactions. More traditional architects
who are used to working within well defined schemas and grids find that IDIOM
does not reflect what they do and therefore, the system provides little support. In

CREATING DESIGN OBJECTS FROM CASES III

tD/IOII·~DrrtP,~

i"~!j~~~~~·H~ ~ -.....
. "'- N

t

Figure 7. Adding a case to a design (left) and solution proposed after user interpretation and res­
olution with relevant constraints (right).

Hall

310.320
g.9m2

LMng/Oinlng Room Kllcllon

79.
1.01112 ~%';,fI

Figure 8. The figure illustrates Step 6, interactive adaptation. The user clicks on the right wall
of the living/dining room (left) and drags it to the desired position (right). Note the changes to
dimensions of the single room at the top.

contrast, other architects have found that IDIOM provides them with an oppor­
tunity to get away from traditional methods, thus allowing them to explore new
architectural approaches.

The following comments are a sample of those which have been made by de­
signers after becoming acquaintep with the system:

112 IAN SMITH ET AL.

"I prefer to compose building parts for my particular problem rather than ad­
apt existing configurations such as complete layout designs."

"Automatic layout generation systems are not very attractive. I want to introduce
constraints as the layout is composed."

"Grids are too restrictive when initial layouts are being examined."

" Use of models are interesting provided that non-essential models can be turned
on and off"

"Preferences play an important role in our decision making. Support for pref­
erence management is helpful"

"Rational management of dimensions seems to be the biggest advantage of IDIOM."

"Neighbourhood relationships between objects need to be made more visual. Ad­
aptation was occasionally blocked because we had overlooked a restrictive con­
dition on topology."

"Sometimes we got stuck when there was no feasible solution."

The first two comments provide support for an important starting assumption we
have made: that designers do not want automatic layout generation. The third
comment suggests that computation needs to be carried out in terms of continu­
ous variables rather than working with discrete grids. In general, these comments
have encouraged us to continue development of IDIOM and have helped fix pri­
orities for further work.

Limitations The dimensional parameterization described is currently limited to
rectangular spaces and elements. Only values for continuous variables are manip­
ulated in IDIOM. Complex non-linear constraints slow the system down to the
point where interactive design becomes difficult. For interactive use, constraints
are formulated to be as close as possible to linear relationships. The current imple­
mentation of IDIOM allows for linear and simple non-linear constraints, such as
those applied to areas of objects. When no solution can be found, the system cur­
rently provides little help identifying constraints that when modified, would lead
to solution. This task is far from trivial and is doubtful that a general approach
will be found. Nevertheless, some support should be possible under certain con­
ditions. Our current work is focused on addressing these issues and on improving
user interaction.

CREATING DESIGN OBJECTS FROM CASES 113

7. Related Work
The system most closely related to IDIOM is CADRE (Dave et aI., 1994; Hua,
1994; Hua et al., 1992). Similarities include i) the use of dimensionality reduc­
tion and run-time parameterization to simplify adaptation and ii) certain aspects
of user interaction, such as the use of arrows for defining feasible modifications.
IDIOM differs from CADRE in the following ways: i) IDIOM employs intelligent
objects to compose topological configurations where the CADRE implementation
combines predefined configurations, ii) IDIOM accommodates preference con­
straints whereas in CADRE, all constraints are fixed, iii) in IDIOM, elements
within spaces, such as furniture, doors and windows are included in the paramet­
erization whereas in CADRE, only spaces and structural elements are included,
iv) as explained in Section 3, IDIOM employs a more reliable algorithm for ac­
commodation of inequalities during case combination, v) IDIOM employs expli­
citly defined domain models that are activated by the user whereas in CADRE do­
main knowledge was loaded into the system at the beginning and finally, vi) the
opportunities for interactivity in IDIOM correspond more closely to the needs of
building designers who were interviewed than in CADRE. Perhaps the most im­
portant difference between IDIOM and CADRE is that in IDIOM, the topology is
determined interactively by the user, thereby avoiding difficulties of complexity
experienced with CADRE when generating topologies.

The FABEL project, coordinated by GMD, St. Augustin (Bakhtar, 1993) fo­
cuses upon the application of case based design to heating and ventilating con­
figuration of buildings. Although most of the effort in this project has been con­
cerned with case indexing, recent work includes a study of three adaptation meth­
ods (Bomer, 1995). FABEL uses fixed grids to model spatial information and
does not perform case-combination. Other work includes the SEED project (Flem­
ming, 1994) where large numbers of cases are stored and indexed for retrieval us­
ing functional units. Although a case editor is a available for adaptation, no other
computational support is reported. Our approach is different to these two systems
due to our capabilities to combine complex objects through run-time parameteriz­
ations that include design preferences, constraints from user-activated models and
other opportunities for user interpretation.

An extension to CADSYN (Zhang and Maher, 1993) employs constraint sat­
isfaction techniques for verification and repair of adapted designs. CADSYN en­
sures local consistency between constraints, thereby limiting its effectiveness to
constraint networks where risks of divergence, looping and empty solution spaces
are low. Our experience with geometric design has revealed that relevant con­
straint networks are highly interdependent and therefore, local consistency ap­
proaches are unreliable.

WRIGHT is another constraint based system created for layout synthesis (Baykan
and Fox, 1992). Layouts are automatically generated and local consistency is achieved
through use of the Waltz algorithm, thus risking cycles and divergence. In a com-

114 IAN SMITH ET AL.

parison with methods based on hierarchical generate and test (Flemming et al.,
1992), it was concluded that constraint propagation techniques are more efficient
under certain circumstances. Since WRIGHT performs monotonic search, soft
constraints are never reactivated if weakened. IDIOM differs from WRIGHT in
the following ways: i) layouts are not generated in IDIOM - the user defines to­
pology incrementally, ii) IDIOM does not propagate constraints but solves them,
and together with the Fourier-Motzkin algorithm, identifies globally feasible solu­
tions without running the risk of propagation cycles and iii) IDIOM may demon­
strate non-monotonic behaviour as cases are added since preferences may be re­
activated.

Work on layouts is being performed by Giretti et al. (1994). They report on
a CBD system for architecture that supports graphical interaction. Their "theor­
ies" are similar to the models in IDIOM and "scenes" are analogous to groups
of intelligent objects. However, run-time parameterization and subsequent dimen­
sionality reduction is not performed. Therefore, performance problems would be
expected for designs of realistic size. In addition, it is not clear whether local or
global consistency is achieved during constraint solving. Finally, grids are used
to adapt previous designs and topological adaptation is performed automatically.
These functionalities were avoided during development of IDIOM because de­
signers who were interviewed thought they would hinder rather than help layout
design.

8. Conclusions

IDIOM provides a useful framework for supporting interactive spatial composi­
tion. Through solving constraints contained in cases, those generated during user
interaction and those obtained from model activation, the user is able to explore
a range of design solutions within globally consistent design spaces. This ex­
ploration is further enhanced by the accommodation of preferences in constraint
sets and the opportunity to alter their priorities interactively. Algorithms are suffi­
ciently fast and reliable to support exploration in an interactive manner. Reactions
from designers indicate that IDIOM provides a good mix of computation and user
support for spatial configuration.

Acknowledgements

The funding for this project was provided by the Swiss Priority Programme in Computer
Science (SPP-IF). This project was performed in collaboration with CAAD, Federal Insti­
tute of Technology, Zurich. Beginning ideas related to intelligent objects arose during dis­
cussions with Boi Faltings and Gerhard Schmitt and Boi Faitings initially proposed an in­
vestigation of model-based case adaptation for this work. The authors would like to thank
Nathanea Eite and David Kurmann for their collaboration as well as our practising archi­
tects: Geninasca - Delfortrie Architects, Neuchatel; Atelier d' Architecture, Lausanne; and
Archilab, Lausanne for providing comments and for helping with testing and validation.

CREATING DESIGN OBJECTS FROM CASES 115

References

Adani, P.: 1995, Adaptation by active autonomous objects, Modules for design support, FABLE
Report No 35, GMD.

Bahktari S. and Bartsch-Sporl B.: 1993, Our perspective on using CBR in design problem solving,
1st European Workshop on CBR, Kaiserslauten.

Baykan, C. A. and Fox, M. S.: 1992, WRIGHT: A constraint based spatial layout system, AI in
Engineering Design, 1, 395-432.

Bakhtari S. et al.: 1993, EWCBR93: Contributions of FABEL, Fabel Report No. 17, GMD, Sankt
Augustin

Bomer, K.: 1995, Modules for design support, FABLE Report No. 35, GMD.
Boming, A., Freeman-Benson, B. and Wilson, M. Constraint hierarchies, Lisp and Symbolic Com­

putation, 5, 223-270.
Coulon, C-H.: 1995, Automatic indexing, retrieval and reuse of topologies in architectural layouts,

CAAD Futures'95, Singapore.
Choi, B. and Flemming, D.: 1995, Adaptation of a layout design system to a new domain, CAAD

Futures'95, Singapore.
D' Ambrosio, J. G. and Birmingham, W. P.: 1995, Preference directed design, AIEDAM, 9, 219-230.
Dave, B., Schmitt, G., Faltings, B. and Smith, I.: 1994, Case-based design in architecture, in 1. S.

Gero and F. Sudweeks (eds),ArtificiaIIntelligence in Design '94, Kluwer, Dordrecht, pp. 145-
162.

de Kleer, J. and Brown, J. S.: 1984, A qualitative physics based on confluences, Artificial Intelli­
gence,24.

Faltings, B.: 1991, Case based representation of architectural design knowledge, Computational
Intelligence, 2.

Flemming U.: 1994, Case-based design in the SEED System, 1st Computing Congress, American
Society of Civil Engineers, Washington.

Flemming, U., Coyne, R., Glavin, T. and Rychener, M.: 1988, A generative expert system for the
design of building layouts, AI in Engineering, 445-464.

Flemming, U., Baykan, C. A., Coyne, R. F. and Fox, M. S.: 1992, Hierarchical generate and test
vs constraint-directed search, in 1. S. Gero (ed.), Artificial Intelligence in Design '92, Kluwer,
Dordrecht, pp. 817-838.

Fujii, H.: 1995, Incorporation of natural language processing and a generative system, CAAD Fu­
tures '95, Singapore.

Gero, J. S.: 1990, Design prototypes: a knowledge representation schema for design, Al Magazine,
11(4),26-36

Gero, J. S. and Kazakov, Y.: 1996, An exploration-based evolutionary model of a gen­
erative design process, Microcomputers in Civil Engineering (to appear), available at
http://www.arch.su.edu.au/john/publications.html.

Gero, J. S. and Schnier, T.: 1995, Evolving representations of design cases and their use in creative
design, in J. S. Gero, M. L. Maher and F. Sudweeks (eds), Preprints Computational Models of
Creative Design, Key Centre of Design Computing, University of Sydney, pp. 343-368.

Giretti, A., Spalazzi, L. and Lemma, M.: 1994, A.S.A.: An interactive assistant to architectural
design, in 1. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '94, Kluwer,
Dordrecht, pp. 93-108.

Goe1, A. K. and Chandrasekaran, B.: 1989, Use of device models in adaptation of design cases,
DARPA CBR Workshop, pp. 100-109.

Goel, A. K. and Kolodner, J. L.: 1991, Towards a case-based tool for aiding conceptual design prob­
lem solving, DARPA CBR Workshop, pp. 109-120.

Himichs, T. R. and Ko1odner, 1. L.: 1991, The roles of adaptation in case-based design, DARPA
Case-based Reasoning Workshop, pp. 121-132.

Hinrichs, T. R.: 1992, Problem Solving in Open Worlds, Lawrence Erlbaum, Hillsdale, NJ.
Hua, K.: 1994, Case-Based Design of Geometric Structures, Thesis No. 1270, Swiss Federal Insti­

tute of Technology, Lausanne.
Hua, K., Smith, I., Faltings, B., Shih, S., and Schmitt, G.: 1992, Adaptation of Spatial Design Cases,

116 IAN SMITH ET AL.

in J. S. Gero (ed.), Artificial Intelligence in Design '92, Kluwer, Dordrecht.
Krishnaiah, L. and Kanal, P.: 1982, Handbook on Statistics, Volume 2, North-Holland, Amsterdam.
Lassez, J-L., Huynh, T. and McAloon, K.: 1993, Simplification and elimination of redundant linear

arithmetic constraints, Constraint Logic Programming, MIT Press.
Logan, B. S., Come, D. W. and Smithers, T.; 1991, Enduring support: On defeasible reasoning in

design support systems, in J. S. Gero (ed.), Artificial Intelligence in Design '91, Butterworth­
Heinemann, Oxford, pp. 433-454.

Logan, B. and Smithers, T.: 1993, Creativity and design as exploration, in J. S. Gero and M. L.
Maher (eds), Modelling Creativity and Knowledge Based Design, Lawrence Erlbaum, pp. 139-
175.

Maher, M. L. and Poon, J.: 1995, Modelling design exploration as co-evolution, accepted for the
Special Issue of Microcomputers in Civil Engineering on Evolutionary System in Design, avail­
able from http://www.arch.su.edu.auljosiahlCoGA.html.

Maher, M. L. and Zhang, D. M.: 1991, Case-based reasoning in design, in J. S. Gero (ed.), Artificial
Intelligence in Design' 91, Butterworth-Heinemann, Oxford, pp. 137-150.

Medjdoub, B. and Yannou, B.: 1996, Towards a new generation of architectural CAD softwares,
accepted for ITCSED-96, Glasgow, Scotland.

Mitchell, W. J. Steadman, J. P. and Ligget, R. S.: 1976, Synthesis and optimisation of small rectan­
gular floor plans, Environment and Planning B, 3, 37-70.

Motzkin, T. S.: 1936, Beitriige zur Theorie der linear en Ungleichungen, PhD Thesis, University of
Basel, Germany.

Navinchandra, D.: 1988, Case based reasoning in CYCLOPS, DARPA Case-Based Reasoning
Workshop, pp. 286-29l.

Navinchandra, D.: 1991, Exploration and Innovation in Design: Towards a Computational Model,
Springer-Verlag.

Purvis, L. and Pu, P.: 1995, Adaptation using constraint satisfaction techniques, CBR Research and
Development, Lecture Notes in A! 1010, Springer-Verlag, pp. 289-300

Rigopoulos, D. R. and Oppenheim, I. 1: 1992, Intelligent objects for synthesis of structural sys­
tems, Journal of Computing in Civil Engineering, 6, 266-281.

Saund, E.: 1989, Dimensionality reduction using connectionist networks, IEEE Trans. PAMI, 11,
304-33l.

Schmitt, G.: 1993, Design reasoning with cases and intelligent objects, International Association of
Bridge and Structural Engineering, Report 68, pp. 77-87.

Schrijver, A: 1986, Theory of Linear and Integer Programming, Wiley, Chichester.
Smith, I., Lottaz, C. and Faltings, B.: 1995, Spatial composition using cases: IDIOM, CBR Re­

search and Development, Lecture Notes inA! 1010, Springer-Verlag, pp. 88-97.
Stolz, M.: 1994, Visual critiquing in domain oriented design environments: showing the right thing

at the right place, in J. S. Gero and F. Sudweeks (eds) Artificial Intelligence in Design '94,
Kluwer, Dordrecht, pp. 467-482.

Sycara, K. P. and Navinchandra, D.: 1991, Influences: A thematic abstraction for creative use of
multiple cases, DARPA CBR Workshop, pp. 133-144.

Tommelein, I. D.: 1989, SightPlan - An Expert System for Designing Construction Site Layouts,
PhD Thesis, Stanford University.

Voss, A: 1994, The need for knowledge acquisition in case-based reasoning-some experiences
from an architectural domain, 11th ECA!, Wiley, pp. 463-467.

Wilson, M. and Boming, A: 1993, Hierarchical constraint logic programming, Journal of Logic
Programming, 16, pp. 277-3l.

Zhang, D. M. and Maher, M. L.: 1993, Using CBR for the synthesis of structural systems, Inter.
Assoc. for Bridge and Structural Engineering, Report 68, pp. 143-152.

Zhao, F. and Maher, M. L.: 1992, Using network-based prototypes to support creative design
by analogy and mutation, in J. S. Gero (ed.), Artificial Intelligence in Design '92, Kluwer,
Dordrecht, pp. 773-793.

3
genetic algorithms/genetic

programming in design

Integrating a genetic algorithm into a knowledge-based system
for ordering complex design processes

James L. Rogers, Collin M. McCulley, Christina L. Bloebaum
AI in control system design using a new paradigm for design

representation
Sourav Kundu, Seiichi Kawata

Automated design of both the topology and sizing of analog
electrical circuits using genetic programming

John Koza, Forrest H. Bennett, David Andre, Martin A. Keane

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 119-133
© 1996 Kluwer Academic Publishers.

INTEGRATING A GENETIC ALGORITHM INTO A KNOWLEDGE­
BASED SYSTEM FOR ORDERING COMPLEX DESIGN PROCESSES

JAMES L. ROGERS
NASA Langley Research Center
Mail Stop 159
Hampton, VA 23681 USA

AND

COLLIN M. MCCULLEY AND CHRISTINA L. BLOEBAUM
State University of New York at Buffalo
1009 Furnas Hall
Department of Mechanical & Aerospace Engineering
Buffalo, NY 14260 USA

Abstract. The design cycle associated with large engineering systems requires an initial
decomposition of the complex system into design processes which are coupled through
the transference of output data. Some of these design processes may be grouped into
iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to
be able to determine the best ordering of the processes within these subcycles to reduce
design cycle time and cost. Many decomposition approaches assume the capability is
available to determine what design processes and couplings exist and what order of
execution will be imposed during the design cycle. Unfortunately, this is often a
complex problem and beyond the capabilities of a human design manager. A new
feature, a genetic algorithm, has been added to DeMAID (Design Manager's Aid for
Intelligent Decomposition) to allow the design manager to rapidly examine many
different combinations of ordering processes in an iterative subcycle and to optimize the
ordering based on cost, time, and iteration requirements. Two sample test cases are
presented to show the effects of optimizing the ordering with a genetic algorithm.

1. Introduction

Many engineering systems are large and multidisciplinary and require a
complex design cycle. Before a design cycle begins, the possible couplings
among the design processes must be determined. After these possible
couplings have been defined, a design cycle can be decomposed to identify
its multilevel structure. The Design Manager's Aid for Intelligent
Decomposition (DeMAID) is a knowledge-based software tool for ordering

120 JAMES L. ROGERS ET AL.

the sequence of design processes and for identifying a possible multilevel
structure for a design cycle (Rogers 1989). The DeMAID software displays
the processes in a design structure matrix format (DSM) in which an element
on the diagonal is any process that requires input and generates an output
(Steward 1981). Off-diagonal elements indicate a coupling between two
processes. The primary advantage of the DSM over display tools such as
Program Evaluation and Review Technique (PERT) or process flowcharts is
the ability to group and display the iterative subcycles that are commonly
found in the design cycle. After the iterative subcycles have been
determined, their processes must be ordered in a manner that will produce a
design in the least time and at minimum cost. The original DeMAID
software employs a knowledge base to handle this task; however, the
knowledge-based approach only examines a limited number of orderings,
which provides the user a starting point from which to interactively search
for the optimum sequence. This paper introduces a genetic algorithm (GA)
capability that has been added to DeMAID. This GA examines a large
number of orderings of processes in each iterative subcycle and optimizes
the orderings based on cost, time, and iteration requirements.

2. Design Structure Matrix

The DSM is used to display the sequence of processes (Steward 1981). A
sample DSM is shown in Figure 1. In the DSM, the processes are shown as
numbered boxes on the diagonal. Output from a process is shown as a
horizontal line that exits a process box, and input is shown as a vertical line
that enters a process box. The off-diagonal squares that connect the
horizontal and vertical lines represent couplings between two processes.
Couplings in the upper triangle portion of the DSM represent feedforward
data; couplings in the lower triangle part of the matrix represent feedback
data. A feedback implies an iterative process in which an initial guess must
be made. The knowledge base within DeMAID which is written with the C
Language Integrated Production System (CLIPS, Giarratano and Riley
1989) orders the processes to eliminate as many feedbacks as possible.
However, in many cases, not all of the feedbacks can be eliminated. If any
feedbacks remain, DeMAID groups the processes into iterative subcycles
called circuits. In Figure 1, processes 1-3, 5-19, 21-25, and 26-29 are
grouped into circuits.

The DeMAID software also identifies crossovers. Crossover, in this
context, occurs when feedback from one process crosses that of another
process without an exchange of data through the intersection (no off­
diagonal square). Crossovers are only defined in terms of feedbacks. For
example, in Figure 1 a crossover occurs when the feedback from process 14

INTEGRATING A GENETIC ALGORITHM 121

to process 7 crosses the feedback from process 17 to process 12. Crossovers
should be avoided if possible because they obscure when to end one iterative
loop and begin another. The DSM shown in Figure 1 contains 20 feedbacks
and 3 crossovers.

~ If

C

~
It.

Yo lVard Feedfor
ircuits

~~,
Couplin ~s

L.
s ~v~r_!-'~iI, Cre

~ ~:,
3 ~

Feedback r'i:::,

Couplings ~~

~
Figure 1. A design structure matrix.

In the original version of DeMAID, a knowledge base was used to
minimize feedbacks and group processes into circuits. Crossovers were
identified but were not minimized. No time factors, cost factors, or iteration
factors (i.e. the number of iterations required for convergence) were applied.
After the circuits were identified, DeMAID attempted to minimize the
feedbacks within a circuit. In most cases, although more than one ordering
could produce the minimum amount of feedbacks, only one ordering was
identified.

A large circuit such as the one shown in Figure 1 that contains processes
5-19 can be very expensive to converge because the iterative loops defined
by the feedbacks are nested, which require numerous executions of
potentially expensive processes. Thus, a new technique is needed that rapidly

122 JAMES L. ROGERS ET AL.

examines many different orderings of processes within a circuit and selects
the best ordering based on cost, time and iteration requirements. The GA
capability that has been added to DeMAID meets this need.

3. Coupling Strengths

In the original version of DeMAID, a coupling either existed or not. The
strength of the coupling could not be quantified. In the latest version of
DeMAID, seven levels are used to quantify coupling strengths They are:
extremely weak, very weak, weak, nominal, strong, very strong, and
extremely strong. These strengths can be supplied by the user or they can be
determined through sensitivity analysis (Bloebaum 1992; Rogers and
Bloebaum 1994) and quantified according to rules in the knowledge base.
The rules for quantifying are based on a statistical analysis of the normalized
sensitivities. Recommendations are made as to which processes and
couplings might be removed (or temporarily suspended) from the problem
without a loss of solution accuracy.

The rules for removing or retaining processes are listed here. All
processes with at least one coupling of nominal strength or greater are
retained. Processes with only extremely weak coupling strengths are
recommended for removal. Other recommendations depend on the
relationships among the processes. For example, in figure 1, if the maximum
coupling strength of process 19 is very weak, then in order to be retained,
one of the processes to which it is coupled (process 5, 6, or 22) must have an
extremely strong coupling strength. Otherwise, process 19 is recommended
for removal. Similar rules exist for removing or retaining couplings.

The DeMAID software also has the capability to display the DSM with
color codings for coupling strengths. To eliminate the use of black boxes to
represent couplings in the off-diagonal elements, a color scheme can be used
(i.e. extremely weak, red; very weak, pink; weak, yellow; nominal, green;
strong, light blue; very strong, blue; and extremely strong; black). The user
can interactively move processes along the diagonal to place the weaker
couplings which require fewer iterations for convergence into the feedback
positions.

After the complexity of the problem has been reduced by removing
processes and/or couplings, another examination can be made of the
remaining circuits. An iteration factor is identified that relates the coupling
strengths to the number of iterations required for convergence. The default
values are shown in Table 1. The user can override these default values if
necessary. If coupling strengths are not available, the assumed number of
iterations for computational purposes is 1.

INTEGRATING A GENETIC ALGORITHM 123

TABLE 1. Relation of coupling strengths to iterations required for convergence.

Couplinf(strenf(th Default Iterations

Extremely weak 2

Very weak 3
Weak 4

Nominal 5
Strong 6
Very strong 7
Extremely strong 8

4. Cost and Time Requirement Calculation

Rules were added to the DeMAID knowledge base to determine the total cost
and time required for a given design process. The DSM in Figure 2 is a
circuit taken from a larger design project. Each process has been assigned a
cost and a time (units depend on the user). The numbers in the left-hand
column correspond to the original process numbers assigned by the user.
The sequence of processes has been reordered by DeMAID. This circuit
contains eight feedbacks and no crossovers. Coupling strengths were not
used to estimate the required number of iterations for convergence for this
problem; thus each iteration factor is 1.

...m. lime Cost

11 30 10
18 <10 20
21 10 20
22 20 30
20 20 10
19 30 10
I 50 10

23 30 <10
17 50 30
7 30 40
8 40 30
2 <10 20
6 20 50
14 20 40
13 10 30
12 20 20
3 30 30
15 30 50
16 <10 <10
5 10 50
4 20 40
10 <10 10
9 50 20

~r
"'CI

~
'""'r.

~
~
~

~f-<
~

Figure 2. A design structure matrix minimized for feedbacks and crossovers.

124 JAMES L. ROGERS ET AL.

Numerous nested iterative processes are evident within this circuit. The
DeMAIO software sums the time and cost of each process contained in a
feedback loop and mUltiplies those sums by the iteration factor for the
feedback. For example, the costs and times for processes 9-18 would be
summed and multiplied by the iteration factor (1 in this case) for the
feedback coupling from process 18 to process 9. The same would be
accomplished for processes 2-19 using the iteration factor (again 1) for the
feedback from process 19 to process 2. This computation continues until the
contributions from all eight feedbacks have been summed. The drawback to
this capability is that it only examines one ordering and makes no attempt to
optimize the ordering based on cost and/or time. Thus, a decision was made
to complement the knowledge base approach in DeMAIO with a GA. This
GA examines a large number of orderings of processes in each iterative
subcyc1e and optimizes the ordering based on cost, time, and iteration
requirements.

S. Genetic Algorithm

The use of GA's has been instrumental in achieving good solutions to
discrete optimization problems that have not been satisfactorily addressed by
other methods (Goldberg 1989). Because of the discrete nature of the
sequencing problem, this solution technique has proved useful in solving this
problem (Syswerda, 1990). A population of design points that are coded as
finite-length, finite-alphabet strings is searched by the GA. Successive
populations are produced primarily by the operations of selection, crossover,
and mutation. The selection operator determines those members of the
population that survive to participate in the production of members of the
next population. Selection is based on the value of the fitness function, or
the fitness of the individual members, such that members with greater fitness
levels tend to survive. Crossover is the recombination of traits of the selected
members, called the mating pool, in the hope of producing a child with
better fitness levels than its parents. Crossover is accomplished by swapping
parts of the string into which these design points have been coded. The final
operation, mutation, prevents the search of the space from becoming too
narrow. After the production of a child population, this operator randomizes
small parts of the resulting strings, with a very low probability that any given
string position will be affected.

Frequently, a binary coding is used with the GA; the values of the design
variables are coded as binary numbers and then concatenated. While this
approach works well with numerical problems, it is not efficient for the
sequencing problem (Altus et al 1995; McCulley and Bloebaum 1994). The
GA portion of DeMAIO uses a direct representation of the order as a coding

INTEGRATING A GENETIC ALGORITHM 125

of an n-process system, with each integer 1 through n used only once. For
example, the string

[5 34 2 1]

represents the five-process DSM shown in Figure 3, in which the order from
the top left corner of the DSM to the bottom right corner is 5, 3, 4, 2, and 1.

Is
3

4

2 Ht

l2J
Figure 3. Five-process design structure matrix.

Selection, which only requires the use of the fitness function, is unaltered
by this choice of coding. However, special operators for crossover and
mutation must be used because these operators operate directly on the
strings. The concern is that the result after a GA crossover or mutation
operation must be a valid order (i.e. no repeated or missing processes). Valid
orders cannot always be guaranteed with arbitrary switching of string
information between or within strings.

Selection is accomplished by the tournament selection operator. To fill
the mating pool, two strings are randomly selected from the parent pool and
compared; the one with greater fitness is included in the mating pool.
Crossover is accomplished by position-based (Syswerda, 1990) crossover as
shown in Figure 4.

Parent 1

Child

Figure 4. Position-based crossover.

Several processes (i.e. 1, 4, 5, and 6) are chosen from the first pare_nt and
placed in the same positions in the child string. Then, the processes (i.e. 2, 3,

126 JAMES L. ROGERS ET AL.

and 7) that were not taken from the first parent are taken from the second
parent to fill the holes in the child string in the order in which they appear in
the second parent. The result is a complete string with one and only one
copy of each process number.

Mutation is accomplished through the order-based (Syswerda, 1990)
mutation operator, as shown in Figure 5. Each string position is polled; if a
given string position (i.e. position 2) is selected to undergo mutation, then its
content is swapped with a randomly selected position (i.e. position 4) in the
same string.

Selected for mutation
Swap with

Parent

Child

Figure 5. Order-based mutation.

In addition to minimizing feedbacks and crossovers, the fitness function
for the GA in DeMAID can be used to determine the minimum cost and
time required for convergence of each circuit. The GA sums the time and
cost of each process contained in a feedback loop and multiplies those sums
by the iteration factor for the feedback to obtain the total cost and time to
converge a circuit. The user-definable weights determine the relative
importance of each of the major components of the fitness function. The
fitness function is:

fitness =1.0/«wf*f+wc*£+wtime*time+wcost*cost)**4)

where f is the number of feedbacks, £ is the number of crossovers, time is the
total time required to converge the circuit, cost is the total cost to converge
the circuit; and wf, we, wtime, and wcost are user-definable weights. For the
simple tournament selection, the relative scale of this fitness function is not
important. Only the relation of the values (i.e. whether one fitness function is
larger than the other) matters.

Each circuit is passed to the GA to optimize individually. A window
(Figure 6) is displayed for each circuit. The window indicates the default
values for the GA. The GA begins with a randomly generated initial
population of a size determined by the user and proceeds from generation to
generation by applying the three previously described operations.

The following parameters, shown in Figure 6, are available with their
defaults in parentheses:

INTEGRATING A GENETIC ALGORITHM

Population

Mutation Probability

ConuerQence Threshold

Seed

MIIH Iterlltions

Objectiue Function Contml

wt. Cost

wt. TIme

wt. FB

wt. CO

Figure 6. Window for setting genetic algorithm parameters.

• Population (lOO)-population size

127

• Mutation Probability (l.O)-mutation probability in percent, default is
1%

• Convergence Threshold (0.9)-a converged population is one for
which the average fitness is at least convThresh of the best fitness, with
the best fitness seen so far (default is 90%)

• Seed (3818969)-seed for random number generator
• Max Iterations (500)-maximum number of iterations to find the best

sequence
• wt. Cost (1.0)-cost weight
• wt. Time (1.0)-time weight
• wt. FB (1.0)-feedback weight
• wt. CO (1.0)-crossover weight

Convergence is achieved when the average fitness of a population rises
above some user-defined percentage (convergence threshold) of the best
fitness for that population. At that point, the member of the population with
the best fitness is chosen as the optimal. After the GA has completed
ordering all the circuits, a new DSM can be displayed to demonstrate the
changes.

6. Sample Cases

The two examples below indicate the savings that can be obtained by
reordering the sequence of modules. In the figures, each process is assigned
a cost and a time (units depend on the user). The numbers in the left-hand
column correspond to the original process numbers assigned by the user.
The sequence of processes has been reordered by DeMAID. Each table
displays the modules coupled by feedbacks (iterative loops) for the
corresponding DSM with the number of iterations for the feedback coupling
along with the total time and cost to converge each iterative loop.

128 JAMES L. ROGERS ET AL.

The DSM in Figure 7 is a circuit taken from a conceptual design project.
This circuit contains 24 feedbacks and 16 crossovers. Coupling strengths are
used to estimate the number of iterations required for convergence.

...!!!.!
19
16
5

21
13
1

18
17
20
12
2
3
15
14
11
6
7
8
9
10
4

22

lime

30
40
10
10
10
50
40
50
20
20
40
30
30
20
30
20
30
40
50
40
20
20

Cost

30
20
50
50
50
10
20
10
40
40
20
30
30
40
30
40
30
20
10
20
40
40

Figure 7. A design structure matrix for example 1.

The DSM in Figure 8 contains the same set of processes with the same
times, costs, and coupling strengths that are shown in Figure 7.

...M! lime Cost

2 40 20
1 50 to
:5 10 50
4 20 40
6 20 40
7 30 30
8 40 20
9 50 10
10 40 20
13 10 M
3 30 30
11 30 30
12 20 40
17 50 10
16 40 20
19 30 30
20 20 40
21 10 50
18 40 20
15 30 30
14 20 40
22 20 40

Figure 8. Reordering of the design structure matrix for example I

INTEGRATING A GENETIC ALGORITHM 129

However, the sequence of processes has been reordered and optimized by
the GA and are different from those in Figure 7 as shown by the numbers in
the left-hand column. This DSM contains eight feedbacks and no crossovers.

Table 2 contains the data corresponding to Figure 7. The total design
cycle for this DSM requires 21,340 time units and 19,640 cost units for
completion.

TABLE 2. Time and cost for iterations in unordered design cycle for example l.

To module From module Iterations Time Cost

1 2 8 560 400
1 6 4 600 840
2 8 8 1680 1680
3 6 2 160 320
4 9 7 1260 1260
5 18 6 2580 2460
6 11 8 1760 1120
7 8 6 540 180
8 9 2 140 100
8 10 8 720 720
8 15 4 960 960
8 20 7 2940 2520

10 17 8 1760 2080
11 12 5 350 250
12 13 3 180 180
13 14 6 300 420
14 15 8 400 560
14 20 4 920 760
15 16 6 300 420
16 17 7 350 490
16 21 8 1600 1280
17 18 8 560 400
18 19 6 540 180
19 20 2 180 60

Table 3 contains the data corresponding to Figure 8. The number of
processes contained in the iterative loops has been reduced by reordering the
sequence with the modified GA. With the same summing method described
before, the total cost to· complete the design cycle with this optimized
ordering sequence is reduced from 19,640 to 3,950 units and the total time
is reduced from 21,340 to 4,570 units.

130 JAMES L. ROGERS ET AL.

TABLE 3. Time and cost for iteration in ordered design cycle for example 1.

To module From module Iterations Time Cost

1 11 5 1700 1600
5 6 7 350 490
6 7 8 560 400
7 8 6 540 180
8 9 2 180 400

11 21 3 960 1020
14 17 2 280 200

The DSM in Figure 2 is a circuit taken from another design project. The
sequence of processes has been reordered by DeMAID. This circuit contains
8 feedbacks and no crossovers. Coupling strengths are not available
therefore, the number of iterations required for convergence is set to 1.

The DSM in Figure 9 contains the same set of processes with the same
times and costs, that are shown in Figure 2. However, the sequence of
processes has been reordered and optimized by the GA and are different
from those in Figure 2 as shown by the numbers in the left-hand column.
This DSM also contains 8 feedbacks and no crossovers.

..m. --1i!M Cost

11 3 0 10
21 10 20
18 40 20
22 20 30
19 30 10
20 20 10
14 20 40
2 40 20
16 40 40
13 10 30
15 30 50
17 50 30
1 50 10

23 30 40
8 40 30
4 20 40
7 30 40
9 50 20
6 20 50
12 20 20
3 30 30
5 10 50
10 40 10

~
~
~r

"""\:

~~

N
Figure 9. Reordering of the design structure matrix for example 2.

INTEGRATING A GENETIC ALGORITHM 131

Table 4 contains the data corresponding to Figure 2. The total design
cycle for this DSM requires 2,430 time units and 2,330 cost units for
completion.

TABLE 4. Time and cost for iteration in unordered design cycle in example 2.

To module From module Iterations Time Cost

1 21 1 590 620
1 23 1 680 650
2 3 1 50 40
2 19 1 530 520
4 6 1 70 50
7 9 1 130 80
9 18 1 290 340

22 23 1 90 30

Table 5 contains the data corresponding to Figure 9. The number of
processes contained in the iterative loops has been reduced by reordering the
sequence with the modified GA. The total cost to complete the design cycle
with this optimized ordering sequence is reduced from 2,330 to 1,510 cost
units and from 2,430 to 1,730 time units.

TABLE 5. Time and cost for iteration in ordered design cycle for example 2.

To module From module Iterations Time Cost
1 16 1 480 430
1 18 1 560 490
2 3 1 50 40
3 9 1 210 170
4 5 1 50 40

11 12 1 80 80
12 14 1 130 80
18 23 1 170 180

In the above examples, the number of processes contained in the iterative
loops has been reduced by reordering the sequence with the modified GA.
This reordering requires about 1 minute on a Macintosh Quadra 700. In
each case, the total cost and time in the design cycle are substantially
reduced by reordering the sequence of the design processes.

132 JAMES L. ROGERS ET AL.

7. Concluding Remarks

The Design Manager's Aid for Intelligent Decomposition (DeMAID) is a
knowledge-based software tool for ordering the sequence of complex design
processes, grouping iterative subcycles, and identifying a possible multilevel
structure for a design cycle. The DeMAID software displays the processes in
a design structure matrix format in which an element on the diagonal is any
process that requires input and generates output. Off-diagonal elements
indicate a coupling between two processes. The knowledge base in DeMAID
attempts to eliminate all feedbacks in the design cycle. If all feedbacks
cannot be eliminated, iterative subcycles are identified. If sensitivity analysis
results are available, the DeMAID software can be used to examine the
ordering within a subcyc1e to determine the strengths of the couplings
between any two processes. These coupling strengths, when input to the
knowledge base, determine those processes and couplings might be removed
or temporarily suspended without sacrificing system solution accuracy. In
addition, a relation is formed between the coupling strengths and the number
of iterations required to converge the iterative processes that are created by a
feedback coupling.

In the original version of DeMAIO, the optimal ordering of processes in
an iterative subcyc1e was generated with a knowledge base, and only
minimized the number of feedbacks. The primary drawback to the original
method was that only a single ordering sequence could be examined at a
time. Changes to the sequence were made interactively and then the costs
and times were re-evaluated. This process was extremely slow with no
guarantee that a reasonable optimum sequence would be found.

To remedy this problem, a genetic algorithm has been added to DeMAID
to examine many possible orderings of the design processes in a design
cycle. Each process can now have a time and/or cost associated with it. The
GA in DeMAID examines the iterative subcycles to determine their time and
cost. The GA fitness function is computed by summing the time and cost of
each process contained in an iterative loop and multiplying the totals by the
number of iterations required for convergence based on the coupling
strength of the feedback coupling forming the loop. The GA determines the
best ordering of each iterative subcyc1e by minimizing the total cost and
time requirements, in addition to minimizing the number of feedbacks and
crossovers for a particular ordering. This modification increases the
likelihood that an optimal or near optimal sequence will be found.

INTEGRATING A GENETIC ALGORITHM 133

Acknowledgments

The authors wish to acknowledge William J. LaMarsh II of the Computer
Sciences Corporation for initially suggesting a genetic algorithm approach
be incorporated into DeMAIO. In addition, the second and third authors
would like to acknowledge partial support of this work under NASA Grant
NAG - 11599.

References

Altus, S. S.; Kroo, I. M.; and Gage, P. J.: 1995, A genetic algorithm for scheduling and
decomposition of multidisciplinary design problems, ASME Paper 95-141.

Bloebaum, C. L.: 1992, An intelligent decomposition approach for coupled engineering
systems, Proceedings of the Fourth AlAA/AF/ NASA/OAI Symposium on
Multidisciplinary Analysis and Optimization, Cleveland, OH.

Giarranto, J. and Riley, G.: 1989, Expert Systems Principles and Programming, PWS-Kent
Publishing Company, Boston.

Goldberg, D.: 1989, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, New York.

McCulley, C. M.; and Bloebaum, C. L.: 1994, Optimal sequencing for complex engineering
systems using genetic algorithms, Fifth A1AA/USAF/NASA/OAI Symposium on
Multidisciplinary Analysis and Optimization, Panama City, FL.

Rogers, J. L.: 1989, A knowledge-based tool for multilevel decomposition of a complex
design problem, NASA TP-2903.

Rogers, J. L. and Bloebaum, C. L.: 1994, Ordering design tasks based on coupling strengths,
AlAA Paper No. 94-4326.

Steward, D. V.: 1981, Systems Analysis and Management: Structure, Strategy and Design,
Petrocelli Books Inc.

Syswerda, G.: 1990, Schedule optimization using genetic algorithms, Handbook of Genetic
Algorithms, Van Nostran Reinhold, New York.

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 135-150.
© 1996 Kluwer Academic Publishers.

AI IN CONTROL SYSTEM DESIGN USING A NEW PARADIGM FOR DESIGN
REPRESENTATION

SOURAV KUNDU AND SElleRI KAWATA
Control Engg, Laboratory, Department of Precision Engineering,
Tokyo Metropolitan University,] -] Minami Ohsawa, Hachioji Shi,
Tokyo]92 - 03, Japan

Abstract. A new design representation paradigm different from traditional control system design
is proposed. This representation of the control system design problem necessitates an Artifi­
cial Intelligence (AI) based search strategy to arrive at solutions. The search is perfonned by
a multicriteria Genetic Algorithm (GA) to achieve Pareto optimal design solutions. The new
design representation paradigm is used to implement both linear and non-linear state feed­
back. We also demonstrate with experimental results how non-linear state feedback expands
the search space for the design. As an illustrative example an application of this new repres­
entation paradigm to control system design is presented.

1. Introduction

Design can be considered as a purposeful, constrained, decision making, exploration
and learning activity (Gero et aI., 1993). Search is an important component of design,
and is the process used in decision making and other design activities. Design, Artifi­
cial Intelligence (AI), Optimization and Decision Making (DM) are sometimes viewed
as search problems. For a given design representation and state transition operators
any search algorithm has to dynamically control the following (Kargupta and Gold­
berg, 1994):

- generating a feasible design solution within the desired portions of the search
space; and

- assigning a goodness or usefulness evaluation to the generated design solution.

Thus for a given representation, the efficacy of any search algorithm in design even­
tually depends on how well it can control the two above aspects. An optimal search
algorithm needs to sample from the universe of admissible design solutions and store
the minimum required information about the sampling in its state and based on this
information it should be able to decide correctly which direction to search next. The
usefulness assigned to a generated design solution reflects the deterministic search ef­
forts towards a certain search direction. Part of the AI in design research covers auto­
mated decision-making and search processes. These research efforts are aimed not at
the replacement of the designer with machines but at the emulation of designer's cog­
nitive activity to allow the transfer of routine and repetitive tasks to computers and to
ensure more efficient decision-making. Human cognitive processes involved in design

136 SOURAV KUNDU AND SEIICHI KAWATA

learning, are therefore studied in the subject of AI in design with a view to fonnalizing
them and expressing them in an algorithmic fonn.

One fonnalized model of learning that has been extensively studied within the
scientific community of AI and computer science is the Genetic Algorithms (GAs)
(Holland, 1975; Goldberg, 1989). The genetic algorithms are distinguished by their
parallel investigation of several areas of a search space simultaneously by manipulat­
ing a population, members of which are coded problem solutions. The task environ­
ment for these applications is modeled as an exclusive evaluation function, which in
most cases is called a fitness function that maps an individual of the population to a
real scalar. When a search is perfonned to locate the global extrema of the evaluation
function over the search space with an extremely large number of solutions, the search
is typically called optimization. The search algorithm merely sees the result of the fit­
ness function as a feedback for the members of the population. Here each solution to
the given problem is one member of the population. GAs have been used to design in­
telligent control systems as in Passino (1995), Porter (1995), Goldberg (1985), Huang
and Fogarty (1992) and others, but usually the selection mechanism of the GA is de­
pendent on a single valued scalar fitness function. For control system design the fitness
function for the GA is usually taken to be the perfonnance index function of the con­
trol system. In this paper a GA is used to design control systems using a new design
representation technique, using a mathematical re-fonnulation. This representation is
different to the traditional control system design representation as it uses a multiple­
criteria (multiple-objective) fonnulation consequently with a multiple-criteria GA to
perfonn the search for Pareto optimal design solutions. The proposed paradigm for
the control system design representation calls for an improved search strategy which
is implemented by the multiple-criteria GA. This improved search strategy produces
better design solutions. We also show here that the new representation paradigm al­
lows us to implement nonlinear state feedback for control which considerably expands
the design space and a multicriteria GA is able to find better design solution in the ex­
panded design space.

2. Control System Design

Control system design is a specific example of engineering design. The design goal
here is three-fold. First is to obtain the configuration of the control system. Second
is to achieve the specifications and the third is to identify and optimize the key para­
meters for the control task that meets an actual need. Control system designers first
attempt to configure a system that will result in the desired control perfonnance. The
system configuration detennines the topology of the sensors, process under control,
actuators and controllers. Then the comes the second aspect of the design where the
task is to specify proper candidates (mechanical, electrical, chemical or other hybrid
components) which will serve as the sensor/s, actuator/s and controller/s for the given
specific process under control. This is mainly routine design or a catalog lookup task.
The third important aspect of control system design deals with the identification of
key parameters and to optimize their values to achieve the desired result of the control
action.

The key factor that affects the design of control systems is the 'perfonnance index'
function that is selected to make the control system exhibit a desired type of perfonn-

AI IN CONTROL SYSTEM DESIGN 137

ance. This performance index is generally denoted by J(u(t)) in control terminology.
Some different possibilities of constructing the J(u(t)) index is discussed in the fol­
lowing. While formulating the generalized performance index for designing control
systems, there are cases where we are concerned with both the expenditure of the con­
trol energy as well as the state variable performance. In these cases the performance
index of the control system is the integral (over time) of a linear combination of the
quadratic forms of the control input it (itT Rit) and the state variable description :i
(:iT QX). The weighting matrices Q and R are chosen so that the relative importance
of the state variable performance is contrasted with the importance of the expenditure
of the system's energy resource. The matrices Q and R are called the' state' weighting
matrix and the 'control' weighting matrix respectively.

The issue of considerable concern to the control system designer is the selection
of these weighting matrices Q and R. In practical cases only the minimization of the
performance index is often not a true design objective. The problem, however, is that
the true design objective can seldom be expressed in mathematical terms. In some
instances when it can be described in mathematical terms it is usually impossible to
solve for an optimal control input. Expression of the design objective in the form of
a quadratic integrals is a prudent compromise between formulating the real problem
that cannot be solved and formulating an artificial problem that can be solved. The
quadratic form :iT Q:i in the performance index represents a penalty on the deviation
of the state :i from the origin and the term itT Rit attempts to limit the magnitude of
the control signal it. It is intuitive to the understanding here that if it is possible to
re-formulate the traditional performance index equation in a way so as to avoid the
implicit necessity of the use of weighting matrices Q and R, that is, to consider the
problem as one of multiple criteria, we can arrive at a control design technique which
eliminates the difficulties in choice of the Q and R but still retains their versatility in
providing for a suitable control design solution. This technique is outlined in sections
5 and 6.

The time integrals of the performance index expressions (taken from Rowland,
1986, p. 459) can be as follows: J(u(t)) = It; e2dt (ISE) or J(u(t)) = It; leldt

(IAE) or J(u(t)) = It;(t - to)e2dt (ITS E) or J(u(t)) = It;(t - to)leldt (ITAE)

or J(u(t)) = It; u2dt (Minimum Energy) or J(u(t)) = It; luldt (Minimum Fuel) or

J(u(t)) = It; dt (Minimum Time) or J(u(t)) = It; (:iTQ:i+itT Rit)dt (Quadratic in
State and Control). Here J(u(t)) is the single criterion performance index for a given
control input u which is a continuous or discrete function of the time t, to and t f being
the starting and finishing times respectively, e is the system error or the error from the
desired value of the system's state.

3. New Representation Paradigm

This paper principally deals with the third aspect of control system design outlined
in the last section, utilizing an AI method (GA) to solve the design problem. Given
a system configuration and the specification of the components used for the control,
it is shown here how we can mathematically re-formulate the traditional optimization
problem representation technique in optimal control design theory and how, with this
new representation it is possible to consider a nonlinear feedback to control a non-

138 SOURAV KUNDU AND SEllCHI KAWATA

linear process. This is regarded as a new representation paradigm for control system
design. The research presented here covers three main aspects of this new representa­
tion paradigm.

1. A new design representation via mathematical re-formulation of the traditional
design formulation.

2. A new search algorithm to solve multiple criteria design problems using Pareto
sets and a genetic algorithm.

3. Using (1) and (2) it is shown that a nonlinear state feedback can be considered
which expands the search space for the design and the GA based search algorithm
produces better design solutions, compared to the linear state feedback which
constricts the search space.

In this paper the integral expressions shown in section 2 are re-formulated to avoid
the use of weighting matrices. This allows us to deal with the design as a multicriteria
problem and also enables us to use a concept of nonlinear state feedback instead of the
traditional linear state feedback, when we use the GA based heuristic search method
for the solution.

For analysis of the multiple-criteria problem we use the concept of Pareto sets. The
Pareto optimal set of control design solutions is defined as :

"Let X be a set of feasible control design solutions. The Pareto optimum is defined
as: A design solution (control input) it*(t) E U, with N performance indices,
is Pareto optimal if and only if there exists no it(t) E U such that Ji(it(t)) :S
Ji(it*(t)) for i = 1,2, ... ,N with Ji(it(t)) < Ji(it*(t)) for at least one i. Here
U E ~n is the universe of admissible control inputs. This definition is based
upon the intuitive assumption that the control input it* (t) is chosen as an optimal
(or nondominated) one if none of performance indices Ji(it(t)), can be improved
without worsening at least one other performance index."

The Pareto set is plotted to find the set of non-dominated solutions that are generated
considering all the N separate performance criteria simultaneously without placing
any relative importance (weights) on any of them. With reference to this Pareto set,
a fitness value is awarded to each control design solution. The technique proposed in
this paper generates control inputs and compares the control output considering this
Pareto optimality condition. At the end of the GA run, the control system designer
chooses one of the solutions in the final Pareto optimal set, to suit his/her design goals
and requirements.

4. Previous Work

4.1. PREVIOUS WORK ON LINEAR STATE FEEDBACK DESIGN

Considering a given plant and a desired reference input most of the design problems
in control are to find a control input or an actuating signal so that the output of the
plant will be as close possible to the reference input. If a control input depends on
actual output of the system (plant), it is called a 'feedback' or a closed-loop control.
Since the state of a system contains all the essential information of the system, if the
control input is designed to be a function of the state and the reference input, in most
cases a reasonably good control can be achieved. The effects of introducing a linear

AI IN CONTROL SYSTEM DESIGN 139

state feedback of the form it = r + ki where it is a control input vector, r is the ref­
erence input vector, k E ~rxn is the feedback gain matrix which is required to be a
real and i is the state vector, have been extensively studied in control literature. Un­
der the assumptions of controllability, linear state feedback can achieve stabilization
in most of the cases. The design goal here is to find an optimal set of parameters or the
optimal value of the matrix k in the linear state feedback equation above using a cer­
tain performance index or objective function of the control system, which is the basic
function whose optimum (maximum or minimum) is sought subject to constraints on
the values of some variables. A performance index to be useful, must be a number that
is always a positive or zero. Then the best design of the control system is defined as
the one which minimizes this index. Optimal control system design has been tradition­
ally based on minimization of a quadratic performance index mentioned in section 2,
which typically is a time integral over a function of iT Qi and itT Rit (Lewis, 1986).
Choice of the linear weighting factors Q and R are generally based on heuristics and
some experiments are required to ascertain some satisfactory optimal value.

4.2. PREVIOUS WORK ON GA AND MULTICRITERIA OPTIMIZATION

Schaffer (1984, 1985) did some of the pioneering experiments in this area and pro­
posed 'Vector Evaluated Genetic Algorithm (VEGA), . His method attempted to avoid
the problems associated with scaling (or weighting) the different criteria of a multicri­
teria optimization problem. In the progressive generations VEGA found and main­
tained multiple solutions each one favoring one criterion. Thus it tried to optimize the
multiple criteria by finding solutions in the neighborhood of the extreme points of the
Pareto optimal frontier. This ultimately results in an equivalent weighting mechanism
where one of the criterion weights is one and the rest are zero, while selection is be­
ing performed. The problem remained in finding solutions all along the Pareto optimal
frontier. Husbands (1994) did some work on a distributed population co-evolving par­
allely to solve a scheduling problem.

In his book Goldberg (1989) suggests the use of a non-domination ranking scheme
which moves the population towards the Pareto frontier in a multiple criteria prob­
lem. Hom et al. (1993) presents a new algorithm called the 'Niched Pareto' genetic
algorithm. This method uses a widely known selection scheme called the tournament
selection (Goldberg, 1989) using Pareto domination within the tournament for selec­
tion. They also implement a technique called the fitness sharing which distributes the
populations over a number of different peaks in the search space with each peak re­
ceiving a fraction of the population in proportion to the height of that peak. This in
effect prevents the genetic drift in multimodal function optimization. In this sort of
approach an important factor affecting the GA's success is controlling the selection
pressure. This is determined by the size of the domination tournament which is mostly
empirical now. Another parameter called the niche size or the (J'share exists, which has
to be set beforehand. To do this setting again there is an implicit assumption that the
solution set has a finite known number of peaks. Ritzel et al. (1994) uses a form of
a Pareto optimality based rank evaluation scheme, consequently with a deduced form
of VEGA and compares the results with the best trade-off surface found by a domain
specific algorithm MICCP to judge the performance of the GA. This work does not
report any experiments by using some form of Hom's 'niching' mechanism or others.

140 SOURAV KUNDU AND SEIICRI KAWATA

Cieniawski et al. (1995) presents similar research and results.
Fonseca and Fleming (1993) and Belegundu et al. (1994) use a different form of

Pareto optimality based ranking mechanism. The basic rank assignment in Fonseca
and Fleming (1993) is simply a measure of the number of solutions that dominates
the particular solution. Thus for the solution Si, if it is dominated by di solutions in
generation t, then its rank at tth generation is rank(si' t) = 1 + di. Thus all the non­
dominated individuals are assigned rank 1, and rest according to the given formula.
They extend this rank assignment method by redefining the way in which comparis­
ons are made between two solutions allowing one to prefer one solution to another
even when they are both on Pareto optimal frontier. The algorithm then concentrates
on specific region of the Pareto frontier and evolves towards better solutions. Louis
and Rawlins (1993) uses a variant of binary tournament selection to incorporate Pareto
optimality in the genetic algorithm. The algorithm selects two individuals at random
from the current population, mates them, and produces the Pareto optimal set of par­
ents and offsprings. TWo random individuals from this Pareto optimal set form part
of the next population. The procedure repeats until the new population fills up, thus
becoming subsequent current population. Belegundu et al. (1994) uses just two ranks.
All non-dominated points (Pareto frontier) are given rank 1 and all dominated points
are given rank 2. Also any solution that violates a certain constraint is given rank 2.
Then all rank 2 solutions are discarded from the population and only rank 1 members
are bred. At every generation a lot of randomly generated solutions are added to the
population to keep its size a constant. In this approach a lot of otherwise useful ge­
netic material is discarded at every generation and this easily localizes the solutions to
a specific region of the Pareto frontier. This method can be regarded equivalent to gen­
erating a huge number of random solutions and determining the Pareto frontier which
is tantamount to an exhaustive search method.

4.3. PREVIOUS WORK ON GENETIC ALGORITHMS THEORY

Genetic Algorithms (GAs) (Holland, 1975) are commonly used for single criterion
optimization and learning problems. The goodness or usefulness metric for a certain
solution is the fitness function of the solution. By using a coded representation of the
search space, every problem is presented to the GA in terms of the bit-string represent­
ation. For example, in a 5-bit problem any deterministic function-coding combination
may be ultimately reduced to a list of fitness values associated with each 25 = 32
strings. The fitness-lookup which is used to specify a problem in every GA applica­
tion disguises the implied choice of 'basis' functions. The basis being a linearly inde­
pendent set of vector functions which span the underlying search space. As a result the
GAs have the same fundamental sampling problem as any other search algorithm. In
any traditional design problem the competing design solutions which are evaluated for
a fitness function are quite explicitly represented. But as GAs view the search space
via a coded representation of it which is often a bit-string, the search process with
GAs is not an easy one. More often than not the existence of large hamming distances
in the coded representation of the search space make the search with GAs very brittle
due to the 'hamming cliffs' (Kargupta and Goldberg, 1994). The motivational idea
behind GAs is natural selection. Operators like selection, crossover and mutation are
implemented to emulate the process of natural evolution. A population of 'organisms'

AI IN CONTROL SYSTEM DESIGN

Genetic Algorithm: (The basic algorithm in program form)
Procedure GA
begin

end

t=O
initialize at random P(t)
evaluate P(t)
while termination is not valid;

begin

end
endwhile

selection pet);
crossover pet);
mutation pet);
evaluate pet);
t=t+l

Figure 1. The simple genetic algorithm.

141

(usually represented as bit strings) is modified by the probabilistic application of the
genetic operators from one generation to the next. The basic algorithm where P(t) is
the population of strings at generation t, is given in Figure 1. A more detailed explan­
ation of the theory and working of the GA can be found in Goldberg (1989).

5. Proposed Mathematical Reformulation

5.1. TRADmONAL DESIGN APPROACH

Let us consider a multiple input linear time-invariant system described by the state
space equations:

with given initial conditions:

f(t) = Ax(t) + Bit(t)

y(t) = Cx(t)

x(to) = xo

(1)

(2)

(3)

Where x E ~n, it E ~r, A E ~mxn, B E ~nxr and C E ~mxn, and the pair (AB)
is controllable given the initial and terminal state and the given performance index.
x(t) is a n-dimensional state vector, it(t) is a r-dimensional control input and xo is
a constant n-dimensional vector. Associated with this system we have a performance
index the minimization of which, is the goal of the control system design task. The
conventional description of the performance index is :

(4)

subject to equation (1) where Q and R are both positive definite and symmetric matrices.
The control system design problem is to find a control input u(t) such that the given

142 SOURAV KUNDU AND SEIICHI KAWATA

perfonnance index in equation (4) is minimized. Deducing Q and R depends on the
experience of the control system designer and a number of trial and error strategies
are generally required for satisfactory deduction. According to the linear control the­
ory we can express the algebraic Riccati equation as:

ATp+ PA - PBR-1BTp+Q = 0 (5)

The solution of equation (5) being the matrix P. By deducing P, optimal control input
can be had as:

u(t) = _R-1 BT Pi

and thereof we can have the minimal J (u(t)) as :

J(U(t))min = i{;Pio

5.2. PROPOSED NEW DESIGN APPROACH

(6)

(7)

We resolve equation (4) for implementing a multicriteria design strategy. This new
paradigm for the design representation fundamentally changes the search spaces for
the design. We propose a new representation of the design spaces by a re-fonnulation
of equation (4) with its decomposition, where Jl(U(t)) and h(u(t)) are defined as
follows:

h(u(t)) = fooo[iT(t)Qi(t)]dt

J2(U(t)) = fooo[uT(t)Ru(t)]dt

(8)

(9)

Now we set Q ~ 1 and R ~ 1, (1 being the identity matrix) and we treat the problem
as one of multicriteria design by avoiding the use of the state and control weighting
matrices Q and R as follows:

Jl(U(t)) = fo oo [iT(t)1i(t)]dt

Jq(u(t)) = fo oo [uT(t)1u(t)]dt

(10)

(11)

We thus redefine the goal of the control system design task as to find a control input
u(t) such that the set of Pareto optimal solutions in the space of J1(u(t)) and J2(U(t))
minimize the multiple perfonnance index functions mentioned in (10) and (11), sim­
ultaneously.

From the theory of dynamical control systems the control input u(t) for the op­
timal control system design using linear state feedback is described as:

(12)

where k = ki(i = 1,2, ... , n) E ~rxn, with i(t) being a n-dimensional state vector,
u(t) being a r-dimensional control input and r being the reference input vector. By
the use of the re-fonnulation described in equation (10) and (11) it is possible to con­
struct a non-linear state feedback with combination of linear and non-linear tenns in

AI IN CONTROL SYSTEM DESIGN 143

the feedback for the optimal control input u(t) shown in (12). The introduction of non­
linear term expands the design space. This expanded search space helps to find much
better design solutions which are exemplified by the numerical example in section 7.

6. The Multicriteria GA Search Algorithm

The specifics of the GA search algorithm for multicriteria design which is presented
in this section lie in the assignment of a fitness measure to a design solution based on
reference to the dynamically updated Pareto optimal set generated during the progress­
ing GA runs (Osyczka and Kundu, 1995; Kundu et aI., 1996; Kundu, 1996). The GA
uses this fitness measure to perform the selection operation. The fitness is the proxim­
ity value of a feasible design solution added to the niching value of the Pareto optimal
solutions produced during the previous GA evaluation run. The fitness thus estimates
how far the new design solution is, from most recent Pareto frontier. This Pareto fron­
tier gets updated dynamically during the GA runs. An explanation of the notion of
proximity in the solution space would help to understand this better. Every feasible
design solution occupies a definite position in the n-dimensional universal space of
feasible solutions. This position will have in some metrical proximity value (length)
measured from each of Pareto solution (vectors) found in the previous run. We meas­
ure each of these proximity value. The value we return as the 'fitness' of a design
solution is least one of all these different proximity values. Analogous to an ordinary
(scalar) GA where we measure the fitness value of a solution as its metrical distance (a
straight line) from zero on a linear scale, our method is equivalent remembering that
the the 'shortest' distance between any two given points is a straight line.

6.1. PROXIMITY VALUES IN THE SOLUTION SPACE

Figure 2 shows the equivalent ways an ordinary GA and our multiple criteria GA as­
signs fitness to a new solution. In a single criterion GA the fitness d f is the least dis­
tance (a straight line joining two given points) between the solution and some datum
measure which is [0,0] in Figure 2. For a multiple criteria problem the fitness is the
minimum of dl, d2, d3, d4 and d5 in Figure 2. The minimum is d3 in this case. The
reference measure for dl, d2, d3, d4 and d5 is the cumulative Pareto set of all the
solutions found till the previous call to the GA evaluation routine. Thus the fitness is
essentially equivalent to that of the working of a one-dimensional GA. A solution will
always have a proximity value regardless of where is lies: whether in the negative or
positive spaces of the given Pareto frontier. When it lies in the positive Pareto space
(see figure 2) this proximity value should be greater than the case when it lies in the
negative Pareto space, as the former is a better solution (Osyczka and Kundu, 1996).
This is taken care by changing the signs in the proximity values. In the case when a
solution lies in the negative Pareto space of the present Pareto frontier the method to
assign the fitness is different to that when it lies in the positive Pareto space and this
method is described in detail in section 6.2.

144 SOURAV KUNDU AND SEIIeRI KAWATA

Parelo
SolUlion I

/ Parelo Fron".r Universal Space of Soluuon

Positive Pareto Space

0.0' df
litness for one·dimensional GA

egau\'c Parelo Space

Performance Index 2 (J2l

Solullon for I·d GA

Figure 2. Fitness calculation method in GA based design of control system.

6.2. UPDATING OF THE PARETO SET

Throughout each generation we maintain a set of Pareto optimal solutions, all of which
are assigned the same fitness value. This is equivalent to a assigning a 'niche' as de­
scribed in (Hom et aI., 1993) to the set of Pareto solutions. All members of a Pareto
set have the same niching value. A new solution in a certain generation can fall in any
of the three, and only the three of the following categories:

a. It is a new Pareto optimal solution and it dominates one, some (or all) of the
Pareto optimal solutions found till the immediately preceding call to the GA eval­
uation routine.

b. Although it is a new Pareto optimal solution it does not dominate any of the
Pareto optimal solutions found up till the immediately preceding call to the GA
evaluation routine.

c. It is not a Pareto optimal solution.

For every new solution in a certain generation we first assign a proximity value to it.
Then we deal with the three different categories mentioned above in three separate
ways whereby a fitness value is returned for the GA roulette wheel selection mechan­
ism to work. Note that for category [c.] solutions above we do not remove the solutions
as in Belegundu et al. (1994) but keep them in the population with awarding them a
lower fitness value. This is done as a measure to induce some form of atavism in the
evolutionary process and to insure against the loss of any otherwise useful genetic ma­
terial.

1. For category [a] solutions the fitness returned is the proximity value added to the
niching value of the Pareto optimal solutions found till the immediately preceding
call to the GA evaluation routine and the Pareto set is updated by removing those
old solutions that this new Pareto solution dominates.

AI IN CONTROL SYSTEM DESIGN 145

2. For category [b) solutions the fitness returned is the proximity value added to the
niching value of the Pareto optimal solutions found till the immediately preceding
call to the GA evaluation routine and the Pareto set is updated by adding this new
Pareto solution to the old Pareto set.

3. For category [c) solutions the fitness returned is simply the proximity value sub­
tracted from the niching value of the Pareto optimal solutions found till the im­
mediately preceding GA evaluation run. There is no change in the Pareto set.

7. Application to a Design Example Using Proposed Method

This section presents the simulation results of a control problem taken from (Dorf and
Bishop, 1995) [pp. 610] which has been coded and run in a Sun 4 machine using the
proposed design representation paradigm and the multiple criteria search technique
described in sections 5 and 6. Here the design goal here can be considered as a min­
imization task. The system considered can be represented by state space equation:

i(t) = Ai(t) + Bu(t) (13)

and a state feedback controller is selected so that:

- For a linear state feedback the u(t) is a linear function of the measured state vari­
able i such that:

(14)

- For a non-linear state feedback the u(t) is a combination of a linear and non­
linear terms in the function of the measured state variable i such that:

[

xTKIX 1 xTK2X
u(t) = i + klXI + k2X2 + ... + knxn + :

xTKn X

(15)

As an illustrative example a simple system with 2 state variables and 1 input variable
is considered as follows:

d [Xl] [0 1] [Xl] [0] t dt X2 = 0 0 X2 + 1 u() (16)

By setting A = [~ ~], B = [~] and i = [:~] in equation (13). First a linear

state feedback control system design is chosen such that:

(17)

Next a non-linear state feedback control system design is chosen such that:

146 SOURAV KUNDU AND SEIICRI KAWATA

with the control u(t) as a combination of the linear and non-linear terms of the two
state variables. For nonlinear state feedback equation (16) produces:

(19)

(20)

By application of the reformulation shown in equations (10) and (11) we can have two
performance indices:

h(u(t))

fo41f (xi + x~) dt

fo41f (u2) dt

both of which are to be minimized simultaneously.

(21)

(22)

For using linear state feedback the goal of the control system design task is to find
the optimal value of the decision variables kb k2 (see equation 17) such that when the
system is simulated by using those optimal values equations (21) and (22) are min­
imized simultaneously. We consider the eigenvalues of the system as ±j and so we
take the upper and lower limits of kl. k2 as ±20.47. The GA genotype bit length is 24
which takes into account the values of kl (12 bits) and k2 (12 bits). We note here that
(211 - 1)/100 = 20.47 and the 12th bit is for handling the negative values of kl and
k2.

For using nonlinear state feedback the goal of the control system design task is to
find the optimal value of the decision variables klo k2, k3, k4, k5 and k6, (see equation
18) such that when the system is simulated by using those optimal values equation (21)
and (22) are minimized simultaneously. We consider the eigenvalues of the system as
±j and so we take the upper and lower limits of kl. k2, k3, k4, k5 and k6, as ±20.47.
The GA genotype bit length is 72 which takes into account the values of kl (12 bits)
through k6 (12 bits). We note here that (211 - 1)/100 = 20.47 and the 12th bit is
for handling the negative values of kl. k2, k3, k4, k5 and k6. Note here that the intro­
duction of the extra variables k3, k4, k5 and k6 in the case of nonlinear state feedback
expands the design search space.

7.1. DISCUSSION ON RESULTS

Figures 3 and 4 show the results from the computer simulation of the system described
by equation (16) using linear state feedback. Figure 3 plots the error response of the
two state variables of the system Xl and X2. Our design goal is to stabilize the sys­
tem as soon as possible with minimum overshoot. The starting values of Xl and X2 are
1 and 0 respectively. By stabilization of the system we mean bringing down both the
state variables Xl and X2 to zero (desired value), irrespective of their starting values.
To bring Xl to 0, X2 has to increase from 0 towards the negative direction. At genera­
tion 1 of the GA we notice that there is a large amount of overshoot of both Xl and X2

variables before the damping off to 0 in about 6 seconds. Figure 4 plots the system's
error response at the 50th generation of the GA when the final design solution was
achieved (using linear state feedback). We readily notice the smoothness of the error

AI IN CONTROL SYSTEM DESIGN 147

$t8l1H"1g Sy,t.,., R.,pons_PIoI Platot Sl*t. 'I1ItiMI. ~2 (~~)

••

0v .,.
0,' 11:1 •• 1.210

IQ:. +2.330 i
i 04 J1 IUi217500

c;:-G.60

i J2. +2.367<1610 j ! .. 1l1('tD)-., .i -. M2(rDl_O

0 \r -1 .5

-0. V

-<I •• •• " -'. .. 12 ..
T~_,. r."._:to

Figure 3. Starting solution for GA generation number 1 by Linear State Feedback.

~1ITIU4dSY'61""'~~

.., ..

..,.,
11: 1 •• S.S&O i

"r;:-o,3

1d: •• S,S30 t
JI • +4.5S375000 ~-o" lf2(i:Ol_O

II
JZ • +O,t2W_

1I1(tO).1

."
0
0 • • •• ., .. -0.10 .. "

,.
T"~_,.

Figure 4. Finishing solution for GA generation number 50 by Linear State Feedback.

response with no overshoot. Both Xl and X2 state variables stabilize in a smooth way
and in a shorter time which is about 4.6 seconds. We plot Figure 3 using one of the
only 2 Pareto solutions found in generation 1 of the GA. Figure 4 was plotted using
one of the 27 Pareto solutions found in the 50th generation of the GA.

Results of simulation of the system described by equation (16) using nonlinear
state feedback are presented in figures (5) and (6). Comparing these results with plots
in figures (3) and (4) shows what has been achieved by expanding the design search
space via utilization of equation non-linear state feedback instead of linear state feed­
back. Figure 5 presents the error response curve of one of the only 2 Pareto solutions
found in the GA generation number 1. We notice that there is some amount of over­
shoot present in both the response curves of the Xl and X2 state variables. But still
the system stabilizes earlier (3.2 seconds) than the best solution found by linear state

148 SOURAV KUNDU AND SEllCHI KAWATA

feedback. Figure 6 presents the system's error response of one of the 14 Pareto solu­
tions found in the 50th generation of the GA. We readily notice that with absolutely
no overshoot, both the Xl and X2 state variables of the system smoothly stabilizes in
about 2.2 seconds.

~ &ttl"," ~IPO"M Plot
02

f\

... ., _.&.",0 1r;2.e.eoo
-<12

kl_·'&.380 k4.1.200
0 .. kli_O.eoo k6. -11.2W

i
Jl.IiIft..leie720f9 J237714787 ,:-0.6

i.. 0." J -<1-'
1 a :.1(lO) •• ' i -1

02

d{IO).O

-1.2

-1."

_u

-0.2 • • • ,0 I> .. - 1.1100 10 " ..
TIm.-;o

Figure 5. Starting solution for GA generation number 1 by Non-Linear State Feedback.

Aoc 01 St.. ~ _2 (Optimlll)
Oplltnlllld 8yt.llWn FI.*PtWI~. ~ ,_os

0_' 11'.13.630 k2 .. 7.eooo

kl.'6.m If •• -'2.770 -<l.OS

0_0 k&_. 'I.070 1dI .. - 12:.240 i
JI_ 3 ","2t40 J2 .. 0.21131' sn ~ -4.'

i. 0 .• i
I ~-oUi

,;1!tO)_.' !
0.2 -02

-<I""

V
-0.30 , • " " -02. • • 10 " " Tlmo-.

nn._.

Figure 6. Finishing solution for GA generation number 50 by Non-Linear State Feedback.

Figure 7 shows the progress of the Pareto optimal frontier during the course of the
50 generations of the GA. In generation 1 we have only 2 solutions. In generation 50
we see that 14 Pareto solutions have been found out by the GA. The designer can now
choose any of these 14 Pareto solutions according to his or her preference, the design
considerations and requirements. One of these 14 solutions is used to plot figure (6).
This solution is marked by "*" in figure (7) to show its position in the final Pareto
frontier. For our simulations, the GA population size was 70. The GA crossover prob­
ability was 0.5. The GA mutation probability was 0.09. The number of generations
required to produce all the results presented was 50.

AI IN CONTROL SYSTEM DESIGN

PROGRESS IN PARETO FRONT DURING GA RUNS

1 .8&===~:::::==:;::::::=====~::::::=::::::::===i
,-Perala Frontier al Generalion 1

1.6

W
N 1.4

f
~ 1.2
.!!.

" '" 31

'"
~ ~O.8
u
§O.6

~
~ 0.4

0.2

GA Population . 70

Mulation Rale s 0.09

Crossover Rate; 0.5

., of Parelo Soln. In lsi GA generation ~2 - Mal1<ed wllh '0'

'of Pareto SoIn. in 50th GA generation . 14 - Mark&<! wltn .+.

Pa.reto FrontIer at Generation 50 >

~L-~--~2--~3 ---4~~5~~6---77---8~~~~1O·
Porlormance Criterion t (J 1 s "'2)

Figure 7. Pareto frontier progression as GA generations proceed.

8. Conclusions

149

U sing any of the methods based on heuristic weighting of control performance criteria
we obtain a single best solution which clearly reflects the choice of weights. In prac­
tical cases weights are not always easy to ascertain during the earlier stages of the con­
trol system design. Using our proposed method, usually we obtain a reasonably large
set of Pareto optimal solutions which are well distributed all along the Pareto fron­
tier, from which the control system designer can choose a design solution according to
hislher preferences. Avoiding the existing mathematical methods to find a single op­
timal solution for the control system design problem we show that the Pareto approach
combined with a GA gives a rich set of Pareto optimal solutions that could not have
been otherwise produced by traditional methods from the dynamical systems control
theory. It is apparent from the computer simulations that for the new design repres­
entation proposed, nonlinear state feedback produces better results by expanding the
design search space. The multicriteria design formulation is essentially required to
implement this nonlinear state feedback approach as there exists no other mathem­
atical apparatus to solve it. The GA based search algorithm for multicriteria design
proves very effective to generate and evaluate feasible design solutions and perform
the search for Pareto optimal designs.

Acknowledgments

Sourav Kundu acknowledges the Ministry of Education, Japan for financial support on this
project. He also wishes to acknowledge the research support of Prof. John S. Gero of the Key
Center of Design Computing in University of Sydney Australia, Dr. Sushil 1. Louis of the De­
partment of Computer Science, University of Nevada, Reno and Prof. Andrzej Osyczka of the
Department of Precision Engineering, Tokyo Metropolitan University, Japan.

150 SOURAV KUNDU AND SEIICHI KAWATA

References

Belegundu, A. D., Murthy, D. V., Salagame, R. R. and Constans, E. W: 1994, Multi-objective op­
timization of laminated ceramic composites using genetic algorithms, Proceedings of the 5th
AlAAINASAIUSAFIISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA, Inc.,
pp. lO15-lO22.

Cieniawski, S. E., Eheart, J. Wand Ranjithan, S.: 1995, Using genetic algorithms to solve a multiobject­
ive groundwater monitoring problem, Water Resource Research, 31(2),399-409.

Dorf, R. C. and Bishop, R. H.: 1989, Modern Control Systems, Addison-Wesley, Reading, Massachu­
setts.

Fonseca, C. M. and Fleming, P. J.: 1993, Genetic algorithms for multiobjective optimization: Formula­
tion, discussion and generalization, Proceedings of the Fifth International Conference on Genetic
Algorithms, Morgan-Kaufmann, pp. 416--423.

Gero, J. S., Louis, S. J. and Kundu, S.: 1993, Evolutionary learning of novel grammars for design im­
provement, Artificial Intelligence in Engineering Design, Analysis and Manufacturing (AIEDAM),
8(2), 83-94.

Goldberg, D. E.: 1989, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison­
Wesley, Reading, Massachusetts.

Goldberg, D. E.: 1985, Genetic algorithms and rule-learning in dynamic system control, in 1. J. Grefen­
stette (ed.), Proceedings of the First International Conference on Genetic Algorithms and Their Ap­
plications, Lawrence Erlbaum Associates, Hillsdale, New Jersey, pp. 8-15.

Holland, J. H.: 1975, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann
Arbor, Michigan.

Hom, J., Nafpliotis, N. and Goldberg, D. E.: 1993, Multiobjective optimization using the niched pareto
genetic algorithm, IlliGAL Tech Report no 93005, Department of General Engineering, University
of Illinois at Urbana Champaign, Urbana, IL 61801-2996.

Huang, R. and Fogarty, T. C.: 1992, Learning prototype control rules for combustion control with genetic
algorithm, Journal of Modeling, Measurement and Control, 38(4),55-64.

Husbands, p.: 1994, Distributed coevolutionary genetic algorithms for multi-criteria and multi-constraint
optimization, in T. C. Fogarty (ed.), Evolutionary Computing (selected papers from AISB Workshop
Leeds, UK), Springer-Verlag, Berlin, Heidelberg, pp. 150-165.

Kargupta, H. and Goldberg, D. E.: 1994, Decision making in genetic algorithms: a signal-to-noise per­
spective, IlliGAL Tech Report no 94004, Department of General Engineering, University of Illinois
at Urbana Champaign, Urbana, IL 61801-2996.

Kundu, S.: 1996, A multicriteria genetic algorithm to solve optimization problems in structural engineer­
ing design, Proceedings of International Conference on Infonnation Technology in Civil and Struc­
tural Engineering Design - Taking Stock and Future Directions, 14th - 16th August 1996, Glasgow,
Scotland (accepted for publication).

Kundu, S., Kawata, S. and Watanabe, A.: 1996, A multicriteria approach to control system design with
genetic algorithm, Proceedings of IFAC '96 - 13th World Congress, June 30th - July 5th, 1996,
International Federation of Automatic Control, Elsevier Science, Kidlington, Oxford, U.K. (in print).

Lewis, F. L.: 1986, Optimal Control, Wiley, New York.
Louis, S. J. and Rawlins, J. E.: 1993, Pareto optimality, GA-easiness and deception, in S. Forrest (ed.),

Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kaufmann Pub­
lishers, San Mateo, California, pp. 118-123.

Osyczka, A. and Kundu, S.: 1995, A new method to solve generalized multicriteria optimization prob­
lems using the simple genetic algorithm, Structural Optimization, 10(2),94--99.

Osyczka, A. and Kundu, S.: 1996, A modified distance method for multicriteria optimization, using
genetic algorithms, Computers & Industrial Engineering Journal - Special Issue on Genetic Al­
gorithms, 30(2) (in print).

Passino, K. M.: 1995, Intelligent Control For Autonomous Systems, IEEE Spectrum, June, 55-62.
Porter, B.: 1995, Genetic design of control systems, Transactions of the Society of Instrument and Con­

trol Engineers, 34(5), 393-402.
Rowland,1. R.: 1986, Linear Control Systems: Modeling, Analysis, and Design, Wiley, New York.
Ritzel, B. J.; Eheart, W and Ranjithan, S.: 1994, Using genetic algorithms to solve a multiple objective

groundwater pollution containment problem, Water Resources Research, 30(5), 1589-1603.
Schaffer, 1. D.: 1984, Some Experiments in Machine Learning Using Vector Evaluated Genetic Al­

gorithms, Doctoral Dissertation, Vanderbilt University, Nashville, Tennessee.
Schaffer, J. D.: 1985, Multiple objective optimization with vector evaluated genetic algorithms, in J.

Grefenstette (ed.), Proceedings of an International Conference on Genetic Algorithms and their Ap­
plications, pp. 93-100.

1. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 151-170
© 1996 Kluwer Academic Publishers.

AUTOMATED DESIGN OF BOTH THE TOPOLOGY AND SIZING OF
ANALOG ELECTRICAL CIRCUITS USING GENETIC
PROGRAMMING

JOHN R. KOZA, FORREST H BENNETT III, DAVID ANDRE
Department of Computer Science
Stanford University, Stanford, California

AND

MARTIN A. KEANE
Econometrics Inc., Chicago, Illinois USA

Abstract: This paper describes an automated process for designing analog electrical
circuits based on the principles of natural selection, sexual recombination, and
developmental biology. The design process starts with the random creation of a large
population of program trees composed of circuit-constructing functions. Each program
tree specifies the steps by which a fully developed circuit is to be progressively
developed from a common embryonic circuit appropriate for the type of circuit that the
user wishes to design. The fitness measure is a user-written computer program that may
incorporate any calculable characteristic or combination of characteristics of the circuit.
The population of program trees is genetically bred over a series of many generations
using genetic programming. Genetic programming is driven by a fitness measure and
employs genetic operations such as Darwinian reproduction, sexual recombination
(crossover), and occasional mutation to create offspring. This automated evolutionary
process produces both the topology of the circuit and the numerical values for each
component. This paper describes how genetic programming can evolve the circuit for a
difficult-to-design low-pass filter.

1. The Problem of Circuit Design

The design of an electrical circuit with specified operating characteristics is a
complex task. Electrical circuits consist of a wide variety of different types of
components, including wires, resistors, capacitors, inductors, diodes, transistors,
transformers, and energy sources. The individual components are arranged in a
particular topology to form a closed circuit. In addition, each component is
further specified (sized) by a set of component values. Circuits typically receive
input signals from one or more input sources and produce output signals at one

152 JOHN KOZA ET AL.

or more output ports. A complete specification of an electrical circuit includes
both its topology and the sizing of all of its components.

Considerable progress has been made in automating the design of certain
categories of purely digital circuits; however, the design of analog circuits and
mixed analog-digital circuits has not proved to be as amenable to automation
(Rutenbar, 1993). In discussing "the analog dilemma," Aaserud and Nielsen
(1995) observe,

Analog designers are few and far between. In contrast to digital design, most of
the analog circuits are still handcrafted by the experts or so-called 'zahs' of
analog design. The design process is characterized by a combination of
experience and intuition and requires a thorough knowledge of the process
characteristics and the detailed specifications of the actual product.

Analog circuit design is known to be a knowledge-intensive, multiphase,
iterative task, which usually stretches over a significant period of time and is
performed by designers with a large portfolio of skills. It is therefore considered
by many to be a form of art rather than a science.

2. Previous Work

Numerous efforts have been made to automate the design process for analog
and mixed analog-digital circuits. In an interactive design tool called IDAC for
analog integrated circuits (Degrauwe ,1987), the user selects various possible
topologies for the circuit; IDAC determines the values of the components in
each circuit (in relation to the desired behavioral characteristics); and, the user
chooses the best sized circuit.

In OASYS (Harjani, Rutenbar and Carley, 1989) and OPASYN (Koh,
Sequin and Gray, 1990), a topology is chosen beforehand based on heuristic
rules and the synthesis tool attempts to size the circuit. If the synthesis tool
cannot size the chosen topology correctly, the tool creates a new topology using
other heuristic rules and the process continues. The success of these systems
depends on the effectiveness of the knowledge base of heuristic rules.

In SEAS (Ning, Kole, Mouthaan and Wallings" 1992), evolution is used to
modify the topology and simulated annealing is used to size the circuit. Maulik,
Carley and Rutenbar (1992) attempt to handle topology selection and circuit
sizing simultaneously using expert design knowledge. Higuchi et al. (1993)
have employed genetic methods to the design of digital circuits using a
hardware description language (HDL).

In DARWIN (Kruiskamp and Leenaerts, 1995), opamp circuits are designed
using the genetic algorithm (Holland, 1975). In creating the initial population in
DARWIN, the topology of each opamp in the population is picked randomly
from a preestablished hand-designed set of 24 topologies in order to ensure that
each circuit behaves as an opamp. In addition, a set of problem-specific
constraints are solved to ensure that all transistors operate in their proper range

AUTOMATED DESIGN OF ANALOG CIRCUITS 153

and that all transistor sizes are between maximal and minimal values. The
behavior of each opamp is evaluated using a small signal equivalent circuit and
analytical calculations specialized to opamp circuits. The fitness of each opamp
is computed using a combination of factors, including the deviation between the
actual behavior of the circuit and the desired behavior and the power dissipation
of the circuit. A crossover operation and mutation operation for the
chromosome strings describing the opamps is used to create offspring
chromosomes.

3. Background of Genetic Programming

John Holland's pioneering Adaptation in Natural and Artificial Systems (1975)
described how an analog of the naturally-occurring evolutionary process can be
applied to solving scientific and engineering problems using what is now called
the genetic algorithm. The problem of automatic programming is one of the
central questions in computer science. Paraphrasing Arthur Samuel (1959), the
question is:

How can computers learn to solve problems without being explicitly
programmed? In other words, how can computers be made to do what needs to
be done, without being told exactly how to do it?

Genetic Programming II: Automatic Discovery of Reusable Programs
(Koza, 1994) demonstrates that genetic programming can evolve multi-part
programs consisting of a main program and one or more reusable,
parameterized, hierarchically-called subprograms (called automatically defined
functions or ADFs).

4. Background on Cellular Encoding of Neural Networks

A feedforward neural network is a complex structure that can be represented by
line-labeled, point-labeled, directed graph. The points of the graph are either
neural processing units within the network, input points, or output points. The
lines are labeled with weights to represent the weighted connections between
two points. The neural processing units are labeled with numbers indicating
both the threshold and the bias of the processing unit.

In his seminal Cellular Encoding of Genetic Neural Networks, Frederic
Gruau (1992) described an innovative and clever technique, called cellular
encoding, in which genetic programming is used to concurrently evolve the
architecture of a neural network, along with all weights, thresholds, and biases.
In cellular encoding, each individual program tree in the population is a
specification for developing a complete neural network from a very simple
embryonic neural network (consisting of a single neuron). Genetic

154 JOHN KOZA ET AL.

programming is applied to populations of these network-constructing program
trees in order to evolve a neural network capable of solving the problem at hand
(see also Gruau, 1994).

Each program tree is a composition of network-constructing, neuron­
creating, and neuron-adjusting functions and terminals. The program tree is the
genotype and the neural network constructed in accordance with the tree's
instructions is the phenotype. The fitness of an individual program tree in the
population is measured by how well the neural network that is constructed in
accordance with the instructions contained in the program tree performs the
desired task. Genetic programming then breeds the popUlation of program trees
in the usual manner using Darwinian reproduction, crossover, and mutation.

5. Background on SPICE

SPICE (an acronym for Simulation Program with Integrated Circuit Emphasis)
is a massive family of programs written over several decades at the University
of California at Berkeley for the simulation of analog, digital, and mixed
analog/digital electrical circuits (Quarles et al" 1994). The input to a SPICE
simulation consists of a netlist describing the circuit to be analyzed and certain
commands that instruct SPICE as to the type of analysis to be performed and
the nature of the output to be produced.

6. The Mapping between Circuits and Program Trees

Genetic programming breeds a population of rooted, point-labeled trees (i.e.,
graphs without cycles) with ordered branches. There is a considerable
difference between the kind of trees bred in the world of genetic programming
and the special kind of labeled graphs employed in the world of circuits.
Genetic programming can be applied to circuits if a mapping is established
between the kind of point-labeled trees found in the world of genetic
programming and the line-labeled (often doubly labeled) cyclic graphs
employed in the world of circuits. In our case, developmental biology provides
the motivation for this mapping. The growth process used herein begins with a
very simple embryonic electrical circuit. The circuit is developed as the
functions in the program tree are progressively executed. The result is both the
topology of the circuit and the sizing of all of its components.

Each program tree contains (1) circuit-constructing functions and terminals
that create the topology of circuit from the embryonic circuit, (2) component­
setting functions that convert wires (and other components) within the circuit
into specified components, and (3) arithmetic-performing functions and
numerical terminals that together specify the numerical value (sizing) for each
component of the circuit.

AUTOMATED DESIGN OF ANALOG CIRCUITS 155

Program trees conform to a constrained syntactic structure. Component­
setting functions have arithmetic-performing argument subtrees and
construction-continuing argument subtrees, while the circuit-constructing
functions that manipulate the topology of the circuit have one or more
construction-continuing argument subtrees. The left argument subtree of each
component-setting function consists of a composition of arithmetic functions
and numerical constant terminals that together yield the numerical value for the
component. The right argument subtree of each component-setting function
specifies how the construction of the circuit is to be continued. Both the random
program trees in the initial population (generation 0) and any random subtrees
created by the mutation operation in later generations are created so as to
conform to this constrained syntactic structure. This constrained syntactic
structure is preserved by the crossover operation using structure-preserving
crossover with point typing.

7. The Embryonic Circuit

An electrical circuit is created by executing the program tree. Each program tree
in the popUlation creates one electrical circuit from the common embryonic
circuit. The embryonic circuit used on a particular problem depends on the
number of input signals and the number of output signals (probe points). It may
also contain certain fixed components that are required or desired for the circuit
being designed. The embryonic circuit used herein contains one input signal,
one probe point, two modifiable wires, a fixed source resistor, and a fixed load
resistor. In the embryonic circuit, the two modifiable wires each initially
possess a writing head (i.e., are highlighted with a circle). A circuit is developed
by modifying the component to which a writing head is pointing in accordance
with the circuit-constructing functions in the program tree. Each circuit­
constructing function in the program tree changes its associated highlighted
component in the developing circuit in a particular way and specifies the future
disposition of successor writing head(s), if any.

The bottom three quarters of figure 1 shows the embryonic circuit used for a
one-input, one-output circuit. The energy source is a 2 volt sinusoidal voltage
source USOURCE whose negative (-) end is connected to node 0 (ground) and
whose positive (+) end is connected to node 1. There is a fixed 1000-0hm
source resistor RSOURCE between nodes 1 and 2. There is a modifiable wire
(i.e., a wire with a writing head) II between nodes 2 and 3 and another
modifiable wire l B between nodes 3 and 4. There are circles around
modifiable wires lB and II to indicate that the two writing heads (thick lines)
point to them. There is a fixed isolating wire lOUT between nodes 3 and 5, a
voltage probe labeled U 0 UT at node 5, and a fixed 1000-0hm load resistor
RLORD between nodes 5 and 0 (ground). There is an isolating wire lGND

156 JOHN KOZA ET AL.

between nodes 4 and a (ground). All of the above elements of this embryonic
circuit (except l B and ll) are fixed forever; they are not subject to
modification during the process of developing the circuit. All subsequent
development of the circuit originates from writing heads.

ZGIID
Dt----~

Figure lOne-input, one-output embryonic electrical circuit.

A circuit is developed by modifying the component to which a writing head
is pointing in accordance with the associated circuit-constructing function in the
program tree. The figure shows L and FLIP functions just below the LIST and
the two writing heads pointing to modifiable wires l B and l 1 . The Land
FLIP functions will cause lB to be changed into a capacitor and the polarity
of modifiable wire l 1 to be reversed.

The embryonic circuit is designed so that the number of lines impinging at
anyone node in the circuit is either two or three. This condition is maintained
by all of the circuit-constructing functions. The isolating wire lOUT protects
the probe point U 0 UT from modification during the developmental process and
the isolating wire lGND protects the negative terminal of USOURCE.

Note that little domain knowledge went into this embryonic circuit.
Specifically, (1) the embryonic circuit is a circuit, (2) the embryonic circuit has
one input and one output, and (3) there are modifable connections between the
output and both source and ground. This embryonic circuit is applicable to any
one-input, one-output circuit. It is the fitness measure that directs the
evolutionary search process to the desired circuit.

8. Circuit-Constructing Functions

8.1. THE C AND L COMPONENT-SETTING FUNCTIONS

Each circuit-constructing function operates on a single component. Components
are introduced into a circuit by the component-setting functions. The rightmost

AUTOMATED DESIGN OF ANALOG CIRCUITS 157

argument subtree of each component-setting function is a construction­
continuing subtree that points to a successor function or terminal in the program
tree. Upon completion, one writing head points to the new component. The left
argument subtree of the component-setting functions is an arithmetic­
performing subtree that contains a composition of arithmetic functions (addition
and subtraction) and random constants (in the range -1.000 to + 1.000). The
arithmetic-performing subtree returns a floating-point value which is, in turn,
interpreted as the value of the component using a logarithmic scale in the
following way: If the return value is between -5.0 and +5.0, U is equated to the
value returned by the argument subtree . If the return value is less than -100 or
greater than +100, U is set to zero. Ifthe return value is between -100.0 and
-5.0, U is found from the straight line connecting the points (-100,0) and (-5,
-5). Ifthe return value is between +5.0 and + 100, U is found from the straight
line connecting (5,5) and (100, 0). The value of the component is IOU in a unit
that is appropriate for the type of component. This mapping gives the
component a value within a range of 11 orders of magnitude centered on a
certain value. This mapping gives the component a value within a range of 11
orders of magnitude that is centered on an appropriate value and that uses an
appropriate unit of measurement that was settled upon after examining a large
number of practical circuits in contemporary books.

If a component (e.g., a diode) has no numerical values, there is no left
argument subtree. The two-argument C ("capacitor") function causes the
highlighted component to be changed into a capacitor. The value of the
capacitor is the antilogarithm (base 10) of the intermediate value U computed as
above in nano-Farads (nF). This mapping gives the capacitor a value within a
range of plus or minus 5 orders of magnitude centered on InF.

The two-argument L ("inductor") function causes the highlighted component
to be changed into an inductor. The value of the inductor is the antilogarithm
(base 10) of the intermediate value U in micro-Henrys (mH).

8.2. THE FLI P FUNCTION

All electrical components in SPICE have a designated positive (+) end and a
designated negative (-) end. Polarity clearly matters for components such as
diodes and transistors and it affects the course of the developmental process for
all components. The one-argument FLIP function attaches the positive end of
the highlighted component to the node to which its negative end is currently
attached and vice versa. Upon completion, one writing head points to the now­
flipped original component.

8.3. SERIES DIVISION

The three-argument SERIES ("series division") function operates on one
highlighted component and creates a series composition consisting of the

158 JOHN KOZA ET AL.

highlighted component, a copy of the highlighted component, one new
modifable wire, and two new nodes. After execution of the SERIES function,
there are three writing heads pointing to the original component, the new
modifiable wire, and the copy of the original component.

Figure 2 shows a resistor R 1 connecting nodes 1 and 2 of a partial circuit
containing various capacitors. R 1 is assumed to possess a writing head (i.e., is
highlighted). Figure 3 illustrates the result of applying the SERIES division
function to resistor R 1 from figure 2. First, the SERIES function creates two
new nodes, 3 and 4. Second, SERIES relabels the positive (+) end of R 1
(currently labeled 2) as the first new node, 3. Third, SERIES creates a new
wire Z6 between the first new node, 3, and the second new node, 4. Fourth,
SERIES inserts a duplicate (called R7) of the original component (including
all its component values) between new node 4 and original node 2.

Note our convention of globally numbering components consecutively
(rather than maintaining a different series of consecutive numbers for each type
of component). Also, note that wires (such as Z 6) are used only during the
developmental process; all wires are edited out prior to the final creation of
netlist for SPICE. Also, note that the SERIES function may be applied to a
wire; in that event, the result is a series composition of three wires (each with
its own writing head).

e2l 1 C4

e - + 2

CJ T T
cs

Figure 2. A circuit containing a
resistor R 1 •

8.4. PARALLEL DNISION FUNCTIONS

c2l 1 C4

1~'3@ @
- + 2 ' v

4

C3 CS
T T

Figure 3. Result after applying the series
division function SERIES to resistor R 1 •

The two four-argument parallel division functions (PSS and PSL) each operate
on one highlighted component to create a parallel composition consisting of the
original highlighted component, a duplicate of the highlighted component, two
new wires, and two new nodes. After execution of a parallel division, there are
four writing heads. They point to the original component, the two new
modifiable wires, and the copy of the original component. We describe (and
use) only PSS herein.

First, the parallel division function PSS creates two new nodes, 3 and 4.
Second, the parallel division function inserts a duplicate of the highlighted

AUTOMATED DESIGN OF ANALOG CIRCUITS 159

component (including all of its component values) between the new nodes 3
and 4 with the negative end of the duplicate connected to node 4 and the
positive end of the duplicate connected to node 3. Third, the parallel division
function creates a first new wire Z6 between the positive (+) end of R 1 (which
is at original node 2) and first new node, 3. Fourth, the parallel division
function creates a second new wire Z 8 between the negative (-) end of R 1
(which is at original node 1) to second new node, 4.

The second character (Le., the first S or L) of the name of the particular
parallel division function indicates whether the positive end of the new
component is connected to the smaller (S) or larger (L) numbered component of
the two components that were originally connected to the positive end of the
highlighted component. The third character (i.e., the second S or L) of the name
of the particular parallel division function indicates whether the negative end of
the new component is connected to the smaller (S) or larger (L) numbered
component of the two components that were originally connected to the
negative end of the highlighted component.

Figure 4 shows the results of applying the PSS function to resistor R 1 from
figure 2. Since [4 bears a smaller number than [5, new node 3 and new wire
Z 6 are located between original node 2 and [4. Since [2 bears a smaller
number than [3, new node 4 and new wire Z 8 are located between original
node 1 and [2.

C2 l 1 C4
+

.4 ;}
Z8 Z6

+ 2

CJ C5
T T

Figure 4. Result after applying PSS to resistor R 1.

8.5. THE VIA AND GND FUNCTIONS

Eight two-argument functions (called VIAO, ... , VIA 7) and the two-argument
GND ("ground") function enable distant parts of a circuit to be connected
together. The eight two-argument VIAO, ... , VIA 7 functions create a series
composition consisting of two wires that each possesses a successor writing
head and a numbered port (called a via) that possesses no writing head. The port
is connected to a designated one of eight imaginary layers (numbered from 0 to
7) in the wafer on which the circuit resides. If one or more other parts of the
circuit connects to a particular layer, all such parts become electrically
connected as if wires were running between them. If no other part of the circuit
connects to a particular layer, then the one port connecting to the layer is

160 JOHN KOZA ET AL.

useless (and this port is deleted when the netlist for the circuit is eventually
created).

The two-argument GND ("ground") function is a special "via" function that
connects directly to the electrical ground of the circuit. This direct connection to
ground is made even if there is only one GND function calling for a connection
to ground in the circuit. After execution of these functions, writing heads point
to the two new wires.

8.6. THE NOP FUNCTION

The one-argument NOP function has no effect on the highlighted component;
however, it delays activity on the developmental path on which it appears in
relation to other developmental paths in the overall program tree - thereby
(possibly) affecting the overall result produced by the construction process.
After execution of NO P, one writing head points to the original highlighted
component.

8.7. THE END FUNCTION

The zero-argument END function causes the highlighted component to lose its
writing head - thereby ending that particular developmental path.

9. The Problem of Designing a Lowpass LC Filter

Consider a circuit design problem in which the goal is to design a filter using
inductors and capacitors with an AC input signal with 2 volt amplitude. The
filter is have a passband below 1,000 Hertz with voltage values between 970
millivolts and 1 volt and to have a stopband above 2,000 Hz with voltage values
between 0 volts and 1 millivolts. This corresponds to a pass band ripple of at
most 0.3 decibels and a stop band attenuation of at least 60 decibels. The circuit
is to be driven from a source with an internal (source) resistance of 1,000 Ohms
and terminated in a load of 1,000 Ohms.

A practising engineer would regard finding a circuit satisying the
requirements as a non-trivial design problem. Using the terminology of Zverev
(1967), these requirements can be satisfied by a Chebyshev-Cauer filter of
complexity 5, with a relection coefficient of 20%, and modular angle of 30
degrees.

10. Preparatory Steps for Solving the Problem of Designing a Lowpass LC
Filter

Before applying genetic programming to a circuit design problem, the user must
perform seven major preparatory steps, namely (1) identifying the terminals of
the to-he-evolved programs, (2) identifying the primitive functions contained in
the to-be-evolved programs, (3) creating the fitness measure for evaluating how

AUTOMATED DESIGN OF ANALOG CIRCUITS 161

well a given program does at solving the problem at hand, (4) choosing certain
control parameters (notably population size and the maximum number of
generations to be run), (5) determining the termination criterion and method of
result designation (typically the best-so-far individual from the populations
produced during the run), (6) determining the architecture of the overall
program, and (7) identifying the embryonic circuit that is suitable for the
problem.

Since the problem of designing the lowpass LC filter calls for a one-input,
one-output circuit with a source resistor and a load resistor, we use the
embryonic circuit of figure 2 for this problem. Since the embryonic circuit starts
with two writing heads, each program tree has two result-producing branches
joined by a LIST function. There are no automatically defined functions. The
terminal set and function set for both result-producing branches are the same.
Each result-producing branch is created in accordance with the constrained
syntactic structure that uses the leftmost (first) argument(s) of each component­
creating function to specify the numerical value of the component. The
numerical value is created by a composition of arithmetic functions and random
constants in this arithmetic-performing subtree. Since the components involved
in this problem (i.e., inductors and capacitors) each take exactly one component
value, there is only one arithmetic-performing subtree. The rightmost (second)
argument of each component-creating function is then used to continue the
program tree.

In particular, the function set, Jilps for the arithmetic-performing subtree
associated with each component-creating function contains the two-argument
functions of addition and subtraction. That is,

.raps = { +, - }.

The terminal set, 'Taps, for the arithmetic-performing subtree consists of

'Taps = {9\},
where 9t represents floating-point random constants between -1.000 and
+1.000.
The function set, .'Fees, for the construction-continuing subtree of each
component-creating function is

:Fees = {C, L, SERIES, PSS, FLIP,NOP, GND, VIAO, VIAl,
VIA2, VIA3, VIA4, VIAS, VIA6, VIA7},

taking 2, 2, 3, 4, 1, 1,2,2,2,2,2, 2, 2, 2, and 2 arguments, respectively. The
terminal set, 'Tees, for the construction-continuing subtree consists of

'Tees = {END}.

The user provides a computer program to compute the fitness measure. The
fitness measure drives the evolutionary process. For this problem, the voltage
UOUT is probed at node 5 and the circuit is viewed in the frequency domain.

162 JOHN KOZA ET AL.

Note that the above is applicable to anyone-input, one-output LC circuit. It
is the fitness measure that directs the evolutionary process to the desired circuit.

Each circuit that is developed from the embryonic circuit is simulated using
a modified version of the 217,000-line SPICE simulator that we modified to run
as a submodule of our genetic programming system. The SPICE simulator is
requested to perform an AC small signal analysis and to report the circuit's
behavior for each of 101 frequency values chosen from the range between 101
frequency values chosen over five decades of frequency (from 1 Hz to 100,000
Hz). Each decade is divided into 20 parts (using a logarithmic scale).

Fitness is measured in terms of the sum, over these 101 fitness cases, of the
absolute weighted deviation between the actual value of the voltage in the
frequency domain) that is produced by the circuit at the probe point U 0 UT at
node 5 and the target value for voltage. The smaller the value of fitness, the
better. A fitness of zero is ideal. The fitness measure does not penalize ideal
values; it slightly penalizes every acceptable deviation; and it heavily penalizes
every unacceptable deviation.

The procedure for each of the 61 points in the 3-decade interval from 1 Hz
to 1,000 Hz is as follows: If the voltage equals the ideal value of 1.0 volts in
this interval, the deviation is 0.0. If the voltage is between 970 millivolts and
1,000 millivolts, the absolute value of the deviation from 1,000 millivolts is
weighted by a factor of 1.0. If the voltage is less than 970 millivolts, the
absolute value of the deviation from 1,000 millivolts is weighted by a factor of
10.0. This arrangement reflects the fact that the ideal voltage in the passband is
1.0 volt, the fact that a 30 millivolt shortfall is acceptable, and the fact that a
voltage below 970 millivolts in the passband is not acceptable. It is not possible
for the voltage to exceed 1.0 volts in an LC circuit of this kind, but if the
voltage were to exceed the ideal, the deviation would be still be considered to
be zero and there would still be no penalty for a filter design problem.

The procedure for each of the 35 points in the interval from 2,000 Hz to
100,000 Hz is as follows: If the voltage is between 0 millivolts and 1 millivolt,
the absolute value of the deviation from 0 millivolts is weighted by a factor of
1.0. If if the voltage is more than 1 millvolt, the absolute value of the deviation
from 0 millivolts is weighted by a factor of 10.0. This arrangement reflects the
fact that the ideal voltage in the stopband is 0.0 volt, the fact that a 1 millivolt
ripple above 0 millvolts is acceptable, and the fact that a voltage above I
millivolt in the stopband is not acceptable.

We considered the number of fitness cases (61 and 35) in these two main
bands to be sufficiently close that we did not attempt to equalize the weight
given to the differing numbers of fitness cases in these two main bands. The
deviation is considered to be zero for each of the 5 points in the interval above
1,000 Hz and below 2,000 Hz (i.e., the "don't care" band). Hits are defined as
the number of fitness cases for which the voltage is acceptable or ideal or which
lie in the "don't care" band. Thus, the number of hits ranges from a low of 5 to a

AUTOMATED DESIGN OF ANALOG CIRCmTS 163

high of 101 for this problem. Some of the bizarre circuits that are randomly
created for the initial random population and that are created by the crossover
operation and the mutation operation in later generations cannot be simulated
by SPICE. Circuits that cannot be simulated by SPICE are assigned a high
penalty value of fitness (l08). These circuits become the worst-of-generation
circuits for each generation. The practical effect of this high penalty value of
fitness is that these individuals are rarely selected to participate in genetic
operations and that they quickly disappear from the population.

The population size, M, is 320,000. Since this problem runs slowly, we set
the maximum number of generations, G, to a large number and awaited
developments. The percentage of genetic operations on each generation was
89% crossovers, 10% reproductions, and 1 % mutations. A maximum size of
200 points was established for each of the two result-producing branches in
each overall program. The other parameters for controlling the runs of genetic
programming were the default values specified in Koza, 1994 (appendix D).

This problem was run on a medium-grained parallel Parystec computer
system consisting of 64 Power PC 601 80 MHz processors arranged in a
toroidal mesh with a host PC Pentium type computer. The so-called distributed
genetic algorithm for parallelization was used with a population size ofQ =
10,000 at each of the D = 64 demes. On each generation, four boatloads of
emigrants, each consisting of B = 2% (the migration rate) of the node's
subpopulation (selected on the basis of fitness) were dispatched to the four
toroidally adjacent processing nodes. See Andre and Koza, 1996.

11. Results for the Problem of Designing a Lowpass LC Filter

We present the results of three different runs of genetic programming on the
problem of designing the lowpass LC filter.

11.1. FIRSTRUN

A run of genetIC programming for this problem starts with the random creation
of an initial population of 320,000 program trees (each consisting of two result­
producing branches) composed of the functions and terminals identified above
and in accordance with the syntactic constraints described above.

For each of the 320,000 program trees in the population, the sequence of
circuit-constructing functions in the program tree is applied to the common
embryonic circuit for this problem (figure 1) in order to create a circuit. The
netlist for the resulting circuit is then determined. This netlist is wrapped inside
an appropriate set of SPICE commands and the circuit is then simulated using
our modified version of SPICE.

164 JOHN KOZA ET AL.

The initial random population of a run of genetic programming is a blind
random search of the search space of the problem. As such, it provides a
baseline for comparing the results of subsequent generations.

The best circuit of the 320,000 circuits from generation 0 had a fitness of
58.71 (on the scale of weighted volts described earlier) and scored 51 hits. The
first result-producing branch of this program tree has 25 points (i.e., functions
and terminals) and is shown below:

(C (- 0.963 (- (- -0.875 -0.113) 0.880» (series (flip end) (series
(flip end) (L -0.277 end) end) (L (- -0.640 0.749) (L -0.123 end»}}

The second result-producing branch has 5 points and is shown below:
(flip (nop (L -0.657 end»»

Figure 5 presents this best-of-generation program tree as a rooted, point­
labeled tree with ordered branches. The first result-producing branch is rooted
at the C function (labeled 2) and the second result-producing branch is rooted at
the FLIP function (labeled 3).

Figure 5. Program tree for best circuit of generation O.

In executing the program tree, the connective LIST function (labeled 1) at
the root of the tree is ignored. Most of the remainder of the tree is executed in a
breadth-first order; however, arithmetic-performing subtrees (such as the 7-
point subtree rooted at the point labeled 4) are executed in their entirety in a
depth-first order immediately when its circuit-constructing function is first
encountered. Thus, the C (capacitor) function (labeled 2) in figure 5 is executed
first. Then, the 7-point arithmetic-performing subtree (labeled 4) is immediately
executed in its entirety in a depth-first way so as to deliver the numerical
component value needed by the capacitor function c. Then, the breadth-first
order is resumed and the FLIP function (labeled 3) is executed.

Figure 6 shows the best circuit of generation 0 upon completion of the
developmental process.

AUTOMATED DESIGN OF ANALOG CIRCUITS 165

L8 :;
2

Ot----~4

Figure 6. Best circuit of generation O.

In the frequency domain, the voltages produced by this circuit in the interval
between 1 Hz and 100 Hz are very close to the required 1 volt (accounting for
most of the 51 hits scored by this individual). However, the voltages produced
between 100 Hz and 1,000 Hz deviate considerably below the minimum of 970
millivolts required by the design specification (in fact, by hundreds of millivolts
as one approaches 1,000 Hz). Moreover, the voltages produced above 2,000 Hz
are, for the most part, considerably above the minimum of 1 millivolt required
by the design specification (by hundreds of millivolts in most cases).

Generation 1 (and each subsequent generation of the run) is created from the
popUlation at the preceding generation by performing 142,400 crossover
operations (producing 284,800 offspring or 89% of 320,000), 32,000
reproduction operations (10% of 320,000), and 3,200 mutation operations (1 %
of 320,000).

As the run proceeds from generation to generation, the fitness of the best-of­
generation individual tends to improve. Figure 7 shows the standardized fitness
and number of hits for the best-of-generation program of each generation of this
run.

80.0

60.0

la .s 40.0 ~--..,

~

20.0

1= Filncss
Hits

o .o+---~--~r=~ ~ ~ ~ o 20 40
Gen eration

60

Figure 7. Fitness and hits for one run.

0

100

80

60
~ :a

40

20

0

166 JOHN KOZA ET AL.

SPICE cannot simulate many of the bizarre circuits created by genetic
programming. About two-thirds (65.3%) of the 320,000 programs of generation
o for this problem produce circuits that cannot be simulated by SPICE.
However, the percentage of unsimulatable circuits changes rapidly as new
offspring are created by genetic programming using Darwinian selection,
crossover, and mutation. The percentage of unsimulatable programs drops to
33% by generation 10, and 0.3% by generation 30. Figure 8 shows, by
generation, the percentage of unsimulatable programs in this run.

In the genetic algorithm, the entire population generally improves from
generation to generation. The hits histogram is a useful monitoring tool for
visualizing the progressive learning of the population as a whole during a run.
The horizontal axis of the hits histogram represents the number of hits (0 to 101
here) while the vertical axis represents the percentage of individuals in the
population scoring that number of hits.

100

~
::0 80 "§ -.... 60 • 50=!
C>.o

en
~ 40

.!!!

~ 20

~
0

0 20 40
Generation

60

Figure 8. Percentage of unsimulatable programs

80

Figure 9 shows the hits histograms for generations 0, 20 and 40 of a typical
run of this problem. The horizontal axis represents the number of hits (0 to 101
here) while the vertical axis represents the percentage of individuals in the
popUlation scoring that number of hits. Note the left-to-right undulating
movement of both the high point and the center of mass of these histograms
over the generations.

o 10 20 30 40 50 60 70 80 90 100 101

AUTOMATED DESIGN OF ANALOG CIRCUITS 167

80%

60%

40%

20%

0
0 10 20 30 40 50 60 70 80 90 100 101

80%

60%

40%

20%

0 10 20 30 40 50 60 70 80 90 100 10 1

Figure 9. Hits histogram for generations 0, 20 and 40 of a run of this problem.

The improvement, from generation to generation, in the fitness of the
population as a whole can also be seen by examining the average fitness of the
population by generation. Figure 10 shows, by generation, the average fitness of
the portion of the population that can be analyzed by SPICE (that is, after
excluding individuals receiving the penalty value of fitness). As can be seen,
the average fitness of the population as a whole is 1,054 for generation 0, 443
for generation 2, 213 for generation 5, 58.2 for generation 10, 38.0 for
generation 20, and 16.5 by generation 30.

The best individual program tree of generation 32 has 306 points, has a
fitness of 0.00781 and scores 101 hits. That is, by generation 32, all101 sample
points are in compliance with the design requirements for this problem.

!C
.s
~
~
~

<
-s
'§
:0;>
<

1000

800

600

400

200

20 40
GeneraUon

60

Figure 10. Average fitness of the simulatable circuits in the population.

RO

Figure 11 shows the best-of-run circuit from generation 32. This circuit is a
seven-rung ladder consisting of repeated values of various inductors and
capacitors. Figure 12 shows the behavior in the frequency domain of the best­
of-run circuit from generation 32.

168 JOHN KOZA ET AL.

ZOUT

I,UUT

RLOAO
lk

Figure 11. Best-of-run "seven-rung ladder" circuit from generation 32.

~ . ou -.------------------.,-------------------- - -- ---

·'·1
2 000Hz

ou +----- - - - - - - - - '1"'"--- - - - - - - - - --y- -- --- - - -- ---..,. - - -"-""--~----_1
"1 _ DHz .., OHz ., 80Hz:: .., • "KHz ,",UKHZ .., OOKHZ

c U(RLOAD:'1)
Frequenc!,ll

Figure 12. Frequency domain behavior of "seven-rung ladder" from generation 32.

As can be seen, the circuit delivers a voltage of virtually 1 volt in the entire
passband from 1 Hz to 1,000 Hz and delivers a voltage of virtually 0 volts in the
entire stopband starting at 2,000 Hz. The best individual from generation 76 has
a fitness (0.000995) that is about an order of magnitude better than that of the
fully compliant individual of generation 32.

11.2. A "BRIDGED T" CIRCUIT FROM ANOTHER RUN

Different runs of genetic programming produce different results. Moreover,
when we continue the run of genetic programming after the emergence of the
first 100%-compliant individual, additional loo%-compliant individuals often
emerge. Figure 13 shows a fully compliant best-of-run circuit from generation
64 of another run. In this circuit (which has a fitness of 0.04224), inductor L 14
forms a "bridged T" subcircuit in conjunction with capacitors [3 and [1 Sand
inductor L 11. Of course, the parallel capacitors (the pair [18 and [33 as well
as the triplet [24, [21, and [1 2) could be combined. This "bridged T"
circuit is distinctly different in structure from the "ladder" circuit.

AUTOMATED DESIGN OF ANALOG CIRCUITS 169

l5 L25 L31 L26 L14 3 5
2 ZOUl

22400vH 29000uH 229000uH 229000uH 214000uH

VOUl

C3 C15

118nF 118nF
C18 C33 RLOAD 127nF 127nF I k C30

127nF 111
+ OUReE O.796uH

C27
127nF

lGND
0

4

Figure 13. "Bridged Til circuit from generation 64.

12. Conclusions

We have also used this technique to design an asymmetric bandpass filter and a
crossover (woofer and tweeter) filter. The latter requires a one-input, two­
output embryonic circuit. We are currently working on circuits with active
elements.

We have described an automated design process for designing analog
electrical circuits based on the principles of natural selection, sexual
recombination, and developmental biology. The design process starts with the
random creation of a large population of program trees composed of circuit­
constructing functions. Each program tree specifies the steps by which a fully
developed circuit is to be progressively developed from a common embryonic
circuit appropriate for the type of problem that the user wishes to solve. The
population of program trees is genetically bred over a series of many
generations using genetic programming that is driven by the fitness measure.
Genetic programming employs genetic operations such as Darwinian
reproduction, sexual recombination (crossover), and occasional mutation to
create offspring. The paper described how genetic programming technique
evolved the design of a low-pass filter.

Acknowledgements

Tom L. Quarles of Meta-Software of Campbell, California provided helpful
advice concerning SPICE. Simon Handley made helpful comments on the
above.

170 JOHN KOZA ET AL.

References

Aaserud, O. and Nielsen, I. R.: 1995. Trends in current analog design: A panel debate. Analog
Integrated Circuits and Signal Processing. 7(1) 5-9.

Andre, D. and Koza, J. R.: 1996, Parallel genetic programming: A scalable implementation using
the transputer architecture, in P. J. Angeline and K. E. Kinnear Jr. (eds), Advances in Genetic
Programming 2, MIT Press, Cambridge, MA

Degrauwe, M.: 1987, IDAC: An interactive design tool for analog integrated circuits. II Journal
of Solid State Circuits, 22, 1106-1116.

Gruau, F.: 1992, Cellular Encoding of Genetic Neural Networks, Technical report 92-21,
Laboratoire de l'Informatique du Parallelisme. Ecole Normale Superieure de Lyon.

Gruau, F.: 1994, Genetic micro programming of neural networks, in K. E. Kinnear Jr. (ed.),
Advances in Genetic Programming. MIT Press, Cambridge, MA, pp. 495-518.

HaIjani, R., Rutenbar, R. A. and Carley, L. R.: 1989, OASYS: A framework for analog circuit
synthesis. II Transactions on Computer Aided Design, 8, 1247-1266.

Higuchi, T., Niwa, T., Tanaka, H., Iba, H., de Garis, H. and Furuya, T.: 1993, Evolvable
hardware-Genetic-based generation of electric circuitry at gate and hardware description
language (HDL) levels, Electrotechnical Laboratory technical report 93-4, Tsukuba, Ibaraki,
Japan.

Holland, J. H.: 1975, Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence, University of Michigan Press,
Ann Arbor, MI. Second edn MIT Press. Cambridge. MA. 1992.

Koh. H. Y., Sequin. C. H. and Gray. P. R.: 1990. OPASYN: A compiler for MOS operational
amplifiers. II Transactions on Computer Aided Design. 9, 113-125.

Koza. J. R.: 1992. Genetic Programming: On the Programming of Computers by Means of
Natural Selection, MIT Press, Cambridge. MA

Koza. J. R.: 1994. Genetic Programming II: Automatic Discovery of Reusable Programs. MIT
Press. Cambridge, MA

Kruiskamp. W. and Leenaerts, D.: 1995. DARWIN: CMOS opamp synthesis by means of a
genetic algorithm, Proceedings of the 32nd Design Automation Conference. Association for
Computing Machinery. New York, NY, pp. 433-438.

Maulik. P. C. Carley. L. R., and Rutenbar, R. A: 1992. A mixed-integer nonlinear programming
approach to analog circuit synthesis. Proceedings of the 29th Design Automation Conference.
II Press, Los Alamitos. CA. pp. 698-703.

Ning. Z .• Kole. M .• Mouthaan. T., and Wallings, H.: 1992. Analog circuit design automation for
performance. Proceedings of the 14th CICC. II Press. New York. pp. 8.2.1-8.2.4.

Quarles, T .• Newton. A R.. Pederson. D. O. and Sangiovanni-Vincentelli, A: 1994, SPICE 3
Version 3F5 User's Manual. Department of Electrical Engineering and Computer Science.
University of California. Berkeley. California.

Rutenbar. R. A:. 1993. Analog design automation: Where are we? Where are we going?
Proceedings of the 15th II CICCo II Press. New York. pp. 13.1.1-13.1.8.

Samuel. A. L.: 1959. Some studies in machine learning using the game of checkers. IBM Journal
of Research and Development, 3(3).210-229.

Zverev. AI.: 1967. Handbook of Filter Synthesis. Wiley.

4
case-based design

A study of case adaptation systems
Angi Voss, Brigitte Bartsch-Sporl, Rivka Oxman

Applying formal methods to case based design aids
Mario de Grassi, Alberto Giretti, Luca Spalazzi

Designing nutritional menus using case-based and rule-based
reasomng

Cynthia Marling, Leon Sterling

1. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 173-189.
© 1996 Kluwer Academic Publishers. .

A STUDY OF CASE ADAPTATION SYSTEMS

ANGIVOSS1

GMD, D-53754 Sankt Augustin, Germany
BRIGITIE BARTSCH-SPORL
BSR Consulting, Wirtstr, 38, D-81539 Munich, Germany

AND

RIVKAOXMAN
Faculty of Architecture and Town Planning,Technion,
Faculty of Civil Engineering, Technical University,
Delft, The Netherlands2

Abstract. This paper surveys ongoing research and implemented systems for a major
step in the case-based reasoning (CBR) cycle which is the adaptation of similar cases to
the current problem at hand. On the basis of the systems contained in the survey, we
come up with several classifications by the type of task, by knowledge and methods, by
characteristics of the solution space, and by the general strategy. The paper ends with the
identification of important research issues for the future.

1. Introduction

Reasoning from past experience is widely recognized as a cogmtlve
phenomenon in the creative process of design. In the course of exploring
design solutions, designers appear to be able to browse freely among
previous designs and adapt prior solutions. The computational paradigm
known as Case-Based Reasoning (CBR) (Riesbeck and Schank, 1989;
Kolodner, 1993) is relevant to design, since it supports reasoning from the
specific knowledge which is associated with holistic designs. The CBR
paradigm addresses issues of experience-based design where experience is
strong, but the domain model is weak, or poorly formalized. It provides
concepts and methods which reflect the cognitive way of designers.

lThis research was supported by the German Ministry for Education and Research (BMBF)
within the joint project FABEL under contract no. o lIW 104. Project partners in FABEL are
German National Research Center for Computer Science (GMD), Sankt Augustin, BSR
Consulting GmbH, Muenchen, Technical University of Dresden, HTWK Leipzig, University
of Freiburg, and University of Karlsruhe.
2 This research was supported by the Informatics Group of Civil Engineering while Dr
Oxman was a visiting professor, 1995.

174 ANGI VOSS ET AL.

Case-based reasoning has attracted many researchers in AI. CBR is a
cognitively plausible theory in which previous cases are applied to current
problems. It has been used in many domains such as classification, diagnosis,
configuration, design and planning. CBR consists of the following main
steps: problem specification, case retrieval, case adaptation and case storage.
Stages of retrieval and storage are relatively understood and work in this
field can be applied in many domains. In complex domains such as design,
adaptation seems to play a major role, however, work on adaptation has not
yet been developed both theoretically and computationally to provide useful
methods across domains.

This paper describes our recent survey which was carried out as part of a
workshop on adaptation in CBR at the First International CBR Conference
(Veloso and Aamodt, 1995). Our goal was to make a survey of ongoing
research in order to identify major issues, to classify current approaches, and
to get a better understanding of adaptation approaches and their potential
applicability to design.

To obtain an up-to-date survey, we circulated two questionnaires to active
researchers in the field all over the world. Surprisingly, most answers
concerned European systems, which sharply contrasts with a comparative but
independent literature study, which mostly covers US American systems
(Hanney et aI., 1995). Does this indicate a geographic movement of active
research on case adaptation? At the ICCBR conference we then had extended
interviews with many system developers. As a result of this and by
comparison with the study by Hanney et ai. (1995), and with prior work by
Kolodner (1993), this paper presents different classification schemes for case
adaptation systems: by task, by methods and by knowledge, by the solution
space, and by the global strategy. Each is devoted one of the following
sections. We conlude with some open issues that need further elaboration.

Most systems in our study deal either directly with diverse design tasks, or
generally with synthetic tasks. Therefore our findings are particularly
relevant for CBR in design. In real-world design applications diverse kinds
of tasks such as problem analysis and planning are involved and many sub­
tasks include configurative problems. So according to our findings, it is
possible to argue for a general theory of adaptation and to demonstrate its
relevance to design tasks

2. Classification by Task

2.1 DEFINITION OF TASKS

In the expert systems community, there is a long tradition in dealing with
problem classes and methods to solve them (Puppe, 1990). Case-based
reasoning turned out not to fit very well into the existing classification

A STUDY OF CASE ADAPTATION SYSTEMS 175

scheme. In fact, CBR is a weak method that is suitable for a wide range of
analytic and synthetic expert system tasks, with some exceptions like
possibly simulation.

Analytic tasks typically analyse a situation and then try to map the
description of the situation to something prefabricated like a class name, a
diagnosis or a ready-made solution. Representative examples are object
classification, medical diagnosis or help-desk support problems. Wess (1995)
distinguishes the analytic CBR tasks classification, diagnosis and decision
support. In classification problems all information necessary to do the job is
known in advance and can be used when the problem solving process starts.
In diagnosis problems the problem solving process typically starts with
incomplete information and has to gather missing information on the fly.
Both classification and diagnosis problems have a goal definition that is
static which means clearly known in advance. For decision support problems,
this last mentioned precondition is missing. Therefore they are explorative in
nature and usually involve the user in making step-wise decisions about how
to proceed and when to stop.

Synthetic tasks typically have to construct a solution from parts - mostly
obeying to a set of domain-specific construction rules. Representative
examples are route or transportation planning, configuration of technical
equipment and design of complex artefacts ranging from production
machines to buildings. Synthetic tasks can further be divided into planning,
configuration and design. Planning problems deal with activities that have to
reach a certain goal under given time constraints and where subsequent
activities are based on prerequisites that former activities have generated.
Configuration problems construct artefacts from a set of known parts and on
the basis of reliable and complete knowledge about the compatibility
constraints. In contrast, design tasks are typically less precisely defined and
require loops and iteration steps because of incomplete knowledge about the
interrelationships between functional, spatial, material and many other sorts
of constraints (Bartsch-Spoerl, 1995).

Hanney et al. (1995), distinguish identification tasks, which can be
combined with design or prediction. Their identification corresponds to our
analysis, their design to our synthesis, while we have no representatives of
their prediction tasks. That means, their distinction is essentially coarser than
ours.

2.2 SELECTED SYSTEMS

Developers of case adaptation systems provided information about their
current prototypes, altogether 22 systems. They cover a broad range of tasks,
domains and approaches. In the rest of the paper we focus on selected
representatives.

176 A. VOSS ET AL.

systems
analytic l synthetic

.:>q
~ «i ~o<::-~o .~ .,p<::-

.~(Ji oCj ~Cj . ~~ ,s.'li ~
4' tS 0'1) $~ ~CS ~CS

~'li iy'li ~ 0<::' 0° q (j

CaBaTa, INRECA, TUB-JANUS X X X

MoCAS, Torasso's, AL X

CHESS X X X

DIAL, ROBBIE,
X PARIS, CAPlanlCbC, PRODIGY

D~JAVU X X X

EADOCS X

COM. X X

AgentEX, MAO, SYN, ToPo X

IDIOM X X

Composer. Cunningham's X X

Figure 1. Our study comprises systems for many tasks. (The shaded area in the middle
contains different tools from a single system, the FABEL system, FABEL-Report 35.)

CaBaTa
task: classification and diagnosis, domain: analytic
This is a CBR decision support system especially suitable for weak-theory

domains (Lenz, 1994). It is comparable to INRECA (Bergmann et aI., 1994),
and to TUB-JANUS. The core inference engine relies on the CBR paradigm
while additional knowledge can be added in model-based and rule-based
form (the latter both for classification and adaptation rules). The main goal
of CaBaTa was to use it as a test bench for various retrieval techniques.
Adaptation itself occurs only as a "side effect". The Travel Agency Domain
is the application cited in most papers: The task is to find an appropriate
package holiday given some more or less vague specifications. However,
CaBaTa has also been demonstrated for production planning support,
financial decision aiding and is currently being applied to estate assessment.

MoCAS
task: diagnosis, domain: numerical control machine domain
This system deals with diagnosis applications of technical systems

(Bergmann et aI., 1994). Its main application is in the numerical control
machine domain. It combines model-based and case-based approaches.

A STUDY OF CASE ADAPTATION SYSTEMS 177

PARIS
task: planning, domain: manufacturing rotary-symmetric parts on a lathe
This system is used for plan abstraction and refinement in an integrated

system (Bergmann and Wilke, 1995).

CAPianlCbC
task: planning, domain: manufacturing mechanical workpieces
This is a case-based planning system supporting process planning for

manufacturing mechanical workpieces (Munoz et aI., 1995). The overall
architecture is build on top of CAPlan (for: Computer Assisted Planning), a
partial-order plan-space planner. To use episodic problem solving
knowledge for both optimizing plan execution costs and minimizing search
the case-based control component CAPlanlCbC has been realized in a way
that allows incremental acquisition and reuse of strategical problem solving
experience by storing solved problems as cases and reusing them in similar
situations. For effective retrieval of cases CAPlan/CbC combines domain­
independent and domain-specific retrieval mechanisms that are based on the
domain model and problem representation.

PRODIGY
task: planning, domain: route planning
Since complete plans are too complex to be reusable, cases contain pieces

(Haigh and Veloso, 1995). As a consequence, a problem must be covered by
mUltiple cases. They are replayed, thereby eliminating inconsistencies and
filling in gaps. Decomposition is implicitly achieved by the set of cases that
cover the target.

DEJAvu
task: design, domain: plant control software design
This system employs a technique called hierarchical CBR which stores

complex solutions as hierarchies of cases at varying levels of abstraction and
which allows complex designs to be generated by decomposing them into
simpler designs (using abstract cases) which can then be dealt with by using
actual design cases (Smyth and Keane, 1995). The system also uses a novel
retrieval technique called adaptation-guided retrieval which uses adaptation
knowledge during retrieval to determine how easy it is to adapt a given case
for a specific target problem, and hence ensures that the most "adaptable"
case is retrieved.

EADOCS
task: design and optimisation, domain: aircraft design
This system will be used for conceptual subsonic civil aircraft design such

as thin-walled fibre reinforced composite aircraft structures (more particular
sandwich panels) (Netten et aI., 1993). The system employs multiple

178 ANGI VOSS ET AL.

techniques: qualitative constraint-based reasoning for evaluating feasible
combinations of design components for prototype solutions, case-based
reasoning to quantify prototype solutions and a rule-based heuristic
modification and finally numerical optimisation to obtain a good conceptual
design.

AAAO
task: design, domain: replacement of columns
This system uses knowledge which is formalized in constraints (Adami,

1995). These constraints depend on the statical requirements and
architectural demands with respect to the layout of rooms and the kind of
their use. This led to a model of active autonomous objects (columns being
the objects) that behave according to simple heuristics trying to satisfy a set
of applicable constraints in a concurrent way.

SYN
task: design, domain: layout of connections

SYN adds connections to a spatial layout that already contains the outlets
(Boerner, 1995). It compares the layout with several prototypes, transfers the
connections between matching outlets and generates them for the others by
applying previous instantiations.

ToPo
task: design, domain: layout
This system compares the topological structure of a query and a case and

matches identical substructures (Coulon, 1995). ToPo is able to transfer all
structure of the case to the query, which is related to the matched
substructure. The structure to be transferred may be selected by the user or
any heuristic. The result is checked versus usual and unusual topologies
occuring in the casebase. The matching is done by a modified graph­
matching algorithm of Bron and Kerbosch.

DOM
task: design, domain: installation of pipes in buildings
This system establishes a connection between cases and generic domain

knowledge (Bakhtari and Oertel, 1995). The generic domain knowledge can
be used to evaluate, synthesize, and adapt parts of an actually handled case.
Adaptation in this case means modifying a case in order to make it
consistent with the underlying domain ontology.

Composer
task: planning, domain: mechanical design
This system formulates problems such as assembly sequence planning

and configuration design as constraint satisfaction problems (Pu and Purvis,

A STUDY OF CASE ADAPTATION SYSTEMS 179

1994). The advantage of this formulation is that it allows the use of a repair­
based constraint resatisfaction algorithm to efficiently and systematically
combine multiple cases and repair constraints in order to solve new
problems. A very important result discovered in Composer is that using this
method, one can assess the quality of adaptation before beginning the
adaptation process.

IDIOM
task: design, domain: mechanical design
This is an interactive design system which employs intelligent objects and

models, and is a result of a collaborative effort between architects and
computer scientists (Smith et aI., 1995). IDIOM uses parts of cases, domain
models and user interaction to compose designs. Case adaptation is used to
modify case parts according to the new design context. Spatial consistency is
maintained through solving and propagation of constraints. Constraints are
introduced through an analysis of topology, activation of domain models
and through user interaction. Incremental dimensionality reduction
simplifies constraint systems as case parts are added. Preference constraints
are allowed to influence the design when they are not in conflict with fixed
constraints.

3. Classification by Data Structures, Knowledge, and Methods

Given the domain and task of a system, the question is what approach to
adaptation do they suggest? In the CBR community, adaptation is usually
classified as being parametric, transformational or generative. Kolodner,
(1993) introduces a finer distinction. Figure 2 compares the systems wrt.
their task types, data structures for problems and solutions, knowledge,
techniques, and the criteria from Kolodner (1993). (Please ignore for a
moment the last column, it concerns the next section.)

We conclude that there is no one best way for representing data,
adaptation knowledge and adaptation methods. The choice is essentially
domain-dependent. Nevertheless, there are a few patterns that can be
interpreted towards some tentative recommendations.

For analytic tasks, a good deal of the adaptation requirements are
parametric and sometimes also transformational. Here, packages of rules can
do the job - provided the necessary context dependencies can be expressed,
e.g. in the form of preconditions. But keep in mind that the case has to be
treated as a whole and known interrelationships e.g. between different slots
must not be overlooked.

For synthetic tasks it is usually necessary to have at least a partial model
of the underlying domain. They can range from complete models that are
used by from scratch-problem solvers as in MOCAS, PARIS, CAPLan/CbC,

180 ANGI VOSS ET AL.

PRODIGY, to partial ones as the knowledge in DOM and EADOCS, or the
constraints in AAAO, IDIOM, and Composer. SYN and ToPo form
exceptions as they exclusively rely on structure matching operations.

Therefore, knowledge representation and methods have come to play
only a minor role in our investigations. Adequacy for the problem and the
application domain are much more important for this topic than any
additional requirements that come from adaptation necessities.

.y •• m. 111* type I8chriqllla
crilllri. frcm aolrtion

d ucll ... knCJo¥le9 Kdodlllr apcelavel

fealures rules
rule plrameter ,

CaBaTa analytk: inte rpretatlon a~ustmert

MoCAS SyrTlltoms, behavior model.oased replay 2 diagnosis diagnosas model diagnosis

PARIS plannilg goals,plans operators hierarchical replay 2
planrsr

PRODIGY plannl~ goals,plans operab!9 plamer replay 3

CAPlani
plamlng goals, plans operators planner replay 2 CbC

D.:JAvu synthesis decorrposltlon rules rule special adaplation 2
hierarchy Interpretation

EADOCS design
slI'\Jcture with heuristics + rule parameter
qualitative numerics Interpretation, adjustment 2
paameters calculation

MAO design layout constral nls
constraint model-gulded 2
algorithms repelr

SYN design term rules algebraic relnstantiation 2

ToPo design topaogy
graph
algorlthrrs relnstantlatlon 3

OOM rule modef,gulded design layout rules Interpretation repair
3

Corrposer configuration. constra int constra ints
constraint model iI u lded 3

planning nelwoll< algorithms repa ir

configuration constraint constra ints constraint model-glided 3 IDIOM
design netwoll< algorithms repair

Figure 2. Adaptation systems, their data structures, knowledge, methods, classification
according to Kolodner (1993) and by solution space characteristics.

4. Classification by Solution Space

As a more appropriate approach to classification, we propose to consider
characteristics of the solution space. We distinguish five levels ranging from
'no adaptation at all' to 'no constructive system support for adaptation
feasible'.

A STUDY OF CASE ADAPTATION SYSTEMS 181

- Level 0: No adaptation required: This level includes all CBR systems
solving pure classification problems, pure diagnosis problems without any
therapy or repair, or pure artefact selection problems where e.g. a piece of
technical equipment can be bought off the shelf without requiring any
customer specific configuration.

- Levell: Only local and continuous adaptation required: Here are all
CBR problem solvers operating in a continuous solution space or having full
knowledge about existing discontinuities. This is true of most analytic task
systems in our survey, namely CaBaTa, and INRECA.

- Level 2: Full adaptation in a closed world required and feasible: The
CBR problem solvers operate in well-structured solution spaces where
reliable algorithms are known for de- and recomposing both the task and the
solution. A typical prerequisite is a complete and consistent model of the
application domain that allows to reason under the closed-world assumption.
In our survey, this is clearly the case for MoCAS, PARIS, SYN and AAAO.
They use generative problem solvers to transfer a whole case. DEJA vu,
EADOCS, and CAPlan/CbC do a careful problem decomposition so that
composition is guaranteed to work.

- Level 3: Full adaptation in an open world required but only partially
feasible: This is the case for all synthetic task CBR systems operating in an
open world domain on the basis of incomplete knowledge. This situation is
typical for real world domains above a certain level of complexity. There are
"holes" in the problem solving behaviour which means that there are
(sub)problems the systems cannot solve fully automatically. Therefore most
of them involve the user and call this interactive adaptation. In our survey,
this is true of the FABEL modules DOM and ToPo, and of the design
support systems IDIOM and Composer from Lausanne, and the planner
PRODIGY.

- Level 4: Full adaptation in an open world required but not feasible:
This level includes all synthetic task CBR systems that offer only browsing
capabilities because there is not enough domain knowledge for meaningful
adaptation. We did not get a questionnaire from such a system but we know
that such systems have been built (Domeshek and Kolodner, 1993; Oxman,
1994).

We learned from this classification exercise that adaptation for analytic
tasks usually is not a big problem - but for synthetic tasks this may change
rather quickly, at least if the problems have to be decomposed and there are
no secure de- and recomposition strategies available. As the last column in
figure 2 shows, most synthetic systems from our study fall into levels 2 and
3. To obtain a finer-grained distinction, we have a closer look at the general
strategy.

182 ANGI VOSS ET AL.

5. Classification by general strategy

In section 3 we concluded that the task and domain essentially influence the
data structures, knowledge available for adaptation, and methods that can use
this knowledge and that may be re-used for adaptation. What other decisions
have to be taken for designing an adapting case-based reasoner?

5.1 GENERAL STRATEGIES

Crucial is the overall strategy. It has to address questions like the following
ones:

With respect to the problem:
• Is the problem so simple that it can be solved in a single step?
• Or else, is a decomposition into subproblems available so that each

subproblem can be input to retrieval?
• Or is the problem so intricate that it cannot be decomposed a priori?

With respect to the cases:
• Is it sufficient to retrieve a single case for each (sub)problem? - We do

not consider alternative cases that are used for backtracking if the first
one fails.

• Or are multiple cases required to cover the (sub)problem?

With respect to adaptation of individual cases:
• Can each case be adapted using heuristics?
• Or by using general structure transformations?
• Or by a from-scratch problem solver?

With respect to solution integration:
• Are there no partial solutions to be integrated?
• Or is there only one to be embedded into the global context of the

problem?
• Or else, can the partial solutions be integrated incrementally according

to a preceding decomposition?
• Or else, are there multiple cases that have to be adapted and integrated

in a joint effort?

The answers to these questions are not independent. In our study, they
lead to ten strategies, which are summarized in figure 3. They can be
classified along each criterion: decomposition, cases, individual adaptation
and integration. In the following, they are presented according to the
numbering in the last column. It applies multiple criteria:

A STUDY OF CASE ADAPTATION SYSTEMS 183

SI is for level-l systems, SI-3 need no decomposition, SI-4 deal with a
single case, in S4 the case must be integrated into a context, S5-8 decompose
the problem before retrieval, S5-7 compose the solutions incrementally, S9-
10 have no a priori decomposition, they retrieve multiple cases for a single
problem, S8-to do integration in a joint effort.

sy*,ms task type prob"m cases indvidual inlegllltiCil s!ratag)
solJtior

decomll'siion per adaptation apa:e
(s u b)probla m level

CaBaTa analytic
not heuristics - 51 1
required 1

MoCA5 dlagrosis
not from·scratch 2
re(JJlred I - S2

problem solver

PARS planning
not 1 from-scrath - 52
re(JJired pr~em solver 2

CAPlarl
planrlng specially I

from-scratch
Incremental 56 2

CbC designed problem solver

not from-scratch
59 PRODIGY planring many problem solver 3 available

DIOJA vu synthesis
case· I heuristics 2
based Incremental 57

EAOOC5 design available 1 Irom·scratch
heurisllcs 58 2 problem solver

AAAO design not
I from-S(;fath 2

requl!9d pr~emsolver
- 52

SYN design not -- 53 requiled 1 structural 2

TcPo
not manual 54 3 design avaiable I selection structural

DOM design available 1 Irom-scrath Incremenlal 55 3 pr~em solver

Compooer configuration not many - Irom·scratch 59 3
planning

available
problem solver

IDIOM coriigur aton
,

from'scratch Irom-scratch 3 manual (manuaQ 510
design problem solver problam solver

Figure 3. The systems demonstrate ten different strategies.

Strategy Sl: The problem is simple, only one case needs to be retrieved
and can be adapted adapted heuristically. S 1 is used by the level-l systems
represented by CaBaTa.

Strategy S2: The problem is not simple. But the cases are as complex as
the problems. Therefore a single case can be retrieved and adapted using a
powerful from-scratch problem solver. S2 is applied by the level-2 systems
MoCAS with a model-based diagnostic engine, by PARIS with a hierarchical
planner, and by AAAO with a constraint-reasoner.

184 ANGI VOSS ET AL.

Strategy S3: The problem is simple, only one case needs to be retrieved
and can be adapted by structure-matching and transfer. S3 is applied by the
level-2 system SYN using term matching and transformation techniques.

Strategy S4: The problem is not simple and the cases may vary in
complexity. A single case is retrieved and matched by structure. Parts for
transfer are proposed and one is selected by the user. It is structurally
integrated into the problem context. The level-3 system ToPo applies this
strategy with graph matching and graph merging algorithms to layouts of
buildings.

Strategy S5: The problem is a priori decomposable into simple
subproblems. For each a single case is retrieved and adapted individually
and incrementally. Level-3 system DOM applies S5 in an interactive mode to
repair and extend pipe layouts in buildings.

Strategy S6: The problem is a priori decomposable into simple
subproblems. For each a single case is retrieved and adapted individually
and incrementally. S6 can be applied by the level-2 system CAPlan/CbC
because its planner has a powerful dependency management. The
decomposition strategy was specially designed.

Strategy S7: The problem is intricate, but by using cases with problem
decompositions it can be decomposed in such a way that for each
subproblem a single case can be retrieved and adapted incrementally. S7 is
applied by level-2 system DEJA VU using heuristics for local adaptation and
for incremental integration.

Strategy S8: The problem is decomposable and a single case is sufficient
for each suproblem. But composition cannot be done incrementally. The
cases are merged using heuristics and the solution is optimized using a from­
scratch problem solver. S5 is applied by level-2 system EADOCS with
numerical optimization algorithms.

Strategy S9: The problem is intricate, there is no apriori decomposition.
Instead, several (complementary or overlapping) cases are retrieved and
adapted jointly using from scratch problem solvers. S9 is applied by the
level-3 systems Composer with a constraint problem solver and by
PRODIGY with a planner. - Note that from the adaptation an a posteriori
decomposition of the problem emerges: subproblems are those parts of the
problem that were covered by a single case!

A STUDY OF CASE ADAPTATION SYSTEMS 185

Strategy SlO: The problem is intricate, there is no apriori decomposition.
The user is asked to select a set of cases. They are integrated using a from­
scratch problem-solver. SID is applied by level-3 system IDIOM in
connection with a constraint-problem solver.

In general, the more difficult the task and the higher the level of the
solution space criterion, the more complex is the strategy. More specifically,
the available methods (for decomposition, individual adaptation and
integration) heavily dictate the choice of the strategy, and several tricks are
employed to cover any discrepancies between available methods and the
problems to be solved. Another factor not considered here is the complexity
of cases. For instance, the systems applying S2 can only do so because they
have complex cases and powerful reasoners. Otherwise, they would have to
switch to more complex strategies. More detailed design guidelines are
elaborated in Voss (1995).

5.2 RELATED WORK

As mentioned in the introduction, we got feedback mostly for European
systems, though there are some from the USA and one from Israel. In
contrast, the comparison by Hanney et al. (1995), was based on the literature
and covered only systems from the USA, - apart from their own system,
DEJAvu. It turned out that they came up similar criteria and consistent
conclusions at a global level:

• Both consider the tasks of the systems, though using different task
names and though our tasks are finer grained.

• Both are unsatisfied with the older classification as suggested (e.g. in
Kolodner, 1993).

• Both consider complexity Hanney et al. focus on the solution and we
consider both problem and solution.

• Both consider the number of cases.
• Both consider adaptation, though Hanney et al. only ask whether it is

done or not, while we classify the methods employed.
• Both state a correlation between the difficulty of the task and the

difficulty of the approach to adaptation. - In our paper it is refined to
the correlation between tasks and level, and between level and strategy.

In general our paper applies finer distinctions and goes one step further:
It identifies several strategies and relates them to the categorization by
solution space and task.

186 ANGI VOSS ET AL.

6. Further issues

In this section we address several scientific and practical topics whose impact
on case adaptation needs further attention.

Acquisition of adaptation knowledge
Adaptation is a knowledge-intensive task which relys on knowledge
acquisition. As knowledge acquisition is always an effort-intensive task in
itself, it is worthwhile to investigate the possibilities for enabling a system to
learn and maintain its adaptation knowledge.

Acquisition of adaptation knowledge could be obtained manually with
assistance of domain expert, manually without assistance of domain expert,
or interactively supported by knowledge acquisition editors. This could serve
as a starting point for machine learning support for both analytical and
synthetic tasks.

For analytic adaptation problems the following steps are suggested:
Take a set of similar cases that are representative for a class of solutions and
derive both, a prototypical case that can be used as a "solution pattern" for
the whole class, and a package of adaptation rules that can be used in order
to derive all members of the given set from the prototypical case.

For synthetic adaptation problems the following steps are suggested:
Take a set of cases that solve a similar problem situation. In contrast to the
analytic domain where the learning task mostly deals with attributes and
values, the learning task in synthetic domains is more likely to deal with
pieces of plans or equipment and how they can be put together. From this
set of cases try to abstract a common solution structure and packages of
adaptation rules in order to instantiate the abstract cases by concrete ones
which meet the functional requirements and fit together.

Structuring of cases
A central issue seems to be the structuring of cases. It is dependent on the
domain. Concrete cases seems to be useful in analytical tasks. Here, most of
the decomposition techniques are achieved by chunking the case into pieces.
However, in complex tasks such as design the abstraction of cases plays a
major role. In such cases, decomposition is achieved by different
perspectives (Oxman, 1994). Another approach could be storing cases for
refinement relations.

User interaction in the adapation process
Another major issue in the development of CBR systems is the role of the
user. In some domains, the user has to make some difficult decisions and
would like to interact with the process of adaptation. In other domains the

A STUDY OF CASE ADAPTATION SYSTEMS 187

user might be restricted to selection and confirmation of each modification
stage of a case.

Towards a methodology for adaptation
From a knowledge engineering point of view it would be desirable to have a
procedure that helps first to diagnose the adaptation needs for a certain
application and secondly to derive some recommendations for further steps
to take like underlying knowledge needs, knowledge representation, and
generic conceptual structures for carrying out the adaptation task itself.

Decreasing the risk and increasing the efficiency in the development of
adaptation capabilities
The most urgent practical demand is how can we minimise the risk and
maximise the efficiency for the delivery of adaptation capabilities for real
world problems. As solving from scratch is usually the most risky and effort
intensive alternative we propose instead to reuse the experience that is
available.

7. Conclusions

After our look at very different approaches of doing adaptation in CBR - for
a great variety of tasks, relying on very different prerequisites, using nearly
all available knowledge representation mechanisms and many different
problem solving methods up to involvement of the user, we have to come up
with a common generalisation of what adaptation in CBR is like or what all
systems investigated have in common.

A first, general conclusion would be: Adaptation in eRR is knowledge­
based problem solving - and not a well-defined subset thereof. This means
that essentially there is no limitation of the complexity in general, only for
certain classes of problems with a set of common characteristics.

More precisely, the task and the domain will determine the most adequate
data structures for problems and solutions, the knowledge to be used for
adaptation, and what methods possibly can be re-used during adaptation.
Besides, the general adaptation strategy is an important design decision. It
concerns the decomposition of the problem, the number of cases, the
complexity of cases, and the composition of a global solution from
individual adaptations. The strategy is influenced by several factors. Here we
proposed characteristics of the solution space. As another factor the
discrepancy between the grainsize of problems and that of locally adaptable
units is proposed in Voss (1995). Further influences may come from issues
we did not consider in our study.

As a result of our research we now believe that we are beginning to
understand and develop the theoretical foundations of adaptation and the

188 ANGI VOSS ET AL.

relevance of these foundations to design tasks. We hope that Ralph Barletta's
claim at the last European Conference on CBR: "adaptation should be
avoided at all costs" is to be yet considered again.

Acknowledgements

Without the help of all the system developers who filled in our questionnaires this
survey could not have been conducted:

CAB AT A: Mario Lenz, Berlin - INRECA: Ralph Bergmann, Wolfgang Wilke,
Klaus-Dieter Althoff, Kaiserslautern - MoCAS: Ralph Bergmann, Gerd Pews,
Kaiserslautern - PARIS: Ralph Bergmann and Wolfgang Wilke, Kaiserslautern -
CAPLan/CbC: Hector Munoz-Avila, Kaiserslautern - PRODIGY: Mauela Veloso,
Pittsburgh - CHESS: Yaakov Kerner - Composer: Pearl Pu, Lausanne - EADOCS: Bart
Netten, Delft - DOM: Wolfgang Oertel, Dresden - AAAO: Parivash Adami/ Barbara
Schmidt-Belz, Sankt Augustin - SYN: Katy Boerner, Freiburg, - ToPo: Carl Helmut
Coulon, Sankt Augustin - IDIOM: Ian Smith, Lausanne - DEJA. VU: Barry Smyth,
Dublin.

Though their systems were not included in this paper, we thank Padraig
Cunningham, Dublin - Raghu Bat, Karlsruhe - Ansgar Woltering, Berlin - David Leake,
Indiana - Susan Fox, Indiana - Piero Torasso, Torino for answering our questionnaires.
Boi Faltings made some critical comments which need further discussion.

References

Adami, P: 1995, Adaptation by active autonomous objects (AAAO), in K. Boerner (ed.),
Modules Supporting Design, FABEL-REPORT 35, GMD, Sankt Augustin, June 1995.

Bakhtari, S. and Oertel, W.: 1995, DOM-ArC: An active decision support system for quality
assessment of cases, Veloso and Aamodt.

Bartsch-Spoerl, B.: 1995, Towards the integration of case-based, schema-based and model­
based reasoning for supporting complex design tasks, Veloso and Aamodt.

Bergmann, R., Wess, S., Traphoener, R. and Breen, S.: 1994, Using background knowledge
in the integrated system: Specification and approach, Deliverable D29, Esprit-Project
INRECA (P6322).

Bergmann, R., Pews, G. and Wilke, W.: 1994, Explanation-based similarity: A unifying
approach for integrating domain knowledge into case-based reasoning for diagnosis and
planning tasks, Veloso and Aamodt.

Bergmann, R. and Wilke, W.: 1995, Building and refining abstract planning cases by change
of representation language, Journal of Al Research, 3, 53-118.

Boerner, K.: 1995, Analogical design layout, in K, Boerner (ed.), Modules Supporting
Design, FABEL-REPORT 35, GMD, Sankt Augustin.

Coulon, C. H.: 1995, Automatic indexing, retrieval and reuse of topologies in complex
designs, Computing in Civil and Building Engineering, Proceedings of the Sixth
International Conference on Computing in Civil and Building Engineering, A. A.
Balkema, Rotterdam, pp. 749-754.

Domeshek, E.and Kolodner, J.: 1993, Finding the points of large cases, AlEDAM, 7(2), 87-
96.

FABEL-Report 35: 1995, Boerner, K. (ed.), Modules Supporting Design, GMD, Sankt
Augustin.

Haigh, K. and Veloso, M.: 1995, Route planning by analogy, Veloso and Aamodt.

A STUDY OF CASE ADAPTATION SYSTEMS 189

Hanney, K., Keane, M., Smyth, B. and Cunningham, P.: 1995, What kind of adaptation do
CBR systems need? A review of current practice, Adaptation of Knowledge for Reuse,
AAAI Fall Symposium, Working Notes, MIT, Cambridge, MA.

Kolodner, J.: 1993, Case-Based Reasoning, Morgan Kaufmann, San Mateo.
Lenz, M.: 1994, Case-based reasoning for holiday planning, in WI Schertler, B. Schmid, A.

M. Tjoa, H. Werthner (eds), Information and Communications Technologies in Tourism,
Springer Verlag.

Munoz, H., and Huellen, J.: 1995, Retrieving cases in structured domains by using goal
dependencies, Veloso and Aamodt.

Netten, B. D., Vingerhoeds, R. A., Koppelaar, H., Boullart, L.: 1993, Expert assisted discrete
optimization of composite structures, in A. Verbraeck, E. J. H. Kerckhoffs (eds), SCS
European Simulation Symp. ESS'93, Delft, pp. 143-148.

Pu, P. and Purvis, L.: 1994, Formalizing case adaptation in a case-based design system, in J.
S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '94, Kluwer Academic
Publishers, Dordrecht, pp. 77-91.

Oxman, R. E.: 1994, Precedents in design: A computational model for the organization of
precedent knowledge, Design Studies, 15(2), 141-157.

Puppe, F.: 1990, Problemloesungsmethoden in Expertensystemen, Springer-Verlag, Berlin.
Riesbeck, C. K. and Schank, R. C.: 1989, Inside Case-based Reasoning. Lawrence Erlbaum

Associates, Hillsdale New Jersey.
Smith, I., Lottaz, C. and Faltings, B.: 1995, Spatial composition using cases: IDIOM,

Veloso and Aamodt.
Smyth, B. and Keane, M.: 1995, Experiments on adaptation-guided retrieval in case-based

design, Veloso and Aamodt.
Veloso, M. and Aamodt, A. (eds): 1995, Topics in Case-Based Reasoning Proceedings of the

International Conference on Case-Based Reasoning, LNAI series, Springer-Verlag.
Voss, A.: 1995, Exploiting previous cases - made easy, ftp://ftp.gmd.de//GMD/ai­

research/Publications/FabeIlPrev-sol-voss.ps.gz.
Wess, S.: 1995, Fallbasiertes Schliessen in wissensbasierten Systemen zur

Entscheidungsunterstuertzung und Diagnose, Doctoral Dissertation, University of
Kaiserslautern.

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 191-210.
© 1996 Kluwer Academic Publishers.

APPLYING FORMAL METHODS TO CASE BASED DESIGN AIDS

MARIO DE GRASSI, ALBERTO GIRETTI
Laboratorio di Progettazione Assistita e Intelligenza Artificiale
IDAU - Universita degli Studi di Ancona
via Breece Bianche 60131 Ancona Italy

AND

LUCA SPALAZZI
Istituto di Informatica, Universita degli Studi di Ancona
via Breece Bianche 60131 Ancona, Italy

Abstract. Case based reasoners have been applied to design support in order to
overcome the lack of complete domain theories and the complexity of the design space.
Most of the case based design aiding systems make use of large unstructured chunks of
knowledge, The use of unstructured knowledge has been proved quite effective in the
early phases of design, Moreover a complete design support needs the integration of
autonomous problem solvers (e.g. for case adaptation and design evaluation) which, in
turn, require a structured knowledge representation. In this paper we propose some
noteworthy aspects of the application of a formally defined knowledge representation
schema to the development of a Case Based Design Aiding system. For this purpose we
propose a computational framework for case based design support, that uses a
terminological language as the basic knowledge representation tool. The terminological
language is used to represent domain objects, relations and design intentions. On the
basis of the formal features of the knowledge representation schema we define a set of
domain independent procedures for searching, retrieving and adapting cases.

1. Introduction

The operational representation of knowledge is a main issue in Case Based
Reasoning (CBR) (Kolodner, 1993). In CBR the operational requirement
means that knowledge should be used by every inference process without
any additional cost due to knowledge reformulation. Research on CBR
conducted so far has interpreted the operational requirement mostly as the
issue of explicitly representing all the information involved into the problem
solving tasks within the case (i.e. what particular strategies to accomplish a

192 MARIO DE GRASSI ET AL

goal were used, what pieces of knowledge were processed, etc.). For this
purpose a number of domain analysis have been carried out in order to
define what are the relevant domain information and how they are related
(e.g. Universal Index Frame (Schank, 1990), Structure Behaviour Function
Models (Goel, 1991). We believe that a complementary investigation about
knowledge representation at machine level needs more attention. The main
issue is the definition of the data structures that are suitable for every CBR
inferential process without any structural translation. The development of a
Case Based Design Aid (CBDA) inherits the problem of the definition of
suitable knowledge structures, because in a CBDA the insights and
techniques developed in the Case Based Reasoner paradigm are used to have
a real effect on the quality of design. In order to overcome both the
incompleteness of domain models and the design space complexity, works
on CBDA have used unstructured chunks of knowledge carrying relevant
design information organised by means of an index frame (Domeshek,
1994). Even if this approach have been proved quite effective during the
early phases of design conception, it can not support other CBR inferences
like case adaptation and design evaluation. In fact the development of
systems with limited but autonomous problem solving abilities necessary
requires a structured knowledge representation (e.g. Battha, 1994).

In this paper we examine some noteworthy aspects of the application of a
formally defined knowledge representation schema in the development of a
Case Based Design Aiding system. For this purpose we propose a
computational framework for case based design aids. Section 2 introduces
the formal background of the paper. The main topic of that section is the
ASA Concept Language (ASA-CL) that has been designed to support the
CBDA framework. Section 3 introduces a sample knowledge base. Section 4
introduces the computational framework for CBDA. Section 4.1 describes
the memory organisation, sections 4.2, 4.3 and 4.4 contain respectively the
algorithms for searching, retrieving and adapting cases.

2. Terminological Languages

The first contribution to the terminological representation paradigm has
been given by Brachman with his PhD thesis in 1977. Previous works on
semantic networks and frames proposed representation schemata with
significant semantic ambiguities (Woods, 1975). Brachman (1979)
introduces a noteworthy rationalisation of structured knowledge
representation. He identifies five distinct representation levels and assigns to
each level well defined properties:
lmplementational
Logical

Atoms, pointers
Propositions, predicates, logical operators

APPLYING FORMAL METHODS TO CASE BASED DESIGN AIDS 193

Epistemological

Conceptual

Linguistic

Concept types, conceptual subpieces, inheritance and
structuring relations
Semantic or conceptual relations, primitive objects and
actions
Arbitrary concepts, words, expression

Every level is based on the structure and on the procedures of the previous
one. The definition of a knowledge representation schema limited to the
epistemological level produces a knowledge representation tool that is not
committed to any conceptual schema. In other words the expressive and
computational properties of the schema are totally general and applicable to
a variety of domains l . The first and most representative system that uses an
epistemologically defined knowledge representation schema is KL-ONE
(Brachman, 1985). Even if KL-ONE represents a significant step forward to
avoid the ambiguity of the structured knowledge representation schemata, it
still lacks a formal semantics. Concept based KR systems (or terminological
systems, or description logics) have been recently proposed as KL-ONE
successors. Terminological systems are usually defined as a subset of the
KL-ONE framework plus the Tarskian semantics of First Order Logic (Rick,
1991). Terminological languages are based on a representation primitive
called structured conceptual object or concept. A concept description asserts
necessary and sufficient conditions for the inclusion of individuals in the
class denoted by the concept. The primary structural component of a
concept is the role. A role represents a binary relationship between one
individual of the type denoted by the concept and individuals of other types.
In a concept definition schema, role fillers can be constrained by means of
structural descriptions. Role Value Map is the most common structural
description between a two roles, it constraints the role fillers to be the same
set of individuals. When the number of possible fillers of a role is limited to
one, the role is called Attribute. Concepts are organised into a generalisation­
specialisation hierarchy defined by means of the subsumption relationship.
A concept C j is said to subsume a concept C2 if every individual that belongs
to the class denoted by C2 belongs also to the class denoted by C j •

2.1. KNOWLEDGE REPRESENTA nON IN TERMINOLOGICAL SYSTEMS

A terminological knowledge base is made up of two components:
• a general schema describing classes of individuals (i.e. concepts), their

properties and mutual relationships (T-Box)
• a set of individuals defined as concept instances by means of assertions

which relate individuals to classes and individuals to each other (A-Box)

I As far as we know the current research on CBR has been conducted at conceptual level
and extensive investigation at epistemological level are still lacking.

194 MARIO DE GRASSI ET AL

Concepts are defined through the system concept language. For example the
formula (And (All X NUMBER) (All Y NUMBER) (All Z NUMBER)) denotes
the set of points in 3D space. The formula is built by means of the And
constructor that conjoins three sub-concept expressions. Every sub­
expression has the form (All <Attribute-id> NUMBER) and denotes the set
of individuals in which every <Attribute-id> belongs to the class denoted by
the NUMBER concept. The above concept can be inserted into the T -Box
hierarchy using a concept definition construct as follows: 3D-POINT :=
(And (All X NUMBER) (All Y NUMBER) (All Z NUMBER)). The A-Box
appears as a set of predicates over a set of individuals. In this case a possible
A-Box is the following {X(a,I), Y(a,2), Z(a,O), 3D-POINT(a)}. The
semantics of terminological systems adopts the open world assumption:
when an information is missing no restriction is imposed on the possible
interpretation of the knowledge base.

2.2. ASA CONCEPT LANGUAGE

ASA Concept Language (ASA-CL) is a terminological language designed to
fulfil the representational and computational requirements of the CBDA
paradigm. The language syntax and semantics are outlined below.
Syntax
Given three distinct sets of symbols: derivate concept names, host concept names and
attribute names, the sets of concept and attribute terms are inductively defined as follow:
Base:

Sl!:p.:

Every derivate concept name is a concept term
Every host concept name is a concept term
Every attribute name is a attribute term

Let C be a concept term. Let D,D1, ... ,Dk be derivate concept terms. Let A,A1, ... ,Ak be
attribute terms. Let hI, ... ,hn be host domain individuals. Let kl' kl be host numbers.
Let n be a non negative integer and let il be a junction name. Then:
HOST-1HING
NUMBER
SYMBOL,
STRING
(ONE-OF hi' ... ,h.)
(RANGE kl k2)

are host concept terms
ASA-1HING
(And DI D2 ... Dk)

(Or DI D2 ... Dk)

(All A C)
(Rule R D (Au A21)(A12 A22) ... (AI• A2.»
(Test R il (A1l AI2 ... AI.»

APPLYING FORMAL MElHODS TO CASE BASED DESIGN AIDS 195

1HING
BOTTOM are concept tenns
Every host concept term is a concept term.
Every derivate concept term is a concept term.
(Al,···,An)
is an attribute term
Semantics
The ASA-CL semantics is defined relative to an interpretation I. An interpretation I

consists of a domain, D, and of an interpretation function (-) I . D is divided into two

sub-domains: DA related to ASA-CL individuals and DH related to host individuals. The
interpretation function is recursively defined as follow:
Base
Let E be either an host concept name or a derivate concept name, let A be an

attribute name, let! be a total function over DA,. Then:
1. 1HING 1 := A

2. ASA-1HING 1:=AA

3. HOST-THING I:=A
H

4. BOTTOM 1:=0

5. EI ~A

6. AI=!:AA~A
7. (ONE-OF hj> ... ,hn) := { hj> ... ,hn }

8. (RANGE k} k2):= {x I x<ENUMBER, x> k} , x < k2 }

9.).f:A ~ {Trne, False}
Step
Let C, D be concept terms, let Aj> ... ,A", Bj> ... ,Bm be attribute terms, let n be a positive
integer. Then:
1. (And C D/ := CI n DI

2. (Or C D/ := CI u DI

3. (All A C(= {a E A/ IAI (a) E CI }

4. (All (Al.ooAn) cf;= {a E A/IA/ (oo. A/ (a» E C I }

(Rule A C «All" .A nl)(B Il ... Bml » ... «A lk ... A nk)(B lk ... Bmk »)1: =
5.

{a E A A 13b E c /: A:I (... A{l (a» = B~I (... B{I (a»/\. .. I\A:k (... A{k (a» = B~k (... B{k (a»}

(Test R It (All ... Alk) ... (Anl ... Ank)/:=
6. {

a E AAIItI «AIlk(oo.AIIl(a»)oo.(AI nk(oo.AInl(a»» = True}

2.3. PROCESSING CONCEPT DESCRIPTIONS

In this section we propose the subsumption and closure algorithms for
ASA-CL. They are based on the ASA-CL formal features, thus they are

196 MARIO DE GRASSI ET AL

domain independent. The algorithms operate on a normalised internal
concept description structure which has the form:

(Or D, D2 ... Dn)
where every Dj has the form:

(And (All R, C,) ... (All Rn Cn) (Rule C', (~ Rk)"') ... (Rule C' n (Rj R1) •••))

and where C" ... ,Cn, C' h""C' n are concept names and Rh ... , Rn, ~, Rk, R j , Rl are
attribute names2.

2.3.1. Subsumption algorithm for ASA -CL
Given the ASA-CL feature language, it is possible to define a procedure that
verifies if the subsumption relation holds between two concept descriptions.
Given two concept expressions D and G, the relation subsumes(D,G) holds if
and only if one of the following condition is verified:
1. G is BOTTOM
2. Dis THING
3. D is ASA-THING and G is a derivate concept term
4. D is HOST-THING and G is a host concept term
5. D and G are both atomic concept names and D is equal to G
6. D and G are both NUMBER or STRING or SYMBOL
7. D is (RANGE kl k2) and G is (RANGE k3 k4) and kl£k3 and k2~k4
8. D is (ONE-OF hI h2 h3 ... hn) and G is (ONE-OF kl k2 k3 Ian) and the set {ki

k2 k3 Ian} is a subset of {hI h2 h3 ... hn}
9. D is (All A C) and G is (All A E) and subsumes(C,E) is true.
1O.D is (Rule RI Cl MapI) and G is (Rule R2 C2 Map2) and subsumes (C1,C2) is

true and Map 1 is equal to Map2.
11.D is (Not-Rule Rl Cl Mapl) and G is (Not-Rule R2 C2 Map2) and subsumes

(C2,Cl) is true and Mapl is equal to Map2.
12. D is (Test Rl El Argl) and G is (Test R2 E2 Map2) and E1 is equal to E2 and Argl

is equal to Arg2.
13. D is (And Dl D2 ... Dn) and G is (And Gl G2 ... Gm) and subsumes(D1,Gi) ,

subsumes(D2,Gi), ... , subsumes (Dn,Gi) are true for at least one Gi in {Gl, G2, ... ,
Gm}

14.D is (And DI D2 ... Dn) and subsumes(D1,G), subsumes(D2,G), ... , subsumes
(Dn,G) are true

I5.G is (And GI G2 ... Gm) and at least one of subsumes(D,Gi), subsumes(D, Gi), ... ,
subsumes (D,Gi) is true for Gi in {GI, G2, ... , Gm}

I6.D is (Or DI D2 ... Dn) and G is (Or GI G2 ... Gm) and subsumes(Di,Gl) ,
subsumes(Di,G2), ... , subsumes (Di,Gm) are true for at least one Di in {DI, D2, ... ,
Dn}

2 The normalised form is obtained by means of a translation of the linear form into an
internal representation structure called descritpion graph whose discussion is out of the
scope of the article. The normalised form is logically equivalent to the original one. The
reader can find further information in Borgida (1994).

APPLYING FORMAL METHODS TO CASE BASED DESIGN AIDS 197

16. D is (Or D 1 D2 ... Dn) and G is (Or G 1 G2 ... Gm) and subsumes(Di, G 1) ,
subsumes(Di,G2), ... , subsumes (Di,Gm) are true for at least one Di in {Dl, D2, ... ,
Dn}

17.G is (And G1 G2 ... Gm) and subsumes(D,Gl) , subsumes(D,G2), ... , subsumes
(D,Gm) are true

18.D is (Or Dl D2 ... Dn) and at least one of subsumes(DI,G), subsumes(D2,G), ... ,
subsumes(Dn,G) is true.

The algorithm outlined above is correct but incomplete. Incompleteness
derives from points 12, 16 and 183•

2.4.2. Closure algorithm for ASA-CL
Given a knowledge base S = <T-BOX, A-BOX>, it is possible to define an
algorithm that produces the instance set of a concept. The iteration of this
procedure over the entire T-BOX produces a deductive closure of the
knowledge base S. Before introducing the algorithm it is necessary to build a
minimum of glossary. We say that a concept description is structurally
complete if every attribute takes part at least in one rule, that is, if it appears
at least in a rule-map expression. We call rule-maps the final part of the
ASA-CL rule expression, where pair of attributes are enclosed in brackets.
Every pair of attributes means that attribute fillers must be equal. When an
attribute does not takes part in any rule, it is in principle impossible to
deduce its filler value from the concept structural description. Thus the
algorithm returns an instance set only for descriptions that are structurally
complete and that, recursively, have attribute fillers and rule fillers that are
structurally complete.
Procedure closure(I:,)

Input a knowledge base I:, =<T-BOX,A-BOX>
Output a knowledge base I:,'
Begin

A-BOX'={}
For every concept C in T-BOX

A-BOX'=A-BOX' u concepUntepretation(C);
Return J:.'=<A-BOX u A-BOX',T-BOX >

End;

Procedure concepcinterpretation(C)
Input a concept C
Output an instance set I
Begin
If the concept has already been interpreted

Then return the concept instance set
Else If the description of C is not structurally complete

Then Return {2)
Else

Begin
For every attribute Ao

3 Even if the algorithm is incomplete, in the applications of the formalism to CBDA
experienced so far, incompleteness has not caused great problems.

198

End

MARIO DE GRASSI ET AL

let CAo be the attribute filler of Ao, call concepCintepretation(CAO);

For every rule Ru, let CR. be the rule filler of Ru, call concepcintepretation(CRu);

Solve the Constraint Satisfaction Problem where the set of attribute names
and rule names of C are the variables. Variable domains are the filler instance sets
computed in the previous steps. Problem constraints are both the mappings that
links rule attributes to the concept attributes and the tests of the description.
Return the computed instance set.

End

The formal features of the representation schema offer further possibilities
to define noteworthy algorithms. It is possible to define a procedure that
computes the differences between two given descriptions, producing a new
concept built by attributes and rules that first description has not in common
with the second one. The computed description can be used to explain the
transition between two concepts, and, more generally, to produce
explanations of complex T-BOX navigation. The development of the
algorithm is a work in progress.

3. Design Representation

In this section we analyse the application of ASA-CL to the representation of
design. For that purpose it is sufficient to assume a simplified model of
design. Thus design representation consists of the representation of domain
object structure and the representation of design intentions4•

3.1. THE REPRESENTATION OF DOMAIN OBJECTS

ASA-CL contains a lot of constructs that can be fruitfully used in the
description of the structural features of domain elements. Figure 1 shows the
graphical representation of a sample knowledge base whose formal
description is given in Table 1. A domain object description (e.g. window) is
obtained by means of a T-BOX concept. Its expression contains the
attributes and the compositional rules that individuals belonging to the
object class must satisfy. Concept attributes are used to represent both
components (e.g. sash, ledge of window, etc.) and features (e.g. colour,
length, width, etc.). For example, the WINDOW concept in Table 1 is
described by means of three attributes: the upper-sash and the lower-sash
which must belong to the SASH concept, and a ledge which must belong to
the WINDOW~LEDGE concept. A WINDOW is thus represented by three
components. Two of them are in class SASH and are respectively the upper­
sash and the lower-sash of the window. The third component is in class

"The extension to a more complete model, embracing SBF models, design critics, design
failures etc., can be obtained at the cost of an expansion of the proposed knowledge base
without any noteworthy extension of the expressive power of the language.

APPLYING FORMAL METHODS TO CASE BASED DESIGN AIDS 199

WINDOW-LEDGE and is the ledge of the window. Language rules are used
to express the compositional constraints of the WINDOW class of object.
Rule Rl asserts that the upper-sash must be UPPER-PLACED (i.e. placed to
upper side and adjacent) to the lower-sash. Rule R2 asserts that the lower­
sash must be UPPER-PLACED to the ledge. Test R3 verifies if the width of
the lower window sash is equal to the width of the window ledge. Test R4
verifies if the width of the lower window sash is equal to the width of the
upper window sash.

lWO-PANE·WlNDOW

Upper·
sash

Lower­

sash

THREE·PANE·WlNDOW
w.mn

WI DOWLEDGE

Con~'t 1~=======1' = Heigh.
POIn' I WIdIh f

-I

Figure 1. Graphical representation of a sample knowledge base.

POINT := (And (AU X NUMBER) (All Y NUMBER) (AU Z NUMBER»

GEOMETRIC-ELEMENT := (And (All Control-Point POINT) (AU Height NUMBER) (All Width NUMBER»

lWO-PANE-SASH := (And GEOMETRIC-ELEMENT (All Glass-Colour (ONE'()F Dark Light) (Test = Width 90»

THREE-PANE-SASH := (And GEOMETRIC-ELEMENT (AU Glass-Colour (ONE·OF Dark Light»(Test = Width 120)))

SASH := (Or lWO-PANE-SASH THREE-PANE-SASH)

WINDOW-LEDGE:= (And GEOMETRlC-ELEMENT(AU Material (ONE'()F Marble Stone Wood»

WALL := (And GEOMETRIC-ELEMENT (AU Material (ONE·OF Bricks Concrete Wood»

UPPER-PLACED := (And (AU Element-I GEOMETRIC-ELEMENT) (AU Element-2 GEOMETRIC-ELEMENT)
(Test RI at-y-distance (Element-l control-point X) (Element-2 control-point X) (Element-2 Height»
(Test R2 = (Element-I control-point X) (Element-2 control-point X)))

WINDOW := (And (AU Upper-Sash SASH) (All Lower-Sash SASH) (AU Ledge WINDOW-LEDGE)
(Rule Rl UPPER-PLACED (Element-l Upper-Sash)(Element-2 Lower-Sash»
(Rule R2 UPPER-PLACED (E1ement-1 Lower-Sash)(Element-2 Ledge»
(Test R3 = (Lower-Sash Width) (Ledge Width»
(Test R4 = (Lower-Sash Width) (Upper-Sash Width)))

lWO-PANE-WINDOW:= (And WINDOW (All Upper-Sash lWO-PANE-SASH) (All Lower-Sash lWO-PANE-SASH»

THREE-PANE-WINDOW := (And WINDOW (AU Upper-Sash THREE-PANE-SASH)
(AU Lower-Sash THREE-PANE-SASH»

WALL-WITH-OPENING:= (And (All window WINDOW) (AU wall WALL)
(Test T1 at-y-distance (window ledge control-point) (wall control-point) 1.20)
(Test T2 > (window ledge control-point X) (wall control-point X)))

TABLE 1. Formal representation of the sample knowledge base.

The reader should notice that even the UPPER-PLACED relation, used to
build the WINDOW concept description, is expressed as a concept. Therefore
a domain relation is represented with the same expressive power as a domain

200 MARIO DE GRASSI ET AL

object. In a domain relation the attributes of the language are used to
represent the arguments of the relation and the rules are used to represent
the conditions that should be satisfied in order to verify the relation. The
language also allows to define relations in an implicit form, by means of the
Test construct.

In fact the Test construct verifies if an implicitly defined relation (i.e.
some function defined in the host language) with the attributes of the
compound description as arguments holds. An example of the application of
the test construct is given in the description of the RIGHT-PLACED concept.
Here the Test constructs has attribute chains as its arguments. An attribute
chain allows us address a component of a component down to the desired
depth.

In the TWO-PANE-WINDOW concept definition the And construct
conjoins the concept name WINDOW with other constructs. When some
language expressions are conjoined by the And construct, the resulting
concept inherits all the expression attributes and rules. For example, the
resulting description of the TWO-PANE-WINDOW concept has the Upper­
Sash, Lower-Sash, Ledge attributes and the rules RI, R2, R3 and R4
inherited by the WINDOW description. If an inherited attribute has the same
name of an attribute in the current expression, then the two attributes are
merged (i.e. it is generated an attribute with a filler built of the conjunction
of the fillers). Finally the SASH class of objects is defined as a collection (i.e.
a disjunction) of TWO-PANE-SASH and THREE-PANE-SASIf.

The language expressiveness outlined above can be reached by means of
a lot of different structured knowledge representation schemata. Moreover
the use of a formally defined language offers a set of unique computational
properties that depend exclusively on the formal features of the knowledge
representation schema. Therefore they are domain independent. In section 4
we will show the application of those properties in a CBDA system.

3.2. THE REPRESENTATION OF DESIGN INTENTIONS AND STRATEGIES

Design is basically a purposeful activity in which a lot of strategies are
applied in order to accomplish a design goal. The application of a strategy
in a design domain produces a transformation of the current domain state
into a new state. In a terminological representation schema a design domain
state can be represented by a set of concept instances in the A-BOX. A state
transition consists of a variation of the A-BOX content. An A-BOX content

5 Our experience in the definition of knowledge bases for architectural design support has
identified a set of standard primitive components. In our example the SASH, the
WINDOW-LEDGE and the WAll concepts represent primitive graphical components.
The shape of every primitive component is implicitely defined by a lot of parameters
and control points as we usually find in variational CAD systems.

APPLYING FORMAL METHODS TO CASE BASED DESIGN AIDS 201

variation can be obtained by the addition, the deletion or the substitution of
an instance. Instance addition and deletion are basic A-BOX operation and
they are straightforward, except for the problem of the knowledge base
consistency maintenance. In a terminological schema the substitution of an
instance a with an instance ~ of the A-BOX can be structurally explained as
the transition between the concept ex, whose a is an instance of, and the
concept CI3, whose ~ is an instance of. In fact, the transition between two
concepts outlines what changes and what remains when an instance of the
concept Cn is substituted with an instance of the concept CI3. In the proposed
design model a transition between two concepts is called action. In
terminological knowledge base, actions are represented as a concept sub­
hierarchy which starts from the following basic description:

ACTION := (And (All from ASA-THING) (All to ASA-THING»

in which the from attribute represents the concept from which the transition
starts and the to attribute the target concept.

Even if actions are meaningful tools to represent domain state changes,
the representation of complex design strategies needs more expressive tools
to combine actions into sequences and to link them to design goals. For this
purpose we have developed the ASA Planning Language (ASA-PL) that can
be used to define complex design strategies. ASA-PL is based on the
operator structure which links a planning strategy to a design goal. The
operator is represented as a concept with the following structure:

OPERATOR := (And (All goal STRING)(AII strategy STRING»

A strategy can be defined according to the following syntax and semantics
of the ASA-PL language.

Syntax
Given the set of concept terms and two disjoint alphabets of symbols: primitive actions
and goals. The set of planning expressions is inductively defined as follows:
~:

Every primitive action is a planning expression.
Every goal is a planning expression.

Step:
Let P,PI, ... ,Pk be planning expressions. Let C be a concept term. Then:

NOP
(And PI P2 ••• Pk)

(Or PI Pz •.. Pk)

(Not P)
(Inclass P C)
(Seq PI Pz ••• Pk)

202

(IffaH PI P1 P3)

are planning expressions.

MARIO DE GRASSI ET AL

And. Or. Not and Inclass are called algebraic operators. Seq and mail are called
control structures (Giunchiglia. 1994).

Semantics
The semantics of ASA-PL is defined relative to an interpretation J = <X/,-I > where

the set X I ~ Ii is the domain of J (Xl is the set of individuals such that they are

linked to elements of the data base). and the function' I is the interpretation function of

J.
Base
Let A be an action. Let G be a goal. Then
A~XIXXI

G ~XI XXI
Step
Let So ~ Xl be a starting situation. Let p,PI 'Pk be planning expressions. Let C be

a concept term. Then

NOpJ := {(a.a)ia E So}

(And PI P2)J := {(a,b)la E So I\. (a,b) E p"1 U p/ I\.b E im(p"I) nim(P/)}

(Or PI P2)J := {(a,b)la E So I\. (a,b) E p"J U p/ I\.b E im(p"J) Uim(P/)}

(Not P)J := {(a,b)la E So I\. (a,b) ~ pJ}

(Inclass pC)J:= {(a,b)laESol\.(a,b)Ep J I\.bEC I }

(Seq PI P2 Pn)J := {(co.cn)lco E So 1\.3cl, ... ,cn_dco,cl) EP"J 1\. ... I\.(Cn_I'Cn) E p/}

(Iffail PI P2 P3)J :={(a,b)laESol\.(a,b)~p"J l\.(a,b)EP/} U

{(a.b)ia E So I\. 3c.[(a,c) E p"J I\. (c.b) E P/]}

The most simple strategy that can be expressed by means of ASA-PL is the
primitive action. Given an initial instance set (i.e. subset of the A-BOX), the
execution of an action over the initial set is essentially a searching operation
that retrieves the instance set of the target concept (i.e. the one that appears
in the to attribute of the action). The retrieved instance set of an action
execution may be either the target concept instance set of the current A­
BOX or, much more interesting for CBDA, an instance set of a long term
memory related to the target concept. For example the target concept
instance set of a particular case in a case memory. The execution of an
action may fail. A failure consists of the retrieval of an empty instance set.

APPLYING FORMAL METHODS TO CASE BASED DESIGN AIDS 203

More complex searching strategies can be obtained by using the ASA-PL
constructs. Algebraic operators combine the results (i.e. the final instance
sets) of the executions of their arguments expressions. The (Inclass PC)
expression restricts the result of the execution of the planning expression P
to the instances of concept C. The Seq control structure chains the execution
of its argument planning expressions. When two expressions are chained, the
resulting instance set of the first one becomes the initial set of the second.
The (Iffail PI P1 PJ) expression has the following meaning: if the execution
of PI results in an empty set then execute P2, execute P3 starting form the
result of PI otherwise. The planning algorithm is essentially an interpreter of
the ASA-PL language. It builds a plan node for every planning expression it
encounters. A plan node contains the initial and the final instance set of the
planning expression execution. When a goal expression is encountered the
interpreter searches in the knowledge base for operators with the goal
attribute filled with the same expression. The set of planning expressions
appearing in the plot attribute is retrieved and the first of them is executed.
If the execution fails then the second one is executed until either the
execution of one of the expressions succeeds or there are no more
expressions, in which case the goal is not satisfied. Finally the NOP
expression is the action that does nothing but succeeds.

4. A Computational Framework for Case Based Design Aids

In this section we propose a framework in which the representational and
computational features of ASA-CL are combined in order to obtain the
functionality of a case based design aiding system. The framework is
defined at conceptual level, using the terminological schema as the
underlying epistemological layer (see section 2). The framework has a long
term conceptual memory, a short term working memory and a long term
episodic memory. The conceptual memory stores partial domain models.
The working memory contains the current design status represented as a set
of conceptual model instances. The episodic memory contains past design.
The adoption of a terminological language as the knowledge representation
schema specialises the above framework as follows. The long term
conceptual memory corresponds to the terminological T-BOX and the short
term working memory to the A-BOX. The episodic memory corresponds to
a set of tables, one for each concept of the T-BOX. For example Figure 2
shows a snapshot of the knowledge base, when the designer has just drawn
with a CAD interface a set of domain objects corresponding to a TWO­
PANE-WINDOW and to a WALL. The A-BOX contains the instances
corresponding to the various window components and to the relationship
that regulates the TWO-PANE-WINDOW concept (i.e. UPPER-PLACED)
plus an instance for the WALL and the WALL-WITH-OPENING concepts.

204 MARIO DE GRASSI ET AL

TlIING

'IOST·llll"G ______________

NUMS~
';~Ci \ ASA·TIIING

'YM1!OL

WIN1JOw u rrE,R,.plJ\CED GEOMETlUC·El.f.MEST POrNT

WAl.L-WlTH.(l~WING SA'" \

T BOX j o.PANE.WlNOO llIIlfI'.'AN.~v.wooW.t.aJGE :>..I.L

- I nn:tE£·PANE.-WTN'DOW 'J"WO,.P~"!-SASH

r A-SOX -:- -= --.. .:\ ; - ! :;!'~
_. ___ J
----- 1

CAD Interface

Figure 2. A snapshot of the terminological knowledge base during the design process.

HOST.TH1N(l ______________

NU'MJlU-----J\ ASA. n UNO STRING \ .
SYMBOl.

WINDOW UP'2.R,.PI...ACED GEOM~RJC.EUMt:NT POINT
WAUrWl1ll-OP'ENl'lG SAsn

THR.EE-PANI~W'rN'OOW.LEDGE ALL
TWO-PASE.SASH

ICASE~ I tlSl~ I ~R~ 1 CONTROL·fONT 1··· ·1 ~ 123 m!·3 brlcts SVSI-C .: ~

I~ I NSJ·C) I~~ 1 CONTROL·~ I···· .. · .. 1 ! 1 23 M/-4 \\OOd SYSI-O~

WNOON

I~: I :~I~~f~11 :: 1 ;5 1 :~ 1
~I ::~I 7:3 Iw=:1

- --~

Figure 3. A snapshot of a case memory.

The instances of the UPPER-PLACED, WALL-WITH-OPENING concepts
have been automatically asserted using the closure algorithm. Figure 3 shows
the instances of the TWO-PANE-WINDOW of Figure 2 stored as a case into
the case base memory tables. The case memory contains a set of tables, one
for each concept of the T-BOX. Table columns correspond to the concept
attributes and rules, plus one column for the instance identifier and one for
the case identifier. Instance attributes and rules are filled with concept

APPLYING FORMAL METHODS TO CASE BASED DESIGN AIDS 205

instance identifiers6 that logically link the compound object with its
components.This framework adopts a distributed case representation. Notice
that cases are stored as a collection of descriptions that can be independently
recalled and processed.

This feature partially avoids the grain size problem often encountered in
the design of case representations in traditional case based systems
(Kolodner, 1993). Thus, in the following, we will not make any distinction
between a case or one of its components.

4.1. SEARCHING AND RETRIEVING CASES

A basic operation of a case based design aiding system is the retrieval of a
helpful piece of situated knowledge. In the proposed CBDA framework, we
can access cases by addressing the concept table they are inserted in. In fact,
every table is directly linked to a concept and inherits the structure of the
concept description. Thus case retrieval can be guided both by its contents,
as in usual data-base queries, and by the structure of the knowledge
description schema. In the following we investigate the possibilities offered
by the ASA-CL language to access a case on the basis of the description
structure. ASA-CL offers two computational tools that can be used for
searching cases. The first one is the subsumption algorithm that can be used
to find out structural similarities between a concept description and a
searching key. The second tool is the planning sub-system that can be used
to traverse the T-BOX and to find out a concept on the basis of its structural
differences form the current situation. We call the first strategy searching for
similarities and the second searching for differences.

Once the desired case has been identified, the case is retrieved from the
case memory. In the previous section we pointed out that the proposed
CBDA model uses a distribute case representation. Case retrieval is thus a
matter of traversing the parthonomic hierarchy. Starting from the current
concept instance, the case retrieval algorithm loads recursively the instance
components and rules until it finds host concept values. The retrieval
algorithm has an elementary structure, thus we do not discuss it further.

4.1.1. Searching for similarities
The schema of the searching for similarities procedure is defined as follows:
1. Define a searching key as a concept description.
2. Associate the key description to a default concept name.
3. Place the key concept into the T-BOX hierarchy using the subsumption algorithm.
4. If there are subsumed concept, then retrieve the cases contained into the tables

pointed by the subsumed concepts
5. Delete the key concept from the T-BOX.

6Host concept instance places are filled with values.

206 MARIO DE GRASSI ET AL

The specification of a searching key is accomplished with the same
technique used to describe concepts. In fact a searching key is basically a
partial description of the desired case, so it can be represented as a concept
and defined by means of the ASA-CL language. Once the key concept is
placed into the T-BOX hierarchy, it is possible to access the subsumed
concept. That is to access concepts that contain the description of the key
concept. The procedure usually retrieves a multiplicity of cases. Retrieved
cases can be subsequently ranked7 on the basis of their information content.

For example the expression:
(And (All Upper-Sash SASH)(AII Lower-Sash SASH»

used as a searching key produces a key concept that subsumes the WINDOW
concept. Thus the set of windows stored into the case base can be retrieved.

4.1.2. Searching for differences
Designers sometime express retrieval requirements as a variation of a given
situation. In section 3.4 we have introduced actions and strategies as
representations of this kind of design intentions. Strategies are represented
by means of transitions between concepts. The final concept of a transition
path represents the structure that satisfies the goal in the current situation.
The set of instances contained into the case-base table linked to the concept
is the result of the searching procedure.

For example consider the knowledge base of Table 1 augmented with the
following definitions:

OP1 := (And OPERATOR
(All goal (ONE-OF "increase-lighting')
(All plot (Iffail TWO-THREE TWO-FOUR NOP)))

TWO-THREE := (And ACTION
(All from TWO-PANE-WINDOW)
(All to THREE-PANE-WINDOW»

THREE-FOUR := (And ACTION

TWO-FOUR := (And ACTION

(All from THREE-PANE-WINDOW)
(All to FOUR-PANE-WINDOW»

(All from TWO-PANE-WiNDOW)
(All to FOUR-PANE-WiNDOW»

Suppose that the designers activate the "increase-lighting" goal. Planning
for the "increase-lighting" goal produces the planning tree of Figure 4.
The plan execution results in following the path from the instance of the
TWO-PANE-WINDOW concept, contained into the A-BOX, to the set of
instances of the THREE-PANE-WINDOW concept, contained into the
concept table of the case memory. Figure 5 depicts the situation.

7 Ranking cases usually needs domain dependent heuristics. The discussion of this issue
is out of the scope of this article.

APPLYING FORMAL METHODS TO CASE BASED DESIGN AIDS 207

Incleose.~Nng I

IIfOII 1

TWO.1J-iREE-=:J [TWO-FOUR ~ NOP

Figure 4. Planning tree for the " increase-lighting" goal.

HqS!-THU~G

!,;MIH·jt
STRU .. O

S'f',.ffi()L

--- -- A. A ·rtU~(i

'-
\II"r,I."OOw !";PPER.PI..ACro ~~Mt.TkJC.I:.U~t£, r POINT
-- WALL.WTnf.()pENlNG SASlt

TP.ANE.~\I.: nUt,tE.PA.'O'£..SA$H ~"",'OOW-LEDGE 'WAU
T-BOX T ~ THRll-P""E.W",OOV. TWO·PA.'IO-.... SII

A-BOX · !
CASE-BASE CASE.ID r INSI." UPPER.SASH lOWER·SASH lEDGE ' RI R2

.. • I -
1123 I S'ISI·12 S'ISI·I

1134 f S'lSl -2 S'ISII

.313 SYSI·14 S'ISI·31

Figure 5. An example of case base navigation related to the "increase-lighting" goal.

4.2. MODEL GUIDED CONTEXT INSERTION

Reusing past experience is strongly connected to the ability of relating that
experience to the situation one is working on. In case based reasoning, this
process is usually called adaptation (e.g. Hua et al" 1992). Thus adaptation
is the process that, given a previously retrieved case, tries to insert it in the
current context in order to obtain a coherent situation. In the proposed
paradigm the insertion basically consists of a juxtaposition of two sets of
concept instances, the first one related to the current context and the second
one to the retrieved case. Cases are juxtaposed by finding out the
appropriate compositional rules.

The context insertion algorithm has two phases: context definition and
case insertion. Context definition identifies the set of instances of the current
situation that are directly related to the case to insert. Case insertion builds
the set of rules that regulates the interaction between the retrieved case and
the given context. The context definition process strongly depends on the
type of search. If a case is the result of a search for similarities, it is hard to
automatically recognise the context. On the contrary, if a case is the result of
a search for differences, the system has enough information to go back to
the initial instance set of the transition path. The initial instance set contains
the instances that should be substituted for the retrieved set. For every

208 MARIO DE GRASSI ET AL

instance I m the initial instance set, the context definition procedure
determines the set 3 of instances in the A-BOX such that any instance
contains i as one of its components. The set 3 is called the context of i. Once
the context of an instance has been calculated, the case insertion algorithm
replaces every reference to i with a reference to one of the instances resulting
from the searching phase. In the current release, the choice is arbitrary.
Nevertheless the system performs a consistency checking. It verifies that the
instance to replace belongs to a superclass of the chosen instance. Then the
procedure updates every instance attribute in the A-BOX which is filled with
host values. For this purpose, case insertion builds a Constraint Satisfaction
Problem (CSP) in which the Test constructs are used as constraints and the
host value filled attributes are the variables.

The CSP problem may fail. In this case a new instance is selected until
either the insertion succeeds or there are no more instances. In the latter case
the whole context insertion fails. Suppose, for example, to be in the design
status depicted in Figure 2 and to activate the "increase-lighting" goal (see
Figure 4). The searching for differences procedure retrieves an instance of a
THREE-PANE-WINDOW concept. The· procedure determines the initial
instance set composed by the TWO-PANE-WINDOW instance. The context
definition process determines the context of the TWO-PANE-WINDOW
instance and finds the instance of the WALL-WITH-OPENING concept. The
case insertion procedure first updates every logical reference to the TWO­
PANE-WINDOW instance with the identifier of THREE-PANE-WINDOW
instance, then uses the tests Tl and T2 of WALL-WITH-OPENING concept as
constraints of a Constraint Satisfaction Problem. The CSP variables are the
arguments of the tests Tl and T2.

5. Related Work

The ASA concept language has been designed following the principles
outlined in the design of the CLASSIC concept language (Brachman, 1991)
with some restrictions (i.e. the limitation to attributive relationships) and
some minor extensions (i.e. the RANGE and the RULE constructs). In fact
the RULE construct is a syntactic facility that can be reduced to a
composition of attributes and role value maps8, and the RANGE construct
can be viewed semantically as the ONE-OF construct. The relationships
between CLASSIC like languages and other terminological languages are
discussed in Rich (1991). The representation of domain n-ary relationships
by means of concepts is a wel!/ established technique for terminological

8 The expression (Rule R C «All A21) ... (Aln A2n» is equivalent to the expression
(AND (All A21 THING) (All A2n THING) (All R C) (RVM (R All) A21)
(RVM (R Aln) A2n»

APPLYING FORMAL METHODS TO CASE BASED DESIGN AIDS 209

languages (e.g. Bergamaschi, 1992). Moreover the use of n-ary relationships
for knowledge base closure is, as far as we know, original. The episodic
memory of the proposed framework has been built by coupling the
conceptual schema with a set of tables that reside on persistent storage
media. Coupling concept languages to data-base systems is an active
research area in the Description Logic community (e.g. Borgida, 1994;
1993). In the proposed framework the data base schema strictly follows the
concept structure defined in the knowledge base, allowing the inference
procedures to efficiently access case data. That requirement is substantially
different from standard data-base specifications in which storage space
optimisation requires only a partial storage of the information related to
views. An attempt to formalise Case Based Reasoning can be found in Koton
(1989), where the discrimination net presented in Kolodner (1983) has been
reformulated in terms of default logic. The work proposes a well founded
knowledge representation schema but it does not provide any attempt to
support Case Based inferences like adaptation. More recently a work on the
application of description logics to the modelling of Case Based Reasoning
has been proposed in Yen (1994). In that work the LOOM concept language
has been used to support the classification and storage of cases and their
semantic based analysis. The work focuses on the retrieval problem and
proposes a measure of similarity based on the semantic properties of the
LOOM terminological language. The analysis introduced in Yen (1994) can
be ported to the ASA-CL environment with some restrictions, allowing the
definition of a more refined case retrieval procedure. Moreover the work is
limited to similarity measures and thus it does not face the adaptation
problem.

Acknowledgements This work has been conducted as part of ASA, a project under
development at the University of Ancona and has been done with the support of the
Italian National Research Council (CNR), Special Project on Building (Progetto
Finalizzato Edilizia). Mauro Di Manzo have supervised the project and provided many
useful intuitions. Andrea Fornarelli, Massimo Lemma, Berardo Naticchia have
participated to the development of ASA.

References

Bergamaschi, S., Lodi, S. and Sartori, C.: 1992, The ES Knowledge Representation System in
AI*IA Notizie Anno Y, 2, June, 31-40.

Bhatta, S., Goel, A. and Prabhakar, S.: 1994, Innovation in analogical design: A model­
based approach, in J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '94,
Kluwer, Dordrecht, pp. 57-73.

Patel-Schneider, P. F.: 1994, A semantics and complete algorithm for subsumption in the
CLASSIC description logic, Journal of Artificial Intelligence Research, I, 277,308.

210 MARIO DE GRASSI ET AL

Borgida, A: 1994, Description logics for quering databases, in F. Bader, M. Lenzerini, W.
Nutt, P. F. Patel-Schneider (eds), Prooceedings of International Workshop on Description
Logics, DFKI Dokument D-lO, 95-96.

Borgida, A and Brachman, RJ.: 1993, Loading data into description reasoners, ACM
SIGMOD Conference on Data Management, Washington, DC, pp. 217-226

Brachman, R. J., Schmo1ze, J. G.: 1985, An overview of the KL-ONE knowledge
representation system, Cognitive Science 9, 217-260.

Brachman, R J.: 1979, On the epistemological status of semantic networks, in N. V. Findler
(eds), Associative Networks: Representation and Use of Knowledge by Computers,
Academic Press, New York, pp. 3-50.

Brachman, R J., McGuinness, D., Patel-Schneider, P. F., Resnik, L. A, Borgida, A: 1991,
Living with classic: When and how to use A KL-ONE like language, in J. F. Sowa (ed.),
Principles of Semantic Networks, Morgan Kaufman, San Matteo, pp. 157-190

Domeshek, E. A, Kolodner, J. L. and Zimring, C. M.: 1994, The design of a tool kit for case­
based design aid, in J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '94,
Kluwer, Dordrecht, pp. 109-126

Giunchiglia, F., Spalazzi, L. and Traverso, P.: 1994, Planning with failure, Proceedings of
AlPS 94, Chicago.

Goe1, A: 1991, A model-based approach to case adaptation, Proceedings of the Thirteenth
Annual Conference of the Congitive Science Society, Chicago, IL, pp. 143-148

Hua, K., Smith, I., Faltings, B., Shih, S. and Schmitt, G.: 1992, Adaptation of spatial design
cases, in J. S. Gero (ed.), Artificial Intelligence in Design '92, Kiuwer, Dordrecht, pp.
559-575.

Kolodner, J. L.: 1983, Maintaining organization in a dynamic long-term memory, Cognitive
Science, 7, 243-280.

Kolodner, J. L.: 1993, Case Based Reasoning, Morgan Kaufmann.
Koton, P. and Chase, M. P.: 1989, Knowledge representation in a case-based reasoning

system: Default and exceptions, in R J. Brachman, H. J. Levesque and R. Reiter (eds),
Proceedings of KR '89, Morgan Kaufman, pp. 203-211.

Rich, C. (ed.): 1991, Special issue on impleniented knowledge representation and reasoning
systems, SIGART Bulletin, 2(3).

Schank, R and Osgood, R: 1990, A content theory of memory indexing, Technical Report
no.2, Northwestern University, Institute for the Learning Sciences.

Woods, W. A: 1975, What's in a link: Foundations for semantic networks, in D. G. Bobrow
and A. M. Collins (eds), Representation and Understanding: Studies in Cognitive Science,
Academic Press, pp. 35-82.

Yen, J., Hor Teh, S., Liu, X.: 1994, Using description logics for software reuse and case­
based reasoning, in F. Bader, M. Lenzerini, W. Nutt and P. F. Patel-Schneider (eds),
Proceedings International Workshop on Description Logics, DFKl Dokument D-1O, pp.
51-54.

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 211-227.
© 1996 Kluwer Academic Publishers.

DESIGNING NUTRITIONAL MENUS USING
CASE-BASED AND RULE-BASED REASONING

CYNTHIA R. MARLING AND LEON S. STERLING

Department of Computer Engineering and Science
Case Western Reserve University
Cleveland, Ohio 44106, USA t

Abstract. Case-based reasoning (CBR) and rule-based reasoning (RBR) are two paradigms
for building knowledge-based systems. They represent both distinct approaches to know­
ledge-based systems development and distinct cognitive models of human problem solv­
ing. They are usually viewed as competing, rather than complementary, paradigms. How­
ever, our investigation shows that in combination, they can provide both a stronger ap­
proach to knowledge-based systems development and a broader cognitive model. The do­
main of our investigation is the design of nutritious, yet appetizing, menus. Both logic and
experience play roles in this domain. Our approach is to construct two expert systems,
one case-based and one rule-based, to perform the same task. We compare and contrast
our two systems, to identify the strengths and weaknesses of each.

1. Introduction

For those who accept the definition,

"Artificial intelligence (AI) is the study of how to make computers do things
which, at the moment, people do better," (Rich and Knight, 1991)

menu planning! is a rich domain. Ordinary people plan menus for themselves,
their families and friends, as a matter of course. Food service professionals plan
specialized menus for use in restaurants, catering, school cafeterias, hospitals,
military bases, prisons, and other institutions. The food service industry makes
extensive use of computer applications, for functions ranging from payroll to con­
trolling the amount of Coca Cola released from beverage dispensers. However,

tLeon Sterling's new address is: Department of Computer Science, University of Melbourne,
Parkville, Victoria, Australia.

1 Menu planning is the unfortunate vernacular term for a task which is quintessentially one of
design.

212 CYNTHIA R. MARLING AND LEON S. STERLING

"Computer-assisted menu planning is not widely used today because of the
difficulty in quantifying the many variables involved in menu planning, such
as flavor, color, and texture." (Spears, 1995)

Both case-based reasoning (CBR) and rule-based reasoning (RBR) systems
have been built in this domain (Galotra et. ai., 1991; Hinrichs, 1992; Kovacic
et. ai., 1992; Yang, 1989). Yet, human capabilities still outstrip the computer.
Unsuccessful attempts to build computer-assisted menu planners date from the
1960' s (Balintfy, 1964; Eckstein, 1967). The high levels of both interest and diffi­
culty in this domain may stem from the observation that

"Menu planning is both an art and a science." (Eckstein, 1978)

We have chosen this domain to investigate opportunities for CBRlRBR hybridiz­
ation. While some believe,

"It is probably an axiom of artificial intelligence that intelligent behaviour is
rule-governed." (Jackson, 1990)

and others counter,

"Real thinking has nothing to do with logic at all. Real thinking means re­
trieval of the right information at the right time." (Riesbeck and Schank, 1989)

we suspect the truth lies somewhere in between. To test our supposition, we have
built two expert systems, one rule-based and one case-based. Both systems have
identical problem statements and the same domain experts. However, the imple­
mentations are independent, to minimize any effect of learning in one mode on
performance in the other. We compare and contrast our systems, to identify the
strengths and weaknesses of each.

2. CBR, RBR and Hybridization

A CBR system solves new problems by finding, adapting, and reusing the solu­
tions to similar problems encountered in the past. An RBR system solves new
problems by drawing inferences from rules which embody problem-solving know­
ledge. The following definitions and examples are offered to clarify the distinc­
tion.

A case is a knowledge representation comprising a past problem and its solu­
tion. It contains an approximate solution that can be found and modified to
obtain a good solution to a new problem.

DESIGNING NUTRITIONAL MENUS 213

A rule is a knowledge representation expressing a relationship between ob­
jects. It contains a piece of knowledge that can be combined, or chained to­
gether, with other pieces of knowledge to build a good solution to a problem.

Figures 1 and 2 show examples of cases and rules in the menu planning do-
main. Simple examples are provided for pedagogic purposes; details follow in
Section 3. Given the cases shown in Figure 1, we just need methods for finding
and adapting them. For example, if we wanted an easy to prepare, brown bag2

lunch meal for a vegetarian, we might find Case 2 and adapt it by substituting a
cheese sandwich for the turkey sandwich. Given the rules shown in Figure 2, we
just need some facts like:

protein (steak) .
beverage (apple_juice) .
starch (potato_chips) .

plus definitions for includesJIleat and calorie_count, and an inference engine, like
Prolog, to deduce a solution.

A hybrid system has both CBR and RBR components or modules. Note that
this is not the same as having both cases and rules. CBR systems have long used
rules in a supportive role, for indexing, matching and adaptation. The few hybrid
systems which have been built to date have taken two approaches to hybridization.
One approach is to have independent CBR and RBR modules, each of which can
solve the problem independently of the other. The other approach is to take an
essentially RBR system, and add a CBR module to provide some portion of the
system's overall functionality.

Rissland and Skalak's CABARET is a system with independent CBR and
RBR problem solvers (Rissland and Skalak, 1991). CABARET grew out of an
effort to extend the HYPO system (Ashley and Rissland, 1988), which operates
in the trade secrets law domain, to another legal domain, that of tax law. While
HYPO's domain was primarily case-based, tax law has statutes, or rules. These
rules are vague, because they include words that are open to interpretation. The
current interpretation is determined by past interpretations made in courts of law
for similar cases. In effect, cases determine whether or not rules apply. CAB­
ARET interleaves CBR and RBR, using heuristics to post CBR and RBR tasks
to an agenda.

Golding's ANAPRON is a system which uses a CBR module to provide one
portion of an essentially RBR system's functionality (Golding, 1991). ANAP­
RON is a speech synthesizer which pronounces surnames aloud. ANAPRON uses
rules to generate a probable pronunciation, and then uses cases to handle excep­
tions to the rules. Golding found that rules were good for capturing large trends,

2This Americanism stems from the brown paper bags in which lunches were commonly carried
to work or school. Americans still "brown bag it," even when carrying reusable lunch containers
today.

214 CYNTHIA R. MARLING AND LEON S. STERLING

Case 1: Lunch Meal
Fast Food
Fun for Kids
High Calorie

We had six kids over for
lunch, and we needed a
meal that was quick, fun
and filling.

Pizza Hut Pizza
Coke

Case 2: Lunch Meal
Brown Bag
Easy to Prepare
Cheap

Features of the problem
useful for later retrieval

Old problem statement,
useful for explanations

Old solution:
Meal actually served

I packed my own lunch to take to school. I'm on a
student budget, both in terms of time and money.

Turkey Sandwich
Carrot Sticks
Potato Chips
Apple Juice

Case 3: Lunch Meal
Sit Down
Suitable for Executives

We hosted some visiting managers from GM at work.
We needed to cater a suitable lunch in the company
dining room.

Steak
Baked Potato with Sour Cream
Green Beans Almondine
Strawberry Cheese Cake
Coffee

Figure 1. Example cases.

and cases were good for filling in small pockets where there were exceptions to
the rules.

A third approach looks promising for designing menus. This is to take an es­
sentially CBR system and to enhance it with an RBR module. Here, CBR provides
a menu to meet a user's nutritional and personal preference requirements. RBR al­
lows the user to customize the menu in creative ways, adding flair, while tracking

DESIGNING NUTRITIONAL MENUS

/* lunch (Meal ,Constraints) :-
lunch plans a meal given a list of constraints.
A typical use would be:
lunch (X, [vegetarian, low_cal, easy_to_prepare]). * /

lunch (meal (A,B,C,D) ,Constraints) :-
protein (A) , starch(B) , fruiLoLveg(C) , beverage (D) ,
satisfies_constraints (meal (A,B,C,D) ,Constraints).

satisfies_constraints (Meal, [CIConstraints]) :­
meets_constraint (Meal,C) ,
satisfies_constraints (Meal,Constraints) .

satisfies_constraints (Meal, []).

meets_constraint (meal (A,B,C,D) ,vegetarian)
\+(includesJneat(A)), \+(includesJneat(B)),
\+(includesJneat(C)), \+(includesJneat(D)).

meets_constraint (meal (A,B, C,D) ,low_cal) :­
calorie_count (meal (A,B,C,D) ,Calories),
Calories < 700.

Figure 2. Example rules.

215

the nutritional effects. The customized cases can then be stored in the case base
to strengthen the CBR component of the system.

3. System Comparison and Contrast

We have built two menu planners, the CAse-Based Menu Planner (CAMP) and
the rule-based Pattern Regulator for the Intelligent Selection of Menus (PRISM).
While both menu planners share the same problem statement and the same do­
main experts, the implementations are independent. This allows us to objectively
compare the effort involved in constructing the systems, as well as the quality of
system output.

There are several related, but distinct, forms of menu planning. A caterer, like
JULIA, plans a single meal for the enjoyment of many eaters (Hinrichs, 1992).
A restaurant owner plans a multi-choice menu, allowing each customer to choose
his own favorites, while ensuring that kitchen capacity, supplies and personnel
are adequate to implement the plan. A dietitian, in a hospital or community out­
reach program, designs a daily menu for a single individual, taking their dietary
requirements and personal preferences into account. Our menu planners are of
the last type. Our experts are nutrition professors in Case Western Reserve Uni-

216 CYNTHIA R. MARLING AND LEON S. STERLING

versity's School of Medicine. We aim to provide practical assistance to those who,
for medical reasons, must adjust their daily diets.

3.1. CAMP

CAMP's approach to the design process is that of case-based design. In case­
based design, cases serve as examples showing how multiple constraints have
been successfully met in the past. A case may suggest a design or a design frame­
work (Kolodner, 1993). A system exemplifying case-based design in another do­
main is CADET, which designs small mechanical devices (Sycara et. ai, 1992).

CAMP is a "pure" case-based reasoner. As much knowledge as possible was
kept directly in cases, so as not to overlook opportunities or gloss over shortcom­
ings of CBR in our domain. Like any canonical CBR system, CAMP operates by
storing, retrieving and adapting cases.

A representive case in CAMP is shown in Figure 3. A solution in CAMP is a
single day's menu. The features that indicate the usefulness of a case are:

- the nutrient vector for the menu, including: calories, protein, fat, carbohydrate,
alcohol, fiber, cholesterol, Vitamin C, thiamin, niacin, riboflavin, Vitamin
B6, Vitamin B12, folic acid, Vitamin A, Vitamin E, iron, calcium, phos­
phorus, sodium, potassium, magnesium, copper and zinc

- the types of meals and number of snacks included
- foods on the menu

The menu shown in Figure 3 was obtained from the U.S. Department of Ag­
riculture (USDA, 1982). Each of the 81 menus used in CAMP was obtained from
a recognized nutritional source and reviewed by our experts. Our experts mod­
ified menus as needed to ensure that each one conforms to the Recommended
Dietary Allowances (RDA's) (Food and Nutrition Board, 1989) and the Dietary
Guidelines (USDA, 1990), while meeting aesthetic standards for color, texture,
temperature, taste and variety. Each case contains a "good" menu, at least for
some individuals. Because individuals vary in their tastes and nutritional needs,
not every menu is good for every individual. The retrieval process selects the
menu that best suits a given individual's requirements. Then, CAMP adapts that
menu to meet any unmet constraints. It uses "snippets," or parts, of other "almost­
right" menus to aid in adaptation.

CAMP's cases are stored in a flat memory structure, for both methodological
and domain specific reasons. Historically, CBR systems used hierarchically in­
dexed case libraries to facilitate efficient case retrieval (Kolodner, 1993). Current
research indicates that flat memories offer greater flexibility, and are amenable
to parallel implementation should efficiency become a problem (Kettler et. aI.,
1994). In the menu planning domain, cases are not naturally ordered into mean­
ingful categories. The same menu may be suitable, with adaptation, for many dif­
ferent eaters. This is illustrated by the family dinner, where all family members

DESIGNING NUTRITIONAL MENUS

Breakfast:
3/4 cup orange juice
1 poached egg
2 medium bran muffins with
2 tsp margarine
1 cup skim milk

Lunch:
Sandwich

2 slices rye bread
1/2 cup chicken salad

1 cup split pea soup
2 halves pears. canned in light syrup
1 cup water. tea. or coffee

Dinner:
3 oz. pork chop
1/2 cup cooked broccoli
1 medium baked sweet potato
1 medium whole wheat roll
2/3 cup canned fruit salad
1 cup water. tea. or coffee

Snack:
4 Triscuit whole wheat crackers
1 cup skim milk

Breakfast Type: Egg Breakfast
Lunch Type: Soup and Sandwich Meal
Dinner Type: Meat and Vegetable Meal
Snack 1 Type: Salty Snack
Snack 2 Type: None
Snack 3 Type: None

Calories: 1754.07 kc. Protein:
Carbohydrate: 234.38 gm. Alcohol:
Cholesterol: 425.25 mg. Vitamin C:
Niacin: 17.83 mg. Riboflavin:
Vitamin B12: 3.54 ug. Folic Acid:
Vitamin E: 4.40 mg. Iron:
Phosphorus: 1749.27 mg. Sodium:
Magnesium: 276.73 mg. Copper:

Source of Menu: USDA

95.21
0.00

193.05
2.04
0.21

12.87
2928.06

1. 26

gm. Fat:
gm. Fiber:
mg. Thiamin:
mg. Vitamin B6:
mg. Vitamin A:
mg. Calcium:
mg. Potassium:
mg. Zinc:

Figure 3. A representative case in CAMP.

217

53.76 gm
21. 40 gm

2.13 mg
1423.58 ug

29463.56 IU
975.60 mg

3670.08 mg
8.15 mg

are served essentially the same menu. Adaptation may be made so that children
receive smaller portion sizes and/or milk instead of beer. In contrast, the CBR re­
cipe generator CHEF could make effective use of hierarchical indexing in its do­
main (Hammond, 1989). A stir-fry recipe is of no use at all in generating a recipe

218 CYNTHIA R. MARLING AND LEON S. STERLING

for a desert souffle, so recipe type effectively partitioned CHEF's case base.
CAMP uses an adaptation-oriented retrieval technique, which chooses a case

based on the ease of adapting it to meet current goals. In CAMP, a case must be
adapted until it meets all user-specified constraints, plus additional constraints im­
posed as minimum RDA's. To find the best case, CAMP checks each case against
all constraints. Any case meeting all constraints constitutes an exact match and
is retrieved. When a case does not comply with a constraint, a penalty score is
assigned based on how difficult it would be to bring the case into compliance.
CAMP finds the case that is easiest to adapt, striking a balance between the num­
ber and severity of constraint violations. It uses this case as a starting point, and
uses the next best cases to aid in adaptation.

The adaptation framework, based on our expert's approach to adapting menus,
is:

1. Check the number of snacks. Adjust, if necessary.
2. Check meal types. Swap meals to accommodate preferences, if necessary.
3. Eliminate any forbidden food items.
4. Check calorie level. Adjust serving sizes, if necessary.
5. Fix any nutrient specific deficiencies.

Many adaptations use snippets from other cases. Snippets may be whole meals, or
parts of meals, such as main dishes or side dishes. Changes are made at the largest
granularity possible, to maintain aesthetic qualities such as color combinations,
textures, temperatures, shapes and compatible flavors.

A menu designed by CAMP is shown in Figure 4. The menu shown was con­
strained by the user to include one snack, between 1800 and 2200 calories, at least
800 mg of calcium, and no more than 30% of calories from fat.

3.2. PRISM

PRISM's design process is one of hierarchical refinement. In this more traditional
design approach, skeletal designs, or design patterns, are instantiated and refined.
PRISM is based on an earlier RBR system, the Expert System on Menu Plan­
ning (ESOMP) (Yang, 1989). ESOMP planned menus for patients on a severely
restricted low-protein diet. PRISM expands on ESOMP by planning menus for a
wide range of dietary requirements. To do this, PRISM relies on menu and meal
patterns. A daily menu pattern takes the form:

breakfast optional-snack lunch optional-snack dinner optional-snack

Each meal within the menu pattern may fit one of several patterns. PRISM's al­
gorithm for planning a meal, given a pattern, is shown in Figure 5. A go-with
food, as used in Figure 5, is something a person normally expects to eat with an-

DESIGNING NUTRITIONAL MENUS

Breakfast:
1/2 cup orange juice
1/2 cup bran flakes
1/2 cup skim milk
1/4 cup omelette, made from egg substitute
1 English muffin with
1 Tbsp. cream cheese
1 cup coffee

Lunch:
1 cup tuna-noodle casserole
1/2 cup spinach
1/2 cup steamed squash
1 medium whole wheat roll with
2 tsp. reduced-calorie margarine
2 pear halves, canned in light syrup
1 cup iced tea

Dinner:
3 oz. roast beef
1/2 cup cooked broccoli
1/2 cup mashed potatoes
1/2 cup glazed carrots
1 medium whole wheat roll with
2 tsp. reduced-calorie margarine
1 baked apple
1 cup skim milk

Snack:
4 graham crackers
1 oz. low-fat American cheese
1 cup skim milk

Figure 4. Menu designed by CAMP.

219

other food. For example, butter and jelly are go-with foods for bread, at least in
the American heartland.

PRISM's approach to menu creation is one of generate, test, and repair. A
daily menu is initially generated by successively refining patterns for meals, dishes,
and foods, filling general pattern slots, such as breakfast bread dish with specific
foods, such as 1 slice of cinnamon raisin toast with 1 teaspoon of margarine. A
multi-layered hierarchical structure, relating meal parts to each other, was imple­
mented to ensure that each meal conforms to common sense expectations for the
form of a Western meal. At the implementation level, this structure consists of
four databases, containing meal types, dish types, food types and foods. At the
conceptual level, the structure can be viewed as a four-layered network of nodes
connected by arcs defining relationships. Arcs are unidirectional, and may con-

220 CYNTHIA R. MARLING AND LEON S. SlERLING

While there are dish slots in the meal pattern to fill
Select a dish type from the meal pattern
Select a dish of that type as follows:

If there is a client-preferred food of that type
Select the client-preferred food

Else
Randomly select a food type from the possibility list
Repeat

Choose a food of that food type
Check that food against constraints

Until a food satisfies constraints or no foods are left
If no foods are left

Randomly choose any food of that type
End if

End if
Calculate serving amount for the selected food

Choose go-with foods for the selected food
End while

Figure 5. PRISM's meal planning algorithm.

nect two nodes within a layer, or a node in one layer to a node in an adjacent, more
specific, level. An example relationship within a layer is: a continental breakfast
is one type of light breakfast. An example interlayer relationship is: a continental
breakfast includes a breakfast bread dish.

Another view of PRISM's initial menu generation process is that the multi­
layered network implements a context free grammar for the production of well­
formed menus. Example production rules of this grammar are:

<breakfast> -> <light_breakfast> I
<hearty_breakfast>

<light_breakfast> -> <continental_breakfast>
<cereal_breakfast>

<continental_breakfast> ->
<breakfast_bread_dish> <breakfast_beverage_dish>
<juice_dish> <breakfast_bread_dish> <breakfast_beverage_dish>

<breakfast_bread_dish> -> <muffin_dish> I
<quick_bread_dish>
<toast_dish>

<muffin_dish> -> <muffin_food> I
<muffin_food> <muffin_spread>

<muffin_food> -> corn_muffin I
bran_muffin I
blueberry_muffin

After a menu is generated in compliance with both user specifications and com­
mon sense expectation as to form, it is tested to see if it meets nutritional con­
straints. Because many of these constraints can not be built into the menu up front,
repair is usually necessary. Repair, in PRISM, is a backtracking process, in which

DESIGNING NUTRITIONAL MENUS 221

new foods, dishes or meals are substituted for those found to be nutritionally lack­
ing. The PRISM implementor has noted that repair is most likely to be successful
when the original menu comes close to meeting constraints. When the original
menu did not meet constraints, early PRISM could chum nonproductively, cor­
recting one nutritional deficiency only to create another. PRISM now always pro­
duces a menu within reasonable time limits, but not always one which meets all
constraints.

After PRISM generates a menu, it displays it, and then allows the user to per­
form "what if' analysis. The user can choose to delete foods from and/or add
foods to the menu. PRISM keeps a running total of the effects on the nutritional
value of the menu. This allows a user to evaluate tradeoffs: if he wants a chocol­
ate milkshake, then he can learn what else needs to change in his daily menu to
accommodate it. In practice, a nutritionist can use this analysis for educational
purposes and/or to better satisfy individual preferences.

A menu designed by PRISM, to meet the same constraints as the menu shown
in Figure 4, is shown in Figure 6.

3.3. STRENGTHS AND WEAKNESSES

Both systems successfully generate useful menus, as judged by expert nutrition­
ists. However, they have different strengths and weaknesses.

3.3.1. Meeting Nutritional and Preference Constraints
While PRISM handles aesthetic and preference constraints well, it is limited in its
ability to handle nutritional constraints. Typically, it can satisfy only three or four
nutritional constraints at a time. One difficulty is that whereas we can use context­
free rules to form aesthetically pleasing menus, we can not determine the nutri­
tional validity of a menu before it is fully designed. A nutritionist does not think
in terms of "bad" foods or meals, only in terms of bad menus. Eggs are good for
breakfast, when the remaining meals are low in cholesterol. Given a large steak
dinner, eggs are a poor breakfast choice for anyone trying to limit cholesterol.
Much effort was expended on backtracking strategies, with limited success.

CAMP meets all constraints that PRISM meets and more. In addition to user­
specified constraints, CAMP also constrains all menus to meet the RDA's. Unspe­
cified nutrient levels are treated as don't care's in PRISM. Stricter standards were
imposed on CAMP when it became apparent they could be met without much ad­
ditional effort. It is an easier task to find a menu that nearly meets all constraints
and to modify it than to create such a menu from scratch.

3.3.2. Creative Design
Menu planning is a domain in which creativity is valued. Today's ideal menu is
monotonous tomorrow. New foods, served in new ways and combinations, provide
variety and appeal. PRISM has over 1200 different foods in its database, and it

222 CYNTHIA R. MARLING AND LEON S. STERLING

Breakfast:
1 cup "Coffee brewed"
1 cup "Malt-o-meal flavored ckd w/salt"

Lunch:

2 tablespoons "Cream light coffee or table 19%"
1 teaspoon "Sugar brown"

1 cup "Tomato soup canned mw/ milk"
1 cup "Grapefruit juice unsw froz w/ 3 pts water"
1 piece "White cake w/ unckd white icing"

Dinner:
0.5 medium "Lettuce romaine/cos raw leaf"

3 number "Tomato raw cherry"
1 tablespoon "Bean sprouts/alfalfa raw"
1 tablespoon "Pepper red sweet raw chopped"
0.125 cup "Ham cured L rst chopped or diced"
0.125 cup "Cheddar cheese shredded"
0.5 number "Egg whole hard cooked"
1 tablespoon "Croutons Croutettes Kellogg's"
0.125 cup "Thousand Island dressing 8 kcal/tsp"

0.5 average "Baking powder biscuit"
0.5 teaspoon "Honey"
0.5 cup "Hot chocolate mix powder w/ sugar"
0.25 cup "Chocolate ice cream Baskin-Robbins"

Snack:
1 weight-ounce "Muenster cheese"

1 slice "Low protein bread Sherwin"

Figure 6. Menu designed by PRISM.

can combine them in a wide variety of ways. PRISM also allows users to pro­
pose and evaluate their own creative food combinations, using "what if' analysis.
"What if' analysis is a useful thinking process, not easily supported by CBR, with
its alternate emphasis on "what did."

A case-based reasoner's strength lies in remembering old solutions which can
be reused, not in considering new possibilities. CAMP's innovation is limited by
the possibilities stored in its case base. CAMP generates new menus by combin­
ing parts of old menus and/or by making minor changes to them.

The number of different menus CAMP can output is significantly less than
the number PRISM can produce. It may be noted that human innovation in menu
planning also has limitations. Experience shapes and limits the range of menus
any individual can realistically plan.

DESIGNING NUTRITIONAL MENUS 223

3.3.3. Knowledge Engineering
While it is often claimed that CBR eliminates the knowledge acquisition bottle­
neck, this was not our experience. We found both CBR and RBR knowledge en­
gineering to be difficult, albeit interesting, despite the efforts of exceptionally ar­
ticulate and cooperative experts.

The major challenge for CAMP was to find cases. Locating cases was difficult
because:

- Few publications contain daily menus.
- Publications which do contain sample menus do not ordinarily give quantit-

ies for menu items, and these are needed for nutritional analysis.
- Nutritional knowledge is continually evolving, making older references out­

of-date.
- There are many considerations to juggle in planning a menu, including aes­

thetic considerations. No nutritional benefit is derived unless a person eats
what's on the menu.

- Human experts find it difficult to plan menus that meet all desired criteria. A
recent study found that only 11 % of menus prepared by qualified nutrition­
ists met both the RDAs and the Dietary Guidelines (Dollahite, 1995).

- Experts do not always agree on what is a good menu. Personal preference is
involved.

It took over three months of full-time effort to acquire the first forty cases for
CAMP. An early idea that weeklong menus might make good cases could not
even be explored.

The challenge for PRISM was of a different nature. At the beginning, the
knowledge engineer knew little about nutrition and the nutritionists knew little
about AI. There was a feeling that "they weren't speaking the same language."
Much mutual education ensued, and sessions became more productive. Know­
ledge acquired early on had to be revised in light of new understanding, and PRISM's
initial design had to change. Ultimately, rules approved by both the experts and
the knowledge engineer were acquired and incorporated into PRISM.

The processes involved in implementing the two systems were by and large
different, rather than better or worse. However, some functionalities required less
engineering to provide with CBR than RBR. PRISM devoted many rules to serving
go-with foods together. For example, rules were needed to serve butter with bread,
catsup with French fries, and cranberry sauce with turkey. In contrast, these rela­
tionships are implicit in CAMP, as go-with foods are already together in cases.
Another task requiring a complex rule set in PRISM is calculating serving sizes.
In CAMP, serving sizes are also stored in cases. They may be adapted to accom­
modate individual eaters. Implementing the adaptation strategy required less time
than developing the rule set.

224 CYNTHIA R. MARLING AND LEON S. STERLING

3.3.4. Task Complexity
Designing a menu from scratch proved to be a more complex task than retriev­
ing and adapting one. This is primarily because of the amount of common sense
knowledge involved in menu planning (Kovacic, 1995). The expert provided a
rule, for example, that breakfast could contain two fruit exchanges, and expected
PRISM to know that these should not be half a cup of orange juice and half a cup
of apple juice. There's a sense that some meals appeal and others do not. PRISM
tackled this problem in the tradition of CYC (Lenat and Guha, 1990), which still
represents a grand challenge for AI.

On the other hand, the common sense of a human nutritionist is already em­
bedded in each of CAMP's menus. CAMP can never retrieve an implausible menu;
bad combinations can only be introduced through adaptation. Guarding against
this possibility was a trivial task, in comparison.

Menu repair is an aspect of menu design which is more complex in PRISM
than in CAMP. PRISM creates menus via a generate-test-repair process. Repair
rules are designed to bring any initially generated menu into compliance with nu­
tritional constraints. Repair works well in PRISM for menus which come close to
satisfying their constraints. However, not all menus do come close, and not all are
effectively repaired. In contrast, CAMP's process is one of retrieve-adapt, which
can also be viewed as retrieve-test-repair. Because the retrieval mechanism se­
lects a menu which needs as little adaptation as possible, CAMP's repair process
is simpler and more effective than PRISM's.

3.3.5. Cognitive Aspects
Our experts tell us they use both case-based and rule-based reasoning as they
design menus. Because CAMP and PRISM use single-reasoning approaches, neither
fully captures the cognitive processes of our human experts. In studying how hu­
man experts plan menus, we have found evidence of both CBR and RBR at work.
The best example of CBR is provided by a system for planning healthful, well­
balanced lunches for school children. This is a manual CBR system, developed by
the American Heart Association, to reduce the amount of fat and salt children eat,
to prevent future heart disease (American Heart Association, 1992). Over 12,000
kits have been distributed for use in schools. The kit consists of two thick binders,
containing:

- over 100 complete school lunch menus (cases)
- extensive lists of foods that can be substituted in the menus for local custom-

ization (adaptation rules)
- criteria for determining that a resultant menu meets the standard for healthful

meals (evaluation criteria)

Examples of RBR are provided by texts used in college courses to train future
menu planning professionals (Eckstein, 1978; Shugart and Molt, 1989; Spears,
1995). Rules given in (Spears, 1995) are:

DESIGNING NUTRITIONAL MENUS 225

1. Plan the dinner entree first
2. Plan the lunch entree or main dish, avoiding that served for dinner
3. Select starch dishes appropriate to serve with the entrees
4. Select salads, accompaniments and appetizers next
5. Plan deserts for both lunch and dinner
6. After dinner and lunch are planned, plan breakfast and snacks
7. Evaluate the entire daily menu as a unit

We also found evidence of hybridization. One rule given in (Shugart and Molt,
1989) is that you should have previous menus handy while planning new ones.
This evidence confirms what our experts have told us, that both CBR and RBR
play essential roles in menu design.

3.4. SCOPE FOR HYBRIDIZATION

Our goal is to capitalize on the strengths and to mitigate the weaknesses of CBR
and RBR through hybridization. Our system comparison elucidates how we can
accomplish this goal in the menu planning domain. A hybrid system should com­
bine CAMP's ability to satisfy contraints with PRISM's flair for creative design.

A CBR module to store, retrieve and adapt potential menus contributes toward
the design of menus which meet multiple nutritional and personal preference con­
straints. It reduces system complexity by embedding common sense knowledge in
cases, rather than representing it explicitly. It simplifies the menu repair process
by retrieving menus which already meet constraints as closely as possible.

An RBR module to perform "what if' analysis and to introduce new foods
into menus contributes creativity in design. It facilitates keeping the system up-to­
date as new foods become popular. It allows the user to interact with the system,
evaluating trade-offs and personalizing menus. These personalized menus can be­
come new cases, which are otherwise difficult to acquire. The two modules then
function symbiotically, to design better menus in concert than either CAMP or
PRISM can design alone.

4. Related Work in Menu Planning

Computer-assisted menu planning systems have been built since the 1960's. Us­
ing linear programming techniques to build the first of these, Balintfy optimized
a menu for nutritional adequacy, cost, and palatability (Balintfy, 1964). Shortly
thereafter, Eckstein adopted a "random" approach to satisfice, rather than optim­
ize, menus (Eckstein, 1967). Using a simple meal pattern, she composed each
menu of a meat, starchy food, vegetable, salad, desert, bread and beverage. Within
each category, a food item was selected randomly and evaluated with respect to
constraints. The program would iterate until satisfactory items were found.

226 CYNTHIA R. MARLING AND LEON S. STERLING

Two decades later, AI approaches to menu-planning were first tried. Yang
built ESOMP to plan nutritionally sound menus for patients on a severely restric­
ted low-protein diet (Yang, 1989). Galotra et. ai. developed a Prolog expert sys­
tem to plan therapeutic menus for patients in India (Galotra et. ai., 1991). They
used Operations Research methods to match nutritional requirements to specific
food items and heuristic rules and reasoning to convert the food items into com­
plete menus. Hinrichs combined CBR with constraint propagation techniques to
build JULIA, an interactive menu planner (Hinrichs, 1992). JULIA plans meals
for dinner parties, functioning in the role of caterer. It plans a meal to satisfy
a group of guests, despite conflicting food preferences and evolving constraints.
Ganeshan and Farmer have implemented an RBR catering system for a large Aus­
tralian catering corporation (Ganeshan and Farmer, 1995).

5. Summary and Conclusions

Two expert systems, one case-based and one rule-based, were built in the domain
of nutritional menu planning. The systems shared the same problem statement
and the same domain experts, but were implemented independently by different
knowledge engineers. The systems were compared and contrasted to identify their
strengths and weaknesses.

In our experience, the CBR system was better at constraint handling, and the
RBR system was better at creative design. The task of designing a menu from
scratch proved to be more complex than the task of retrieving and adapting one.
The added complexity in the RBR system stemmed from the need to explicitly
represent common sense knowledge. Neither CBR nor RBR provided an edge in
knowledge acquisition. Both CBR and RBR were necessary in order to model the
cognitive processes our human experts use in designing nutritional menus.

Menu planning has proven to be a fertile domain for exploring issues of AI
in design. In future work, we will incorporate our findings in a hybrid CBRlRBR
system. The hybrid menu planner will combine CAMP's ability to meet nutri­
tional and personal preference contraints with PRISM's creative flair. This will
move us one step closer toward automating the design of nutritionally balanced,
yet appetizing, menus.

6. Acknowledgements

This research was partially supported by the National Science Foundation un­
der NSF Grant CCR-9303484. The authors would like to thank Grace Petot and
Karen Fiedler, whose expertise makes this work possible. Special thanks go to
Kathy Kovacic, implementor of PRISM.

DESIGNING NUTRITIONAL MENUS 227

References

American Dietetic Association and the U.S. Department of Agriculture: 1982, FOOD 2, Chicago,
IL.

American Heart Association: 1992, The Hearty School Lunch Menus, Dallas, TX.
Ashley, K. D. and Rissland, E. L. : 1988, A case-based approach to modeling legal expertise, IEEE

Expert, 3(3), 7~77.
Balintfy, J. L.: 1964, Menu planning by computer, Communications of the ACM, 7(4), 255-259.
Dollahite, J., Franklin, D. and McNew, R.: 1995, Problems encountered in meeting the recommen­

ded dietary allowances for menus designed according to the dietary guidelines for Americans,
Journal of the American Dietetic Association, 95(3), 341-347.

Eckstein, E. F.: 1967, Menu planning by computer: The random approach, Journal of the American
Dietetic Association, 51, 529-533.

Eckstein, E. F.: 1978, Menu Planning, 2nd edn, AVI Pub., Westport, CT.
Food and Nutrition Board: 1989, Recommended Dietary Allowances, 10th edn, National Academy

Press, Washington, DC.
Galotra, Y., Ramachandran, S., Singh, H. and Bajaj, K. K.: 1991, Nutrition diet programme - An ex­

pert system, Unpublished Report, Artificial Intelligence Division, National Informatics Centre,
New Delhi, India.

Ganeshan, K. and Farmer, J.: 1995, Menu planning system for a large catering corporation, Pro­
ceedings of the Third International Conference on the Practical Application of Prolog, Paris,
France,pp.262-265.

Golding, A. R.: 1991, Pronouncing Names by a Combination of Case-Based and Rule-Based Reas­
oning, PhD Dissertation, Stanford University, CA.

Hammond, K. J.: 1989, Case-Based Planning: Viewing Planning as a Memory Task, Academic
Press, San Diego, CA.

Hinrichs, T. R.: 1992, Problem Solving in Open Worlds: A Case Study in Design, Lawrence Erl­
baum, Northvale, NJ.

Jackson, P.: 1990, Introduction to Expert Systems, 2nd edn, Addison-Wesley, Reading, MA.
Kettler, B. P., Hendler, J. A., Andersen, W. A. and Evett, M. P.: 1994, Massively parallel support

for case-based planning, IEEE Expert, 9(1), 8-14.
Kolodner, J.: 1993, Case-Based Reasoning, Morgan Kaufmann, San Mateo, CA.
Kovacic, K. J.: 1995, Using Common Sense Knowledgefor Computer Menu Planning, PhD Disser­

tation, Department of Computer Engineering and Science, Case Western Reserve University,
Cleveland, OH.

Kovacic, K., Sterling, L., Petot, G., Ernst, G. and Yang, N.: 1992, Towards an intelligent nutri­
tion manager, Proceedings of the ACMISIGAPP Symposium on Computer Applications, ACM
Press, New York, NY, pp. 1293-1296.

Lenat, D. and Guha, R. Y.: 1990, Building Large Knowledge-Base Systems: Representation and
Inference in the Cyc Project, Addison-Wesley, Reading, MA.

Rich, E. and Knight, K.: 1991,Artificial Intelligence, 2nd edn, McGraw-Hill, New York, NY.
Rissland, E. L. and Skalak, D. B.: 1991, CABARET: Rule interpretation in a hybrid architecture,

International Journal of Man-Machine Studies, 34, 839-887.
Riesbeck, C. K. and Schank, R. C.: 1989, Inside Case-Based Reasoning, Lawrence Erlbaum, Hill­

sdale, NJ.
Shugart, G. and Molt, M.: 1989, Foodfor Fifty, 8th edn, Macmillan, New York, NY.
Spears, M. c.: 1995, Foodservice Organizations: A Managerial and Systems Approach, 3rd edn,

Macmillan, New York, NY. .
Sycara, K., Guttal, R., Konig, J., Navasirnhan, S. and Navinchandra, D.: 1992, CADET: A case­

based synthesis tool for engineering design, International Journal of Expert Systems, 4(2).
U.S. Department of Agriculture: 1990, Nutrition and Your Health: Dietary Guidelines for Americ­

ans, 3rd. edn, U.S. Government Printing Office, Washington, DC.
Yang, N.: 1989, An Expert System on Menu Planning, M.S. Thesis, Department of Computer En­

gineering and Science, Case Western Reserve University, Cleveland, OH.

5
reuse of designs

On design formalization and retrieval of reuse candidates
Joachim Altmeyer. Bernd SchUrmann

Design rationale and design patterns in reusable software design
Feniosky Peiia-Mora. Sanjeev Vadhavkar

Constraint-based retrieval of engineering design cases
Taner Bilgic. Mark Fox

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96,231-250
© 19% Kluwer Academic Publishers.

ON DESIGN FORMALIZATION AND RETRIEVAL OF REUSE
CANDIDATES

JOACHIM ALTMEYER AND BERND SCHURMANN
University of Kaiserslautem, Germany

Abstract. To enable reuse in design, a formal model of design artifacts and design
processes is necessary. In this contribution, we present a feature-based formalization of
design and the exploitation of this formalism for retrieving suitable reuse candidates.
Using a given requirement specification, we describe designs as goal-oriented refinement
processes, and we show how we use this formalism within a case-based and rule-based
retrieval approach. The main goal of this paper is to formalize generic structures of the
design space and to show how these structures can be used to improve the retrieval.

1. Introduction

Reuse has one of the largest saving potential in design. It can be supported
in different ways: for instance, building libraries, creating parameterized
descriptions or templates, or providing reuse tools which base on case-based
reasoning techniques (Kolodner, 1993). An important question which
should be discussed is: "Are there generic reuse techniques in design
possible?" or, with other words, "Can we identify mechanisms which are
typical for design but independent of a specific design system, and how can
we make use of these mechanisms during the reuse process?"

During the recent years, many design theories have been developed to
describe and classify designs (Yoshikawa, 1981; Gero, 1990; Takeda,
Veerkamp and Tomiyama, 1990). One criteria to classify designs is the
number of abstraction levels within the design process. A design can be
realized in one or many refinement steps. For example, in computer-aided
architectural design (CAAD), a building can be drawn from scratch in one
step, or the design process can be divided in different phases: formulating
constraints, creating topological descriptions, building floorplans, and
constructing the final detail drawings. Another criteria to classify designs is
the structure of the design artifacts which are mostly complex objects. For
instance, a design artifact can be an aggregate composed of a set of
subobjects (e.g. Siepmann and Zimmermann, 1989, or Katz, 1990). All in
all, we see that the design space, i.e. the space where the design takes place, is
structured.

232 JOACHIM ALTMEYER AND BERND SCHURMANN

This paper gives a characterization of designs based on a refinement
process, and it works out how such characterized designs can be supported
by a framework retrieving suitable reuse candidates. Using the domain of
electronic computer-aided design (ECAD), we summarize and formalize
properties of the majority of design systems. Considering these properties
and their formalization, we discuss two retrieval techniques. The first is more
in the sense of indexing in case-based reasoning, whereas the second is rule­
based.

This paper is organized as follows: In section 2, properties of designs are
described and different reuse strategies are addressed. Section 3 shows a
formal design model based on a refinement process. Using this formalism
two different strategies to find useful reuse candidates are proposed in
section 4. In section 5, the application and integration of these two strategies
is shown by presenting a prototype implementation of a retrieval system in
ECAD. At the end, in section 6, we summarize interesting future works.

2. Design Properties and Reuse in Design

PROPERTIES OF DESIGNS

In the following, we give an overview of design properties as they are valid
for many ECAD processes. Therefore, this property list does not claim to
characterize all possible design situations but it is valid for a large and
interesting set of design processes, for example, the software engineering
processes.
1. One difference between design and general computer-aided tasks is

the presence of a requirement specification in form of a list of
constraints which has to be satisfied by the final result. Considering
this requirement specification, two problems typically occur during the
design. First, the list of requirements does not determine the final
design artifact in its entirety. Therefore, there may exist alternative
realizations which all fulfill the given requirements (ambiguousness of
the specification). And second, the design often cannot fulfill all of the
given requirements (contradictoriness of the specification).
Descriptions of the concepts of requirement specification and
realization can be found in Brazier et. al. (1994) or Schurmann,
Altmeyer, and Schutze (1994).

2. Requirement specifications can be represented by a list of properties
(features) which should be fulfilled by the final design object.
Concerning a category of features (e.g. the category Function), we
distinguish different types of features, for instance, single features (e.g.
'Function is alarm'), compound features (e.g. 'Function is alarm and

ON DESIGN FORMALIZATION AND RETRIEVAL 233

report'), and complex features (e.g. the function is described by a
state diagram).

3. It is obvious that it often does not cause the same costs to adapt a
property A of an artifact to a property B as vice versa. For example, if
we look for the topology of a design artifact which can be abstracted
by a graph, it is generally easier to transform a planar graph to a non­
planar graph (nothing to do) than to transform a non-planar graph to
a planar one.

4. The amount of data in design is immense. To handle this amount,
adequate data clusters are defined as complex objects which divide the
data into disjunct sets. For example, within ECAD systems, a whole
netlist or a complex layout are handled as complex objects. Although
these data are necessary for the design tools, they are unwieldy to
handle. Therefore, abstract concepts are introduced to simplify the
treatment of these complex objects. For example, an ECAD
management system may handle an adder without knowing the exact
boolean equation. Instead, the management uses the abstraction that
the adder fulfills the requirements of the 'IEEE floating-point
standard' .

5. Defining data clusters is not sufficient to handle the large amount of
data. In addition, the creation of types which can be instantiated within
designs is necessary to avoid redundant descriptions of design
artifacts. The recursive application of this type concept results in the
concept of configuration hierarchy (Siepmann and Zimmermann,
1989).

6. One important characterization of design systems is the number of
abstraction levels during the design. For example, in software
engineering, one could start with creating a (mostly informal) problem
description, and during the phases analysis, design, and
implementation this description is refined on different abstraction
levels to the final programming code. Or within the ECAD domain, the
design space can be divided into three refinement domains: behavioral
domain, structural domain, and physical domain (Gajski, 1988).
Within the behavioral domain, an integrated circuit may be represented
by an abstract algorithm or by a boolean equation. Within the
structural domain, the design artifacts may be represented by modules
and nets connecting these modules. And within the physical domain,
the circuit may be represented by a layout description language. These
levels defines a hierarchy which we call design hierarchy, and we call
the different abstraction levels refinement levels.

7. The most important observation within a design system with more than
one refinement level is that a more precise artifact should fit to its
more abstract representations. For example, in software engineering,

234 JOACHIM ALTMEYER AND BERND SCHURMANN

the final application program has to fulfill the given problem
description, or, within ECAD, the final mask layout has to fit to its
representation in form of a boolean equation. Many design
management systems do not support this requirement.

8. If the more precise description does not fulfill the requirement
specification, and the decision which cause the problems was made in a
more abstract domain, it should not be allowed to revise the precise
descriptions without correcting the abstract one's accordingly. For
example, Figure 1 shows the design hierarchy and the handling of
such a revision step. The design space spans four refinement levels.
The design process starts with the design steps <Po, <Ph and <P2' Then,
two alternative design steps <P3 and <P4 try to fulfill the requirement
specification but both fail. However, the designer detects that the
decision which causes the problem was made in step <PI and, therefore,
within <P5, the decision is revised to get the final result d7 which fulfills
the given requirements.

more abstract more precise
nknu I

d, ,
<1>2

,
<1>0 : do

0---------.... ..::. revision of a
design decision

ds
<1>6 d6 : <1>] d]

• design artifact

~ design step
- - - - refinement level

Figure 1. Example of a design hierarchy.

All in all, we see that the database of the design artifacts has a complex
structure. The design artifacts build a network of different semantic
relationships. A general, domain-independent reuse framework has to
exploit these relations during the selection of suitable reuse candidates.

REUSE TYPES

Before we formalize the design, we present different reuse types which
should be supported by a reuse framework. Following Riesbeck and Schank

ON DESIGN FORMALIZATION AND RETRIEVAL 235

(1989), we discern three modes of reuse in ECAD (Altmeyer, Ohnsorge, and
Schiirmann, 1994):
o Reuse by instantiation

The main idea is to reuse often used components, e.g. standard cells,
instead of designing them always from scratch. Here, candidates for the
reuse are well-tested and/or frequently-used components or components
which implement standards. Often, these modules are arranged in
libraries and serve as types which can be instantiated within new designs.

o Reuse by parameterization
A parameterized object is instantiated with fixed values. For example, an
existing n-bit adder can be instantiated with a given fixed bit-width.
Parameterized objects build equivalence classes over a set of concrete
objects. Before realizing the final layout, a generator or a compiler has to
concretize the parameterized objects. Examples of possible parameter
classes in ECAD are the bit-width of circuits, the circuit function, the
module shape, and the microprogram memory.

o Reuse by adaptation
Previously designed objects are adapted with regard to a given
requirement specification. For example, it is much easier to write a high
level language program of a 32-bit adder by using the code of a l6-bit
adder than designing the adder from scratch.

So far, we informally presented a set of design properties, and we addressed the
different reuse modes which should be supported by a reuse framework. In the
following sections, we present a formal model of design, and we demonstrate
how we exploit this model to retrieve suitable reuse candidates.

3. A formal design model

REQUIREMENTS AND REALIZATIONS

We first have to introduce a set of definitions which are used to characterize
requirement specifications and their realizations objects.
Definition 1 (feature): An object 0 can be described by its features
(properties). A feature p is a one-place predicate with p (0) is true.

To support a facet classification, we build sets of features concerning the
same field. We call these sets feature sets (property sets) (Onosato and
Yoshikawa, 1987). Examples of feature sets are Function, Size, and
Technology.
Definition 2 (specialization-generalization relation; Onosato and
Yoshikawa, 1987): A feature p of a feature set .1is more specific than a feature
q of .r. written as q > p, iff q holds always if p holds, i.e. p ~ q. For each

236 JOACHIM ALTMEYER AND BERND SCHURMANN

feature set a partial order is defined by the specialization-generalization
relation >.
Definition 3 (empty feature): We define the empty feature .i,. of a feature set :J
as p > .i,.for all features p of :r.
Definition 4 (universal feature): We define the universal feature T,. of a
feature set :J as T,. > p for all features p of :r.
Definition 5 (single feature): A feature a is a single feature of the feature set :J
iff a * .i,. and there is no p in :Jwith a > p.
Definition 6 (generic feature): A feature y is a generic feature of the feature
set :Jiffthere are two features p and q of :Jwith Y > p and y> q.

For each feature set the specialization-generalization relation builds a
mathematical lattice structure (Onosato and Yoshikawa, 1987). Figure 2 depicts
this structure.

AZ_ ~ generic feature

single feature

Figure 2. Lattice structure of a feature set

Definition 7 (generic feature set): A generic feature y of the feature set :J
defines the generic feature set {jy with {jy ::= {p I y> P /\ P is a single feature of
the feature set 1}.
Definition 8 (feature set of an object): The feature set Po of an o6ject 0 is
defined as Po ::= {p I P (o)}.
Definition 9 (design object): A design object 0 is described by its feature set
Po·
Every feature p of a design object 0 is also an instance of a feature set :r.
Definition 10 (set of possible designs): We denote the set of all possible
design objects as tI-

The definitions above allows us to characterize requirement specifications
(see also section 2):
Definition 11 (specification): A (requirement) specification s is described by
the set of its features p.. A requirement specification s is an ambiguous
specification iff there is a set of possible design objects 0 ~ Twith P. ~ Po for
all 0 E 0 and la > 1. Iff la = 1, we call this requirement specification ideal
specification, and iff 0 = 0 contradictory specification.

ON DESIGN FORMALIZATION AND RETRIEVAL 237

Definition 12 (successful design): Let s be a requirement specification. A
design is successful iff the design results in a design object x with ~ S;; ~.

So far, a design is described as one monolithic process with a specification
as input and a design object as result. In the following subsection, we divide
this process in several design steps.

SYSTEM SPEClFICATIONVERSUS TOOL SPECIFICATION

The input of a design process is a system specification. The features of this
specification span different refinement levels in the design space. For example,
in the ECAD specification {'Function is Multiplier', 'Bit-Width is 16-Bit',
'Technology is CMOS', 'Size is smaller than 0.15 mm\ 'Aspect Ratio is I'},
the function belongs to the behavioral domain, whereas the aspect ratio belongs
to the physical domain. Only some of the features of the system specification
represent the input specification of the first design step in the behavioral
domain. Together with other features of the system specification, the result of
the first design step is the specification of the second design step. The
specification of a single design step is called a tool specification. Note that this
concept is recursive: The system specification is a tool specification at a meta
level.

S
A"''I,NI,NI,.~''''''''''''''''''''''''''''''''''''''......,.;yr. vo. """..,. ... "1. -......... ". ·"' .. " ·., .. ~ v

a part of the system
pecification is added to

every tool specification

• de ign artifact
G specification
~ design step

Figure 3. Data flow at one level of the configuration hierarchy

In the example of figure 3, the problem description of a design step <Pi is
composed by the design object di.1 (for the design step <Po' this input is empty)
together with the corresponding part of the requirement specification s (see also
the definition of the design problem description in Brazier et. al. (1994». Of
course, during the design, other design objects, for example design objects as
sub modules , can be included into the input data of a design step.

FORMALIZATION OF THE REFINEMENT PROCESS

In this subsection, we formalize the design process by a refinement model.
Definitions of a refinement design process can be found in Brazier et. al. (1994)

238 JOACHIM ALTMEYER AND BERND SCHURMANN

or Schfumann, Altmeyer, and Schutze (1994). In Brazier et. al. (1994), a
refinement relation is introduced which orders the design objects based on truth
values (true, false, and undefined) of their ground atoms (ground atoms can be
constants, instances of object types, functions on objects, or relations between
objects). In Schurmann, Altmeyer, and Schutze (1994), the iterative refinement
process is defined by using attribute states unknown, default, predicted,
preliminary, andfinal with the partial order {unknown, default} ---. predicted
---. preliminary ---. final. Here 'sl ---. s2' means that s2 is a refinement of
sl, i.e. s2 is more precise than s1. For simplification, this paper is restricted to a
set oriented definition without additional attribute states.

Design as described by the properties 6 and 7 in section 2 is a goal-oriented
convergence process (Yoshikawa, 1981). With every design step in a
convergence, we try to get closer to fulfill the given requirement specification s,
i.e. every design step <P that is applied on a design object x resulting in a new
design object y has to hold (~ II P) C (~ II Py).

Definition 13 (refinement): Let x and y be design objects. y is a refinement of
x iffPx c Py •

Definition 14 (refinement design step): Let x and y be design objects and s be
a design specification. <P is a refinement design step iff <p applied on x results in
y, y is a refinement of x, and (~ II P) c (~ II py).1

Figure 4 shows the refinement process of a successful design using an
ambiguous requirement specification s. ~ is the set of all features of s, <Pi are
refinement steps, and ~ is the set of all features of the design object di •

o

Po c P, C P2 C p)

o ----~~.~------.~~.~----~~~.~----~~~.
~ ~ ~ ~ ~ ~ ~ ~

Figure 4. Venn diagrams of design refinement steps

If we change parameters of a design step or the user makes different design
decisions within a design step, we get alternative results using the same input

In terms of the General Design Theory (Yoshikawa, 1981), the
refinement model is an alternative convergence model to the paradigm model
in which ~ c Py need not hold.

ON DESIGN FORMALIZATION AND RETRIEVAL 239

specification. Design objects x and y are alternatives with respect to a
specification s iff p,. ~ Px and p,. ~ Py •

If we forbid two or more design objects in the problem description of a
design step at the same level of the configuration hierarchy (merge operation),
the design process can be described by a tree (see for example figure 1). We
call this tree refinement tree.

In real design processes, the given requirement specification cannot always
be fulfilled, and the requirement specification has to be revised. Therefore, the
development of an adequate requirement specification describes a process
similar to the design process itself, and this process can also be described by
refinement design steps and revision steps (Brazier et. al., 1994; Schfumann,
Altmeyer, and Schutze, 1994).

4. Retrieval of design knowledge

So far, we described design objects and requirement specifications, and we
characterized designs as goal-oriented refinement processes. This
characterization of designs is useful to understand design processes and helps to
classify designs. Beside this, a formalization of design can serve as the basis of
a design data model (see for example the data model based on a refinement
model in Schurmann, Altmeyer, and Schutze, (1994». In this contribution, we
show how this formalization could be a basis for the development of retrieval
techniques which help the designer to find useful reuse candidates. To do this,
we present two retrieval techniques, a case-based approach and a rule-based
approach, which use this design knowledge when retrieving suitable reuse
candidates from a design database.

On the one hand, case-based approaches use former situations to solve the
current problem (Kolodner, 1993). These (selected) situations are stored as
concrete information in the working memory, and they are selected by a partial
matching. Within case-based reasoning, the problem of recalling suitable
former cases is called indexing problem. On the other hand, rules are based on
generalized design knowledge. Only if the precondition matches exactly, a rule
is activated. The link between these two approaches lies in the fact that rules
can be built by expert knowledge or by generalization of former cases. For a
discussion of these techniques and their relations between each other, we refer
to Kolodner (1993).

Our case-based approach does not focus on efficient indexing techniques.
Our main focus is the exploitation of design properties and the combination of
the case-based and the rule-based approach. With our retrieval approach, we
only focus on the first step of case retrieval: finding a set of .good cases as a
starting point for case selection (Ko10dner, 1993). In section 5, we will show

240 JOACHIM ALTMEYER AND BERND SCHURMANN

how we combine our two approaches in a way that the case-based approach is
complemented by the rule-based one.

4.1 CASE-BASED APPROACH

A priori determination of adaptation costs
Within the case-based approach for design, the goal is to find design objects
and to reuse these objects for solving the current design problem described by a
requirement specification. At reuse by instantiation or parameterization, an
exact matching between the specification and the reuse object is necessary. But
if we allow an adaptation of the old situation considering the given requirement
specification, we must search for a measure which expresses the costs for this
adaptation a priori.

The relations between the adaptation costs and an a priori determination of
these costs are motivated by figure 5. The costs for adapting a retrieved design
object 0 to a design object 0* which fulfills the specification s are not known in
advance. Therefore, it is necessary to choose a reusability value which
corresponds to the adaptation efforts as well as possible. In this subsection, we
provide a model to determine this reusability value by a function REUSE which
estimates the reusability comparing the design object 0 with the current
requirement specification s. This function reduces the reusability to the fitness
for each feature set separately by a function FIT which uses the similarity of
single features of the feature set expressed by a function SIM.

o
a priori estimalion 1

of adaptation :
co t t ,,0* fulfills "

G)'-----;--~-~ ... ~e
adaptalion costs

Figure 5. A priori estimation of adaptation costs

Definition 15 (similarity function of a feature set): Let .rbe a feature set. The

similarity junction of a feature set .rSIM.1is defined as SIM; .rx l' ~ [0, 1]. If
SIM.1 (p, q) = 1, then the feature p is equivalent to the feature q. In the case of
SIM.1 (p, q) = 0, P is totally different to q.

The feature set similarity function SIM.1 (p, q) roughly expresses the
expense of converting the feature q to the feature p, and this function has to be
individually computed or defined for each pair of features of the feature set .r.
A function FIT.1 enables us to handle generic features by substituting these by
their generic feature sets (see definition 7).

ON DESIGN FORMALIZATION AND RETRIEVAL 241

Definition 16 (fitness function of a feature set): Let s be a specification and x
be a design object. If the feature sets p!::= {p I PEP' ApE 1} and pI::=
{p I PEP' ApE 1}, with .r is feature set, contain only one element each, the
fitness function of the feature set .rFIT;r (s, x) is SIM;r with the instances of p!
and pI, respectively. [0, 1] is the range of FIT:r If it is allowed that the feature
sets p'::r and pI contain more than one element, this function has to be defined
individually for the feature set .r.

In the next example, we propose a fitness function for the feature set
Function. This fitness function allows us to handle multi-functional design
objects:
Example 1 (fitness function of a feature set Function): If the feature sets
p!::= {p I PEP' ApE 1} and pI::= {p I PEP' ApE 1} with .ris the feature
set Function, the fitness function of the feature set .rFIT;r is defined as:

L max(U {SIM::r(Ps'Px)})
P.'! p eP.'!

FIT::r (s,x) = p.e. x ip'::rl

with SIM;ris the feature set similarity function of the feature set Function.
Definition 17 (reusability function): Let s be a design specification, x be a
design object, and r be the set of all feature sets of which the corresponding
feature set has instances in p,. The reusability function REUSE (s, x) is defined
as:

REUSE (s,x) = LY::r·FIT::r(S,x)
::rer

[0, 1] is the range of REUSE. "(;rE [0, 1] is a relevance factor (weight factor)
expressing the importance of the corresponding feature set for the comparison
(the sum of all relevance factors has to be 1).

Using this function, we are able to detennine the fitness of a design object
compared to the requirement specification. But two cases have to be considered
(see also the contrast model of Tversky (1977». First, if the specification
contains an additional feature set .r which is not available for the current object
x. In this case, we do not know the influence (positive or negative) on the
fitness, and we therefore use the value 112 for the function FIT:r Second, if the
design object x contains additional features or feature sets which are not
available at the specification. In this case, theses features have no effect on the
reusability, and they are ignored. We use this view because we explicitly model
costs for these additional features which are evaluated by the reusability
function. For example, if a design object realizes additional functions which are
not included in the requirement specification, the additional area consumption
for these needless functions is considered by the feature set Size.

242 JOACHIM ALTMEYER AND BERND SCHURMANN

Other approaches to express similarity can be found in Tversky (1977) or
Richter (1992). But we choose this formalization because our reusability
function considers generic features (design property 2 of section 2), and it is
asymmetric (design property 3 of section 2).

Consideration of the design hierarchy
Regarding the design process, we make the following observation: the
abstraction of the design decreases during the design process, i.e. the design
artifacts become more and more precise. The degree of abstraction expressed by
the refinement level can be regarded as a rough measure for the design
progress. Therefore, the expense of changing early decisions increases with
each design step. In the example of figure 6, it is less complex to change an n­
bit adder to an m-bit adder in the behavioral domain (adaptation step "'I) and
then to synthesize (semi-)automatically the mask layout of the m-bit adder
(refinement step <1'2) than to change the adder in the physical domain
(adaptation step "').

n-bitadder I ~;~~-:] rufupmtion

m-bit adder
synthesis

1 behavioral 1 - - -- - - - -I physical
domain domain

Figure 6: Example of changing an n-bit adder to an m-bit adder

Due to this observation, we define the similarity function of the ordinal
feature set RefinementLevel as follows: Assume a refinement tree with the
refinement levels 0 (root) to n (leaves). The feature Pk represents the refinement
level k. The similarity function SIMRefinementLeve! (or short: SIM.) has to meet three
conditions:

(1) SIM,,(Pi,Pk) < SIMr(Pi,Pj)' O:$; i:$;j < k:$; n
(2) SIMr(Pk'p) < SIM,,(Pk,Pj)' 0 :$; i :$; j < k:$; n
(3) SIMr(pi'Pk) < SIMr(Pj,p), 0 :$; i :$; j < k :$; n.
Conditions (1) and (2) state that the similarity of two design objects

decreases with increasing distance of the refinement levels. For instance, design
object ~ in figure 2 is more similar to d l than to do. We need two conditions to
describe this behavior because the similarity function of a feature set is not
symmetrical. Condition (3) reflects the observation described above. For a
given design object at the refinement level i, all objects at a smaller level j are
more similar than the objects at a larger refinement level k.

ON DESIGN FORMALIZATION AND RETRIEVAL 243

A typical shape of the similarity function SIMRefinemenlLeve! is shown in figure 7.
The feature Pj is more similar to Pi in the case that the refinement level j is
smaller than i for the case that j is larger than i. The similarity decreases with
increasing distance of the refinement levels. The shape of the two partial
functions may be any strong monotone curve.

• • • •
•

1
•

......................•......................
• • • • • • j - i

Figure 7: Similarity function SIMR.fine lLevel

4.2 RULE-BASED APPROACH

One of the basic problems of the formalism described so far is that features of
each feature set :r defined as p:T ::= {p I pEP ApE J} are considered within
the reusability function independent of their context, defined as p:T ::= p_ p:T.
In the following subsection, we introduce an approach which helps us to
overcome this problem.

Design goal substitution
We begin this subsection introducing some definitions which are the basis for a
rule-based reasoning using backward-chaining similar to PROLOG.
Definition 18 (fact): A/act f is described as 'f: P.' with P is a set of features.
Definition 19 (goal): A goal g is described as 'g: ?-P.' with P is a set of
features.
Definition 20 (rule): A rule r is described as 'r: Po :- PI' 'Pz, ... , Pn' with Po' PI'
PZ' ••• , Pn are sets of features. We call 'Po' the rule header and 'PI' PZ' ••• , P;the
rule body.
Definition 21 (goal substitution by rules): Let 'g: ?- P.' be a goal and 'r: ~ :-

~, Pz' ••• , Pn.' be a rule. Then, r can be applied to g iff ~ ~ P. If r is applied to g

new subgoals gl to go are created as 'gi: ?- ~*' with ~* ::= (P- Po) v ~ for all
i = 1 to n. The goal g is substituted by the subgoals go to gn in which the
features Po of P are substituted by features PI' 'Pz, ... , p/

The semantics of this goal substitution base on the semantics of tasks in
the planning system STRIPS (Lifschitz, 1986).

244 JOACHIM ALTMEYER AND BERND SCHURMANN

To handle these rules we use backward chaining and unification. A fact
'f: Po.' represents a design object with the feature set p.,. The requirement
specification s is the initial goal 'g: ?- ~.'. If the conflict set (the set of goal
matching rules) contains more than one element, different alternative rules or
facts are suitable. As we will see in section 5, the preference of rules from the
conflict set is handled by using additional design-sp~ific information.

During the inference process goals are substituted by subgoals of matching
rules. Similar to parallel PROLOG, we identify two types of parallelism: OR
parallelism for alternative rules or facts and AND parallelism for the subgoals
of a rule. In design, OR indicates design alternatives whereas AND shows that
a design object can be built by a set of subobjects.

Now, we are able to describe design objects and specifications by facts and
goals, and we described an inference mechanism. In the following subsection,
we discuss the application of rules within our retrieval approach.

Rule-based consideration of the design and the configuration hierarchy
The design hierarchy can also be exploited by the rule-based retrieval. For
example, we can represent a design tool t by a rule 'r,: Pou,:- Pin.' in the
following way: Pin contains the precondition (necessary inPut of t) and Pou, the
expected output of the tool t. Of course, we do not know the exact output but
we know which feature sets are influenced by a tool. Using the trace of the
inference process, an explanation facility can create a plan which describes the
tools which have to run to get the desired data.

As well as the design hierarchy, the configuration hierarchy can be
considered by the rule-based approach. For example, it is possible that the
configuration of a design object is represented by an abstract rule in which the
rule header represents the aggregate and the sub goals of the rule body the parts.
As described by definition 21, the rule 'r: Po :- Pp PZ' ••• , Pn.' substitutes the
goal 'g: ?- P.' by new subgoals 'g;: ?- ~*.' with ~* ::= (P- Po) u ~, i = 1 to n.
This definition does not only allow the substitution of features. It allows
addition, deletion, and forwarding of features and feature sets, respectively. If
we consider the subgoal g; the feature set ~ is added, the feature set Po deleted,
and the feature set ~' ::= P - Po is forwarded to the feature set of the subgoal &.
An example of a feature set which can be forwarded is the feature set
Technology: if we search for the parts of an aggregate, we are interested in
parts using the same technology as the aggregate. But if we look for a feature
set Size which expresses the size of the artifact, we see that features of this
feature set cannot forwarded directly. Therefore, the header of the rule has to be
expanded by a construct which prevent forwarding, or the size of the parts of
the aggregate has to be considered explicitly. In example 6 of the following
section, we will exemplify these relations by using a rule from our prototype
implementation.

ON DESIGN FORMALIZATION AND RETRIEVAL 245

5. Application in ECAD

So far, we described a fonnal design model and an indexing model which
supports the retrieval of reuse candidates using two different reasoning
techniques. Within this section, we demonstrate the application of these models
within an existing ECAD system, and we show how the rule-based and the
case-based approach can be combined within a retrieval system. To validate our
approach, we implemented the prototype design retrieval system RODEO
(RODEO is an acronym for reuse Qf ~sign Qbjects) which is integrated in the
ECAD system PLAYOUT (Zimmennann, 1989). PLAYOUT allows the
computer-aided design of very large scale integrated circuits (VLSI circuits).
The most important difference of PLA YOUT to other VLSI design systems is
the well-developed top-down floorplanning approach. RODEO is implemented
in C++ and uses the data of the PLA YOUT design database (Siepmann and
Zimmennann, 1989). Currently, there are about 5.000 complex design objects
within the PLA YOUT database.

FEATURE SETS IN RODEO

As described in section 2, only a subset of all available data of a complex
design object is considered as feature sets during the retrieval process. Within
RODEO, we abstract feature sets by classes, called feature classes. These data
types encapsulate variables, for example the features and their states, and
functions, for example the similarity and the fitness function of the
corresponding feature set. Examples of RODEO feature classes are Function,
Technology, Bit-Width, Arity, Size, Aspect Ratio, and RefinementLevel. Using
the fitness function of the feature set Function of definition I, we are able to
handle multi-functional integrated circuits:
Example 2 (multi-functional design object): If we search for a multi­
functional design object with specification s with ~ = {'Function is multiply',
'Function is divide', 'Bit-Width is 32', 'Arity is 2'}, and we find a design
object x with the feature set {'Function is multiply', 'Bit-Width is 32', 'Arity is
2'} then FITFunction (s, x) = 112 if SIMFunction (,Function is multiply', 'Function is
divide') = O.

DESIGN HIERARCHY IN RODEO

The design hierarchy of the ECAD system PLA YOUT is divided into four
different domains: behavioral domain, structural domain, jloorplan domain,
and physical domain. In addition to most other ECAD systems, PLA YOUT
perfonns a floorplanning of the VLSI chips based on estimated shape
infonnation.

246 JOACHIM ALTMEYER AND BERND SCHURMANN

Example 3 (modeling tools by rules): A tool t which assembles the mask
layout (Glasmacher and Zimmermann, 1992) needs a floorplan as input, and it
synthesizes mask layout data, i.e. data of the physical domain. Therefore, such
a tool can be described by a rule: rt: {'Domain is physical', 'Size is smaller than
x'}:- {'Domain is floorplan', 'Size is smaller than x - 10% tolerance'}. If the
current specification is s ::= {'Function is multiplex', 'Domain is physical',
'Bit is 4', 'Arity is 4', 'Size is smaller than 0.3 mm2'} the new specification s*
built by goal substitution using the rule rt is s* = {'Function is multiplex',
'Domain is floorplan', 'Bit is 4', 'Arity is 4', 'Size is smaller than 0.27 mm2'}.

A tolerance of 10% is introduced because the floorplan based on an area
estimation process with a precision of ± 10%.

CONFIGURA nON HIERARCHY IN RODEO

The number of hierarchy levels within the configuration hierarchy of
PLA YOUT is not fixed. The design tools can be recursively applied to each
hierarchy level. The following three examples demonstrate how the
configuration hierarchy can be modeled by rules. In example 4, a rule codes the
part-of relationship. In example 5, we see how a feature of the requirement
specification are passed along the configuration hierarchy. Example 6 shows
the relations between a rule header and a rule body considering the feature class
Size.
Example 4 (modeling the configuration hierarchy by rules): If we search for
a 2n-bit multiplier, and we know that it can be constructed by a 2n-bit adder, 2n_
bit register, and a 2n+I-bit shifter, we use the following rule during the retrieval:
'rl: {'Function is multiply', 'Bit-Width is 2n" 'Arity is 2'} :- {'Function is
add', 'Bit-Width is 2n','Arity is 2'}, {'Function is store', 'Bit-Width is 2n"
'Arity is l'}, {'Function is store and shift-right', 'Bit-Width is 2n+I,,' Arity is
l' }.'. Explanations and hints how the assembly of the parts should annotate the
rule.

Only abstracted informations are coded by the rules. If the complete
structure of the aggregate is known, the information of the configuration
hierarchy is explicitly modeled by a design object instead of a rule.
Example 5 (forwarding of features): Regarding definition 21, we see that
features which are not in Po are forwarded to the subgoals. For example, if we
use rule rl of example 4 and the goal 'g: ?- {'Function is multiply', 'Bit-Width
is 16', 'Arity is 2', 'Technology is CMOS'}.', we get 'gl: ?- {'Function is add',
'Bit-Width is 16', 'Arity is 2', 'Technology is CMOS'}.' as the first subgoal.
In this example, the feature 'Technology is CMOS' is forwarded because the
parts of the module should have the same technology as the module itself.
Example 6 (assembling of features): Considering the feature set Size, we
know that the sum of all areas of the subcircuits should not exceed a given total
area. Using this information, the rule rl of example 4 is expanded to \ *:

ON DESIGN FORMALIZATION AND RETRIEVAL 247

{'Function is multiply', 'Bit-Width is 2"', 'Arity is 2', 'Size is smaller than m'}
:- {'Function is add', 'Bit-Width is 2"', 'Arity is 2', 'Size is smaller than m/},
{'Function is store' , 'Bit-Width is 2"', 'Arity is 1', 'Size is smaller than m2 '},

{'Function is store and shift-right', 'Bit-Width is 2"+1" 'Arity is 1', 'Size is
smaller than m3'}, m ~ m1+m2+m3.'.

CASE BASE OF RODEO

Besides design objects, the working memory of the retrieval algorithm contains
requirement specifications and rule headers as described above. The
requirement specifications are integrated to exploit the knowledge whether a
design with a similar specification to the current one has already been tried
before. The advantage of the integration of rules is obvious: in addition of
finding similar design objects, we allow to decompose the current design
problem or to go to a more abstract refinement level within the design
hierarchy. Therefore, the domain of x within the reusability function
REUSE (s, x) is extended by specifications and rule headers. The representation
of design data - among other things design objects, specifications, and rule
headers - is frame-based.

RETRIEV AL STRATEGY OF RODEO

RODEO is a hybrid retrieval system using the case-based as well as the rule­
based approach described in this contribution. Each goal is realized by a
lightweight process which looks for design objects, specifications, and rule
headers based on the reusability function REUSE defined in definition 17.
Currently, this search is realized by a best first strategy but other retrieval
strategies are investigated. The user has the possibility to define a threshold
value which defines a maximum value for the best first search.

If a lightweight process finds a rule-header, new processes with new
subgoals are created as described in definition 21. But the old search process
remains active because it searches for alternative Objects. As described before,
rules consider the design and the cOnfiguration hierarchy, respectively. For the
design hierarchy, the rules correspond to tool executions, and for the
configuration hierarchy rules correspond to assembly steps. Both activities
cause costs which can be expressed by a roughly estimated cost factor assigned
to each rule. For instance, this cost factor can base on the experiences of
previous designs. These factors are used to schedule the lightweight processes:
if the estimated costs are low, the new lightweight processes should be
prioritized compared to processes which correspond to rules with higher costs.
In RODEO, these cost values are currently hand-coded but complex formulas
which estimate synthesis or assembly costs based on the involved data can be
used as well.

248 JOACHIM ALTMEYER AND BERND SCHURMANN

retrieval proce s

s

AND node R nodes

d~ d, d. d,.

corresponding AND-OR LCee
• de ign artifacl
o pecificalion
o rule header

Figure 8: Example of a RODEO retrieval process

Figure 8 shows an example of a retrieval process based on the following
rule base:

f l : PJ"
f2 : Pr

fs: Ps•
f7: p,.

f9: P9•

flo: PIO •

r3: P3 :- P4 • P6• P8 •

go: ?- Po·

The retrieval is shown at an arbitrary state (e.g. when stopped by a
threshold value). The design objects d; are represented by the facts f; with the
feature sets p;. The goal go represents the initial specification So with the feature
set Po. The retrieval has found two reuse candidates d1 and d2 and the header of

ON DESIGN FORMALIZATION AND RETRIEVAL 249

rule r3" Therefore, rule r3 fired. The body of this rule consists of three parts
which results in three new lightweight processes with the specifications S4' S6'

and Ss using the feature sets P4' P6, and Ps• The user now has the following reuse
possibilities: trying to adapt d1 or ~ or to assemble the sub-objects ds, ~, (dg or
dlo) to fulfill the given requirement specification so. If he chooses the
assembling, he has the possibilities to use d9 or dlo together with ds and ~ to
fulfill the requirements. Finally, figure 8 illustrates the inference process, Le.
the transformation of goals into several sub goals, by an equivalent AND-OR
tree (Nilsson, 1971; Barr and Feigenbaum, 1981).

As described in section 2, we distinguish three reuse types: reuse by
instantiation, reuse by generation, and reuse by adaptation. Since our approach
focuses on the third reuse type, the first two are supported automatically. There,
we only allow a total matching of the design object with the given
specification, i.e. we choose a threshold value of 1 for the reusability function.

The retrieval algorithm of RODEO is examined by many experiments. The
retrieval times of RODEO to find first reuse candidates are lower than one
second (CPU time on a HP730 workstation).

6. Conclusions and Future Works

In this contribution, we introduced a formalism describing design processes
based on a refinement model. Based on this convergence model, we presented a
hybrid, Le. a case-based and rule-based, approach which supports the retrieval
of adequate reuse candidates. Our approach considers most of the design
properties listed in section 2. We exemplified and validated our approach by the
prototype retrieval system RODEO which is integrated into the ECAD system
PLAYOUT.

Future works are the integration of complex requirement specifications and
design data which currently cannot be compared fast enough by using the
feature set similarity function. Another problem is the determination of suitable
feature set similarity functions. For example, in ECAD, the similarity function
of the feature set Function can be defined by using logical or structural
representations (for example truth tables and netlists). However, the change of
only one net within a netlist may result in a behavior which bases on a totally
different truth table. Finding adequate and domain-dependent similarity
functions that overcomes these problems remains an interesting problem of
case-based reasoning approaches in different application domains. Another
open problem is the exploitation of the feature context. Although the rule-based
approach considers this context, our approach cannot cover all dependencies.

250 JOACHIM ALTMEYER AND BERND SCHURMANN

References

Allen, J.: 1990, Performance-directed synthesis of VLSI systems, Proceedings of the IEEE,
78(2).

Altmeyer, J., Ohnsorge, S. and Schurmann, B.: 1994, Reuse of design objects in CAD
frameworks, Proceedings of the IEEElACM International Conference of Computer Aided
Design, San Jose, California

Barr, A and Feigenbaum, E. A: 1981, The Handbook of Artificial Intelligence, Volume I,
William Kaufmann, Los Altos, California.

Brazier, F. M. T., van Langen P. H. G., Ruttkay, Z. and Treur, J.: 1994, On formal
specification of design tasks, in J. S. Gero, and F. Sudweeks (eds), Artificial Intelligence
in Design '94, Kluwer , Dordrecht.

Gajski, D. D. (ed.): 1988, Silicon Compilation, Addison-Wesley.
Gero, J. S.: 1990, Design prototypes: a knowledge representation schema for design, Al

Magazine, 11(4).
Glasmacher, K. and Zimmermann, G.: 1992, Chip assembly in the PLA YOUT VLSI design

system, Proceedings of the European Design Automation Conference, Hamburg,
Germany.

Katz, R. H.: 1990, Towards a unified framework for version modeling in engineering
databases, ACM Computing Surveys, 22(4).

Kolodner, J.: 1993, Case-Based Reasoning, Morgan Kaufmann Publishers.
Lifschitz, V.: 1986, On the semantics of STRIPS, Proceedings of the Workshop on

Reasoning about Actions and Plans, Los Altos.
Nilsson, N.: 1971, Problem-Solving Methods in Artificial Intelligence, McGraw-Hill, New

York.
Onosato M. and Yoshikawa H.: 1987, A framework on formalization of design objects for

inelligent CAD, Proceedings of IFIP TC 5/WG 5.2 Workshop on Intelligent CAD,
Boston, MA

Richter, M. M.: 1992, Classification and learning of similarity measures, Studies in
Classification, Data Analysis and Knowledge Organization, Springer-Verlag, Berlin.

Riesbeck, C. K. and Schank, C. E.: 1989, Inside Case-Based Reasoning, Lawrence Erlbaum
Associates, Hillsdale, New Jersey.

Schurmann, B., Altmeyer, J. and SchUtze, M.: 1994, On modeling top-down VLSI design,
Proceedings of the IEEElACM International Conference of Computer Aided Design, San
Jose, California.

Siepmann, E. and Zimmermann, G.: 1989, An object-oriented datamodel for the VLSI design
system PLA YOUT, Proceedings of the 26th Design Automation Conference '89.

Tversky, A: 1977, Features of similarity, Psychological Review, 84.
Takeda, H., Veerkamp, P., Tomiyama, T. and Yoshikawa, H.: 1990, Modeling design

processes, AI Magazine, 11(4).
Yoshikawa, H.: 1981, General design theory and a CAD system, in T. Sata, and E. Warman

(eds), Man-Machine Communication in CAD/CAM, Proceedings of IFIP WG 5.2/5.3
Working Conference (Tokyo), North-Holland, Amsterdam.

Zimmermann, G.: 1989: PLAYOUT - a hierarchical design system, in G. X. Ritter (ed.),
Information Processing 89, Elsevier Science Publishers B.V.

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 251-268.
© 1996 Kluwer Academic Publishers.

DESIGN RATIONALE AND DESIGN PATTERNS IN REUSABLE
SOFTWARE DESIGN

FENIOSKY PEl~'A-MORA AND SANJEEV VADHAVKAR

Intelligent Engineering Systems Laboratory
Department of Civil and Environmental Engineering
Massachusetts Institute of Technology, Room 1-253
Cambridge, MA 02139, USA

Abstract. This paper presents an in-progress development of a framework for using design
rationale and design patterns for developing reusable software systems. The !proposed
framework will be used as an integrated design environment for reusable software design,
to support collaborative development of software applications by a group of software spe­
cialists from a library of building block cases. These goals translate into the effort of ex­
ploring the use of Artificial Intelligence in better management of software development
and maintenance process by providing faster, less costly, smarter and on-time decisions.
The paper details the use of an explicit software development process to capture and dis­
seminate specialized knowledge that augments the description of the cases in a library
during the development of software applications by heterogeneous groups. This special­
ized knowledge constitutes an important part of a software organization's memory, that
is, the sharing of information and it's common interpretations as a result of conceiving
and implementing the combination of cases from a lib~ when making software design
decisions. The importance of preserving and using this specialized knowledge has be­
come apparent with the recent trend of combining both the software development process
and product. It has become essential to capture the design rationale to develop and design
software systems efficiently and reliably.

1. Introduction

Design of software reuse involves the application of a variety of kinds of know­
ledge about one software system to another software system in order to reduce
both time and cost to develop, run and maintain that software system. The re­
used knowledge includes concepts such as domain/context knowledge, develop­
ment experience, design decisions, design history, code and documentation. Un­
til recently most research in providing computer support for software design has
focused on issues concerned with the synthesis and development of reusable soft­
ware components (Smith, 1990). It is now being realized that, effective software

252 FENIOSKY PENA-MORA AND SANJEEV VADHAVKAR

reuse requires more than building an easy to browse, well cataloged, conveni­
ent software components (Shaw, 1990; Lubars, 1991). Methodologies combining
catalogs of standardized software components and corresponding retrieval tools
with models that capture and retrieve relevant design rationale need to be form­
alised. The goal of reuse research should be to establish a software engineering
discipline based on such methodologies. Reusable software can best be accom­
plished with knowledge not only of what the software system is and what it does,
but also why it was put together that way and why other approaches were dis­
carded (Kim and Lochovsky, 1989).

The proposed framework will allow the conception, development and test­
ing of a new methodology that adhere to a software development process, allow
the recording and easy retrieval of valuable design rationale information and are
able to record and present the knowledge gained during the collaboration. To ad­
dress the issue of retrieval of project information, the framework will use Truth
Maintenance Systems (Doyle, 1979), Case-Based Reasoning (Kolodner, 1993)
and C4.5 (Quinlan, 1993). To test the framework, software developed from MIT
Intelligent Engineering Systems Laboratory as well as Air Traffic Control Soft­
ware, Satellite Design Software and Hostile Missile Counter Attack Software de­
veloped at Charles Stark Draper Laboratory will be used.

The following sections cover in details the ideas put forward to address these
challenges. Section 2 provides a survey and comparison of research efforts on the
capture of design rationale in various domains. The Design Recommendation and
Intent Model (DRIM) is presented in Section 3. In Section 4, design patterns are
described in details. The use of DRIM and design patterns for software reusab­
ility is explored in Section 5. Finally, a brief presentation on reasoning mechan­
isms, i.e., Truth Maintenance Systems, Case-Based Reasoning and C4.5, is given
in Section 6.

2. Survey of Current Models or Systems that Capture Design Rationale

Any large scale software engineering system involves the expertise and know­
ledge of numerous software developers, engineers and programmers. A large scale
involvement of such a nature results in an interaction of different ideas and views,
which invariably leads to a conflict. The conflict arises from one group's lack of
information about the previous group's thinking behind accepting or rejecting a
particular proposal, i.e. the design rationale is not carried forward as the design
process goes on.

Capturing rationale has been a research topic for several decades (Pena-Mora
et ai., 1995). There have been a number of models and systems developed by re­
searchers in different application areas ranging from discourse (Toumlin, 1958),
to engineering design (Garcia and Howard, 1992). Figure 1 shows a classification
of these research efforts.

DESIGN RATIONALE AND DESIGN PATTERNS

GnJbIIer el II .• 1992

1..<e.1990 z

/
Multiple Pol~ BNlIJ.. 1988,

1 Co.kll • .t. Bege 1988 1
Kuru;.t. Rille!. 1970

Toulmln. 19~8

.. _ .. _....................... Autl)lno'td

Parlicipon/.

Srnt/~ CI>OlIO" I990

I Ros5ignac el III.. 1983

IOuifm:r'5 otebook I
P4Hil'« O1mputtr
Support

1 Garcll.t. Howord. 1!192 I

I Bradl.y.t. Agogl"". 1991 I
1 Fischerclai .• 1989 11-----

I Gone>lllD <I 01 .. 1991 I
I Lu <I .1 .. 1990 I

A"ti.'4!' Compllfu
S~PPOI1

Ih,ign Imti.onah Captun

x

Figure 1. Comparison of design rationale research efforts.

253

In Figure 1, the Y coordinate represents the number of designers who are
able to record their interacting rationale and are able to participate in the mitig­
ation of the conflicts. The scale is divided into single and multiple participants. In
other words, this parameter represents how the different models or systems handle
different designers close relationship on generating a product. The X coordinate
represents the computer support for recording and using the rationale for conflict
mitigation. The scale is divided into passive and active computer support. Pass­
ive computer support indicates that the computer helps the designer to store the
rationale. The designer inputs the rationale in the computer and the system cre­
ates some links among the different components of the rationale. Active computer
support indicates that the computer helps in recording the rationale by provid­
ing part of it. The Z coordinate represents the support provided by the computer
during conflict mitigation. The scale is divided into user-driven, computer sup­
ported, and automated. User-driven indicates that the user inputs most of the in­
tents (preferences) and recommendations (options) into the system and the com­
puter uses some general strategy like game and bargaining theories to evaluate re-

254 FENIOSKY PENA-MORA AND SANJEEV VADHAVKAR

commendations with respect to the intents. Computer supported indicates that the
computer provides some of the intents and recommendations to be analyzed, and
it provides some domain dependent knowledge (i.e., heuristics, cases, first prin­
ciples, etc.) for mitigating the conflicts. Of course, this does not preclude user in­
teraction and application of general strategies, as available in user-driven systems.
Automated indicates that the computer provides solutions to the conflict with very
little interaction with the user, where intents and recommendations are implicit in
the conflicts and the solutions presented.

The X scale in Figure 1 is a continuous measurement with more computer
support as the boxes get farther away from the origin. The Y scale is discrete and
there is no relation among the distances of the boxes to the origin. The Z scale is
a continuous measurement ranging from mostly user-driven mitigation to mostly
computer automated mitigation with a middle balance where an interactive user­
computer mitigation is achieved.

Most of the research in design rationale has focused on capturing design ra­
tionale without concern for its later use. The use has been limited to maintaining
the design history. In that case, the design rationale models or systems fall into
the plane participants-design rationale without going into the conflict mitigation
direction.

In Figure 1, the single participant-passive computer support quadrant has the
designer's notebook which represents the notes taken by the designer during the
design process. This document is usually private and manually developed. It also
has Rossignac etal.'s (1988) MAMOUR and Cassotto etal.'s (1990) VOV which
keep a trace of the design as it evolves, but leave the design intent implicit in the
trace. The idea behind these systems is that a sequence of transformations repres­
ents the design and captures some of the designer's intent. Here, the transforma­
tions are operations performed on a model, and the sequence of these operations
give the final product. Thus, it is believed that by recording that sequence, the
product could be reproduced, if needed. One important point is that design ra­
tionale is defined as the operations that can re-create the product while intent is
believed to be the operations performed. Intents are more than operations. They
also refer to objectives to be achieved which are not related to a specific task but
to the comparison among design alternatives.

The multiple participants-passive computer support quadrant has a series of
research efforts from academia and industry: Toulmin's (1958) Model; Kunz and
Rittel's (1970) Issue Based Information System (IBIS); Potts and Bruns' (1988)
Model; Conklin and Begeman's (1988) Graphical Issue Based Information Sys­
tem (gIBIS); Lee's (1990) Design Representation Language (DRL); Gruber et
al.'s (1992) SHADE; and Favela et al.'s (1993) CADS. It is important to note in
this quadrant the ontology used by these systems. Their ontology lacks a repres­
entation and a structure for the process and the product as they evolve. Missing is
the notion of artifact evolution. Most of them concentrate on the decisions made

DESIGN RATIONALE AND DESIGN PATTERNS 255

but without any underlying model of the artifact. The artifact model is important
because that is the product developed which connects the design to the physical
entity. This in turn guides all the subsequent design decisions. Also missing is the
notion of classification of the intents (i.e., objectives, constraints, function, and
goals), as well as the classification of the justifications for a proposal (i.e., rules,
catalog entry, first principles, etc) since they have different characteristics and are
used different by the designers. Section 2 explains in more detail these classifica­
tions. In addition, these systems do not really attempt to perform any conflict mit­
igation. This is due to the lack of structure of the models. It is difficult to assert
that an intent can only be satisfied after comparison among different alternatives
when there is no control mechanism to enforce that.

Models or systems in the area of conflict mitigation have focused primarily
on the resolution of conflicts. To that end, they have provided support in terms
of evaluating participants' options (user-driven systems) or in terms of providing
solution to the conflict based on some domain-dependent knowledge (Automated
systems). However, they have lacked support in the area of rationale capture, con­
flict causes, and conflict prevention. In addition, a balance is needed in terms of
user-driven and automated support. Some solutions will be available on domain­
dependent knowledge (i.e., heuristics, rules, first principles, etc.). However, some
novel solutions will come from the users/designers experience in dealing with
similar problems. Thus, support needs to be provided such that both user resol­
ution and computer solution can co-exist.

The multiple participant-user driven- passive computer support quadrant has
a series of research efforts: Fraser and Hipel's (1988) Conflict Analysis; Anan­
dalingan and Apprey' s (1988) use of bi-Ievellinear programming; and Anson and
Jelassi's (1990) use of integrative bargaining. These systems take designers' op­
tions, evaluate them, and help the designers select the best option. However, the
computer does not provide any support in generating some of these options and
their accompanying preferences.

There is little or no documentation of research in the multiple participants­
computer supported conflict mitigation-active computer support design rationale
quadrant. However, this quadrant is the one need in order to satisfy the conflict
mitigation requirements. Thus, a model and system for capturing the rationale of
negotiating participants in which the computer provides support for providing ra­
tionale and mitigating the conflicts is necessary.

3. An Overview of DRIM

To capture the design experience in a form that others can use effectively at a
later stage and to use the concept of design rationale in a collaborative environ­
ment, the Design Recommendation and Intent Model is suggested. The Design
Recommendation and Intent Management System provides a method by which

256 FENIOSKY PENA-MORA AND SANJEEV VADHAVKAR

design rationale information from multiple participants can be partially gener­
ated, stored and later retrieved by a computer system (Pena-Mora, 1994). It uses
domain knowledge, design experiences from past occasions and interaction with
designers to capture design rationale.

In Figure 2, the Design Recommendation and Intent Model (DRIM) is presen­
ted. The DRIM uses the Object-Oriented Modeling Technique (OMT) described
in Rumbaugh and Blaha (1991). The DRIM represents a software designer who
can be either a human expert or a specific computer program. The software de­
signer after negotiating and collaborating with other designers, presents project
proposals based on a design intent. The design intent refers to the objective of
the software project, the constraints involved, the function considered or the goal
of the project. The software designer can present a number of different propos­
als satisfying a common design intent. The proposals presented can be either a
version of a proposal or completely alternative proposals. A given proposal may
consist of sub-proposals. A proposal may react to an existing proposal by either
supporting, contradicting or changing the ideas put in the existing proposal. A
project proposal includes the designer's recommendation and the justification of
why that particular proposal is recommended. The design recommendation can
either introduce or modify a design intent, a plan or an artifact. When a design
intent is recommended, it refers to more entities that need to be satisfied in or­
der to achieve the design intent. With a plan, more goals are brought into picture.
The artifact denotes the product in a design process. An artifact has both beha­
vioral and structual properties. The artifact comprises the system as well as the
components in the system. Justification explains why the recommendation satis­
fies the proposed design intent. A justification can be either a rule, e.g. a sugges­
tion from a past experience, or a case, e.g. pertaining to similar performance in an
existing software system, or a catalog, e.g. from a standard library of classes, or
a principle, e.g a set of equations, or a trade-off, i.e the best design considering
trade-off between two constraints, or a constraint-network, e.g. satisfying all the
systems constraint considered in proposing the design intent, or a pareto optimal
surface, e.g the design falls on the surface of best possible design after consider­
ing many factors. A justification reacts to other justifications by either suppoort­
ing or contradicting their claims. A context is the data generated during the entire
design process and consists of evidence and assumptions.

4. Design Patterns

Design Patterns can be considered as descriptions of communicating objects and
classes that are customized to solve a general design problem in a particular con­
text. A design pattern names, abstracts and identifies the key aspects of a com­
mon design structure that make it useful for creating a reusable object-oriented
design. The term design patterns has been established in the lexicon of software

DESIGN RATIONALE AND DESIGN PATIERNS 257

Figure 2. Design recommendation and intent model.

Figure 3. Design patterns relationships.

258 FENIOSKY PENA-MORA AND SANJEEV VADHAVKAR

R
Figure 4. Prototype design pattern for drawing a structural frame.

design by Gamma, Helm, Johnson and Vlissides' (1994) pioneering book Design
Patterns: Elements of Reusable Object- Oriented Software. Design pattern can be
used as mechanisms for matching information with knowledge from previously
developed projects. Design patterns in software can be considered similar to the
architectural patterns that exist in building complexes and communities.

Design pattern relationships are shown in Figure 3. The catalog of design pat­
terns contains 23 design patterns. Two criteria have been considered for classi­
fying the design patterns. Design patterns have been classified into three types,
based on their purpose or the function they play in object-oriented design. Cre­
ational patterns concern the process of object creation. Structural patterns deal
with the composition of classes or objects. Behavioral patterns characterize the
ways in which classes or objects interact and distribute responsibility. Design pat­
terns can also be classified according to their scope, specifying whether the pat­
tern applies primarily to classes or objects. Class patterns deal with relationships
between classes and their subclasses. These relationships are established through
inheritance, so they are static. Object patterns deal with object relationships which
are dynamic as they can be changed at run-time. Creational design patterns are
described in Section 4.1. In Section 4.2, structural design patterns are reviewed.
Behavioral design patterns are discussed in Section 4.3.

4.1. CREATIONAL DESIGN PATTERN

The creational design patterns help to make a system independent of how its ob­
jects are created, composed and represented. They give a flexibility in what gets
created and when it is created.

Five types of creational design patterns have been defined: Prototype, Builder,
Abstract Factory, Factory Method, Singleton. Prototype specifies the kinds of ob­
jects to create using a prototypical instance and creating new objects by copy­
ing this prototype. Consider a graphic tool that draws frame structures. As shown
in Figure 4, the basic structure of the frame gets repeated successively in some
form or the other. The idea is to create a new graphic, by cloning an instance of

DESIGN RATIONALE AND DESIGN PATTERNS 259

Editor Text Converter

Parse
Convert Char
Convert Font

A
ASCII COnverter laTex Converter

Convert Char Convert Font

Gel ASCII
GelLatexFontO

Figure 5. Builder design pattern for a text converter.

a graphic prototype. Builder separates the construction of a complex object from
it's representation so that the same construction process creates different repres­
entations. As shown in Figure 5, the builder pattern can be used to convert a text
format from a typical document editor, to other formats. The builder pattern sep­
arates the algorithm for interpreting a textual format from how a converted format
gets created and represented. Abstract Factory provides an interface to create
families of related or dependent objects without specifying their concrete classes.
Abstract factory pattern can be used in generating windows under different types
of operating systems like XWindows and Sun View. An abstract base class can
be created that defines the interface for creating objects that represent the various
parameters such as size, location, font and color of the window. Concrete sub­
classes implement the interfaces for a specific system. Singleton ensures a class
has only a single instance and provides a global point of access to it. For example,
there may be many windows but only one window manager. The singleton pat­
tern ensures that no other instance of the window manager is created and it also
provides a way to access the window created by the window manager.

4.2. STRUCTURAL DESIGN PATTERNS

Structural patterns are concerned with how classes and objects are composed to
form larger structures. There are two types of structural patterns depending on
whether they are applied to objects or classes. Structural class patterns use inher­
itance to compose interfaces or implementations. Structural object patterns de­
scribe ways to compose objects to realize new functionality. The design pattern
catalog contains 7 structural patterns. Some of the structural design patterns are
described below.

Adapter converts the interface of a class into another interface thereby allow­
ing classes with incompatible interfaces to work together. Adapter design pat­
tern can be used effectively in a drawing application to combine interface ele­
ments such as menus, scroll bars with graphic objects such as line, circle, poly­
gon. Bridge allows abstraction and implementation to vary individually. Consider
the implementation of a window tool kit in different operating systems. An ab-

260 FENIOSKY PENA-MORA AND SANJEEV VADHAVKAR

stract class window can be defined with subclasses for different operating sys­
tems. For every kind of window, different subclasses will have to be generated to
account for the operating systems. Using the bridge pattern, the window abstrac­
tion and it's implementation are placed in separate class hierarchies. There is a
class hierarchy for window interfaces and a separate hierarchy for operating sys­
tem specific implementation. Decorator attaches an additional responsibility to
an object dynamically. For example, a document editor should add properties like
borders and scrolling facilities to the user's document. Instead of inheriting these
properties, the decorator design pattern encloses it as an object and for-yards re­
quests to the object. Facade provides an unified interface to a set of interfaces in
a subsystem. Clients communicate with a subsystem by sending requests to the
facade design pattern, which in tum forwards the requests to the appropriate sub­
system objects.

4.3. BEHAVIORAL DESIGN PAITERNS

Behavioral design patterns are concerned with the algorithms and the assignment
of responsibilities between objects. Behavioral patterns describe patterns of ob­
jects and also patterns of communication between them. Behavioral class patterns
use inheritance to distribute behavior between classes. Behavioral object patterns
use object composition. The design pattern catalog contains 11 behavioral pat­
terns. Some of the behavioral patterns are described below.

Chain of responsibility decouples the sending and receiving objects by allow­
ing multiple objects a chance to handle the request. The request gets passed along
a chain until one of the objects handles it. For example, in a menu driven help sys­
tem, the user can obtain help on a specific topic. If the information is not available
on that topic then the request is passed on to higher levels, until a more general
help is available. Iterator provides a way to access the elements of an aggregate
object sequentially without exposing its underlying representation. The iterator
pattern provides the means to access a list of employees without going through
the internal structure of the list. Memento captures and externalizes an object's
internal state so that the object can be restored to it's state later. Memento design
pattern proves useful in implementing undo mechanisms. In such cases, the object
can be restored to it's earlier state. Observer defines a one-to-many dependency
between objects so that when one object changes state, all it's dependents are no­
tified and updated automatically. For example, in a spreadsheet program, when
the data is changed, the bar chart and pie chart diagrams change automatically.

S. Combination of Design Patterns and Design Recommendation Intent
Model for Software Reusability

Figure 6 shows the entire software development scheme. The problem domain in­
cludes the requirements of the software system. The design process is concerned

DESIGN RATIONALE AND DESIGN PATIERNS

H,-_CO....,....-de ----J

..........
...

JUSUfiC3Uon

Figure 6. Software development scheme.

~•..................... , , !

Sirategy 1 St,ategy2

..'

Figure 7. Strategies involved in software reusability.

261

with the design of the software system from the understanding of the problem to
the code generation. The code is the final end-product of the design process.

As shown in Figure 7, there are two strategies to achieve software reusabil­
ity. In strategy 1, the code and design reuse comporients are treated separately. In
this strategy, the key issues in the role of software development as described in
Cop lien (1994) are:

1. Whether design patterns define the components of the design process.
2. Whether design patterns define the components in a software development

scheme.
3. Whether the design patterns justify that the code generated satisfies the re-

quirements of the problem domain.

The position of this research is that, the design pl:ltterns handle the code reuse,
while DRIM captures the design rationale necessary for design reuse. In strategy
2, the code and design reuse components are not separated. Components are defined
where all the features necessary for their effective reuse are stored within the com­
ponent. Features to be included are design rationale, formal specifications and
code history.

The following sections cover in details the possibility of using design patterns
and DRIM for software reusability (strategy 1). First, an overview of how design

262 FENIOSKY PENA-MORA AND SANJEEV VADHAVKAR

Window Rectangle
rectangle

Area Area

Length

Breadth

Figure 8. Delegation.

patterns help in code reuse is presented in Section 5.1. In Section 5.2, the use of
DRIM in design reuse is documented. The combined design patterns and DRIM
model is outlined as a means for achieving software reusability in Section 5.3.

5.1. HOW DESIGN PATfERNS HELP IN PUTTING REUSE MECHANISMS TO
WORK

There are basically three types of reuse. Reuse by subclassing is often referred
to as white-box reuse. The white-box reuse technique uses class inheritance for
reusing functionality in object-oriented systems. As an alternative, new function­
ality can be achieved by assembling or composing objects, i.e. by object composi­
tion. This style is known as black-box reuse. Most design patterns use delegation
as a means of achieving reuse. In delegation, two objects are involved in handling
a request, a receiving object delegating operations to it's delegates. For example,
in Figure 8, instead of making Window a class of Rectangle, the Window class
might reuse the behavior of Rectangle by keeping a Rectangle instance variable
and delegating Rectangle specific behavior to the Window. That is the area of
the Window can be obtained by delegating it's area operation to a Rectangle in­
stance. The main advantage of delegation is that it is easy to compose behavior
at run-time. Windows can be made circular, by replacing the Rectangle instance
with Circle instance.

Maximizing reuse lies in anticipating new requirements and changes to an ex­
isting model. Design Patterns let some aspects of a model vary independently
of other objects. In this way the model is made more robust to a change and
redesigning is rendered unnecessary. Some cause of redesigning along with the
design patterns that address them are described below.

1. Creating an object by specifying the class explicitly: This commits the de­
signer to a particular implementation, creational design patterns like Abstract
Factory, Factory Method and Prototype create object indirectly.

2. Dependence on specific operations: Instead of specifying a particular oper­
ation, behavioral design patterns such as Chain of Responsibility and Com­
mand, make it more easier the way a request is satisfied. These design pat­
terns either chain the receiving objects or encapsulate a request as an object.

DESIGN RATIONALE AND DESIGN PA'ITERNS 263

3. Algorithmic dependencies: Algorithms are often extended or replaced dur­
ing reuse. Objects depending on an algorithm need to be changed when that
happens. Creational design patterns such as Builder, avoid that by separat­
ing the construction of an object from it's representation. Behavioral patterns
such as Strategy, define and encapsulate a family of algorithms. This makes
the algorithms vary independently of the clients that use it.

4. Tight coupling: Tight coupling between classes leads to a systems which are
hard to reuse in isolation. Design patterns such as Abstract Factory, Facade,
Mediator use techniques like abstract coupling and layering to promote loosely
coupled systems.

5. Extending functionality: Object composition and delegation offer flexible al­
ternatives to inheritance for combining behavior. Design patterns such as
Bridge, Chain of Responsibility and Composite introduce functionality by
defining a subclass and composing it's instances with existing ones. Design
pattern Observer, extends functionality by defining a one-to-many depend­
ency between objects.

6. Inability to change classes conveniently: In some cases a class cannot be
modified because the code is not available or may involve altering many sub­
classes. Design pattern Adapter, converts the interface of class into the inter­
face that clients want.

While design patterns are useful in utilizing code reuse, they have some limit­
ations for achieving reusability. For instance, design patterns fail to keep a track of
what objects have been created and the reason why the objects had to be created,
Analysis patterns are not accounted for in the catalog. Reusable software will re­
quire user-directed viewing of formal and informal information of the software.
However the catalog does not include design patterns for user interface design.
Design patterns without explicit documentation fail to provide the software de­
signer with clear requirements and design alternatives that can help in solving the
problem and make the reuse effort worthwhile. There is a growing consensus, that
simply providing a library of reusable software artifacts is insufficient for support­
ing software reuse. To make reuse worthwhile, the library of components should
be used within well-defined and well-understood domains.

5.2. USING DRIM FOR SOFfWARE REUSABILITY

To capture the design experience in a form that others can use effectively at a later
stage and to use the concept of design rationale in a collaborative environment,
the Design Recommendation and Intent Model is suggested. The Design Recom­
mendation and Intent Management System provides a method by which design
rationale information from mUltiple participants can be partially generated, stored
and later retrieved by a computer system. It uses domain knowledge, design ex-

264 FENIOSKY PENA-MORA AND SANJEEV VADHAVKAR

periences from past occasions and interaction with designers to capture design
rationale.

Design Recommendation and Intent Model can be considered as a framework
of complimentary classes that make up a reusable design for a specific class of
reusable software. Specific objectives in design reuse as described in Bhansali and
Nii (1992) are:

1. Identifies good design that maps the solution to the implementation.
2. Explicitly specify how reusable software modules relate to the design.
3. Defines the context in which software components or systems are valid.
4. Explicitly specifies key issues, assumptions, constraints and dependencies in

prior designs.

Design Recommendation and Intent Model can be used for supporting the cap­
ture, modular structuring and effective access of design rationale information needed
for building reusable software.

Design patterns need validation by experience rather than by conventional
testing. Design patterns are usually validated by periodic patterns reviews (Schmidt,
1995). DRIM can provide better documentation of such reviews by capturing the
strength and weakness of each pattern from past experience. Thus DRIM provides
a way to solve the shortcoming of design patterns in capturing the rationale of
choosing the objects.

5.3. COMBINED DRIM-DESIGN PATTERNS MODEL FOR SOFIWARE
REUSABILITY

Figure 9 represents the combined DRIM-Design Pattern Model. In DRIM, the ar­
tifact component in a software design context represents the components in a soft­
ware system. A software designer presents a proposal which includes a recom­
mendation and a justification. The recommendation introduces or modifies the
components in a software system. The design patterns either create these compon­
ents (Creational Patterns) or define their structure (Structural Patterns) or define
their behavior (Behavioral Patterns).

DRIM allows for the explicit capture of design rationale during a software
development process. If this design rationale is not captured explicitly, it may be
lost over time. This loss deprives the maintenance teams of critical design inform­
ation, and makes it difficult to motivate strategic design choices to other groups
within a project or organization (Schmidt, 1995). Identifying, documenting and
reusing useful design patterns requires concrete experience in domain. By captur­
ing the past experience, the combined DRIM-Design Patterns model offers essen­
tially a mechanism to leverage patterns effectively. The combined DRIM-Design
Patterns model integrates the concepts of design and code reuse. The combined
approach leads to the "patterns-by-intent" approach. The power of design pat­
terns or any library aprroach derives from the reuse of components. The combined

DESIGN RATIONALE AND DESIGN PATTERNS 265

Figure 9. Combined DRIM-Design Patterns Model.

DRIM-Design Patterns model will achieve the same advantages of knowledge
reuse and automation, but for a more general class of domains and for multiple
modeling purposes.

266 FENIOSKY PENA-MORA AND SANJEEV VADHAVKAR

6. Reasoning Mechanisms

To choose their actions, reasoning programs must be able to make assumptions
and subsequently revise their beliefs when discoveries contradict their assump­
tions. The Truth Maintenance System (TMS) is a problem solver sub-system for
performing these functions by recording and maintaining the reasons for program
beliefs. Such recorded reasons are useful in constructing explanations of program
actions and in guiding the course of actions of a problem solver. The TMS serves
as a powerful tool for automated problem solvers and has been used to support
several model-based reasoning tasks such as prediction and diagnosis. It provides
an efficient mechanism for maintaining consistent set of beliefs and recording the
assumptions underlying them. This enables the problem solver to switch rapidly
between contexts and compare them. The application of this capability of TMS
for designing and planning, needs to be reviewed.

Case-based reasoning is one of the fastest growing areas in the field of know­
ledge based systems. Case-based reasoning systems are systems that store inform­
ation about situations in their memory. As new problems arise, similar situations
are searched out to help solve these problems. Problems are understood and in­
ferences are made by finding the closest cases in memory, comparing and con­
trasting the problem with those cases, making inferences based on those compar­
isons and asking questions when those inferences can't be made. Learning occurs
a natural consequence of reasoning where novel procedures applied to problems
are indexed in memory.

C4.5 is a machine-learning algorithm that consists of sets of computer pro­
grams that examine numerous recorded classifications and construct classification
models by discovering and analyzing patterns in these records. An initial decision
tree is generated from a set of training cases. After the tree definition, C4.5 cre­
ates the production rules and prunes the original decision tree by removing its
parts that do not contribute to classification accuracy on unseen cases.

7. Conclusions

The proposed framework combining Design Recommendation and Intent Model
with design patterns, offers active assistance to software designers in designing
reusable software systems. Although the framework emphasises the importance
of documenting the software process, instead of laying extra burden on the code
writers, it assists the code writers by providing active computer assistance in re­
cording the key design decisions. The framework acts a software design tool that
facilitates software reuse by: 1] Using an excellent library of tested software com­
ponents. 2] Recording and allowing easy retrieval of decisions made during the
software design process. 3] Providing economic methods for systems by provid­
ing a context for design modifications when the requirements change over their
life time.

DESIGN RATIONALE AND DESIGN PATTERNS 267

The research described herein has significant technological and economical
benefits to the modem software design process. The project envisions a paradigm
shift from the specify-build-then-maintain life cycle assumed in the past to one
of reusable software. Reusable software offers an economic relief to the change
activity associated with modem software development wherein costs are incurred
disproportionate to the size of the change. By supporting the capture as well as ef­
fective access of design rationale information, a strong information base for soft­
ware understanding can be provided.

Acknowledgments

The authors would like to acknowledge the support received from the Charles
Stark Draper Laboratory (CSDL). Funding for this project comes from CSDL
award, No. DL-H-4847757.

References

Anandalingam, G. and Apprey, V.: 1988, Multi-Level Programming and Conflict Resolution in In­
ternational River Management.

Anson, R and Jelassi, M.: 1990, A development framework for computer-supported conflict resol­
ution, European Journal of Operational Research, 46, 181-189.

Bhansali, S. and Nii, H.: 1992, Software design by reusing architectures, The 2nd International
Conference on Artificial Intelligence in Design.

Coplien, J.: 1994, Progress on patterns: Highlights of PLoP/94, Proceedings of the Object Expo
Europe.

Casotto, A, Newton, A and Sangiovanni-Vincentelli, A: 1990, Design management based on
design traces, 27th ACMlIEEE Design Automation Conference, IEEE, pp. 136-141.

Conklin, J. and Begeman, M.: 1988, gIBIS: A hypertext tool for exploratory policy discussion,
ACM Transactions on Office Information System, 6(4), pp. 303-331.

Doyle, J.: 1979, A Truth maintenance system, Artificial Intelligence, 12, 231-272.
Favela, J., Wong, A and Chakravarthy, AS.: 1993, Supporting collaborative engineering design,

Engineering with Computers, 9(4),125-132.
Fraser, S.: 1991, Reuse by design-A team approach, Proceedings of the WISR - 5.
Fraser, N. and Hipel, K.: 1988, Using the decision maker computer program for analyzing environ­

mental conflicts, Journal of Environmental Management, 7, 213-228.
Gamma, E., Helm, R, Johnson, Rand Vlissides, J.: 1994, Design Patterns. Addison Wesley.
Garcia, A and Howard, H.: 1992, Acquiring design knowledge through design decision justifica­

tion,AI EDAM, 59-71.
Graves, H.: 1991, Lockheed environment for automatic programming, Proceedings of the 6th An­

nual Knowledge-Based Software Engineering Conference, pp. 78-91.
Gruber, T., Tenenbaum, J. and Webber, J.: 1992, Toward a knowledge medium for collaborat­

ive product development, in J. S. Gero (ed.), Artificial Intelligence in Design '92, Kluwer,
Dordrecht, pp. 413-432.

Harris, K.: 1991, Increasing reusability through architectural design, Proceedings of the WISR - 4.
Hislop, G.: 1994, Evaluating a software reuse tool, Proc. Third Symposium on Assessment of Qual­

ity Software Development Tools, IEEE, pp. 184-190.
Kim, W. and Lochovsky, F.: 1989, Object-Oriented Concepts, Databases and Applications, ACM

Press.
Kolodner, J.: 1993, Case-Based Reasoning, Morgan-Kaufmann.
Kunz, W. and Rittel, H.: 1970, Issues as Elements of Information System

268 FENIOSKY PENA-MORA AND SANJEEV VADHAVKAR

Lee, J.: 1990, SIBYL: A qualitative decision management system, in P. Winston and S. Shellard
(eds), Artificial Intelligence at MIT: Expanding Frontiers, MIT Press, pp. 104-l33.

Lubars, M.: 1991, The ROSE-2 strategies for supporting high-level software design reuse, Auto­
mating Software Design. AAAUMIT Press.

Pella-Mora, E: 1994. Design Rationale for Computer Supported Conflict Mitigation during the
Design-Construction Process of Large-Scale Civil Engineering Systems. ScD Thesis, Mas­
sachusetts Institute of Technology.

Pella-Mora, E and Sriram, R. and Logcher, R.: 1995, Conflict mitigation system for collaborative
engineering, AI EDAM.

Potts, C. and Bruns, G.: 1988, Recording the reasons for design decisions, Proceedings of the 10th
International Conference on Software Engineering, IEEE, pp. 418-427.

Pree, w.: 1994, Design Patterns for Object-Oriented Software Development, Addison-Wesley.
Quinlan, J.: 1993, C4.5 Programs for Machine Learning, Morgan-Kaufmann.
Rossignac, J., Borrel, P. and Nackman, L.: 1988, Interactive design with sequences of parameter­

ized transformations, Intelligent CAD Systems 2: Implementationallssues, Springer-Verlag.
Rumbaugh, J. and Blaha, M.: 1991, Object-Oriented Modeling and Design, Prentice Hall.
Schmidt, D.: 1995, Experience using design patterns to develop reusable object-oriented commu­

nication software, Communications of the ACM 38(10),65-74.
Shaw, M.: 1990, Towards higher-level abstractions for software systems, Data and Knowledge En­

gineering, 5, 119-128.
Smith, D.: 1990, KIDS: A semi-automatic program development system, IEEE Transactions on

Software Engineering, 16, 1024-1043.
Toumlin, S.: 1958, The Uses of Arguement. Cambridge University Press.

J. S. Gero and F. Sudweeks (eds). Artificial Intelligence in Design '96. 269-288.
© 1996 Kluwer Academic Publishers.

CONSTRAINT-BASED RETRIEVAL OF ENGINEERING DESIGN CASES

Context as constraints

TANER BILGIC AND MARK S. FOX
Enterprise Integration Laboratory
University of Toronto
Toronto, Ontario M5S lA4, Canada

Abstract. The case-based retrieval is frequently reported as a valuable tool for engineer­
ing design. We discuss similarity based retrieval in the engineering design domain when
the context is given as a set of constraints. This approach comprises the lowest level with
which we support case-based retrieval from our Integrated Knowledge-Base. The char­
acterization of the retrieval process yields a robust compliance measure and a similarity
measure for the cases in a given context. The problematic concept of context is taken up
front by making it an explicit part of the query.

1. Introduction

Engineering design involves usage of domain specific technical knowledge to­
gether with creative problem solving skills to come up with a properly functioning
artifact that complies with a set of requirements - performance goals, physical
constraints, etc. It is a creative process that relies heavily upon associations to past
experiences and similar designs (Goel, 1994). Consequently case-based reason­
ing (CBR) (Kolodner, 1993) has been the focus of the design research community
(Maher et ai., 1995).

Our interest in case-based design arises from the design of complex artifacts
for the aerospace industry where design is requirements driven. It is initiated with
a "high level" set of requirements, i.e., goals, functional requirements and con­
straints, that trigger the retrieval of one or more "high level" design cases. These
cases are used by engineers to guide their construction of an abstract design that
in tum provides a set of requirements for the next design level. Design is therefore
a process of successive refinement, when each level iterates between requirements
specification/analysis, design case retrieval and design decision-making.

Indexing, case retrieval and case modification are key issues in case-based
design. In many case-based reasoning systems, case retrieval is performed based
on the similarity between the new problem context and cases represented in the

270 TANER BILGIC AND MARK S. FOX

case memory. An indexing scheme which defines the situations under which the
new context is similar to the ones in the case-base drives the retrieval process. A
case-based retrieval system is effective to the extent its indexing scheme covers
all possible contexts since similarity is known to change from context to context.

Our work focuses on the indexing/case retrieval problem and leaves the prob­
lem of adaptation to the engineer. In particular, given that design is requirements
driven, we are interested in how requirements, i.e., goals and constraints, can be
used to dynamically retrieve relevant cases from a case library, and how cases in
the library should be represented to support this style of dynamic indexing.

The rest of the paper is organized as follows: we review the relevant literat­
ure in Section 2 and then propose a view of the design process that is consist­
ent with Fox and Salustri (1994) for one-off, high-tech artifacts. We then dis­
cuss what needs to be represented to support this particular view of the design
for the whole design life cycle in Section 3. Particularly, we mention the frame­
work we are working in, which is a broad scope project to support the concurrent
and collaborative engineering design projects using knowledge-based technolo­
gies. In Section 4 we elaborate on the requirement-driven retrieval. Our retrieval
strategy employs a dynamic indexing mechanism that is based on a compliance
measure and resolves the problem of context dependency by providing an explicit
representation for the context as a set of constraints. We also define a similarity
measure between cases and briefly discuss the properties of the measures defined
relevant to case-based retrieval. In Section 5, we give the implementation details
and a small example to illustrate the system. We conclude the paper with a sum­
mary and further research directions.

2. Previous Related Research

Serrano and Gossard (1988) discuss a constraint-based approach to conceptual
design. They build on Serrano's earlier work on constraint management in the
context of computational design. Their constraint representation is parameters on
nodes and constraints on the arcs of a graph. They discuss graph theoretic meth­
ods to handle constraints efficiently.

Sycara and Navinchandra (1992) consider retrieval strategies in a case-based
design system. Their representation not only includes physical attributes butfimc­
tion and behaviour as well. They represent the behaviour as an influence graph
where the nodes correspond to parts and the arcs to causal relations between them.
The input to their case-based retrieval system is a similar graph which depicts
the new design situation. The input is matched to other graphs or parts of graphs
stored in the case-base.

Nakatani et al. (1992) describe a case-based engineering design support sys­
tem called SUPPORT which is an interactive system for supporting various phases
of engineering design. Their case-based retrieval module uses a three-level repres-

CONSTRAINT-BASED RETRIEVAL OF ENGINEERING DESIGN CASES 271

entation based on features, functions, and parts hierarchies. They use a constraint­
based search to select parts from line-ups.

Maher and Zhang (1993) represent design cases using two indexes: design
problem specifications and design solutions. They construct hierarchies of design
cases in this manner. Retrieval is done by finding the closest match for given spe­
cifications. If a match does not occur at one level in the hierarchy the process is
repeated for each of the lower levels.

Wood and Agogino (1993) discuss an architecture to support case-based con­
ceptual design. Their architecture relies heavily on the emerging Internet proto­
cols like WWW and WAIS. They propose to store the design cases in several dif­
ferent multimedia formats (hypertext, CAD drawings, audio, video etc.) and then
to search the case-base as guided by the design engineer.

Domeshek et al. (1994) discuss MIDAS (a Memory for Initial Design of Air­
craft Subsystems). The authors use a repository of design stories and discuss ways
of creating and indexing those stories. They state that the most developed part
of CBR technology is the retrieval. However, the major challenge in the retrieval
is building a comprehensive indexing vocabulary. They suggest that creating a
design story requires two types of information: presentation and connections.

Maher and Balachandran (1994) explicitly mention the iterative nature of the
case-based retrieval in the engineering design process. They model the retrieval
process as exploration rather than a one-shot search. They represent only func­
tion, behaviour, and structure for case-based retrieval and propose two index elab­
oration methods for iterative retrieval.

Kumar and Krishnamoorty (1995) argue that the indexing process is highly
context dependent and must be carried out for each domain separately.

In the case-based design systems mentioned above the retrieval is implemen­
ted as a memory search task and the system's ability is directly proportional to
the "richness" of the indexing scheme. One has to foresee and provide indices
for most of the query contexts that may arise (i.e. one should be able to abstract
apples and oranges as similar in the context of edible items but be able to differ­
entiate between them in the context of fruits). However, we observed that in the
process of case-based retrieval:

- a person begins an information interaction with only a vague understanding
of the design problem,

- her knowledge, constraints, and goals change over time.

This tends to suggest that, (i) case-base retrieval should be iterative, and (ii)
instead of trying to foresee the context in which the retrieval is to be performed,
the indexing mechanism has to be dynamic and similarity of one case to the con­
text has to be computed on-the-fly.

272 TANER BILGIC AND MARK S. FOX

Design evolves

Figure 1. A particular view of design that emphasizes the iterative nature of the process.

3. Case Representation

At the heart of the case-based reasoning paradigm lies case representation, index­
ing and matching.

For engineering design purposes, comprehensive case libraries can be built in­
house or distributed libraries available on the Internet can be used (e.g. PARTNET
(http://part.net/), INDUSTRY NET (http://www.industry.net/)).

We have found the following three concepts crucial in the process of design­
ing one-off, high-tech artifacts (cf. Figure 1):

- Concepts: The first thing that the design engineers come up with are con­
cepts which provide a solution to the (design) problem at hand. These can
either be competing or complementary design alternatives (e.g. Let's build a
remote manipulator arm with six joints to solve the problem).

- Issues: Then the design team raises issues and deals with them until a com­
promise closure is attained. The issues can be from anywhere within the life
cycle of the design. There can be issues of risk, cost, schedule, control, sta­
bility, manufacturability, quality, fit, form, function etc. (e.g. How are we
going to stabilize the system? What is the power consumption of a partic­
ular joint? How did we handle the manufacturability issues for past designs?
etc.)

- Requirements: The design objectives together with design concepts and is­
sues yield functional, structural and performance requirements. Design is
satisfaction of these requirements. (e.g. The remote manipulator should have
six degrees of freedom. The remote manipulator should be able to handle
payloads upto 1000 kg. The shoulder joint should provide inclination and
travel to the arm, while elbow and wrist joints should provide travel to the
end effector etc.). The requirements are iteratively decomposed and elabor­
ated on (e.g. Providing travel decomposes to provide rotation for all joints.)

Although there seems to be a natural hierarchy between concepts, issues, and
requirements, one should bear in mind that the concurrent engineering practices
allow for a concept's requirements to be refined, while issues arising from another
concept are investigated at the same time.

CONSTRAINT-BASED RETRIEVAL OF ENGINEERING DESIGN CASES 273

The knowledge to support the full life cycle of this particular view of the design
is captured in the TOronto Virtual Enterprise (TOVE) (Fox, 1992; Fox et al.,
1993; Fox and Gruninger, 1994). Particularly TOVE (i) provides a shared termin­
ology for the enterprise that each agent can jointly understand and use, (ii) defines
the meaning of each term in a precise and as unambiguous manner as possible,
(iii) implements the semantics in a set of axioms that will enable TOVE to per­
form deductive query processing to answer "common sense" questions about the
enterprise. TOVE represents both generic concepts (time, causality, activity, and
constraints) as well as enterprise specific entities (products, requirements, activit­
ies, organisation, cost, and quality).

The framework we operate in is a complex engineering design project which
requires the services of many engineers and their efficient collaboration. Reusing
existing designs, which we address in this paper, is one of the objectives of the
system we are developing.

The product, parameter, requirement, constraint and function representations
in TOVE are closely related to the case-based retrieval of engineering design cases
(cf. Figure 2) since TOVE provides a sophisticated representation of the design.
In this paper, we do not utilize TOVE' s activity, organisation, and cost ontologies.

R equirements

Parameters

JParts

Constrai nts

Functions

Figure 2. Representations in roVE that are used to represent engineering design cases.

We adopt the repository view of TOVE and consider it as a repository of
knowledge relevant for engineering design. We use the term "Integrated Knowledge­
Base" to refer to the repository. This view induces a "monolithic" representa­
tion of design cases (as contrasted with the "snippet" representation) (Kolodner,
1993, Section 5.4.1) from which sub-cases need to be extracted. We make that ex­
traction via functions. The functional representation is the higher level indexing
mechanism of design cases and it complements the dynamic indexing based on
requirements that will be discussed in detail in Section 4.

Furthermore, we assume that the case-based retrieval process is iterative, a
view shared by others (Domeshek et aI., 1994; Maher and Balachandran, 1994),

274 TANER BILGIC AND MARK S. FOX

which is consistent with the V-model of systems engineering view (Fox and Sa­
lustri, 1994). The user is not confined to any level of representation at any time
and can ask a question of arbitrary generality at will.

We briefly identify what needs to be represented to support case-based re­
trieval for the particular view of design put forth in this section and then discuss
the details of requirement-driven retrieval in Section 4.

3.1. DESIGN CONCEPTS

In order to reason about design concepts one has to consider notions of:

- fit: how do the parts of the design fit together?
- form: the structure of the design as captured by the parts hierarchy.
- function: the intended behaviour of the artifact that is designed as might be

found in a functional classification of parts.
- behaviour: the causal relationships between different parts of the artifact.
- working principle hydraulic, electro-mechanic etc.

Therefore any case-based design tool should be able to represent and reason
on the above items. TOVE provides explicit representations for fit, form, and func­
tion. Behaviour and working principle is simply implemented as a classification
of design parameters. A simplified schematic representation of an engineering
design case is shown in Figure 3.

Par!

Constrain!

Figure 3. Representation of engineering design cases using roVE.

CONSTRAINT-BASED RETRIEVAL OF ENGINEERING DESIGN CASES 275

Furthermore, each category has its internal classification (e.g. allocated para­
meters, estimated parameters, actual parameters, basic functions, non-basic func­
tions, unary functions, binary functions etc.).

We briefly mention the representation of functions since that is usually the
starting point of case-based retrieval in engineering design domains (Goel and
Chandraskaran, 1989; Sycara and Navinchandra, 1989). The functional represent­
ation is as described in (Pahl and Beitz, 1988) who identifies five generally valid
functions (change, vary, connect, channel, and store). These functions take en­
ergy, materials, and signals as their arguments. We distinguish user-defined non­
basic functions from the generally valid basic functions (e.g. the non-basic func­
tion "provide rotation" is related to joints of the manipulator arm as well as to
the basic function "connect(energy,matter)"). Generally valid functions are use­
ful when the system cannot retrieve any prototype for a given non-basic function.
In that case, if there is another level, the retrieval algorithm moves one level up
in the non-basic function hierarchy. If there is still not one item retrieved, the al­
gorithm moves to the related generally valid basic function and retrieves proto­
types related to that function with the hope of retrieving something relevant. The
retrieved cases are pruned by the designer with respect to their relevance.

3.2. ISSUES

In a sense, issues define the solution context for which more detailed questions
can be asked. What issues have been dealt with in the previous cases and how they
were dealt with is an important piece of knowledge. Eventually one can discover
recurring issues in "similar" situations (e.g. how risk was reduced in a previous
project when stabilization issue was raised can be a valuable piece of information
in the current context.)

Hence a case-based design tool should be able to represent and reason on is­
sues. Issue-based retrieval is used to retrieve those cases in which the same issues
have been dealt with. In the current prototype, issues are simply indexed by their
names and no further abstraction is available. The extension of issue-management
and categorizing issues lie in out further research agenda.

3.3. REQUIREMENTS

Design is highly requirement-driven in the engineering design domain we are
concentrating on. Usually the customer comes in with a set of higher level re­
quirements which get decomposed and elaborated on during the design process
and find their way to every detail of the design, usually in the form of a constraint
on design parameters.

TOVE supports the requirement management process in various ways. The
requirements are elaborated on and decomposed into sub-requirements until they
are represented (internally) as constraints in the knowledge network (cf. Figure 3).

276 TANER BILGIC AND MARK S. FOX

We do not impose a way of managing requirements but provide a rich repres­
entation which can support many requirement management schemes.

We differentiate between functional, structural, and performance requirements.
Functional requirements dictate "how" to achieve a desired behaviour whereas
performance requirements dictate "how well" a behaviour must be achieved. Struc­
tural requirements are usually physical laws that are required for the design to
achieve its goals.

Requirements are the basic means to describe the design to our system. The
higher level requirements (which are usually functional) retrieve candidate design
prototypes which come with their own requirements and constraints. The designer
modifies and prioritize the new requirements and continue retrieving in an iterat­
ive manner.

The requirement-driven retrieval is elaborated fully in Section 4. An example
is given is Section 5.

4. A Characterization of the Requirement Driven Retrieval

In this section we outline the retrieval mechanism in the presence of constraints.
The formal treatment in this section should not turn the reader off. What we are
saying is really simple: when context is given as a set of constraints, individual
cases comply with the context to the degree they satisfy the constraints. The case
that satisfies most of the constraints (or more than a predetermined number of
constraints) is retrieved. To yield more flexibility, the constraints can be weighed
as to their importance, in which case our compliance measure is the weighted av­
erage of the number of constraints satisfied. Furthermore, when a case does not
contain some attribute mentioned in the constraints, we propose to solve for it
with the purpose of aiding the designer in selecting an appropriate design case.
We do that by allowing to solve for multiple, weighted objectives.

The formalism will allow us to discuss the properties of the compliance meas­
ure and the similarity of cases which, we believe, are too important to be over­
looked.

Basically we define individual cases with finite number of attribute-value pairs
and a retrieval context with finite number of constraints on the attributes. Then a
case satisfies the retrieval context to the degree it satisfies the constraints.

Formally, the situation is as follows: an individual case, S, is assumed to be
comprised of a finite list of attribute-value pairs:

Then the case-base, CE, is a finite collection of individual cases:

CONSTRAINT-BASED RETRIEVAL OF ENGINEERING DESIGN CASES 277

The context of retrieval is explicitly defined by a set of constraints 1 :

These can either be explicit constraints on the particular design or constraints re­
lated to functional or structural requirements as well as constraints from anywhere
in the life cycle of the design.

We use the characteristic function, x, to denote satisfaction of a constraint by
a case: for any case Sj and constraint Ci:

if Sj satisfies Ci

otherwise

Then we define another relation for a case which satisfies a given context:

sat(S, X) iff\fCi E X,3S E eB, Xi(S) = 1.

However, this is not flexible enough for retrieval purposes: a case either satisfies
a context or not! We are interested in cases which almost satisfy the context as
well. To achieve this flexibility we can define a measure which shows how much
a case satisfies a given context:

J.Lx(S) = 2::~1 Xi(S) .
m

Clearly, J.Lx(S) E [0,1] with J.Lx(S) = ° showing no compliance with the
given context, J.Lx(S) = 1 denoting full compliance and J.Lx(S) E (0,1) denoting
partial compliance.

Consider the situation where one objective dominates all the others in the
sense that if it is not fulfilled then the satisfaction of the rest is not that import­
ant (when an envelope objective is not satisfied it really may not matter whether a
weight objective is fulfilled or not). This situation is typical in engineering design.

To be able to provide more flexibility to the user in terms of retrieval the con­
straints can be weighed by the user as to their importance.

Therefore the context, X, is now given as:

1 Since a single constraint can apply to several attributes the list contains more tuples than the
number of constraints. We assume that there are m constraints but the context is given by 1/1.'

attribute-constraint pairs where m' :::: m.

278 TANER BILGIC AND MARK S. FOX

where Wi are the weights which denote importance of each constraint2 . We as­
sume that weights are positive real numbers. The situation is as depicted in Fig­
ure 4.

A list of requirements
(constraint)

The Context (X)

Weights

IVI

Case I Case 2 Case L

• • •

~X (S I) ~X (S2) ~X(S)

Figure 4. Constraint-based retrieval: case of weighted compliance measure. The shaded areas of
the cases represent unconforming parameters.

The retrieval with weighted constraints is based on the extended compliance
measure, J.Lx(8), which is given as:

(8) = ~~1 WiXi(8)
J.LX "m .

L.,;i=l Wi

Some other properties of J.Lx are as follows:

- Two J.Lx (.) values are commensurate as long as they denote the same context
X. On the other hand, J.LX and J.Ly are incommensurate if the relation of X
to Y is not known.
J.Lx(8) is a summary measure in the sense that it gives an average compli­
ance measure. It does not tell anything about the similarity of one case to an­
other (i.e., two cases that have the same compliance measure can be totally
dissimilar simply because they satisfy different constraints but end up satis­
fying the same number of constraints!).

As far as the retrieval is concerned for a given context X, one can choose the
case(s} with:

2There is a major assumption here about the weights from a measurement-theoretic point of
view. It has to be the case that the weights attributed by the user must be on a ratio scale (Krantz
et aI., 1971) (Le., ifthe user is assigning 10 and 20 to two different constraints she means not only
the latter is a more important constraint but it is twice as important.). This cognitive task is usually
fulfilled when aided with proper visual tools like sliding scales. This issue is should not be over­
looked. If the designer is not able to fulfill the cognitive requirement that the weights are on a ratio
scale, the averaging operation (and the retrieval based on it) is simply meaningless!

CONSTRAINT-BASED RETRIEVAL OF ENGINEERING DESIGN CASES 279

or cases with compliance measure greater than a user defined threshold:

However, J.Lx is not monotonic as are most of the retrieval measures on which
retrieval is based (i.e., if one adds a constraint to context X to construct context
Y the relation between J.LX and J.Ly is undetermined).

4.1. RETRIEVAL BY SOLVING CONSTRAINTS

Although the representation of the context by weighted constraints and using the
weighted compliance measure for retrieval of cases is a flexible way of retrieving
design cases, it is not sufficient to retrieve a case which does not have a partic­
ular attribute that the constraint requires. In such a case, the unknown parameter
required by the constraint(s) must be solvedfor.

Furthermore, the engineering design usually has performance requirements
set as goals to achieve.

To account for the two concepts above we extend the definition of a context to
include objectives to be optimized as well as constraints. Hence, the context, X,
is now given as:

where the tuple (ail WiOi) (footnote 1 applies here as well) denotes a weighted
objective on the attribute (e.g. maximize torque, minimize risk, maximize power
output etc.) and WO and we denote weights on objectives and constraints, respect­
ively. Note that we allow for multiple objective functions and both the objectives
and constraints can be assigned weights by the user.

During the interaction of the designer with the system we are assuming that
she defines the context using equations to be optimized with respect to constraints
to be satisfied. This is not an unreasonable assumption, since the design proceeds
by posting requirements (of which performance requirements are the goals, and
structural and functional requirements are constraints) and trying to fulfill them.

This complicates the problem particularly when the constraints are not lin­
ear. From an implementation point of view such a system of constraints can be
handled either by constraint logic programming techniques (e.g. CLP(R) (Jaf­
far et aI., 1992; Holzbaur, 1995)) or mathematical programming techniques (e.g.
many implementations of the Simplex algorithm or interior point methods for lin­
ear constraints or non-linear search algorithms). In this paper we tackle the case
where the objective functions and constraints are linear.

When the the objective function and the constraints are linear the problem can
be solved by using numerous Multiple Objective Linear Programming (MOLP)
techniques. In fact, multiple criteria optimization techniques have been employed
in detailed engineering design (Statnikov and Matusov, 1995). We are employing

280 TANER BILGIC AND MARK S. FOX

similar techniques for the full life cycle of the design process. The situation with
unknowns in constraints and objectives to be optimized is depicted in Figure 5.

A li st of requirements Weight Case I Ca e 2 Case L
(objectives and constraints)

I
'~

I
~I" I

~ ~ ~ Obj .
') ?

• • • Cons.I--------i

The Context (X) JlX (PL)

Figure 5. Constraint-based retrieval: the general case. There are multiple objectives to be optim­
ized with respect to the given constraints.

The measure of compliance can be extended to the multiple objective case in
a natural manner retaining all the desired properties of the measure for retrieval
process:

The characteristic function for the objectives is evaluated by the designer and
only then the compliance measure can be calculated (cf. Section 5).

The retrieval is again based on JLx(S) but the process of retrieval requires
solving a MOLP.

In fact the cognitive task of coming up with weights for objectives and con­
straints can be quite a hard task in large domains. In order to eliminate the need
for an intrusive acquisition of weights from the user we assume further generality
in the sense that the weights Wi are given as intervals rather than a single number:
Wi E [fi' Ui).

When this is the case the problem is still tractable as long as the objectives and
the constraints are linear. This formulation gives rise to the family of weighted
sum problems (Steuer, 1986).

4.2. SIMILARITY OF CASES

If one is interested in the similarity of one case to the other the compliance meas­
ure JL x is useless. For similarity one can define another measure, s x, which meas-

CONSTRAINT-BASED RETRIEVAL OF ENGINEERING DESIGN CASES 281

ures the similarity of two cases for a given context X as (for the most general case
with weights):

(s S) - L:~1[wixi(S1)Xi(S2)] + L:i=1 [WiXi (01)xi(02)]
s x b 2 - "m c + "n 0 • LJi=1 Wi LJi=1 Wi

Sx (S1, S2) measures the similarity of case S1 to case S2 in context X (It simply
counts the occurrences where the two cases satisfy the same constraints and nor­
malizes it using the weights). This is a particularly novel definition of similarity
since context is explicitly taken care of. Cases that are similar in one context may
be totally dissimilar in others. This effect of context on the similarity measure is a
well known problem in the research and practice of similarity measures (Tversky,
1977).

As defined here Sx is a valued relation3 (Ovchinnikov, 1991; Bilgic;, 1995). It
has the following desired properties:

- sx E [0,1],
- Sx is reflexive (i.e., VS, sx (S, S) = 1), a design case is totally similar to

itself.
sx is symmetric (i.e., VSi,Sj,SX(Si,Sj) = sx(Sj,Sd), if a design case,
Si, is similar to another, Sj, to some extent then Sj must also be similar to
Si to the same extent.

- a more robust definition of transitivity holds:

VSi,Sj,Sk,SX(Si,Sk) ~ min{sx(Si,Sj),SX(Sj,Sk)}.

If a design case Si is similar to Sj to an extent and Sj is similar to Sk then Si
must also be similar to Sk to some extent. Note that this reduces to the usual
definition of transitivity when s x E {O, I}.

Therefore s x is a bona fide valued similarity relation. It has a robust transitiv­
ity condition which avoids heap paradoxes4 The transitivity condition of the sim­
ilarity measure we define will make the retrieval algorithm stop at a point when
the similarities of the two items diminish to zero (or when it is under a predefined
threshold).

Similarity of cases is important if one needs to index cases according to their
similarity and store it that way. However this can result in inadvertent effects
since similarity is dependent on the context. Therefore computing similarity on­
the-fly for a particular context at the time of query seems to be the superior al­
ternative. However note that for retrieval purposes the compliance measure I1x is
sufficient.

3 A valued relation, R, is an extension of the concept of classical relation which takes on either
o or 1 as its values. Valued relations take on values in the unit interval [0,1).

4 A cup of coffee without any sugar and another one with just one grain sugar added are similar
in terms of sweetness. The transitivity condition entails that the first cup and a cup with thousands
of grains of sugar added are still similar in terms of sweetness.

282 TANER BILGIC AND MARK S. FOX

The valued similarity relation can be a basis for soft classification of cases in
which every case belongs to a cluster to a degree (for a given context). Such a
framework provides flexible retrieval strategies and it reduces to crisp clustering
methods similarities are an all-or-nothing matter.

s. Implementation and an Example

In this section, we briefly discuss the implementation of the techniques we de­
scribed and give a small example.

The implementation of the design (and design case) representation has been
carried out in Prolog in an object-oriented manner. An object-oriented layer built
on top of Prolog (together with inheritance mechanisms) contains the design rep­
resentations.

The case retrieval module is also implemented in Prolog. We use ECRC's con­
straint logic programming system ECLiPSe (Wallace and Veron, 1993) and the
CLP(Q,R) constraint solver (Holzbaur, 1995) that comes with it on a Sun SPARC
workstation running SunOS version 4.1. The user interface to the system is via
World Wide Web (WWW) and it requires a web browser.

We have the representations of several manipulator arms in the system com­
plete with their part, parameter, requirement, constraint, and function hierarchies.
We assume that we are faced with the situation of designing another manipulator
arm for a totally different task. The aim is to be able to reuse some of the past
designs to reduce development costs.

For purposes of illustration we assume that the design has come to a stage
where it is decided that another arm with three joints is going to be designed. The
designer is faced with the problem of selecting brakes for each joint. Each joint
has its own requirements from the brakes to be used (i.e, each joint is a different
context for brake selection) and there are several types of brakes used in the past
designs.

The functional requirement for a particular joint (context) is represented in the
system as shown in Figure 6.

This particular functional requirement (REQ202) is related to two functions
that are already defined in the system (FUN30 and FUN31). The representation
of FUN30 is shown in Figure 7.

Since the functional requirement is related to the function "stop-motion", a
first retrieval on the basis of this requirement retrieves eight parts (design proto­
types) that are functionally related to that requirement (cf. Figure 7). In this ex­
ample, all the prototypes that are retrieved are brakes. It could have been the case
that there were other prototypes (e.g. motors with inverse drive capabilities) re­
trieved for the same function. Pruning of design prototypes can be done by the
designer at this moment or the designer may choose to continue, with everything
retrieved so far, to requirement-based retrieval where prototypes are evaluated for

CONSTRAINT-BASED RETRIEVAL OF ENGINEERING DESIGN CASES 283

Class Frame REQ202

Subclass of: REQl90
Instances:

Relations: related-to-function [FUN30,FUN3I)

Attributes: token [slow-stop)

Messages:

name [nns.slow-stop.req]

req-type [functional-req)

req-title [Functional requirement for slowing and stopping)

req-id [3.2.7.11b)

req-documentation [RMS-SG-1944A)

req-short-description [The artifact should slow down and

stop the motion produced by the joint motors)

Figure 6. Representation of the functional requirement in the system.

Class Frame FUN30

Subclass of:

Instance of: non-basic-function

Relations: related-to-part [PRT138,PRT139,PRT140,PRT141

PRT142,PRTI43,PRTI44,PRT145)

generalizes-to [FUN3)

Attributes: name [stop-motion)

Messages:

Figure 7. Representation of a function in the system.

their compliance (e.g. motors would have been eliminated from further consider­
ation because they would violate weight and envelope constraints of the context).

In our example, the designer continues with the eight brakes retrieved and
evaluates their compliance for the given context. Since the design solution seems
to be the concept of a brake, the detailed requirements for the brakes can either
be entered explicitly at this point or the requirement tree of one of the retrieved
brakes can be adopted and modified.

There are fourteen requirements for the brake in the current context and the
representation of one of the requirements (REQ 142) is shown in Figure 8 as an
example.

The designer weighs each of the fourteen requirements as to their import-

284 TANER BILGIC AND MARK S. FOX

Class Frame REQ 142

Subclass of: REQ90

Instances:

Relations: requirement-of [PRTl 33,PRTl34,PRTl 35]

has-expression [CON53]

Attributes:

Messages:

has-document [' slip-torque.req.htrnl']

name [brake.slip-torque.req]

req-derivation-type [derived-req]

req-title [Breakaway torque of the brake]

req-id [3.2.1.2.3]

req-documentation [RMS-SG-1954A]

req-short-description [The peak torque level required

to induce brake slip shall not exceed 12- oz-inches]

Figure 8. Representation of a derived requirement in the system.

ance and starts the requirement-based retrieval. The results of such a transaction
is shown in Figure 9.

The results indicate that PRT138 has the maximum compliance for this partic­
ular context. However, the designer selects the top four of the retrieved prototypes
(PRT138, PRT139, PRT144, PRT143) and adds the following goals (performance
requirements) to the system:

- maximize brake actuation life (l0), and
- minimize cost (7).

The numbers by the objectives denote their relative importance. The designer sub­
mits this new query to the system which solves for actuation life and cost para­
meters of three parts (PRT144 did not yield a solution to the required parameters
due to insufficient information). Then, the designer evaluates the objectives for
each part as to their acceptance and the system returns the new compliance meas­
ures: (PRT138:0.88, PRT139:0.89, PRT143:0.92).

The designer selects PRT143 as the new brake of the joint with the knowledge
that it has to be modified to meet requirements REQ125, REQ128, and REQ142.

The designer also has the option of classifying retrieved items on the basis of
their similarity. To illustrate that, assume that the designer wanted to classify the
eight brakes retrieved before the introduction of the objectives. Figure 10 shows
the clustering of the eight brakes at two levels of similarity, 0.55 and 0.70.

Note that this clustering is only valid for the particular context (joint).

CONSTRAINT-BASED RETRIEVAL OF ENGINEERING DESIGN CASES 285

PRTl38 (0.971429)

satisfies 13 out of 14 requirements.

Requirements that are Nor satisfied:

REQ128

PRTl40 (0.6)

satisfies 8 out of 14 requirements.

Requirements that are NOT satisfied:

REQ123

REQ125

REQ130

REQ137

REQI40

REQ142

PRTl42 (0.752381)

satisfies 9 out of 14 requirements.

Requirements that are Nor satisfied:

REQ123

REQ125

REQ128

REQ136

REQI40

PRTl44 (0.914286)

satisfies 11 out of 14 requirements.

Requirements that are Nor satisfied:

REQ125

REQ128

REQ130

PRTl39 (0.914286)

satisfies 11 out of 14 requirements.

Requirements that are Nor satisfied:

REQ125

REQ128

REQ130

PRTl41 (0.619048)

satisfies 8 out of 14 requirements.

Requirements that are NOT satisfied:

REQ125

REQ128

REQ130

REQ136

REQ137

REQ142

PRTl43 (0.819048)

satisfies 11 out of 14 requirements.

Requirements that are Nor satisfied:

REQ125

REQ128

REQ142

PRTl45 (0.628571)

satisfies 9 out of 14 requirements.

Requirements that are Nor satisfied:

REQ125

REQ128

REQ138

REQ139

REQ141

Figure 9. Results of requirement-based retrieval.

6. Summary

In this paper we describe a certain view of design for one-off, high-tech artifacts
and outline how that design process can be supported in concurrent engineer­
ing environments. Our aim is to be able to support all phases of the design life
cycle. We briefly mention the type of information we have in TOVE to repres­
ent knowledge necessary for the design task. We suggest that fit, form, function,
behaviour, working principle, issues and requirements need to be explicitly rep-

286 TANER BILGIC AND MARK S. FOX

Similarity of cases at a level of 0.55 Similarity of cases at a level of 0.70

PRTl40 PRTl4l PRTl40 PRTl4l

PRTl38 PRTl39 PRTl42 PRTl38 PRTl39 PRTl43

PRTl43 PRTl44 PRTl45

Figure 10. Clustering of the retrieved cases for two similarity levels.

resented. We formalize the retrieval process on the basis of constraints in which
we make the constraints, goals, and their appropriate weights an explicit part of
the query rather than part of the knowledge-base. This results in a flexible way of
retrieving and selecting design cases. This formalization leads to:

- A definition of context in terms of constraints on the design. Therefore con­
text becomes an explicit part of the case-based query itself.

- A concept of compliance measure, J.Lx(S) for the given context. Each case,
S, can be evaluated on the basis of this measure as to its compliance with the
context, X.

- An extension to the context such that it not only contains constraints but
goals (objectives) to be satisfied as well. This approach is more realistic in
the engineering design domain where constraints are decompositions of struc­
tural and functional requirements and objectives stem from performance re­
quirements.

- A further extension to the context in the sense that not all objectives and con­
straints are weighed equal. The designer has the flexibility to choose weights
for each objective which denote the importance of that particular objective.
The weights can be given as intervals if there is any doubt about their valid­
ity.

- A definition of similarity of two cases, S x (Si, Sj). This measure is based on
the context X and can change from one context. to the next. (e.g. apples and
oranges are not similar in the context of fruits that contain starch but they are
similar in the context of edible things).

CONSTRAINT-BASED RETRIEVAL OF ENGINEERING DESIGN CASES 287

We are planning on extending the approach provided here in several respects.
One immediate concern is the measurement units used in parameters and con­
straints. A retrieval mechanism should be able to distinguish between different
units that are used and should be able to convert from one unit system to another
for correct retrieval.

Solving for non-linear objectives and constraints are computationally expens­
ive. Case-based design systems must have well defined protocols to communic­
ate with commercially available symbolic mathematics and detailed engineering
design software to care for non-linear objectives and constraints.

Acknowledgments

We would like to thank JilliCin Lin for fruitful discussions on an earlier version of
this paper. Anonymous referee reports contributed to the clarity of the presenta­
tion.

References

Bilgi~, T.: 1995, Measurement-Theoretic Frameworks for Fuzzy Set Theory with Applications to
Preference Modelling. PhD Thesis, University of Toronto, Department of Industrial Engineer­
ing Toronto Ontario M5S lA4 Canada.

Domeshek, E. A., Herndon, M. E, Bennett, A. W. and Kolodner, J. L.: 1994, Case-based design aid
for conceptual design of aircraft subsystems, Proceedings of the 10th Conference on Artificial
Intelligence for Applications, IEEE, Piscataway, NJ, pp. 6~9.

Fox, M. S. and Groninger, M.: 1994, Ontologies for enterprise integration, Proceedings of the 2nd
Conference on Cooperative Information Systems, Toronto, Ontario.

Fox, M. S. and Salustri, E: 1994, A model for one-off systems engineering, Proceedings of the AI
and Systems Engineering Workshop, AAAl '94, Seattle, Washington.

Fox, M. S., Chionglo, J. E and Fadel, E G.: 1993, A common sense model of the enterprise, Pro­
ceedings of the 2nd Industrial Engineering Research Conference, Institute for Industrial Engin­
eers, Norcsross, GA, pp. 425-429.

Fox, M. S.: 1992, The TOVE project: Towards a common sense model of the enterprise, in C. Petrie
(ed.), Enterprise Integration. MIT Press, Cambridge, MA.

Goel, A. and Chandraskaran, B.: 1989, Use of deviee models in adaptation of design cases, In Pro­
ceedingsof the DARPA Workshops on Case-Based Reasoning, Morgan Kaufmann, New York,
pp. 109-120.

Goel, V.: 1994, A comparison of design and nondesign problem spaces, Artificial Intelligence in
Engineering, 9(1), 53-72.

Holzbaur, C.: 1995, OFAl clp(q,r), manual, edn 1.3.3, Technical Report TR-95-09, Austrian Re­
search Institute for Artificial Intelligence, Vienna.

Jaffar, J., Michayov, S., Stuckey, P. and Yap, R.: 1992, The CLP(R.) language and system, ACM
Transactions on Programming Languages and Systems, 14(3), 339-395.

Kolodner, J.: 1993, Case-Based Reasoning. Morgan Kaufmann, New York.
Krantz, D. H., Luee, R. D., Suppes, P. and Tversky, A.: 1971, Foundations of Measurement, Vol. I,

Academic Press, San Diego.
Kumar, H. S. and Krishnamoorty, C. S.: 1995, A framework for case-based reasoning in engin­

eering design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AI
EDAM),9,161-182.

Maher, M. L. and Balachandran, M. B.: 1994, Flexible retrieval strategies for case-based design,
in J. S. Gero and E Sudweeks (eds), Artificial Intelligence in Design '94, Kluwer, Dordrecht,

288 TANER BILGIC AND MARK S. FOX

pp. 163-180.
Maher, M. L. and Zhang, D. M.: 1993, CADSYN: A case-based design process model. Amlin,,/

Intelligencefor Engineering Design, Analysis and Manufacturing (AI EDAM), 7(2).97-110.
Maher, M. L., Balachandran, M. B. and Zhang, D. M.: 1995, Case-Based Reasoninf? ill /)('sigll.

Lawrence Erlbaum, Hillsdale, New Jersey, USA
Nakatani, Y., Tsukiyama, M. and Fukuda, T.: 1992, Engineering design support framework h~

case-based reasoning, ISA Transactions, 31(2), 165-180.
Ovchinnikov, S.: 1991, Similarity relations, fuzzy partitions, and fuzzy orderings, Fuzzy Sels allcl

Systems, 40, 107-126
Pahl, G. and Beitz, w.: 1988, Engineering Design: A systematic approach, Springer-Verlag. Berlin.

trans. A Pomerans and K. Wallace.
Serrano, D. and Gossard, D.: 1988, Constraint management in MCAE, in 1. S. Gero (ed.), Artificial

Intelligence in Engineering: Design, Elsevier/CMP, Boston/Southampton, pp. 217-240.
Statnikov, R. B. and Matusov, 1. 8.: 1995, Multicriteria Optimization and Engineering, Chapman

and Hall, New York.
Steuer, R. E.: 1986, Multiple Criteria Optimization: Theory, Computation, and Application, John

Wiley, New York.
Sycara, K. P. and Navinchandra, D.: 1992, Retrieval strategies in a case-based design system, ill

C. Tong and D. Sriram (eds), Artificial Intelligence in Engineering Design. Vol. II, Academic
Press, New York, NY, pp. 145-164.

Sycara, K. P. and Navinchandra, D.: 1989, Integrated case-based reasoning and qualitative reason­
ing in engineering design, in J. S. Gero (ed.), Artificial Intelligence in Design, CMP/Springer­
Verlag, Berlin, pp. 231-250.

Tversky, A.: 1977, Features of similarity, Psychological Review, 84(4), 327-352.
Wallace, M. and Veron, A: 1993, Two problems - two solutions: One system - ECLiPSe. Pro­

ceedings lEE Colloquium on Advanced Software Technologies for Scheduling, London.
Wood III, W. H. and Agogino, A M. 1993, A case-based conceptual design information server

for concurrent engineering, Technical Report 93-1104-1, University of California, Berkeley,
Department of Mechanical Engineering, BEST Laboratory, Berkeley, CA 94706, USA.

6
grammars in design

A networks approach for representation and evolution of shape
grammars

Sourav Kundu, Michael Hellgardt
Variable-complexity evolution of shape grammars for

engineering design
Peter J. Gage

Grammars for machine design
Linda C. Schmidt, Jonathan Cagan

J. S. Gero and F. Sudweeks (eds). Artificial Intelligence in Design '96.291-310.
© 1996 Kluwer Academic Publishers.

A NETWORKS APPROACH FOR REPRESENTATION AND EVOLUTION
OF SHAPE GRAMMARS

Networks and Shape Grammars

SOURAV KUNDU
Control Engg. Laboratory, Department of Precision Engineering
Tokyo Metropolitan University,1 -1 Minami Ohsawa, Hachioji Shi
Tokyo 192-03, Japan

AND

MICHAEL HELLGARDT

Architect, Prinsengracht 151
1015 DR Amsterdam, The Netherlands

Abstract. The way in which meaningful shapes are put together to form meaningful
designs is the subject of shape-syntax, which forms the basis of shape-grammars. In this
paper we describe some experiments with a network model to represent and evolve shape
grammars. A theory of space configuration in built environment - the Space-Between the­
ory is first presented along with aspects of the theory of shape grammars. Experiments,
that have demonstrated that the Augmented Transition Network (ATN)-frame is a reliable
tool to simulate the idea of space-between and generate real instances of non-bisymmetric
Palladio villas via a shape grammar, in the background of cultural expressions, are de­
scribed. It is also shown how a Genetic Algorithm (GA) model can be used for imple­
menting a directed search through the network, avoiding the combinatorial explosion. The
concept of "evolving" shape-grammars is also presented, as opposed to a fixed grammar.

1. Introduction

The common structure of all design machines should provide the basis for a
future science of design (Stiny, 1980b) pp. 461.

A series of pioneer-experiments from the late 1970s to early 1980s (for example
on Palladio, Frank Lloyd Wright, Terragni, American building-types and others)
were based on a Shape Grammar formalism developed and defined by Stiny (1980a).
This formalism soon became a generally accepted standard. This was a success­
ful, promising and a challenging start but today a certain stagnation can and has
been observed, as evident from the comments by many authors among which
(Coyne and Snodgrass, 1993) is noteworthy - "AI in design does not appear to
be producing useful results. Claims to its success are usually couched in terms

292 SOURAV KUNDU AND MICHAEL HELLGARDT

of future promise". This applies certainly to shape grammars too, particularly in
architecture.

The shape grammar formalism, in some way seems to be too narrow or insuf­
ficient to serve as a common structure in terms of Stiny' s self declared intentions
(Stiny, 1980a). This conclusion is precisely the point from where our paper com­
mences. We therefore proceed to construct a formal method to represent shape
grammars in a more universal and technical framework, which is the Networks.
We present the formal mathematical notations of a network and show how this
can be used to represent shape grammars and how the Genetic Algorithm, which
is a restricted but computable model of natural evolution, can be used to evolve
these networks and consequently the shape grammars. Issues relating to network
based representation technique and the genetic algorithm based search and evol­
ution technique, in the context of cultural expressions, will be discussed in this
paper.

But nevertheless we do not claim to provide an exhaustive and consistent idea
of a "common structure of all design machines". Instead we will present a pro­
posal for an essentially experimental approach highlighting two main aspects,
which seem to be less explored with respect to design mechanisms (design-mach­
ines) producing shape configurations:

- Rrepresentation of the design knowledge. Even if we can claim that we un­
derstand, to some extent, what knowledge is, or what its model should con­
tain, we still do not have any universal mechanism or concrete framework to
represent it in computable terms. Networks seem to be a plausible approach
as they can be easily used for distributed storage and handling of data. We
represent the rules of a shape grammar using a class of networks. We then
take the "Pittsburgh Approach", where knowledge is said to be an implicit
quality embedded in the rules, and therefore we attempt to evolve the rules
as a result of the interaction of the system with the task environment, to gain
the domain specific knowledge. We show how a genetic algorithm model can
possibly be used to evolve rules of a shape grammar.

- Design or shape generating formalisms (shape grammars) in the field of ar­
chitecture. Some experimentation with the translation of a theory of space
configuration in built environment - the Space-Between Theory - into a formal
mechanism, will be presented. This will be used as a reference to discuss as­
pects of the representation of design knowledge in the light of an application.
The target is to give an example of how the development of abstract and ap­
plied formal mechanisms can proceed mutually.

Cagan and Mitchell (1993) were the first to combine shape grammars with
optimizing search and they showed how shape grammars can be used to model a
class of engineering problems to network flow problems in (Cagan and Mitchell,
1994). This paper is aimed not at engineering problems but at questions of how to
simulate cultural expressions. We start with a short explanation of that.

NETWORKS AND SHAPE GRAMMARS 293

2. Shape Grammars

A Grammar is a tool to describe and understand language, the faculty of exchan­
ging thought by speaking (or writing) and hearing (or reading). Technical ex­
pressions are related to objectifiable goals. They are not necessarily the same as
language-expressions in their functioning as carriers of thought. The application
of grammar in non-language and above all in technical fields require some cla­
rification of this difference. Shape Grammar - as coined predominantly by Stiny
(1980a) - is such a field where the borderline between technical and non-technical
expressions are insufficiently elaborated, if not ignored. But some minimum basis
of theoretical assumptions must be clarified here.

2.1. THEORETICAL ASPECTS

According to Stiny (1980a) a Shape Grammar has four components: (1) S is a
finite set of shapes; (2) L is a finite set of symbols; (3) R is a finite set of shape
rules; and (4) I is a labeled shape called the initial shape. In Chomsky (1957), we
read:

The grammar of L (a language) will be thus a device that generates all of the
grammatical sentences of L ... p.13.

Various alternative grammars can apply within a same language and refer to the
same vocabulary. For this reason it is more appropriate not to subsume language
(a given set of all possible expressions or shapes) under grammar but to associate
sets of possible grammars and vocabularies with languages. It was a discovery by
Humboldt (1795196, 1973) that certain grammatical principles must be ofuniver­
sal validity underlying all languages. This, as Chomsky (1965) emphasizes, be­
longs to the fundamentals of a generative grammar. Furthermore it belongs to the
fundamentals of semiology, a science which claims that certain linguistic univer­
sals apply not only in all languages, but also in all fields of cultural, or "discurs­
ive" (not to confuse with technical) expression, such as music, painting, archi­
tecture etc. On the other hand universality with respect to all languages and even
all fields of expression, is a necessary but not sufficient condition of a grammar. A
grammar cannot be defined without reference to a particular language like English
or German etc. Consequently the idea of some kind of a universal shape grammar
at least implicitly contained in Stiny's shape grammar formalism (Stiny, 1980a) is
not tenable. Shape grammars can be approached only on the basis of some theory
of shape configuration containing:

- A particular component dealing with a particular field of shape evolution, an
architectural period for instance; and

- An universal component dealing with features and mechanisms of universal
validity, as for instance space configuration in the built environment.

294 SOURAV KUNDU AND MICHAEL HELLGARDT

2.2. READING AND SPEAKING

Grammars in modern linguistics are primarily designed to read, or parse sen­
tences and expressions, rather than to speak. But Shape Grammars described in
the literature are primarily aimed at production systems or "speaking" systems.
Yet speaking is no one-way traffic. Fleisher (1992), in his critique of shape gram­
mars seen in the light of linguistics expands on that. He argues that shape gram­
mars are "traveling at random" as long as mutual relations between parsing and
generating are ignored. Two questions with respect to the reading aspect and one
conclusion with respect to the speaking aspect, which are of basic importance for
the approach to work presented here, arise with that:

1. Is it possible to establish as a hypothesis a theory of shape evolution, with
which given sets of historical shape-evolution (an architectural or a vernacu­
lar building style) can be parsed with the aid of possible architectural gram­
mars with an assumption of conventions of configurative mechanisms?

2. Given a positive answer to 1), is it possible to simulate knowledge acquisi­
tion, comparable with mechanisms of language learning discussed by Chom­
sky (1965), as a process resulting in the evolution of new rules and rule-sets
in an environment of already given rule-sets and procedures of evaluation.
Gero (Gero, 1992; Gero et al., 1994) presents some work in this direction
and shows that this is a possibility, though the shape grammar used by them
is very rudimentary.

3. (with respect to speaking) The child learns a language through practice, speak­
ing included. We assume that artificial knowledge acquisition-certainly not
in the technical fields but cultural, discursive or language expressions-can
proceed similarly only when it is related to both parsing and generating ex­
pressions.

A reading act results in some meaning. A speaking-, or speech-act (Searle, 1969)
starts with one. But meanings are not communicated without some knowledge
or some reflection or intention about how this meaning may be read and which
formal grammatical device may be the most appropriate tool to achieve certain
goals of communication. Some conclusions about the opening, the initial state of
a system producing expressions and its relation to language and grammar result
from that. We can think of an initial state of an expression or shape configuration
as a speech-act to be initialized within a given language or shape-language, using
some kind of grammar or shape-grammar. But we can not think of an initial state
of a grammar or shape grammar. An initial state of an expression (a proposition)
reflects goals and intentions of an imaginary speaker or designer. It sets a generat­
ive grammar in motion. This means that an initial state must at least satisfy three
requirements:

1. It contains certain goal parameters, which can be zero ;

NETWORKS AND SHAPE GRAMMARS 295

2. In a spatial or built environment it must contain certain environmental data
which can be zero as well (a tabula rasa); and

3. It is related to a cultural context defined by a variety of alternative ways of
how to express meaning and intention, a variety of tools of selectable gram­
mars.

2.3. THE QUESTION OF REPRESENTATION

Graphic representation
We do not know how a shape is represented in the brain, neither do we know how
is it linked to perception and reasoning. Stiny (1980b) defines a shape in terms of
lines. Some architects certainly do not only design with lines, but also by marking
a kind of hatched patches representing space partitions emerging with the design
process. Probably the mental elaboration of space-units is nearer to a hatched­
patches-technique than to line drawing.

Knowledge Representation
Some experimentation with one particular method of a Network as a means of rep­
resentation (to be discussed in sub-section 4.2) has demonstrated that networks
are an excellent, if not indispensable, means to represent shape grammars. Par­
tially this was inspired by an example showing how networks are used in a field
obviously fundamental for shape grammars - parsing natural language expres­
sions.

2.4. GENERATIVITY AND CREATIVITY

Stiny claimed that the set of expressions (shapes) defining a grammar is finite (see
sub-section 2.1). This does not apply in discursive expressions. Language makes
infinite use of finite means, as in Humboldt (1795/96, 1973). A grammar must
describe the processes that make this possible. At least to some extent its rules
are 1) context-sensitive and 2) applied recursively, possibly creating embedded
sub-expressions. Such a grammar is generative, which provokes a remark on cre­
ativity: in discursive expressions there is no fundamental difference between gen­
erativity and creativity. Any discursive expression, seen in its generative context,
is creative even if it is not a new one. Uniqueness of technical inventions is not
necessarily the same.

3. Computational Shape Grammars - Palladio Villas

As said in the introduction we do not claim to present an elaborated theory but
rather an essentially inductive approach towards one. In this section we present
results based on some preliminary experimentation with computational shape gram­
mars, mainly with Palladio Villas (Palladio, 1570/1983), using Allegro-Lisp and

296 SOURAV KUNDU AND MICHAEL HELLGARDT

CLOS, which will be discussed in more detail in sub-section 4.2. We begin with
an enumeration of main components to be subsumed under shape language.

Shape Language:

1. an infinite set of designs (sentences);
2. a vocabulary of room-types (category symbols);
3. a shape grammar (a generative device):

3.1 a set of space-between generators;

3.2 a set of extentio generators;

3.3 a set of spatium generators;

4. Two continuation-functions:

4.1 controlling the extensio generator;

4.2 controlling the spatium generator.

We proceed with some explanation of these components.

3.1. THE SPACE-BETWEEN MECHANISM

It is shown that the space-between mechanism is at least of relative universality
in the built environment (Hellgardt, 1993, 1994). In various texts by Heidegger
(1954, 1985) the etymological roots of "Raum" (space) are discussed. In Building
Dwelling Thinking, (Heidegger, 1954, 1985) this is confronted with extensio. An
extensio "fills" a quantified section of a Cartesian grid, and it is a solid. (Lovejoy,
1936). Extensio seems to be an artificial term (we hardly encounter it in colloquial
language) in contradiction to space, the root of which is Spatium.

The emphasis of many connotations of the Latin "spatium", lies on movement
and duration. In terms of geometric descriptions this can be translated as follows
- "space in the function of spatium is an empty and to some extent amorphous
region, partially defined by surrounding extensio' s". Translating this in terms of
the direction of time of the proceeding of a design, we get the following fragment
of a serial computer algorithm:

WHILE extensio
spatium

We start with an extensio(n) and we continue in the direction of time with an­
other extensio creating a space-between these two extensio's, to be evaluated as
a spatium. This is continued ad infinitum, or until: (1) All possible and feasible
evaluable variants of the extensio and spatium functions are evaluated; and (2)
A desired configuration or a set of configurations is achieved and that, no more
continuation conditions for either extensio' s or spatium's are given.

Consequently we have to add continuation functions for extensio and spatium.
Start and termination of a project is controlled by continuation-spatium on the basis

NETWORKSANDSHAPEG~ARS 297

of a given design-context and design-brief (requirements). The resulting schem­
atic summary of an algorithm (where the I prefix marks arguments) is:
define-procedure space-between-generator I context Ibrief

WHILE continuation-spatium Ibrief
WHILE continuation-extensio Ibrief-section

WHILE extensio Ibrief-section
WHILE continuation-spatium Ibrief-section

spatium Ibrief-section

The space-between mechanism was discovered by one of the authors in his ex­
perience in the office of Scharoun, an architect whose work is obviously domin­
ated by the space-between mechanism, documented in texts by Scharoun himself
(refer Figure 1).

The space-between mechanism can be observed in anonymous building (me­
dieval town development, Arab building cultures etc.) as well as in professional
architecture. The central parts of Palladio villas for instance, can be interpreted
as a space, mainly a hall and a loggia, between confining mirrored wings (refer
Figure 2). This was a professional assimilation of the wing-centralspace-wing type,
dominating Venetian popular building culture (Ackerman, 1977).

Finally, the space-between mechanism appears also, though rather as an un­
desired by-product, in the literature, specially addressed as: non-trivial holes in
the rectangular-dissections (or LOOS) approach by Flemming et al. (1992). These
are resulting "space-betweens" actually.

3.2. THE VOCABULARY

The space vocabulary villa is largely described in (Palladio, 157011983): essen­
tially chambers, halls and loggias. Less mentioned are auxiliary rooms as stair­
cases and a species of by-rooms obviously resulting from floor-plan articulation
and serving as niches or fill-blocks (see Figure 2, Pisani). Important in the terms
of typology (sub-section 4.3.2) is the degree of universality of such collections of
room-types which we call categories referring to Chomsky's category symbols.

3.3. THE EXTENSIO GENERATOR

The wing of Palladio villas can be interpreted as linear arrays of rooms. They
can also be read as grid-configurations. This underlies the Palladian Grammar
by Stiny and Mitchell (1978) which however ignores the space-between struc­
ture. This array of rooms is a method of extensio which is simple but widely
found in building history. The wing-configuration of Palladio villas, however, is
not just a simple array but a special kind of an array, geared by Palladio's sys­
tem of harmonic proportions. This can be simulated fairly easily by a filtered
Cartesian product over sets of pairs of n x V icentanian-feet, representing har­
monic shaped rooms. This rather peculiar method can be presumably marked as
a particular shape grammar mechanism. Various kinds of extensio-generators can

298 SOURAV KUNDU AND MICHAEL HELLGARDT

Figure 1. Hans Scharoun, SALUTE estate (Stuttgart), detail and computer generated paraphrases
(Hellgardt, 1993).

Villa Badoero Villa Pisani,

7777702222088888888333
777770222208881&888333
7717702222088888888333
7777702222088888888333
7717102222088888888333
7777701111088888888333
7717701111088881818333
1771101111088881888333
7771701111055555555888
7771101111055555555888
7777700000000000000000
177770QQQQOOQQOOOOOOOQ
7771100999990999919999
7777700000000000000000
7777709909099909999999
77777000000000QQOOOOOO
7777100999090999990009
7111700000000090000000
i111709000990999090999
7711700000000000000000
0000000000000000000000

computer generated
Piasani paraphrase,
detail color values

Figure 2. Palladio, Space-Between interpretation.

be imagined, and all of the published floor-plan generators can be seen in this
light.

Finally, the space-between generator itself can serve as an extensio-generator.
We then get an embedded structure, as mentioned in 2) of sub-section 2.4 (and
also in sub-section 4.3.3). The spatium-generator will be discussed in some detail
in this paper.

3.4. CONTINUATION FUNCTIONS

Evaluation of available input data: Continuation-extensio controls the elaboration
of all brief-sections. If "Continuation-spatium" detects no evaluable space-between,
the next extensio brief-section is called.

A final test: A final test may be added to the last evaluated spatium-rule.

NETWORKSANDSHAPEG~ARS 299

Allocation: A temporal coordinate system allocates any additional extensio in an
either initial or emerging context.

Selection of possible grammars: Influenced by Heidegger, Scharoun called this
Gestaltanweisung (shape/gestalt-indication): the assignment of a particular device
of shape configuration (a grammar), on the basis of an evaluation of a given con­
text, a kind of reading (mentioned in the opening of section 2), or recognition
performance resulting in a strategy of how to proceed in a design process.

3.5. ENCODING RULES OF THE SPATIUM-GENERATOR

3.5.1. Delimitation rules

Delimitation rules draw a borderline to complete a space between extensios.

Productive substitution rules
A study of all available Palladio Villas confirms sub-section 2.3. Staircases, log­
gias, etc. can be interpreted as hatched patches gradually filling the central space
between wings. The corresponding representation and implementation technique
obviously is pixel-maps. The space-between generator starts with an empty pixel­
map. Certain patches of the color-value representing emptiness are substituted
then. Translated into a prescription this means that zones or zone-regions have
to be specified to be filled entirely or, provided xy- values are given, partially. If
no x- or y-value is given, the entire corresponding zone or zone-region-section
is filled. This very simple and fundamental by definition context-sensitive mech­
anism imitates the presumably partially subconscious exploration and reading of
thoroughly ambiguous contexts in practice; a kind of active space perception. It
can be expressed by one single anonymous substitution-rule to be called "on be­
half of' various room-categories. If lists of possible parameter-values are provided
all rules associated with room-types can be encoded as strings of numbers defin­
ing a position in the corresponding list. This possibility intuitively suggests ex­
periments with crossing-over of rules, which in effect produces new rules that did
not exist before, using a Genetic Algorithm (see section 5).

Evaluative substitution rules
These rules quantify features as topology, surface or shape of an expression (room)
created. They are context-free or sensitive. In terms of typology they do not ne­
cessarily coincide with productive rules. All rooms must be evaluated, but not ne­
cessarily produced, because they can simply result as remaining patches, as in
our Palladio simulation the hall (see Figure 4). The selection and concatenation
of rules is organized by means of a network, which is probably an indispensable
tool which will be discussed in the following section.

300 SOURAV KUNDU AND MICHAEL HELLGARDT

4. Networks

Networks are powerful problem representation models. In network search, ana­
lysis and optimization, the goal is to search for a path through the network that
optimizes certain given objective functions, satisfying the given constraints. Thus
each path traversed through a network should have an unique utility measure which
will allow us to award a certain fitness measure to that path, to compare it with
other (grammatically) feasible paths. Searching for an optimal path through the
network can be depth-first search or breadth-first search, both of which involve
blind groping. Another blind way to search for a path through the network is
exhaustive-search. This method often results in a combinatorial explosion. In this
section we describe a formal network notation and then transcribe an Augmen­
ted Transition Network (A TN-frame) with this formal notation which is used to
simulate all real instances of non-bisymmetric Palladio villas, via a shape gram­
mar. The solution of this network-representation involves search for a feasible
path through the network that results in a grammatically correct Palladio Villa.
This searching problem can be performed by heuristic search algorithm, which is
a Genetic Algorithm (GA), the encoding for which is described in section 5.

4.1. NETWORKS - FORMAL NOTATION

Here we briefly outline a formal mathematical framework adopted from Osyczka
(1980) and Osyczka (1984), to encode a network model which can be manipu­
lated using a computer.

Let S =< X, R, l > denote a network whose graph G =< X, R > belongs
to the class of directed and acyclic graphs, where X is a set of nodes, R is a two
argument relation defined on the set X, l a vector function defined on the arcs
of the graph G. The two argument relation R defines which nodes are connec­
ted by arcs and in which direction. For example Xn R Xm denotes that node Xn is
connected with node Xm and the direction is from the node Xn to the node Xm.

We assume that the set of all the nodes X can be divided into subsets Xl, X 2,

... , Xn and that the nodes can be connected only between neighboring subsets Xl
with X2, X2 with X3, X3 with X4 and so on. Each subset Xn contains no empty
set of nodes Xn = x~, x;, x~n. The two argument relation R can be defined
only for neighboring subsets i.e. x~n Rx:;t1 for n = 1,2, ... , N - 1, mn =

1,2, ... , M n, m n+1 = 1,2, ... , M n+1. The vector function jis defined as follows.
A vector:

f (mn mn+l) - [f (mn mn+l) f. (mn mn+l) f (mn 7nn+l)]T Xn ,xn+l - 1 Xn ,Xn+l , ... , t Xn ,Xn+l , ... , I Xn 'Xn+1
(1)

is associated with any pair of nodes xmn x mn+1 E X for which xmn Rxmn+1
n , n+l n n+l·

The I components of the vector j (x~n, x:;r) which are given as the weights
assigned to the arcs connecting the pair of nodes x~n, X:.+tl represent the ob-

NETWORKSANDSHAPEG~ARS 301

jective functions. To comprehend the matter presented in this paper the following
set of nodes would be relevant:
• : r Xn - a set of the nodes Xn E X for which x n Rxn +1.
In other words the set r Xn contains those nodes for which the arcs lead out of the
node X n . We denote: 1) Pj = {Xl, ••• , X n , ... , XN} the j - th path in the network
joining the node from the set Xl to the node from set XN and 2) P = {pj} a
set of all the Pj paths in the networks where j = 1,2, ... , J. The network analysis

and search problem of the network S =< X, R, l > can now be formulated as:
Find the path p* = {xi, ... , X~, ••• , xlv} in the network S which optimize a vector

function: l(pj) = [11 (pj) , ... , h(pj), ... , !I(pj)f for a general multiple criteria

case. The i-th component of the vector f (Pj) is evaluated as follows:

N-I

h(pj) = L h(xn , X n +1) (2)
n=l

In other words the search problem is to find a path p* = {xi, ... , x~, ... , xlv}
for which

N-I

h(p*) = min L h(xn , xn +1) for i = 1,2, ... ,1
pjEP n=l

(3)

We assume that all the functions are to be minimized. For a multiple criteria model
there is no unique solution which satisfies (3). Thus Pareto optimality concept
which is of particular interest in the context of this paper, is introduced. The path
p* = {xi, ... , x~, ... , xlv} is Pareto optimal if and only if there exists no path
Pj E P such that h(pj) ~ h(P*) for i = 1,2, ... , I with h(pj) < h(p*) for
at least one i. This definition is intuitively based upon the fact that the path p* is
chosen as the optimal if no criterion can be improved without worsening at least
one other criterion. For most of the network search models, there exists a set of
Pareto optimal paths and the problem is to find this set.

4.2. DESCRIPTION OF AN AlN FRAME

When we adopt the space-between-generator described in sub-section 3.1 to the
main mechanisms underlying Palladio Villas described in section 3, we get the
following reduced version of the algorithm (again the I prefix marks arguments):

defin-procedure palladio-villa iscale
FORALL wing-instances iscale

WHILE continue-spatium-mirror
spatium

scale is a list of n x V icentinian-feet, and is the input of the wing-configura­
tion function (wing-instances, refer sub-section 3.3). In a realistic simulation at
least some hundred add wing-instances are resulting from this function. In the

302 SOURAV KUNDU AND MICHAEL HELLGARDT

real cases we can observe various underlying scales, which is not important here.
The continue-spatium control-function is reduced to the mirroring of the wings in
various widths of the space-between. Symmetry is a main feature of all Palladio
villas. The bi-symmetric cases have not yet been dealt with.

In the formal notation presented in the sub-section 4.1, we described that the
set of all the nodes X can be divided into subsets Xl, X2, ... , Xn and that the
nodes can be connected only between neighboring subsets Xl with X2, X2 with
X3, X3 with X4 and so on. Thus Xl, X2, ... , Xn are the stages (or levels) of the
network and n is the index of the stage ofthe network. The notation x~n Rx:';t
denotes that node x~n is connected with node x:.;t where n denotes the stage
of the network and mn denotes the index of nodes at stage n of the network. In
fact mn is a pair of indices as described below. There are a total of N stages
in the network and the total number of nodes in each stage is M. The function
Ii (x~n, x:.;t) in equation (1) will then refer to rulei (a rule with index i) that
can be applied at node x~n, to traverse to node x:.;t. The vector function

will then be a rule vector.
On this background we transcribe the algorithm above into the form of a net­

work S =< X, R, f > (refer sub-section 4.1), represented by an array of stages
of nodes (set X):

····················wing·instance···········Stage 1 (Node Set Xl)
I

···start ATN········mirror wing·············Stage 2 (Node Set X2)

I
·start spatium····· vault·articulation······Stage 3 (Node Set X3)

I
.......................... (Rule Set R3)

I
··Stage 4 (Node Set X4)

I
.......................... (Rule Set R4)

I
etc.

Stages of the main Network for Palladia Grammar Representation

At Stage 2 starts an ATN (Augmented Transition Network) with the mirror­
ing of the current wing-instance, thus creating a space-between. At Stage 3 starts
the spatium-network with a subdivision of the space-between in order to prepare
for the articulation of vaults in them: tunnel or cross-vaults, possibly constructed
in various ways (defined by vault rules). The spatium-network, in our Palladio­
interpretation consists of 5 category-levels, corresponding to a Palladio-villa-space­
between-vocabulary consisting of 5 categories (halls, loggias, staircases, niches
and fill-blocks) with which 5 substitution-rule-sets are associated (substitution­
rules are explained in sub-section 3.5). At any node there are two options:

NETWORKSANDSHAPEG~ARS 303

1. either proceed to the next stage in case the previous function is satisfied, or
if it isn't;

2. go back to the previous level in order to choose another arc.

Thus the arcs in our network are bi-directional. The nodes of this network are
encoded and written in the following form:
define-node mirror-wing

start vault-articulation mirror(l) wing

start vault-articulation mirror(n) wing

define-node vault-articulation
continue room-category(c) <vault-articulations>

continue room-category(c) <vault-articulations>

define-node room-category(c)
continue room-category(c) <substitution-rule-set(r»

continue room-category(c) <substitution-rule-set(r»
resume <substitution-rule-set(l»

resume <substitution-rule-set(n»

Here (c) marks the c-th category-node, and (r) the r-th substitution- rule-set. The
method underlying this notation and its implementation in Lisp is described by
Graham (1994) with the demonstration ofthe functioning of an ATN (a grammar),
parsing simple natural language expressions.

Define-node defines a macro with a name of a node (x) and a body of code
of outgoing arcs (x~n Rx:+t). When a node is defined these arcs are macro­
expanded, that is, translated into the form defined by the (macro) definitions of
their first expressions which are functions f (refer sub-section 4.1), here: the start,
continue and resume-functions. The arcs evaluate a register of information stored
away as closures with the proceeding of the network. The ATN starts with a start
function with the argument of the first register, here: the result of the mirroring
of the current wing input. Continue-arcs are of the form: f (g (x)), where x is the
current register, g the current function to be evaluated (a substitution-rule from
the given rule-set) and f the next function to be evaluated, the next node. The
terminal arcs are the resume-arcs, evaluating all substitution-rules as possible fi­
nal operations. For the ease of clarity the resume-arcs can be subsumed under one
'coda' -node. This is shown in Figure 3.

The ATN-arc notation above shows that within the spatium part of the net­
work the vector function I described above assigns: (1) the next node to address
and (2) a rule to be chosen from the rule set in the arc of the current node. The
general form of this is:

f(n, node - index, rule - index)

with n as the stage index and thus x~n corresponding to x~ode-index.rule-index.

304 SOURAV KUNDU AND MICHAEL HELLGARDT

eatelOry node ACI Xc

o WIDf START ATN (new)

rule-let X R

V.ult · kind

Vault· kODllr

Automatic

reduction to ----'---=---+S=--­
legal c:hoices

7

II

13

t.
;; • .!!

X
u

~
c
~
3

1
f

I mirror START ATN (paper)

2 yault START spatium
erUcu.lat ion

~

~
8 ;; L _loggia .

.!!

i S - 8lairc.se
c
~ p. Ilub)field

f.
!i B. block .
" B

10 e @).cod a

12
t

1 2 3 " ..•...... - ... -:;> evaluation ohemaining uniU,)

Figure 3. The evaluation tree.

Figure 3 shows how one fictitious path (L-3, F-3, B-3, S-3) traverses through
the network. This figure unfolds visually, the interplay between these node and
rule-indices, which correspond to the interplay between the selection of sequences
of (room) categories and of the rules. Figure 4 shows the visual surface (not as
pixel but as line representation, for reasons of screen printing) of three examples
of real successful paths. The cases 3) and 4) demonstrate that the inversion of se­
quences, here of loggia and staircase, can result in different appearances. Such
expressions can be compared with structural homonymities discussed in language
theory (Chomsky, 1957) pp. 28. Case 1 shows the working on an empty rule, the
one of L2 (loggia2): under particular contextual constraints, no loggia is required
within the the central villa-corpus, it might be added outside in some way.

ATNs can be run for undirected exhaustive or various ways of directed search.
One way of directed search is that when a node is called, its first arc is chosen to
be evaluated and the remaining (macro-expanded) arcs are stored as closures in
a paths-list. These can be addressed to be evaluated by a fail-operator which can
be called as long as no feasible path, or no path satisfying some objective func­
tion is found. In case of exhaustive search (refer also sub-section 4.3.4) the fill­
operator subsequently calls all available arcs. Another way of directed search is
that a choose-operator, which is addressed when a node is called, assigns an arc
and a rule within it to be chosen, using node and rule-indices as described above.
These pairs of indices are to be extracted from the result of the heuristically direc-

NETWORKS AND SHAPE GRAMMARS 305

1) L2. T2 (:.) 3) Ll. 54. T4. B; (:20) 4) ~3. Ll . ill (424)
tO SCOfl :JIcr-o:>nrosc ?isoni ocroDnrosc (in () (1r of ;C<jCI rule-evoluol:ons)
Puics' L(o)=:OC;9;O ==. ·~ - : ~sto"cose W#/0. S(n)~5"o! ie,c ~. B(n)~Dloc. 1111111111. o:onk/cross~noll

Figure 4. Simulating Palladio villas - 3 of 5 syntactically correct, but not equally ranking in­
stances, resulting from exhaustive search for lout of 208 wing-instance in I mirror-width and
vault-articulation

ted search mechanism, for instance the Genetic Algorithm (GA) to be described
in section 5.

4.3. DISCUSSION PART 1: ASPECTS OF KNOWLEDGE REPRESENTATION

4.3.1. ATNs as frames of knowledge
Neither shape grammars nor networks are just tools to model technical problems
(refer section 1). ATNs, which are independent from particular grammars, but de­
signed to represent grammatical principles, can synthesize chunks of knowledge
for special scientific or practical aims. In the notation above they are transparent
enough to serve as a flexible tool for the definition of grammatical structures as
for their experimental adjustment.

4.3.2. Typification
No genesis of design can be explained beyond typification. The hatched-patches
mechanism described in subsection 3.5.2.1 is obviously a universal, partially sub­
consciously working one, so is the space-between mechanism and the type under­
lying Palladio villas (see subsection 3.1). Both the Palladio as the Scharoun para­
phrases (Figures 1-3) can be produced with these tools, the same generator and
the same rule-mechanism, using the same ATN- frame. Palladio-specific was his
consciously applied method of "spatial chords" (see sub-section 3.3). Scharoun­
specific, also provably consciously, was his way to generate space-betweens in
inclined and "deconstructed" environments. Culturally determined design obvi­
ously combines subconsciously and intentionally working performances. It has
a corresponding profile in terms of typification. Using object systems, ATNs al­
low extensive recourse to typologies. Particular sequences and types of operations
and material to be explored can be programmed connectedly. All rule-evaluations
within arcs create instances of category (super)classes and are linked to them
as a kind of intelligent objects by the virtue of knowledge stored in them. Con­
nectedly all rule operations are related by means of method-inheritance to fea­
tures of the objects they are transforming (in our case for example, special sub-

306 SOURAV KUNDU AND MICHAEL HELLGARDT

stitution rules are provided for corresponding wing-types - Columns, L or Grid
fragmented-shaped). The link to typification is ensured by inbuilt prescriptions
and procedures of the ATN described.

4.3.3. Recursion
ATNs can address sub-networks, or shape-configurations within shape-configur­
ations. Until now we have experimented with embedded structures only on a prim­
itive level: a staircase can be inserted in a subfield, possibly leaving an unused
niche (case 3, Figure 4). For more complicated structures it is presumably neces­
sary to define special continue-subfield functions identifying subfields in a given
space-between configuration. The way how sub-networks are addressed in lan­
guage (ATN) parsers will be a major reference for that.

4.3.4. Exhaustive search
The system has been applied on the level of exhaustive search to simulate Schar­
oun (Figure 1), to elaborate on which is impossible here, and Palladio (Figure 4).
Random search has been applied too and it arbitrarily comes up with the same
result, though very inefficiently. The price of exhaustive search is a combinatorial
explosion. But enabling visual control is - particularly when related to strategies
of typology - a useful, if not indispensable tool in the field of cultural expression
where we cannot trust our abstract assumptions, and where quantifiable standards
of evaluation do not simply correspond to technical problem-solving.

5. Genetic Search and Evolution

While using the shape grammar paradigm within a shape language for generat­
ing architectural designs (speaking aspect) or for parsing architectural expressions
(reading aspect), we are restricted by the choice of afixed grammar. Any design
activity, has two principal components that the designer consciously or subcon­
sciously performs. These are learning and reasoning. Reasoning is done via pre­
viously learned design knowledge and the inherent belief system in the designer,
and learning is done via a feedback from the design output. If the design is what
we might call a routine or technically oriented design task, learning will involve
finding a feasible, perhaps optimal, sequence of shape-rule applications resulting
in (shape) syntactically correct structures. This is equivalent to searching for paths
satisfying Pareto Optimality condition outlined in sub-section 4.1. In technically
oriented design we might call this as an equivalent to search for an optimal path
through the network. This will eventually result in a desired shape configuration
(final design). The problem here is one of search. A Genetic Algorithm (GA) can
be easily used to perform a directed search and avoid the combinatorial explosion.

In the cases of non-routine or culturally oriented design, a fixed grammar of­
ten limits expressions or ability of the designer. In that case learning will involve
"restructuring" of the design knowledge embedded in the shape grammar itself,

NETWORKS AND SHAPE GRAMMARS 307

or in other words, evolution of the shape grammar (Gero et al., 1994). We thus
come to the aspect of - evolving a shape grammars - represented by means of a
network. An approach - called the Pittsburgh approach (De Jong, 1987) - can be
used to evolve the shape rules. In this case, the individual subjected to evolution
(a shape grammar) encodes a whole tentative solution to the learning problem,
such as a whole set of shape rules of one particular shape grammar, or a set of
paths through the network. The feedback to be used for learning is then some
evaluation of the performance of the intermediate solution produced by the shape
rules, with respect to the goal of the learning task. The outcome of such evolution
task would be new shape grammar rules, or new paths (set of arcs) in the network
which never existed before. Thus we discover new shape grammar which helps
us to either generate or parse new architectural designs. We explain the computa­
tional evolution model (the GA) in the following.

5.1. GENETIC ALGORITHMS

Genetic Algorithms (GAs) (Holland, 1975) are distinguished by their parallel in­
vestigation of several areas of a search space simultaneously by manipulating a
population, members of which are coded problem solutions. The task environ­
ment for these applications, is modeled as an exclusive evaluation function which,
in most cases is called a fitness function that maps an individual of the population
into a real scalar. The motivational idea behind GAs is natural selection. Random­
ized genetic operators like selection, crossover and mutation are implemented to
emulate the process of natural evolution. A population of "organisms" (usually
represented as bit strings) is modified by the probabilistic application of the ge­
netic operators from one generation to the next. A more detailed explanation of
the theory and working of the GA can be found in Goldberg (1989).

5.2. ENCODING NETWORKS FOR GENETIC ALGORITHM APPLICATION

In this sub-section we describe a technique using which, the mathematical net­
work formulation described in sections 4.1 and 4.2 can be easily transformed into
a coding, that is compatible with the genetic algorithm evolution model. We can
also have the matrix notation of the network S =< X, R, l >. For the i-th ob­
jective value (rule evaluation value) and for the arcs which connect the nodes from

the set Xn = {x~, x~, ... , x~+\} to the set Xn+1 = {x~+1' X;; +1 , ... ,X~+t1} we
have:

[!;(X~,X~+l) Ii{x~, x~+1) f (' Mo.,)] i Xn,XUl
... Ii{x~, x~+1) li(x~,x~+1) f (2 n+1)

Fin = i Xn, Xn+1 (4)

Ii (x!!n , x~+1) fi(X!!n, x~+1) t(xMn xMn+1)
~ n , n+l

The full description of the network is obtained when we write the matrices Fin
for i = 1,2, ... , I and n = 1,2, ... , N - 1. In the matrix notation if the node x~n

308 SOURAV KUNDU AND MICHAEL HELLGARDT

is not connected with the node x:+t, then the value of !i(X,,:n, x:+t) = A,
for n = 1,2, ... , N - 1, where A is an arbitrarily chosen great number so the
path going through these nodes cannot be taken as the feasible one in the shape
grammar search and evolution task. In the process of evolution some new arcs are
generated while some exiting arcs perish (get the value A). Thus giving rise to
new shape grammar rules.

Consider the network presented in Figure 5, which we may consider as a part
of a reduced version of the ATN, described in sub-section 4.2, connecting only
rule-sets. The two numbers designated to each arc of the network are the ex­
ample fictitious values resulting from a rule evaluation. (a bi-criterion function
l (x,,:n , x:tt) as described in sub-section 4.1). This means they are the evalu­
ation values contributing to the fitness that is awarded to a shape-grammar if that
particular arc is traversed. The matrix notation of this network is:

[
20 18 21 1000 1

Pu = 28 23 1000 20
29 27 19 22

[
5 7 6 10~00 1

P21 = 3 8 1000
10 9 6

P12 = [1~~0 !; !~ 1 P22 = [1~~0 ~! ~~ 1
46 38 40 9 15 10

1000 42 47 1000 16 8
Here we have assumed that A = 1000. We use the matrices shown above to

encode the whole network as the genetic algorithm genotype string. Our genotype
string is a concatenation of each rows of the matrices above. Here we make a
very brief note on the encoding method of the Network for use by a GA, as this
is out of scope of this paper. We serially concatenate the binary coding of each of
these matrix entries and make up the GA usable genotype strings. This genotype
string is a member of the GA population, which undergoes the evolution process.
These strings are subjected to the genetic operators that produce new arcs of the
network, thus giving rise to new rules.

5.3. DISCUSSION PART 2: ASPECTS OF DIRECTED SEARCH

We have shown how the GA described is linked to the ATN-frame. How this
formal template can be applied to a real field, Palladio Villas or some other, have
not been shown yet. As said (in subsection 4.3.4), the difficulty lies in quantifi­
able selectional rules. Thus, it is not plausible that we could simply adopt some
technical "problem-solving" and allegedly apply harmless quantitative standards
of use-value in terms of surface, topology (accessibility) and similar aspects, to a
phenomenon such as Palladio. The result will not make much sense in terms of
architectural and environmental development. We can never grasp some quanti­
fiable aesthetic standards in this way. How such standards and objective, or tech-

NETWORKS AND SHAPE GRAMMARS 309

>- TA hI

Figure 5. Example of a multicriteria network having fictitious rule evaluation (bi-criterion) values
assigned to it.

nical properties are interlinked, might be connected to laws of grammaticalness in
related fields of configurative expression, such as architecture. We have presented
the Network and GA models to compute shape grammars, not as technical pan­
acea but as a tool to pursue such questions.

Acknowledgments

One of the authors wishes of acknowledge the research support of Prof. John S.
Gero, of the Design Computing Laboratory, University of Sydney.

References

Ackerman, J. S.: 1977, Palladio, Penguin Books, Harmandsworth, Great Britain.
Cagan, 1. and Mitchell, W. 1.: 1993, Optimally directed shape generation by shape annealing, En­

vironment and Planning B, 20, 5-12.
Cagan, J. and Mitchell, W. 1.: 1994. A grammatical approach to network flow synthesis, in 1. S.

Gero and E. Tyugu (eds), Fonnal Design Methods for CAD. Elsevier Science, Amsterdam,
pp. 173-189.

Chomsky, N.: 1957, Syntactic Structures, Mouton, The Hague/Paris.
Chomsky, N.: 1965, Aspects of the Theory of Syntax, The MIT Press.
Chomsky, N.: 1994, Language and Thought, 3rd Anshen Transdisciplinary lecture in Art, Science

and the Philosophy of Culture, Emeryville CA.
Coyne, R. and Snodgrass, A.: 1993, Rescuing CAD from rationalism, Design Studies 14.
De Jong, K. A.: 1987, Learning with genetic algorithms: An overview, Machine Learning. 3, 121-

138.

310 SOURAV KUNDU AND MICHAEL HELLGARDT

Fleisher, A: 1992, Grammatical architecture, Environment and Planning B.
Flemming, U.; Baycan, C. A; Coyne, R. F. and Fox, M. S.: 1992, Hierarcical generate-and-test vs.

Constraint-directed search, in J. S. Gero (ed.) Artificial Intelligence '92, Kluwer, Dordrecht.
Gero, J. S.: 1992, Creativity, emergence and evolution in design, in J. S. Gero, and F. Sudweeks

(eds), Preprints 2nd International Round Table Conference on Computational Models of Cre­
ative Design, Department of Architectrual and design Science, University of Sydney. pp. 1-28.

Gero, 1. S.; Louis, S. 1. and Kundu, S.: 1994, Evolutionary learning of novel grammars for
design improvement. Artificial Intelligence in Engineering Design, Analysis and Manufactur­
ing (AIEDAMJ. 8(2),83-94.

Goldberg, D. E.: 1989, Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, Massachusetts.

Graham, p.: 1994, On Lisp, Advanced Techniques for Common Lisp" Prentice Hall, Englewood
Cliffs, New Jersey.

Heidegger, M.: 1954 and 1985, Bauen Wohnen Denken (Bulding Dwelling Thinking), Vortriige
und Aufsiitze, Verlag Gunther Neske.

Hellgardt, M.: 1993, Syntaktische Aspekte der Arbeit von Hans Scharoun, Begrundungen und
ErHiuterungen zu den im Begleitprograrnm der Ausstellung "Werkschau Hans Scharoun"
vorgefUhrten Fragmenten einer Scharoun-Syntax, Akademie der Kunste, Abteilung Baukunst,
Berlin.

Hellgardt, M.: 1994, Dentro l' architettura di Scharoun, Housing 6, Etaslibri, Milano.
Holland,1. H.: 1975, Adaptation in Natural and Artificial Systems. University of Michigan Press,

Ann Arbor, Michigan.
Humboldt, W. von: 1795/96 and 1973, tIber Denken und Sprechen (On Thinking and Speaking),

Schriften zur Sprache, Redam, Stuttgart.
Lovejoy, A 0.: 1936, The Great Chain of Being, Harvard University Press.
Osyczka, A.: 1984, Multicriteria Optimization in Engineering with FORTRAN programs, Ellis

Horwood Limited, Halsted Press: a division of John Wiley & Sons, Chichester, England.
Osyczka, A: 1980, Multicriteria network optimization, Computing, 25, 363-368.
Pal1adio, A: 1570 and 1983, Die vier Bucher zur Baukunst, Artemis Verlag, Zurich/Munchen, (I

Quatro Libri Dell' Architettura, Venice 1570)
Searle, J. R.: 1969, Speech Acts, Cambridge University Press.
Stiny, G.: 1980a, Introduction to shape and shape grammars, Environment and Planning B, 7,

343-351
Stiny, G.: 1980b, Kindergarten grammars: Designing with Froebel's buildings gifts. Environment

and Planning B, 7,409-462.
Stiny, G. and Mitchell, W. J.: 1978, The Palladian Grammar, Environment and Planning B.

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 311-324.
© 1996 Kluwer Academic Publishers.

VARIABLE-COMPLEXITY EVOLUTION OF SHAPE GRAMMARS FOR
ENGINEERING DESIGN

PETER J. GAGE

School of Aerospace and Mechanical Engineering
Australian Defence Force Academy
Canberra ACT 2600 Australia

Abstract. Shape grammars provide a fonnal method for efficient description of engin­
eering designs, by listing a sequence of modifications to a baseline design. A genetic al­
gorithm can be used to identify helpful elements of the grammar and to search for optimal
combinations of grammatical elements. A variable complexity genetic algorithm, which
pennits modification sequences of varying length, can identify useful elements in short
sequences and subsequently exploit them in longer sequences. Application to multicri­
teria optimization of a beam section, to maximize stiffness-to-weight ratio and minimize
perimeter, demonstrates the benefits of the variable-complexity algorithm.

1. Introduction

Genetic algorithms are designed to mimic evolutionary selection (Goldberg, 1989).
They provide a robust search method which permits the use of discrete-valued
variables, and is effective in multi-modal and non-smooth domains. Initially, a
population of candidate designs is distributed throughout the global design space.
New populations are produced by recombination of the descriptions of existing
designs, and the algorithm learns to concentrate the search in promising subspaces.
A variable-complexity genetic algorithm can operate on alternative designs de­
scribed by different numbers of variables (Gage, 1994). This is particularly appro­
priate for design studies, where it is common to start with a simple representation
and progress to more detailed descriptions which use more variables.

Each individual in a population of the genetic algorithm is represented by a
'genetic' string, which is a coded listing of the values of the design variables. The
entire string is analogous to a chromosome, with genes for the different features
(or variables). The high fitness individuals do not actually survive across gener­
ations, but the description of their features is propagated. Genetic algorithm per­
formance is strongly influenced by the encoding scheme, which defines the extent

312 PETER J. GAGE

of the search space, and influences the identification of promising subspaces (Lie­
pins and Vose, 1991; Davidor, 1991).

Shape grammars efficiently describe complex shapes as an assembly of simple
components. Originally developed by Stiny to formally prescribe the elements of
particular architectural styles (Stiny, 1980), they have been used by several re­
searchers to describe the search space in optimization tasks (Cagan, 1993; Gage
et aI., 1994; Gero et aI., 1994). Gero et ai. (Gero et al., 1994) showed that a ge­
netic algorithm could be used to evolve a shape grammar, while simultaneously
evolving sequences of shape transitions which use the rules of the grammar being
evolved. In this paper, that work is extended by using a variable-complexity ge­
netic algorithm for the evolution. An application to the multicriteria optimization
of beam cross sections demonstrates that the standard and variable-complexity al­
gorithms are effective for beam shapes of moderate complexity, but the greater
flexibility of the new method produces superior designs for very simple and very
complex beams.

2. Genetic Algorithms for Evolutionary Search

Genetic algorithms are global search methods which use operators modelled on
biological reproductive mechanisms observed in the natural world. A population
of candidate designs is randomly generated, to provide a statistically meaningful
sample of the global search space. Descriptions of these designs are encoded in
'genetic' strings, and strings of relatively fit designs are selected to contribute to
the production of new strings describing new designs.

The effectiveness of genetic algorithms depends on useful correlations between
parts of the genetic string (genotype) and the performance of the individual it rep­
resents (phenotype). Substrings, or building blocks, which appear in the descrip­
tion of above-average phenotypes are likely to survive into the next generation,
even if the genotype is broken up by the action of crossover and mutation. Short,
low-order building blocks are retained and combined to form higher-order build­
ing blocks, with the process repeating over many generations until the best design
is found. Promising features of different candidates can be recombined to produce
improvements in complete designs.

A wide variety of exotic genetic operators have been devised, but a few fun­
damental features are common to most genetic algorithms: encoding, selection,
crossover and mutation. Each of these characteristics is described in the follow­
ing paragraphs. Details of the particular implementations used in the current study
are also discussed.

2.1. ENCODING

Genetic algorithms do not operate on design variables directly, but manipulate a
genetic string, which encodes the variables. Algorithm efficiency depends directly

VARIABLE-COMPLEXITY EVOLUTION OF SHAPE GRAMMARS 313

on the recombination of low-order building blocks into higher-order assemblies,
so encodings which promote the recognition of promising building blocks should
be carefully chosen for each application (Liepins and Vose, 1991). Although Hol­
land's schema theory (Holland, 1975) suggests that binary representations are to
be favored because they maximize the number of potential building blocks in the
string, they are not always appropriate. This is particularly true when a binary
encoding produces a large proportion of infeasible candidates. In a sequencing
task, for example, a binary encoding of a precedence matrix allows representa­
tion of orderings that are logically inconsistent (e.g. A precedes B, B precedes C,
C precedes A) (McCulley and Bloebaum, 1994). With only 8 items to be placed
in sequence, 99.98% of all possible strings describe impossible orderings, and a
randomly-generated initial population is unlikely to contain any feasible candid­
ates. Permutation encodings used in conjunction with re-ordering operators are
much more successful in problems of this type (Kroo et aI., 1994).

In some situations, identification of promising building blocks is simplified if
the encoding is not limited to a fixed length. Messy genetic algorithms (Goldberg
et aI., 1989; Goldberg et aI., 1990) use variable-length strings to avoid decep­
tion that can arise when promising building blocks have a large defining length
in a chosen (fixed) encoding. These encodings refer to a fixed set of parameters,
but may include several references to each parameter. It is also possible to use a
variable-length encoding to refer to a varying number of parameters, as in genetic
programming (Koza, 1992) and in the variable-complexity genetic algorithm used
in this study. The schema theorem was extended by Smith (1980), to show that
promising building blocks are appropriately retained and recombined when string
length is not constant. Koza cites the empirical evidence of successful applica­
tions of genetic programming in a variety of fields as proof that adaptation of
variable-length strings is a valid search mechanism.

A shape grammar encoding of a complex shape is typically efficient, because
it need refer only to component shapes that appear in the design. This approach
compares favorably with the exhaustive representation schemes commonly em­
ployed in genetic encodings, which refer to the existence or absence of all pos­
sible components (Sakamoto and Oda, 1993; Grierson and Pak, 1993; Grierson
and Pak, 1993b; Yang, 1993; Hajela et aI., 1993). More detailed discussion of the
advantages of shape grammar encodings is provided in the next section of this
paper.

2.2. SELECTION

Selection is the operation which rewards high-fitness designs, because there is a
relatively high probability that they will be chosen for reproduction. The selection
scheme should be chosen to balance the competing desires to exploit promising
features contained in the existing population and to explore the design space for

314 PETER J. GAGE

Conventional
Cross-over

Vanable-Iength
Cross-over

Figure 1. Standard and variable-complexity crossover operations.

new possibilities. If selection pressure is too great, diversity can be quickly lost,
and the population will converge to a sub-optimal design. If selection pressure is
too weak, the algorithm is reduced to random search.

Roulette-wheel selection is commonly used in simple genetic algorithms (Gold­
berg, 1989), but it is susceptible to premature convergence when a poorly scaled
fitness domain allows one individual to dominate reproduction, by occupying most
of the space on the wheel. Ranking schemes prevent such dominance, because
they are not affected by the margin of superiority of higher-fitness individuals.
Tournament methods perform a local ranking at each selection operation, without
ever requiring the entire population to be sorted. Each time a parent is needed, k
members of the current population are selected at random, where k is the tourna­
ment size. Their fitness is compared, and the highest fitness individual becomes
the parent. With this scheme, it is expected that the best individual will be a par­
ent k times per generation (it will participate in k tournaments and win them all),
with linear decline in expectation of reproduction to the worst individual, which
cannot win a tournament.

When a genetic algorithm is used for multicriteria optimization, the selection
method must produce a scalar fitness function from the objective function vector
(Fonseca and Fleming, 1995). In this paper, the notion of dominance (one indi­
vidual dominates another if it has a superior value for each component of the ob­
jective vector) is used to select the winner of a tournament of size two (k = 2).
If neither candidate is dominant, selection is random. This weak selection scheme
preserves variety in the population, which is useful when searching for a Pareto
optimal set of alternative designs.

2.3. CROSSOVER

Crossover operators generate new designs composed from elements of two earlier
designs, thus exploiting features already present in the population. Figure I shows
how parts of two parent strings are recombined, both for standard and variable-

VARIABLE-COMPLEXITY EVOLUTION OF SHAPE GRAMMARS 315

complexity operators. The position of the crossover point along the string is chosen
at random. If variable-length encodings are permitted, the crossover point may be
different in each parent, so offspring of different length are produced.

2.4. MUTATION

Standard genetic algorithms generally include a pointwise mutation operation,
which modifies individual bits of the string at random, and produces correspond­
ing changes to a design variable. This operation can introduce features not present
in either parent, so it helps to maintain diversity in the population.

Variable-complexity encodings permit the introduction of deletion and inser­
tion mutations (Fig. 2). In these operations, a segment of the existing string is
selected at random, and either removed (deletion) or duplicated (insertion).

Deletion lnscnion

Figure 2. Deletion and insertion mutations.

3. Shape Grammars in Engineering Design

Shape grammars describe complex topologies as assemblies of simple compon­
ents. They include four basic features: an initial shape, a set (or alphabet) of com­
ponent shapes, a set of labels, and a set of shape transition rules. The shape trans­
ition rules describe all legal modifications to an existing shape, and have the form:
X -+ Y, where X and Y are instantiations of component shapes (or assemblies
of component shapes). The initial shape is transformed by application of a shape
transition rule (so at least one rule must have the initial shape as its left hand side).
The resulting shape can be further modified by subsequent application of more
transition rules. Labels are used to instantiate special features of each shape, such
as size, material density or sites where additional shapes may be added.

By starting with a basic shape, and adding complexity only as necessary, shape
grammars bias the search in favor of simplicity, which is beneficial for learn­
ing (Mitchell, 1990). The rules of a shape grammar can also incorporate factual
knowledge of the domain. For example, when components of a complex design
must be connected, the rules might only permit transitions which add components
adjacent to existing components. This further simplifies learning about superior
designs, by biasing search in favor of feasible candidates.

316 PETER J. GAGE

Reddy and Cagan employed a shape grammar to represent topologies of struc­
tural trusses (Cagan, 1993). They sought the optimal topology by starting with
the simplest shape that would support the applied loads, and then using shape
transition rules to produce more complex topologies. Search was performed by
a simulated annealing algorithm, and at each iteration of the algorithm, a single
shape transition rule (randomly selected from all rules in the shape grammar) was
appended to the sequence describing the current design. The length of the rule
sequence is variable in this application, but the set of rules is not refined.

This 'shape annealing' is an evolutionary process, but the only operator is
random mutation. A genetic method, which also includes the powerful crossover
operator, can provide the capability for more efficient search, but a standard al­
gorithm restricts the rule sequence to be of fixed length. However, a variable­
complexity algorithm can be used to combine the power of crossover with the
flexibility of variable-length encoding. Complex truss geometries have been suc­
cessfully developed using this approach (Gage et al., 1994).

Gero et al. (1994) have used a shape grammar in conjunction with a standard
genetic algorithm to design efficient structural beam sections. Their encoding im­
plicitly includes the set of shape transition rules in the genetic string, which per­
mits evolution of the grammar itself. Beam section shapes are evolved simultan­
eously, because the genetic operators also affect the sequence of shape transition
rules encoded in the string.

A variable-complexity genetic algorithm can also be used to refine the shape
grammar for a given design domain. It should be more efficient than a standard
genetic algorithm, because promising rules can be identified in short sequences
which describe relatively simple compound shapes, and these sequences can sub­
sequently be recombined in extended sequences that produce more complex shapes.
These conjectures are examined in the next section of this paper, which describes
the application of a variable-complexity genetic algorithm to the design of beam
sections, and compares its performance with a standard algorithm.

4. Multicriteria Design of Beam Sections

A standard genetic algorithm with shape grammar encoding was used by Gero et
al. (1994) for beam section design, with the objective of maximizing moment of
inertia while minimizing perimeter. In this paper, The goal of maximizing mo­
ment of inertia is replaced with the requirement to maximize stiffness to weight
ratio. This modified objective requires a more complex grammar to represent the
family of optimal designs (because various densities are required), so the task is
more difficult than that solved in the earlier work. The perimeter is still minimized
(to minimize surface area of the beam), and the multicriteria objective is handled
by Pareto optimization, which produces a family of non-dominated solutions (i.e.
the set of solutions which are better than all other solutions in at least one com-

VARIABLE-COMPLEXITY EVOLUTION OF SHAPE GRAMMARS 317

ponent of the objective function).
Gero et al. used an example problem where sequences of 9 transition rules

were used to describe candidate shapes. When the task involves simultaneous op­
timization of the representation language and the optimal shapes described by that
grammar, the space of candidate designs increases rapidly. Consequently, trans­
ition sequences of up to 25 rules are considered here, to demonstrate that the ge­
netic method performs well in larger search spaces. Each of the computer runs
used to generate the results presented here took less than 5 minutes on a Sun
SparcStation, so combinatorial explosion is not a serious concern for problemms
of this type.

The shape grammar encoding used in this example is based on the one de­
veloped by Gero et al (1994). Beam sections are represented by a number of
square elements, each of which may have one of four density values. Candidate
designs are described using a shape grammar with the following features:

Initial shape Each candidate design starts with a single element, placed at the
centerline of the beam.

Component shapes All component shapes are square elements of unit side length.
Labels Each component square is labelled with a density (there are four altern­

ative values: A, B, C, or D). The most recently introduced element is desig­
nated as the site for new elements to be added.

Transition rules Transition rules have 3 parts:

1. Modify density of element labelled as the building site

2. Define a direction to move (up, down, left or right)

3. Add a new element of specified density adjacent to the building site (on
the side specified by the move direction)

There are sixty-four possible rules, because there are four alternative values
for each of the three parts of the rule. The restriction to add elements only ad­
jacent to existing elements ensures that candidate cross-sections are simply
connected, and hence are able to support bending loads.

The decoding of a short sequence of genetic string is shown in Figure 3.
Three transition rules are produced. The cross-section resulting from the sequen­
tial application of these rules is also shown.

Longer rule sequences typically produce beam sections with more elements,
but there is not a direct correspondence between genotype and phenotype com­
plexity. Figure 4 shows that long genetic strings can produce beams with few
elements. (The solid line marks the maximum number of elements in the phen­
otype for a given length of genotype. If each rule produced a new element in the
phenotype, all popUlation members would lie on this line. The squares repres­
ent individuals in an example population of candidate designs. Most designs have
lower complexity than their genotype length might produce.) Low complexity

318 PETER J. GAGE

Genetic Transition Beam
Encoding Rules Shape

Density of initial shape = A 0
01 Density of current block = B

Rule I 11 Shift right [1-0 rn 00 Density of new block = A

10 Density of current block = C

~ raill Rule 2 00
Shift up 01
Density of new block = B

10 Density of current block = B m Rule 3 11 Shift left @]-[!]
Density of new block = D

B C

Figure 3. Construction of beam section by decoding and application of shape transition rule se­
quence.

30.

~ 25.
g
.§. 20 .

. S
~ 15.

~
~ 10.

II e 5.

:f
o.

c

~ rr ~ ~ • n n n a a

Number of rules in genotype

Figure 4. Long genotypes can produce phenotypes with few elements.

phenotypes are produced when later rules in the string refer to elements defined
by earlier rules. In these cases, the density of the element might be changed,
but the number of elements is not increased. A fixed length genetic encoding,
corresponding to a fixed number of rule applications in the shape transition se­
quence, is consequently able to describe cross-sectional shapes of varying com­
plexity, by referring to some elements several times. A variable-length encoding
can also refer to each element several times, but it also has the freedom to describe
low-complexity phenotypes more simply and naturally, by using shorter rule se­
quences.

The operation of the rules in this grammar may cause changes to an exist­
ing element in the phenotype, or may cause the introduction of a new element.
The decoding of each rule does not depend on its absolute position in the genetic
string, but the relative position within the sequence of rules is important. The ef-

VARIABLE-COMPLEXITY EVOLUTION OF SHAPE GRAMMARS 319

DD
DD

Perimeter = 20 DD Perimeter = 30
I1density = 36.28 I1density = 94.34

A

D A

D A

Perimeter = 10 A A

I1density = 5.94 A A

A A

-~--
A A

A A

A A

A A _N!:!!.traLAx~

Figure 5. Three optimal cross-sections from the Pareto set.

fect of each rule depends on the phenotype constructed by the action of all prior
rules in the string. This limited dependence on position increases the flexibility of
the genetic algorithm, and permits the evolution of complexity by recombination
of short rule sequences.

Three of the optimal beam sections in the Pareto set are shown in Figure 5. In
this design task, it is advantageous to have elements of low density close to the
neutral axis (where they make a small contribution to moment of inertia), with
high density elements at the outer edge of the beam.

For simple beams, a single column of elements is appropriate, because it is
better to add a single element at the end of the beam than to add an element to the
side. Only rules which prescribe addition of an element above the current build­
ing site are needed in the transition sequence. As the height of the beam increases,
however, it becomes attractive to add several dense elements beside existing ele­
ments. This changes the nature of the best sequence of transition rules, because
rules prescribing a horizontal shift must be included.

Figure 6 indicates that the standard algorithm and the variable- complexity al­
gorithm each fail to locate one of the optimal cross-section types. The standard
algorithm, which must use twenty-five rules to describe even the simplest shapes,
fails to produce a sequence that excludes any horizontal shifts. On the other hand,
the variable-complexity algorithm generates a population that is quickly domin­
ated by short rule sequences which efficiently describe optimal simple shapes.
When these are recombined to form complex shapes, they only produce a longer
single column of elements.

The difference in results produced by the two genetic algorithms indicates that
their search procedure is quite different. The two aspects of the search are evolu­
tion of the shape grammar, by modification of the set of available transition rules,
and evolution of transition sequences composed of the rules included in the new
grammar. Both search processes contribute to the development of optimal cross­
sections.

320 PETER J. GAGE

Perimeter = 20
IIdensity = 33.49

DO
DO

A

A

A

A

A

A

o

o
o Perimeter = 30
A IIdensity = 93.60
A

A

A

A

A

A

A

A

A Neutral Axis - - -- - - --
Standard algorithm
fails to eliminate
second column in
simple structures

Variable-complexity
algorithm fails to
introduce second column
in complex structures

Figure 6. The standard and variable-complexity algorithms fail to locate different types of optimal
cross-section.

4.1. EVOLUTION OF THE SHAPE GRAMMAR

The initial shape grammar includes all 64 transition rules that can describe modi­
fication of the density of the building site, and addition of a new element adja­
cent to that site. They are almost certainly all represented in the initial population
which has 200 members, each encoding a sequence of up to 25 rules (exactly 25
rules for the standard, fixed-length, encoding). With 2500 to 5000 randomly gen­
erated rules, each member of the grammar is expected to be represented 40 to 80
times.

The shape grammar evolves by modifying the variety of rules used to describe
candidate sections. Gero et al described this as a substitutive learning process
(the learned grammar searches a space partially disjoint from the original space)
when they developed beam sections to maximize moment of inertia and minimize
perimeter (and found that rules referring to high-density elements quickly dom­
inated the population). Although these rules replace others in the population, new
rules (outside the original 64) are not produced. The learning process might be
described as subtractive, because a subset of the original set of transition rules
is retained, and the learned grammar searches a subspace of the original space.
The genetic algorithm restructures the original knowledge to localize its search
in promising regions, thereby increasing the likelihood of identifying the best
designs.

In the current application, rules must be retained for both low density and high
density elements, but reference to intermediate densities is unnecessary. Both ge­
netic algorithms achieve this refinement effectively. The evolved grammar should
also include rules that add elements in each of the four possible directions, and it
is in this regard that the variable- complexity algorithm is unsatisfactory. It is too
aggressive in the refinement of the rule set, because short rule sequences describ-

VARIABLE-COMPLEXITY EVOLUTION OF SHAPE GRAMMARS 321

ing optimal simple shapes quickly dominate the population, and rules producing
horizontal addition of material are lost from the grammar.

This dominance of short rule sequences which add material only in the ver­
tical direction can be remedied in two ways: short sequences which include ho­
rizontal addition of material can be favoured, or short sequences can be avoided
entirely. In the first case, the objective function must be modified to extend the
Pareto set. (If the second component of the objective, minimization of perimeter,
is replaced by minimization of perimeter + height, the variable-complexity al­
gorithm successfully retains the necessary rules, and more complex optima are
subsequently found.) Such adjustments are difficult to make a priori, and the second
remedy is therefore preferred. It simply involves the imposition of an explicit
lower limit on the length of rule sequences developed by the variable-complexity
algorithm, instead of implicitly using a lower limit of one rule in the sequence.
This increases the total number of rules in the population, and increases the pro­
portion of complex shapes being described.

4.2. EVOLUTION OF THE RULE SEQUENCES

For the standard genetic algorithm, the evolution of rule sequences is inextricably
linked to evolution of rules in the grammar. In fact, the standard algorithm essen­
tially evolves a grammar for each position in the sequence, independently (and in
parallel). There is no indication that a good rule for position 4, say, would also
be useful at position 5. The set of transition rules for the entire sequence is the
union of sets for each position. There is no opportunity to generalize by creating
new rule sequences using the global shape grammar, because the grammar is not
defined until the set of transition rules for each point in the sequence has evolved.

In contrast, the variable-complexity algorithm does develop a global set of
shape transition rules, each of which can be applied at any point in the sequence
of rules. It readily describes cross-sections composed of radically different num­
bers of elements, and broad generalizations are possible. The full range of shapes
describable by the rules in the evolved shape grammar is efficiently explored by
this method.

4.3. RESULTS WITH LOWER BOUND ON LENGTH OF RULE SEQUENCE

The lower limit on the length of transition sequences is now set at 10 rules, instead
of implicitly permitting sequences as short as one rule. The variable-complexity
implementation no longer eliminates horizontal transitions from the rule set. Con­
sequently, it can identify optimal shapes of both types, and is thus effective for a
wide range of perimeters. Performance comparisons for the standard and variable­
complexity encodings are presented in Figures 7, 8 and 9. Data for three sep­
arate runs of each algorithm are included, to indicate that the observed trends are
repeatable.

322

.E

'" '0;

~ ..
c

'EO
iii

.E
'"
~
'" c
:c
~

.E
'" 'a;

~
'" .. c
:c
~

PETER J. GAGE

50.
V.d"'~ Com!>~'1!y
Vl rilble CompJtxJty

40. v •• _Comploxl!v
t. fh(ed CompJexlty
0 F1Xt<lCompIRxity III

30. " fixed CornplO.Xlty

20.

10.

O.
10. 12. 14. IS. IS. 20. 22.

Perimeter

Figure 7. Pareto curve for designs of low complexity.

200.

180. V"l"IabIotCom~xl'V
V.arlablrt com~)!jly

160. Varlllhl& CompIeJrity
t. ",.d"""' 1ty

140. 0 "' .. """' Ity
" F~ .. """"""1ty

120.

100.

80.

60.

40.

20.
20. 25. 30. 35 . 40.

Perimeter

Figure 8. Pareto curve for designs of moderate complexity.

320.

300.

280 .

260.

240.

220.

200.

180.

160.
40. 42. 44. 46. 4S.

Perimeter

o
V.art.bae CompIeJtfty
V.Mahle Camplulty
Var1ab1t Complt:ltify

t. "'''Comp''"'lty
o F """"""1ty

" "'''''''''''''''Ity
50. 52. 54.

Figure 9. Pareto curve for designs of high complexity.

These results clearly demonstrate that the variable-complexity encoding gen­
eralizes more widely than the standard algorithm. The standard algorithm effect-

VARIABLE-COMPLEXITY EVOLUTION OF SHAPE GRAMMARS 323

ively locates shapes of moderate complexity. Sequences of 25 rules do well in
finding shapes composed of 10 to 20 elements, which means that some elements
are referenced more than once. The variable complexity algorithm uses shorter
sequences to locate optimal simple shapes (Figure 7). It recombines short se­
quences to identify highly complex designs (Figure 9).

5. Conclusions

Genetic algorithms are able to identify optimal beam cross-sections, with the twin
objectives of maximizing stiffness-to-weight ratio, and minimizing perimeter. A
shape grammar encoding is efficient for this application, because it refers only
to elements which actually appear in the design. It also limits search to feasible
candidates, by restricting the rule set to produce only simply connected shapes.

During optimization, the knowledge contained in the shape grammar is re­
structured. The set of shape transition rules is refined, to include only those rules
consistently associated with high performance cross sections. The learned gram­
mar concentrates search in promising subspaces of the original design space, there­
by increasing the likelihood of identifying optimal rule sequences. The variable­
complexity algorithm can reduce the rule set too greatly by excessively exploiting
short rule sequences that describe optimal simple shapes. If the nature of optimal
solutions changes as complexity increases (as it does by switching from a single
column of elements to two columns), the second type of solution can be missed.
This defect is remedied by imposing a lower limit on the length of transition se­
quences, so that more complex shapes also influence the development of the re­
fined rule set.

Rule sequences, corresponding to particular beam cross-sections, are also evo­
lved during optimization. For the standard algorithm, this occurs simultaneously
with grammar refinement, and there is no opportunity to generalize using the evo­
lved grammar. The variable-complexity algorithm can use rules at any location
in the transition sequence, so that genuinely new sequences are produced by re­
combination of general rules. This capacity for generalization permits the iden­
tification of optimal shapes for a wide range of perimeters. Thus, the variable­
complexity algorithm is able to produce better combinations of shape grammar
and transition sequence than the standard genetic algorithm.

References

Davidor, y.: 1991, Epistasis variance: A viewpoint on GA-hardness, in G. Rawlins (ed.), Founda­
tions of Genetic Algorithms, Morgan Kaufmann.

Fonseca, C. and Fleming, P.: 1995, An overview of evolutionary algorithms in multiobjective op­
timization, Evolutionary Computation, 3(1).

Gage, p.: 1994, New Approaches to Optimization in Aerospace Conceptual Design, PhD Thesis,
Stanford University.

Gage, P., Kroo, I. and Sobieski, I.: 1994, A variable-complexity genetic algorithm for topological

324 PETER J. GAGE

design, AlAA 94-44/3 AlAAINASAIUSAFIISSMO Symposium on Multidisciplinary Analysis
and Optimization, Panama City, FL.

Gero, 1. S., Louis, S. 1. and Kundu, S.: 1994, Evolutionary learning of novel grammars for
design improvement, Artificial Intelligence for Engineering Design, Analysis and Manufactur­
ing (AIEDAM), 8, 83-94.

Goldberg, D.: 1989, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison
Wesley.

Goldberg, D. E., Deb, K. and Korb, B.: 1990, An investigation of messy genetic algorithms", TCGA
Report 90005, May.

Goldberg, D. E., Korb, B. and Deb, K.: 1989, Messy genetic algorithms: Motivation, analysis and
first results, TCGA Report 89003, May.

Grierson, D. and Pak, w.: 1993a, Optimal sizing, geometrical and topological design using a ge­
netic algorithm, Structural Optimization 6, 151-159.

Grierson, D. and Pak, W.: 1993b, Discrete optimal design using a genetic algorithm, in M. P. Bend­
soe Topology Design of Structures, Kluwer, Mota Soares, c.A.

Hajela, P., Lee, E. and Lin, C.-Y.: 1993, Genetic algorithms in structural topology optimization, in
M. P. Bendsoe, Topology Design of Structures, Kluwer, Mota Soares, c.A.

Holland, 1.: 1975, Adaptation in Natural and Artificial Systems University of Michigan Press.
Koumousis, V.: 1993, Layout and sizing design of civil engineering structures in accordance with

the eurocodes, in M. P. Bendsoe, Topology Design of Structures, Kluwer, Mota Soares, c.A.
Koza, 1. R.: 1992, Genetic Programming: On the Programming of Computers by Means of Natural

Selection, MIT Press, Cambridge, MA.
Kroo, I., Altus, S., Braun, R., Gage, P. and Sobieski, I.: 1994, Multidisciplinary optimization meth­

ods for aircraft preliminary design, AlAA 94-4325 AlAAINASAIUSAFIISSMO Symposium on
Multidisciplinary Analysis and Optimization, Panama City, FL.

Liepins, G. and Vose, M.: 1991, Deceptiveness and genetic algorithm dynamics, in G. Rawlins
(ed.), Foundations of Genetic Algorithms, Morgan Kaufmann.

McCulley, C. and Bloebaum, C. L.: 1994, Optimal sequencing for complex engineering systems us­
ing genetic algorithms, AlAA 94-4325 AlAAINASAIUSAFIISSMO Symposium on Multidiscip­
linary Analysis and Optimization, Panama City, FL.

Mitchell, T. M.: 1990, The need for biases in learning generalizations, in J. W. Shavlik and T. G.
Dietterich (eds), Readings in Machine Learning, Morgan Kaufmann.

Reddy, G. M. and Cagan, J.: 1993, Optimally directed truss topology generation using shape an­
nealing, DE-Vol. 65-1, Advances in Design Automation - Volume I, AS ME, pp. 749-759.

Sakamoto, J. and Oda, 1.: 1993, A technique of optimal layout design for truss structures using
genetic algorithm, AlAA 93-1582, SDM 93, La Jolla.

Smith, S. F.: 1980, A Learning System Based On Genetic Adaptive Algorithms, PhD Thesis, Uni­
versity of Pittsburgh.

Stiny, G.: 1980, Introduction to shape and shape grammars, Environment and Planning B, 7, 343-
351.

J. S. Gero and F. Sudweeks leds), Artificial Intelligence in Design '96, 325-344.
© 1996 Kluwer Academic Publishers.

GRAMMARS FOR MACHINE DESIGN

LINDA C. SCHMDT
University of Maryland, College Park, Maryland, USA

AND

JONATHAN CAGAN
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Abstract. The use of grammars in mechanical design research is growing in
popularity, largely due to the ability of a grammar to concisely express a language of
designs. It is natural to attempt to achieve the level of success at writing descriptive
languages for mechanical devices as is seen with spatial grammars in describing
architectural styles. However, the differences in representing form and function between
the fields and the mechanical designer's focus on function must impact the type of
grammars that can be used in describing mechanical designs. Two grammars for
mechanical configuration design are briefly described: a string grammar for the design of
cordless power drills and a graph grammar for the design of rolling carts. The ability of
the grammars to generate a space of machine designs is discussed. How a mechanical
design grammar can provide a platform for a designer assistance tool and the strengths
and weaknesses of such a tool are presented.

1. Introduction to Grammar-Based Design

At the heart of the mechanical design problem is a desire to find a best
design amidst a host of designs. A number of optimization techniques exist
to search through a space of designs for the best one. We are concerned with
the challenge of finding a means to generate the space of designs for the
search. Gips and Stiny (1980) list four methods to specify a space of
designs:

1. compiling a catalog of all members of the space;
2. describing one element of the space and the transformations to

create all other elements from it;
3. providing a computer program that generates all designs in the

space; and
4. writing a grammar.

A grammar is also the means later suggested by Stiny and March (1981) to

326 LINDA SCHMIDT AND JON CAGAN

define a language of designs in the creation of a machine for design. An
exploration of the potential of grammars to express a language of
mechanical designs and, in this role, become an integral part of a mechanical
design tool is undertaken here.

Grammars are enjoying growing popularity in mechanical design
research and their success in describing languages of design in architecture
tempts the mechanical design researcher. Stiny (1988) proposed that a
common concern with the design of artifacts described by function and

, form allows the same formal devices to be used in mechanical design that are
used in architectural design. Mitchell's (1991) work on functional grammars
for architecture provides a glimpse of how grammars can be used to design
forms from mechanical functional intent. His functional grammar introduces
the idea of the function template that is instantiated by one or more forms
that can fulfill the structural function. Mitchell foreshadowed the spirit of
this work when he ended his paper with the following quote, "It seems
reasonable to suggest (though this has not yet been tested) that large,
dynamically-extensible function grammars, allied with fast search engines,
would be capable of producing unexpected, and perhaps, valuably
innovative, design solutions." This paper presents two proof-of-concept
examples of grammar-based, mechanical design algorithms and considers
their potential usefulness as designer assistance tools.

2. Background on Grammars in Design

The term grammar was coined by Chomsky (1957) who applied it in
analyzing natural language. Chomsky observed that a set of grammatical
transformations used to produce meaningful sentences had formal properties
and the study of these transformations would lead to insight in how language
is used and understood. A grammar is a formal device consisting of a set of
productions or rules, a set of symbols, and an initial symbol or symbol set.
The grammar rules manipulate an initial symbol into a set of symbols which
together create a meaningful expression. Grammars exist in many forms and
are classified according to their productions (e.g., context-free or context­
sensitive) and according to the symbols they manipulate (e.g., linguistic,
symbolic, and spatial). A particular grammar defines a language of
meaningful expressions such as an English-language sentence or a floor
plan of a bungalow.

2.1. SHAPE GRAMMARS IN ARCHITECTURE

Shape grammars (Gips and Stiny, 1972; Stiny, 1980a, 19980b) have been
used to describe a complete language of spatial designs. Shape grammars
capture a style of design and can be used to create both existing examples

GRAMMARS FOR MACHINE DESIGN 327

and new instances of that style. Sample languages include: Palladian-style
villas (Stiny and Mitchell, 1978); Hepplewhite-style chair backs (Knight,
1980); bungalows of Buffalo, New York (Downing and Flemming, 1981);
Frank Lloyd Wright prairie houses (Koning and Eizenberg, 1981); and
Queen Anne houses in Shadyside, Pittsburgh (Flemming, 1987). A few
authors have explored computational issues of implementing shape
grammars, building momentum toward, perhaps, a new CAD modeling
paradigm (Krishnamurti, 1980; 1981, 1992a, 1992b; Chase, 1989;
Krishnamurti and Stouffs, 1993.)

2.2. GRAMMARS IN MECHANICAL DESIGN

The exploration of formal grammars for engineering design purposes was
officially acknowledged in a 1991 issue of Research in Engineering Design
devoted to papers on the subject. Early applications of grammars in
engineering appeared in solid model representations (Fitzhorn, 1986; Pinilla,
et aI., 1989; Longenecker and Fitzhorn, 1991; Fu et aI., 1993). This
grammar work on solids and features may have sparked some of the current
interest in expanding grammar applications to increasingly higher levels of
description -- the physical component (Sthanusubramonian et aI., 1992), the
mechanical device (Hoover and Rinderle, 1989; Mullins and Rinderle, 1991;
Rinderle, 1991; Deng, 1994), the structure (Reddy and Cagan, 1995; Shea et
aI., 1995), and the manufacturing process plan (Brown et aI., 1994).

Implementations of grammars coupled with an optimizing technique to
control and guide design generation are the newest additions to the field of
grammar research in mechanical design. This type of inquiry begins with
Cagan and Mitchell (1993) who combine a shape grammar with simulated
annealing to create shape annealing, a controlled method of generating an
optimal shape. Reddy and Cagan (1995) and Shea et al., (1995) developed
structural design applications of shape annealing in the generation of
optimal trusses.

Schmidt and Cagan (1992 and 1995) apply the shape annealing idea in a
new direction, proposing a recursive grammar approach to highly idealized
machine design. Schmidt (1995) proposes string and graph, grammar-based
design algorithms that generate designs from a library of components using
a grammar. FFREADA (Function-to-Form REcursive Annealing Design
Algorithm) uses a string grammar to design hand-held, cordless power drills.
GGREADA (Graph Grammar Recursive Annealing Design Algorithm) uses
a rudimentary graph-grammar to design carts from a limited subset of
Meccano Set components. Both algorithms were able to demonstrate success
in using grammars to generate design solutions state spaces and in exploring
the generated spaces. The success of these applications is owed to the
generative power of their grammar-based design mechanisms.

328 LINDA SCHMIDT AND JON CAGAN

3. Machine Design by Grammars

A machine design process transforms initial specifications of machine
function into an arrangement of machine components. Transformational
models make up one popular class of design models for designer assistance
tools. Transformational models lend themselves well to automation because
they are descriptive in nature, providing structured methods for mapping
function to form, often simplifying the problem by decomposing it into a
hierarchical one. A transformational model of design lends itself to
implementation by a grammar, which is itself transformational.

3.1. MODEL FOR MACHINE DESIGN BY GRAMMARS

A machine design model created for implementation with a grammar-based
design mechanism is the recursive design model (Figure 1) proposed by
Schmidt and Cagan (1995) . In this model, machine design is accomplished
by converting specifications into increasingly detailed descriptions of
machine functioning (called function structures by Pahl and Beitz (1988»
until the function descriptions can be replaced by single components. At
each level of detail on which the designer considers the machine (i.e., at each
level of abstraction used in the design process) many alternative designs exist
and must be developed in great physical detail in order to predict their
suitability.

~ "" [Instantiation to Le s Ab tract Levels t ·"" "",, ·~
'It '!' ~ ~ -uptlon a ---uptlon :.: -

Component Abstract Abstract Function Black Box
Layout

- ~ Level 2 :'~ Level 3 :.~ Structure (Function)
(Fonn) --- : . - I ~

, y I ~ -. .
~ :t .. ~ I Feedback to More Abstract Levels 1",,,,,,, ,,:

....... , J ~
*

~ lIIo.

~ ~" 0
Less Abstract More Abstract

Figure 1. Conceptual design model on abstraction continuum.

GRAMMARS FOR MACHINE DESIGN 329

The recursive design model assumes that a meaningful design process
can proceed hierarchically along a sequence of levels of abstraction chosen
to be relevant for a particular design problem. Each level of abstraction has
associated with it a set of parameters that describe some aspect of machine
functioning or machine form (i.e., the machine components it contains).
Lower level designs are instantiations of higher level designs. Higher level
designs are generalizations of lower level designs and can serve as patterns
for designs on lower levels of abstraction. To implement this recursive
design model, a mechanism for generating designs in a hierarchical fashion
is necessary. Then, since many designs can be generated from an abstract
design, the means of assuring that all possible designs are generated and that
good designs can be recognized are needed to build a complete design
generation algorithm.

To implement the recursive design model with grammars, hierarchical
procedures must be built into the grammar's rule system that direct the
design process to proceed sequentially through the levels of abstraction.
"Abstraction grammar" (Schmidt and Cagan, 1995) is the term we apply to
grammars written for this type of recursive design, although the abstraction
grammar concept is more general and is not limited to recursive design. We
add to the abstraction grammar a stochastic mechanism that randomizes the
selection of machine components for rule applications. What results is a
generative machine design tool that can, in theory, design all machines
possible from the given set of machine component symbols. The grammar
with its symbols and rules has, in fact, defined a space of design solutions to
a given machine design problem. Each state in the space represents a
different design.

3.2. MACHINE DESIGN ABSTRACTION GRAMMAR

In an abstraction grammar each level of abstraction fits within an ordered
hierarchy describing a machine in function and form terms. The knowledge
and detail expressed by a design accumulates from levels of less to more
abstraction (left to right) along the abstraction continuum. Each level of
abstraction has symbols that can be manipulated into a machine design as it
appears on that abstraction level from a pattern design created at the next
higher level of abstraction. The design process on any level is guided both
by design specifications for that level of abstraction and the need to satisfy
the design pattern provided by the design from the next higher level of
abstraction.

Figure 2 holds a description of a generic abstraction grammar's design
process. The process begins with a set of machine specifications. Inputs
passed to Level J of design includes the grammar's initial symbol signaling
the start of the design process, the symbol indicating design will occur on

330 LINDA SCHMIDT AND JON CAGAN

Level J of abstraction, and machine specifications for designs on all levels of
abstraction. After design on Level J is complete, inputs to of design Level J-l
include the design created on Level J, the symbol indicating design will now
occur on Level J-l of abstraction, and machine specifications for designs on
levels of abstraction J-l to O. Completed designs, design start symbols, and
appropriate machine specifications are passed to each successive level of
abstraction as inputs to the design process on that level of abstraction.

Inputs to Design Process at Each
Level of Abstraction

~ ~ ...
-Designs from -Level J Design -Initial Symbol
levels 1,2, ... , J -Level J-l: -Level J Design

-Level 0 design Design start start symbol
start symbol symbol -Specs for all

-Level 0 specs -Specs Levels Levels l Start J-l, J-2, ... ,0

Level 0: Form Level J-l: Level J: r Machine
Level Design Function-based .-:- Function-based ,.:.- Specs

Process Design Process Design Process

End J

Figure 2. Generic abstraction grammar design process.

A complete design produced by an abstraction grammar is an
arrangement of the symbols of the grammar that represent machine
functions and machine components. A complete design is labeled "D" and
is comprised of the designs created on each level of abstraction as follows:

GRAMMARS FOR MACHINE DESIGN 331

D = 1)0#1:)1#1:)2#" .#1:)}.

In this notation, there are J+ 1 levels of abstraction in the grammar. The
symbol "#" indicates an arrangement depicting hierarchical functional
dependence. A partial design, 1)j' is the machine design created on level j of
abstraction, represented as an arrangement of symbols defined to have
meaning on level j. This design, 1)j' is an abstract description of the machine
in the function and form characteristics defined for level j.

The string and graph abstraction grammars used for machine design here
are both spatial grammars and can be described by a four-tuple G = (N, T, R,
I) (Krishnamurti and Stouffs, 1993):

N = {~u1t1U ... u1t}}, a collection of sets of non-terminal symbols, those
which will not appear in a final design (e.g., design start symbols on
each level of abstraction). Each set ~ contains the non-terminal
symbols, design procedure symbols, and machine specifications for
the jth level of abstraction.

T = {70u71u ... u7}}, a collection of sets of terminal symbols, those of
which a final design is comprised (e.g., on a form level of
abstraction, terminal symbols represent machine components or sub­
assemblies). Each set ~ contains the terminal symbols for the jth
level of abstraction. Note that sets N and T are disjoint (i.e., NnT =
0).

R = {Rm = (a, b) }, m = 0, 1,2, ... , M. M is the number of rules in the
grammar. Each rule transforms a design, a, into a new design, b. For
a rule to apply to design a, it must contain at least one non-terminal
symbol.

I = an initial symbol.
Designs are created from the set of vocabulary elements, V, where V = N u
T and T cU. U is the power set of designs that can be created from
members of T, and U includes E, the empty design. The language of designs
generated by the grammar is L(G) = {D IDE T*}. When the abstraction
grammar is a string grammar, T* is the least set of terminal vocabulary
elements closed under string concatenation and the rules of the grammar.
Typical transformations on strings, including addition, subtraction, and the
substring relation, are outlined by Krishnamurti and Stouffs (1993).
Analogous relationships exist for graph grammars.

3.3. MACHINE COMPONENT REPRESENTATION

An abstraction grammar for machine design requires a set of symbols that
represent machine components (e.g., gears, motors, linkages and belts) and
machine functions (e.g., convert electrical energy to rotational energy).
Alone or in combination, symbols must be able express machine functions

332 LINDA SCHMIDT AND JON CAGAN

to allow reasoning about a machine at a high level of abstraction. Symbols
must also express machine component forms to provide representation of
component layout. An initial symbol or set of symbols that encode
specifications into a functional description of the machine to be designed is
also necessary.

There are numerous function and form representation systems that exist.
Many different approaches can be successful with grammar-based design.
The FFREADA drill design example uses the Pahl and Beitz (1988) concept
of energy, material, and signal flows through machine components as a basis
for representing functions and forms. The governing principle for
combining function and form symbols is that the flows match.

The GGREADA cart design example uses an even simpler representation
system. Functions, sub-functions, Meccano set components, and component
sub-assemblies are declared to be capable of satisfying specific higher-level
functions. The Meccano set components and component sub-assemblies are
defined to allow joining to others if physically feasible and if the necessary
number of joining cites Uoints) are open.

4. String Grammar Design Application: Cordless Drills

Cordless, hand-held power drills are a common machine used to create holes
for driving wood or metal screws. The drills of interest in this design
problem are those that a homeowner might choose to purchase for
occasional use. The drill is activated by pulling a trigger, sending a signal to
the power supply. The output of the drill is a constant, high speed rotation of
the bit placed in the drill chuck. In the string grammar, a completed string
represents a machine design. A drill design can be described by a string of
symbols, each symbol representing either a function necessary to the
operation of the drill or a component of the drill. One such drill design is as
follows:

S 1.0S3.0S52,1 S7,OS20,OS35,OS 4,OS53,1 S61,2.

This drill representation is described in more detail in this section.

4.1. STRING ABSTRACTION GRAMMAR

FFREADA uses a string abstraction grammar and three levels of abstraction
(J = 2) to design hand-held power drills. The grammar acts on levels 2 and I
to combine vocabulary symbols representing simple functions into more
complex expressions of machine behavior called function structures (Pahl
and Beitz, 1988). For example, symbol S61,2 on Level 2 represents the
production of rotational energy from a non-energy input like a signal, and
symbol S53,1 on Level 1 represents the conversion of continuous electrical

GRAMMARS FOR MACHINE DESIGN 333

energy into continuous rotational energy. Level 0 of this abstraction
grammar transforms a string of Level 2 and Levell vocabulary symbols and
machine specifications into a string of machine component symbols
arranged to mimic placement in a drill. The set of terminal symbols on Level
o of this grammar (70) represents triggers (2), power supplies (1), chuck
attachments (1), motors (11), shafts (9), and gears (25), for a total of 49
represented components.

Drill Designs
OD Eac.h Level of

Abstraction

Flow Parameter Key:
Energy: E = Electrical

R = Rotation.1
C = Continuous
CRe = Continuous or

Reciprocating
0= No Flow

Material and Signal:
I = Flow is Present
0= No Flow

Component Key:
S,.. = Trigger A
S,.. = Power Supply
$, .• = Motor A:103S

1L-_~ -n-.. ~-./-~.-:!.JL-~-s-Sl-" --{

000 EE RR RR RR R
000 CCCR.C CC CC C
0······0· O······ii 0'-'0 o· ·ii o·· .. if 0· , ·

5,. .• = Shaft BERG: 56-3Q ·O·· .. ·'j' T o· ·if· ii ·0 ·0· ·0 .. · 0· ·0 ')
5,. .• = Gear BERG: 2+-12
5,.. = Chuck Atl.lchmem

5,.0 5,.. 5,.. 5,... 5".. 5, .•

Figure 3. A FFREADA drill design.

More
Abstract

Specific,tions

Energy
FUlICtion
Strucrur.

Energy +
!Gn.matic
Mode FUlICtlOn
Structure

Form
Entities

Le
Abstract

The drill design introducing this section can also be described by a tree
diagram (Figure 3). The string is a complete design (D) made up of three
different designs of the same drill, each valid for one level of abstraction.
The design on Level I is as follows:

t)1 = S52.1 S 53,1'

The Levell design, a function structure, depicts a machine that receives no
energy input but produces continuous electrical energy that is then
converted into continuous rotational energy. This Level I design satisfies the
pattern created by the Level 2 design (a single symbol, S61,2) and satisfies the
specifications on energy input. The abstraction grammar uses the Level I
design and specifications as a pattern for creating the Level 0 design of
symbols representing form components as seen at the bottom of the figure.

334 LINDA SCHMIDT AND JON CAGAN

The ability to generate a single drill design is not sufficient to declare the
creation of a designer assistance tool. The goal is to generate all possible
designs and, by combining some form of search mechanism with the
grammar, to generate only a fraction of those possible designs in order to
efficiently present the designer with a selection of very good designs.
FFREADA integrates a recursive simulated annealing optimization process
with design on each level of abstraction (Figure 4). When FFREADA is run
in optimization mode, the algorithm converges to near-optimal designs.

Form I.c'·el

Abstnlction Lc el

Figure 4. The FFREADA design algorithm.

4.2. ABSTRACTION GRAMMAR DESIGN RESULTS

Black 60.\
Levl! l

The design with the global minimum cost for a drill generating at least 1 ft­
lb of torque is easily found during a set of 10 optimization runs by
FFREADA. This design was confirmed to be the optimal solution for this
objective function by three, independent, random generation runs of
2,000,000 designs each. The design, represented as a string of entities, is as
follows:

GRAMMARS FOR MACHINE DESIGN 335

S 1.0S 3.0S 1O.0S 16.0S 45.0S 47 .0S 4.0S 50.1 S61.2·
The design can also be described in words as follows (refer to the flow
parameter key in Figure 3):

Level 2: O->R (S6I,2) Fulfills:
Level 1: O->R O->C (S50.1) Fulfills:
Level 0:

trigger B (SI.0) Fulfills:
power supply (S3.0) Fulfills:
motor HL:2100 (SIO.O) Fulfills:
shaft BERG: 54-25 (SI6.0) Fulfills:
gear BERG: 64-12 (S45.0) Fulfills:
gear BERG: 64-30 (S47.0) Fulfills:
chuck attachment (S4.0) Fulfills:

Specifications
O->R

O->R O->C
O->R O->C
O->R O->C
O->R O->C
O->R O->C
O->R O->C
O->R O->C

Design torque: 1.02 ft-lbs.
Number of form level designs generated in run: 271,611
Run time: 3.25 Minutes

In the 10-run set, FFREADA converges to designs with costs within
1.010% of the minimum generated in the run and within 1.014% of the
global minimum. The average number of form level designs generated per
run is 301,391. This represents less than 0.15% of the design state space
when a 10-component limit is imposed on the drill designs. Limiting
FFREADA to designing drills of 10 machine components or less results in a
design space of roughly 200 million design states. However, a 250-
component limit was used in the annealing runs. Assume only a lO-fold
increase in designs solutions with each additional component and the
resulting design state space would exceed (200,000,000) I 0240 in size. The
percentage of visited states prior to FFREADA's convergence is impressively
small. The algorithms of this paper are run on a DEC 3000 workstation.

4.3. STRING ABSTRACTION GRAMMAR LIMITATIONS

The string abstraction grammar is successful in the FFREADA algorithm for
drill designs because drill components are arranged in series. A series
arrangement is naturally expressed as a string. Many machines can be
designed as an arrangement of components in series, especially those that
have a process orientation. Overall, however, the serial design limitation is
restrictive.

In addition to being unable to express non-serial arrangements of
machine components, a string grammar is unable to express function
sharing, an essential characteristic of many good designs. Function sharing
occurs when a component fulfills mUltiple functions in a device. Reviewing
Figure 3 again, it is clear that there is no mechanism in the string abstraction
grammar for expressing shared functionality. Additional design steps

336 LINDA SCHMIDT AND JON CAGAN

applied after the design grammar is finished or other types of grammars
must be considered for this purpose. In the next section, a graph grammar is
described that is well-suited for implementing function sharing during the
design process.

Vertex Key:
Function o Sub·Function ®

(a) Cart Top View

(b) Cart Bouom View

Component

Create
Rolling

.9 ...

Sub-Assembly

Support Q Load

".

Mount 1 @ ® Mount 2 @
wheel ,.... ,", p:~:I~e:

flat Plate ! ,':: ~:. , '
SUlface Area: 11.25 !

WeIght' 40g i

I-wheel 3 embly #1
Surface Area: 0

WeIght 12 g

2·wheel assembly III
Surf:u:e Area: 0

Weight 18 g

(e) GGREADA Cart Design Representation

Figure 5. A typical GGREADA Meccano Set cart design.

5. Graph Grammar Design Application: Meccano Set Carts

Provide
urface
Arta

A cart is a machine that moves by rolling and provides space to carry cargo.
An automobile would satisfy the functional definition of a cart, as would a
horse-drawn or child-propelled wagon. The GGREADA algorithm generates
rolling carts meeting user specifications from scale model Meccano Set
mechanism components (Figure 5). GGREADA (Graph Grammar REcursive
Annealing Design Algorithm), like FFREADA, uses the design process
described by the recursive design model (Figure 1) where design occurs on
hierarchically ordered levels of abstraction. GGREADA designs on two
levels of abstraction below the black box machine specifications level.
During the search for an optimal design, simulated annealing is applied in a
recursive fashion to control the design generation process. Like FFREADA,
GGREADA's abstraction grammar generates designs on each level of

GRAMMARS FOR MACHINE DESIGN 337

abstraction from a pattern design generated on the next higher level of
abstraction. In the cart of Figure 5, the abstract design passed to the
component level of abstraction is "mount 1 wheel, mount 2 parallel wheels,
and provide surface area." GGREADA's grammar is a graph grammar,
allowing GGREADA's designs to have complex and non-serial component
arrangements.

5.1. GRAPH ABSTRACTION GRAMMAR

A graph abstraction grammar is used to create cart designs from a
vocabulary of vertices. Each terminal vertex in the grammar's vocabulary
represents a function, sub-function, Meccano Set component, or component
sub-assembly. These are denoted by ti•j , where the first subscript is an
identification number and the second indicates the level of abstraction to
which the vertex is assigned. Non-terminal vertices are labeled n0 . j' Figure 6
holds the Mecanno Set pieces in the grammar's component vocabulary and
two of the sub-component assemblies relevant to the examples shown in this
paper.

The edges of GGREADA's graphs represent either a physical
relationship between the vertices or a functional relationship. A physical
edge between two components indicates that they are connected. Functional
relationships exist between vertices on different levels of abstraction. As with
FFREADA, a vertex is selected to participate in a design only if it satisfies, in
full or in part, functionality required by a vertex in the design pattern from
the next higher level of abstraction. For example, in the cart of Figure 5, two
sub-function vertices, "mount 1 wheel" and "mount 2 parallel wheels", are
used to instantiate the function "create rolling."

GGREADA's graph-based abstraction grammar represents function
sharing explicitly. The Meccano component named "flat plate" is satisfying
the functionality required by all three of the sub-function components. The
"flat plate" component acts as a mounting piece for the wheel sub­
assemblies and it provides surface area for the cart.

GGREADA's graph grammar uses rules to transform a graph ga, which
includes at least one non-terminal vertex, into a graph gb. GGREADA's
rules allow addition and subtraction of symbols, in this case vertices
representing vocabulary symbols. The non-terminal vertices mark the spot
where the design will be changing. Figure 7 shows a GGREADA cart design
at four different points during the design process. For example, Figure 7 (a)
is the graph after the 5-sided plate, represented as terminal vertex t3•1, is
chosen as a base piece. Figure 6 holds the key for component and sub­
assemblies used in Figure 7.

338

~

LINDA SCHMIDT AND JON CAGAN

l--.-: :J
(a) Flat plate, tl,1

/0 0"

0 0 ~

(f) Wheel, t6.1

(g) Short rod, t7.1

(h) Long rod, 18.1

(000)

Left Side Top View Right Side
View View (i) 3-hole strip, t9.1

(b) Ranged plate t2.1
(00000]

Top View

g D Front
View 1 00 0 I

(j) 5-hole strip. tlO.1

(00000000000)

(k) II-hole strip, tll.l

(c) 5- ided plate, t3.1 (d) 5-sided plate. t4.1
Top View

Top View

Front View

<S 2)Righl Side
Vl~W

U
(e) Angle bracket tS.1

(m) I-wheel sub-assembly
s~Lwheel_3, t15.1

10 0 0 I

Left and ~
Righi 0
Side 0

Views

Front View

(I) 2-bend strip, t12.1

(n) I-wheel sub-assembly
s~2_wheel_l. t17.1

Figure 6. Meccano Mechanism Set pieces used for cart design.

GRAMMARS FOR MACHINE DESIGN

t l.3 t2.3

0 0
t2,2 @ @t1.2 ® t3.2

.... :

0 0 0 D
t3.1 n0.1 n0.1 n0.1

(a) Graph and component version of cart design with ba e component.

(b) Cart design after t15.1 wheel
sub-a sembly i elected to
satisfy t2.2 '

Q
t2.2 @ @.t1.2

:

t15.1 tl7.1

(c) Cart design after t l7. 1 and
an additional flanged plate
are elected to satisfy t 1.2.

o
o'
o

Cd) Graph and component versions of a complete cart design.

Figure 7. Interim GGREADA cart designs.

339

340 LINDA SCHMIDT AND JON CAGAN

5.2. ABSTRACTION GRAMMAR DESIGN RESULTS

GGREADA's Meccano Set cart design problem has a large space of
solutions relative to the number of unique component pieces (12) of which
the solutions are comprised. Multiple occurrences of the same component in
a single design are possible. To derive the size of the design state space,
consider first the number of options for mounting wheels to satisfy the
"create rolling" function. This function requires the mounting of 3 or 4
wheels. There are 32 unique ways to mount either 1 or 2 wheels (8 base
component pieces with 2 mounting joints and 4 sub-assemblies for each
mounting scenario). There are 4 different ways in which the "mounting"
components can be combined to produce the mounting of 3 or 4 wheels.
These options produce 67,584 different cart designs before a base piece is
selected for the mounting and before the load carrying requirement is
addressed.

If there is no minimum surface area requirement for the cart design, there
are 2(67,584) designs available from the library, using one Meccano base
piece (with 4 or more joints). The designs begin their combinatorial
explosion from this point as new pieces are selected for addition to the
designs to provide surface area. For example, to provide 8 in2 of surface
area, there are over 600,000 designs with 3 base pieces and over 3.6 million
designs with 4 base pieces. The design space grows in size as designs using
more base pieces are included.

GGREADA is able to generate optimal cart designs using the amount of
surface provided as a constraint and minimizing the weight of the cart as the
objective function. The optimal design from GGREADA's vocabulary of
Mecanno Set components for a cart that provides 4 in2 of surface area is the
cart depicted in Figure 7. This design weighs 68 grams and provides 4.125
in2 of surface area. A near-optimal solution is the cart depicted in Figure 5.
It weighs 70 grams and provides 8 in2 of surface area. GGREADA was able
to converge to one or the other of these solutions in each of a set of 5
annealing runs, averaging 11,400 design generations and about 45 seconds
per run.

5.3. GRAPH ABSTRACTION GRAMMAR LIMITATIONS

GGREADA shows that it is possible to write an abstraction graph-grammar
for the design of carts. GGREADA's limitations in this example stem from
the representation of the Meccano Set component pieces. The amount 0 f
geometric knowledge available to GGREADA via the representation is
minimal. The rules assure that the connection between the Meccano pieces
can be made hut they do not specify at exactly which joints of the pieces
they are being made. Full connectivity information is determined by

GRAMMARS FOR MACHINE DESIGN 341

GGREADA, yet some interpretation of results by the designer is required to
assemble the final designs. To increase the power of the algorithm, more
geometric knowledge about each component is needed as is a means to
reason about the knowledge during the rule applications.

6. Strengths and Weaknesses of Grammar-Based Machine Design

Designing abstraction grammar-based design algorithms involves two
categories of issues, those pertaining to the grammar and those pertaining to
the search mechanism used to select good designs. This discussion focuses
exclusively on the grammar issues.

The strength of the abstraction grammar-based algorithms presented here
is that an entire space of designs can be generated automatically. This
provides a designer with access to considerable knowledge about the design
problem. The weakness of this approach is the amount of work it takes to
write a grammar, the representational complexities involved, and the
limitations placed on designs that can be generated from a well-defined
system like a grammar.

6.1. STRENGTHS

A design state space generated by a grammar-based algorithm can be
explored in several ways with several goals. One form of exploration already
demonstrated is to search for an optimal solution using one or more
measures of goodness expressed in an evaluation function. Exploration of a
space of designs can have other goals such as:

1. To search for designs using a particular machine component, or
component assembly.

2. To catalog all designs of a given nature.
3. To assess the impact of altered design rules on the language.
4. To explore changes in the design state space as the result of

adding entities to the library of design building blocks or
changing performance parameters of existing entities.

5. To compare different design models and optimization strategies
in the search for best designs for a class of problems.

6. To observe the effects of different mappings of the design state
space by different evaluation functions.

7. To determine the response of design generation to imposition of
design constraints.

6.2. WEAKNESSES

Practical problems in implementing this type of algorithm center on
establishing a grammar for the design of realistic machines and devising
efficient optimization procedures to search the resultant space. Developing

342 LINDA SCHMIDT AND JON CAGAN

representation systems sensitive enough to express the behavior of single
machine components in order that they can be used to their full potential is
difficult. Yet more challenging is the task of developing a means to represent
component interactions so that "the whole is greater than the sum of the
parts", as is true in examples of good designs. The two sample design
grammars presented here indicate that the concept of a grammar-based
designer assistance tool is possible. Successful implementation of more
complex grammars with richer function and form representation is necessary
to prove that this type of algorithm is practical.

Of theoretical concern is the question, "What possibility does this type of
algorithm provide for generating novel, innovative, or creative designs?" It
can be argued that once the design problem is so well-defined that it is
possible to implement a grammar-based, generative design tool the design
problem has long been solved. On the other hand, the task of establishing a
grammar vocabulary so sufficient for designing a particular type of device
that a complete design space is defined is, in a sense, impossible. A new
functional idea or machine component can always be identified that will
expand the space of design solutions. However, it is highly probable that, in
the combinatoric design spaces under consideration, machine components
will be combined in novel ways by a generative, grammar-based algorithm,
and some of these combinations are bound to be innovative. The question of
the creativity of the paradigm depends entirely on the definition of creativity
and remains an open question.

7. Conclusion

Grammars are a useful formalism for mechanical design because they
provide the means of representing an entire space of design solutions to a
given problem. An automated grammar-based design generation system
coupled with a stochastic vocabulary selection processes in the grammar rule
applications can generate a wide variety of designs in the solution space.
This generative capacity will allow the designer to survey that solution space
in general and glean information about the design problem and the
solutions. Also, a search engine can be integrated with the design generation
process, guiding it to converge on good solutions for the designer's review.
The major challenge to creating designer assistance tools using grammars is
developing representations for the grammar that are adequate to express
machine component functionality on any number of levels of abstraction
meaningful to a given design problem.

GRAMMARS FOR MACHINE DESIGN 343

Acknowledgements

Linda Schmidt gratefully acknowledges the support of the National Defense
Science and Engineering Graduate (NDSEG) Fellowship Program. The
authors acknowledge the National Science Foundation for providing support
for this research under grants DDM-9258090 and DDM-9301096. Both
authors also thank Dr. Robert Sturges for helpful discussions on the cart
design problem.

References

Brown, K. N., McMahon, C. A. and Sims Williams, J. H.: 1994, A formal language for the
design of manufacturable objects, in J. S. Gero and E. Tyugu (eds), Formal Design
Methods for CAD, North Holland, Amsterdam, pp. 135-155.

Cagan, J. and Mitchell, W. J. (1993), Optimally directed shape generation by shape
annealing, Environment and Planning B, 20, 5-12.

Chase, S. c.: 1989, Shapes and shape grammars: from mathematical model to computer
implementation, Environment and Planning B, 16, 215-242.

Chomsky, N.: 1957, Syntactic Structures, The Hague: Mouton.
Deng, Y-S.: 1994, Feature Based Design: Synthesizing Structure from Behavior, PhD Thesis,

Department of Industrial Engineering, University of Pittsburgh.
Downing F. and Flemming, U.: 1981, The bungalows of Buffalo, Environment and Planning

B,8, 269-293.
Fitzhom, P.: 1986, A linguistic formalism for engineering solid modeling, in H. Ehrig, M.

Nagl and A. Rosenfeld (eds), Graph-Grammars and Their Application to Computer
Science, Springer-Verlag, Berlin, pp. 202-215.

Flemming, U.: 1987, More that the sum of the parts: the grammar of Queen Anne houses,
Environment and Planning B, 14, 323-350.

Fu, Z., De Pennington, A. and Saia, A.: 1993, A graph grammar approach to feature
representation and transformation, International Journal of Computer Integrated
Manufacturing,6(102), 137-151.

Gips, J. and Stiny, G.: 1972, Shape grammars and the generative specification of painting
and sculpture, in C. V. Freiman (ed.), Information Processing 71, North-Holland,
Amsterdam, pp. 1460-1465.

Gips, J. and Stiny, G.: 1980, Production systems and grammars: a uniform characterization,
Environment and Planning B, 7, 399-408.

Hoover, S. P. and Rinderle, J. R.: 1989, A synthesis strategy for mechanical devices,
Research in Engineering Design, 1, 87-103.

Knight, T. W.: 1980, The generation of Hepplewhite-style chair back designs, Environment
and Planning B, 7, 227-238.

Koning, H. and Eizenberg, J.: 1981, The language of the prairie: Frank Lloyd Wright's
prairie houses, Environment and Planning B, 8, 295-323.

Krishnamurti, R.: 1980, The arithmetic of shapes, Environment and Planning B, 7, 463-484.
Krishnamurti, R.: 1981, The construction of shapes, Environment and Planning B, 8, 5-40.
Krishnamurti, R.: 1992a, The maximal representation of a shape, Environment and Planning

B: Planning and Design, 19, 267-288.
Krishnamurti, R.: 1992b, The arithmetic of maximal planes, Environment and Planning B:

Planning and Design, 19, 431-464.

344 LINDA SCHMIDT AND JON CAGAN

Krishnamurti, R. and Stouffs, R.: 1993, Spatial grammars: motivation, comparison, and new
results, in U. Flemming and S. Van Wyk (eds), CAAD Futures '93, Elsevier Science, pp.
57-74.

Longenecker, S. N. and Fitzhorn, P. A.: 1991, A shape grammar for non-manifold modeling,
Research in Engineering Design, 2, 159-170.

Mitchell, W.: 1991, Functional grammars: an introduction, in Goldman and Zdepski (eds),
Proceedings of Association for Computer Aided Design in Architecture '91, Reality and
Virtual Reality, Los Angeles, California.

Mullins, S. and Rinderle, J. R.: 1991, Grammatical approaches to engineering design, Part I:
an introduction and commentary, Research in Engineering Design, 2, 121-135.

Pahl, G. and Beitz, W.: 1988, Engineering Design-A Systematic Approach, Springer­
Verlag, New York.

PiniIla, J. M., Finger, S. and Prinz, F. B.: 1989, Shape feature description using an
augmented topology graph grammar, Pre prints: NSF Engineering Design Research
Conference, Amherst, MA, pp. 285-300.

Reddy, G., and Cagan, J.: 1995, An improved shape annealing algorithm for truss topology
generation, ASME Journal of Mechanical Design, 117(2), 315-321.

Rinderle, J.: 1991, Grammatical approaches to engineering design, Part, II: Melding
configuration and parametric design using attribute grammars, Research in Engineering
Design, 2, 137-146.

Schmidt, L. and Cagan, J.: 1992, A recursive shape annealing approach to machine design, in
J. S. Gero and F. Sudweeks (eds), Preprints of the Second International Round-Table
Conference on Computational Models of Creative Design, Key Centre of Design
Computing, University of Sydney, pp. 145-171.

Schmidt, L. C. and Cagan, J.: 1995, Recursive annealing: A computational model for
machine design, Research in Engineering Design, 7, 102-125.

Schmidt, L.: 1995, An Implementation using Grammars of an Abstraction-Based Model of
Mechanical Design for Design Optimization and Design Space Characterization, PhD
Thesis, Carnegie Mellon University, Pittsburgh, PA.

Shea, K., Cagan, J. and Fenves, S.: 1995, A shape annealing approach to optimal truss
design with dynamic grouping of members, ASME 21st Design Automation Conference,
Boston, MA, DE-Vol. 82, pp. 377-384.

Sthanusubramonian, T., Finger, S and Rinderle, J. R.: 1992, A transformational approach to
configuration design, Proceedings of the 1992 NSF Design and Manufacturing Systems
Conference, Atlanta, Georgia, pp. 419-424.

Stiny, G.: 1980a, Introduction to shape and shape grammars, Environment and Planning B,
7, 343-351.

Stiny, G.: 1980b, Kindergarten grammars: designing with Froebel's building gifts,
Environment and Planning B, 7, 409-462.

Stiny, G.: 1988, Formal devices for design, Design Theory 88, Springer-Verlag, New York.
Stiny, G. and March, L.: 1981, Design machines, Environment and Planning B, 8, 245-255.
Stiny, G. and Mitchell, W. J.: 1978, The Palladian grammar, Environment and Planning B,

5, 5-18.

7
design spaces

Design sheet: A system for exploring design space:
Application to automotive drive train life analysis

Sudhakar Y. Reddy and Kenneth W. Fertig
Using modeling knowledge to guide design space search

Andrew Gelsey, Mark Schwabacher, Don Smith
Explanatory interface in interactive design environments

Ashok Goel, Andres Gomez de Silva Garza, Nathalie Grue,
J. William Murdock, Margaret Recker, T. Govindaraj

J. S. Gero and F. Sudweeks (eds), Anificiallntelligence in Design '96, 341-366.
© 1996 Kluwer Academic Publishers.

DESIGN SHEET: A SYSTEM FOR EXPLORING DESIGN SP-ACE

Application to automotive drive train life analysis

SUDHAKAR Y. REDDY AND KENNETH W. FERTIG
Rockwell Science Center, Palo Alto Laboratory
444 High Street, Suite 400, Palo Alto, CA 94301, USA

Abstract. This paper describes Design Sheet, an advanced software system which
facilitates the conceptual design of complex engineering systems. Design Sheet enables
the designer to quickly explore large areas of design space and study how the different
performance and cost criteria tradeoff with respect to one ,another. It provides an inter­
active interface for building analysis models in terms of systems of nonlinear algebraic
equations, and automatically writes computational procedures for solving these equations
based on user-specified tradeoff criteria. The paper briefly describes the principles and the
methodology behind the software, and showcases some of its capabilities. To
demonstrate its practical applicability, a system-level fatigue life analysis model of an
automotive drive train has been developed. The paper discusses the model and how it is
used in performing design tradeoff studies.

1. Introduction

The design of complex engineering systems is a hierarchical process. In
current industry practice, computer-aided design tools are widely used
during the later stages of this process for determining detailed design
specifications. Though design decisions made during the early stages have a
far greater impact on the final design quality and cost, tools for supporting
conceptual design are limited in availability as well as scope. In contrast to
detailed design, where the goal is to modify nominal design specifications
such that an optimal design is obtained, the critical need during conceptual
design is to quickly search the entire design space in order to provide good
specifications for the detailed design phase. Therefore, the approaches used
for detailed design analysis and optimization are not suitable for use during
the early conceptual stages.

During conceptual system-level design, a candidate design needs to be
evaluated with respect to mUltiple performance criteria. This will ensure that
the designs generated in the later stages are optimal with respect to the
overall system criteria, rather than being locally optimal solutions from
individual perspectives. Additionally, as cost is often a crucial criterion in

348 SUDHAKAR Y. REDDY AND KENNETH W. FERTIG

system design, multiple attribute tradeoffs with combined performance and
cost models are needed for exploring the large design space. Which
tradeoffs are important at any stage during design, however, are not known a
priori and depend on the results of other tradeoff analyses. Conceptual
design tools, therefore, require an ability to use integrated performance and
cost models and a capability to flexibly define tradeoff studies.

The research community has recognized the importance of integrated
models in design; several efforts are aimed at developing collaborative
design environments that integrate mUltiple models and tools used by
engineers (e.g., Herman and Lu, 1992; Cutkosky, 1993). However, the type
of model integration facilitated by these efforts is not quite appropriate for
conceptual design, where models based on multiple, incomplete and quickly
evolving system descriptions need to be used together for tradeoff analyses.
Conceptual design research, on the other hand, has mainly focused on the
role of optimization and robust design (e.g., Dixon, et aI., 1993), without any
emphasis on how to use integrated models. Further, most design tools either
do not provide integrated support for tradeoff studies or hard-code a limited
set of them.

The difficulties discussed above can be overcome if the representation of
knowledge is in a declarative form, and separated from the mechanisms that
control the use of the knowledge. This has been the thrust of Artificial
Intelligence, and the application of appropriate techniques from this realm is
bound to make a significant impact on the development of tools for system
design. In many system design problems, the natural representation of
knowledge is in the form of algebraic equations. Using the declarative
knowledge for tradeoff analysis requires the solution of systems of nonlinear
equations. Constraint propagation techniques provide a powerful mechanism
for accomplishing this task; they represent the equations as constraints
between variables, and propagate the changes in variable values across the
constraint network.

Constraint propagation approaches have been used by several researchers
in creating conceptual design systems. The main advantage of these
approaches is in decomposing large systems of equations into subsets of
more manageable size, which are solved individually before being combined
to obtain the overall solution. Bouchard et ai. (1988) use directed constraints
between design variables and numerical solution approaches to allow rapid
production of tradeoff studies. This approach, however, forces the designer
to decide a priori which variables are input and which are output. Serrano
(1987) has developed a constraint management approach based on bipartite
matching for efficiently decomposing large systems of algebraic equations,
and strong component identification for determining subsets of equations
that need to be solved simultaneously. Fromont and Sriram (1992) use
planning techniques to add flexibility to such systems, such as allowing

DESIGN SHEET: A SYSTEM FOR EXPLORING DESIGN SPACE 349

constraints to be added incrementally. In these approaches, the simultaneous
subsets are solved either symbolically or numerically, without further
decomposition. In practical applications, where such subsets can include
several tens of simultaneous nonlinear equations, neither symbolic nor
numerical solution techniques are feasible. Krishnan, et al. (1990) discuss
issues in user-directed constraints as well as suggestions for further
decomposing strong components representing the equations that need to be
solved simultaneously. However, their treatment is not comprehensive in
either aspect. Ward (1989) has extended constraint management for
propagating interval values. However, this is only practical for linear systems.
Ramaswamy and Ulrich (1993) have extended Serrano's work by
developing a constraint system with a spread-sheet interface.

In summary, current constraint-based design systems suffer from one or
more of the following shortcomings: do not solve large nonlinear systems of
simultaneous equations that are often present in practical system analysis
models; fail to scale up to real-life analysis problems, which require from a
few hundreds to a few thousands of equations to be solved; and do not
provide flexible interfaces needed for performing what-if analysis and
defining tradeoff studies, which is essential during conceptual design. We
have developed a constraint-based system, called Design Sheet, for solving
large systems of simultaneous nonlinear equations. It uses graph-theoretic
algorithms for breaking down large systems of equations into sub-systems of
more manageable size, before solving them. It further integrates this with a
graphical user-interface, which allows the system designer to quickly and
easily define and perform new tradeoff analyses.

The next section (Section 2) briefly describes the principles and method­
ology underlying Design Sheet, and discusses its unique features and
capabilities. The rest of the paper demonstrates the application of Design
Sheet to the fatigue life analysis of an automotive drive train. Section 3
describes the problem, derives the governing equations, and discusses the
important issues in developing the Design Sheet model for drive train life
prediction. Section 4 presents sample analyses and interesting tradeoff plots
obtained using the Design Sheet model. Finally, Section 5 concludes with a
discussion of the current status and the future direction of this research.

2. Design Sheet: A Tool For System Design

Design Sheet is an engineering design and analysis tool for conceptual
design. Design Sheet allows the user to input design equations in their
natural mathematical representation and solves these equations without
requiring the user to provide computational procedures. It represents
algebraic equations as constraints between variables, and uses a constraint
propagation approach for determining which variables are dependent on

350 SUDHAKAR Y. REDDY AND KENNETH W. FERTIG

which others. It also finds a computational sequence for evaluating the
values of dependent variables, given the values of independent variables. In
this process, it solves the set of nonlinear equations which make up the
constraint network using symbolic methods when possible and resorting to
numerical methods otherwise.

Design Sheet uses graph-theoretic algorithms to decompose the
constraint set into tractable subsets, solves them individually and combines
them to get the overall solution. The constraint network is represented as a
directed bipartite graph; a bipartite graph has two types of nodes with arcs
only between nodes of different types. In this case, the variables and the
relations are the two types of nodes and the arcs between them signify that a
variable is in a particular relation. A variable can be either independent,
meaning that its value can be set and freely varied by the user; dependent,
meaning that its value is determined by a relation, whose other variables are
all either dependent or independent; or undetermined, meaning that its value
cannot be determined by the current state of the constraint network.

Figure 1 shows a simple set of equations and the corresponding bipartite
graph. The arc directions in the graph signify what variables are inputs to,
and outputs of, a particular relation. In this example, the variables ml and f
are independent; therefore, the arcs from these variables are directed
outward. When a relation is used to compute a variable, the arc between them
is directed towards the variable; the variable is then determined and the rest
of the arcs from it are directed outward. When all but one of the arcs on a
relation node are directed inward, the relation can be used to calculate the
remaining variable.

RI:f=ma

R2:ml +m2=m

R3:m2=5

Figure 1. Bipartite graph of a simple set of equations.

As equations are added or variables made independent, Design Sheet
assigns appropriate arc directions and propagates them to determine all the
dependent variables. This process essentially decomposes the constraint
network into a sequence of subsystems which are solved individually, thus

DESIGN SHEET: A SYSTEM FOR EXPLORING DESIGN SPACE 351

improving the robustness of the overall solution procedure. In the example
shown in Figure 1, m1 and f are independent, and the three equations need
to be solved for the remaining variables, m2, m and a. Instead of solving the
system as a 3x3 system, Design Sheet uses equation R3 to solve for m2,
equation R2 to solve for m and equation R1 to solve for a.

Unlike in the above example, it is not always possible to decompose the
solution of a constraint network into steps which use a single equation to
calculate the value of a single variable. When a set of equations need to be
solved simultaneously, they form a directed cycle in the graph, called a
strongly connected component (SCC). The graph-theoretic approach is
essential for decomposing a non-trivial constraint network. The
decomposition process involves several steps-directing the graph, variable
determination, plan construction and component decomposition. Directing is
accomplished using a variant of the Ford-Fulkerson algorithm for finding
maximal matchings on bipartite graphs (Cormen et aI., 1991). SCCs are
identified using a standard backward search and marking algorithm. Once
Design Sheet figures out which variables are determined in the graph, it can
construct a plan for computing the value of any or all of the determined
variables. This is accomplished by topologically sorting the appropriate
portion of the constraint graph. In the resulting plan, a single evaluation step
corresponds to each SCC. A detailed description of the decomposition and
the plan construction mechanisms in Design Sheet is described in Buckley,
Fertig and Smith (1992).

A SCC can be solved symbolically when feasible, or numerically by
guessing at initial values for all the variables in the SCc. However, the
robustness of such procedures deteriorates rapidly as the number of
equations and variables increases. A unique feature of Design Sheet is in
further decomposing a SCC by judiciously choosing a set of iteration
variables, whose values when known unravel the cycle, so that the system can
be solved sequentially. Once an appropriate set of iteration variables is
determined, Design Sheet uses constraint propagation to derive an error
relation corresponding to each iteration variable. The system of
simultaneous equations is then solved by iterating over values of these
variables so as to make the residual errors in the error relations negligible.
All possible combinations of variables in the component are possible
candidates for selection as iteration variables. Design Sheet uses a
heuristically guided branch and bound search together with smart pruning
of the set of candidate iteration variables, to efficiently find the minimal set
from among all these possibilities.

With nonlinear systems, it is sometimes easier to use an equation in one
direction than another, and in other cases, an equation cannot be solved in a
particular direction. For example, the equation, Sin(x) + y = z * Log(z), is
difficult to solve for z and the equation, z = If (x>y, y, y2), cannot be solved

352 SUDHAKAR Y. REDDY AND KENNETH W. FERTIG

for x. Design Sheet uses direction penalties to account for the former and
forced directions to account for the latter.

2.1. CAPABILITIES OF DESIGN SHEET

Conceptual design requires capabilities for what-if analysis and tradeoff
studies. Design Sheet provides a spread-sheet like interface for carrying out
what-if analysis, and a menu-driven graphical interface for performing
design tradeoff studies.

2.1.1. What-if analysis
Design Sheet allows the designer to type in new values for independent
variables and see their effect on dependent variables. It allows the user to
decide what the input and output parameters are at run time. It automatically
restricts such choices to those that are mathematically feasible. When the user
changes the choice of inputs, Design Sheet automatically produces the
computational procedures needed to invert the model. Design Sheet can also
use Lisp or FORTRAN programs to define constraints among design
variables, and can reverse flow through such programs by iterating on input
parameters.

2.1.2. Tradeoff studies
The main purpose of Design Sheet is to perform tradeoff studies, which
involve determining the effect of different values of independent variables
on the values of dependent variables. The user defines new tradeoff studies
simply by specifying the independent and dependent parameters of interest
and the ranges in which to vary the independent variables. Design Sheet
displays the results of tradeoff studies using trade tables and plots. These
facilities have proved very useful for studying performance-cost and other
multiple-objective tradeoffs, and for quickly exploring large areas of design
space.

2.1.3. Error propagation
During conceptual design, estimated values are often used for some of the
independent parameters, but the designer would still like to know how errors
in these estimates affect the various tradeoffs. Design Sheet allows standard
deviations to be specified for the independent variables. It uses the same
constraint network that defines the variables, for propagating the effects of
errors in the independent variables. It assumes that the errors in the
independent parameters are not correlated and performs a first order error
analysis.

2.1.4. Constrained optimization
Design Sheet has a limited capability for constrained optimization. It allows
any dependent variable to be minimized, subject to user-defined inequality

DESIGN SHEET: A SYSTEM FOR EXPLORING DESIGN SPACE 353

constraints. The basic algorithm iteratively determines if a given constraint is
active (or inactive), and if so adds (or removes) it as an equality constraint,
before solving the minimization problem using a modified gradient-search
algorithm.

3. Developing a Model for Drive Train Life Prediction

System-level drive train life prediction is an important analysis activity at
Rockwell Automotive's engineering department. Currently, the major tool
for drive train life prediction is DTL, a large FORTRAN program (Shih and
Keeney, 1992). Though it provides extensive predictive capability for wide
range of drive train configurations, it is difficult to provide true flexibility
with this tool as new tradeoff studies require extensive re-programming.
Design Sheet, on the other hand, is ideal for performing new tradeoff studies
rapidly. In order to demonstrate the applicability of Design Sheet to analysis
problems as complex as drive train life prediction, we have developed a
Design Sheet model for the critical portions of the DTL program.

The model reported here is for a single axle automotive drive train. The
goal is to predict the life of the drive train subject to eight critical component
failures, which include the bending failure of the ring and the pinion gears,
the gear surface contact failure, and the fatigue failure of five bearings. The
life of each of these components depends on the stresses at the components,
and can be determined from the stresses by using the corresponding S-N
fatigue curves. The stresses at the components depend on the effective
torque at these components, which are determined by the output or pinion
torque and the corresponding gear ratios. The output torque is obtained by
solving the governing equations for drive train operation.

3.1. GOVERNING EQUATIONS FOR DRIVE TRAIN OPERATION

A bond graphl representation has been used to derive the governing
equations for use in Design Sheet. Figure 2 shows the bond graph for the
dri ve train.

The engine can provide a maximum torque of 'tea at full throttle, for a
given angular velocity, IDe. The actual torque output, 'te, depends on the
engine throttle conditions. The effect of a partial throttle is modeled using a
variable resistor, which produces a torque loss, L\'t, from the available full­
throttle engine torque of 'tea. There is an inertial element, I, which models the
storage of rotational inertial energy. The angular velocity and torque are
transferred through a clutch, a transmission, and a differential to the wheel.
The wheel converts angular velocity to linear velocity. The labels "0" and

1 See Rosenberg and Kamopp (1983) for an introduction to bond graphs.

354 SUDHAKAR Y. REDDY AND KENNETH W. FERTIG

"I" refer to the two types of junctions in the bond graph. The angular (or
linear) velocities are summed across the "0" junctions, whereas the torques
(or forces) are transmitted unchanged. On the other hand, the torques (or
forces) are summed across the "I" junctions, whereas the angular (or
linear) velocities are transmitted unchanged.

r--- -----~
I r--- -. : @)., ® @ @ ® : :
'/ I R R R : : 10 @

All ,;,1.... 6 1 1 1 ~ fa~ T £R
'tea 'te r 'ta @) 'tg(ideal) 'tg 'to _ 'twheel fwheel../ frol
~~I~I~O~D~I~D~I~D~I~D~1

o roe ® roe MIll roc (5) ® (Og @ ® (00 0) @(oWheel 0 v ~r',,~
~ Se @

@

Figure 2. The bond graph of the drive train.

The clutch is modeled with a variable resistor. Effectively, an incremental
angular velocity (~m) is created which assures that me is at least a specified
idling value. The bulk of the drive train is modeled with transformer
elements, with the addition of resistive elements to account for non-ideal
effects which reduce the available torque. Finally, there is a transformer
element modeling the wheel, which converts rotational velocity to linear
velocity. The forces due to wind resistance (fair), rolling friction (frol),
gravity (fg) and acceleration (face> are considered. The "1" junction at the
end balances all the relevant forces: fwheel = facc+frol+fair+fg.

The set of all equations for all the junctions and elements of the bond
graph constitute the system of governing equations for the drive train.
Table 1 shows the equations derived from the bond graph. The equation
labels in Table 1 correspond to the numbers beside the junctions and
elements in Figure 1. Labels with a "b" suffix refer to equations on the
torque side of the "TF" junctions, whereas the non-suffixed labels refer to
equations on the speed side of the same junctions. The first six speed
equations are differentiated to determine the derivatives needed for
calculating the rotational inertia in the engine. The last differential equation
(label 19) in Table 1 is merely an equivalence relationship. Maximum limits
on velocity and acceleration require the partial-load operation of the engine.
The dotted lines in Figure 1 represent this as a variable torque loss, which
depends non-linearly on the velocity and the acceleration, and is modeled
using equations 20 and 21 in Table 1.

3.2. DESIGN SHEET MODEL FOR DRIVE TRAIN LIFE PREDICTION

The equations for calculating the output torques, derived from the bond
graph, are input to Design Sheet along with additional relationships for

DESIGN SHEET: A SYSTEM FOR EXPLORING DESIGN SPACE 355

deriving the gear and bearing lives from the torques. The overall Design
Sheet model for drive train life is made up of several modules, namely
params, grade, acceleration, grade life, acceleration life, bearing and
damage modules, which are described below.

TABLE 1. The governing equations for the drive train.

Label Equation

1
2
2b
3
3b
4
4b
5
5b
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

v=p/m
COwheel = v/(2*1t*trad)
fWheel = t wheet(2*1t*trad)
COo = cowheeJ * gra
twheel(ideal) = to *gpin
COg = COo *srg
to(ideal) = t/trg
COc = COg *ig
tg(ideal) = tjig
COe = aco + COc
tea = EngineCurve(COe)
tr = Irot*d(coe)/dt
ta = te - tr
atg = COg *geff
tg = tg (ideal) - atg
ato = COo *deff
to = to(ideal) - ato
atwheel = cowheel*weff
twheel = twheel(ideal) - atwheel
frol = wtn*res
fair = car*vA 2
fg = sin(a)*m*g
fwheel = facc + froJ + fair + fg
tea = te + at(v, facc)
at = Function(v, facc)

3.2.1. The params module

Differential equation

dv/dt = (dp/dt)/m
d(COwheel)/dt = dv/dtl(2*p*trad)

d(COo)/dt = d(COwheel)/dt*gra

d(cog)/dt = d(coo)/dt*srg

d(coc)/dt = d(IDmm..)/dt*ig

d(coe)/dt = 0, aco>O; d(coe)/dt = d(coc)/dt, aco=O

dp/dt = face

The params module is the repository for data tables, relations and variables,
which are relevant across the different modules. Data tables are used for
modeling the engine torque-speed curve, gear ratios for different gears, and
grade distribution over the route. Table 2 shows the table used to represent
the engine torque-speed curve; Design Sheet uses linear interpolation to
obtain the values of torque for intermediate values of engine speed.

The primary independent variables, which are varied during tradeoff
studies, are also stored in this module. Table 3 shows a partial list of these
variables, along with their default values, units of measurement and brief

356

Name

ar
car
dvdtmax
ediff
effg
ird
irotat
nax
rag
rah
rap
res
rlrs
rrm
srg
trdd
trg
vmaxmph
whi
widle
wlo
wt

SUDHAKAR Y. REDDY AND KENNETH W. FERTIG

TABLE 2. Engine torque-speed curve data.

speed, rpm

0.0
1200.0
1285.714
1371.429
1457.143
1542.857
1628.571
1714.286
1800.0
3000.0

torque, Ib-ft

0.0
711.9907
732.681
731.1246
719.921
707.7778
694.8433
681.2361
667.0525
667.0525

TABLE 3. The primary independent variables.

Value Units Description

94.0 ftl\2 Vehicle frontal projected area
0.188 Aerodynamic resistance parameter
5.0 ftlsl\2 Maximum vehicle acceleration
0.96 Differential efficiency
0.99 Transmission gear efficiency
1 Parameter specifying road type
0.2 Ib-ftl\2 Moment of inertia
1 Number of axles
3.5833 - Hypoid gear ratio
1 Helical gear ratio
1 Gear reduction ratio at wheel end
0.012 Base value of rolling resistance
0.0103 - Coefficient of rolling resistance
0.2 Rolling resistance parameter for a tire type
1 Differential speed ratio
20.0 in Tire radius
1 Differential torque ratio
55 mph Vehicle maximum speed
1800 rpm Maximum engine rpm controlled by the governor
950 rpm Idling speed/rpm of engine
1400 rpm Minimum engine rpm when shifted into new gear
40000 lb Gross combined vehicle weight

descriptions. These variables represent the various design parameters, and
include the vehicle parameters such as the gross weight and the frontal area,
the engine parameters such as the idling speed and the maximum limit on
the acceleration, the transmission and differential gear ratios, the tire radius,
the coefficients of rolling and air resistance, the different efficiencies, and
the operational parameter limits such as the maximum velocity.

DESIGN SHEET: A SYSTEM FOR EXPLORING DESIGN SPACE 357

3.2.2. The grade and acceleration modules
The grade and the acceleration modules model the two operating modes,
namely constant velocity travel on a grade and acceleration from a stop,
respectively. The relations in these modules are essentially those in Table 1,
and can be used to calculate the output torque for a given grade or
acceleration profile. The relations are represented independently in both the
modules, because the drive train life depends on a given acceleration profile
together with a given grade profile. Though both the modules have similar
equations for the most part, the variables participating in the relations are
different between the modules. The velocity in the grade module is the
constant velocity at which the vehicle goes up the grade, whereas in the
acceleration module, it is the velocity at a given instant during acceleration.

Vector variables and equations are used in both the modules. In the
grade module, elements of the vectors correspond to different grades in the
route, whereas in the acceleration module, they correspond to discrete time
instances during acceleration. In addition to the equations in Table 1, these
modules have relations for enforcing maximum limits on acceleration,
velocity and engine speed, and for modeling the gear shift policy. These
additional relations are shown in Table 4, for the grade module.

TABLE 4. Additional grade module relations.

Name Form

GGROI {(wlo*60)/(trpm*gra*fgr(PG_igrlo[i])) =
Max(vlo,PG_v[i])*mph I i<=PG_NMAX}

GGR02 {PG_ig[i] = Max(l, Int(PG_igrlo[i])) I i<=PG_NMAX}
GLMOO {PG~[i] = fgr(PG_ig[i])/fgr(PG_ig[i]+l) I

i<=PG_NMAX}
GLMOl PG_telossl = 0.0
GLM02 {PG_teloss2[i] = If(PG_v[i] < vmax, 0.0, (PG_teavail[i] *

lOO*(PG_v[i] - vrnax))/vmax) I i<=PG_NMAX}
GLM03 {PG_teloss3[i] = If(PG_we[i] < whi, 0.0, «PG~r[i] - 1) *

PG_te[i] - (telo - tehi))*(1 - «PG~[i]*wlo - PG_we[i]) /
(PG~[i]*wlo - whi))A(2*exp))) I i<=PG_NMAX}

GLM04 {PG_teloss[i] = Min(telossmax*PG_teavail[i], PG_telossl
+ PG_teloss2[i] + PG_teloss3[i]) I i<=PG_NMAX}

GLM05 PG_te = PG_teavail - PG_teloss

Description

Use highest
possible gear
Lowest gear

Zero acceleration
Maximum limit
on velocity, vmax
Maximum limit
on engine rpm, we

The maximum limits on acceleration, velocity and engine speed are
enforced by a reduction in the available engine torque, when such limits are
exceeded. The torque reduction (or loss) accounts for the partial load
operation of the engine. In practice, this is done by reducing the throttle, but
in Design Sheet this is modeled by smooth nonlinear functions which
sharply increase the torque loss when the limits are exceeded (see Table 4).

358 SUDHAKAR Y. REDDY AND KENNETH W. FERTIG

The gear selection policy is modeled by the first two equations in Table 4
for the grade module, and is illustrated in Figure 3 for both the modules.
The lower curve in Figure 3 corresponds to the constant velocity mode,
where the highest gear at which the engine can operate above a minimum
engine rpm (e.g., 1400) is selected. The upper curve in Figure 3 corresponds
to the acceleration mode, where the gear is shifted up when the engine speed
reaches a given value (e.g., 1800 rpm). According to this policy, from
Figure 3, at velocity vI, gear 3 is selected in the constant velocity mode,
whereas gear 2 is selected in the acceleration mode; at velocity v2, however,
gear 4 is selected in both modes.

Figure 3. Gear shifting in different modes of operation.

The main difference between the grade and acceleration modules is the
direction in which Design Sheet automatically chooses to use the different
relations for calculating the output torque. To illustrate this point, the simpli­
fied directed graphs, which represent the systems of equations that need to
be solved simultaneously are shown in Figure 4 and Figure 5, for the
constant velocity mode and the acceleration mode, respectively. In the
figures, the actual systems of simultaneous equations and the variables
involved are connected by thick arcs, whereas the variables that are upstream
to this system are connected by thin arcs.

As is clear from Figures 4 and 5, the same sets of variables and relations
are involved in both the modules. The main difference between them is
whether the acceleration force or the velocity is the independent variable.
The grade module (Figure 4) sets face to be equal to zero, and solves for the
terminal velocity as well as the outDut toraue for a Darticular grade. The

DESIGN SHEET: A SYSTEM FOR EXPLORING DESIGN SPACE 359

variable, and calculates the resulting face, the force due to acceleration, and
eventually the output torque by solving the force balance equations.

v"-
roe-.... -r'1II~ ,

tea At

'(
te~

t -ta~o.-tc
trot

~
droe/dt

fair f

fron-K
fw face

Figure 4. Simplified directed graph of the component in the constant velocity mode.

/:/Olc q
r

tea At

'(
te~

t -ta~o.-tc
trot

dt

fair f

fron-K
fw face

Figure 5. Simplified directed graph of the component in the acceleration mode.

360 SUDHAKAR Y. REDDY AND KENNETH W. FERTIG

3.2.3. The grade life and acceleration life modules
Corresponding to the two modes of operation, the two life modules have
equations relating the output (or pinion) torque to the expected life in
number of miles for the different components at that torque. Table 5 shows
the relations in the grade life module; similar relations are defined in the
acceleration life module.

TABLE 5. Grade life module relations.

Name Form Description

GLF11 {PG_spsi[l,i] = (PG_to[i]/gpbr)*cdam I i<=PG_NMAX} Gear 1 bending stress
GLF12 {PG_spsi[2,i] = (PG_to[i]/ggbr)*cdam I i<=PG_NMAX} Gear 2 bending stress
GLF13 {PG_spsi[3,i] = Sqrt(PG_to[iD*kpgr I i<=PG_NMAX} Gear surface stress
GLF14 {PG_ncyc[j,i] = If(PG_to[i] = 0, 1.0e+12, Gear bending

(cgb/PG_spsi[j,iD"egb) Ij={ 1,2}, i<=PG_NMAX} S-N curve
GLF15 {PG_ncyc[3,i] = If(PG_to[i] = 0, 1.0e+ 12, Gear surface

(cgs/PG_spsi[3,iD"(2*egs» I i<=PG_NMAX} S-N curve
GLF16 {PG_ncyc[j,i] = If(PG_to[i] = 0, 1.0e+12, Bearing lives in terms

If(bd[j-3] = 0, 1.0e+S, cbr*(bd[j-3]/PG_to[iD"ebr» of bearing factors and
Ij = {4,5,6,7,S}, i<=PG_NMAX} pinion torques

GLF17 {PG_nmile[j,i] = PG_ncyc[j,i]/trprnlrag Cycles to miles
I j={ 1,3,4,5,6}, i<=PG_NMAX} conversion

GLF1S {PG_nmile[j,i] = PG_ncyc[j,i]/trpm Cycles to miles
I j={2,7,S}, i<=PG_NMAX} conversion

The first three relations in Table 5 calculate the stresses in the gears from
the pinion torque. The next two relations model the S-N curves for
calculating the number of cycles to fatigue failure of the gears; the S-N
curves are represented by empirical (exponential) functions. The next
equation is used to calculate the bearing fatigue lives from the pinion torque
and the bearing factors. Finally, the last two relations are used for calculating
the number of miles to failure from the number of cycles to failure, the tire
revolutions per mile and the appropriate gear ratios.

3.2.4. The bearing module
The bearing module calculates the bearing factors, which are needed to
calculate the bearing lives for specific pinion torques. Essentially, the
bearing factors are the stresses on the different bearings per unit pinion
torque. The bearing module calculates these unit stresses by balancing the
moments on the different bearings due to the pinion torque. In these
equations, load factors are used to account for bearing locations and bearing
ratings are used to account for the bearing type and material. These are
independent variables that can be varied depending on the selected bearing
locations and bearing types.

DESIGN SHEET: A SYSTEM FOR EXPLORING DESIGN SPACE 361

3.2.5. The damage module
The damage module has relations for calculating the total damage on the
different components as a result of travel over a specified route and start­
stop requirements. Table 6 shows the relations from this module. The first
four relations calculate the distance traveled in different modes and the total
distance traveled. The next three relations calculate the total damage by
summing damage due to different grades as well as accelerations in a route.
The last equation calculates life in miles, which is the reciprocal of damage.

TABLE 6. Damage module relations.

Name Form Description

DGOI GR_distsum = Sum(fdist(-0.09 + k * 0.01), Distance traveled in grade
k<=GR_NMAX) mode.

DG02 AC_distsum = AC_dist[AC_NMAX]/5280 Distance per acceleration.
DG03 numstarts = Int(GR_distsurnlmilesperstop) Number of starts.
DG04 totaldist = (AC_distsum + DC_distsum) * numstarts + Total distance traveled.

GR_distsum
DG05 {AC_damagefj] = (numstarts/totaldistl5280) *

Sum((AC_ v[i]/AC_dvdt[i]/AC_nmile[j,i] +
AC_ v[i-l]/ AC_dvdt[i-l]/ AC_nmile[j,i-l])*0.5*
(AC_v[i] - AC_v[i-l]), 2<=i, i<=AC_NMAX) Ij<=8}

Damage due to
acceleration

DG06 {PG_damagefj] = Sum(PG_dist[i]IPG_nmile[j,i], Damage due to constant
i<=PG_NMAX) / totaldist) I j<=8} velocity travel on a grade

DG07 {Damagefj] = AC_damagefj] + PG_damage[j] I j<=8} Overall damage.
DG08 {Life[j] = l/Damagefj] I j<=8} Reciprocal of damage.

Damage in a component is expressed as the fraction of the distance
traveled at a specific torque level with respect to the expected life of the
component in number of miles at that torque level. Using Miner's rule, the
damage due to constant velocity travel on a particular grade is summed for
the different grades to obtain the total damage due to constant velocity travel
on a positive grade. Similarly, the damage due to acceleration per each start
is obtained by integrating the damage due to instantaneous torques during
acceleration, and is computed by:

x dx v (Ya)1v
[Nm(X) = [Nm(v) ,

where v is the velocity, x is the distance traveled and Nm is the life in miles at
any given instance during acceleration. A numerical approximation to the
right hand side integral is used in this module. The total damage in the
acceleration mode is calculated by multiplying this damage due to an
individual profile by the number of starts over the complete route.

362 SUDHAKAR Y. REDDY AND KENNETH W. FERTIG

4. Using Design Sheet Model For Tradeoff Studies

The drive train life model described in the previous section can be used for
calculating the life of the components for a particular design specification
and route description (in terms of grade distribution and the number of
accelerations from stop). The interactive spread-sheet like interface of
Design Sheet, shown in Figure 6, can be used for what-if analysis to study
the effect of specific design and route changes.

;;:-t"---. - ~ -- -- - _. . - - - - --------< G"'

o." lqn> •

it
Group
M_OOn.unu
AA ConJItant..
AA:Call&tjjl.

/I.A D..-ge R02
AA: DlJIage RUJ
u. DalD9- ReG
AA: D&m.a9_ RQ5
U. DalD9_ R06
... -0 __ - ~!

iO _ -.=_.--=~

Figure 6. Design Sheet user interface.

More importantly, the tradeoff study capability provided by Design Sheet
can be used to explore a large region of the design space by studying the
effect of various attributes on the drive train life. Figure 7 shows a trade table
of the effect of gross vehicle weight (in lb.) on the eight component fatigue
lives (in miles), Life[l] through Life[8]. As can be seen from the trade table,
Life[5] and Life [6] , corresponding to bearings 2 and 3, respectively, are
critical.

H . < t·'r l

!~~OO £Ue[l1 £1/1,(21 £1Ie[3J £1Ie(4 J LU.($J Littl(6] £UIJ(71 £it.(81 ~
3829781 . 4084015. 2313991 . 1391291. 79125 . 29 133584.4 2.809861 •• 1 I. 802486 •• 8 ~

40000 1092939. 1165509. 1331842. 544210.3 78286.13 52027 . 84 1.094311e+1 1.020238 •• 7
50000 462141.3 492833.5 891354.2 282531 . 5 16549 . 93 21011. 28 5681645. 3.644695 •• 7
60000 222600.2 237380.1 642579.8 163654.9 74321.87 15645 . 81 3290992. 2 . 111125.7 I

r::I I,

Figure 7. Trade table showing effect of gross vehicle weight on component lives.

DESIGN SHEET: A SYSTEM FOR EXPLORING DESIGN SPACE 363

The plotting interface to the tradeoff facility can be used to get a clearer
view of the effect of gross vehicle weight on the lives of the two critical
bearings. Obtaining such a tradeoff plot, shown in Figure 8, is trivial in
Design Sheet and only takes a couple of minutes. As can be seen from the
figure, change in weight has only a small effect on the life of bearing 2
relative to its effect on the life of bearing 3. Further, bearing 2 is critical
below a gross vehicle weight of 36000 lb., whereas bearing 3 is critical for
larger values of vehicle weight.

r 100000
f
e

rn
i
1

75000

~ 50000

25000

30000 35000

~ ~ I.~ring 2
~ Ituin, 3

Gross vehicle weight , lb

Figure 8. Effect of gross vehicle weight on bearing life.

Figure 9 shows a similar tradeoff for the bending and surface contact
failure of the pinion gear. It shows the contribution of acceleration mode
travel to the total damage (reciprocal of life). This tradeoff reveals that the
majority of the damage is a result of acceleration. It further illustrates that
increasing the vehicle weight has a far greater impact on the bending
damage. Also evident is the fact that surface damage is more critical than,
though comparable to, bending damage below a weight of about 36,000 lb.,
whereas bending damage becomes critical above that weight.

Though it is enticing to draw conclusions about the transition of
criticality between components at specific weight values, one has to be
cautious while interpreting the results. For example, the tradeoffs in Figure 8
and Figure 9 are obtained for a constant vehicle frontal area, which may not
be valid considering the wide range of gross weights used. Accurate
conclusions can only be drawn when the relationship between the gross
weight and frontal area is established. The power of Design Sheet lies in
here, in that such relations can be added incrementally at run time, without
requiring time-consuming modifications to the software.

364

D
a
rn
a

SUDHAKAR Y. REDDY AND KENNETH W. FERTIG

4e-b

3e-6

G.- .£1 • u.doing ! ... d! ~ surl&CI: acet:l
~ ludin, tot. .. l
................. :5urh,c.. tot .. l

~ 2e-6

1e-6

35000 40000 45000 50000 55000 60000
Gross vehicle weight. Ib

Figure 9. Effect of gross vehicle weight on pinion gear damage.

Let us now consider the tradeoff between the two bearing lives as the
vehicle weight and frontal area are varied independently. Figure 10 shows
this as a cross plot produced by Design Sheet. The tradeoff from Figure 10
clearly shows that there are regions in design space where the lives of both
bearings 2 and 3 are high, whereas there are other regions where the life of
bearing 3 falls dramatically. This information is similar to that obtained in
Figure 8, but provides a more appropriate view of the design space to the
engineer, by demonstrating the effect of both the vehicle gross weight and
frontal area on a single plot. The tradeoff shows that gross weight has a
much greater effect on bearing lives than the frontal area of the vehicle.

8 140000
e
a
" 120000
1
n
g 100000
3

L 60000
i
f
e 60000

rn
i 40000
1
e
5 20000

s.....-EJ .. t • GOOOO
~ wt.. 40000
~ .. t. 30000
~ u-120
~ u-90
~ u·,o

70000 72000 74000
Bearing 2 Life. miles

Figure 10. Effect of gross weight and frontal area on bearing life.

DESIGN SHEET: A SYSTEM FOR EXPLORING DESIGN SPACE 365

As a final example of Design Sheet's flexibility, Figure 11 shows the
effect of maximum velocity (in mph) on the vehicle weight and fatigue life
tradeoff for bearing 2, which shows that reducing the maximum velocity has
a much larger impact on bearing life at higher values of gross weight.

BOOOO

L 79000
i
f
e 78000

T 77000
1
e
s 76000

75000

30000 35000 40000 45000 50000 55000

Gross vehicle weight. Ib

Figure 11. Effect of maximum velocity on the life of bearing 2.

5. Conclusions

Design Sheet has proved to be a highly flexible environment for building
analysis models and using them for tradeoff studies during conceptual
design. It derives its strength by integrating constraint management methods
with symbolic mathematics, robust equation solving, and a specially designed
software environment for supporting tradeoff studies. Like other constraint­
based systems, Design Sheet decomposes the design constraints into
manageable subsets, before solving them. However, in contrast to other
systems, Design Sheet further decomposes simultaneous subsets of equations
before applying numerical solution techniques, thus improving the
robustness of the overall solution process. This is also the main factor behind
the success of Design Sheet on applications with as many as five thousand
constraints.

The drive train life application clearly demonstrates that Design Sheet can
be used to quickly develop complex models and flexibly obtain interesting
tradeoffs. The tradeoff plots illustrated in this paper were obtained in a
matter of minutes, but more importantly, each successive tradeoff was
decided upon only after reviewing the results of the previous tradeoff plots.
It is this flexibility that sets Design Sheet apart from other design tools;
generating similar tradeoff plots without recourse to Design Sheet would

366 SUDHAKAR Y. REDDY AND KENNETH W. FERTIG

have taken hours, if not days. This application also illustrates how Design
Sheet automatically uses the same equations in different directions, in the
two operating modes, to calculate velocity and acceleration force. In certain
situations, such as when one tries to specify a value for the life of a
component and calculate the value of an upstream design parameter, the
computational complexity of determining a cut set for large components
could prohibit Design Sheet from propagating values backwards through the
constraint network. In future, we plan to overcome such difficulties by add­
ing to Design Sheet the capability to reason with function-valued attributes.

Acknowledgments. We wish to thank Dr. Shan Shih for help with the modeling of
the automotive drive train life, and the current and previous members of the laboratory
who have contributed to the Design Sheet effort.

References

Bouchard, E. E., Kidwall, G. H. and Rogan, J. E.: 1988, The application of artificial
intelligence technology to aeronautical system design, AIAA 88-4426, AIAA Aircraft
Design Systems and Operations Meeting, Atlanta, Georgia.

Buckley, M. J., Fertig, K. W. and Smith, D. E.: 1992, Design sheet: an environment for
facilitating flexible trade studies during conceptual design, AIAA 92-1191, Aerospace
Design Conference, Irvine, California.

Cormen, T., Leiserson, C. and Rivest, R.: 1991, Introduction to Algorithms., McGraw-Hill,
New York.

Cutkosky, M., R.: 1993, PACT: An experiment in integrating concurrent engineering
systems, IEEE Computer, 26(1), 28-37.

Dixon, J. R., Orelup, M. F. and Welch, R. V.: 1993, A research progress report: robust
parametric designs and conceptual design models, Proceedings of the NSF Design and
Manufacturing Systems Conference, SME, Dearborn, Michigan, pp. 499-506.

Fromont, B. and Sriram, D.: 1992, Constraint satisfaction as planning process, in J. S. Gero
(ed.), Artificial Intelligence in Design '92, Kluwer, Dordrecht, pp. 97-117.

Herman, A. E. and Lu, S. C-Y.: 1992, Computer methods for distributed reasoning to support
concurrent engineering, Proceedings Prolamat '92 Conference, Tokyo, Japan, pp. 1-19.

Krishnan, V., Navinchandra, D., Rane, P. and Rinderle, J. R.: 1990, Constraint reasoning
and planning in concurrent design, Technical Report CMU-RI-TR-90-03, The Robotics
Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania.

Ramaswamy, R. and Ulrich, K.: 1993, A designer's spreadsheet, in T. K. Hight and L. A.
Stauffer (eds), Design Theory and Methodology, 53, pp. 105-113.

Rosenberg, R. C. and Karnopp, D. C.: 1983, Introduction to Physical System Dynamics,
McGraw-Hill, New York, New York.

Serrano, D.: 1987, Constraint management in conceptual design, PhD dissertation, MIT,
Department of Mechanical Engineering, Cambridge, Massachusetts.

Shih, S. and Keeney, C. S.: 1992, DTL2 User's Manual, Rockwell International Automotive
Operations, Troy, Michigan.

Ward, A. C.: 1989, A Theory of Quantitative Inference for Artificial Sets Applied to a
Mechanical Design Compiler, PhD Dissertation, MIT, Department of Mechanical
Engineering, Cambridge, Massachusetts.

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 367-385.
© 1996 Kluwer Academic Publishers.

USING MODELING KNOWLEDGE TO GUIDE DESIGN SPACE SEARCH

ANDREW GELSEY, MARK SCHWABACHER AND DON SMITH

Computer Science Department
Rutgers University
New Brunswick, NJ 08903, USA

Abstract. Automated search of a space of candidate designs seems an attractive way to
improve the traditional engineering design process. To make this approach work, however,
the automated design system must include both knowledge of the modeling limitations of
the method used to evaluate candidate designs and also an effective way to use this know­
ledge to influence the search process. We suggest that a productive approach is to include
this knowledge by implementing a set of model constraint functions which measure how
much each modeling assumptions is violated, and to influence the search by using the
values of these model constraint functions as constraint inputs to a standard constrained
nonlinear optimization numerical method. We test this idea in the domain of conceptual
design of supersonic transport aircraft, and our experiments indicate that our model con­
straint communication strategy can decrease the cost of design space search by one or
more orders of magnitude.

1. Introduction

Automated search of a space of candidate designs seems an attractive way to im­
prove the traditional engineering design process. Each step of such automated
search requires evaluating the quality of candidate designs, and for complex arti­
facts (e.g., aircraft, our main example), this evaluation must be done by computa­
tional simulation. However, computational simulation is based on a model of the
physics of the artifact, and this model will generally make simplifying assump­
tions in order to be computationally tractable. Most existing computational simu­
lators are intended to be used by human experts, and thus they typically include
no explicit representation of their modeling assumptions. Instead, it is assumed
that the experts know enough to stay away from portions of the design space that
will violate the simulator's assumptions. .

For example, a typical assumption for an aircraft simulator might be that the
wings won't stall. Stall is a physical phenomenon that occurs when a wing is op­
erated at too high an angle of attack and therefore ceases to generate lift. The

368 ANDREW GELSEY ET AL.

physics of stall is understood, and there is in principle no reason not to model it in
a simulator. However, a human expert aircraft designer doesn't want to design a
plane that stalls during normal operation, so he doesn't need a detailed prediction
of stall behavior. The designer is satisfied with an incomplete model as long as he
can recognize "impossibly high" lift coefficients and realize that the design he is
considering would actually stall and thus should be discarded.

However, if the simulator is invoked by another program such as an automated
search procedure rather than by a human expert, it is quite likely that in exploring
the design space, the automated search procedure will examine designs which vi­
olate the simulator's assumptions, and for those candidate designs, the evaluation
of the design quality computed by the simulator may be meaningless. Further­
more, this meaningless value may appear better than the value for any physically
realizable design, thus leading the search procedure to a worthless but apparently
very good design.

In our earlier work (Gelsey, 1995b), we have investigated the types of mod­
eling knowledge that are needed so that a simulator can be reliably invoked by
another program, and we have described algorithms for detecting assumption vi­
olations and other problems that might lead to low-quality or unreliable simu­
lation results. In the present paper, we address the question of how information
about model assumption violations can be effectively communicated to an auto­
mated search procedure so that the search procedure can find candidate designs
that don't violate model assumptions.

2. Communication Strategies

Strategies for communicating information about model violations to the search
procedure include:

The Null Strategy: ignore the model violation - the search procedure uses whatever
value happens to be computed by the inapplicable model for the quality of
the candidate design.

The Boolean Strategy: when any model violation occurs, always give the search
procedure a standard "very bad value" as the quality of the candidate design.

Model Constraints: when a candidate design is evaluated, give the search pro­
cedure not only a value for the quality of the candidate design, but also val­
ues for a set of "model constraint" functions which measure how much the
various modeling assumptions are satisfied or violated.

Model Penalties: same as the model constraints strategy, except that only the
value for the quality of the candidate design is returned to the search pro­
cedure, and that value is penalized in proportion to the amount by which the
various modeling assumptions are violated.

In this paper we will focus primarily on the boolean strategy and model con­
straints. The null strategy is unlikely to be useful unless it coincidentally happens

USING MODELING KNOWLEDGE TO GUIDE DESIGN SPACE SEARCH 369

to be the same as either the boolean strategy or the model penalties strategy. The
boolean strategy can be useful - its advantages include:

- easy to implement: as soon as a violation is detected, just return immediately
with a standard "very bad" value for the objective function

- it can be used even with unconstrained search methods

The model constraints strategy is more complicated to implement than the boolean
strategy, but our experimental results later in this paper show that when used with
a search method that allows constraints, the perfonnance of the model constraints
strategy is considerably better than that of the boolean strategy. We don't invest­
igate the model penalties strategy in this paper, but discuss possible uses for it in
our Future Work section.

3. Aircraft Design

We have pursued our investigation in the domain of conceptual design of super­
sonic transport aircraft. Figure 1 shows a diagram of a typical airplane automat­
ically designed by our software system to fly the mission shown in Figure 2,
and Figure 3 shows a block diagram of the system's software architecture. The
search controller attempts to find a good aircraft conceptual design for a particu­
lar mission by varying major aircraft parameters such as wing area, aspect ratio,
engine size, etc. using a numerical optimization algorithm. The search control­
ler evaluates candidate designs using a multidisciplinary simulator with which it
communicates via the Model/Simulation Associate (MSA), which implements the
various communication strategies described in the previous section. In our cur­
rent implementation, the search controller's goal is to minimize the takeoff mass
of the aircraft, a measure of merit commonly used in the aircraft industry at the
conceptual design stage. Takeoff mass is the sum of fuel mass, which provides a
rough approximation of the operating cost of the aircraft, and "dry" mass, which
provides a rough approximation of the cost of building the aircraft. The simulator
computes the takeoff mass of a particular aircraft design for a particular mission
as follows:

1. Compute "dry" mass using historical data to estimate the weight of the air­
craft as a function of the design parameters and passenger capacity required
for the mission.

2. Compute the landing mass m(tfinal) which is the sum of the fuel reserve plus
the "dry" mass.

3. Compute the takeoff mass by numerically solving the ordinary differential
equation

dm
di = f(m,t)

which indicates that the rate at which the mass of the aircraft changes is
equal to the rate of fuel consumption, which in tum is a function of the cur-

370 ANDREW GELSEY ET AL.

engineScale = 1.532

wingArea = 4652

aspectRatio", 1.57

fuselageTaperLength = 121 .3

wing Thickness Ratio = 3

ws_div_dma = 1 .158

taper Ratio = 0

drawingScale = 2.09

·42 o 42

wOw

221

160

60

o

Figure 1. Supersonic transport aircraft designed by our system (dimensions in feet).

Phase Mach Altitude (ft.) Duration (min.s) comment

2
3

0.227
0.85
2.0

o
40,000
60,000

5 "takeoff"
85 subsonic cruise (over land)

180 supersonic cruise (over ocean)

capacity: 70 passengers.

Figure 2. Mission specification for aircraft in Figure 1.

USING MODELING KNOWLEDGE TO GUIDE DESIGN SPACE SEARCH 371

Model/Simulation Associate (MSA

Simulator

Figure 3. Software architecture block diagram.

rent mass of the aircraft and the current time in the mission. At each time
step, the simulator's aerodynamic model is used to compute the current drag,
and the simulator's propulsion model is used to compute the fuel consump­
tion required to generate the thrust which will compensate for the current
drag.

The software architecture in Figure 3 also includes a "search space toolkit" for
determining the design space structure, which is described in Gelsey and Smith
(1995) and Gelsey et al. (1996) and therefore will not be discussed further in this
paper.

A complete mission simulation requires about 114 second of CPU time on a
DEC Alpha 250 4/266 desktop workstation.

4. Search Procedure

In this paper we will focus on search of a space of candidate designs using numer­
ical optimization methods which vary a set of continuous parameters to minimize!
a nonlinear objective function subject to a set of nonlinear equality and inequal­
ity constraints. The numerical optimizer used in this paper is CFSQP (Lawrence
et aI., 1995), a state-of-the-art implementation of the Sequential Quadratic Pro­
gramming method. Sequential Quadratic Programming is a quasi-Newton method
that solves a nonlinear constrained optimization problem by fitting a sequence of
quadratic programs2 to it, and then solving each of these problems using a quad­
ratic programming method.

In order to handle unevaluable points (i.e., points whose objective function
was assigned the boolean strategy standard "very bad" value), we have supple­
mented CFSQP with knowledge-based gradients. Knowledge-based gradients are

ITo instead maximize the objective function, just multiply it by -1 and minimize.
2 A quadratic program consists of a quadratic objective function to be optimized, and a set of

linear constraints.

372 ANDREW GELSEY ET AL.

computed by using a set of rules that specify how to compute gradients with reas­
onable accuracy in the presence of unevaluable points. In addition, we have ar­
ranged for the line searches in CFSQP to terminate when they encounter unevalu­
able points. These enhancements to CFSQP are crucial when using the boolean
communication strategy, which results in numerous unevaluable points. They can
also be helpful when using the model constraints communication strategy, since
some limitations of the simulator are not modeled in the model constraints, so
some unevaluable points exist even when using model constraints. In the exper­
iments reported in this paper, with the boolean strategy, 76% of the points en­
countered were unevaluable, and with the model constraints strategy, 4% of the
points encountered were unevaluable. (Note: the optimizer tends to avoid une­
valuable points, so these percentages are considerably lower than the average dens­
ity of unevaluable points in the search spaces, as indicated by the data presented
later in this paper.) Knowledge-based gradients are further described in Schwaba­
cher and Gelsey (1996).

5. Model Constraints

For the experiments in this paper, the MSA module in Figure 3 computes the fol­
lowing model constraint functions, which are ::; 0 if a constraint is satisfied and
positive otherwise:

ETUB = <maximum throttle required during mission simulation> - <maximum
throttle setting allowed for engine>. If an impossibly high throttle is re­
quired to fly the mission, the simulation will continue using extrapolation,
but the value of ETUB will indicate the extent to which the engine model
assumptions are violated.

ETLB = <minimum throttle setting allowed for engine> - <minimum throttle
required during mission simulation>.

A1LB, A1UB, A2LB, A2UB: Similar to above - violation of bounds for a two­
dimensional table of experimental data on supersonic drag.

WLUB = <maximum wing loading during mission simulation> - <maximum
wing loading simulator can validly model>.

FM = <fuel mass that current candidate design requires to complete mission>
- <fuel mass that can be stored in available volume for current candidate
design>.

STALL = <maximum lift coefficient during mission simulation> - <maximum
lift coefficient simulator can validly model>. The simulator assumes wings
won't stall, and this constraint function computes how well that assumption
is satisfied.

These model constraint functions are continuous and usually smooth with respect
to the design parameters as their values change sign, which is very important
so that when MSA is using the model constraint communication strategy, CF-

USING MODELING KNOWLEDGE TO GUIDE DESIGN SPACE SEARCH 373

SQP (the numerical optimizer) can follow constraint boundaries if necessary as
it searches for an aircraft design which can fly the given mission with minimal
takeoff mass. If MSA is following the "boolean" communication strategy, it does
not give the values of the model constraint functions to CFSQP: instead, any can­
didate design for which some model constraint function is positive will be evalu­
ated to have a standard "very large" takeoff mass.

In addition to these model constraints, MSA computes the following design
constraint:

PASS = <passenger capacity required for the mission> - <passenger capacity
available with current design parameters>.

Note: differences between model constraints and design constraints include:

- Design constraints can be extracted directly from design goals, while for­
mulating model constraints requires carefully examining the underlying as­
sumptions of the model which the simulator is based on.

- Design constraints can be violated without reducing the quality (i.e., correct­
ness) of the objective function computed by the simulator, but when a model
constraint is violated, the value of the objective function computed by the
simulator cannot be trusted. For example, even if the PASS constraint is vi­
olated, the simulator can still correctly compute the takeoff mass needed to
fly though the mission carrying whatever number of passengers the aircraft
is actually able to hold. However, if a model constraint is violated, then the
takeoff mass computed by the simulator may be wildly wrong. For example,
if the simulator is allowed to violate the STALL constraint, the optimizer
may design an aircraft with very small wings operated at a very high angle
of attack which may appear to be a very efficient aircraft, much better than
the best physically plausible design, but which in fact is not capable of flying
at all.

- If a design constraint happens to be inactive at the optimal design (i.e., the
constraint is satisfied for all designs near the optimal design, so the optimum
does not lie on a constraint boundary), then the "null" communication strategy
will be effective when applied to this constraint - i.e., the constraint may
safely be ignored without a detrimental effect on the optimization. However,
the null communication strategy will not in general be effective when ap­
plied to model constraints, even if they are inactive at the optimal design. In
the region where a model constraint is violated, the value of the objective
function computed by the simulator may include random meaningless val­
ues, so therefore if the model constraint violations are ignored by the null
strategy, the region where the model constraint is violated may include local
optima of the objective function or, even worse, points having (spurious) val­
ues of the objective function better than the best value for any design satisfy­
ing all the model assumptions. Either of these conditions can "trap" the op-

374 ANDREW GELSEY ET AL.

Small Box Big Box

Design Parameter low high low high

engine size 0.5 3 0.1 5
wing area (sq. ft.) 1500 13500 500 20000
wing aspect ratio 1 2 0.5 3
fuselage taper length (ft.) 100 200 50 300
effective structural thickness over chord 5 0.5 10
wing sweep over design mach angle 1 1.45 0 1.45

wing taper ratio 0 0.1 0 0.1
fuel annulus width (ft.) 0 4 0 8

Figure 4. Subsets of design space explored.

timizer and keep if from getting to the true optimum, even though the model
constraint in question is inactive at the true optimum.

6. Experimental Results

To experimentally test MSA communication strategies, we used a seven-dimensional
design space in which the optimizer varied the following aircraft conceptual design
parameters over a continuous range of values:

1. engine size
2. wing area
3. wing aspect ratio
4. fuselage taper length (how "pointed" the fuselage is)
5. effective structural thickness over chord (a nondimensionalized measure of

wing thickness)
6. wing sweep over design mach angle (a nondimensionalized measure of wing

sweep)
7. wing taper ratio (wing tip chord divided by wing root chord)
8. fuel annulus width (space available in fuselage for fuel storage)

Figure 4 shows the two subsets we explored in the design space defined by these
seven design parameters.

To test the effect of the MSA communication strategy on the design process,
we considered the following strategy combinations:

1. Return values of all model constraint functions to the optimizer as nonlinear
inequality constraints.

2. Return values of all model constraint functions except ETLB and ETUB to
the optimizer, but for candidate designs where the engine table constraints
were violated (ETLB or ETUB positive), use the "boolean" strategy and re­
turn a standard "very large" value for takeoff mass.

USING MODELING KNOWLEDGE TO GUIDE DESIGN SPACE SEARCH 375

Design Parameters:
engine size
wing area
wing aspect ratio
fuselage taper length
effective structural thickness over chord
wing sweep over design mach angle
wing taper ratio
fuel annulus width

Objective Function:
Takeoff Mass

Model Constraints:
ETUB
ETLB
AILB
A1UB
A2LB
A2UB
WLUB
FM

STALL

Design Constraint:
PASS

1.532
4652 sq. ft.

1.570
121.3ft.

3.002
1.158

o
o

167.4 tonnes

-41.57
-0.76
-2.2
-1.8
-1.5
-8.5

-149.8
-0.0011 tonnes

o

-2

Figure 5. Best design found for mission of Figure 2.

3. Return values of all model constraint functions except AtLB, At UB, A2LB,
and A2UB to the optimizer; use "boolean" strategy for points which required
extrapolation outside the aerodynamics table bounds.

4. Return values of all model constraint functions except FM, which is "boolean".
5. Return values of all model constraint functions except STALL, which is "boolean".
6. Return values of all model constraint functions except WLUB, which is "boolean".
7. Use the "boolean" communication strategy for all model constraint func­

tions.
8. A two-level approach in which the "boolean" communication strategy is used

to find a feasible point, and then all model constraints are used to find an op­
timum.

376 ANDREW GELSEY ET AL.

Strategy Combination Success Start Cost Opt. Cost Est. 99% Cost

All model constraints returned 65174 16 42375 1252
ETLB and ETUB "boolean" 52174 3203 67158 3609
PM "boolean" 0174 603 99215 » 456565
STALL "boolean" 18174 5441 81566 19427

AILB/AlUB/A2LB/A2UB "boolean" 67174 57 47042 1242
WLUB "boolean" 62174 721 39404 1372
All model constraints "boolean" 0174 21946 75804 » 447106
Two level 72174 18098 39389 990

Figure 6. Performance of the various strategy combinations.

For each strategy combination, our system randomly choose points in the "small
box" until it found 74 "evaluable" points (i.e., points whose objective function
was not assigned the boolean strategy standard "very bad" value).3 Each of these
74 points was then used as a starting point for a design optimization using CF­
SQP to try to find an optimal aircraft design for the mission shown in Figure 2.
(We required the starting points to be evaluable because if CFSQP happened to
be started in an unevaluable region, then all components of the gradient would be
zero and the optimization would terminate immediately.) The best design found
for this mission in all the experiments is shown in Figure 5, and a diagram of this
aircraft appears in Figure I.

The performance of the strategy combinations is shown in a table in Figure 6.
The "Success" column for each strategy combination shows what fraction of the
74 optimizations found aircraft designs having takeoff masses within 1% of the
takeoff mass of the apparent "global optimum" - the best design we found for
this mission (Figure 5). The "Start Cost" column shows how many simulations
had to be run on unevaluable points while finding the 74 optimization starting
points, and "Opt. Cost" shows the total number of simulations that were run dur­
ing each set of 74 optimizations.4 The "Est. 99% Cost" column in Figure 6 gives
the estimated cost with each strategy combination to have a 99% chance of find­
ing the global optimum, which is computed by multiplying the average cost per
optimization times log(1 - Pdesired) / log(l - Psuccess), where Pdesired is the de­
sired probability of finding the global optimum (99% in this case) and Psuccess is
the probability of any single optimization finding the global optimum (which we
estimate with the value in the "Success" column). Figure 7 shows graphically the
"Est. 99% Cost" to achieve a range of different design qualities. (Note that the
curves for some of the strategies are so bad that they are above the largest vertical

374 is not a "magic" number; it was just a convenient choice given available disk space.
4 As mentioned earlier, a complete mission simulation requires about 114 second of CPU time

on a DEC Alpha 250 4/266 workstation.

u;
o
()

USING MODELING KNOWLEDGE TO GUIDE DESIGN SPACE SEARCH 377

l~rn--------~--------'----------'---------'---------'

80000

60000

40000

20000

o
1

,
;
;
&" ·A.4

\
i
i

1.01 1.02
Quality

All model constraints returned _
Two level -+-­

ETLB and ETUB "boolean" · 0 ··
FM "boolean" ,. ...

STALL "boolean" ~ ­
Al LBlAlUBlA2LB/A2UB "boolean" -,.. -

WLUB "boolean" .<> ..
All model constraints "boolean" +-..

1.03 1.04 1.05

Figure 7. Cost to achieve a range of design qualities with 99% confidence. Quality is takeoff mass,
normalized by the best takeoff mass found (Figure 5), so quality = 1.01 corresponds to Figure 6.

axis value shown and therefore they do not appear in the plot. See the "Est. 99%
Cost" column in Figure 6 for their values at Quality = 1.01.)

The data in Figure 6 indicates that the model constraints communication strat­
egy can find the global optimum with a 99% confidence at a cost which is one or
more orders of magnitude smaller than the cost to achieve comparable results
with the boolean communication strategy. Examination of the different strategy
combinations indicates that the model constraints which contribute most to this
performance difference are the constraints active at the global optimum (constraint
values :::::: 0 in Figure 5), but that even the constraints which are inactive at the
global optimum may give a factor of two to three speedup when handled us­
ing model constraints rather than the boolean strategy. If a constraint is active at
the global optimum, then CFSQP must "navigate" along the constraint boundary
when searching for the optimum. This navigation is easy when the boundary is
defined by a smooth model constraint, but much more difficult when the bound­
ary is marked only by a sudden jump in the objective function from a reasonable
value to the boolean "very bad" value. Model constraints which are inactive at the
optimum may still be active during some parts of the search and thus can help
guide the search and prevent the optimizer from getting stuck.

378 ANDREW GELSEY ET AL.

Strategy Combination Success Start Cost Opt. Cost Est. 99% Cost

All model constraints returned 55174 48 58376 2674

ETLB and ETUB "boolean" 14174 6979 124796 39102

FM "boolean" 0174 879 128618 » 592317

STALL "boolean" 15174 21669 78508 27520

AILB/AIUB/A2LB/A2UB "boolean" 40174 280 176113 14114

WLUB "boolean" 60174 2181 58976 2285

All model constraints "boolean" 0174 354761 80835 » 1992408

Two level 54174 301917 56198 17034

Figure 8. Performance of the various strategy combinations in a bigger box.

Model constraints which are active at the global optimum are more critical,
but it is important to note that there will typically be no reliable a priori way
to determine which model constraints will be active at the global optimum. This
fact suggests that the model constraints communication strategy should be used
to handle all model assumptions, even though implementing smooth model con­
straint functions may require more work than implementing the simpler boolean
communication strategy.

An issue that should be considered is the question of why any model con­
straints are active for the globally optimal design. Does this situation indicate
that there are actually better designs on the other side of the constraint bound­
ary which the optimizer would be able to find if only we had a more sophisticated
model that didn't need as many constraints? Not necessarily. For example, lift ini­
tially rises as a function of angle of attack and later begins falling rapidly as stall
occurs for higher angles of attack. The STALL constraint, which is active at our
global optimum (see Figure 5) cuts off this function at its peak so that the lift
function is monotonic where the constraint is satisfied. A more sophisticated sim­
ulator which modeled stall would not find better designs on the other side of the
STALL constraint boundary - it would just find that the lift function ceased to
be monotonic when the boundary was crossed. The ETLB constraint is also active
at our global optimum (see Figure 5). In this case, the engine stops running when
the throttle is too low. Modifying the engine model to correctly predict the sud­
den low temperatures and pressure produced by the engine when it stops running
would not uncover better designs.

To test the effect of box size on our conclusions, we repeated our experiments
in a larger box. Figure 4 shows the two "boxes" in the design space used in our
experiments. The bigger box contains the smaller box, and the volume of the lar­
ger box is about 300 times greater than the volume of the smaller box. Figure 8
shows the performance of the various communication strategies in the larger box,
and Figure 9 shows graphically the "Est. 99% Cost" to achieve a range of dif-

:;;
o
U

USING MODELING KNOWLEDGE TO GUIDE DESIGN SPACE SEARCH 379

1~rr-r------.----------r---------'---------'----------'

80000

• \

60000

.
4-.
i
i
\

\
4,.01.\..,&..4.4

Quality

All model constraints returned -
Two level -+--­

ETLS and ETUB "boolean" ·EJ_·
FM "boolean")(-

STALL "boolean" -
A1LBlAWB/A2LBIA2UB "boolean" -... .

WLUB "boolean" · 0- '
All model constraints "boolean" _ .

Figure 9_ Cost to achieve a range of design qualities with 99% confidence. Quality is takeoff mass,
normalized by the best takeoff mass found (Figure 5), so quality = 1.01 corresponds to Figure 8_

ferent design qualities. Search cost increases in the larger box, as expected, but
model constraints still cost orders of magnitude less than the boolean strategy.

It is important to compare the performance of the "two-level" strategy com­
bination for the two boxes. In the "small" box, the two-level approach was ac­
tually superior to the pure model constraints approach: it was slightly better to
use a boolean strategy to find a feasible point before starting to use model con­
straints to find the optimum. The reverse was true in the big box, however: the
pure model constraints approach was a factor of six less expensive then the two­
level approach. These results are quite plausible, because the "start cost" data for
"all boolean" combination indicates that the density of feasible points in the small
box is about 1/300 while in the big box it is only 1/4800. The big box has such a
small feasible region that the benefit of using model constraints to search for the
feasible region outweighs the model constraints overhead, while in the smaller
box random probes can find the feasible region cheaply enough that the overhead
of using model constraint to find the feasible region is not justified. However, even
in the small box model constraints are still extremely useful for searching within
the feasible region in order to find an optimum.

To test the effect of the design goal on our conclusions, we repeated our ex­
periments with a different goal. We used the same boxes as for the previous exper-

380

Phase

2

3

ANDREW GELSEY ET AL.

Mach Altitude (ft.) Duration (min.s) comment

0.227 0 5 "takeoff"
0.85 40,000 50 subsonic cruise (over land)
2.0 60,000 225 supersonic cruise (over ocean)

capacity: 70 passengers.

Figure 10. Another mission specification.

Design Parameters:
engine size
wing area
wing aspect ratio
fuselage taper length
effective structural thickness over chord
wing sweep over design mach angle
wing taper ratio
fuel annulus width

Objective Function:
Takeoff Mass

Model Constraints:
ETUB
ETLB
AILB
AIUB
A2LB
A2UB
WLUB
FM
STALL

Design Constraint:
PASS

1.146
3690 sq. ft.

1.089
130.1 ft.
2.728
1.235

o
o

134.8 tonnes

-2.89
-18.19
-1.83
-2.17
-2.03
-7.97
-143.8

-0.00038 tonnes

o

-2

Figure 11. Best design found for the 2nd mission (Figure 10).

USING MODELING KNOWLEDGE TO GUIDE DESIGN SPACE SEARCH 381

Strategy Combination Success Start Cost Opt. Cost Est. 99% Cost

All model constraints returned 62174 13 36204 1238
ETLB and ETUB "boolean" 57174 1275 65556 2827
FM "boolean" 1174 31 65105 297930
STALL "boolean" 36174 1681 50847 4904
AILB/AIUB/A2LB/A2UB "boolean" 65174 55 40377 1194
WLUB "boolean" 64174 227 34899 1092
All model constraints "boolean" 0174 6576 67046 » 336745
1\vo level 64174 4307 34477 1205

Figure 12. Performance of the various strategy combinations for the 2nd mission.

10c000~--------.----------r---------.----------r---------,

80000

60000

40000

~ ...
i
i
i
i

\
i
i
i
i
i
i

,
I

~
...
~

...

Quality

All model constraints returned -+­
Two level -+--.

ETlB and ETUB "boolean" ·0 ..
FM "boolean" ">< .•.•.

STALL "boolean" -
A1LB1AtUBlA2LB/A2UB "boolean" -,.. .­

WLUB "boolean" .<) •• .

All model constraints "boolean" .~ ...

Figure 13. Cost to achieve a range of design qualities with 99% confidence. Quality is takeoff
mass, normalized by the best takeoff mass found (Figure 11), so quality = 1.01 corresponds to Fig­
ure 12.

iments, but instead the goal was to design the best aircraft for the mission shown
in Figure 10. Figure 11 shows the best design found, which differs considerably
from the optimal design for the previous mission. We performed the same set of
experiments for this case, and the experimental data which appears in Figures 12,
13, 14, and 15 supports our previous conclusion that the model constraint com­
munication strategy can cut search cost by an order of magnitude or more.

382 ANDREW GELSEY ET AL.

Strategy Combination Success Start Cost Opt. Cost Est. 99% Cost

All model constraints returned 48174 41 57607 3429
ElLB and ETUB "boolean" 13174 5616 145770 48765
FM "boolean" 0174 162 93146 » 426789
STALL "boolean" 39174 7602 64000 5951
A lLBI Al UBI A2LBI A2UB "boolean" 34174 342 131652 13352
WLUB "boolean" 51174 1420 56171 3066
All model constraints "boolean" 0174 133265 117224 » 1145732
1\\'0 level 49174 231396 48049 16025

Figure 14. Performance of the various strategy combinations for the 2nd mission in the bigger
box.

;;;
o
U

1~"c--------.----------.-----------.----------'----------'

80000

60000

40000

20000

i
i
i
i
i
i
A
I

\

, , ,
I 1 ,
\ \
\ L.

All model constraints returned -<>­
Two level -+-_.

ETlB and ETUB "boolean" ' E1--
FM "boolean" " .. .

STALL "boolean" -
A1LBlA1UBlA2LB/A2UB "boolean" - II<- ..

1:.13-(;1.

tHll3-E1BDBDElDElI3·E1B·D13-D8-DEl13·EI

WLUB "boolean" . <) •••

All model constraints "boolean"

;'''1
'OGElI3'E!

i!l ..
S 'D B ·E}Se-8GB {3- E) G·

~ -~
~.;~~tt~~~~~~~~~++++++++++~~~~~r~~~~~+++++++

~. • , ,. -. -)1(.....

1\ ~
" ~ "' t--+.

'$' ·<>-v · 'V"V V '

o~--------~----------~----------~--------~----------~
1 1.01 1.02 1.03 1.04 1.05

Quality

Figure 15. Cost to achieve a range of design qualities with 99% confidence. Quality is takeoff
mass, normalized by the best takeoff mass found (Figure 11), so quality = 1.01 corresponds to Fig­
ure 14.

7. Related Work

Gelsey (l995b) examines the types of modeling knowledge that are needed so that
a simulator can be reliably invoked by another program and describes algorithms
for detecting assumption violations and other problems that might lead to low­
quality or unreliable simulation results, but strategies for communicating inform-

USING MODELING KNOWLEDGE TO GUIDE DESIGN SPACE SEARCH 383

ation about modeling failures to an automated design systems are not discussed.
Forbus and Falkenhainer (1990; 1992; 1995) discuss the use of qualitative sim­
ulation to check the quality of numerical simulation results, but here strategies
for communicating information about modeling failures to an automated design
systems are also not discussed.

Other automated intelligent controllers for numerical simulators are described
in Gelsey (1991; 1995a), Sacks (1991), Yip (1991) and Zhao (1994), but these do
not address the issue of model and simulation quality assurance.

Intelligent monitoring for complex systems has received considerable atten­
tion (e.g., Dvorak and Kuipers (1991), but this work has focused on diagnosis
of problems in dynamically changing physical systems as opposed to problems in
the execution of computational algorithms which are attempting to simulate the
behavior of physical systems.

A great deal of work has been done in the area of numerical optimization al­
gorithms (Gill et al., 1981; Vanderplaats, 1984; Peressini et aI., 1988; More and
Wright, 1993; Papalambros and Wilde, 1988), though not much has been pub­
lished about the particular difficulties of attempting to optimize functions defined
by large "real-world" numerical simulators. A number of researchers have com­
bined AI techniques with numerical optimization (Ellman et al., 1993; Schwabacher
et al., 1994; Schwabacher et al., 1996; Tong et al., 1992; Powell, 1990; Bouchard
et al., 1988; Bouchard, 1992; Sobieszczanski-Sobieski et aI., 1985; Agogino and
Almgren, 1987; Williams and Cagan, 1994; Hoeltzel and Chieng, 1987; Cerbone,
1992), but have not addressed the issue of model and simulation quality assur­
ance.

8. Limitations and Future Work

A limitation of the model constraints communication strategy is the need to im­
plement fairly well-behaved model constraint functions for all model assump­
tions. Implementing the model constraint functions was not too difficult for our
conceptual design of aircraft domain, but investigating the difficulty of imple­
menting model constraints in other domains is an important area for future work.

Our experiments have been performed in a domain in which the global op­
timum has a fairly large "basin of attraction", so that a local optimization method
like Sequential Quadratic Programming will give a high confidence of finding the
global optimum if started from a small number of random starting points. For do­
mains in which this property fails to hold, global optimization methods such as
Simulated Annealing will often be preferable. Such methods would not typically
be able to make direct use of model constraint functions, so for such a domain in­
vestigating the "model penalties" communication strategy described in Section 2
might be worthwhile area for future work.

384 ANDREW GELSEY ET AL.

9. Conclusion

Automated search of a space of candidate designs seems an attractive way to im­
prove the traditional engineering design process. To make this approach work,
however, the automated design system must include both knowledge of the mod­
eling limitations of the method used to evaluate candidate designs and also an
effective way to use this knowledge to influence the search process. We suggest
that a productive approach is to include this knowledge by implementing a set
of model constraint functions which measure how much each modeling assump­
tions is violated, and to influence the search by using the values of these model
constraint functions as constraint inputs to a standard constrained nonlinear op­
timization numerical method. Our experiments indicate that our model constraint
communication strategy can decrease the cost of design space search by one or
more orders of magnitude.

10. Acknowledgments

We thank our aircraft design expert, Gene Bouchard of Lockheed, for his invalu­
able assistance in this research. We thank our programmer, Keith Miyake, for his
effort in implementing large parts of the software described in this paper. This re­
search was partially supported by NASA under grant NAG2-817 and is also part
of the Rutgers-based HPCD (Hypercomputing and Design) project supported by
the Advanced Research Projects Agency of the Department of Defense through
contract ARPA-DABT 63-93-C-0064.

References

Agogino, A. M. and Almgren, A. S.: 1987, Techniques for integrating qualitative reasoning and
symbolic computing, Engineering Optimization, 12, 117-135.

Bouchard, E. E., Kidwell, G. H. and Rogan, J. E.: 1988, The application of artificial intelligence
technology to aeronautical system design, AlAAlAHSIASEE Aircraft Design Systems and Op­
erations Meeting, Atlanta, Georgia, AIAA-88-4426.

Bouchard, E. E.: 1992, Concepts for a future aircraft design environment, Proceedings, 1992
Aerospace Design Conference, Irvine, CA, AIAA-92-1188.

Cerbone, G.: 1992, Machine learning in engineering: Techniques to speed up numerical optimiz­
ation, PhD Thesis, Technical Report 92-30-09, Oregon State University Department of Com­
puter Science.

Dvorak, D. and Kuipers, B.: 1991, Process monitoring and diagnosis, IEEE Expert, 6(3), 67-74.
Ellman, T., Keane, 1. and Schwabacher, M.: 1993, Intelligent model selection for hillclimbing

search in computer-aided design. Proceedings of the Eleventh National Conference on Arti­
ficiallntelligence, Washington, DC.

Forbus, K. D. and Falkenhainer, B.: 1990, Self-explanatory simulations: An integration of qualitat­
ive and quantitative knowledge, Proceedings, Eighth National Conference on Artificiallntelli­
gence, Boston, MA, pp. 380-387.

Forbus, K. D. and Falkenhainer, B.: 1992, Self-explanatory simulations: Scaling up to large models,
Proceedings, Tenth National Conference on Artificial Intelligence, San Jose, CA.

Forbus, K. D. and Falkenhainer, B.: 1995, Scaling up self-explanatory simulations: Polynomial­
time compilation, Proceedings, Fourteenth Intemationnal loint Conference on Artificial Intel-

USING MODELING KNOWLEDGE TO GUIDE DESIGN SPACE SEARCH 385

ligence, Montreal, Quebec, Canada.
Gelsey, A. and Smith, D.: 1995, A search space toolkit, Proceedings, 11th IEEE Conference on

Artificial Intelligence Applications, Los Angeles, CA, pp. 117-123.
Gelsey, A., Smith, D., Schwabacher, M., Rasheed, K. and Miyake, K.: 1996, A search space toolkit,

Decision Support Systems, special issue on Unification of Artificial Intelligence with Optimiz­
ation (to appear).

Gelsey, A.: 1991, Using intelligently controlled simulation to predict a machine's long-term be­
havior, Proceedings, Ninth National Conference on Artificial Intelligence, Cambridge, MA,
pp.880-887.

Gelsey, A.: 1995, Automated reasoning about machines, Artificial Intelligence, 74(1), 1-53.
Gelsey, A.: 1995, Intelligent automated quality control for computational simulation, Artificial

Intelligencefor Engineering Design, Analysis and Manufacturing (AI EDAM), 9(5), 387-400.
Gill, P. E., Murray, W. and Wright, M. H.: 1981, Practical Optimization, Academic Press, Lon­

don/New York.
Hoeltzel, D. and Chieng, W.: 1987, Statistical machine learning for the cognitive selection of non­

linear programming algorithms in engineering design optimization, Advances in Design Auto­
mation, Boston, MA.

Lawrence, C., Zhou, J. and Tits, A: 1995, User's guide forCFSQPversion 2.3: A C code for solving
(large scale) constrained nonlinear (minimax) optimization problems, generating iterates satis­
fying all inequality constraints, Technical Report TR-94- 16rl, Institute for Systems Research,
University of Maryland, August.

More, J. J. and Wright, S. J.: 1993, Optimization Software Guide, SIAM, Philadelphia.
Papalambros, P. and Wilde, J.: 1988, Principles of Optimal Design, Cambridge University Press,

New York, NY.
Peressini, A. L., Sullivan, E E. and Uhl, Jr, J. J.: 1988, The Mathematics of Nonlinear Program­

ming, Springer-Verlag, New York.
Powell, D.: 1990, Inter-GEN: A hybrid approach to engineering design optimization, Technical

Report, PhD Thesis, Rensselaer Polytechnic Institute Department of Computer Science.
Sacks, E. P.: 1991, Automatic analysis of one-parameter ordinary differential equations by intelli­

gent numeric simulation, Artificial Intelligence, 48(1),27-56.
Schwabacher, M. and Gelsey, A.: 1996, Intelligent gradient-based search of incompletely defined

design spaces, Technical Report HPCD-TR-38, Department of Computer Science, Rutgers
University, New Brunswick, NJ. ftp://ftp.cs.rutgers.edulpub/technical-reports/hpcd-tr-38.ps.Z.

Schwabacher, M., Hirsh, H. and Ellman, T.: 1994, Learning prototype-selection rules for case­
based iterative design, Proceedings of the Tenth IEEE Conference on Artificial Intelligence for
Applications, San Antonio, Texas.

Schwabacher, M., Ellman, T., Hirsh, H. and Richter, G.: 1996, Learning to choose a reformula­
tion for numerical optimization of engineering designs, in J. S. Gero and E Sudweeks (eds),
Artificial Intelligence in Design '96, Kluwer, Dordrecht (this volume).

Sobieszczanski-Sobieski, J., James, B. B. and Dovi, A. R.: 1985, Structural optimization by multi­
level decomposition, AIAA Journal, 23(11),1775-1782.

Tong, S. S., Powell, D. and Goel, S.: 1992, Integration of artificial intelligence and numerical
optimization techniques for the design of complex aerospace systems, Proceedings, 1992
Aerospace Design Conference, Irvine, CA.

Vanderplaats, G. N.: 1984, Numerical Optimization Techniques for Engineering Design: With Ap­
plications, McGraw-Hill, New York.

Williams, B. C. and Cagan, J.: 1994, Activity analysis: The qualitative analysis of stationary
points for optimal reasoning, Proceedings, 12th National Conference on Artificial Intelligence,
Seattle, Washington, pp. 1224-1230.

Yip, K.: 1991, Understanding complex dynamics by visual and symbolic reasoning, Artificial
Intelligence, 51(1-3), 179-221.

Zhao, E: 1994, Extracting and representing qualitative behaviors of complex systems in phase
space, Artificial Intelligence, 69(1-2),51-92.

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 387-405.
© 1996 Kluwer Academic Publishers.

EXPLANATORY INTERFACE IN INTERACTIVE DESIGN
ENVIRONMENTS

ASHOK GOEL, ANDRES GOMEZ DE SILVER GARZA, NATHALIE
GRuB, J. WILLIAM MURDOCK AND MARGARET RECKER
College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332, USA

AND

T. GOVINDARAJ

School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332, USA

Abstract. Explanation is an important issue in building computer-based interactive design
environments in which a human designer and a knowledge system may cooperatively
solve a design problem. We consider the two related problems of explaining the sys­
tern's reasoning and the design generated by the system. In particular, we analyze the
content of explanations of design reasoning and design solutions in the domain of phys­
ical devices. We describe two complementary languages: task-method-knowledge mod­
els for explaining design reasoning, and structure-behavior-function models for explain­
ing device designs. INTERACTIVE KRITIK is a computer program that uses these repres­
entations to visually illustrate the system's reasoning and the result of a design episode.
The explanation of design reasoning in INTERACTIVE KRITIK is in the context of the
evolving design solution, and, similarly, the explanation of the design solution is in the
context of the design reasoning.

1. Background, Motivations and Goals

Effective communication of both the design process and the design product is crit­
ical in collaborative design. Communicating the process of design and the evid­
ence that the product satisfies its requirements can help build confidence in the
design. When members of a design team work on different parts of a design prob­
lem, this kind of communication about one part of the problem can help in con­
straining other parts of the problem. In addition, explanation of design reason­
ing and its result can enable reuse of parts of the reasoning/result in subsequent

388 ASHOK GOEL ET AL.

design projects. Within the course of a design project, the explanation can enable
reflection, support the detection of flaws, and suggest remedies for fixing them.

This is no less true of collaboration between a human designer and a know­
ledge system in the context of computer-based interactive design environments.
When a human designer and a knowledge system are cooperatively addressing a
design problem, the system must be able to explain to the designer precisely what
it is doing, how and why. In addition, the system must be able to justify why the
design solution it has proposed is acceptable for the given problem. Without this
the user will have little confidence in the design and may be unable to detect p0-

tential flaws in it. Building usable interactive design environments thus requires
both a theory of design explanations and the creation of explanatory interfaces.

The issue then becomes how maya knowledge system explain both its reason­
ing and the design solutions it proposes. This issue has several related but distinct
facets pertaining to the content, generation, and presentation of explanations. To
illustrate, let us consider the problem of explaining the design of a gyroscope.
The explanation may specify how the design works, how its structure delivers its
functions, how its design satisfies its requirements. Within a knowledge system,
knowledge of the gyroscope's behaviors may be represented as a causal network,
or generated at run-time from a representation of its design structure. To the user,
the system may present the explanation in text form, or as graphics, or in some
other modality such as animation. Our research on design explanations centers on
the content of explanations presented to the user, and the content and representa­
tion of design knowledge and reasoning needed for generating the explanations.

The content of explanation and justification of design solutions, such as that
of a gyroscope, depends both on the design phase and the design domain. For ex­
ample, the explanation of the result of preliminary design is different from that of
the result of configuration design: the former pertains to the function and struc­
ture of the design while the latter refers to its geometry. Similarly, the content of
a justification for the design of gyroscope is different from that of an office build­
ing or a software interface. This is because the relationships between the func­
tion and the structure of the gyroscope design are fundamentally different from
the function-structure relations in the design of an office building or a software
interface. Our work focuses on the preliminary (conceptual, qualitative) design
of physical devices such as electrical circuits, heat exchangers, and angular mo­
mentum controllers. The input to this task is a specification of the desired func­
tions, and the output is a specification of a structure that can deliver the desired
functions.

We are developing an interactive design and learning environment called IN­
TERAcTIvE KRITIK. When complete, INTERACTIVE KRITIK is intended to serve
as an interactive constructive design environment. At present, when asked by a
human user INTERACTIVE KRITIK can invoke a knowledge-based design system
called KRITIK3 to address specific kinds of design problems. KRITIK3 evolves

EXPLANATORY INTERFACE 389

from KRITIK, which has been extensively described elsewhere (e.g., Goel (1991,
1992); Goe1 and Chandrasekaran (1989, 1992». INTERACTIVE KRITIKprovides
an explanatory interface to KRITIK3. In particular, it provides visual explanations
and justifications of both KRITIK3' s reasoning and the solutions it proposes. In
addition, it enables the user to explore the system's design knowledge and also
the design of the device generated by the system. A key feature of INTERACTIVE
KRITIK is that explanation of the design reasoning is presented in the context of
the evolving design solution, and, similarly, explanation of the design solution is
presented in the context of the reasoning that led to it.

2. INTERACTIVE KRITIK

INTERACTIVE KRITIK'S architecture consists of two agents: a design agent in
the form of KRITIK31 and an interface agent2 . Figure 1 illustrates INTERACT­
IVE KRITIK'S architecture. The solid lines in the figure represent data flow while
dotted lines represent control flow.

Krltk3 Interface Agent

k-------t-t----- - ExpIalaI1on. and
Illustration, ~

~
~~

Exploration of
. Physical Devices

J IllustTonon and
Explanation of

Design Processing

Figure 1. INTERACTIVE KRmK's architecture.

2.1. STRUCTURE-BEHAVIOR-FUNCTION MODELS IN INTERACTIVE KRITIK

We use structure-behavior-function models (SBF models) (Chandrasekaran et al.,
1993; Goel, 1991, 1992) for explaining and justifying designs of physical devices.
The SBF model of a device provides a functional and causal explanation of how
the device works, how its structure delivers its functions. This explanation makes
explicit the functional and causal roles played by each structural element in the
device design. Since KRITIK3 addresses the function-to-structure design task, and
because the SBF model of a design created by the system explains how the pro­
posed structure delivers the desired functions, the SBF model provides a justific­
ation for the design.

1 KRITIK3 runs under Common Lisp using CLOS.
2The interface is built using the Garnet tool (Myers and Zanden, 1992).

390 ASHOK GOEL ET AL.

The SBF model of a device explicitly represents (i) the function(s) of the
device, (ii) the structure of the device, and (iii) the internal causal behaviors of
the device. The internal causal behaviors specify how the functions of the struc­
tural elements of the device are composed into the device functions. As a simple
(almost trivial) example, let us consider the SBF model of an electrical circuit that
produces light of intensity 9 lumens.
Structure: The structure of a device in the SBF language is expressed in terms
of its constituent components and substances and the interactions between them.
Components and substances can interact both structurally and behaviorally. For
example, electricity can flow from battery to bulb only if they are structurally
connected, and only if supported by the function allow electricity of switch that
connects the battery and the bulb.
Function: The function of a device in the SBF language is represented as a schema
that specifies the input behavioral state of the device, the behavioral state it pro­
duces as output, and a pointer to the internal causal behavior of the design that
achieves this transformation. Both the input state and the output state are repres­
ented as substance schemas. The input state specifies that the substance electricity
has the property voltage and the corresponding parameter, 10 volts. The output
state specifies the property intensity and the corresponding parameter, 9 lumens,
of a different substance, light. Finally, the slot by":'behavior points to the causal
behavior that achieves the function of producing light. Figure 2 illustrates INTER­
ACTIVE KRITIK'S visual representation of the function of the electrical circuit.
Behavior: The SBF model of a device also specifies the internal causal behaviors
that compose the functions of device substructures into the functions of the device
as a whole. In the SBF language, the internal causal behaviors of a device are
represented as sequences of transitions between behavioral states. The annota­
tions on the state transitions express the causal, structural, and functional con­
texts in which the state transitions occur and the state variables get transformed.
The causal context specifies causal relations between the variables in preceding
and succeeding states. The structural context specifies different structural rela­
tions among the components, the substances, and the different spatial locations of
the device. The functional context indicates which functions of which compon­
ents in the device are responsible for the transition. The behaviors are organized
along the flow of specific substances through the device.

Figure 3 illustrates INTERACTIVE KRITIK'S visual representation of Light­
Behavior, the causal behavior that explains how light is generated. The state trans­
ition in this behavior has three annotations Using Function, Under Condition
Transition, and Parametric Equation as indicated in the side bar on the top right
of the figure. In the screen shot depicted, the description of one of these annota­
tions, Using Function, is displayed in the pop-up dialog box in the right center
of the figure. This description explains that the transition occurs due to the func­
tion Bulb-Function-Light component Bulb. Although not shown in Figure 3, the

EXPLANATORY INTERFACE 391

iii g
" 0
III:

"I
110
I

~ m ~ 1:
H

~
In '" ..:I

~ ~ ~
~ • 0

• • U

• 1 ' !
..: ..,

o I ow ~
0 i i II
0 ~ !l

-.4 ..,
• U

-.4
ow
-.4
U t! I: • Po ~

H

ID i ... ~ ~ ~ •
II " g ~ g
0
-ri ~ .., 0

u
II ,

Figure 2. The function of an electrical circuit.

~
 ~ !-'o
 >
 ~ ~ ~ io gO

~o
 §. § ~ ~ ('

) 80 p.o

~
K
l
l
d
k

o
t

th
e
 C

 •
•
•
 I

L
IG

H
T

-P
R

O
D

U
C

E

L
i
l
J
h
t
-
B
e
h
.
v
i
o
~

S
t&

te
:6

6
S

t.
at

e
:6

7

L
IG

II
T

L

IQ
ft

o
f

IN
T

!N
SI

T
Y

I
-
-
-
-
-
.
,
.
.
.
-
-
-
-
~
~
 o

f
IN

n
ll

S
lT

Y

o L
U

H
m

S

t.
U

K
E

N
S

<E
aM

1t1
ony

B
.
h
a
v
i
o
~
(
.
)

E
l
.
c
t
~
i
c
i
t
y
-
B
.
h
a
v
i
o
~

~

tr
..

.,
..

lt
io

n
 ~
,
d
.
t

,1
C
»
1
.
'

o
cc

u
r.

u
_1

n
g

th
e

fu
n

ct
lc

m
 -

.J
.b

.J
I'

1m
et

lo
a"

W
.p

t

o
f
t
.
b
e
c
~
t
~

r
U

l'
!"

I

I.>
J ~
 ~ ~ § ~ ~

EXPLANATORY INTERFACE 393

description for Under Condition Transition specifies that the transition is contin­
gent on the flow of electricity through the bulb as detailed in a separate behavior
labeled Electricity-Behavior. Similarly, the description for Parametric Equation
specifies the specific equation relating the state variables.

The use of SBF models for explanation of designs is consistent with Simon's
(1981) notion of functional explanations of artifacts. He has argued that explan­
ations of artifacts pertain to, and are referenced by, the purpose of the artifact.
This leads us to hypothesize that SBF models capture the content of explanation
of a device design at the "right" level of abstraction for comprehension by human
designers.

2.2. TASK-METHOD-KNOWLEDGE MODELS IN INTERACTIVE KRITIK

We use task-method-knowledge models (TMK models) (Chandrasekaran, 1989,
1990; Goel and Chandrasekaran, 1992) for explaining and justifying reasoning
about a design problem. The TMK model provides a functional and strategic ex­
planation of design reasoning in terms of the task, the methods used to accomplish
the task, the subtasks spawned by the methods, and the knowledge used by the
methods. Since subtasks are spawned by the methods available to the reasoner,
the TMK model also provides a justification of specific tasks addressed by the
reasoner in terms of the methods that spawn the tasks. Similarly, since methods
serve tasks and are afforded by the available knowledge, the TMK model provides
a justification of the use of specific methods by the reasoner in terms of the tasks
being addressed and the knowledge that affords the methods.

The TMK model of design reasoning has three main elements. The first ele­
ment, the task, is characterized by the types of information it takes as input and
gives as output. KRITIK3 addresses the functions-to-structure design task in the
domain of physical devices. This task takes as input a specification of the func­
tions of the desired design. It has the goal of giving as output the specification of
a structure that delivers the desired functions. The second element in the TMK
model is the method. A method is characterized by (i) the type of knowledge it
uses, (li) the subtasks (if any) it sets up, and (iii) the control it exercises over the
processing of subtasks. KRITIK3 uses the method of case-based reasoning for ad­
dressing the function-to-structure design task. Figure 4 illustrates INTERACTIVE
KRITIK's visual representation of this method. The figure shows that the method
sets up the subtasks of problem elaboration, case retrieval, design adaptation, and
case storage. It also shows the order in which these tasks are executed. In addi­
tion, it shows the input-output specification of these tasks. For example, the task
of design adaptation takes as input the specification of the desired functions and
the best matching case retrieved from the case memory. It gives as output an SBF
model for a candidate design as indicated in Figure 4.

The third element in the TMK model is knowledge. A specific type of domain

~
 ~ ~ ~ I g: I§
 ~

T
 •
•
 Jc.

:

=
--

:-
--

-J
::

::
:-

l
~

I

H
e

t.
h

o
d

:

FU
no

S

p
e
c

P
ro

be
..

B
u

t
"
"
tO

b
,

FU
no

$

p
e

e

N
w

 M
o

d
e

l

SU
ht

 ••
 u

:

P
ro

bl
em

E

la
b

or
at

io
n

1 c .
..

R

et
ri

ev
a

l

1
D

ed
g

n

A
d.

Ip
t.

at
io

n

1
c ..

 ,.

S
to

ra
ge

P
ro

b
el

>

B
e
o

t
"
"
to

h

>

. ..
..,

 H
od

el

")
 P

ro
c

e
d

u
re

/M
e

th
o

d
!

H
eu

rh
tl

c:
.

C
i.C

'r
lm

1n
&

ti
on

T

r .
.
 S

ea
rc

h

~ ~ ~ ~ ~ ~

EXPLANATORY INTERFACE 395

knowledge is characterized by its content, by its fonn of representation, and by its
organization. Consider the example of diagnostic knowledge. In some domains,
heuristic associations that directly map signs and symptoms into fault categories
may be available. In a knowledge system, this associative knowledge might be
represented in the fonn of production rules and organized as an unordered list.
KRITIK3 contains two kinds of domain knowledge: past design cases and case­
specific SBF models. We already have briefly described the representation and
organization of the SBF models. Design cases are indexed by the functions de­
livered by the stored designs, and organized as leaf nodes of a discrimination tree.

The design of the KRITIK family of systems embodies a TMK model of of
function-to-structure design of common physical devices (Goe1 and Chandrasekaran,
1992). We derived this model by analysis of the above task domain using the fol­
lowing methodology (Chandrasekaran, 1989, 1990):
Task Identification: First, the task is specified in tenns of the generic types of
information it takes as input and the generic types of information desired as its
output.
Knowledge Identification: Next, the domain is analyzed in terms of the kinds of
knowledge available in it.
Method Identification: Then, the different methods afforded by the different kinds
of available knowledge are identified. This step also involves the identification of
the subtasks that each method may set up.
Method Selection: Next, since more than one method may be feasible, the cri­
teria for selecting a specific method is specified. These criteria may include factors
such as properties of the desired solution and computational properties of the
methods.
Recursive Task-Domain Analysis: Finally, the above steps are repeated for each
of the subtasks that the selected method sets up.

This recursive decomposition of the given task continues up to an "element­
ary" level at which the domain affords knowledge that can "directly" map the in­
put to the (sub)task into its desired output. At this level, no method is needed;
instead, a procedure directly applies the relevant knowledge to solve the task. The
recursive task decomposition results in a task-method-subtask tree. For example,
design adaptation is a subtask of the design task set up by the case-based method
as illustrated in Figure 4. KRITIK3 uses a model-based method for addressing the
task of adaptation as Figure 5 illustrates. The model-based method sets up its own
subtasks of the design adaptation task. The first of these subtasks is the computa­
tion of differences between the desired function and the function delivered by the
design retrieved from the case memory. KRITIK3 uses a simple pattern matching
procedure for this task.

The TMK language for describing a knowledge system's reasoning is consist­
ent with Marr's (1977) task-level and Newell's (1982) knowledge-level analyses
of intelligent agents. Marr proposed that the reasoning of an intelligent agent can

~
 ~ !-'I
 t i­ f s a.
 g ~

B
ea

t
M

a
tc

h

~

T
aa

k:

D
ed

g
n

A

d
ap

ta
ti

on

~
t
h
o
d
:

In
t.

lI
C

lI
Y

eK
tf

lU
r.

Su
bt

. •
• k

a
:

cc
.r

vu
t.

.t
io

n

o
f

F
u

n
ct

io
n

al

B
u

t
K

a
tc

h

D
if

fe
re

n
c •

•

1
li
e

 •
•

K
a<

ch

"
D

ia
g

n
o

d
.

ru
ne

 c
u

r.
 /

1
FU

nc

s
p

e
c

_ \

B

ea
t

K
et

ch

R
ep

ai
r

ru
ne

 c
it

r.

/
P

o •
•

I
'
.
u
l
t
~

F
U

n
c

D

iU
.

P
o

n
 r

a
u

lu
)o

ew
 M

od
.l

\.>
l

~
 ~ ~ ~ ~

EXPLANATORY INTERFACE 397

be analyzed at three levels. At the highest level is a specification of the tasks ad­
dressed and the mechanisms used by the agent. At the next level are the specific
algorithms and data structures that the mechanism uses. At the lowest level is the
architecture (or language) of implementation. Similarly, Newell proposed several
levels of analysis of intelligent agents. The highest level in his scheme pertains to
the agent's goals and the knowledge that enables the accomplishment of the goals.
The next level concerns the symbolic structures that implement the mechanisms
of the higher level. The next lower level specifies the physical devices that imple­
ment the symbolic structures, and so on. Marr suggested that the highest level in
his scheme, the task-level, constituted the computational theory of the agent. Sim­
ilarly, Newell suggested that the highest level in his scheme, the knowledge level,
constituted the computational theory of the agent. This leads us to the hypothesis
that TMK models capture the content of explanation of design reasoning at the
"right" level of abstraction for communication with human designers.

3. The Explanatory Interface in INTERACTIVE KRITIK

The explanatory interface in INTERACTIVE KRITIK not only explains and justi­
fies design reasoning and device designs, but also enables the user to explore the
device designs and to reflect on the reasoning.

3.1. DESIGN EXPLANATION IN INTERACTIVE KRITIK

The interface agent in INTERACTIVE KRITIK has access to all the knowledge of
KRITIK3 including its design cases and device models. It uses KRITIK3' s SBF
models of physical devices to graphically illustrate and explain the functioning of
the devices to the users. It also graphically illustrates and explains the reasoning
of the system in generating a new design. Within the context of a design episode,
INTERACTIVE KRITIK provides graphical representations of both the designs re­
trieved from the case memory and the new designs created. Thus it provides rep­
resentations of intermediate designs in addition to the final designs. The different
design versions are presented as the design reasoning unfolds, i.e., in the context
of the design subtask at hand.

The working of a device is illustrated to the user on several interrelated screens.
One screen represents the device function; Figure 2 is an example of INTERACT­
IVE KRITIK's screen illustrating the function of an electrical circuit. The means
by which the function of a device is achieved is explained by the internal causal
behaviors in the SBF device model. Figure 3 shows an illustration by INTER­
ACTIVE KRITIK of the main behavior, Light-Behavior, of the electrical circuit
that produces light. A different screen shows the secondary behavior, Electricity­
Behavior, of this device: the behavior of the electricity in this circuit.

KRITIK3' s reasoning is illustrated on multiple screens identifying the tasks
that the system performs while solving a problem and the methods it uses, as in-

398 ASHOK GOEL ET AL.

dicated in Figures 4 and 5. For each (sub)task, INTERACTIVE KRITIK illustrates
the reasoning state both before and after the accomplishment of the (sub)task.
The reasoning state specifies the task context and the method context. In addition,
when appropriate, INTERACTIVE KRITIK illustrates the design knowledge avail­
able to KRITIK3. For example, in explaining the task of case retrieval, it graphic­
ally illustrates the case memory.

3.2. DESIGN EXPLORATION IN INTERACTIVE KRITIK

INTERACTIVE KRITIK enables the user to browse through different facets of a
device design. This includes not only the final design proposed by KRITIK3 but
also the intermediate designs it may have generated, for example, the design re­
trieved from the case memory. Exploration of a given design through browsing is
enabled by the SBF model for the design.

As we explained in Section 2.1, different parts of an SBF model are closely
interrelated. For example, the specification of a function in the SBF model acts as
an index to the causal behaviors that accomplish the function. Also, the specifica­
tions of the state transitions in a causal behavior act as indices into the functional
specifications of the structural components of the device. In addition, the descrip­
tion of a device component contains a specification of its functions, and points to
the causal behaviors of the device in which the component plays a functional role.
This indexing scheme enables the user to browse through the SBF model of the
design.

The initial view of an SBF model is a representation of the device's func­
tional specification, as in Figure 2. From here the user can push interface but­
tons to move among the functional, behavioral, and structural representations of
the device. Additionally, the user can click on the name of the behavior by which
the function is achieved (e.g., Light-Behavior in Figure 2) and "jump" directly to
that behavior. Figure 3 illustrates the Light-Behavior screen. This screen presents
Light-Behavior and labels all other behaviors (in this case, just the Electricity­
Behavior) which the user can select to jump to a different behavior. When a user
clicks on a particular transition a menu pops up allowing the user access to a vari­
ety of options relating to that transition, as indicated in Figure 3. This allows dir­
ect access to structural and behavioral information relating to that transition. For
example, if the transition selected is dependent on another behavior, the user can
jump directly to that behavior. The structure screen provides similar capabilities
for looking at the components of a device and the connections between them.

3.3. DESIGN REFLECTION IN INTERACTIVE KRITIK

The explicit SBF representation of a design enables the user to inspect each ele­
ment and aspect of the device design. Similarly, the explicit TMK representation
of the trace of design reasoning enables the user to inspect each task, method,

EXPLANATORY INTERFACE 399

knowledge source, and reasoning state. This enables the user to reflect on the
design reasoning. For example, the user can examine the TMK reasoning trace
and detect potential flaws in it.

As we mentioned in Section 2.1, the SBF model of a device design not only
explains how the device works but also justifies the design by showing how its
structure delivers the desired functions. And as we mentioned in Section 2.2., the
TMK model not only explains the reasoning of KRITIK3 but also justifies the
tasks it sets up and the methods it uses. In addition, the user can also ask IN­
TERAcTIvE KRITIK for a justification for specific reasoning choices. As an ex­
ample, consider the situation in which KRITIK3 retrieves a design case from its
case memory. The TMK trace shows the user the probe KRITIK3 had prepared to
retrieve a case and the case the system actually retrieved from its case memory.
The user can now ask why did KRITIK3 retrieve this particular design case. Since
the reasoning trace explicitly specifies the probe prepared by KRITIK3, and how
the system's retrieval method probed the case memory - the branches it followed,
the matches it made, and their results - the trace provides a justification for why
the particular case best matches the given problem.

3.4. CRITIQUE

There is still a great deal of work to be done on INTERACTIVE KRITIK'S user in­
terface. Some issues which would need to be addressed before the system could
be used as a practical tool include the improved display of the structure of a device,
the building of better graphical representations, and provision of additional inter­
action capabilities. More importantly, INTERACTIVE KRITIK needs to be form­
ally evaluated in a real world setting. But this kind of evaluation also requires
additional work on the user interface.

4. Discussion

This research builds on earlier work on three topics at the intersection of AI and
Design: design methods and process models, design knowledge and device mod­
els, and interactive design environments.
Design Methods and Process Models: A major goal of AI research on design
has been to develop computational methods and process models for design. This
has led to the development of several computational methods for design; examples
include heuristic search (Stallman and Sussman, 1977), heuristic association (Mc­
Dermott, 1982), and plan instantiation and expansion (Brown and Chandrasekaran,
1989; Mittal, Dym and Morjaria, 1986). Recent research on case-based design
(e.g., Goel and Chandrasekaran, 1992; Maher, Balachandran and Zhang, 1995;
Navinchandra, 1991) has led to the development of multi-strategy process models
for design. KRITIK3 is a multi-strategy process model of design in two senses.
First, while the high-level design process in KRITIK3 is case-based, the reasoning

400 ASHOK GOEL ET AL.

about individual subtasks in the case-based process is model-based. For example,
KRITIK3 uses SBF device models for adapting a past design and for evaluating a
candidate design. Second, design adaptation in KRITIK3 involves multiple modi­
fication methods. While all modification methods make use of SBF device mod­
els, different methods are applicable to different kinds of adaptation tasks.

A closely related research direction concerns the language for specifying the
computational methods and process models for design. McDermott (1982) de­
scribes RI' s method for configuration design in the language of constraints of
a design problem, components available in the design domain, heuristic associ­
ations pertaining to the constraints and the components, and selection and activ­
ation of the associations. But this language is much too specific to Rl' s method.
This method-specificness of the language becomes a major problem for describ­
ing and explaining multi-strategy process models such as KRITIK3.

Task-level (Marr, 1977) (or, equivalently, knowledge-level (Newell, 1982»
accounts make a clearer separation between knowledge-based reasoning and its
implementation in a knowledge system. In the mid-eighties, Chandrasekaran (1988)
proposed the language of Generic Tasks for analyzing and modeling knowledge­
based problem solving, and showed that this language enables more perspicuous
explanations (Chandrasekaran, Tanner, and Josephson, 1989). In the late eighties,
Chandrasekaran (1990) related Generic Tasks with task structures: Chandrasekaran
(1989) describes a high-level task structure for design; Goel and Chandrasekaran
(1992) describe a fine-grained task structure for case-based design. In their work
on the elevator design project called VT, McDermott and his colleagues (McDer­
mott, 1988; Marcus et al., 1988) described a similar task-oriented language for
analyzing knowledge-based design.

Our TMK models represent a generalization of task structures based on Gen­
eric Tasks. Also, our hypothesis that TMK models provide the "right" level of
abstraction for explaining knowledge-based reasoning is based in part on earlier
work on explanation in the Generic Task framework. But TMK models make the
specific role played by a particular type of knowledge more explicit than earlier
models. Consider, for example. the functional role of an SBF model of a past
design in KRITIK3. Since the SBF model is associated with the past case, it af­
fords a method for adapting the past design. The TMK model makes this afford­
ance explicit. Thus, while task structures are useful for explaining the control of
reasoning in terms of task-method interactions, TMK models are also useful for
explaining knowledge-method interactions. In particular, they enable the explana­
tion of the organization and indexing of different kinds of knowledge, the kinds of
knowledge available for addressing a task, and the methods that become feasible
because of the available knOWledge.
Design Knowledge and Device Models: Explanation of physical devices has
been a major topic of research not only in AI and in Design but also in Cognit­
ive Engineering. AI research on device modeling and explanation can be traced

EXPLANATORY INTERFACE 401

as far back as Hayes (1979) work on "naive physics" in which he described a
component-substance ontology. At about the same time, de Kleer developed the
method of qualitative simulation for diagnosing electrical circuits (de Kleer, 1984).
This work led to the no-function-in-structure principle (de Kleer and Brown, 1984)
which states that the behaviors of each structural component must be represented
in a manner independent of their functional contexts.

In contrast, in the early eighties, Chandrasekaran and his colleagues developed
the Functional Representation (FR) scheme (Sembugamorthy and Chandrasekaran,
1986; Chandrasekaran et al., 1993) in which the functions are not only repres­
ented explicitly, but also used to reference the causal behaviors responsible for
their accomplishment. The causal behaviors in turn reference the functions of the
device substructures. Since the function of a substructure refers to the causal be­
haviors that result in it, this gives rise to a hierarchical organization of the device
model. Also in the mid-eighties, Bylander proposed a taxonomy of primitive be­
haviors (Bylander, 1991) based in part on Hayes' component-substance ontology.
He also described a method of composing the primitive behaviors into more com­
plex behaviors. Our SBF models evolve from Chandrasekaran's Functional Rep­
resentation scheme and Bylander's ontology of behaviors. In particular, they use
FR's organizational scheme in which the device functions act as indices to the
causal behaviors and the causal behaviors index the functions of device substruc­
tures. The specification of the functions, behaviors and structure in SBF models,
however, is based on Bylander's well-defined behavioral ontology.

In Cognitive Engineering, Rasmussen (1985) proposed a hierarchical organ­
ization for presenting device knowledge to human users. His device models also
specify the structure, the behaviors, and the functions at each level in the hier­
archy. Our hypothesis that SBF models provide the "right" level of abstraction for
explaining the working of a device to a human user is supported by Rasmussen's
empirical work. Govindaraj (1987) has used similar hierarchical organization sche­
mes for enabling engineering students to explore the design of complex devices
containing hundreds of components. Following his device models, the causal be­
haviors in our SBF models too are organized along the flow of specific substances
in the device.

In Design research, Gero et al. (1991) and Umeda et al. (1990) have also de­
scribed FBS models (for function-behavior-structure). While the details of the
representation schemes differ, in both their FBS models and in our SBF models,
behavior mediates between function and structure. Indeed, a major theme of our
work on the KRITIK family of systems has been that while the design task takes
a functional specification as input and gives a structural specification as output,
much of the design reasoning is at the intermediate behavioral level.
Interactive Design Environments: A core issue in interactive design environ­
ments is how human designers and knowledge systems may share design respons­
ibilities. AI research on interactive design environments covers a broad range of

402 ASHOK GOEL ET AL.

human/system responsibility sharing. At one extreme, the system acts as a know­
ledge source but leaves almost all reasoning to the human designer. Traditionally,
knowledge bases for design have contained knowledge of design components and
materials. But recent work on design knowledge bases has focused on providing
human designers with access to libraries of design cases; examples include CA­
DET (Sycara et al., 1991), CADRE (Hua and Faltings, 1992), CASECAD (Ma­
her, Balachandran and Zhang, 1995), FABEL (Voss et al., 1994), Archie (Pearce
et al., 1992), AskJef (Barber et al., 1992), and ArchieTutor (Goel et al., 1993).
At the other extreme of this spectrum are autonomous knowledge systems that
perform almost all design reasoning by themselves. Human interaction with these
systems is limited to formulating design problems, supplying the problems to the
system, and receiving the solutions generated by the system; examples include
Rl, AIR-CYL, and the original KRITIK system.

In between these two extremes lies a large range of potential sharing of re­
sponsibility between the system and the user. An important goal of design en­
vironments in the middle of this spectrum is to enable humans to construct new
designs. Fischer et al.' s (1992) JANUS and Steinberg (1987) VEXED are two
examples of constructive design environments. The goal of the INTERACTIVE
KRITIK project is also the building of a constructive design environment. We will
not describe here how, when completed, INTERACTIVE KRITIK may enable a hu­
man to construct new designs (but see Grue, 1994). Instead, we focus the rest of
this discussion on the issue of explanatory interface in the current version of IN­
TERAcTIvE KRITIK since this is already operational.

Mostow (1989) has argued that when a knowledge system in an interactive
design environment proposes a solution to a design problem, then the system should
also provide the human designer with an explanation of the reasoning that led
to the solution. His BOGART system uses derivational analogy (Carbonell et al,
1989) for generating solutions to design problems. Following the theory of de­
rivational analogy, BOGART provides the human designer with an explanation of
its reasoning in the form of a derivational record. The derivational record contains
a trace of the system's reasoning in the language of design goals, operators, and
heuristics for goal decomposition and operator selection.

We share the premise that in any interactive design environment, the know­
ledge system must be able to explain its reasoning. However, we believe that the
language of goals, operators and heuristics is too low level to be accessible and
comprehensible to human designers, especially novice designers. Instead, we hy­
pothesize that the TMK language is at the "right" level of abstraction. More im­
portantly, we believe that in addition to explaining its reasoning, the knowledge
system must also be able to justify the design solution it proposes. INTERACTIVE
KRITIK uses SBF models for justifying its design solutions.

Further, we believe that it is critical that the explanation of design reasoning
should be grounded in the context of the evolving design solution, and, similarly,

EXPLANATORY INTERFACE 403

the explanation of the evolving design should be grounded in the context of the
design reasoning that led to it. The advantages of situating design explanations in
this way are two fold. First, situating the explanation of design reasoning in the
context of the evolving design solution makes the explanation more meaningful.
This is because the explanatory terms can now get their meaning from the specific
parts of the design to which they refer. Second, situating the explanation of the
design solution in the context of the design reasoning makes the explanation more
complete because of the availability of previous versions in the evolution of the
design solution.

5. Conclusions

Interactive design environments typically contain knowledge systems as major
components. A human designer may use the interactive environment for design
construction and experimentation. The knowledge systems may help automate
specific and selected portions of this process, leading to human-system cooper­
ative design. This raises the issues of usability and learnability of the knowledge
systems. Human designers are unlikely to work with these systems if they cannot
easily use them and also easily learn how to use them. Designers are more likely
to use these systems if they can form a mental model of how the system works,
how it reasons about problems, and if they can develop some confidence in the
solutions generated by the system.

So the issue becomes how might a knowledge system enable the user to form
a mental model of its reasoning, how might it explain its reasoning and justify its
answers. Our work on INTERACTIVE KRITIK is based on three related ideas:
1. Explanations of a knowledge system need to capture the functional and stra­
tegic content of reasoning in addition to its knowledge content. Task-method­
knowledge models enable this kind of task-level and knowledge-level explana­
tion, which facilitates effective communication between the system and the user.
2. Explanations of physical systems need to capture the functionality and causal­
ity of the systems in addition to their structure. Structure-behavior-function mod­
els enable this kind of explanation at a level of abstraction that facilitates effective
communication between the system and the user.
3. Explanation of design reasoning needs to be grounded in the context of the
evolving design solution, and, similarly, the explanation of the evolving design
needs to be grounded in the context of the design reasoning that led to it.

INTERACTIVE KRITIK demonstrates the computational feasibility of these
ideas.

Acknowledgments

Much of this research was done during 1993-94 when all the authors were with Georgia
Institute of Technology in Atlanta, Georgia, USA. Andres G6mez is now with the Key

404 ASHOK GOEL ET AL.

Centre of Design Computing, University of Sydney, Sydney, Australia; Nathalie Grue is
now with the Institute for Learning Sciences, Northwestern University, Evanston, nlinois,
USA; and Margaret Recker is now with Victoria University, Wellington, New Zealand.
This work has benefited from contributions by Sambasiva Bhatta, Michael Donahoo, Vmay
Pandey, and Eleni Stroulia. It has been funded in part by a grant from the Advanced
Research Projects Agency and partly by internal seed grants from Georgia Tech's Edu­
cational Technology Institute, College of Computing, Cognitive Science Program, and
Graphics, VISualization and Usability Center.

References

Barber, J., Jacobson, M., Penberthy, L., Simpson, R., Bhatta, S., Goel, A., Pearce, M., Shankar,
M. and Stroulia, E.: 1992, Integrating artificial intelligence and multimedia technologies for
interface design advising, NCR Journal of Research and Development, 6(1), 75-85.

Brown, D. and Chandrasekaran, B.: 1989, Design Problem Solving: Knowledge Structures and
Control Strategies, Pitman, London, UK.

Bylander, T.: 1991, A Theory of consolidation for reasoning about devices, Man-Machine Studies,
35,467-489.

Carbonell, J., Knoblock. C. and Minton, S.: 1989, PRODIGY: An integrated architecture for plan­
ning and learning, in Van Lehn (ed.), Architectures for Intelligence, Lawrence Erlbaum.

Chandrasekaran, B.: 1988, Generic tasks as building blocks for knowledge-based systems: The dia­
gnosis and routine design examples, Knowledge Engineering Review, 3(3), 183-219.

Chandrasekaran, B.: 1989, Task structures, knowledge acquisition and machine learning, Machine
Learning, 4, 341-347.

Chandrasekaran, B.: 1990, Design problem solving: A task analysis, AI Magazine, Wmter, 59-71.
B. Chandrasekaran, M. Tanner, and J. Josephson. Explaining control strategies in problem solving.

IEEE Expert. 4(1):9-24,1989.
B. Chandrasekaran, A. Goel, and Y. Iwasaki. Functional Representation as Design Rationale. IEEE

Computer, 48-56, January 1993.
de Kleer, J.: 1984, How circuits work, Artificial Intelligence, 24, 205-280.
de Kleer, J. and Brown, J.: 1984, A qualitative physics based on confluences, Artificial Intelligence,

24,7-83.
Fischer, G., Grodin, J., Lemke, A., McCall, R., Ostwald, J., Reeves B. and Shipman, F.: 1992,

Supporting indirect collaborative design with integrated knowledge-based design environment,
Human-Computer Interactions, 7(3), 281-314.

Gero, J. S., Lee H. and Tham, K.: 1991, Behavior: A link between function and structure in design,
Proceedings IFIP WG 5.2 Working Conference on Intelligent CAD, Columbus, Ohio, pp. 201-
230.

Goel, A.: 1991, A model-based approach to case adaptation, Proceedings Thirteenth Annual Con­
ference of the Cognitive Science Society, Lawrence Erlbaum, pp. 143-148.

Goel, A.: 1992, Representation of design functions in experience-based design, in D. Brown, M.
Waldron and H. Yoshikawa (eds), Intelligent Computer Aided Design, North-Holland, pp. 283-
308.

Goel, A. and Chandrasekaran, B.: 1989, Functional representation of designs and redesign problem
solving, Proceedings Eleventh International Joint Conference on Artificial Intelligence, Mor­
gan Kaufmann, pp. 1388-1394.

Goel, A. and Chandrasekaran, B.: 1992, Case-based design: A task analysis, in C. Tong and D.
Sriram (eds), Artificial Intelligence Approaches to Engineering Design, Volume II: Innovative
Design, Academic Press, pp. 165-184.

Goel, A., Pearce, M., Malkawi, A. and Liu, K.: 1993, A cross-domain experiment in case-based
design support: ARCHIETuTOR, Proceedings AAAI Workshop on Case-Based Reasoning,
pp.111-117.

Govindaraj, T.: 1987, Qualitative approximation methodology for modeling and simulation of large

EXPLANATORY INTERFACE 405

dynamic systems: Applications to a marine power plant, IEEE Transactions on Systems, Man
and Cybernetics, SMC-17(6),937-955.

Grue, N.: 1994, Illustration, Explanation and Navigation of Physical Devices and Design Pro­
cesses, MS Thesis, College of Computing, Georgia Institute of Technology.

Hayes, P.: 1979, Naive physics manifesto, Expert Systems in the Microelectronics Age, Edinburgh
University Press, Edinbugh, UK, pp. 242-270.

Hua, K. and Faltings, B.: 1993, Exploring case-based building design - CADRE. A1(EDAM), 7(2),
135-143.

McDermott, J.: 1982, Rl: A rule-based configurer of computer systems, Artijiciallntelligence, 19,
39-88.

McDermott, J.: 1988, Preliminary steps towards a taxonomy of problem solving methods, in S.
Marcus (ed.), Automating Knowledge Acquisition for Expert Systems, Kluwer, Boston, MA.

Maher, M. L., Balachandran, M. B. and Zhang, D.: 1995, Case-Based Reasoning in Design, Erl­
baum, Hillsdale, NJ.

Marcus, S. Stout, J. and McDermott, J.: 1988, VT: An expert elevator designer that uses
knowledge-based backtracking, AI Magazine, 9(1),95-112.

Marr, D.: 1977, Artificial intelligence-A personal view, Artijiciallntelligence, 9(1).
Mittal, S., Dym, C. and Morjaria, M.: 1986, PRIDE: An expert system for the design of paper

handling systems, Computer, 19(7), 102-114.
Mostow, J.: 1989, Design by derivational analogy: Issues in the automated replay of design plans,

Artijiciallntelligence.
Myers, B. and Zanden, B.: 1992, Environment for rapidly creating interactive design tools, Visual

Computer, 8, 94-116.
Navinchandra, D.: 1991, Exploration and Innovation in Design: Towards a Computational Model,

Springer-Verlag, New York.
Newell, A.: 1982, The knowledge level, Artijiciallntelligence, 18(1), 87-127.
Pearce, M., Goel, A., Kolodner, J., Zimring, C., Sentosa, L. and Billington, R.: 1992, Case-based

design support: A case study in architectural design, IEEE Expert, 7(5), 14-20.
Rasmussen, J.: 1985, The role of hierarchical knowledge representation in decision making and

system management, IEEE Trans. Systems, Man and Cybernetics, 15, 234-243.
Sembugamoorthy, V. and Chandrasekaran, B.: 1986, Functional representation of devices and com­

pilation of diagnostic problem solving systems, in J. Kolodner and C. Riesbeck (eds), Experi­
ence, Memory and Reasoning, Lawrence Erlbaum, Hillsdale, NJ, pp. 47-73.

Simon, H.: 1981, The Sciences of the Artijicial, 2nd edn, MIT Press.
Stallman, R. and Sussman, G.: 1977, Forward reasoning and dependency-directed backtracking in

a system for computer-aided circuit analysis, Artijiciallntelligence, 9, 135-196.
Steinberg, L.: 1987, Design as refinement plus constraint propagation: The VEXED experience,

Proceedings Sixth National Conference on Artijiciallntelligence, pp. 830-835.
Sycara, K., Navinchandra, D., Guttal, R., Koning, J. and Narsirnhan, S.: 1991, CADET: A case­

based synthesis tool for engineering design, Expert Systems, 4(2), 157-188.
Umeda, Y., Takeda, H., Tomiyama, T. and Yoshikawa, H.: 1990, Function, behavior and struc­

ture, Proceedings Fifth International Conference on Applications of AI in Engineering, Vol.
I, pp. 177-193.

Voss, A. Coulon, C.-H., Grather, W. Linowski, B., Schaaf, 1., Barstsch-Sparl, B., Borner, K., Tam­
mer, E. Durscke, H. and Knauff, M.: 1994, Retrieval of similar layouts - About a very hy­
brid approach in FABEL, in J. S. Gero (ed.), Artijicial Intelligence in Design '94, Kluwer,
Dordrecht, pp. 625-640.

8
learning in design

Learning by single function agents during spring design
Dan L. Grecu. David C. Brown

A machine learning approach to design classification, association
and retrieval

Ani! Varma. William H. Wood Ill. Alice Agogino
Learning to choose a reformulation for numerical optimization of

engineering design
Mark Schwabacher. Thomas Ellman. Haym Hirsh. Gerard Richter

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 409-428.
© 1996 Kluwer Academic Publishers.

LEARNING BY SINGLE FUNCTION AGENTS DURING SPRING
DESIGN

DAN L. GREeU AND DAVID C. BROWN
AI in Design Group, Computer Science Department
Worcester Polytechnic Institute, Worcester, MA 01609, USA

1. Introduction

This paper reports on some initial experiments on learning in multi-agent
design systems. These experiments have several goals. The first is to study
the ease with which simple learning techniques fit into the multi-agent
paradigm we are using. The second is to determine the performance of these
techniques. The third is to study the application of the multi-agent paradigm
we use to "real" problems, as its development has mostly been concerned
with a more theoretical view.

The design system we use is built from small knowledge-based (expert)
systems that we call Single Function Agents (SiFAs) (Victor and Brown,
1995; Dunskus et aI., 1995; Berker and Brown, 1995). There are a small set
of types of agents, each of which has restricted capabilities. SiF As will be
explained in more detail below.

1.1 TIlE TYPE OF DESIGN PROBLEM

The type of design problem addressed is Parametric design. This occurs
when the topology of the artifact being designed is already decided, and the
design is to be completed by determining values for a set of parameters that
specify the remaining details, such as color, surface finish, or geometry. This
is a knowledge-based process, where the amount of available theoretical and
experiential knowledge (e.g., heuristics or relevant design history) can vary
from problem to problem. We are concerned with non-routine or near­
routine situations that have many constraints present, and perhaps tangled
dependencies between parameters. Parametric design is not necessarily
routine or simple.

Deciding a parameter's value can require various types of reasoning
using different kinds of knowledge. At least three factors make the decision
difficult, even though the range of choices may not be that large. These
factors are the different design requirements, a multitude of attributes that
characterize the parameter, and the dependencies between parameters.

410 DAN L. GREeU AND DAVID C. BROWN

The lack of a fixed, known order of parameters for which to decide values
makes the search for a good set of values even more complex. Under these
circumstances it is virtually impossible to avoid failures due to constraint
violations. This leads to conflicts between the agent that decided a value and
the constraint that rejected it.

To reflect the complexity involved in parameter decisions, we allow
mUltiple design agents to have the same "job" (i.e., to provide a value for
parameter X), but to have different points of view (e.g., cost, strength). The
agents will often produce different values for X, leading to a conflict. To
resolve conflicts, trade-offs have to be made via negotiations, with an
exchange of information between the agents involved.

1.2 WHY USE LEARNING?

A multi-agent design system includes many agents with lots of potential
interactions between them. Conflicts considerably increase the number of
interactions needed during design. The more serious the conflict (i.e., the
more difficult it is to resolve), the more messages are exchanged to find an
acceptable solution. As the ratio of messages per design decision increases,
the efficiency of the system decreases. High conflict situations, such as the
ones we are addressing, provide a strong motivation for any technique that
leads to reduced overhead. Learning can reduce this kind of overhead, by
reducing the number of conflicts and/or by reducing the number of
messages during interactions.

In this paper, after briefly describing other related research we will
present Single Function Agents. The domain of material selection in Spring
design is described next, along with its mapping to SiFAs. A discussion of
conflicts in material selection motivates the description of the method of
learning and its implementation. The paper concludes after a presentation of
the results of our experiments.

2. Related Work

Agents are becoming increasingly important in Artificial Intelligence and
Computer Science (Wooldridge and Jennings, 1994). Design, as well as other
complex tasks, have parallel decompositions that remove problems resulting
from forced pre-execution serialization. Parallel decompositions allow
opportunistic collaboration. These map well to agents. This has led to a slow
but steady growth in the amount of research into multi-agent design systems.
Examples include Klein (1991), Kuokka et al. (1993), Lander and Lesser
(1991), Sycara (1990), Taleb-Bendiab and Oh, (1993), Victor et al. (1993),
Werkman and Barone (1991).

The study of Conflict Resolution and Negotiation is also growing.
Klein's (1991) model of conflict resolution uses a hierarchy of conflicts

LEARNING BY SINGLE FUNCTION AGENTS 411

with the most abstract conflicts at the top and most concrete conflicts at the
leaves. A corresponding hierarchy of resolution strategies allows conflicts to
be mapped to resolution strategies. Klein's agents have both design and
conflict resolution knowledge.

Negotiation is a common approach to conflict resolution in the design
domain, and is the process by which resolution of inconsistencies is achieved
in order to arrive at a coherent set of design decisions (Sycara, 1990).
Negotiation proceeds with generation of a proposal, then a counter proposal
based on feedback from dissenting agents, and communication of
justifications and supporting evidence.

As the Single Function Agent approach is relatively new only three
systems have been developed so far. I3D is a system that integrates part
design and manufacturing plan production for Powder Processing
applications (Victor et aI., 1993). In I3D the agents were not allowed to
conflict, but were in I3D+ (Victor and Brown, 1994). The SNEAKERS
system was built to train users in Concurrent Engineering. The user
interacted with agents that had different functions and points of view
(Douglas et aI., 1993).

Recently, researchers have started to work on the application of Machine
Learning algorithms to multi-agent systems (Sen, 1995), and design
researchers have investigated learning in design systems (Maher, Brown and
Duffy, 1994). However, there is still relatively little work on learning in
multi-agent design systems (NagendraPrasad, 1995).

3. Single Function Agents

A SiFA is a small knowledge-based, expert agent. It performs a single
Function, on a single Target, from a single Point of view. For example, the
selection of a material from the point of view of reliability.
A SiFA's type is determined by its function. The function describes what
kind of information it processes and what kind of result it produces. There
are a limited number of types currently allowed. The types are intended to
be combinable to have the problem-solving power to do (at least) Parametric
design.

The SiF A types used in previous work are:
1. Selector: selects a value for a parameter, by picking a value from

prestored or calculated possible values, according to some preferences.
2. Estimator: produces an estimate of the value of a parameter. Unlike

selectors, estimators can work quickly and with insufficient information,
so that the values they produce are just estimates of what the final value
should be. They may also be imprecise, producing a range of possible
values.

412 DAN L. GRECU AND DAVID C. BROWN

3. Evaluator: gives a quality rating for the value of a parameter,
producing a measure of goodness for that value, usually represented as
a percentage or as a symbol (e.g., "good").

4. Critic: criticizes the value of a parameter by pointing out constraints or
quality requirements that are not met by the current value.

5. Praiser: praises values of parameters by pointing out why the value is
desirable.

Each SiFA has a single target. The main type of target of a SiFA is a
value of a single parameter of the design. But as the critiques, praises,
estimations and evaluations are all treated as "first class objects", any of
these entities can be the target of an agent (Berker and Brown, 1995).

The point of view of an agent is some direction or aspect of the design
that the agent considers while doing its work - often a goal that the agent is
trying to achieve. Examples of points of view are cost, strength, style, weight,
reliability and availability. The points of view partition the knowledge about
the target.

SiFAs communicate by sending each other messages. Each agent can
communicate directly with any other agent. The communication language
used is based on KQML (Knowledge Query and Manipulation Language)
(Finin et aI., 1993). The current state of the design is accessible to all agents.
Although a scheduling mechanism is required for any implementation of
SiFA-based systems, no particular method is assumed by the SiFA model.
SiFAs are assumed to be able to be "triggered" by satisfied preconditions.
It is likely that Selectors should be given priority, and that conflict detection
and resolution is more important than carrying on with the design.

3.1 WHY STUDY SIFAS?

SiFAs were originally conceived from experiences with building expert
systems for Concurrent Engineering support systems (for example, see
Douglas et aI., 1993; Victor et aI., 1993). Since that time they have gradually
been refined. They are not principally seen as a new way of building design
systems. Rather, they are considered to be, and have been used as, a tool for
investigating knowledge, problem-solving and conflict resolution. They
provide a context for precisely conceptualizing, generating, clarifying and
categorizing:
• types of knowledge e.g., conflict identification (Berker and Brown, 1995);
• types of reasoning, e.g., conflict detection (Berker and Brown, 1995);
• types of conflicts, e.g., Estimator-Critic (Dunskus et aI., 1995);
• trade-offs in the design process, e.g., material processing vs. cost);
• what might be learned in multi-agent design systems, e.g., selection

preferences (Grecu and Brown, 1995);
• knowledge for knowledge acquisition, e.g., selection list (Currier, 1995).

LEARNING BY SINGLE FUNCTION AGENTS 413

3.2 WHAT SIFAS AREN'T

SiFAs are not intended to be a realistic simulation of a team of designers
(such as in Concurrent Engineering). They are too fine-grained for that. At
present, SiFA research has little to offer the study of multi-agent systems
built from legacy code (such as Kuokka et al., 1993), or other large-grained
design systems (such as Lander and Lesser, 1991; Werkman and Barone,
1991). However, the detailed study of conflict management that SiFAs
facilitate should yield general results (Dunskus et aI., 1995).

SiF As are also not "overhead free". For the same overall functionality,
having many small agents, rather than fewer large agents, leads to increased
overhead from inter-agent communication. Currently, the research benefits
of SiFAs outweigh this disadvantage. Learning, however, can help reduce this
overhead. The small grain size increases the number of potential locations
where learning can occur. However, it remains to be seen if SiF As will ever
become a fully viable design system building tool, in addition to being a
research tool.

4. Material Selection in Spring Design

A variety of types of springs are used in mechanical engineering design.
Each type corresponds to a basic spring configuration. After a specific
configuration is chosen, the designer has to reason about the values of the
design parameters which describe the configuration. The parameter set is not
necessarily the same for all the spring configurations.

Our experiments were limited to helical compression springs. The most
important parameters which define these springs are the spring material, the
wire diameter, the mean coil diameter and the number of coils. These are
primary design parameters, meaning that they are not computed based on
other spring parameters. Note that the primary design parameters are not
totally independent, as they are related through design constraints. The non­
primary spring parameters, such as the spring index (the ratio of the mean
coil diameter of a spring to the wire diameter), are derived from the primary
design parameters.

All the single function agents we used to test agent interactions targeted
one single design parameter: the spring material. Material selection requires
the designer to take into account a wide diversity of attributes, such as stress,
electrical conductivity and cost, and to decide which of the possible materials
satisfies the design requirements. The choice influences the decisions on the
other spring parameters. For example, the deflection of a spring coil
depends on material elasticity and will be used in deciding the number of
coils. This is an example of parameter dependency.

414 DAN L. GREeU AND DAVID C. BROWN

There are about 30 materials most commonly used in spring design
(Machinery, 1982). Based on their composition they are grouped in 7
categories with related physical properties. The selection of a material is
determined by these factors: temperature range, where the material has its
normal physical properties; tensile strength, dependent on the
manufacturing process; resistance under various shock loading conditions;
resistance under various impact loading conditions; allowable working stress
given the intended service of the spring; modulus of elasticity; fatigue life -
the time after which the spring fails, far below its normal elastic limit, due to
continuous deflection; endurance limit-the highest stress, or range of stress,
that can be repeated indefinitely without causing spring failure; hardness
value that can be achieved through treatments; electrical conductivity;
magnetic properties; corrosion resistance,· shape and diameter of the wire
section, from the manufacturer; and cost of manufacturing the material.

The selection of the spring material is usually the first step in parametric
spring design. As such, it influences many of the subsequent design
decisions. Poor choices can lead to the need to reconsider the entire design
process. Therefore, it is desirable to consider as many of the design
requirements as possible when deciding the spring material.

A spring design problem does not necessarily have requirements given
for all of the previously enumerated factors. Requirements impose
thresholds for the admissible values of these factors. Ideally one would like
to achieve an optimal value for each factor. However, this is rarely the case.
The goal of the design will be to find materials which satisfy all the
requirements. Optimality is a different issue as it is relative to various criteria.
A global measure of optimality is not available. If the user needs higher
standards of quality for some of the material properties, (s)he adds the
corresponding constraints to the problem specification.

The material properties are not independent. For example, additional
hardness can be obtained by special treatments, but these procedures raise
the cost of the spring material. In order to find satisfactory solutions,
designers use only some of the properties as selection guides. The rest of the
material properties are used to verify that design requirements are not
violated. The knowledge about these properties is neither complete, nor
uniform across the entire range of materials. Some materials simply do not
exhibit one property or another (e.g., electrical conductivity, or magnetic
properties). Sometimes, even when the property is known to exist, the
knowledge describing it can be available in different amounts and under
various representations (e.g., physical laws, graphs, or experimental data
stored in tables). Therefore, given varying degrees of completeness and
uniformity, analyzing a material's suitability for a design is a matter of
expertise.

LEARNING BY SINGLE FUNCTION AGENTS 415

s. Material Selection with SiF As

We approached the problem of material selection for spring design by
defining a set of selectors, critics, and praisers. All of them have the same
target - a material value. The points of view were chosen from the criteria
enumerated in the previous section. Not all of them were included in these
experiments. But for every point of view we decided to use, there was at least
one agent defined.

The important questions we had to address at this point were:
• What type of agents should be defined for each point of view?
• How do we partition the available knowledge among the agents?
• Do we need to use every type of SiF A?

Since we intend to choose a material value we need to define at least one
selector. Selectors are the only agents allowed to propose parameter values.
Selectors are defined only for those points of view for which there exists
knowledge about acceptability, as well as preferences for all parameter
values. In other words, a selector should be able to distinguish, from its point
of view, between any two materials in the range of the application.

For example, every material has a cost. Therefore, we can order all the
material values from the point of view of cost, and select the most preferable
value. But not all materials have magnetic properties. It isn't possible to
prefer one of those materials over another from that point of view, as they
don't have any.

Our experiments used two selectors:
1. The first selector proposes materials from the point of view of the

working temperature range. Materials are ordered by how well they
cover the temperature interval in which the spring is required to work.

2. The second selector chooses materials from the point of view of cost.
The critics are used to express objections to the choices made by the

selectors. A critic is not supposed to have knowledge about all the possible
choices for the parameter value. It is only supposed to point out those
material values that are not acceptable given its point of view. The
acceptability of parameter values may depend not only on the design
knowledge of the critic, but also on the design requirements. In fact, from its
point of view, a critic is capable of detecting the entire set of unacceptable
values in the current design context.

We are currently using critics from the following points of view: tensile
strength, resistance to shock loading, resistance to impact loading, fatigue
life, and electrical conductivity.

These critics use points of view independent of the other spring
parameters. As the design experiments will be extended to include all the
spring parameters, critics will also be responsible for the dependencies
between parameters. For example, an availability critic for wire diameters will

416 DAN L. GREeU AND DAVID C. BROWN

restrict the materials to those for which the desired wire diameters are
provided.

Praisers are the complementary agents to critics. Their role is to highlight
every selection which has a very good rating from their point of view. They
are not required to know the entire set of high rating selections in the current
design context - as opposed to critics, which do have to know all the 'bad'
choices. A praiser's duty is just to mention whether the current proposal for
a parameter value surpasses its internal standard. The information provided
by the praiser is not critical. That means that neglecting a praiser's
observation will not lead to constraint violations and failures. Praisers are
useful in negotiations. Whether a proposal is praised or not can influence
which of the agents in conflict should reconsider (e.g., relax) its proposal.
The current version of the system uses material praisers from the following
points of view: stress, endurance, corrosion resistance, and hardness.
Advisers and estimators have also been implemented. Advisers help selectors
decide between values which have very similar support. The adviser that
assists will have the same point of view as the selector. Since they are not
critical for the illustration of the following experiments, advisers are not
further mentioned.

Estimators are used in the selection process for parameter values that are
connected by constraints with other parameters. Assuming that the other
parameter values in the constraint have not been decided yet, they can be
estimated in order to make a more informed selection for the current design
parameter. As this paper focuses on the decisions associated with one single
parameter, estimators are not used either.

Agents from the same functional class (e.g., selectors, critics, etc.) have
heterogeneous domain knowledge representation and reasoning. The tensile
strength critic uses functions extracted from plotted graphs on which to base
its decisions, while the electrical conductivity critic uses data available in
tables. The temperature selector uses qualitative interval matching as one of
its techniques, while the cost selector simply orders the current costs.

As the target and point of view of each agent are domain dependent, they
provide the interface of the agents with the design domain. The functionality
of the agents (e.g., selection, critique, praising, etc.) creates a general
framework of interaction among the agents independent of the underlying
domain.

Finally, another important distinction which differentiates agents with the
same functionality is how context sensitive they are. A material selector from
the point of view of cost will use a list of preferences which is independent of
the current design problem, since the costs of the materials are given and can
be viewed as independent of the design specifications. In contrast, the
material selector from the point of view of the temperature range is context
sensitive. Its preferences vary depending on the working temperature range

LEARNING BY SINGLE FUNCTION AGENTS 417

which needs to be covered. The working temperature range of each available
material will overlap the required range differently, thus producing a
different preference rating for each material. The issue of context sensitivity
will prove to be important when we discuss what agents can learn about each
other.

6. System Design and Implementation

The spring design system is composed of several modules: the single
function agents and the design board (Figure 1). The design board is a
module which is visible to all the agents participating in design. It is
subdivided in three parts:

Design Board

Figure 1. Architecture of the spring design system.

• design specifications, including all the requirements provided by the user
for the current design;

• design state, which describes the design and records the parameter values
decided so far;

• exchange board, where agents make their proposals, engage in
negotiations and reach agreements.
The agents encapsulate the domain knowledge about the corresponding

target and point of view. Most of it is represented as rules and facts.
Additional specialized routines carry out numerical computations associated
with reasoning based on equations and physical laws. Selectors use such
routines to establish their lists of preferences, and critics use them to
compute the ranges of admissibility.

418 DAN L. GREeU AND DAVID C. BROWN

Every agent can see the information describing the design state and the
specifications. The exchange board is used by selectors to make proposals,
by critics to post objections, and by praisers to announce the superiority of a
proposal, as seen from their point of view. In addition, agents can
communicate directly.

An agent is activated by a set of preconditions, confirming that the
information for carrying out its task is available and that the result of the
task is needed. The control of its activity belongs to each agent and is not
imposed from the outside. The way in which design agents work together
can be easily altered through these preconditions.

The system is implemented in CLIPS (Giarratano and Riley, 1994). Each
agent is a rule-based system, with the addition of specialized C functions.
The design state is described in an object oriented manner, allowing uniform
parameter handling.

7. Agent Conflicts in Material Selection

Choosing an acceptable parameter value involves the following stages:

1. The selectors negotiate a common acceptable value for the design
parameter. Each selector computes a range of possible values and an
order of preferences for these values. Selectors start negotiation with
the most preferred value from their point of view.

One of the selectors, let's call it A, makes a first proposal for the
parameter value. The other selector (B) accepts the value only if it is
currently the highest ranking value in its ordering of values. Otherwise,
a conflict is detected and a negotiation session starts. B will make a
counterproposal. A will proceed in the same manner as B did. The
process continues until one agent makes a proposal that is also the best
one for the other agent at this stage. Negotiation, also stops if the
counterproposal to be sent by one selector has been previously posted
by the other agent. Given the following material preferences of the two
selectors (temperature and cost):

SELECTOR PREFERENCES
Temperature JIDEFB

Cost BCA F ED G I

the following negotiation would take place:

SELECTOR PROPOSALS
Temperature J I D E F agreement on F

Cost B C A F

The negotiation sequence can be altered by a praiser. Assume a
praiser P praises a proposal v made by an agent (say A), and B does not

LEARNING BY SINGLE FUNCTION AGENTS 419

consider the value as being the best one. Considering that v is claimed
as a benefit from more than one point of view (A and P), B will match v
against several preferences before making a counterproposal. Currently
an agent is required to match a proposal against its 3 next best values, if
the proposal is reinforced by a praiser.

For example, consider the same preferences of the same two agents.
Assume that the praiser from the point of view of hardness praises
material I, while the praiser from the point of view of stress praises
material E. Praised values are marked in bold face. The additional
values considered after a praised proposal are included in parentheses.

SELECTOR PROPOSALS
Temperature J I D E

Cost B C(A,F) A F (E, D) agreement on E

The outcome is different than in the first case. Proposal I is not
accepted, since the selector from the point of view of cost cannot find it
among its top 3 preferences at that moment. However, proposal E is
accepted, as it is found in the required range. In this situation, one
selector relaxes its preferences in the light of evidence from other
agents.

2. The critics post their objections to the agreement reached by the
selectors. A critic which rejects a parameter value, will post the entire set
of values that are not acceptable under the current conditions. This
operation is computationally expensive and is carried out only by those
critics which are not satisfied with the current decision. If at least one
objection arises, a critic-selector conflict is signalled and a third stage
becomes necessary.

3. The selectors start a new negotiation round, during which they avoid
use of the values considered not to be acceptable by the critics.
If, for example, the design problem requires high resistance to shock
loading, the corresponding critic would object to the material value E,
and point out that the values A, B and C are also unacceptable. The new
preference table for the selectors would be:

SELECTOR PREFERENCES
Temperature J I D F

Cost F DG I

Knowing, that I is a praised value, the new negotiation round would run
as follows:

SELECTOR PROPOSALS
Temperature J I

Cost F D (G, I) agreement

420 DAN L. GRECU AND DAVID C. BROWN

Steps 2 and 3 are repeated until the system reaches a solution agreed
upon by all the agents. One of the advantages of the method proposed is that
it allows mUlti-partite negotiation. Considering the number of agents, any
method approaching conflicts in a pairwise manner would have to cope with
a serious overhead and with convergence problems.

In designing our experiments we have considered two types of
negotiation, as possible versions of the previous strategy:

I) Point-to-point negotiations: This technique is the method described
above. Each agent proposes a single value at a given moment. When
analyzing a proposal made by another agent, the current agent matches it
against a single value - the most preferred value from the local point of
view. Proposals are made and analyzed one value (point) at a time.

II) Range-to-range negotiations: This strategy generalizes point-to-point
negotiations in two directions. An agent (A) proposes its preferred value at
that moment and also posts a set of alternative options. The other agent (B)
matches the proposal against its best value. In case of mismatch, B compares
the alternatives with its own next best set (range) of values. If the two sets
intersect, a value is chosen as an agreement. Otherwise, B will prepare its own
counterproposal as a new preferred value followed by a set of alternatives.
Considering the initial preferences of the two selectors:

SELECTOR PREFERENCES
Temperature JIDEFB

Cost BCA F ED G 1

a negotiatIOn session (without praisers) in which an agent posts two
alternatives to its best proposal and compares an incoming proposal with its
first three best values, would run as follows:

SELECTOR NEGOTIATION
Temperature prop: J (I, D)

Cost comp to: B (C, A) prop: F (E, D) agreement on D

While this strategy is computationally more costly for both agents, it requires
fewer interactions and fewer proposals by each side.

8. Learning in SiF As

SiF As generate a significant number of interactions while deciding the value
of a parameter. This overhead arises because each single function agent is
responsible for only for a portion of a decision, and the final decision has to
gain the approval from all points of view. The number of single function
agents involved in a parameter decision is not trivial. We have used 11 agents
just for the material selection. This number can easily be increased if we take
additional points of view into account.

LEARNING BY SINGLE FUNCTION AGENTS 421

The thorough exploration of the choices for the design parameter's value
justifies this overhead. Designers usually prune the large number of
comparisons necessary for an informed choice, by using subranges for their
evaluations. Due to their specialization, SiFAs are much more powerful,
provided they quickly learn to cope with situations which occur frequently.

As interactions consume a large portion of the computational effort
expended on value selection, the primary goal of learning is to improve the
knowledge which the agents have about each other. The learning
experiments investigate:
• how difficult it is to learn about the other agents;
• how good the prediction of the behavior of the other agents will be;
• how much learning contributes to reducing the interaction overhead.

The learning results from agents interacting, and is aimed at predicting
the future behavior of the interaction partners. Since agents act based on
their functionality, learning can take advantage of this knowledge.
Therefore, in our experiments we have made the learning strategies
dependent on the type of the agent whose behavior is to be predicted.

The agents that learn are the selectors. They search in the space of values
to find an acceptable solution. The other agents will 'encourage' or
'discourage' their search. It is to a selector's advantage if it can predict the
feedback, and already take it into account when it evaluates alternatives,
without exploring unproductive search paths. Critics' and praisers' design
opinions will not be influenced by the actions of the other agents. The
generic strategy used by an agent A to learn about another agent B is:
1. Create a case from the interaction with agent B. Cases are indexed by

the design requirements relevant for the point of view of the agent one
learns about. A case records the sequence of responses of the other
agent. For example, assume the learning refers to the selector from the
point of view of temperature. The case will be indexed by the working
temperature range required for the spring and will reflect a decreasing
preference sequence of material values of the selector from the point of
temperature. The sequence is recorded only up to the point where an
agreement is reached in that negotiation session.

2. Integrate the case in the knowledge already available about agent B.
The goal is to create a mapping of the options and/or preferences of
agent B under as many conditions as possible.

The learning strategy attempts to create a model of another agent's behavior
that is closely tied to the specific design conditions rather than to the details
of the other agent's domain reasoning. Two arguments favor this approach:
• Single function agents are very specialized. It is virtually impossible to

assume that an agent can understand another agent's domain reasoning.
• An agent is much better off quickly learning small things about the other

agents. There are many agents to learn about, therefore it makes sense to

422 DAN L. GRECU AND DAVID C. BROWN

look for knowledge that can be applied easy and which reduces
interactions.

It is important to mention that agents only discover the other agents through
the "signed" proposals, criticisms and praises posted on the design board.

8.1 WHAT CAN BE LEARNED ABOUT EACH AGENT TYPE?

The learning approach used is concept formation (Gennari et aI., 1990;
Michalski, 1983; Mitchell, 1982). Concepts reflect the connection between
design conditions and the decisions based on those conditions. Whenever an
agent posts a design proposal, criticism or praise, it also posts the elements
from the design context on which the decision was based. If no conditions
are posted, it is assumed that the decision is valid independent of any
particular circumstances.

Each case recorded about an agent A's behavior represents a training
instance in developing a conceptual description of A. The concept features
are the design conditions which led to A's proposal, expressed as allowable
design ranges and thresholds. The contents of the proposal determines the
class partitioning of the concept instances.

As the heterogeneity of the domains which have to be covered by the
inductive learning is extremely diverse, no assumption can be made about
the continuity of the concept representations in the feature domain. For
generality we have used disjunctive induction methods (Michalski et aI.,
1986). The dependency of the learned data on the learning of another agent
raises additional issues which are as important as the accuracy of the
classification. When learning about selectors the learning agent has to learn
an evolving description of the other agent's behavior, as the training
instances get refined in time. Even though the internal preferences of an
agent repeat themselves under identical conditions, the way they are
perceived from the outside varies depending on the other agents. The
external perception is used to construct the model of the agent.

The classification features are the same for all the agent types, since they
originate in the design. However, what is learned about an agent depends on
its type:

1. Learning about praisers. Praisers point out parameter values which are
particularly suitable from their point of view. Whenever a praiser praises a
parameter value, the information is recorded by selectors. In the current
experiments, only context-insensitive praisers were used. For example, a
material is considered excellent from the point of view of hardness
regardless of any other conditions or design values. Thus learning is merely
storing praised values associated with praisers. If context-sensitive praisers
are used the inductive technique used for critics applies to praisers too.

LEARNING BY SINGLE FUNCTION AGENTS 423

Praisers effectively provide only one learnable item at a time, and can
only act when a selector proposes a value. This can occur during a
negotiation. Consequently, knowledge about the praisers is acquired only to
the extent to which proposals are praised during negotiations.

2. Learning about critics. Critics can be context-insensitive, or context­
sensitive. The values they do not accept can depend on the design
requirements; e.g., the resistance of a spring material to impact loading can
be good or bad, depending on the conditions under which the spring is
required to work. The information recorded about a critic is the set of values
it considered unacceptable and the design conditions that the critic used to
make those decisions. The classes correspond, in this case, to the individual
materials a critic objects to. For any particular requirement(s), the
information learned about the critic is complete (i.e. the critic makes all its
objections known).

3. Learning about selectors. Selector behavior is the most difficult to predict,
since, for a given design context/state, a selector can use different methods or
sets of prestored values. Even if the set of values remains constant, the
preferences among those values can be variable. The classes that partition a
selector's behavior are defined by sets of parameter value preferences.

Assume that selector A encounters selector B several times, with the same
design requirements for B each time. A still has reason to record B's
responses every time, as they might offer sparse sequences of B' s
preferences. The sparsity can be due to B's knowledge that some values will
be unacceptable to critics and are therefore left out of its proposals.
However, the critics may have different requirements each time and thus the
'holes' in B' s sequence of proposals will be different. In addition, the
recording is incomplete because it stops when an agreement is reached. A
will integrate the current response sequence of B with the sequence compiled
from the previous encounters under the same conditions.

The main issue is that, while being refined, concepts can 'migrate'.
Different sequences of responses can become identical after several
interaction sessions, merging into a single concept. Alternatively, concepts
can be split if under some particular subconditions the refined responses
become different.

8.2 HOW DO AGENTS USE THE LEARNED KNOWLEDGE?

The knowledge learned by an agent about the other agents IS used
differently, depending on the type of the agent to which it refers:

Knowledge about selectors. During a negotiation a selector will decide on
its next proposal. Before posting its proposal the selector will see whether it
has knowledge about the behavior of the other selectors under these design

424 DAN L. GRECU AND DAVID C. BROWN

conditions. If so, the selector will anticipate their proposals and prepare a
new proposal. A new evaluation of the next-best proposals of the other
selectors will be used to determine their responses. The predictive reasoning
continues until either one of the following conditions is fulfilled:

• a value is found which is likely to be agreed on by all the selectors;
• for one of the other selectors no further preferences are known.

The selector will do predictive reasoning only if it knows how all the
other selectors will respond. This condition is not imposed on other agent
types.

If the proposal a selector submits after predictive reasoning is not known
to be an agreement, it will be accompanied by the last value taken into
account for each of the other selectors. This will allow the other selectors to
know where to continue with their proposal evaluation.

The incompleteness of the knowledge about a selector can cause an
undesired phenomenon: A will assume that the responses learned from B are
consecutive preferences. This may cause possible solutions to be overlooked,
as A will unknowingly skip them in its prediction of B's behavior. We have
assumed that selectors can always reach an agreement, unless either A or B
have insufficient knowledge about each other. Lack of agreement initiates a
new negotiation in which they will not use the knowledge they have about
each other. The new sequence of responses is used by each agent to correct
its knowledge about the other selector.

Knowledge about critics. Knowledge about the critics is used to eliminate
proposals known to be unacceptable. This holds true for the proposals which
the current selector intends to submit, as well as for the proposals it
anticipates from the other agents. Even if there is no knowledge about how a
critic will respond, the selector continues its anticipatory reasoning. The
critic will eventually 'protest' about an unacceptable agreement of the
selectors.

Knowledge about praisers. The knowledge about praisers is used in a very
similar manner to that of the critics. During the anticipation of the other
selectors' proposals, praiser opinions will be taken into account to find out
which agent has to revise its counterproposal, assuming that no agreement is
anticipated.

These methods attempt to ensure that what has been learned is used
effectively, and that information is exchanged in a cooperative fashion.

9. Experimental Results

Our experiments used eleven SiFAs (see Section 5). The two selectors, five
critics and four praisers encoded knowledge about the 20 materials that are
considered representative for helical compression springs. This makes the

LEARNING BY SINGLE FUNCTION AGENTS 425

material choice problem non-trivial, due to the many comparisons from
various points of view.

The design problems used included design constraints for each selector
and critic. This made their proposals and responses context-sensitive. In
these experiments the measure used for evaluation was the number of
interactions needed to generate a material value accepted by the selectors as
well as the critics. By an "interaction" we mean a proposal posted by a
selector, an objection posted by a critic, or a praise posted by a praiser.

The first type of analysis required running the system through a
sequence of 22 generated design problems. One of the problems was
considered a reference problem, while each of the other 21 problems
introduced a change in the requirements affecting the reasoning of one
selector or one critic, relative to the preceding problem. A run through all
the 22 problems is called an "experiment". Several experiments were
carried out, with the same changes in the requirements ordered differently.
During each experiment an agent encountered three changes in the design
conditions affecting its proposals. At first, the changes in the design
problems in an experiment were made in random order. There were 22 ex­
periments in all. Each experiment was run with and without learning capa­
bilities. Table 1 summarizes the average results for the set of experiments.

TABLE 1. Decrease of interactions in point-to-point negotiations (random
problem ordering)

Average number of interactions (rounded to closest
Type of analysis inte2er) after

6 expts. 12 expts. 17 expts 22 expts
without learning 34 36 33 34

with learning 31 29 23 19

The slow initial decrease in the number of interactions is explained by the
fact that the selectors do not use predictions if they have no information
about the behavior of the other selector in the new situations. The initial
decrease in the number of interactions is due mainly to the information
learned about the critics. Another type of analysis involved scheduling the
changes affecting selectors first, and then making the other changes in
random order. The results of this set of runs are summarized in Table 2. The
numbers in parentheses represent the interactions due to selectors.

The major improvement can be seen towards the end of this run. The
learning of selectors about selectors happened mostly during the first six
experiments and without any changes in the behavior of critics and praisers,
as their requirements did not change during that time. As a consequence,
interactions during the next five experiments were reduced mostly due to
shorter negotiations between selectors. Interactions due to praisers are
reduced only to the extent that the negotiations between selectors become
shorter and the praised material values occur less often on the average.

426 DAN L. GRECU AND DAVID C. BROWN

TABLE 2. Decrease of interactions in point-to-point negotiations (design
problems were ordered such that requirements for selectors were changed first)

Average number (rounded to closest integer) of
Type of interactions after

experiment 6 expts 12 expts 17 expts 22 expts
without learning 34 35 33 34

with learning 31 (25) 22 (18) 19 (16) 15 (13)

For all of the previous experiments, the changes in requirements were
close to the ones in the reference design problem. The primary goal was to
test the decrease in the number of interactions under the assumption that the
variations can be captured relatively fast. Another type of analysis assumed
that the changes in the design requirements affected only one agent, but on a
large scale. The goal was to investigate how a selector would build a reliable
model of the corresponding agent for a large number of situations. Even
though the reduction of the amount of interaction was smaller than in the
case where learning extended to all the agents, accuracy of prediction proved
to be better.

Having a selector learn without the critics and then running the system on
the same (or similar) cases, but with the critics, generated the most accurate
learning. Accuracy was measured in terms of distance between the concepts
developed and the actual preferences of the targeted agent. The explanation
relies on the fact that learning without interference of critics generates an
accurate partitioning of the design requirements into concepts. Adding the
critics does not change the conceptual partitioning, but causes the concepts
to be refined.

The experiments described so far used point-to-point negotiations. The
first type of experiment was also done using range-to-range negotiations. An
agent considered two additional options besides its most preferred one.
Table 3 reflects the learning results for the range-to-range interactions.

TABLE 3. Decrease of interactions in range-to-range negotiations (random
problem ordering)

A verage number of interactions (rounded to closest
Type of inte2er) after
analy_sis 6 expts 12 expts 17 expts 22 expts

without learning 21 22 21 21

with learning 19 17 16 15

The design problems were randomly ordered. The learning rate was slower
than in the point-to-point negotiations, as a much larger amount of
negotiation was needed to capture correct information. This is mostly due to
the 'hidden' preferences of a selector (due to the look-ahead), which were
not seen by the other selector. The number of failures (no agreement
reached and renegotiation without using the learned knowledge) was higher

LEARNING BY SINGLE FUNCTION AGENTS 427

(5 cases vs. 2 cases in point-to-point negotiations). However, rerunning the
system over a total of 50 experiments, with the same changes in the
requirements affecting the agents, but combined in different ways, led to
interaction reductions that compared well with the point-to-point case.

10. Conclusions

We want a system to learn to reduce the design overhead in the application
range needed by a specific user. Designers will most often use the system
only in a particular region of the design space. Pre-training the system is not
really possible, as it is hard to foresee the class of problems explored by a
particular user. Therefore it is important to have the system learn from
applications. Although the order of presentation of design problems can
make the learning faster, note that similar final results were obtained by a
random ordering of the design problems seen by the system. This is
important, and a positive result. A factor that makes. experimentation hard,
and clear conclusions difficult, is that the learning processes are not
independent. One agent learn something, can delay the occurrence of
situations leading to learning by another agent. The range of phenomena of
this type has yet to be sufficiently explored.

We have dealt with interactions between agents having the same target.
There will be many additional aspects to be considered for the entire
parameter set for spring design. For example, the knowledge representation
will have to be extended to handle domain types specific to various
parameters. Advisors and estimators will also require the model to be
enhanced. Advisors raise the interesting issue that their behavior is modelled
in conjunction with the behavior of the agent they advise. Predicting
estimator behavior will be more complex as it is an example of a situation
where an agent attached to one parameter is needed in decisions related to
another design parameter.

The general conclusion of this work is that SiFAs, coupled with relatively
simple negotiation schemes, provide a basis for interesting experiments in
learning in multi-agent design systems, but that more remains to be done.

References

Berker, I. and Brown, D.C.: 1996, Conflicts and negotiations in single function agent based
design systems, Concurrent Engineering: Research and Applications, special issue on
Multi-Agent Systems in Concurrent Engineering, D. C. Brown, S. Lander and C. Petrie
(eds) (submitted).

Currier, P. M.: 1995, SiFAKA: Knowledge Acquisition for Single Function Agents, Major
Qualifying Project, Computer Science Department, WPI, Worcester, MA.

Douglas, R. E., Brown, D. C. and Zenger, D. C.: 1993, A concurrent engineering
demonstration and training system for engineers and managers, International Journal of

428 DAN L. GREeU AND DAVID C. BROWN

CADCAM and Computer Graphics, 8(3), special issue on AI and Computer Graphics, I.
Costea (ed.), pp. 263-301.

Dunskus, B. V., Grecu, D. L., Brown, D. C. and Berker, I.: 1995, Using single function
agents to investigate conflicts, AI EDAM, 9(4), special issue on Conflict Management in
Design, I. Smith (ed.), pp. 299-312.

Finin, T., Weber, J., Wiederhold, G., Genesereth, M., Fritzon, R., McKay, D., McGuire, J.,
Pe1avin, R., Shapiro, S. and Beck, C.: 1993, DRAFT Specification of the KQML Agent­
Communication Language, DARPA Knowledge Sharing Initiative External Interfaces
Working Group.

Gennari, J.C., Langley, P. and Fisher, D.: 1990, Models of Incremental Concept Formation,
in J. Carbonell (ed.), Machine Learning - Paradigms and Methods, MIT Press, pp.11-61

Giarratano, J. C. and Riley, G.: 1994, Expert Systems: Principles and Programming, 2nd edn,
PWSx Publishing Co., Boston, MA.

Grecu, D. L. and Brown, D. C.: 1995, Design agents that learn, AI EDAM, special issue on
Machine Learning in Design, A. Duffy, M. L. Maher and D. C. Brown (eds) (to appear).

Klein, M.: 1991: Supporting conflict resolution in cooperative design systems, IEEE
Transactions on Systems, Man, and Cybernetics, 21(6), 1379-1390.

Kuokka, D. R., McGuire, J. G., Pelavin, R. N., Weber, H. c., Tenenbaum, H. M., Gruber, T.
and Olsen, G.: 1993, SHADE: Technology for knowledge-based collaborative
engineering, Concurrent Engineering: Research and Applications, 1, 137-146.

Lander, S. E. and Lesser, V. R.: 1991, Customizing distributed search among agents with
heterogeneous knowledge, Proceedings 5th International Symposium on AI Applications
in Manufacturing and Robotics, Cancun, Mexico.

Machinery's Handbook, 1982, revised 21st ed., Industrial Press Inc., New York, NY.
Maher, M. L., Brown, D. C. and Duffy, A.H.B. (eds): 1994, AI EDAM, 8(2), special issue on

Machine Learning in Design.
Michalski, R. S.: 1983, A theory and methodology of inductive learning, Artificial

Intelligence, 20, 110-156.
Michalski, R. S., Mozetic, I., Hong, J. and Lavrac, N.: 1986, The multi-purpose incremental

learning system AQ15 and its testing application to three medical domains, Proceedings
of AAAI-86, Morgan Kaufmann, Los Altos, CA, pp. 1041-1045.

Mitchell, T. M.: 1982, Generalization as search, Artificial Intelligence, 18, 203-266.
NagendraPrasad, M. V., Lesser, V. and Lander, S. E.: 1995, Learning experiments in a

heterogeneous multi-agent system, in S. Sen (ed.), Working Notes of the IJCAI-95
Workshop on Adaptation and Learning in Multiagent Systems, Montreal, pp.59-64.

Sen, S. (ed.): 1995, Working Notes of the IJCAI-95 Workshop on Adaptation and Learning in
Multiagent Systems, Montreal, Canada.

Sycara, K. P.: 1990, Cooperative negotiation in concurrent engineering design, Cooperative
Engineering Design, Springer-Verlag, pp. 269-297.

Taleb-Bendiab, A. and Oh, V.: 1993, Speech-act based communication protocol to support
multi-agent cooperative design systems, Proceedings 1993 Al in Engineering
Conference, CMI Publ.

Victor, S. K., Brown, D. C., Bausch, 1. J., Zenger, D. C., Ludwig, R. and Sisson, R. D.:
1993, Using multiple expert systems with distinct roles in a concurrent engineering
system for powder ceramic components, in G. Rzevski, 1. Pastor and R. A. Adey (eds),
Applications of AI in Engineering VIII, Vol. I, Design, Methods and Techniques,
Elsevier Press, pp. 83-96.

Victor, S. K. and Brown, D. C.: 1994, Designing with negotiation using single function
agents, in G. Rzevski, R. A. Adey and D. W. Russell (eds), Applications of Artificial
Intelligence in Engineering IX, CMI Publ., pp. 173-179.

Werkman, K. J. and Barone, M.: 1991, Evaluating alternative connection designs through
multi agent negotiation, in D. Sri ram, R. Logcher and S. Fukuda (eds), Computer Aided
Cooperative Product Development, Springer Verlag, pp. 298-333.

Wooldridge, M. and Jennings, N. R.: 1995, Intelligent agents: Theory and practice,
Knowledge Engineering Review, 10(2), 115-152.

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 429-445.
© 1996 Kluwer Academic Publishers.

A MACmNE LEARNING APPROACH TO AUTOMATED DESIGN
CLASSIFICATION, ASSOCIATION AND RETRIEVAL

ANIL VARMA, WILLIAM H. WOOD III AND ALICE AGOGINO
University of California at Berkeley
Department of Mechanical Engineering
5136 Etcheverry Hall
Berkeley, CA 94720-1740

Abstract. Acquisition and recall of associations between problem descriptions and
solutions is a critical task of case based design systems. The organization of design
knowledge impacts the quality of inference and support a designer may derive from a
case based system. Machine learning over case data may be used to create an intelligent
interface between designer requirements and available design knowledge. Such an
interface assists the designer in navigating the case base for effective case based retrieval.
This paper explores two neural architectures based upon the Adaptive Resonance Theory
for automated generation of design representations useful during the preliminary stages
of case based retrieval. A standard bridge design case base is used to demonstrate the
approach.

1. Introduction

Remembering past experiences and abstracting broad relationships from
complex data helps a designer conserve precious cognitive and
computational resources during decision making. Computer support for the
direct application of experience, cast in an artificial intelligence framework,
is called case-based reasoning (CBR).

A fundamental problem in CBR is identifying the stored case data that is
appropriate for use in a new situation; the mappings between a new problem
and stored case descriptions are usually complex and context dependent. As
the case base grows in size, it is desirable to invest some effort in clarifying
and matching the information requirements of the designer to the
information available in the case base. Machine learning techniques can aid
in this process by providing "compiled" representations of the design
knowledge contained in the case base to the designer. Such summarized
knowledge can help the designer clarify, expand or otherwise revise a
problem description to place it into an appropriate context so that case based

430 ANIL VARMA ET AL.

reasoning can be applied. In this paper, we describe the application of neural
architectures based upon the Adaptive Resonance Theory (ART) paradigm
(Grossberg, 1976a, 1976b) to the problem of flexibly organizing design
data for effective case based retrieval. The paper is structured as follows. In
section 2 and 3 we present out motivation and discuss background research.
Section 4 and 5 introduces the ART1 and ARTMAP architectures
respectively. Section 6 contains some results from performing ART1 based
classification over a bridge design case database. Section 7 illustrates the
performance of the ARTMAP network over our test case database. Finally,
Section 8 contains our discussions and conclusions.

2. Motivation

The organization of design knowledge within a system has a great impact
upon the quality of inference and support a designer may derive from it.
The thrust towards adding more evaluative information to design
descriptions means that both individual case size as well as overall case base
size will continue to expand. This suggests that the following two issues will
be important in the design of effective case based systems:
1. Case retrieval with complex stored design records and tentative new design
problem specifications is better modeled as exploration and assessment of
context leading to search rather that a single step retrieval (Maher and
Balachandran, 1994).
2. Not all aspects of a case are necessarily interesting or useful in a new
design situation. Segmenting cases into chunks of appropriate size and
content is desirable from the standpoint of storage efficiency as well context
appropriate retrieval (Domeshek and Kolodner, 1993). The segment of the
case that encodes context need not necessarily contain the solution details
that are the final objective of the designer. The mappings between different
case segments also need to be stored for navigation from one segment of the
case to another. This can be an essential requirement in case of a
heterogenous case base requiring diverse representations for different
segments.

Supporting exploration implies that the system must incorporate flexible
retrieval strategies that do not assume that the mapping between a new
problem situation and stored case information is necessarily straightforward
or predefined. Our motivation in this paper is to look at how a machine
learning approach can be used to aid flexible case retrieval strategies by
creating compressed, approximate characterizations of underlying case data
with which the designer can interact during the case retrieval process.
Specifically we examine the performance of Adaptive Resonance Theory

AUTOMATED DESIGN CLASSIFICATION 431

(ART) networks at this task. ART networks are chosen because they possess
the following desirable characteristics:
1. The networks create compressed representations of design data

composed of attribute-value pairs in a simple, rapid fashion. The mode
of learning is incremental so each case need be encountered only once.
Clusters of design cases are created based on a simple criterion that
looks at the number of shared features between a cluster prototype and
incoming case. Both these aspects allow the algorithm to perform its
tasks in a rapid, real time fashion. As a result, the algorithm can be
embedded as part of the case exploration procedure that allows the
designer to survey different characterizations of case data. Tedious
learning times associated with backpropagation type networks or more
sophisticated learning schemes are avoided.

2. ART networks incorporate architectures that can learn in both a
supervised and unsupervised fashion. Supervised learning in the context
of case based design means that the network is exposed to predefined
mappings between case segments for learning the associations among
them. One example would be to learn to associate a functional
description of requirements to structural and behavioral characteristics
of the completed design. Supervised learning supports flexibility in
navigation from one segment of case data to another. Unsupervised
learning in the context of case based design means that the system
autonomously creates categories of "similar" cases and provides
summarized representations of these categories for examination by the
designer. Such an approach permits the designer to interact with a
manageable view of the case base and understand the broad trends
present in case data. This better understanding of case data provides an
opportunity for more efficient and effective case retrieval.

3. Background

A fundamental mapping in engineering design is that from problem
specifications to a realizable artifact description. A number of researchers
have developed strategies for achieving this mapping through a two-step
process. The first step is to identify frequently occurring or "typical"
design experiences and associate them with standardized solution procedures
or inference mechanisms. Next, a mechanism to map new problem
specifications to these standard solution paths is implemented. Such
approaches include concepts like Design prototypes (Gero, 1990; Tham et
aI., 1992), Computational prototypes (Donaldson and Maccallum, 1994) and
Generic components (Alberts et aI., 1992). In contrast to CBR, the structure
of prototypical design experience in such approaches is predefined. CBR is

432 ANIL VARMA ET AL.

interesting as a paradigm for knowledge support since it requires little by
way of background knowledge and allows integration of computerized
experience into the design process in a manner that has resisted traditional
model based approaches. However, in absence of hand-crafted
representation schemes, determining relevance from stored case data has
become an increasingly critical task for large case bases.

Machine learning techniques for compiling knowledge in the
engineering design domain have been adopted by a variety of researchers.
One approach has been to allow the design description to form categories in
an unsupervised fashion and use this structure for prediction and
classification. This approach is illustrated by the inductive clustering
methods developed by the machine learning community (Fisher, 1987;
Quinlan, 1986) and applied to engineering design (Reich, 1991;Reich and
Fenves, 1992). In CADSYN (Maher and Zhang" 1993) a pure case based
resoning approach is complemented with a generalized decomposition
approach to provide a hybrid strategy for case based design. Maher and Li
(1994) extend this approach toward creating useful partitions of the design
space called design concepts. ART networks have been implemented as
underlying mechanisms for engineering design retrieval (Caudell et aI.,
1994) and evaluated for the task of forming an association model between
design problem and solution information (Kamarthi and Kumara, 1993).
The need for flexible characterization of mappings in case based retrieval is
highlighted in Maher and Balachandran (1994). This paper proposes that
certain classification and association functions of ART networks can be
effectively utilized to allow iterative, exploratory and flexible retrieval
strategies needed in a case based design system.

4. The ART Paradigm

Adaptive resonance networks are a class of neural networks introduced by
Grossberg (1976a, 1976b). ART networks function as classifiers that display
properties of self organization and self stabilization. Self organization refers
to the ability of the network to carry out it's learning autonomously in
absence of an explicit teacher. Self stabilization is the property of a network
that keeps it's learned memory from degrading due to irrelevant inputs from
the environment.

ARTI is a member of the ART family designed for classification of
binary valued input patterns (Carpenter and Grossberg, 1991). Once
classification is completed, the network can be queried as a neural database
by presenting an input pattern. The network then returns the prototypical
representation of the pattern family to which the input belongs.

AUTOMATED DESIGN CLASSIFICATION

4.1. THE ART! NETWORK

Nodes Mj, j=I .. M

Nodes Ni, i = 1 .. N

Input Ii

Figure 1. ART! Architecture.

Recognition
Layer F2

Zij

Comparison
Layer FI

433

The ART I architecture consists of two layers of nodes FI and F2 which
are fully connected in both directions. Weights Zij represent the connection
weights from node Ni to node Mj and take continuous values. The
corresponding connection weights from node Mj to node Ni are represented
as Zji. These weights take binary values. F2 nodes store the different
categories learned by the network. Each node MJ is associated with a weight
vector zJi. This vector stores the prototypical features of the classification
family represented by the F2 node J. The ARTI algorithm proceeds as
follows:
I. On the first presentation of input I, node M 1 is selected as the first

category node and input I is copied into the feature vector Z 1 i. The
number of categories is initialized to 1.

2. On subsequent presentations of I, the system first hypothesizes a
category that may be most suitable for classifying the current input .
This is achieved by evaluating the bottom up input to each node Mj as

N

L IiZiJ . (1)
i=l

The node with the maximum input is the winner. A user specified parameter
called vigilance p calibrates how close an input vector must be to a family
prototype vector to be classified as part of that family. This condition may
be expressed as

434 ANIL VARMA ET AL.

N

L ZJi Ii
i=l >

N - P , pE(O,l) (2)

L Ii
i=l

A value of 1 for the vigilance parameter indicates extreme selectivity of
classification where the input vector I must be a subset of the category
prototype vector zji to be classified together. This condition may be
expressed as ZJi (J Ii = L. A network with a high vigilance value typically
results in many clusters with feature rich family prototype vectors. On the

other hand, a baseline P = 0 vigilance condition indicates that a match on
any feature vector value between the input and the family prototype vector is
a sufficient condition for classification of the input as a part of that family.
A low vigilance value results in few categories with sparse category prototype
vectors.

If (2) is satisfied, the input vector is classified as a member of the
category represented by F2 node J. The feature vector associated with node
Mj is updated as

(3)

where n represents the logical AND operation.
The Fl -> F2 weights ZiJ are updated to represent a normalized version

of feature vector J as

(4)

Small values of ~ bias the system towards searching the prototypes in it's
memory in preference to creating a new prototype while seeking to classify a
new input. If (2) is not satisfied, the node with the next largest bottom up
input (1) is selected and the procedure is repeated. If no previously learned
feature prototype vector is found to satisfy (2), a new category is created
with input Ii as its category prototype vector. The system is then ready for
it's next input.

The user specified parameters are the vigilance threshold p and M, the
maximum number of nodes in layer F2. This is a measure of the maximum
number of clusters that may constitute the memory set of a particular ART
network. Depending upon the p parameter, however, the actual number of
categories may be less than or equal to M.

AUTOMATED DESIGN CLASSIFICATION 435

5. The ARTMAP architecture

The ARTMAP architecture extends the functionality of ARTI and
incorporates supervised learning (Carpenter, Grossberg et aI., 1991). It
consists of two ARTI modules connected by a "map field" that associates
the families created by the ARTI modules with each other. The operation of
the ARTMAP architecture is illustrated in Figure 2.

De ign problem De ign olution de cription ~
familie Pi ~ / familie J

iii
(0 • 0 .0.)
10. 0 0 ••)
1.0 •• 00)
10 •• 0 0 .)

De ign problem
de cription vectors pk

I Pi ri :
Map Field associating
Design problem familie
with De ign olution
families.

Figure 2 . The ARTMAP architecture.

ARTI Module for
cia ifying olution
de cription feature

10. 0 .)
10 •• 01
1.00 _j
10 •• 0)
Design olution
vector sk

The ARTMAP algorithm assumes that ~ corpus of design problem
descriptions and their corresponding solutions are available for training in a
supervised fashion. ARTMAP adaptively creates families from both problem
and solution descriptions at user specified levels of the vigilance parameter
and learns the associations between them. During operation, the ARTMAP
algorithm classifies a new problem vector into a design problem family. It
then identifies the associated design solution family and returns the feature
vector representing it. The algorithm is shown in Figure 3.

436 ANIL VARMA ET AL.

START
{pk,sk}

Network predicts problem
description pk classifies
into problem family - say Pi

No

Network predicts Solution description
sk classifies into solution family - Sj
Classify pk into Pi
Classify sk into S j
Learn the association Pi->Sj

NEXT INPUT

No

Classify pk into Pm
Classify sk into Sj *

NEXT INPUT

Learn the association Pm->Sj*

NEXT INPUT
NEXT INPUT

Figure 3. The ARTMAP algorithm.

6. Organizing Case Data using ART 1 Networks

Organizing case data with ART1 networks has utility when using hand­
crafted coding and indexing schemes using features is cumbersome to
create, maintain and use (Caudell et aI., 1994). In such a case, the ART!
network is first used to cluster designs into families. Subsequently, the

AUTOMATED DESIGN CLASSIFICATION 437

trained network can be used to retrieve a small set of similar families in
response to new design case. The level of discrimination used by the network
while clustering families is controlled by the vigilance parameter and is
specified at training time. Network weights can be stored for several
vigilance levels to provide multiple levels of abstraction in case recall. The
next section provides an example of this type of implementation using some
standard case data.

6.1 DESIGN REPRESENTATION

The set of design cases for the simulations in this paper was obtained from a
machine learning database containing descriptions for Pittsburgh area
bridges built since 1818 (Murphy and Aha, 1995). This database contains
108 examples of bridges, each described by 12 features as shown in Table 1.

TABLE 1. Values of 12 features constituting the bridge design description

Number 1 Feature I Possible Values
1 River Name A,M,O
2 River Location 1..52
3 When Erected Crafts, Emerging, Mature, Modern
4 Purpose Walk, Aquaduct, RR, Highway
5 Length of Crossing Short, Medium, Long
6 No. of Lanes 1,2,4,6
7 Clear-G N,G
8 Through or Deck T,D
9 Material Wood, Iron, Steel
10 Span Short, Medium, Long
11 Rel-L:

Relative length of S, S-F,F
main span to total
crossing length

12 Type of bridge Wood, Suspen, Simple-T, Arch,
Cantilev, Cont-T

Each of these features is described by a set of discrete values. This allows
each case to be represented as a binary vector suitable for processing by the
ARTI network. The first 7 properties are listed as design specifications and
the remaining 5 properties are design descriptions of bridges that resulted
from those design specifications. The relatively small number of samples in
the database (108) is typical of real life engineering design situations where
only sparse and limited data may be available for characterizing a complex
domain. This database has been previously used for learning by inductive
clustering (Reich and Fenves, 1992).

438 ANIL VARMA ET AL.

There are 89 possible feature values for the 12 descriptive features of the
bridge database. Each of the 108 examples available was represented by a 89
element binary feature vector. Each vector would ideally have 12 entries of
"1" to denote the features associated with that particular example. Cases
with missing or unknown feature values had fewer "1" entries in the feature
vector and this was checked for by the program to prevent misinterpretation
by the learning algorithm.

6.2 ORGANIZING CASE DATA WITH ARTl NETWORKS

Five simulations were carried out with increasing values of the vigilance
parameter. The vigilance parameter is a measure of the similarity that needs
to exist between a input vector and a cluster prototype vector to be classified
together. The results are summarized in Table 2.

TABLE 2. Sample Simulation Results.

Average No. of
Simulation Vigilance No. of Prototype Features

No. Factor Clusters representing each family

1 0.0 3 1.0

2 0.3 12 3.8

3 0.5 26 6.0

4 0.7 47 8.7

5 0.8 73 10.0

Table 2 illustrates how the network offers a variety of representational
levels at which the user may interact with it. Low vigilance values provide
data compression i.e. fewer clusters but the prototype of each cluster is
relatively sparse. Trial 2 provides a reasonable mix of prototype attribute
information and number of cases per design cluster and may be useful in the
early stage of the case retrieval process. If the new design problem
specifications are fairly well developed, a high vigilance value like trial 4 will
map these specifications to a cluster of 2-3 cases. The specification revision
process is illustrated in Figure 4.

After interacting with the trained ART module, a revised set of
specifications may be submitted to the case database for retrieval of the
actual cases meeting the similarity criteria. Two situations may arise. If the
number of cases retrieved is sufficiently small that the user may gainfully
examine each for guidance towards a solution, then the actual cases are
delivered to the user. It may also happen that a number of cases, possibly
each of considerable size may be retrieved, making individual examination
impossible. In such a case, an untrained ART! module can be used to

AUTOMATED DESIGN CLASSIFICATION 439

autonomously and rapidly create structured categories from the retrieved
case data. If the large number of cases returned is due to many similar cases
in the database meeting the input specifications, the compressed ART!
representation will highlight the salient features of the cases retrieved.
Alternately, the input specifications may be too abstract to retrieve a
sufficiently small set of cases. This would indicate a need for a revision of
specifications, possible by choosing a higher vigilance value for the trained
ARTI module to retrieve case prototypes with a higher number of features.

. specifications revised
De Igner ----_________ ARTI module specifications

4 trained on Cas,e!-----.....
I
I
I

Database
I

! prototypical case
! representations

Few cases

self-organizing
categorization of retrieved
case data

Untrained ARTI ... ------.....j module for

Many cases

-----•• p denotes the pecification revision
and elaboration proce

Figure 4. ART! modules for elaborating specifications and organizing retrieved case
data.

Since ARTl operates with the entire case data, it treats all case features
alike. In actual design situations, complete cases may be distinguished by
features relating to design requirements, design solutions etc. An efficient
utilization of case memory is to partition the case base into segments and
store the relationships between these segments. A case memory structure
organized around mappings within case data is implemented by the
ARTMAP network.

7. Organizing Case Data Using ARTMAP Networks

A natural way to structure case data is to exploit some basic categories that
exist in the case structure itself. Once basic division is between the problem

440 ANIL VARMA ET AL.

description Pi and the solution description Sj . Another may be between the
functional requirements and their mappings to structures and behaviors. It is
likely that these mappings are not unique. A more representative structure,
then, is to view a case Ck as

Ck = {Pi, Sj} ,Pi E P & Sj E S
where P and S are sets of problem specification and solution descriptions
respectively. Such a partition can be viewed as a first step towards creating
flexible mappings between relevant categories of case memories (Maher and
Balachandran, 1994).

A mapping between case fragments as described above may be learned
by the ARTMAP architecture. The revised case retrieval procedure using the
AR TMAP network is depicted in Figure 5.

revised
speci lcations

ARTMAP Module
. specifications r-----....

De Igner ----__ ~ Specification
Categories

prototypical specification
tegories

Few cases

specification
revision

Solution
Categories

Self-organizing
categorization of retrieved
case data

Many cases

Untrained ART]
~-------l module for

----~ denote the pecification revi ion
and elaboration process

Figure 5. Mappings between categories within the case structure

Instead of an immediate retrieval of cases, the designer begins by classifying
his/her initial set of specifications into a specification family. The
characteristics of the retrieved family may lead to some revision of the initial
specification set or the designer may choose to retrieve the solution family
associated with the selected specification set. An examination of the features
of the prototype solution set may again lead to specification revision

AUTOMATED DESIGN CLASSIFICATION 441

resulting a solution set with desirable prototype features. This refined
specification set is then submitted to the case database for retrieval of cases.
The following section provides examples of using ARTMAP for learning
mappings between case features using the bridge database.

7.1 LEARNING ASSOCIATIONS USING ARTMAP

The network was given the task of separately clustering the design
specification attributes and design description attributes and learning the
associations between them. The bridge design data identifies the first 7
attributes as design specification attributes. These are {River Name, River
Location, When Erected, Purpose of Bridge, Length of Bridge, Number of
Lanes, Clear-G}. The remaining five attributes describe the resulting
designs. The design description attributes are {Through or Deck, Material,
Span, Rel-L, Type of Bridge}. During learning, both the design specification
attribute vector and the design description attribute vectors form families.
There is a many to one mapping as specification attribute vectors are
mapped to specification families and specification families are mapped onto
solution families. Several design specification families may be associated
with a particular design solution family.

7.2 DESIGN REPRESENTATION AND TESTING

For learning the associations between design specification and solution
attribute vectors, the input to the design problem specification ART! module
was a feature vector of length 83. Each vector consisted of 7 ones to specify
the feature values. The input to the design solution ARTl module was a
feature vector of length 6, with exactly one value equal to 1 and the rest
zero. Several features had missing values leading to vectors of less than
standard length. Missing feature values were checked for in such vectors to
ensure that the network prototypes were not erroneously degraded. The
performance of ARTl networks is extremely sensitive to exposure of
network prototypes to missing values in the incoming feature vector. This
shortcoming is overcome to some extent in ART2 networks.

The network was allowed to train during exactly one pass on the entire
data set. Each design instance was encountered only once by the network
and classified before the next input.

For testing, the network was presented with a the design specification
vector pi and associated design solution vector si from the training data .
This practice differs from traditional machine learning approaches where the
system's learning ability is tested using unseen data in a predictive mode.
The purpose of the network here is to provide a faithful characterization of
the learnt case data so that the designer can interact with the compressed

442 ANIL VARMA ET AL.

network representation while retaining much of the accuracy available if
he/she were interacting with the full case base. The success rate reported in
the following trials thus should be interpreted as the "apparent success rate"
since the training and test data are the same.

The network calculated the design specification family p* the test input
belonged to and the solution family Spredicted that was associated with it.
Spredicted was recorded. The network then calculated the actual design
solution family S* it would classify si into. If Spredicted = S* then the
prediction was confirmed and the instance was recorded as a success. If
Spredicted *' S *, the instance was recorded as an error. Occasionally, the
network was unable to classify pi or si into any corresponding families at the
prescribed vigilance levels. In that case, the network returned a "don't
know" response. Due to the real-time nature of ART learning, all
simulations were completed in under a minute .

7.3 SIMULATION RESULTS FOR ARTMAP

Let P and S denote the ART1 modules used for classifying problem
descriptions and solution descriptions respectively. For each trial the
following information was recorded:
1. P vigilance and S vigilance: These refer to the vigilance levels at which

the problem and solution classification ARTl modules operated.
2. Results: The number of correct, incorrect and don't know responses by

the system during testing.
3. Number of P and S families: The number of clusters or families formed

by the problem and solution classification ART1 modules was recorded.
This simulation attempted to map to a set of 5 properties, namely {Through
or Deck, Material, Span, Rel-L, Type}. In such a case, the vigilance level at
which the Solution ART1 module S operates becomes important.

TABLE 4. Results for ARTMAP simulation predicting bridge design description

Trial P Vigilance Correct Incorrect Don't Apparent P families, Average
No. S Vigilance Predic- Predic- know Success S families P features,

tions tions responses Rate (%) S features

1 0.0,0.0 46 60 0 43.4 10, 3 2.8 , I

2 0.5,0.0 69 37 0 65.0 32,4 4.91 , 1

3 0.7,0.0 89 17 0 83.9 48,4 5.85 , 1

4 0.0,0.90 96 10 0 90.5 89 ,33 6.74,4.97

5 0.5,0.5 95 11 0 89.6 55,7 6.0 ,3.0

AUTOMATED DESIGN CLASSIFICATION 443

If retrieval of a set of related cases is important, relatively low vigilance
values can provide mappings from specification families to solution families.
Trial 5 illustrates how a good compromise between generalization and
accuracy can be achieved and the system operates in a case retrieval mode
where a solution prototype represents a set of cases.

Alternately, the system can be forced to provide predictions for all five
design solution properties in trial 4 by raising the S vigilance value to 0.9.
This virtually ensures that each solution family contains a unique solution
vector with no generalization. Notice that even though P vigilance was set at
the baseline value of zero, the extreme selectivity of the solution
classification procedure caused a relatively large number of problem
description families to be generated so that accuracy of prediction could be
maintained. In this situation, the system recalls all five design solution
description values 90% of the time. Varying the vigilance parameter
provides a continuum of behavior by the ARTMAP system between learning
by generalization at one end and simply storing each input for future
reference at the other.

The ARTMAP network tries to balance both predictive capa1:>ility and
generalization. If significant similarities exist in the incoming data, the
network tries to generalize them into specification and solution families. If a
new specification being classified into the closest matching specification
family leads to an incorrect prediction, then a classification into the next
closest family is attempted where a correct association might be learned.
Novel instances are stored by memorization by the network and families of
instances are represented by a compressed prototype vector.

8. Discussion and Conclusions

In this paper we have examined how ART networks can form a mediating
information support mechanism between a designer and a case base. Such a
strategy promotes exploration. For example, a case may be retrieved based
on a match on functional specifications. The behavioral data of that case can
be used as the starting point for exploring similar behaviors without
requiring a match on the other specifications. The flexibility such a scheme
affords a designer in exploring case memory can be very important. ART
networks allow for unsupervised formation of categories from case data.
This can be useful in exploring a new domain. Alternately, if specific
categories needed from data fragments are known beforehand, they can be
assigned hand-crafted representations so that ART networks create the
appropriate families. We plan to exploit both of these features in applying
ART to the organization and interpretation of queries over a heterogeneous
database of mechatronic components - the Concept Database. Here,

444 ANIL VARMA ET AL.

components are represented by the values of pertinent performance
parameters; indexing in the Concept Database also includes hierarchical
classifications of component's type or family. For conceptual design, where
preserving the ambiguity of component type can help toward making better
design decision, this latter index can be ignored. By applying structure
externally, the ART methodology laid out here can dynamically structure
components and their performance specifications into sets that can help the
designer navigate the design space toward arriving at a final design concept.

While the ART networks discussed in this paper are do not allow
continuous valued attributes, this is not seen as a major obstacle toward more
general use. It is relatively straightforward to discretize continuous design
domains for application of the algorithms discussed here. ART2 (Carpenter
and Grossberg, 1987) extends ART networks for processing both continuous
and discrete inputs. A hierarchy of mapping layers is provided by ART3
(Carpenter and Grossberg, 1993).

In conclusion, this paper has examined how ART networks can be
utilized to provide some of the functionality required to support the
preliminary, iterative, phase of case based retrieval. ART's representation of
cases as mappings between fragments rather than monolithic entities can aid
design exploration, helping to set defaults by identifying similar design
specification families and lending focus by illuminating relevant design
solution families. In the initial phase of case retrieval, when the designer
decides on what specifications to search the case base, ART networks can aid
in the process of adapting input specifications for increased likelihood of
retrieval of relevant cases. In the case retrieval phase, ART networks can
autonomously structure incoming case data in real time so the designer may
focus on broad similarities and variations in the retrieved case data. Where
natural categories exist in case data, separate mappings may be learnt
between each category to allow the designer to focus on the category of
interest and what differentiates it from other design categories. Such
mappings maybe learnt using the ARTMAP network that associates case
fragments based upon maximizing predictive accuracy and generalization.

Acknowledgments. This work has been supported in part by NSF Grant #DDM-
9300025, The Conceptual Design Database. In addition we would like to thank our
industrial partners Rockwell International and Autodesk Inc.

References

Alberts, L. K., Wognum, P. M. and Mars, N. J. I.: 1992, Structuring design knowledge on the
basis of generic components, in J. S. Gero (ed.), Artificial Intelligence in Design '92,
Kluwer, Dordrecht, pp. 639-656.

Carpenter, G. A. and Grossberg, S.: 1991, A massively parallel architecture for a self­
organizing neural pattern recognition machine, in G. Carpenter and S. Grossberg (eds),

AUTOMATED DESIGN CLASSIFICATION 445

Pattern Recognition by Self Organizing Neural Networks, MIT Press, London, pp. 316-
382.

Carpenter, G. A, Grossberg, S. and Reynolds J. H.: 1991, ARTMAP: supervised real-time
learning and classification of nonstationary data by a self-organizing neural network, in
G. Carpenter and S. Grossberg (eds), Pattern Recognition by Self Organizing Neural
Networks. MIT Press, London, pp. 503-544.

Carpenter, G. A. and Grossberg, S.: 1987, ART2: self-organization of stable category
recognition codes for analog input patterns, Applied Optics, 26, 4919-4930.

Carpenter, G. A and Grossberg, S.: 1990, ART3: hierarchical search using chemical
transmitters in self-organizing pattern recognition architectures, Neural Networks, 3,
129-152.

Caudell, T. P., Smith, S. D. G., Escobedo, R. and Anderson, M.: 1994, NIRS: Large scale
ART-I neural architectures for engineering design retrieval, Neural Networks, 7(9), 1339-
1350.

Domeshek, E. and Kolodner, J.: 1993, Using the points of large cases, Artificial Intelligence
in Engineering Design, Analysis and Manufacturing, 7, 87-96.

Donaldson, I. and Maccallum, K.: 1994, The role of computational prototypes in conceptual
models for engineering design, in J. S. Gero and F. Sudweeks (ed.), Artificial Intelligence
in Design '94, Kluwer, Dordrecht, pp. 3-20.

Fisher, D. H.: 1987, Knowledge acquisition via incremental conceptual clustering, Machine
Learning, 2(2), 139-172.

Gero, J. S.: 1990, Design prototypes: a knowledge representation schema for design, Al
Magazine, 11(4), 6-36.

Grossberg, S.: 1976a, Adaptive pattern classification and universal recoding, I: Parallel
development and coding of neural feature detectors, Biological Cybernetics, 23, 121-
134.

Grossberg, S.: 1976b, Adaptive pattern classification and universal recoding, II: Feedback,
expectation, olfaction, and illusions, Biological Cybernetics, 23, 187-202.

Kamarthi, S. V. and Kumara, S. R. T.: 1993, Neural networks in conceptual design, in J.
Wang and Y. Takefuji (eds), Neural Networks in Design and Manufacturing, Singapore,
World Scientific Publishing, pp. 99-120.

Maher, M. L. and Balachandran, B.: 1994, Flexible retrieval strategies for case based design,
in J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '94, Klu wer,
Dordrecht, pp. 163-180.

Maher, M. L. and Li, H.: 1994, Learning design concepts using machine learning techniques,
Artificial Intelligence in Engineering Design, Analysis and Manufacturing, 8, 95-111.

Maher, M. L. and Zhang, D. M.: 1993, CADSYN: a case-based design process model,
Artificial Intelligence in Engineering Design, Analysis and Manufacturing, 7, 97-110.

Murphy, P. M. and Aha, D. W.: 1995, Uel Repository of machine learning databases
[http://www.ics.ucLedu/-mlearn/MLRepository.html].Irvine.CA: University of
California, Department of Information and Computer Science.

Quinlan, J. R.: 1986, Induction of decision trees, Machine learning, 1(1), 81-106.
Reich, Y.: 1991, Constructive induction by incremental concept formation, in Y. A Feldman

and A. Bruckstein (eds), Artificial Intelligence and Computer Vision, Elsevier Science,
Amsterdam, pp. 191-204.

Reich, Y. and Fenves, S. J.: 1992, Inductive learning of synthesis knowledge, International
Journal of Expert Systems, 5(4),275-297.

Tham, K. W. and Gero, J. S.: 1992, PROBER - a design system based on design prototypes,
in Gero, J. S. (ed), Artificial Intelligence in Design '92, Kluwer, Dordrecht, pp. 657-675.

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 447-462.
© 1996 Kluwer Academic Publishers.

LEARNING TO CHOOSE A REFORMULATION
FOR NUMERICAL OPTIMIZATION OF ENGINEERING DESIGNS

MARK SCHWABACHER, THOMAS ELLMAN AND HAYM HIRSH
AND GERARD RICHTER
Computer Science Department
Rutgers University, New Brunswick, NJ 08903 USA

Abstract. It is well known that search-space refonnulation can improve the speed and re­
liability of numerical optimization in engineering design. We argue that the best choice
of refonnulation depends on the design goal, and present a technique for automatically
constructing rules that map the design goal into a refonnulation chosen from a space
of possible refonnulations. We tested our technique in the domain of racing-yacht-hull
design, where each refonnulation corresponds to incorporating constraints into the search
space. We used a standard inductive-learning algorithm, C4.5, to learn rules from a set of
training data describing which constraints are active in the optimal design for each goal
encountered in a previous design session. We then used these rules to choose an appropri­
ate refonnulation for each of a set of test cases. Our experimental results show that using
these refonnulations improves both the speed and the reliability of design optimization,
outperforming competing methods and approaching the best perfonnance possible.

1. Introduction

In a simulation-based automated engineering design system that uses numerical
optimization, the decision on how to formulate the search space can dramatic­
ally affect the performance of the optimizer in two ways. First, using a lower­
dimensional formulation of the search space makes optimization faster, since each
gradient computation requires fewer runs of the simulator, and the distance in
design space from the starting point to the optimum is smaller. In design problems
where evaluating even just a single design can take tremendous amounts of time,
selecting an appropriate formulation can be the determining factor in the success
or failure of the design process. Second, different formulations of the search space
can result in different degrees of "smoothness" of the search space, which can im­
pact not only the speed of the optimizer, but also the ability of the optimizer to
get to the optimum, and therefore the quality of the resulting designs. We present

448 MARK SCHWABACHER ET AL.

a method of reformulation called "constraint incorporation," which reduces the
dimensionality of the search space and increases its smoothness by incorporating
constraints into the search space.

Traditionally, numerical optimization has dealt with explicit, "hard" con­
straints. The optimizer assumes that these constraints can never be violated. A
hard constraint can be expressed as

!(Xl, x2, ... , xn) :::; k

(Here Xl, X2, ••• ,Xn are the design parameters that represent the design.)
The constraint is said to be inactive if !(XI, X2, . .. ,xn) < k, active if
!(XI, X2, ... , xn) = k, and violated if !(Xl, X2, ... , xn) > k. Hard constraints
can result from the laws of physics, for example.

Another type of constraint is the "soft" constraint, for which there is some sort
of known penalty for violating the constraint. A soft constraint can be expressed
as

if !(Xl, X2, ... , xn) > k then apply penalty P(Xl, X2,· •• , xn)

These usually arise from human-written laws, such as regulations specifying a
monetary penalty for exceeding a certain noise level. In either case, if it is known
that the constraint will be active at the optimal design point, and the constraint
function ! is invertible, then the constraint can be incorporated into the search
space by using the inverse of ! to eliminate one of the design parameters. Pap­
alambros and Wilde (1988) describe how monotonicity knowledge can be used
to determine that certain constraints will be active at the optimum. Incorporating
these constraints produces a new search space with lower dimensionality, since
the incorporation eliminates a design parameter, and greater smoothness, since
the incorporation eliminates the "ridge" (or nonsmoothness) in the search space
caused by the "if' statement in the constraint. If there are n constraints that can
be incorporated in this way, then there are 2n possible reformulations that can be
produced by incorporating different subsets of constraints.

Optimization can be done for a variety of design goals. A design goal con­
sists of environment parameters, which are inputs to the simulator other than the
design parameters (and which typically describe the environment in which the de­
signed artifact will operate), and the thresholds on the various constraints.

Constraint activity depends on the goal (some constraints are active at the
optimum for only some design goals), for two reasons: First, the constraint
thresholds are part of the design goal. Second, different design goals will result
in different optimal values of the design parameters on which the constraint func­
tions depend.

Because constraint activity depends on the goal, different reformulated search
spaces are appropriate for different design goals. We describe a way in which in­
ductive learning can be used to map the design goal into the appropriate reformu­
lation.

LEARNING TO CHOOSE A REFORMULATION 449

Figure 1. The Stars and Stripes' 87.

2. Learning Reformulation Rules

The problem addressed by an inductive-learning system is to take a collection of
labeled "training" data and produce rules that make accurate predictions on future
data. To use inductive learning to form reformulation-selection rules, we take as
training data a collection of design goals, each labeled with the set of constraints
that are active at the optimal design point. We run the inductive learner once for
each constraint, producing for each constraint a set of rules that can be used to
predict whether the constraint will be active for new design goals.

Inductive learning is particularly suitable in the context of an automated
design system because training data can be generated in an automated fashion.
For example, one can choose a set of training goals and perform an optimiza­
tion for each goal. One can then evaluate each constraint function for each op­
timal design, and then construct a table that records which constraints were act­
ive (within a threshold) for each training goal. This table can be used by the
inductive-learning algorithm to generate a set of rules for each constraint, map­
ping the space of all possible goals into a prediction of whether or not that con­
straint will be active at the optimal design point for that goal. If learning is suc­
cessful, these mappings extrapolate from the training data and can be used suc­
cessfully in future design sessions to map a new goal into an appropriate refor­
mulation.

The specific inductive-learning system used in this work is C4.5 (Quinlan,
1993) (release 6.0). The approach taken by C4.5 is to find a small decision tree
that correctly classifies the training data, and to then remove lower portions of the
tree that appear to fit noise in the data. The resulting tree is then used to assign
labels to future, unlabeled data.

3. Yacht Design

Our reformulation-selection techniques have been developed as part of the
"Design Associate," a system for assisting human experts in the design of com­
plex physical engineering structures (Ellman et aI., 1992). One of the domains in

450 MARK SCHWABACHER ET AL.

which The Design Associate is currently being tested is the domain of 12-meter
racing yachts, which until recently was the class of sailboats raced in America's
Cup competitions. An example of a 12-meter yacht is the Stars and Stripes' 87;
its hull is shown in Figure 1. 1

Racing yachts can be designed to meet a variety of objectives, such as course
time or cost. In our work we have chosen to focus on a course-time goal, namely
minimizing the time it takes for a yacht to traverse a given race course under
given expected wind conditions. A particular course-time goal thus requires the
specification of two environment parameters: (1) the race course, represented as a
set of (distance, heading) pairs; and (2) the wind speed, represented as a scalar
number, in knots. Our design system represents a yacht geometry by a set of
design parameters, and evaluates course time using a "Velocity-Prediction Pro­
gram" called "RUVPP,"(Schwabacher et aI., 1994) a somewhat simplified version
of "AHVPP" from AeroHydro, Inc., which is a marketed product used in yacht
design (Letcher, 1991).

Yacht designs are modified by operators that manipulate design parameters.
A search space is thus specified by providing the parameters that define an initial
prototype, and a set of operators for modifying that prototype. In the experiments
described in this paper, the following design parameters were varied:

1. Length. The length of the yacht, as measured along the water line.
2. Beam. The maximum width of the yacht at the water line.
3. Hull Depth. The maximum vertical distance from the water line to the bot­

tom of the "canoe body" of the hull.
4. Keel Height. The height of the keel.
5. Keel Taper Ratio. The tip chord of the keel divided by the root chord of the

keel.
6. Winglet Span. The width of the winglets that are attached to the keel.

To find a yacht for a given design goal our system uses CFSQP, a state-of-the­
art implementation of the Sequential Quadratic Programming method (Lawrence
et aI., 1995). 2 Sequential Quadratic Programming is a quasi-Newton method
that solves a nonlinear constrained optimization problem by fitting a sequence
of quadratic programs3 to it, and then solving each of these problems using a
quadratic programming method. We have supplemented CFSQP with knowledge­
based gradients (Schwabacher and Gelsey, 1996) to handle designs that cannot be
evaluated due to limitations of the simulator.

In the experiments described in this paper, we ran CFSQP with course-time
as the objective function, and with one explicit, nonlinear, "hard" constraint. This

IThis is the boat that won the 1987 America's Cup competition, returning the trophy to the
United States after an Australian win in 1983 (Letcher et aL, 1987).

2CFSQP stands for "C code for Feasible Sequential Quadratic Programming."
3 A quadratic program consists of a quadratic objective function to be optimized, and a set of

linear constraints.

LEARNING TO CHOOSE A REFORMULATION 451

constraint specifies that the mass of the yacht, before adding any ballast, must be
less than or equal to the mass of the water that it displaces. (In other words, the
boat must not sink.)

Although the program we use to compute course time (RUVPP) is a state­
of-the-art simulator, it nevertheless suffers from a number of deficiencies that
make optimization difficult. For example, it will sometimes return a spurious root
of the balance-of-force equations that it solves. It may also exhibit discontinuit­
ies, due to numerical round-off error, or due to truncation error in the numerical
solver used to solve the balance-of-force equations. These deficiencies can pro­
duce "noise" in the evaluation function surface over which the optimization al­
gorithm is moving. The algorithm can therefore easily get stuck at a point that
appears to be a local optimum, but is nevertheless not locally optimal in terms of
the true physics of the yacht design space. There is also noise in the search space
caused by the constraints of the 12-Meter Rule, which is discussed further in the
next section.

4. The Reformulations

Yachts entered in the 1987 America's Cup race had to satisfy what is known as
the 12-Meter Rule (lYRU, 1985). The basic formula in the rule is:

length - freeboard + ..j sailarea
2.37 ~ 12m

In addition to the basic formula, the rule contains several other constraints, along
with associated penalties for violating these constraints. These constraints are:

- draft constraint
- beam constraint
- displacement constraint
- winglet span constraint

For example, the beam constraint states

if beam < 3.6m, then add four times the difference to length

While constructing the simulator, we used a reasoning process similar to that
described in Papalambros and Wilde (1988) to determine that the constraint de­
scribed by the basic formula of the 12-Meter Rule, above, will always be active,
since the objective function being minimized, course-time, is monotonically de­
creasing in sail-area, and the left-hand-side of the constraint is monotonically in­
creasing in sail-area. We therefore incorporated this constraint into the simulator
by solving for sail-area in terms of the other design parameters. So, for example,
when the optimizer makes length bigger, sail-area is automatically made smal­
ler. In addition, because we also incorporated the other constraints into the sim-

452 MARK SCHWABACHER ET AL.

360 .---.-,------.------.-----,------.------.-----,------,
"beams· --

359

358
en
"0
c::
0
<>
Q)

.!!!..
Q)

~
357

~
::>
0
<>

356

355

3~L-----~----~------~----~----~------L-----~-----J

3.5 3.55 3.6 3.65 3.7 3.75 3.8 3.85 3.9
beam (meters)

Figure 2. The nonsmoothness in the search space caused by the beam constraint.

ulator, reducing beam beyond 3.6m causes the quantity length in the formula to
increase, which causes sail-area to decrease.4

Because the beam constraint contains an if statement, this incorporation
causes a nonsmoothness in course-time as a function of beam. That is, there is a
discontinuity in the first derivative of course-time with respect to beam. Figure 2
illustrates this nonsmoothness by showing the cross-section of the search space
corresponding to the beam design parameter.5 This nonsmoothness can cause a
gradient-based optimizer such as CFSQP to get stuck, and to fail to get the op­
timum.

For many design goals, the optimal design is right on the constraint boundary.
The optimal beam is often 3.6m. If we expect the optimal beam to be 3.6m, then
we can incorporate the beam constraint into the operators. In the case of the beam
constraint, this incorporation is trivial-- we simply set beam to 3.6m and leave it
there. For other constraints, the incorporation is more complicated. For example,
there is a constraint that specifies a penalty if displacement does not vary with

4Because we incorporated each part of the 12-Meter rule into the simulator, we did not need to
use it as an explicit constraint.

S Although this figure shows only a "snapshot" of the search space for specific values of the
other design parameters, we believe that the trend shown in the figure is generally applicable.

LEARNING TO CHOOSE A REFORMULATION 453

a certain cubic polynomial in length. Displacement is not a design parameter;
rather, it is a quantity computed from all of the design parameters. In order to
incorporate the displacement constraint, we used Maple (Char et al., 1992), a
symbolic algebra package, to invert the displacement formula, and created a new
set of operators that vary certain parameters while maintaining displacement at
the minimum displacement allowed by the constraint. For still-more-complicated
constraints, it might not be possible to invert the constraint function using Maple;
it might therefore be necessary for the operators to contain numerical solvers that
find the right values of the incorporated design parameters so as to put the design
on the constraint boundary.6

We created operators to incorporate all four of the above-listed 12-Meter Rule
constraints: the draft constraint, the beam constraint, the displacement constraint,
and the winglet constraint. Using these operators, we are able to either incorporate
or not incorporate each of these four constraints independently. We thus defined
a set of sixteen (24) possible reformulations of the search space. From our initial
experiments with these operators, we determined empirically that incorporating
the draft constraint substantially improved the reliability and speed of optimiz­
ation for any design goal. We therefore decided to always incorporate the draft
constraint, leaving us with a space of eight possible reformulations that we used
in the experiments described below.

s. Learning to Choose a Reformulation

Having defined eight reformulations of the search space, we used inductive learn­
ing to decide, based on the design goal, which reformulation to use. As training
data, we used 100 previous optimizations.7 For each previous optimization, we
evaluated each 12-Meter Rule constraint function at the optimum, and determ­
ined if the constraint was active (within a tolerance). Each of these previous op­
timizations had as its design goal minimizing course time for a single-leg race­
course, which can be represented using two numbers: the wind speed, and the
heading (the angle between the yacht's direction and the wind direction). The
design goal can therefore be represented using these two numbers. We ran the
inductive learner once for each of the three constraints. Each time, the induct­
ive learner was provided with a set of triples: the wind speed, the heading, and a
ternary value indicating whether the constraint was inactive, active, or violated.
One of the constraints was violated at the optimum in 10 of these optimizations.
Figure 3 gives an example of a decision tree output by C4.5. This decision tree
predicts whether the displacement constraint will be active at the optimum, based

60perators containing numerical solvers would probably be more computationally expensive
than operators containing the algebraic solutions of the constraint functions, so the CPU time sav­
ings from reformulation would probably be smaller.

7 The optimizer failed for one of these goals, so we used the remaining 99 goals as training data
in the results that follow.

454 MARK SCHWABACHER ET AL.

heading <= 109 :
I windspeed <= 6.3 : active
I windspeed > 6.3 :
I I windspeed > 8.2 : violated
I I windspeed <= 8. 2 :
I I I heading <= 65 : violated
I I I heading > 65 : active
heading > 109
I windspeed > 11.5 : active
I windspeed <= 11.5 :
I I heading <= 135 : active
I I heading> 135 : inactive

Figure 3. Learned decision tree for the displacement constraint.

TABLE 1. Cross-validated error rates for selecting whether
to incorporate each constraint.

method Beam Displacement Wmglet

C4.5 wI pruning 11.1% 15.1% 7.0%
C4.5 wlo pruning 11.1% 15.1% 10.0%

C4.5rules 11.1% 15.1% 10.0%
MFC 33.3% 53.5% 13.1%

Random 66.7% 66.7% 66.7%

on the design goal. By running a new design goal down three decision trees, one
for each of the three constraints that can be incorporated, the system can make
predictions of whether each constraint will be active at the optimum. These three
yes/no predictions directly map into one of the eight (23) reformulations of the
search space.

We used C4.5 to perform tenfold cross-validation (Weiss and Kulikowski,
1991), and obtained the error rates shown in Table 1. Here we compare the er­
ror rates of C4.5 with and without pruning, and of C4.5rules, a variant of C4.5
that extracts rules from the trees, with the expected error rate of random guessing
(which is two-thirds since there are three classes from which to guess), and the er­
ror rate of the Most Frequent Class (MFC) learning method. MFC always chooses
the class that occurs most frequently in the training data. In this case, that means
that it always chooses the same reformulation, namely the one that is most often
the best reformulation in the training data.

As Table 1 shows, C4.5 with pruning performed slightly better than C4.5

LEARNING TO CHOOSE A REFORMULATION 455

without pruning or C4.5rules (and so in our further experiments reported below
we use only C4.5 with pruning), and all three significantly outperformed MFC,
which in turn significantly outperformed random guessing.

However, these results are for error rates, the proportion of cases where learn­
ing makes an incorrect guess, and more important in this domain is how learning
affects the overall problem-solving task, namely how it improves the speed and
reliability of the design optimization process. Does learning make the design pro­
cess faster or slower? Are the resulting designs better or worse? To measure these
effects, we performed optimizations for 25 new randomly generated goals using
the reformulations suggested by each learning method. Table 2 shows the effect
that C4.5 (with pruning) and MFC had on the average course time (the quality of
the design), and average number of evaluations (the speed of the optimization),
as compared with the "old way" of doing optimization without incorporating any
of the three constraints into the operators. The first column in the table shows
the percentage difference between the optimized course-time produced without
reformulation, and the optimized course time produced with the specified refor­
mulation. The second column shows the percentage difference between the cost
of performing the optimization without reformulation, and the cost of performing
it with the specified reformulation.

We also include in this table the performance of several other methods. A hy­
pothetical "omniscient" problem solver always magically guesses the best pos­
sible choice. 8 No learning method will enable results superior to this. The "ex­
haustive" optimization method performs eight optimizations for each goal, using
all eight possible reformulations, and then chooses the best resulting design. In­
corporating "all" constraints all the time results in the fastest possible optimiza­
tion within this set of reformulations (at the cost of quality loss).

C4.5 produced a significant speedup in optimization, with no quality loss. In
fact, it produced a small quality increase. (This quality increase suggests that
without any reformulation, the optimizer gets "stuck" on the "ridges" that the
constraints cause the search space to have, and therefore sometimes fails to get
the optimum.) MFC produced a slightly smaller speedup and a slightly smaller
quality improvement. The difference between C4.5 and MFC was, however, stat­
istically significant at the 99% confidence level, according to the paired t-test.
Both learning methods performed substantially better than random guessing. C4.5
performed almost as well as the hypothetical omniscient learner, which means it
performed almost as well as any learner could possibly do. 9

8We simulated the omniscient learner by performing optimizations using all eight reformula­
tions for each goal (as in the "exhaustive" method), and then ignoring the cost of the seven optim­
izations that turned out not to be best.

9Interestingly, according to the t-test, the difference between C4.5 and the omniscient method
was not statistically significant, but this just illustrates a limitation of the t-test, since we know that
the omniscient method really is better, on average, than C4.5.

456 MARK SCHWABACHER ET AL.

TABLE 2. Effect of using reformu-
lations chosen by learner on optimiz-
ation performance.

quality time

method change change

omniscient +{).085% -36%

exhaustive +{).085% +384%
C4.5 +{).080% -35%

MFC +{).029% -32%

none 0 0
random -0.276% -40%

all -0.599% -74%

Incorporating all of the constraints all of the time resulted in a very large spee­
dup, with a modest quality loss. This method may be appropriate if one wants a
quick and approximate optimization. It might, for example, be used in the early
stages of design when the engineer wants to get a feel for the search space by
asking "what-if' questions.

One question that these results raise is how training-data quantity affects per­
formance. If one does not have results from a large number of previous optimiza­
tions available, then one can either run some extra optimizations to generate train­
ing data (which is expensive), or do the learning with less training data (which is
likely to produce higher error rates and lower optimization performance). To ex­
plore this issue we applied our learning approach to datasets of varying sizes, with
the error rates shown in Figure 4. For each training-set size in the figure, we ran­
domly chose 10 different subsets of our training data of that size, and performed
1O-fold cross-validation on each subset. The figure shows the averages. The three
symbols at the right side of the figure show MFC's performance on the full train­
ing set. C4.5 outperformed MFC for every training-set size, but C4.5' s error rate
on smaller training sets was significantly larger than C4.5' s error rate for larger
training sets (with performance reaching an asymptote for training sets of about
60 cases or more).

6. Related Work

Another way of selecting a search space is by selecting a starting point which,
when combined with a set of operators, defines a search space. Previous results
(Schwabacher et al., 1994) showed that machine learning can improve optimiz­
ation performance by learning how to select an initial prototype from which to
start the optimizer. Cerbone (1992) has reported work which applied machine-

LEARNING TO CHOOSE A REFORMULATION

C4.5

ro._--_.----.-----._--_.----.---~._--_.----._--_,

50

40

30

20

--+-- - -+ ..

10 -4- __

'beam-<:OIlslrainl' -+­
'Winglel-conslrainr -+­

'displacemenl-constrainl' -e-

~ 0- _ _ _"'t---~

-0- - --=----=-~'--:-~1J

__ +- _ _ - -.t- __ -......-.- ___ + _ _ __ + __ _ +

o L-__ ~ ____ ~ ____ L-__ ~ ____ ~ ____ L-__ ~ ____ ~ __ ~

10 20 30 40 50 60 70 80 90 100
Size of training set

Figure 4. Effect of training set size on learner performance.

457

MFC

Cl

+

learning techniques to a problem similar to our prototype-selection problem. Cer­
bone's design space, in the domain of truss design, has an exponential number of
disconnected search spaces. He uses inductive learning techniques to learn rules
for selecting a subset of these search spaces for further exploration.

Several investigators (Orelup et aI., 1988; Tong, 1988; Powell, 1990; Hoeltzel
and Chieng, 1987) have developed alternative artificial-intelligence techniques for
controlling iterative parameter-design optimization. Gelsey et al. (1995; 19%)
describe a Search Space Toolkit which assists in determining properties of the
search space that can be used for reformulation. Choy and Agogino (1986) de­
scribe a system that automates (Papalambros and Wilde, 1988), s method of using
monotonicity analysis to detect constraint activity.

In Williams and Cagan (1994), Williams and Cagan present activity analysis,
a technique inspired by monotonicity analysis. Their technique is similar to the
technique described in this paper, except that they use qualitative reasoning in­
stead of machine learning to determine which constraints will be active at the op­
timum. Their technique has the advantages that it does not require training data,
and that the reformulation is guaranteed not to lose the global optimum. It has the
disadvantage that it requires that the objective function and constraint functions
be symbolically differentiable and composed of simple arithmetic operations; it

458 MARK SCHWABACHER ET AL.

would therefore not be applicable to the complex simulators used in the experi­
ments described in this paper.

7. Future Work

This paper has described on-going work, and there are thus a number of directions
for future work. These fall into two groups: extending this work to more difficult
design tasks, and improving results by using other learning methods.

7.1. OTHER DESIGN TASKS

The results presented here apply to a constrained class of yacht-design goals,
those comprised of a single leg. One question is how this approach can be ap­
plied to courses comprised of varying numbers of legs. We believe that we could
get reasonable optimization performance by using the trees learned from single­
leg courses to perform multi-leg optimization in the following way: If a con­
straint should be incorporated for every leg of the racecourse, then incorporate
it for the full, multi-leg course. We need to test how well optimization performs
when handling racecourses in this manner. We could also attempt to learn directly
for multi-leg racecourses. Doing so would raise an interesting machine-learning
question, since describing a multi-leg racecourse requires a variable number of
attributes, and thus traditional learners such as C4.5 do not directly apply.

In the results presented here, we assume that the only change between the pre­
vious design sessions and the current design session is the design goal, expressed
as a (wind speed, heading) pair. An interesting question is what would happen if
in addition to changing the goal, we also changed the constraints, or the simu­
lator, or the form of the goal. We would need to find a way to encode as a set of
attributes for the learner whatever had changed.

We believe that the results presented here will easily generalize to situations
in which there are more than eight reformulations. We used the results from the
same set of 100 optimizations to perform three separate learning tasks (for three
constraints), and then combined the rules generated by these three learning ses­
sions to select one of the eight reformulations. As the number of reformulations
grows, the number of constraints, and therefore the amount of CPU time needed
for the learning, will grow logarithmically with the number of reformulations.
The CPU time needed for learning is currently insignificant compared with the
CPU time needed for the subsequent optimizations. We expect that as the num­
ber of reformulations grows, the number of training examples needed will remain
constant (since the same training examples are used for each constraint), and the
amount of CPU time needed for learning will remain insignificant. We plan to test
this hypothesis by using other constraints within the yacht design domain, such as
the "boat doesn't sink" constraint.

LEARNING TO CHOOSE A REFORMULATION 459

The learning approach could also be used to decide when to reformulate soft
constraints as hard constraints. If it were known with a high degree of confidence
that a certain soft constraint will not be violated at the optimum for certain goals,
then this soft constraint could be converted into a hard constraint for those goals,
which would eliminate a ridge from the search space and thereby make optimiz­
ation more robust (although it would not reduce the dimensionality of the search
space). For example, in the training data that we collected, the beam constraint
was never violated, so it might be replaced safely with a hard constraint.

Other more-difficult problems might involve a less-smooth search space, a
higher-dimensional goal space, or a less reliable optimizer. Such problems may
arise when we test this method in other domains. In particular, we plan to test it
in the domain of aircraft design.

7.2. OTHER LEARNING METHODS

We found that C4.5 performed nearly as well as a hypothetical "omniscient"
learner, for the fairly simple design problem that we used in our experiments.
Other learning methods, however, might prove useful when attacking some of
the harder problems described in the previous subsection. For example, it would
be interesting to see how well neural networks, nearest-neighbor methods, or
statistical regression would perform. In particular, C4.5, like most decision-tree
learners, uses linear, axis-parallel cuts in its decision trees. However, Figure 5
shows how the activity of the beam constraint varies over the goal space in the
training data we used - the space is clearly divided into two regions (except for
one point which we believe is noise). The border between these regions does not
appear to be axis parallel, and appears to be nonlinear. This suggests that better
performance might be achieved using an "oblique" decision tree learner, such as
OCI (Murthy et al., 1993), or by attempting to learn nonlinear region boundaries.

As would be expected, even though our yacht-domain results with C4.5 were
nearly optimal for 100 examples, results degrade when given less training data.
Although it would be interesting to see if other learning methods would have bet­
ter small-dataset performance, for any learner we would expect performance to
be inferior for small enough datasets. One approach for improving results in such
small-dataset cases - as well as in other cases where off-the-shelf learners such
as C4.5 may not perform well even if given larger datasets - is to integrate back­
ground knowledge into the learning process. One form of background knowledge
that is often available, such as in the yacht-design domain, is modality constraints.
This is knowledge that expresses the modality of the learned class with respect to
the attributes. For example, we believe that optimal beam is monotonically in­
creasing in wind speed, and monotonically decreasing in heading. We also know
that the activity of any constraint of the form !(Xl, X2, • •• , xn) ~ k must be
monotonic in k, so, for example, the activity of a cost constraint must be mono-

460 MARK SCHWABACHER ET AL.

20 + + ~ + + () + + "active" ()

+ "inactive" +
+ ()

18
+ + +

()
()

+ +
16 + +

+ +
+

() ()

++ + +
+ + ()

$' 14 + ()
0 + () c: () () c + () ()

() + + () ()
"0 ()
Q) 12 +-q. () () ()
Q)
a.

()
()

() '" "0 ()

c: () ()
() .~ ()

10 () () ()
() ()

()

()
()

() ()
()

()

8 () ()()

() ()
()

() () () ()
() () () ()

6
()

() () ()
() ()

()

() () () +~
Noise

4
40 60 80 100 120 140 160 180

heading (degrees)

Figure 5. Activity of the beam constraint over the goal space.

tonic in the cost threshold. One open question is how such knowledge could be in­
tegrated into learning. One approach would be to use such modality constraints to
remove from the training data points that violate the constraints (on the assump­
tion that these points are noise). A second approach is to modify the tree induction
algorithm so that it will never construct a tree that violates the constraints.

Finally, even after our learning approach is applied, every additional future
optimization can serve as an additional training point for the learning. Thus learn­
ing methods that can work in an incremental fashion might also prove useful for
this task. In addition, it may prove useful to develop methods that select suitable
data prior to learning. For example, when there are not enough existing optimiz­
ations to achieve adequate learning results, additional optimizations can be per­
formed to generate further training data. Rather than performing these new op­
timizations for random goals or for a set of goals that span the goal space, one
could allow the learner to choose the goals to be used in the new training data.
Background knowledge - such as modality constraints - could prove particu­
larly useful in selecting such goals.

LEARNING TO CHOOSE A REFORMULATION 461

8. Conclusion

We have shown that using the reformulations selected by inductive learning
makes design optimization faster, because the reformulation reduces the dimen­
sionality of the search space, and more reliable, because the reformulation makes
the search space smoother.

When we started this research, it was not immediately obvious whether in­
ductive learning would be applicable in our chosen domain. In the process of
applying inductive learning to this domain, we learned significant lessons about
the importance of choosing the right evaluation criteria, the importance of getting
good data, and the usefulness of visualization. These lessons are further described
in Schwabacher et al. (1995).

Acknowledgments

This research has benefited from numerous discussions with members of the Rut­
gers HPCD project. In particular, we would like to thank Andrew Gelsey, John
Keane, and Brian Davison. This research is part of the Rutgers-based HPCD (Hy­
percomputing and Design) project supported by the Advanced Research Projects
Agency of the Department of Defense through contract ARPA-DABT 63-93-C-
0064.

References

Cerbone, G.: 1992, Machine learning in engineering: Techniques to speed up numerical optimiz­
ation, Technical Report 92-30-09, PhD Thesis, Oregon State University, Department of Com­
puter Science.

Char, B., Geddes, K., Gonnet, G., Leong, B., Monagan, M. and Watt, S.: 1992, First Leaves: A
Tutorial Introduction to Maple V, Springer-Verlag and Waterloo Maple Publishing.

Choy, J. and Agogino, A: 1986, Symon: Automated symbolic monotonicity analysis system for
qualitative design optimization, Proceedings ASME International Computers in Engineering
Conference.

Ellman,T., Keane, J. and Schwabacher, M.: 1992, The Rutgers CAP Project Design Associate,
Technical Report CAP-TR -7, Department of Computer Science, Rutgers University, New Brun­
swick, NJ. ftp:l/ftp.cs.rutgers.edu/pub/technical-reports/cap-tr-7.ps.Z.

Gelsey, A and Smith, D.: 1995, A search space toolkit, Proceedings, 11th IEEE Conference on
Artificial Intelligence Applications, Los Angeles, CA, pp. 117-123.

Gelsey, A, Smith, D., Schwabacher, M., Rasheed, K. and Miyake, K.: 1996, A search space toolkit,
Decision Support Systems, special issue on Unification of Artificial Intelligence with Optimiz­
ation, (to appear).

Hoeltzel, D. and Chieng, W.: 1987, Statistical machine learning for the cognitive selection of non­
linear programming algorithms in engineering design optimization, Advances in Design Auto­
mation, Boston, MA.

IYRU: 1985, The Rating Rule and Measurement Instructions of the International Twelve Metre
Class, International Yacht Racing Union.

Lawrence, c., Zhou, J. and Tits, A: 1995, User's guide for CFSQP version 2.3: A C code for
solving (large scale) constrained nonlinear (minimax) optimization problems, generating iter­
ates satisfying all inequality constraints, Technical Report TR-94-16rl, Institute for Systems
Research, University of Maryland.

462 MARK SCHWABACHER ET AL.

Letcher, J., Marshall, J., Oliver, J. and Salvesen, N.: 1987, Stars and Stripes, Scientific American,
257(2).

Letcher, J.: 1991, The AerolHydro VPP Manual. Aero/Hydro, Inc., Southwest Harbor, ME.
Murthy, S., Kasif, S., Salzberg, S. and Beigel, R.: 1993, OCl: Randomized induction of oblique de­

cision trees, Proceedings of the Eleventh National Conference on Artificial Intelligence, Wash­
ington,DC.

Orelup, M. F., Dixon, J. R., Cohen, P. R. and Simmons, M. K.: 1988, Dominic II: Meta-level control
in iterative redesign, Proceedings of the National Conference on Artificial Intelligence, St.
Paul, MN, pp. 25-30,

Papalambros, P. and Wilde, J.: 1988, Principles of Optimal Design, Cambridge University Press,
New York, NY.

Powell, D.: 1990, Inter-GEN: A hybrid approach to engineering design optimization. Technical
report, PhD Thesis, Rensselaer Polytechnic Institute Department of Computer Science.

Quinlan, J. R.: 1993, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA.
Schwabacher, M. and Gelsey, A.: 1996, Intelligent gradient-based search of incompletely defined

design spaces, Technical Report HPCD-TR-38, Department of Computer Science, Rutgers
University, New Brunswick, NJ. ftp:l/ftp.cs.rutgers.edulpub/technical-reportslhpcd-tr-38.ps.Z.

Schwabacher, M., Hirsh, H. and Ellman, T.: 1994, Learning prototype-selection rules for case­
based iterative design, Proceedings of the Tenth IEEE Conference on Artificial Intelligence for
Applications, San Antonio, Texas.

Schwabacher, M., Hirsh, H. and Ellman, T.: 1995, Inductive learning for engineering design op­
timization, in D. Aha and P. Riddle (eds), Working Notes for Applying Machine Learning in
Practice: A Workshop at the Twelfth International Machine Learning Conference, (Technical
Report AlC-95-023), Naval Research Laboratory, Navy Center for Applied Research in Artifi­
cial Intelligence, Washington, DC. http://www.aic.nrl.navy.miV,,,ahalirnlc95-workshop/.

Tong, S. S.: 1988, Coupling symbolic manipulation and numerical simulation for complex engin­
eering designs, International Association of Mathematics and Computers in Simulation Con­
ference on Expert Systems for Numerical Computing, Purdue University.

Weiss, S. M. and Kulikowski, C. A.: 1991, Computer Systems That Learn, Morgan Kaufmann, San
Mateo, CA.

Williams, B. and Cagan, J.: 1994, Activity analysis: The qualitative analysis of stationary points for
optimal reasoning, Proceedings of the Twelfth National Conference on Artificial Intelligence,
Seattle, WA.

9
distributed design

Virtual construction site: Supporting design by multiple methods
in FABEL

Carl-Helmut Coulon, Wolfgang Griither, Barbara Schmidt-Belz, Angi
VofJ, Friedrich Gebhardt, Eckehard GrofJ and Jorg Walter Schaaf

A mobile-agent oriented approach to a distributed design
support system

Haruyuki Fujii, Shoichi Nakai, Hiroshi Katukura, Keiichi Hirose
VisionManager: A computer environment for design

evolution capture
Renate Fruchter, Kurt Reiner, Larry Leifer, George Toye

1. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96,465-483.
© 1996 Kluwer Academic Publishers.

VIRTUAL BUILDING SITE

Supporting building design by multiple methods in FABEL·

CARL-HELMUT COULON, WOLFGANG GRATHER,
BARBARA SCHMIDT-BELZ, ANGI VO~, FRIEDRICH GEBHARDT,
ECKEHARD GRO~ AND JORG SCHAAF
GMD
German National Research Center for Information Technology
D-53754 Sankt Augustin, Germany

Abstract. FABEL prototype 3.0 is a research system to support engineers and architects
in building design. We introduce and motivate the metaphor of a virtual building site,
which has guided the development of this system. In the virtual building site a common
data model of the artefact is designed. The user interface is based on a graphic editor
which handles design objects of all kinds and at several levels of abstraction and even
organizes the application of the tools. There are tools to supply the designer with useful
cases, to create pieces of design by adaptation of similar cases or by knowledge-based
refinement, and there are tools to assess parts of the design. We describe some of the
tools to illustrate the multi-method approach of FABEL.

1. Introduction

FABEL is a German joint research project that aims at supporting architects and
civil engineers in designing buildings with a complex infrastructure. When the
project was started in 1992, several attempts at building expert systems for this
domain had failed, because the knowledge could not be modelled sufficiently and
the systems soon became inefficient and untractable.

To cope with such complex domains, we took a twofold approach: Instead of
one big expert system, we built small and independent tools. All control was left
with the human designers, not with some automatic scheduler. But in order to co­
operate on such a complex task, man and machine must be able to communicate
what needs to be done, what can be done at some given moment and what is CUf-

'This research was supported by the Federal Ministry of Education, Science, Research and
Technology (BMBF) within the joint project FABEL under contract no. OIIWI04. Project partners
in FABEL are GMD - German National Research Center for Information Technology, Sankt
Augustin, BSR Consulting GmbH, MUnchen, Technical University of Dresden, HTWK Leipzig,
University of Freiburg, and University of Karlsruhe.

466 CARL-HELMUT COULON ET AL.

rently being done. Therefore, a cornmon frame of reference was needed. We call
it a virtual building site. The system, FABEL prototype 3.0, is operational since
December 95 and will be tested and assessed in the remaining half year of the
project. At the previous' AI in Design' conference, a predecessor, prototype 2.0
for retrieval only, was presented (VoS et al., 1994).

This paper will explain the metaphor of a virtual building site. In short, the
whole design process, including the application of tools, is spatially organized
and visualized. The design evolves like a building under construction. It can be
inspected under different points of view, with different foci. It can be concurrently
completed by different engineers with many different (or equal) tools. In FABEL
the basic support is retrieval of useful cases, useful under consideration of the cur­
rent situation. Different concepts of similarity are provided and fully integrated in
a powerful shell for storing and retrieving cases. Additional tools can elaborate
pieces of designs by adapting cases or generating solutions. Some of them rely
on very domain- or task-specific knowledge and therefore have a rather restricted
scope of application. Others are more generic, relying on less specific knowledge
(or on a wider knowledge base). We will give examples of some tools. All tools
can be applied concurrently or in succession, as their scopes of competence allow
and as the users like.

2. A Virtual BuDding Site as a Frame of Reference

Design of physical (or at least visible) artifacts like machines, buildings, cities or
plants has a major advantage over the design of abstract artifacts like software.
The product has a geometry, sometimes a site, and it can be inspected. The design
documents for such products relies on this characteristic. They essentially con­
sist of plans which are usually represented geometrically and annotated by sym­
bolic information. They are developed with CAD systems, and the new genera­
tion of these tools supports integrated models of the artifact, rather than collec­
tions of independent plans that have to be kept consistent by the designers. The
tools for developing integrated models will become more and more comfortable,
e.g. by providing 3D visualizations and walk-throughs in virtual reality. Also, in
the future they will have to offer support for the early, conceptual phases when
composition of design objects, their forms and positions are still approximate and
sketchy.

It is a major hypothesis of our approach that in an adequate design support
environment for complex physical artifacts, design information should be organ­
ized geometrically in space. This concerns concrete and abstract design objects,
annotations and even the tools to elaborate the design.

This hypothesis leads to the metaphor of a virtual building site, which was
proposed by the architect Ludger Hovestadt (1993) from the University of Karls­
ruhe. Given an integrated design model, a design in progress can be treated much

VIRTUAL BUILDING SITE 467

like the real product under construction. The virtual building site can be inspec­
ted by projecting it according to the point of view of the observer. This point of
view can be changed first of all by "navigating" along the three spatial dimen­
sions and filtering certain types of information. The design can be elaborated by
inserting, removing, moving or resizing design objects, and by applying tools at
circumscribed places.

Figure 1. Complex building models contain some thousand design objects. Without filtering and
focusing they can not be properly visualized.

While the spatial dimensions are universal, they are not sufficient for focus­
sing. Consider figure 1. It shows a great part of the building model of the Swiss
railway company's education center in Murten, which was designed and built by
Fritz Haller. Concentrating on some comer of the building would not help, be­
cause the plan contains design objects at different levels of abstraction and for dif­
ferent functions (oflayout, construction and technical services). Such additional
filters allow to focus within the building model on imageable subproblems like
designing the columns or the supply-air outlets on one floor. By treating the fil­
ters as additional dimensions one obtains a uniform frame of reference that can
be treated with a generic set of functions for navigation and positioning!.

1 In CAD systems additional layers provide a predefined set of projections. in contrast to the
unrestricted navigation through projections that can be created on demand by fixing some values in
any spatial and other dimensions of the virtual building site.

468 CARL-HELMUT COULON ET AL.

Figure 2 gives a glance at a virtual building site. It is a layout as produced
by the CAD tool of our partner at the University of Karlsruhe. There are design
objects at three different levels of abstraction: concrete parts, rectangles and el­
lipses. The rectangles represent precisely placed design objects that still need to
be refined to concrete parts. The ellipses are sketchy elements indicating maximal
space reservations, as given by the bounding box of an ellipse2•

Besides design objects, instances of tools can be placed and applied to parts
of the virtual building site (cf. figure 2). The three frames labeled by icons at their
upper left corner indicate positions of tools. Such a frame defines the applica­
tion area of a tool in all dimensions. In order to prevent conflicts, overlapping of
application areas is forbidden. For example the tools AAAO (figure 2, upper left
icon, compare section 4.2.2) and Topo (right icon, compare section 4.2.1) work in
spatially overlapping locations of the building; nevertheless the application areas
are disjoint because AAAO places the columns and Topo works (in this case) on
the air conditioning.

Each activated tool has a user interface. For example the user interface shown
in the upper left corner of the figure is used to navigate through the building.

In FABEL, we have about a dozen design support tools. They provide func­
tionality for retrieval, adaptation, assessment (the classic CBR steps (Slade,
1991», and the generation of new pieces of the plan using other knowledge than
cases. They are the subject of section 4. The implementation of the virtual build­
ing site and the coordination of all the different tools technically requires a co­
ordination of software processes and user interfaces, which is described in sec­
tion 5. That section will elaborate the scenario (figure 2) in more detail in order to
elucidate the benefits of the described distributed approach.

3. Locating the Support in the PMS-Model of Building Design

The virtual building site is based on a building model (the data) which is part of
the PM5 model of the process of building design (cf. (Hovestadt and Schmidt­
Belz, 1995».

PM5 provides us with

- a scheme of several abstraction levels of the building design task,
- a semantic model of tasks on these abstraction levels,
- important dependencies and interdependencies between tasks,
- the semantic connection between tasks and the design objects to be pro-

duced.

In the context of this paper the most important feature of PM5 is the latter
one, that is the connection between tasks and the design objects to be produced.

2This unusual visualization has two advantages. An ellipse looks more sketchy than a rectangle
and one can distinguish even lots of different overlapping spaces, which becomes impossible using
rectangles.

VIRTUAL BUILDING SITE 469

Figure 2. All information stored in the building model is located in the "virtual building site".
The whole building model might be even more complex than Figure 1. Most times the user wants
to work with part of the building model only. He focuses on it using the navigation panel (top
left-hand side) to filter certain types of objects and navigates through the geometric dimensions
using common CAD functionality. Frames labeled by icons represent tools not activated. Mter ac­
tivating a tool, a minimal user-interface, like the navigation panel, appears presenting the essential
functionality of the tool. More functions and detailed information about every tool can be accessed
in seperate windows.

In PM5 the tasks are of a benign nature: each task corresponds one-to-one to a
certain type of design objects to be created and laid out. For instance, MAO
supports one task (see figure 3) where objects of type "route planning for con­
struction (rp-co)" are created and handled. Therefore a task can be represented by
a short tenn like rp-co. The suggestion is that designers always focus on a cer­
tain aspect of the whole building plan, for instance the areas of use in a building
(p l-ro), the arrangement of rooms and corridors (pp-ro), the position of furniture
(ep-ro), the approximate position of installations (rp-armilla), their exact position
(pp-armilla) or the concrete elements that fonn a ductwork (ep-armilla). When
elaborating the design with respect to one type of design objects, the designers
have to consider certain other types of design objects already elaborated. Thus,
PM5 establishes an idealized structure of tasks together with interdependencies

470 CARL-HELMUT COULON ET AL.

among them.

For some tasks there are models or strategies of how to elaborate this part of
the building model. ARMILLA, for instance, is an operational model of how to
design the installations for a building (cf. (Haller, 1985». While retrieval tools
are not task-specific, many of the other FABEL tools are, because they rely on
additional, specialized knowledge like ARMILLA. Figure 3 shows the scope of
FABEL's adaptation and generation tools. For the scope of support by assessment
and learning tools we refer to Schmidt-Belz (1995).

-...-

AAAO Topo Anopia

Figure 3. This figure shows which tasks are supported by the three FABEL tools for adaptation and
generation presented in this paper. Their scope ranges from a specialist like AAAO to a generalist
like TOPO.

VIRTUAL BUILDING SITE 471

The scope of generation modules in our FABEL prototype 3.0 varies due to
the knowledge available. Anopia relies on ARMILLA knowledge, as we discuss
in detail in section 4.2.3.

4. Tools Supporting Complex Design

Tools that are independent must not communicate directly with each other. In­
stead, they must use a common data space, the virtual building site. Correspond­
ingly, all tools must accept similar input and produce similar output. That means,
all tools will accept a piece of plan (that are design objects from the virtual build­
ing model) as input and produce design objects (or a piece of plan) as their output
(cf. fig. 43).

[· .. · .. ·· 1 knowledge t···· .. · · .. ;
I :

.Jess

Figure 4. Four kinds of tools: retrieve. adapt. assess and generate.

The retrieval tools hardly use any generic knowledge. Therefore they are ap­
plicable to all kinds of plans. In contrast, assessment, generation, and also adapt­
ation require knowledge about the specific task to perform, e.g. about the capa­
city of pipes, admissible pipe positions or static constraints for the positions of
columns. Therefore, their scope is limited to particular steps in the design process
(cf. figure 3).

There are two reasons why we offer separate tools for retrieval and adaptation.
First, not all cases retrieved can or should be adapted automatically. They serve as
inspirations for the user or contain alternatives to consider. On the other hand, the
adaptation tools should be able to adapt cases selected by the user himself rather
than by a retrieval tool.

Adaptation tools receive two sets of design objects and try to fit one to the
other (cf. sections 4.1 and 4.2). Generation tools receive only one plan and try
to extend it using generic knowledge (Anopia cf. section 4.3, Roude (Jaschke
and Janetzko, 1994) and Syn* (Bomer and Fa8auer, 1995». As adaptation usually
consists of matching, copying and then fitting the case to the piece of plan under

3 An exception are assessment tools. which produce a commentary to a piece of plan

472 CARL-HELMUT COULON ET AL.

work, the same kind of knowledge can often be used for case-fitting as well as
for case-independent generation. Assessment tools check predicates concerning
different aspects like topology, dimensioning or collisions, and attach the result
to the checked design object. FABEL: s assessment tools DOM (Bartsch-SpOrl et
ai., 1995) and Check-Up (Janetzko and Jaschke, 1995) are not described in this
article.

4.1. TOOLS TO FIND USEFUL EXAMPLES

Examples of layouts may serve different purposes in different phases of design. In
early design, they are a source of inspiration and alternatives, later they show how
to elaborate a partial layout, and finally they can be used for multiplication, e.g.
"do all those offices like this one". Thus, the usefulness of an example strongly
depends on context. It is a major suggestion of FABEL that in any context "what
is useful" can be captured by a special blend of aspects under which the designs
can be analyzed, and that the entire set of aspects can be kept relatively small.
Figure 5 shows the aspects that have been predefined in FABEL for interpreting
layouts of buildings (c.f. (V08 et al., 1994». A layout may be viewed as a set of
design objects, as an image (or silhouette), as a structure. It may contain gestalten
that indicate certain layout principles, e.g. ring-like, comb-like, or fishbone-like
installation patterns, which are recognized by a special tool.

To define an aspect, a representation (formalism and function) and a concept
of similarity between concrete representations must be specified. In one of the as­
pects developed in FABEL, sets of design objects, represented as sets of keywords
indicating number and type of design objects, are compared by their overlap. Al­
ternatively, they are represented as a vector of attributes, with an attribute for each
type of design objects, and a distance is defined for each attribute. Images, repres­
ented as pixel matrices, are the more similar the more elements coincide. Topo­
logical structures, represented as graphs, can be compared by their common sub­
graphs.

Generic retrieval tools prescribe the data structures and schemata for specify­
ing case representations and similarities, and they provide techniques for storing,
accessing and comparing cases represented in such data structures. Most commer­
cial tools operate on attribute vectors and distances, text retrieval systems operate
on sets of keywords. FABEL offers several generic retrieval tools that can be used
for one or more aspects. By far the fastest is ASM (Gdither, 1994), an associative
memory that operates on sets of keywords (as node labels). For attributes there
is RABIT (Linowski, 1994), a very flexible development tool with an extensible
catalogue of distance measures. For the dynamic combination of multiple aspects
we have a completely new approach called ASPECT (Schaaf and V08, 1995).

ASPECT is more general than other retrieval tools as it allows to combine
dynamically any kinds of aspects - provided they are defined in terms of a repres-

aspect

componen
types

companen
types

image

gestalts

topology

similarity

subsets of
keywords

distances of
vectors

pixel
matrices
elementwise

subsets of
keywords

graph
matching

VIRTUAL BUILDING SITE

index of the query:

(medium supply-air connection zone 6)
(medium relum-air connection zone 6)
(tew building use zone 2)

(subsyslem: supply-air, relum-air
morphology: connection. use
resolution: zone
scale: 2, 6)

--.--.--
o

quadrangle

~
comb

graph of topological relations
like: next to (object i, object II
or: touching (object i, object" m)

473

index of the case:

!many supply-air conneclion ZOne 6)
medium supply-alr connection zone 6)
many relum-air connection zone 6)

(subsystem: supply-air, relum-air
morphology: connection
resolution: zone
scale: 6)

index tree

comb

area 01 building with
partially matching graph
of topological relations

Figure 5. Different aspects for retrieving layouts in FABEL_

474 CARL-HELMUT COULON ET AL.

entation function and a distance function. We use ASPECT to combine structure,
images, gestalten and design objects. Together with a query, a set of contextual
clues is passed on from which the weights of the aspects are dynamically determ­
ined (invoking a backpropagation network). Figure 6 illustrates the metaphors un­
derlying ASPECT. A case is like a polyeder, each side representing one aspect.
The similarity (inversely related to distance) between the two cases in the case
base under one aspect is attached to a link between their respective sides.

07

--~----- .. ------~

Figure 6. In the case base of ASPECf cases are linked with respect to mUltiple aspects (sides of
polyeders in the picture). Retrieval is like fishing cases from the surface, sinking them with their
neighbouring cases to some depth of dissimilarity and retaining those that stay near to the original
surface.

ASPECT trades space for time. When a new case is stored, its links to other
cases are computed. For efficiency, ASPECT does not store minor similarities,
and it will forget aspects seldom used. At retrieval time, the query must be repres­
ented in all relevant aspects, and their similarities to certain cases stored must be
computed, taking into account the current weights. Response time is reduced by
minimizing the set of cases to be used for comparison. To this end, the neighbour­
hoods pre-computed in the case base are exploited. As figure 6 shows, initially all
cases "swim" at the surface. Cases are always "fished" from the surface and sunk
as deep as they are dissimilar to the query. Neighbouring cases are tom down,
such that the depth of a sunken case always indicates how similar it can be to the
query under best circumstances (a triangular inequation is applied here). As time
goes by, the surface level decreases monotonically, while surface cases keep to be
the most promising candidates for comparison. As soon as the surface level starts
sinking, the method adopts an any-time behavior and produces the most similar
cases in decreasing order as search goes on.

VIRTUAL BUILDING SITE 475

4.2. TOOLS FOR ADAPTATION AND GENERATION

In this section three tools are presented with respect to the subtasks they support,
the knowledge they need, and the methods they employ.

4.2.1. Topo: transfer and adaptation of topology
The main focus of the tool Tapa is adaptation. It uses extremely little application­
specific knowledge and is therefore applicable in a wide range of situations (cf.
figure 3). First, it finds common topologies of a given piece of plan and a case.
Second, it can transfer and adapt the position of every object of the case which
is topologically related to the common topology. An example is shown in figure
7. Additionally Tapa provides the tool ASPECT with a representation of topo­
logy and a similarity measure for topologies. The third functionality is assess­
ment. Tapa builds statistics about usual and unusual topological relations occur­
ring in the case base and can check a given piece of plan with respect to these
statistics.

.. .;,.

.~ •• ' , •• p­...

..
, \ , .--" .~; () -r),: [\ .-

; ,

" i
j. I ~

;' \"" I
r '\ . I'"",:, l-~··~r~··-{4--".(..:·

(a) (b)

(c)

Figure 7. Topo compares the topology of a given piece of plan (a) and a case (b). The selected
objects in (a) are zones to be supplied with return-air. The case (b) consists of 3500 objects repres­
enting several subsystems of one floor. The result of the transfer of connection lines related to an
adequate topology of return-air zones of the case is shown in (c).

The formalism for representing topological relations is the only knowledge
used by Tapa. The topology is represented by a graph of objects and binary rela-

476 CARL-HELMUT COULON ET AL.

tions of various types. The relations are stored as nodes connected by undirected
edges defined by their common objects (Coulon, 1995). The type of a relation is
given by the type of the involved objects and their 3-dimensional relation. The
type of the instance of a relation in figure 8 is "supply-air-trunk-linelx]y]zsupply­
air-branch-line". It shows a supply-air trunk line touching a supply-air branch line
in x-dimension and including it in y- and z-dimension.

,
'H
fll----I'
RI

AlB

AlBM

AlB

A%BM

A{B

Example of an instance of a relation:

supply.air-lrunc-line''xJt.O.3y]t.O.45z ·supply-air-branch-line

top view side view

'lllm=:~ '1-=::
x

• supply-air trune line ~ supply-air branch line

Figure 8. Two objects can be related in 12 different ways for each spatial dimension, the six shown
above and their opposites. The symbolical representation is borrowed from the field of pattern re­
cognition (Lee and Hsu, 1992). In order to reconstruct the position of objects some of them are
extended by the distance parameter .6.d.

The comparison of structure, i.e. topological graphs, is NP-complete (Skiena,
1990; Luks, 1980). Because of this Topo uses an ordinary graph matching al­
gorithm (Barrow and Burstall, 1976) extended by an "intelligent" runtime control
(Coulon, 1995). This runtime control provides the user with information about the
estimated runtime and actual search progress. Once a common topological sub­
structure of the given piece of plan and the case is found, Topo can transfer every
relation of the case connected to the common substructure. In order to select the
relations to be transferred Topo uses the process model of section 3 and/or asks
the user.

4.2.2. AAAO - design objects know how to behave
There is another tool which can adapt cases to the needs of the current situation:
AAAO. In our prototype it is specialized in the placement of columns for MIDI
buildings4. Starting with the layout of rooms or zones of use, AAAO places the
columns considering both static demands and architectural and aesthetical rules
appropriate for this layout. AAAO can solve a problem by adapting a case as well
as by generating a solution starting from any distribution of columns, e.g. a stand­
ard distribution.

'MIDI is a steel framework construction set developed by Fritz Haller (1974) especially for
large buildings with high demands on technical services, like schools, offices or laboratories.

VIRTUAL BUll..DING SITE 477

Design objects are modeled as active autonomous objects (hence the name
AAAO - adaptation by active autonomous objects). They can perceive their local
environment, have knowledge about correctness in this environment and have a
set of actions to improve it, e.g. to move or to create and destroy objects. The
active autonomous objects work in parallel, there is no overall strategy to create
the solution. For details of approach and implementation of AAAO see Adami
(1995) and Morgenstern (1993).

AAAO is specialized to place columns of a MIDI construction on a ft.oor,
where rooms or zones of use are given. The simple example given in figure 9
may illustrate the model. The static and aesthetic demands are modeled as con­
straints that a position of a column in relation to other columns and zones of use
has to satisfy. In the same way many other problems in building design could be
modeled where the placement of design objects has to satisfy constraints in a re­
stricted environment of these building elements. Examples are the routes of pipes
and other ductwork via the service spaces or the placement of furniture and other
equipment in a room.

4.2.3. ANOPIA: exact and correct placement o/pipes
The starting point for Anopia ~aIayout with sketched routes (ellipses) of differ­
ent technical subsystems in the service plenums of a building. Such subsystems
are typically supply air, return air, cold water, and rain water systems etc. In a first
step Anopia generates the corresponding pipes from the sketches; the pipes are
placed on grid lines. In a second step the pipes are moved to valid positions, that
is the horizontal co-ordination of the various subsystems takes place. The spatial
units for this kind of co-ordination are service plenums of ft.oors or parts of ft.oors.
In the following we concentrate on the second step (for more details cf. Gdither
(1995». An example of a problem and a possible solution is shown in figure 10.

Anopia uses knowledge provided by the installation methodology ARMILLA
- together with the component based building system MIDI (Haller, 1974) - and
heuristics acquired from our expert. The ARMILLA system structures the service
plenum vertically into layers and horizontally into lines for branches and lines for
pipes. All pipes in layer 01 run in one direction, pipes in layer VI run in the other
direction. Consequently there are no conft.icts between pipes in one direction and
pipes in the other orthogonal direction.

Pipes can only be "moved" within the adjacent grids. While moving, each
pipe segment maintains its connections to the adjoining segments. The constraints
on valid positions of pipes can easily be visualized as templates. The templates
are derived from ARMILLA (see figure 11).

Thus, the spatial arrangement problem can be formulated as a constraint sat­
isfaction problem. Anopia uses a distributed-agent-based strategy including a de­
centralized control structure. Our decentralized control structure is comparable to
distributed hill-climbing with no backtracking (cf. (Luo et aI., 1994». The imple-

478 CARL-HELMUT COULON ET AL.

1.1 Ibl

leI Idl

Figure 9. The picture shows four stages of the AAAO-model's performance. Picture (a) shows the
given floor plan (the actual shape of rooms is the bounding box of the grey ellipses; ellipses can be
better distinguished than overlapping or adjacent rectangles) together with an ill-fitting distribution
of columns that was taken from a similar case. Picture (b) shows the first evaluation of the positions
of columns, the surplus columns outside the building (dark areas) have already been removed. The
indicated values are a measure of constraint violation. Picture (c) shows the situation and evaluation
after the first action of the columns. While one column can move to a better place, four neighbour­
ing columns cannot improve their position by moving but have to create a new column. Picture (d)
shows the solution, which is acceptable.

VIRTUAL BUll..DING SITE 479

flE3iF u : V
i - - V a: - (\ , --:31 :~ i . ~

i" 1 \1
- .""'-'

Figure 10. Anopia at the virtual building site, placed in the service plenum of a floor. Left:
Sketched routes for supply air and return air define the problem; some pipes are overlapping. Right:
Correctly placed pipes. The arrangement process is continually visualized on the screen.

Figure 11. Three generic templates for pipes with small, medium and large diameters in the ser­
vice plenum. Only templates for the layers 01 and 02 are shown. A horizontal flip generates the
corresponding templates for Ul and U2.

mentation is completely object-oriented. Pipes, templates and the service plenum
are the main objects. Important methods for pipes are for example: move, move­
and-push-away, look-for-position, look-for-better-position, and resize.

5. Putting It AU Together

In the first section we argued that a multidimensional frame of reference enables
the designers to coordinate different tools operating concurrently on the design.
This requires technical coordination of processes and user interfaces. Figure 12
shows the communication network between processes running on different com­
puters and operating systems.

The center of the whole support system is the ASBrokerS developed at the
University of Karlsruhe. It is a database system organizing the building model.
All other tools can access the building model by TCPIIP.

SThe prefix "AS" refers to the building model "ARMILLAS"(Hovestadt, 1993). Al - A3 refer
to earlier unsuccesful attempts to build expert systems in this domain.

480 CARL-HELMUT COULON ET AL.

AppleOS NextSlep Unix

Figure 12. System configuration.

The CAD-tool is called ASDraw, a research prototype which is continuously
extended and improved. In order to get access to a large amount of data. the
broker was connected to the CAD-tool "MiniCAD", which is the leading CAD
tool on the German market for the Apple operating system.

Most of the support tools are implemented in Lisp running on Unix. They
communicate with ASBroker and ASDraw by TCPIIP. This distributed approach
allows us to apply the same tool to different pieces of design using several pro­
cesses on different computers.

The interfaces (M5<name of tool» of the support tools are subprocesses
of A5Draw and are positioned in the CAD-plan (cf. figure 2). On the upper left
comer of figure 2 the interface of the navigation tool can be seen. It enables the
designer to communicate with the database tool. He can specify the types of ob­
jects and the area he wants to work on. In order to keep the design consistent, the
concerned objects are blocked for all other users.

The black ellipses represent rooms. The tool AAAO has already placed the
columns represented by tiny squares with respect to the positions of the rooms.
On the upper right-hand side Topa has matched the topology of the supply-air
outlets (grey spots) to part of a case and transferred the topology of a larger
supply-air connection line from the case to the layout. On the left-hand side Ano­
pia has inserted the connection lines of supply-air and return air (grey and light
grey lines) with respect to the position of the connection zones (thin ellipses) and
coordinated them.

As a scenario, imagine that we are planning an educational center for the
Swiss Railway company ("SBB"). This building should have two floors, a large
interior room, and around it offices, class-rooms and laboratories. So far the
ground-plan, the MIDI construction and the layout of rooms and service spaces

VIRTUAL BUILDING SITE 481

have been designed. This was done according to PM5 beginning with large scales
in the pre-planning stages, elaborating route planning and position planning, and
finishing with the element planning stage (cf. section 3). The MIDI construction
is also completed; the AAAO tool has been used to place the columns statically
correct. For ARMILLA installations only the pre-planning tasks are finished. All
design objects are stored in project "SBB" in the A5Broker. The next tasks are the
route planning of subsystems like supply air, return air, cold water, hot water, or
sewage.

Assume that two civil engineers at different places will elaborate these tasks.
One is a specialist in air-conditioning, the other one is specialized in installations
for water subsystems. Both have started the CAD tool A5Draw (probably at dif­
ferent places of the building) and are connected to the same A5Broker; further­
more the FABEL toolbox is on screen and the tools are ready for use ("running"
on other computers). The civil engineers open the project "SBB", navigate to the
desired position and filter the design objects they want.

The climate engineer starts placing zones for inlets and outlets in the service
plenum of the first floor and plans the vertical pipes in the shaft. Then she needs
inspiration how to access the outlets. For this reason a retrieval tool is copied from
the toolbox and pasted into the actual CAD plan. It is moved to the desired posi­
tion and resized. Each tool provides a simple remote interface to access its main
functionality (e.g. figure 10). She plugs in the tool (connects to the net address of
the computer where the tool software is running). She selects a few outlets and
one of the vertical pipes to query for similar cases. She browses (clicks) through
the retrieved cases and inserts the pipes of one case; afterwards a few adaptations
are made by hand. The other engineer uses Topo to get support for designing the
access pipes for cold water, hot water and sewage. Both save the project "SBB";
the PM5 task route planning for the different installations is finished. Now Ano­
pia is activated for the position planning of the installations. When a complex and
time-consuming task is being solved by a tool, the designers can meanwhile work
on another part of the building with the same or other tools.

6. Conclusions

The proposed metaphor of a virtual building site helps to organize and visualize
the very complex process of building design. Users find the whole building model
organized and accessible as a kind of hyperplan, where any part - spatially or
semantically filtered ad libidum - can be visualized as a plan. When FABEL tools
are applied to the building model they are placed in any of these (sub-)plans like
tools at a building site. When the users want to inspect the state of the design and
see what is currently going on, they may not only inspect data (that is the building
model) but will also find the tools, where they were placed ready to be used or
where they are currently operating.

482 CARL-HELMUT COULON ET AL.

Because of the common data space and the tools the metaphor reminds of
blackboard architectures (see for instance (Jagannathan et ai., 1989», but in FA­
BEL the control of the whole design process is entirely up to the users. One of
the tools (AAAO) could be considered a blackboard architecture in itself where
autonomous agents communicate, other tools have a different architecture.

Compared with other CBR systems for architects and engineers, FABEL is
unique in the range of tasks supported and the diversified tools supplied. For in­
stance, the building model which underlies the IDIOM system (see Smith et al.
(1995), the successor of CADRE) covers only a small part of the A5 building
model. Systems like ARCHI II (see Domeshek and Kolodner (1992» or the sys­
tem proposed by Oxman (1994) are mainly Hypermedia browsers to supply cases.
The indexing by issues, concepts, forms suggested by Oxman (1994) has to be
provided by human interpretation of the precedents (cases), while the FABEL sys­
tem mainly relies on indexes that can be automatically derived from the building
model.

The FABEL prototype 3 as described above is operational since December
1995. During the remaining half year of the project, the tools will be further tested
and evaluated. Also the architects, that is our project partners at Karlsruhe Uni­
versity, plan to use the system for some realistic building design projects.

References

Adami, P.: 1995, Adaptation by active autonomous objects (AAAO), in K. Bomer (ed.), Modules
for Design Support, GMD, Sankt Augustin, pp. 46-50.

Barrow, H. G. and Burstall, R. M.: 1976, Subgraph isomorphism relational structures and maximal
cliques, Information Processing Letters, 4, 83-84.

Bartsch-SpOrl, B., Bakhtari, S. and Oertel, W.: 1995, Assessment supported by a domain ontology
(DOM), in K. Bomer (ed.), Modulesfor Design Support, GMD, Sankt Augustin, pp. 23-30.

Bomer, K. and Fa8auer, R.: 1995, Analogical layout design (Syn*), in K. Bomer (ed.), Modules
for Design Support, GMD, Sankt Augustin, pp. 59--68.

Coulon, C.-H.: 1995, Automatic indexing, retrieval and reuse of topologies in architectural layouts,
CAAD Futures '95, Proceedings of the Fifth International Conference on Computer-Aided Ar­
chitectural Design Futures, Singapore.

Domeshek, E. A. and Kolodner 1. L.: 1992, A case-based design aid for architecture, in 1. S. Gero
(ed.), Artiftciallntelligence in Design '92, Kluwer Academic Publishers, Dordrecht, pp. 497-
516.

Grather, W.: 1994, Computing distances between attribute-value representations in an associative
memory, in A. VoS (ed.), Similarity concepts and retrieval methods, GMD, Sankt Augustin,
pp.12-25.

Grllther, W.: 1995, Exact and correct placement of pipes (ANOPLA), in K. Bomer (ed.), Modules
for Design Support, GMD, Sankt Augustin, pp. 69-77.

Haller, E: 1974, MIDI- ein offenes systemfiir mehrgeschossige bauten mit integrierter medienin­
stallation. USM bausysteme haller, Miinsingen.

Haller, E: 1985, ARMILLA - ein installationsmodell, IFIB.
Hovestadt, L. and Schmidt-Belz, B.: 1995, PMS - a model of building design, in B. Schmidt-Belz

(ed.), Scenario of an Intelligent Design Support for Architects by FABEL-IDEA. 3. GMD, Sankt
Augustin.

Hovestadt, L.: 1993, Armilla4 - An integrated building model based on visualisation, Advanced
Technologies - architecture - planning - civil engineering, Fourth EuroplA International Con-

VIRTUAL BUILDING SITE 483

ference on the application of Artificial Intelligence, Robotics and Image Processing to Archi­
tecture, Building Engineering, Urban Design and Urban Planning, Delft, The Netherlands,
pp. 243-250.

Jagannathan, V., Dodhiawala, R. and Baum, L. S. E.: 1989, Blackboan:l Architectures and Applica­
tions, Academic Press, Inc., San Diego.

Janetzko, D. and Jaschke, 0.: 1995, Assessing realizations of design tasks (CheckL & CheckUp).
in K. BOmer (ed.), Modulesfor Design Support, GMD, Sankt Augustin, pp. 15-22.

Janetzko, D. and Jaschke, 0.: 1994, Die Verwendung von Operatoren beim Routine-Design, Fabel­
Report 20, GMD, Sankt Augustin.

Lee, S.-Y. and Hsu, F.-J.: 1992, Spatial reasoning and similarity retrieval of images using 2D C­
string knowledge representation, Pattern Recognition, 25, 305-318.

Linowski, B.: 1994, Computing distances between attribute-value representations in a flat memory,
in A. VoS (ed.), Similarity Concepts and Retrieval Methods, GMD, Sankt Augustin, pp. 26-35.

Luks, E.: 1980, Isomorphism of bounded valence can be tested in polynomial time, Proceedings of
the 21st Annual Symposium on Foundations of Computing, IEEE, pp. 42-49.

Luo, Q., Hendry, P. G. and Buchanan, J. T.: 1994, Strategies for distributed constraint satisfaction
problems, in M. Klein (ed.), Distributed Artificial Intelligence: Papers from the Thirteenth
International Workshop, AAAI Press, Menlo Park, CA, pp. 186-200.

Morgenstern, K.: 1993, Anpassung im Bauentwurf mittels aktiver autonomer Objekte. Master's
Thesis, Universitat Bonn.

Oxman, R.: 1994, Precedents in design: A computational model for the organization of precedent
knowledge, Design Studies, 15(3),141-157.

Schaaf, J. W. and VoS, A.: 1995, Retrieval of similar layouts in FABEL using AspecT. CAAD Fu­
tures '95, Proceedings of the Fifth International Conference on Computer-Aided Architectural
Design Futures, Singapore. School of Architecture, National University of Singapore.

Schmidt-Belz, B.: 1995, Scenario of an intelligent design support for architects by FABEL-IDEA
3. Fabel-Report, GMD, Sankt Augustin.

Skiena, S.: 1990, Implementing discrete mathematics, Addision-Wesley Publishing Co.
Slade, S.: 1991, Case-based reasoning: a research paradigm, MAl Magazine, 12(1).
Smith, I., Lottaz, C. and Faltings, B.: 1995, Spatial composition using cases: IDIOM, in M. Ve­

loso and A. Aamodt (ed.), Proceedings of the First International Conference on Case-Based
Reasoning, ICCBR-95, Springer, Berlin.

VoS, A., Coulon, C.-H., Grather, W., Linowski, B., Schaaf, J. W., Bartsch-Sparl, B., Bomer, K.,
Tammer, E.-C., Diirschke, H. and Knauff M.: 1994, Retrieval of similar layouts - about a very
hybrid approach in FABEL, in J. Gero and F. Sudweeks (ed.) Artificial Intelligence in Design
'94, Kluwer Academic Publishers, Dordrecht, pp. 625-640.

J. S. Cero and F. Sudweeks (eds). Artificial Intelligence in Design '96. 485-504.
© 1996 Kluwer Academic Publishers.

A MOBILE AGENT-ORIENTED APPROACH TO A DISTRIBUTED
DESIGN SUPPORT SYSTEM

HARUYUKI FUm, SHOICHI NAKAI, HIROSHI KATUKURA AND
KEIICHI HIROSE
Izumi Research Institute, Shimizu Corporation

Abstract. The quality of an architectural design is evaluated from diverse aspects.
Application programs that evaluate the quality from a specific aspect have been
developed independent of each other. It is one approach to multi-disciplinary design
support system to provide a system that incorporates those existing programs without
great changes. This paper describes the conception of a mobile agent-oriented
community (MAOC) to build such a design support system and agent interchange
format (AIF) for agent exchange in MAOC. In MAOC, agents, represented by AIF,
carrying a design problem interact with evaluation programs and problem solvers to
solve the problem. This paper also describes hypothetical structure of representation of
designs. These proposals are conceptual.

1. Introduction

Researches in architecture have been providing the criteria and methods to
predict the quality of a design from diverse aspects such as egress, energy
efficiency, structure, etc. Many stand-alone programs that calculate the
quality of a building or simulate the performance have been used in design.
However, the user has to mediate those programs by hand. A reason for this
situation is that the representation of a design in each program is not shared
by the others. We haven't made any ontological commitment concerning
how to represent a design and design processes. It is one approach to
computer-aided multidisciplinary design that those programs are
incorporated into a system. The incorporation should be done without
affecting each program's external and internal representation of a design.

The authors propose a translation approach to the incorporation of the
existing programs (and newly implemented programs), and the conception
of a mobile agent-oriented community (MAOe) and the conception of an
agent interchange format (AIF) as methods of the translation approach.
MAOe is a distributed design support system beyond the platforms and
systems. MAOe incorporates existing application programs. AIF is a

486 HARUYUKI FUm ET AL.

representation format to exchange mobile agents and information between
modules in distributed systems like MAOC through a computer network.
The long term objective is to provide methods and tools to develop an agent­
oriented distributed design support system without affecting the external and
internal structure of existing programs. MAOC and AIF are parts of on­
going project that explores the development of an environment for multi­
disciplinary collaborative architectural design (Fujii, 1989; Nakai et aI.,
1992; Hirose et aI., 1994). MAOC and AlF are similar to ACTORS in the
sense that both provide a model of concurrent computation in distributed
systems, but differ from ACTORS (Agha, 1986) at the point that an actor in
ACTOR passes a task to a new actor in each step in the computation while a
mobile agent is alive until the whole problem solving process is done.

2. Design as Problem Solving and its Computer-Aided Support

The authors postulate that a portion of design processes is a collection of
problem solving processes. Portable languages to exchange all information
conveyed in design and methods for translation among those languages and
other design languages, such as drawings, are crucial to the success of
practical computer-aided design support systems on this postulate.

Simon et ai. (1962) characterized problem solving and classified problem
solving processes as follows: Given a set, P, of elements, problem solving is to
find a member of a subset, S, of P having specified properties. Processes for
problem solving are classified into two processes, i.e., solution generating
processes for finding possible solutions (generating members of P that may
belong to S) and verifying processes for determining whether a solution
proposal is in fact a solution (verifying that an element of P that has been
generated does belong to S). Akin (1986) found that architectural design
shares some properties with problem solving. He called the design
counterpart of solution generating processes transformations. Each state in a
design problem is transformed into other states by operations. We consider a
solution generating and verifying strategy as the following schema: Let Dc
be a current state of a design, and Ea,c be the language A expression of Dc
that represents the quality of the design. Suppose that a set of solutions ESa
expressed in language A is given, and Ea,i is a member of ESa. A verifying
process checks if Ea,c is equivalent to Ea,i. If the result is "yes," Dc is a
solution from an aspect of the quality that language A expresses. If the result
is "no," another proposed solution D p is generated to decrease the
difference between Ea,c and Ea,i, i.e., Ea,l\Ea,c. If we know or can infer
relations between Ea,l\Ea,c and Dp\])c, operations that transform Dc into Dp
are executed. If not, operations are executed arbitrary or based on another
inference. When Dp is generated, a verifying process is executed again.

A MOBILE AGENT-ORIENTED COMMUNITY FOR DESIGN SUPPORT 487

Verifying processes in design are not straightforward. We hardly
determine whether elements in a proposed design belong to a solution by
merely checking whether each element is in a solution if we don't know the
elements in the solution. Instead, we evaluate a proposed design by virtue of
the properties that the design ought to have if criteria to evaluate the
properties are known. A design is translated into languages that describe the
quality of the design to be verified whether all elements in the translated
description of the design belong to a solution described in the languages.

Computer-aided solution generating and verifying systems for design
problems are made by mediating traditional quality evaluation programs and
problem solvers with at least one common language that represents the
problem from diverse aspects. Many application programs that evaluate the
quality of a design or simulate the performance have been implemented
independently from one of specific aspects. DOE-2 predicts the
performance from an aspect of comfort and energy efficiency of built
environment while NASTRAN analyzes the performance in the structural
design context. Some methods that handle more than one aspect in a design
have been introduced, too. SHARED, an information model for cooperative
product design, represents hierarchical functionalities and abstracted shape
of a product to share the information from different aspects and to maintain
the coherence among the information (Wong et aI., 1992). Gauchel et ai.
(1992) proposed a multi-disciplinary building modeling system that treats
building elements as autonomous objects and relations among the elements
as communication among the objects. DOM is intended to endorse the role
of modeling a common and shared platform of design knowledge as well as
to address the crucial task of representing design decisions and engineering
judgments to evaluate design layouts and to support layout construction
from scratch (Bakhtari and Oertel, 1995). Multi-layered logic is applied to a
framework for representing architectural design knowledge by Clibbon et ai.
(1995). Each of the systems requires that all modules are written in the same
programming language, but we have not reached any consensus on a
common language or a representation format to be used in the programs.

We want to take advantage of existing application programs, even though
they are written in different programming languages and have their own i/o
convention. Since it is not realistic or desirable to require that those
programs are (revised to be) implemented in one programming language or
system (Gruber, 1992), to mediate existing programs, we need languages
independent of machine, programming language, and environment.

3. Language for Domain Knowledge and Task Knowledge

Languages to represent a design and to design and translations among the
languages are the keys to the implementation of distributed design support

488 HARUYUKI FUJII ET AL.

systems. A language, from now on, refers to a pair of a set of well-formed
strings (or patterns of symbols) over an alphabet in the formal language
sense and a way to determine what well-formed strings mean. What a well­
formed string means is determined by a semantics and an ontology, where an
ontology is a definition of classes, relations, functions, and other objects
(Gruber, 1992) to which an element of an alphabet in a language refers. We
call a pair of an alphabet and an ontology is called a vocabulary.

3.1. STRUCTURE OF LANGUAGE TO REPRESENT DOMAIN KNOWLEDGE

The authors hypothesized structure of languages to represent knowledge
about a design, domain knowledge, based on achievements in design science
and philosophy of language. The structure consists of three classes, namely,
surface language class, universal language class, and model class (Fujii et aI.,
1996). The distinction between the sUrface language class and the universal
language class is inspired by the distinction between S-structure and D­
structure of natural languages hypothesized in linguistics.

The authors have adopted one of machine translation approaches.
Brazier et al. (1994), MacKeller and Peckham (1994), Clayton et ai. (1994),
and Chaplin et al. (1994) proposed methods to relate heterogeneous
representations of the same design with each other. They employed rules to
map an element(s) of a representation to an element(s) of another or demon­
like rules to update representations if one of them is updated. The approach
proposed by the authors differs from those methods. A representation is
regarded as a language that has syntactic structure. A representation is
translated into an intermediate language(s) that conveys all information
concerning representations to be translated and its target, then translated into
another representation(s). The translation is done by transforming syntactic
structure of a representation into that of another representation. Coyne et ai.
(1990) addressed problems in knowledge representation for design, i.e.,
representation of information about (1) a design and its vocabulary, (2) the
goal of a design such as intended interpretation and functionalities of a
design, (3) the knowledge concerning design, manipUlation of a design. In
their idea, information about a design should be translated into information
about intended interpretation and functionalities of the design and vice
versa. Behind their conception, they possess the claim that a language for
design ought to be rich enough to allow one to represent all information
concerning design. This claim is plausible. The world that we talk about is
limited by what we can express in our language and theory (Putnam, 1983).

Figure 1 depicts hypothetical structure of knowledge representation
languages for an architectural design. A universal language is characterized
by the combination of a domain independent formalism, knowledge
representation format, and a domain specific ontology of terms formulated

A MOBILE AGENT-ORIENTED COMMUNITY FOR DESIGN SUPPORT 489

in the formalism. We refer to the definition of the formalism syntax\ and
that of the ontology semantici. An ontology defines a set of the concepts
composed of entities, relations among the entities, and relations among the
relations and the entities, recursively. A universal language must contain the
information that is the union of information represented by each surface
language. The surface language class consists of intuitive representations
such as drawings, three dimensional graphic descriptions, circuit diagrams,
natural language texts, etc. A portion of the information represented by a
universal language, which is relevant to the focus of a surface language, is
translated into the surface language. For instance, a drawing is a geometric
representation of the spatial organization of a building while a circulation
diagram is a topological representation of the adjacencies among spaces in a
building. Each surface language also has syntax and vocabulary. The
syntax of a surface language is defined corresponding to the conventional
use of symbols used in the language. Each symbol in the vocabulary of a
surface language must have the counterpart in an ontology. The meanings
of surface language expressions are determined by defining the semantics
of the surface language with correspondence to the universal language or
by defining a translator between both languages.

The structure of knowledge representation concerning design has another
class that the authors call model class. The model class contains, in a logical
sense, the model(s) of universal language expressions of a design. An
architectural world model, which is expressed by a universal language, is
regarded as the reference of surface language expressions of the same
design. The model contains a set of instances of the concepts in an ontology
concerning the design. Whether a surface language expression is true or
false is determined with respect to an architectural world model. Each model

1 Glymour (1992) explains a syntax and a semantics of a formal language as follows: a
syntax is a set of explicit rules that make it possible to determine in a mechanical way
whether or not a string of symbols is well-formed. A semantics specifies precisely the
conditions under which a set of values for variables in the language satisfies a formula
in the language.
2 The semantics explained here is different from a term meaning often used in the
architectural research community. A meaning of the meaning is considered as the
correspondence among surface languages. We define m-entail in Definition 3.2 to avoid
this confusion. For example, we say, "the 'square' m--entails a 'table'" instead of "the
'square' means a 'table'" if both 'square' and 'table' are terms of surface languages.
Definition 3.1
A set of sentences A entails a sentence B if and only if B is true in every relation structure for
which all sentences in A are true (Glymour 1992).
Definition 3.2
Let A and B be surface languages different from each other, and let C be a universal language
which the semantics of A and that of B are specified with respect to. A collection of formulas
Fa expressed in A m-entails a collection of formulas Fb expressed in B if and only if the
representation of Fa in C entails every sentence in the representation of Fb in C.

490 HARUYUKI FUm ET AL.

in the same architectural world renders every expression in all surface
languages true.

3DCG
Representallon

Structural Analysis
Model

Circulation Diagram

Universal
Language
Class

Knowledge Representation Format
(Syntax)

Model Class (Reference)

Ontology of Architectural Design
(Semantics)

An Architectural
WOIIdModeI

Figure 1. Conceptual structure of knowledge representation in architectural design.

3.2. LANGUAGE TO REPRESENT TASK KNOWLEDGE

Process language class composed of languages to represent task knowledge,
knowledge about to design, is required since domain languages, languages
for domain knowledge, are not informative enough to represent and execute
operations to make changes in a design. Syntax of the process language is
defined independent of program languages and systems like syntax of
domain languages. Process languages are differentiated from domain
languages by virtue of the semantics. While semantics of a domain language
is reference semantics, that of a process language is denotational semantics3•

Semantics of a process language is partially dependent on program
languages and systems in the sense that some terms in the language must
correspond with operations or actions in the world with which the semantics
is defined. For instance, if the semantics of a language is defined with respect
to a world in a computer network, terms in the language must have computer
operation counterparts. A lexicon is the union of a collection of the reserved
atomic symbols that directly correspond to the operations and a collection of
symbols that doesn't. An ontology that defines the relations among terms
includes the reserved atomic symbols as its primitive elements.

3.3. AN AGENT INTERCHANGE FORMAT

Sharing of domain knowledge and task knowledge is a key to a computer­
aided distributed design support system where design support systems and
traditional quality assessment applications work together.

3 We are following a classification of semantics by Stefik (1995).

A MOBILE AGENT-ORIENTED COMMUNITY FOR DESIGN SUPPORT 491

Existing AI methods are not enough to represent and share task
knowledge while some strategies are helpful for an ontological commitment
concerning domain knowledge. The pair of Interlingua and FrameKit is
proposed upon a machine translation context (Mitamura and Nyberg III,
1992), while the combination of KIF (Geneserth and Fikes, 1992) and
Ontolingua is proposed from an aspect of the portability of knowledge
(Gruber, 1992). They provide formal languages to represent the common
knowledge shared in a system. To define a universal language, we can take
advantage of the abstract relation between Interlingua or KIF and FrameKit
or Onto lingua. Terms defined by the combinations can tell and ask about
information in the shared knowledge. However, they might not be able to be
interpreted as operations upon the knowledge. As far as task knowledge is
concerned, MACE (Gasser et aI., 1987) was implemented as a testbed for
distributed reasoning systems where modules called agents collaborate with
each other to solve problems that can not be solved by a single agent. JAVA
and Telescript provide the practical means of developing distributed systems,
but agents aren't portable beyond the environment. Safety and security for
each system participating in the exchange of agents are of great concern. It
is not desirable that agents are directly accessible into a module where the
agents are stranger. We can't be sure that there is no chance for transported
agents to destroy a system where they visit.

The authors propose a concept of agent interchange format (AIF) to
send an agent carrying domain knowledge and task knowledge back and
forth between modules in MAOC. AIF is a domain, language, and system
independent format to represent the information characterizing certain
agents in MAOC. A module that receives an AIF formula makes an instance
of a certain class from the information in the formula. The instance behaves
as an agent in the target module.

Figure 2 shows a diagram describing how AIF works. Suppose that there
are mainly two modules implemented in different languages or different
machines. One of the modules that we call lang-b world is written in language
lang-b, while the other system lang-c world is written in lang-c. A mobile
agent Mb in lang-b world, which is interacting with agent HCI-01 (1), is
required to interact with agent TrA-01 in lang-c world to solve a problem. M b
is translated into MA that is an AIF formula (2), then MA is sent out to lang-c
world, outside lang-b world (3). When MA arrives, lang-c world changes MA
into MA' by changing the information about where the AIF formula
currently is (4), then agent Mc in lang-c world is generated from the
information carried by MA' (5). After interacting with agent TrA-01 (6), Mc is
translated into an AIF formula MA" (7) that is to be sent to another module
from lang-c world (8). Note that an AIF formula is not an agent but a packet
of information from which an agent is instantiated in a module.

492 HARUYUKI Fum ET AL.

<Iang.-b world> <Iang-c world>

Figure 2. Agent transfer between different agent communities.

A demon method triggered when an AIF formula arrives at each module
that is referred to as lang-b world or lang-c world in Figure 2. Figure 3 shows
the demon method. We are following a convention of object-oriented
programming. An AIF formula is translated into a local expression with
feature-value pairs to be instantiated as an agent of class traveler explained
later. The agent is pushed into a queue, and a trigger for ifArrivedDemon is
sent to let the agent interact with other agents in the module.

AIFiocal := translate{AIF)
currentTraveler := traveler ~ makelnstance(AlFiocal)
mysel!static-agent :: iQueue ~ push{currentTraveler)
mysel!static-agent ~ ifArrivedDemon

Figure 3. A demon method triggered if an AIF formula arrives.

4. Mobile Agent.Oriented Community

There are two strategies of agent-oriented approach: (1) Some software
agents, who play their particular role in a larger scale problem solving,
organize a collaborative team each time when a problem is given. This
strategy requires that agents organize and control the team in the whole
process. The communication between the agents is mediated by a message
written in a query language. Khedro (WWW) have accepted this strategy and
introduced Federation architecture. (2) An agent, which the authors call a
mobile agent, handles a problem. A mobile agent is instantiated when a new
problem is given. A mobile agent assigned a problem creates a plan to solve
the problem and executes each step of the plan by interacting with agents,
static agents, that solves a part of the problem. The communication between
static agents is mediated by mobile agents. There is no static agent that
controls a problem solving team_ Instead, a mobile agent takes responsibility
for its own problem solving. The authors have adopted the latter strategy and
introduce MAOC. The following sections give an explanation of MAOC with
its components and the functionalities.

A MOBILE AGENT-ORIENTED COMMUNITY FOR DESIGN SUPPORT 493

4.1. A SCENARIO

MAOC is expected to support design problem solving that consists of the
situation described in the following scenario: You are an architect who is in
charge of the design of a building. You might want to collaborate with a civil
engineer and an HV AC (Heating, Ventilating, and Air Conditioning)
engineer or problem solving systems representing the engineers. If you don't
know whom to collaborate with, someone who knows introduce engineers to
you. Your project team uses an intelligent CAAD system with which each
member of the team manipulates the data of the building from its own
perspective. An HV AC engineer retrieves the information about the thermal
comfort of the building such as the heat capacity and thermal resistance of
the building elements in use as well as the space organization in order to
estimate the heating and cooling load. He translates the appropriate
information into the thermal circuit network and constructs the input data
for an application program that estimates the heating and cooling load. He
gives you a comment whether the balance between thermal comfort and
energy efficiency is kept and how the design ought to be from an aspect of
his expertise. A civil engineer executes a similar schema of tasks from an
aspect of durability. The interaction among you, the civil engineer, and the
HV AC engineer helps the team to find a solution for the building design.

If we see the interaction from a point of view of a participant, each
participant does is to retrieve a particular information from the CAAD
system, translate it into the input form for an application program with a
particular aspect, let the program evaluate the input and get the result,
translate some portion of the result into the form that the CAAD system
accepts, and feedback the translated result to the other participants.

4.2. OUTLINE OF A MOBILE AGENT-ORIENTED COMMUNITY

We define a mobile agent-oriented distributed design support system to be
one that is composed of a set of autonomous modules that we call static
agents, mobile agents, and a set of paths, a computer network, for mobile
agents to be sent back and forth among static agents. We call such a system
a mobile agent-oriented community (MAOC) for short. A mobile agent
carries a design problem and a plan to solve it. A mobile agent is an object
in a certain class when it is in a module, while it is a packet of information
when it is outside a module. A static agent is a module that mobile agents
interact with through a speech act to solve a problem carried by the mobile
agent. A static agent responds to a mobile agent's speech act with respect to
the type of the speech act and helps a mobile agent to solve a design
problem. Three types of speech acts should be taken into the account,
namely, declarative, interrogative, and imperative (Levinson, 1983). In an
analogical sense, a mobile agent is a traveler seeking a solution of a problem

494 HARUYUKI Fum ET AL.

while a static agent is a place where a traveler can visit to tell, ask, or request
someone something related to the problem solving. With respect to the
communication structure, MAOC falls into a fusion of blackboard systems
and message-passing systems. Each problem is shared by mobile agents and
static agents through a blackboard, while a static agent sends mobile agents
enclosing messages to other static agents whose names are explicitly known
by static agents called travel agents, but either mobile agents or static agents
(except agents called travel agents) don't have knowledge about other agents.

Each mobile agent takes responsibility for its own problem solving. It is
not assumed that there is a single static agent that maintains control of the
whole community. In the initial stage of problem solving, each traveler
begins with a design problem and a vague and incomplete plan to solve the
problem. The plan is then decomposed into a sequence of well-organized
sub-plans that are relatively concrete and complete through the interaction
with static agents. Ideally, the entire community finds a complete plan. To
provide the functionalities, an architecture for MAOC must have: (a) a
convention for ensuring that the activities of the static agents in the
community are organized so that the static agents interact with mobile
agents to solve problems that are beyond the power of each static agent, (b)
an infrastructure for communication on which mobile agents are sent among
static agents, (c) a formalism for domain knowledge sharing, (d) a
formalism for task knowledge sharing, and (e) a mechanism that maintains
the consistency of information in the community.

Figure 4. Hierarchy of intelligent-agent classes in the system.

Figure 4 shows the class hierarchy of intelligent agents in MAOC. The
intelligent agent class has features id and status. An identification symbol, a
value of id, is unique to each instance of intelligent agent class. The status of
an instance is indicated by the value of status that is either busy or idle.

A MOBILE AGENT-ORlENfED COMMUNITY FOR DESIGN SUPPORT 495

MAOC consists of the instances of traveler, HCI (human computer interface),
travel agent, specialist, and representative classes and traditional application
programs. Figure 5 shows a conceptual architecture of MAOC. The solid
lines indicate the passes on which instances of mobile agent class can traverse
from one agent to another.

Figure 5. Conceptual model of an agent system.

A static agent becomes active if a mobile agent visits the agent. The
demon method described in Figure 6 is fired when a static agent receives
either a mobile agent or a clock tick. If a mobile agent is sent as an AIF
expression, a mobile agent corresponding to the expression is instantiated.

if -f iQueue :: contents = 0l
then current Agent := iQueue f- pop

myself Agency f- agencyMethod(currentAgent)
oQueue f- push(currentAgent)

Figure 6. A demon method for Static Agent Class.

4.3. TRAVELER CLASS

Traveler class is a sub-class of mobile agent class. A traveler is an instance of
the traveler class. AIF is a portable information packet that conveys the
features and values required to make a traveler. A traveler is characterized
by values of the following features:

<id, status, home, ontology, intention, BelSoa, Context, Plan, Message>

The value of home indicates where a mobile agent was generated. The
value of ontology declares the ontology with which domain knowledge and
task knowledge are defined. An instance's belief about the state of affairs
around itself is stored in BelSoa. The history composed of what a mobile

496 HARUYUKI FUJII ET AL.

agent did and how the state of affairs changed is stored in its Context. A
mobile agent executes the top priority instruction in Plan, renews Plan, and
changes BelSoa and Context until intention of the mobile agent is satisfied,
where intention represents the goal of mobile agent's problem. The content
of Message represents a speech act and domain knowledge related to the
speech act. A mobile agent walks through a computer network whose nodes
are static agents, i.e., travel agents, representatives, specialists, and He/'s.

4.4. HCI CLASS

An instance of HeI class, an HeI, is a human computer interface, that
facilitates the interaction between the user and MAOe. An HeI displays the
surface language expressions of a design in question and the interaction
between the use and MAOe. The user can assert, query, or request
something concerning a design problem to an HeI, and the HeI responds to
the input. Each input is interpreted as a speech act. A traveler encapsulating
the speech act is generated. The traveler is sent to a designated static agent.
In addition, an HeI receives a traveler carrying a speech act. The HeI, then,
retrieves the speech act from the traveler translates and displays the
information that is expected to be given to the user. For example, if a user
inputs a sentence that requests a finite element model of *building1 *, an HeI
generates a traveler described below. We use an AIF formula to give
concrete idea about the traveler.

(AIF (id traveler1)
(status idle)
(home hci1)
(ontology "design-process")
(intention (get-response-to Message))
(BelSoa ((at hci1)))
(Context ((at hci1)))
(Plan ((traverse traModel hci 1) (get-response-to Message)))
(message-language KQML+)
(Message (KQML+ (id message-01)

(sender hci1)
(receiver traModel)
(message-type imperative)
(ontology "architectural-design")
(content-format KIF)
(Content (KIF (id kif1)

(expression (femModelOf "building1")))))))

The traveler has the identification symbol traveler1. The status idle means
that the traveler is ready to receive a message. An s-expression (home hci1)
shows that the traveler is generated by hci1. An s-expression (BelSoa ((at
hci1))) represents that the traveler believes that it is at hci1 now. The Context
slot contains the information about actions that the traveler executed and the
history of the belief related to the actions. The Plan slot contains the

A MOBILE AGENT-ORIENTED COMMUNITY FOR DESIGN SUPPORT 497

sequence of actions that the traveler and other static agents execute to
respond to the speech act given by the user. The traveler is instructed, by
hci1, to traverse from hci1 to traModel and process the enclosed message at
traModel. We assume that traModel is a designated travel agent to hci1. Since
hci1 doesn't know either how to get a finite element model of *building1 * or
who can solve the problem, hci1 decides to send the traveler to traModel. The
Message slot contains the information about the speech act given by the
user. The message-type slot shows that the type of the speech act is
imperative. The Content slot contains a LISP-like representation,
(femModelOf *building1 *), of a finite element model of *building1 *.

4.5. TRAVEL AGENT CLASS

Each instance of travel agent class, a travel agent, maintains explicit
information about other agents, i.e., id, class, address, functionalities, and can
retrieve an in-coming traveler's information, i.e., intention, plan, message,
etc. A travel agent is composed of an in-coming queue, an interpreter, a
processor, a target language generator, and an out-going queue. A traveler
sent to a travel agent is stored in the in-coming queue. When its status is idle,
the travel agent gets the traveler on the top of the in-coming queue and
excerpts the speech act and the plan of the traveler. A travel agent performs
as follows: (1) gets the intention and the plan of a traveler, (2) decomposes
the plan into sub-plans, (3) assigns the sub-plans to various other static
agents, (4) makes a plan composed of the sub-plans and the static agents to
which the sub-plans are assigned, and (5) replaces the old plan of the
traveler with a new plan. Let us take a look at the transition of a traveler in
AIF. When traveler traveler1, which is described in the section 4.4, has
arrived at a travel agent named traModel. It is identical to the AIF formula
generated by hci1 except the fact that BelSoa and Context have changed.

(AIF (id traveler1)
(status busy)
(home hci1)
(ontology *design-process*)
(intention (get-response-to Message))
(BelSoa ((at traModel)))
(Context ((at traModel)(traverse traModel hci1)(at hci1))
(Plan ((get-response-to Message)))
(Message ...))

An instance, traveler1, equivalent to the content of the AIF formula is
made in the environment where traModel works. Suppose that traModel
believes repModel will satisfy the traveler1 's intention. TraModel gives
traveler1 a new plan contained in the following AIF expression. If repModel
is out of the scope of the environment or the machine where traModel works,
traveler1 is translated into an AIF formula described below and sent to the

498 HARUYUKI Fum ET AL.

environment or the machine where rep Model works. If they are in the same
environment or machine, traveler1 will be sent as an instance to repModel

(AI F (id traveler1)
(status busy)
(home hci1)
(intention (get-response-to Message»
(BelSoa ((at traM ode I)))
(Context (...)
(Plan ((traverse repModel traModel)(get-response-to Message»)
(Message ... »

4.6. SPECIALIST CLASS AND REPRESENTATIVE CLASS

Specialist class is a sub-class of the static agent class whose responsibility is
to execute a task within a particular aspect. The specialist class consists of
problem solver class and knowledge base class. Instances of problem solver
class are either programs for numerical analysis or problem solvers such as
programs for finite element modeling, earthquake response analysis
programs, programs analyzing energy efficiency, search engines, planners,
etc. while instances of knowledge base are information retrieval systems or
temporal data storage such as blackboards, etc. The representative class
serves to incorporate stand-alone application programs into MAOe Most of
the stand-alone applications are numerical analysis programs that assess the
quality of a building from a particular aspect. A representative translates a
part of message carried by a traveler into a local convention used as the i/o
data for the stand-alone program for which the representative serves. When a
traveler visits a representative and the representative is not busy, the
representative excerpts a sequence of instructions assigned to itself from the
plan carried by the traveler, generates a set of instructions and data, and
submits the set to a stand-alone program. A traveler waits for a message
from a representative in the out-going queue. If the program returns any
result after a certain time interval, the representative translates the result into
a message and gives the translated message to the traveler. If a representative
is busy when a traveler arrives, it lets the traveler wait for its turn in the in­
coming queue until the representative becomes idle. A specialist executes the
same process with no help from a representative.

The AIF formula of traveler1 arrives at repModel as follows.

(AI F (id traveler1)
(status busy)
(home hci1)
(ontology * design-process *)
(intention (get-response-to Message»
(BelSoa ((at repModel)))
(Context (...)
(Plan ((get-response-to Message)))
(Message ... »

A MOBILE AGENT-ORIENTED COMMUNITY FOR DESIGN SUPPORT 499

The AIF formula is interpreted and translated into an instance of the
environment where repModel works. repModel looks at traveler1 's intention,
plan, and message. Since the intention of traveler1 in this example is to get a
finite element model of *building1 *, repModel returns *femModel1 * as the
result. RepModel encloses the result in a message and gives it to traveler1
with a plan for traveler1 to go back to its home, hci 1, and report the result.
RepModel generates the following AIF formula and sends it to hci1. Hci1
displays the solution, *femModel1 *, for this small problem.

(AI F (id traveler1)
(status busy)
(home hci1)
(ontology *design-process*)
(intention (get-response-to Message))
(BelSoa «at repModel)))
(Context (...)
(Plan «report Message)))
(Message (KQML+ (id message-02)

(sender repModel)
(reciever hci1)
(message-type declarative)
(language AIL)
(format KIF)
(Content (KIF (id kif2)

(expression *femModel1 *))))))

5. Technical Issues underlying MAOC

This chapter describes a few reasoning algorithms that contribute to MAoe.
The first section explains two algorithms to make AIF rich and easy to
handle. The second section explains how an articulated plan is generated
from a vague plan by an example.

5.1. REASONING ALGORITHMS

The authors use natural language processing (NLP) techniques to take
advantage of expressive power of natural language (NL) expressions that are
not cumbersome to manipulate. NL represents multiple levels of abstraction.
NL does not have to describe everything explicitly.

NL-like expressions such as definite noun phrases to refer to conceptions
in a model and incremental model-based reasoning to complement
knowledge from incomplete or partial information are being used.
Algorithms for these techniques were originally implemented for an NLP
system (Fujii, 1994, 1995). An abductive reasoning algorithm to instantiate a
definite noun phrase by a concept is shown in Figure 7. A definite noun
phrase is indicated by np that is an object. We take it for granted that we
have a relation isa(x,y) that is true if y is a sub-class or instance of x. Cglobal is

500 HARUYUKI FUJII ET AL.

a set of all concepts in a model and Ccurrent is a subset of Cglobal that is currently
focused on.

DefiniteNPInstantiation(np)
Inst:= {xix E Ccurrent & isa(np,x)}
iflnst=0

then Inst:= {xix E Cglobal & isa(np, x)}
iflnst=0

then Inst:= {y} s.t. y ~ Cglobal & y:: class = np:: class
return Inst

Figure 7. An algorithm for instantiation of a definite noun phrase.

SenseModelsPairs(S new' M given' I R)

Snew; the set of the interpretation(s) of the new sentence ~
Mgiven; the set of the possible model(s) w.r.t. the given contex

I R; the set of the inference rules for (model- based) reasoning

SR:=0
for each s E Snew

doM:=0
for each rEM given

do if rvlR-,$

then M:= Mu{<I>jrr,s ~ <1>1 E IR}
ifM:;t:0

then SR := (r, M) u SR
ReturnSR

Figure 8. An algorithm for model-based incremental knowledge acquisition.

Figure 8 shows an algorithm for incremental knowledge acquisition.
Knowledge acquisition in design is often considered abductive. A person to
whom new information about a design is given revises a model(s) that the
person previously has for the design so that the revised model(s) renders the
new information true, where rV1R,s means ,s is not proved from r with a
set of inference rules IR, and (r,M) means an ordered pair of rand M.

5.2. PLANS AND ACTIONS

Planning that articulates a vague and incomplete plan of a traveler is done
by two ways. A generative grammar is one way to articulate a plan when the
pattern of the articulation is previously known. The other way is to use
means-ends-analysis. We show an example of planning using a generative
grammar. A context free grammar that generates plans is shown in Figure 9,
where VP is a set of vague and incomplete plans that are considered as non-

A MOBILE AGENT-ORIENTED COMMUNITY FOR DESIGN SUPPORT 501

terminal symbols in the grammar. CA is a set of concrete actions that is
considered as terminal symbols. Rule is a set of rewriting rules of the
symbols. An element(s) g of CA indicates a vague and incomplete plan(s)
from which a concrete plan(s) is generated.

TypicalPlan = L(G) S.t. G=<VP, CA, Rule, g>

Figure 9. A schema of a context free grammar generating plans.

Suppose that there are instances of travel agent class, i.e., traGen, traModel,
instances of representative class, i.e., repHvac, repModel, and instances of
traveler class, i.e., traveler1, traveler2 in MAOe. Application programs,
progHvacLoad and progHvacModel, are mediated by repHvac and repModel,
respectively, to collaborate with agents in MAOe. TraGen and traModel have
rewriting rules to articulate vague and incomplete plans, heatLoad, cool Load,
hvacLoad, and hvacModel, into sequences of concrete actions, pHeatLoad,
pCoolLoad, and pModel. The pseudo-codes below show how the instances
are defined in an experimental MAOe. We omit traverse between an agent to
another for simplicity.

instance <- new(traveIAgent,traGen)
::rule <- push«traGen,heatLoad> --> <traModel,hvacModel><repHvac,pHeatLoad»
:: rule<- push(<traGen,cooILoad> --> <traModel,hvacModel><repHvac,pCooILoad»
::rule<- push«traGen,hvacLoad> --> <traGen,heatLoad><repHvac,pCooILoad»

instance <- new(traveIAgent,traModel)
::rule<- push«traGen,hvacModel> --> <repModel,pModel»

instance <- new(representative,repHvac)
::the_trad_app := progHvacLoad

instance <- new(representative,repModel)
:the_trad_app := progHvacModel

Let traveler1 and traveler2 be instances of traveler class. Each has a vague
plan. Instance traveler1 plans to let traGen execute cool Load and go back to
its home. Similarly, traveler2 plans to let traModel execute heatLoad and go
back to its origin. These instances are defined as follows.

instance <- new(traveler, traveler1)
::plan <- push«traGen,cooILoad><home,eoa»

instance <- new(traveler, traveler2)
::plan <- push«traGen,hvacLoad><home,eoa»

The following is a log from the experimental MAOe describing how
travelers and static agents act to execute each travelers's plan. As mentioned
in section 3.3, demon methods are triggered when a mobile agent arrives at a

502 HARUYUKIFUnIET AL.

static agent or a unit time passes. More than one agent can execute their
process almost at once in MAOe.

agent <- temporaUrigger
Time:87788; traveler1 lets traGen execute cool Load
Time:87791; traveler1 comes to traGen
Time:87794; traGen decomposes <traGen,cooILoad>

into <traModel,hvacModel><repHvac,pCooILoad>
Time:87797; traveler2 lets traGen execute hvacLoad
Time:87799; traveler2 comes to traGen
Time:87802; traGen decomposes <traGen,hvacLoad>

into <traGen,heatLoad><repHvac,pCooILoad>

agent <- temporaUrigger
Time:88810; traveler1 lets traModel execute hvacModel
Time:88812; traveler1 comes to traModel
Time:88815; traModel decomposes <traModel,hvacModel> into <repModel,pModel>
Time:88819; traveler2 lets traGen execute heatLoad
Time:88822; traveler2 comes to traGen
Time:88825; traGen decomposes <traGen,heatLoad>

into <traModel,hvacModel><repHvac,pHeatLoad>

agent <- temporaUrigger
Time:90452; traveler1 lets repModel execute model
Time:90455; traveler1 comes to repModel
Time:90457; repModel sends model to progHvacModel being done at 90517
Time:90461; traveler2 lets traModel execute hvacModel
Time:90464; traveler2 comes to traModel
Time:90466; traModel decomposes <traModel,hvacModel> into <repModel,pModel>

agent <- temporaUrigger
Time:91976; traveler1 lets repHvac execute pCoolLoad
Time:91979; traveler1 comes to repHvac
Time:91981; repHvac sends pCoolLoad to progHvacLoad being done at 92041
Time:91985; traveler2 lets repModel execute pModel
Time:91988; traveler2 comes to repModel
Time:91990; progHvacModel is idle
Time:91992; repModel sends pModel to progHvacModel being done at 92052

agent <- temporaUrigger
Time:94499; traveler1 comes back home
Time:94501; traveler2 lets repHvac execute pHeatLoad
Time:94504; traveler2 comes to repHvac
Time:94506; progHvacLoad is idle
Time:94508; repHvac sends pHeatLoad to progHvacLoad being done at 94568

agent <- temporaUrigger
Time:96932; traveler2 lets repHvac execute pCoolLoad
Time:96935; traveler2 comes to repHvac
Time:96937; progHvacLoad is idle
Time:96939; repHvac sends pCoolLoad to progHvacLoad being done at 96999

agent <- temporaUrigger
Time:97885; traveler2 comes back home

A MOBILE AGENT-ORIENTED COMMUNITY FOR DESIGN SUPPORT 503

The log traces actions. Traveler1 visits traGen to let it articulate coolLoad,
and traGen decomposes it into <traModel,hvacModel> <repHvac,pCooILoad>.
Since hvacModel is vague, traveler1 visits traModel to articulate hvacModel.
TraModel decomposes hvacModel into <repModel,pModel>. At this point,
traveler1 has a complete plan, <repModel,pModel> <repHvac,pCooILoad>.
Traveler1 visits repModel and repHvac as in the plan, lets each agent execute
the action assigned to the agent. RepHvac and repModel let the traditional
applications, which each agent represents, execute the actions. Traveler2 acts
in a similar way concurrently.

6. Continuing Research

Since MAOe and AIF are an on-going project, only experimental systems
have been implemented two of which are shown in this paper. It is hard to
give the empirical evaluation fort the project at this point. One thing that is
clear is that we don't have to be anxious about the security of each module in
MAOe since AIF is sent in a form of s-expression and no program code is
sent in MAOe. The conceptions are expected to be explained from a formal
aspect to evaluate MAOe and AIF from a theoretical aspect.

7. Conclusion

This paper described the conception of a mobile agent-oriented community
(MAOe) that incorporates stand-alone programs that predict the building
performance and the conception of agent interchange format (AIF), a
format for mobile agent exchange in MAOe. The combination of MAOe
and AIF provide a model of concurrent computation in distributed design
support system without much anxiety about security. This paper described
hypothetical structure of languages to represent knowledge concerning
design, too. The structure is the assumption on which diverse aspects in
design are treated. MAOe and AIF. They are independent of platforms,
operation systems, programming languages, etc. The authors convinced
themselves that it is on the right track to use MAOe and AIF to construct a
practical design support system incorporating existing stand-alone building
performance analysis programs.

References

Agha, G.: 1986, ACTORS: A Model of Concurrent Computation in Distributed Systems, The
MIT Press, Cambridge.

Akin, 0.: 1986, Psychology of Architectural Design, Pion, London.
Bakhtari, S. and Oertel, W.: 1995, DOM: An active assistance system for architectural and

engineering design, Proceedings CAAD Futures'95, Vol. 1.
Brazier, F., Van Langen, P., Ruttkay, Zs. and Treur, J.: 1994, On formal specification of

design tasks, in J. S. Gero and F. Sudweeks (eds), Artificial Inteligence in Design '94,
Kluwer, Dordrecht, pp. 535-552.

504 HARUYUKI Fum ET AL.

Chaplin, R., Li, M., Oh, V., Sharpe, J. and Yan, X.: 1994, Integrated computer support for
interdisciplinary system design, in J. S. Gero and F. Sudweeks (eds), Artificial Inteligence
in Design '94, K1uwer, Dordrecht, pp. 591-608.

Clayton, M., Fruchter, R., Krawinkler, H. and Teicholz, P.: 1994, Interpretation objects for
multi-disciplinary design, in J. S. Gero and F. Sudweeks (eds), Artificial Inteligence in
Design '94, Kluwer, Dordrecht, pp. 573-590.

Clibbon, K., Candy, L. and Edmonds, E.: 1995, A logic-based framework for representing
architectural design knowledge, CAAD Futures '95, Vol. 2.

Coyne, R., Rosenman, M., Radford, A., Balachandran, M. and Gero, J. S.: 1990, Knowledge­
Based Design Systems, Addison-Wesley.

Fujii, H.: 1989, Dynamic simulation of the interaction between interior environment and
individual behavior, Proceedings 12th Symposium on Computer Technology of Informa­
tion, Systems and Applocations, Architectural Institute of Japan, Tokyo.(in Japanese)

Fujii, H.: 1994, Understanding spatial descriptions, Master Project Report, Department of
Philosophy, Carnegie Mellon University. I

Fujii, H.: 1995, Incorporation of natural language processing and a generative system,
Proceedings CAAD Futures '95, Vol. 1.

Fujii, H., Katukura, H. and Nakai, S.: 1996, Formal representation of an agent who plans and
acts. Journal of Architecture, Planning and Environmental Engineering, No.482,
Architectural Institute of Japan, Tokyo. (in Japanese)

Gasser, L., Braganza, C. and Herman, N.: 1988, Implementing distributed artificial
intelligence system using MACE, in A. Bond and L. Gasser (eds), Readings in Distributed
Artificial Intelligence, Morgan Kaufmann, San Mateo.

Gauchel, J., Wyk, S., Bhat, R. and Hovestadt, L.: 1992, Building modeling based on
concepts of autonomy, in J. S. Gero (ed.), Artificial Intelligence in Design '92, Kluwer,
Dordrecht, pp.181-197.

Genesereth, M. and Fikes, R.: 1992, Knowledge interchange format version 3.0 reference
manual, Report Logic-92-1, Computer Science Department, Stanford University.

Glymour, C.: 1992, Thinking Things Through, The MIT Press, Cambridge.
Gruber, T.: 1992, A translation approach to portable ontology specifications, Technical

Report KSL 92-71, Knowledge Systems Laboratory, Stanford University, Stanford.
Khedro, T., Genesereth, M. and Teicholz, P.: Concurrent Engineering Through Interoperative

Software Agents, FCDA, Stanford University (in World Wide Web).
Hirose, K., Katukura, H. and Nakai, S.: 1994, Knowledge sharing and reuse in structural

analysis: An application for distributed environment, Proceedings of The 17th
Symposium on Computer Technology of Information, Systems and Applocations,
Architectural Institute of Japan, Tokyo. (in Japanese)

Levinson, S.: 1983, Pragmatics, Cambridge University Press, Cambridge.
MacKeller, B. and Peckham, J.: 1994, Specifying multiple representations of design objects

in SORAC, in J. S. Gero and F. Sudweeks (eds), Artificial Inteligence in Design '94,
Kluwer, Dordrecht, pp. 555-572.

Mitamura, T. and Nyberg III, E.: 1992, Hierarchical lexical structure and interpretive mapping
in machine translation, Proceedings of COLING-92.

Nakai, S., Katukura, H., Ebihara, M. and Hirose, K.: 1992, Agent-oriented problem solving
for structural analysis, Japan-US Workshop on Expert Systems and Al Applications in
Civil and Structural Engineering.

Putnam, H. 1983: Realism and Reason - Philosophical Papers, Volume. 3, Cambridge
University Press, Cambridge.

Simon, H., Newell, A. and Shaw, J.: 1979, The process of creative thinking, Models of
Thought, Volume. I, Yale University Press, New Haven.

Stefik, M.: 1995, Introduction to Knowledge Systems, Morgan & Kaufmann, San Francisco.
Wong, A., Sriram, D. and Logcher, R.: 1992, SHARED: an information model for cooperative

product development, IEEE Computer, March.

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 505-524.
© 19% Kluwer Academic Publishers.

VISIONMANAGER: A COMPUTER ENVIRONMENT FOR DESIGN
EVOLUTION CAPTURE

RENATE FRUCHTER
Center for Integrated Facility Engineering
Stanford University
550 Panama Street
Stanford CA 94305 USA

AND

KURT REINER, LARRY LEIFER, AND GEORGE TOYE
Center for Design Research
Stanford University
560 Panama Street
Stanford CA 94305 USA

Abstract. Computer-based design evolution capture in a multi-disciplinary project
environment remains a difficult problem. This paper describes VisionManager, a
prototype for design evolution capture, visualization, and reuse in support of multi­
disciplinary collaborative team work. Based on our research experience, our hypothesis
is that one of the key factors in reducing life-cycle cost is improved communication,
coordination and cooperation among team members. VisionManager accommodates and
integrates many perspectives within a design and manufacturing enterprise and allows
team members to: (1) augment shared graphic design models with the team members'
design intents, interests, and responsibilities, (2) capture versions at different levels of
granularity, such as, feature, discipline perspective, and project level, (3) create private,
public, and consensus versions in a hierarchical archive, (4) infer shared interests and
route change notifications with regard to a modified feature or perspective, (5) visualize
the design evolution of features, discipline perspectives, and the overall project based on
captured semantics, and (6) reuse previous alternatives. VisionManager is distinguished
from the state-of-the-art file-based document management systems and proposes a model­
based and content-based approach for design evolution capture, visualization, and reuse.

1. Introduction

In many design and manufacturing enterprises, product development and
process management is done by large geographically distributed multi­
disciplinary teams (e.g., engineering, marketing, manufacturing, financing,

506 RENATE FRUCHTER ET AL.

etc.). Past decades have seen revolutionary increases in the complexity of
products and the power of tools used to describe and analyze them.
However, the fundamental tools of collaboration and project evolution
management have remained unchanged. The limitations inherent in these
tools actually limit the quality and performance of the products they
describe, while adding to their cost and time to market.

This paper describes the model-based and content-based approach of
VisionManager to capture, visualize and reuse both the design product (i.e.,
the graphic models of the artifact) and the design process (i.e., the evolution
of explored designs and the corresponding reasons for the decisions). Our
hypothesis is that one of the key factors in reducing life-cycle cost is
improved communication, coordination and cooperation among members in
a multi-disciplinary team. We conjecture that design and knowledge capture,
representation, sharing, reasoning and re-use is far less costly than the re­
invention of comparable design and/or knowledge. Our objectives in
developing the VisionManager prototype are to:
• improve the quality of the product and the process, and
• reduce time consuming and error prone efforts to capture, access, share

and visualize product model alternatives, information, knowledge, design
intents and decisions throughout the project evolution.

Other important issues in computer support for multi-disciplinary design,
such as constraint management, multiple graphic representations (Coyne 90),
and design synthesis, are not addressed in this research.

1.1. OBSERVATIONS

Our observations of traditional teamwork indicate that:
• Team members develop their solutions independently as well as

collaboratively.
• Each team member develops multiple alternatives. Evolution of

discipline solutions and interactions among professionals are hard to
document and track.

• Unsatisfactory changes prompt team members to backtrack to earlier
solutions, which many times have to be recreated.

• Different discipline solutions interact with each other. The process of
identifying shared interests is ad-hoc and based on participants'
imperfect memories. This error-prone and time consuming process
rapidly leads to inconsistencies and conflicts.

• Meetings are usually the forum in which inconsistencies are detected and
resolved before the project can progress.

In addition, the current conventional project information development and
management process is based on:

VISIONMANAGER 507

• Individual notebooks, recording background information and results of
reasoning and calculations. Notebooks are private documents and are
not shared among team members.

• Memos, generated by computers but handled as paper documents,
distributed to selective team members, and filed. Paper memos can not
be easily updated and are hard to retrieve.

• Graphics and other data, indexed by drawing number and date are
generally hard to recover and in their paper form laborious to annotate
and update.

• Documentation, in the form of successive approved versions under
configuration control often are filed as signed off paper documents.

1.2 CYCLES OF DESIGN EVOLUTION CAPTURE

Based on our observation of multi-disciplinary design teams at work and on
evidence presented in design theory literature (Asimov, 1962) (Schoen,
1983) we view design as:
• a social activity in which professionals in a multi-disciplinary team

propose alternatives, and interact to negotiate a consensus solution.
• an exploratory activity in which ambiguity is maintained in alternative

solutions until individual professionals and the team commit to one or
more particular solution(s). Throughout this iterative process, design
modifications are necessary to address industry specifications and
change orders. A modification may be considered too minor to be
worthy of documentation. Consequently only the person who performed
this modification may be aware of it. Furthermore, the consequences of
modifications may not have been thoroughly considered. One way to
avoid ill-advised modifications is to capture rationale in change
notifications, linked with the product model, identify shared interest and
inform team members in a timely fashion.

• a re-design activity in which designers recreate or revisit previous
proposals or ideas. A deeper understanding of the original design will
reduce the chances of dangerous modifications when it is redesigned.

We have formalized the design evolution capture in collaborative
teamwork as an iterative transition among two communication cycles:
1. An asynchronous collaboration cycle, in which team members work

independently at concurrent or different times on discipline subsystems.
This cycle consists of a design loop and a version loop (Figure 1). In the
design loop, the team member proposes a graphic model of a discipline
subsystem, interprets the graphic model by annotating its features with
semantic meaning and creating semantic models, critiques the proposed
alternative, and saves the model as a private version. In the version loop,

508 RENATE FRUCHTER ET AL.

the designer detects shared cross-disciplinary interests in parts of the
subassembly captured in the private version, sends notifications
regarding these subassembly parts to the interested team members, and
saves the private version as a public version. The public version can be
accessed by the rest of the team.

2. A synchronous collaboration cycle occurs in face-to-face meetings. In
this cycle team members consider the public versions they created,
define the overall design of the future device, negotiate design
modifications and cross-disciplinary conflicts to achieve consensus, and
archive a consensus version. As the team members try to resolve
conflicts, they re-enter the asynchronous cycle and propose new public
versions (Figure 2).

These private, public and consensus versions are stored in a hierarchical
archive that defines the explored design space.

Public

fiOit
Figure 1. VisionManager supports asynchronous collaborative design cycles.

Consensus
Versions

Figure 2. VisionManager supports synchronous collaborative design cycles.

VISIONMANAGER 509

1.3. DESIGN CAPTURE TOOLS

To date, product documentation tools offer a file-based approach to archive,
access, and retrieve design evolution. Referencing a specific design version
in such documentation systems means referencing a specific file or group of
files. Time-stamps, filenames, and directory hierarchies provide document
organization, but provide limited information about the file contents.
Commercial version management systems such as Autodesk's WorkCenter
and Control Data Corp.'s Design Vault, off-load organizational and tracking
duties from the designer, but their focus is still on the files, not on the design
and its semantic content. VisionManager allows the designer to view and
access different portions of the design based on semantic and contextual
content without having to worry about which file contained which design
version at what time.

2. Vision Manager Prototype

We developed the VisionManager prototype to test our formalization and
explore VisionManager's use in asynchronous and synchronous
collaboration cycles. VisionManager is implemented using: AutoCADl as
the geometric modeling environment, the Illustra Server2 (an object­
relational DBMS) for storing the product models, and Internet email for
routing notifications. VisionManager builds on the modeling capabilities
provided by our Semantic Modeling Extension (SME) to AutoCAD
(Clayton, 1994). SME is accessed from within AutoCAD using an additional
pulldown menu. VisionManager is implemented using AutoLISP, DCL, C,
and SQL statements. VisionManager is developed on SUN3 workstations and
SME currently runs on UNIX, PC, and Macintosh4 computers.

2.1. SCENARIO

The following mechatronic system design scenario illustrates the concepts
behind VisionManager. The mechatronic device chosen for our test case is a
real project performed by a team of mechanical engineering students in the
Design and Manufacturing Program of the Mechanical Engineering
Department at Stanford. The goal of the project was to design and build an
automobile door latch system that combines the function of latch, power
lock and cinching into a single assembly. The project was proposed and
sponsored by General Motors Corp.

1 AutoCAD is a trademark of Autodesk, Inc.
2 The lllustra Server is a trademark of lllustra Information Technologies, Inc.
3 SUN is a trademark of SUN Microsystems, Inc.
4 Machintosh is a trademark of Macintosh, Inc.

510 RENATE FRUCHTER ET AL.

The scenario begins with the team proposing a schematic solution which
includes the different subsystems of the door latch system and their
interactions. The solution consists of four assemblies which must be
integrated with the existing automobile door and forkbolt. (Figure 3) The
Sensors subassembly will detect the door position and state of the locking
system. The Logic Circuits subassembly will receive the sensor data, process
it to determine the desired actions, and control the actuators. The Actuators
subassembly provides power to the drive mechanisms. The Mechanisms
subassembly then moves the Forkbolt to either lock or cinch the Door.

tt~~~~:~'st t ME Group,s1.----------.
- - - - - 1 rnterests LEGE D:

I I----,~~..>.....>.........,O""'>"".>.....>..........,..,~ - - - - - I EE Responsibilityl
Logic

(ME Responsibility)

I C GIVEN:::>

I r-' , ,Group Intere ls
I --
~ Shared Inlere t

JL...-_____ ----I

Figure 3. Design schematic showing responsibilities and areas of shared interest.

The design progresses in an iterative mode through:
• propose design alternatives in a shared graphic model,
• interpret the shared product model into semantic discipline models,
• gather networked information by using the discipline models to

customize their search for additional discipline information,
• analyze and evaluate the discipline models to derive behavior and

compare it to function,
• explain the results to other members of the team,
• route change notifications for proposed changes,
• capture and visualize design evolution that integrates the many

perspectives within a design and manufacturing enterprise.
Gathering network information, analyzing and evaluating designs using

networked services and explaining evaluation results are beyond the scope of
this discussion. These tasks and the tools supporting them have been
presented in a previous paper (Fruchter and Reiner, 1995).

VISIONMANAGER 511

2.1.1. The Design Team
The project team is comprised of individuals or sub-teams, referred to as
Groups, which are responsible for different aspects of the design. In this
scenario, the team has two groups: electrical engineering (EE) and
mechanical engineering (ME). It is the responsibility of the groups, or
individual designers within the groups, to specify the appropriate
technologies that will complete their discipline design solutions. Each group
will define their area of:
• responsibility, the subsystems for which they propose design alternatives
• interest, the subsystems whose changes may affect their design proposals
Figure 3 illustrates the ME and EE groups' responsibilities and interests, as
well as shared interests between the two groups.

The electrical group's device detects the state of the automobile door and
control the actuators to drive the cinching mechanism. The electrical group
is responsible for the Sensors, Logic Circuit, and Actuators subassemblies
(Figure 3). In addition, they are interested in the Forkbolt and Door. For
example, they are interested in the Forkbolt specifications because the
Sensor system must be integrated with the forkbolt. If the forkbolt design
changes, it will affect the sensor configuration.

The mechanical group's device must transfer the actuator output to the
forkbolt. The mechanical group is responsible for the Mechanisms
subassembly which links the actuators to the forkbolt (Figure 3). In addition
to this subassembly, they are interested in the Actuators, Forkbolt and Door.
For example, they are interested in the Door because it imposes spatial
constraints on the mechanism design.

2.1.2. The Design Models
VisionManager promotes an object-oriented approach to modeling and
annotating the device models. The VisionManager modeling tools are
flexible and allow the designers to organize their models along any line:
departmental, area of specialty, or product systems. In this scenario, the team
has divided the design into three different model types: an overall product
model, two assembly models, and several subassembly models.

The product model is comprised of the electrical and mechanical groups'
assembly models (Figure 4). An assembly model is composed of the systems
or subassemblies for which the group is responsible. The electrical assembly
model consists of the Sensors, Logic, and Actuators subassembly models
(Figure 5). Similarly, the mechanical assembly model consists of the
Mechanisms subassembly model.

512 RENATE FRUCHTER ET AL.

ti

- e-'&--' ~
•• ~-!C-1-

Figure 4. The Product Model is comprised of the electrical and mechanical assemblies.

Sensors

.~
- (

Actuators

;f:,'-'-
;:~-;:r#

Figure 5. The electrical assembly model is composed of three subassembly models:
Sensors, Logic, and Actuators.

2.2. MEMORY ORGANIZATION

The product model in VisionManager consists of graphics, semantic
annotations, design notes, and person-to-person notifications. The Semantic
Modeling Extension (SME) provides interactive mechanisms which enable
designers to map shared graphic entities to multiple symbolic representations

VISIONMANAGER 513

(Figure 6). The three primary SME object types Manager Objects,
Interpretation Objects, and Feature Objects, provide a flexible structure for
indexing, storing, and retrieving knowledge and data. (Figure 7) The
designers use these objects in conjunction with Person Objects, Graphics
Objects, Note Objects, HyperLink Objects, and Notification Objects to capture
and express their intents behind the graphic entities.

Actuator (BE) I Mechanisms (ME)

Motor MO CinchDrive Motor

tJ(
Figure 6. Multiple interpretations of a shared graphic entity.

Person Objects

William Lloyd bill@cdr.stanford.edu
Re ponsible for Actuators,
Interested in Logic, Sen or

~-":':"==';;;"";:;';::.&.=;.;:;';""--f Electrical Group Model 1----------
Interpretation Objects

Logic

Feature Classes

Graphic Objects

09
Notification Objects

g

Figure 7. VisionManager modeling objects.

514 RENATE FRUCHTER ET AL.

Manager Objects provide a means by which a person or team can group
multiple interpretations of the design. It encapsulates a list of Interpretation
Objects and a list of Person Objects associated with the project. In Figure 7 a
Manager Object is used to encapsulate the Electrical Group's interpretations
of the design.

Interpretation Objects encapsulate features for a particular perspective.
An Interpretation Object has two primary attributes: a list of Feature Classes
and a list of Feature Objects (Figure 7). Feature Classes provide an ontology
to describe the semantic meaning of the graphics within a context. This
ontology can be defined or augmented by the user at run-time. The list of
Feature Objects is edited by the user to contain the instances from a
particular graphic model which are relevant to an interpretation.

Feature Objects capture the link between graphic entities and symbolic
entities (Figure 6). We define a feature to be a constituent element of a
design which has meaning to a designer within a particular context. The
basic components of a Feature Object are a Feature Class, an identifier or
Feature Name, and a list of Graphics Objects. Other information objects can
be linked to Feature Objects such as Note Objects, HyperLink Objects, and
Notification Objects (Figure 7). Feature Objects allow graphic entities to
have multiple meanings within different interpretations.

Person Objects serve as a record of the project participants and their
declared roles and interests. A Person Object consists of the designer's name,
a user-name, a user-password, an email address.alist of responsibilities, and
a list of interests, (Figure 7). Person Objects can be added, updated, and
deleted by the users. The lists of interests and responsibilities are used by
VisionManager to infer which team members should be sent email
notifications about changes to a portion of the design. VisionManager relies
on the list of responsibilities to verify that a particular designer is allowed to
store an updated Interpretation Object in the database.

Graphics Objects contain Drawing Interchange File (DXF)
representations of the graphic model entities. A graphic entity may be
shared among many Feature Objects.

Note Objects contain text written by the project members. Note Objects
are used to capture the design rationale or other design related information
that a designer traditionally records in notebooks, memos, etc. Notes are
encapsulated in Feature Objects to describe design requirements or intents.
VisionManager's Note Browser allows the user to browse and search Note
Objects in order to locate specific Feature Objects or Interpretation Objects.

HyperLink Objects provide a mechanism to link a Feature Object to
sources of information. VisionManager currently handles references to
World Wide Web (WWW) pages and electronic images. A feature in the
graphic model could be linked to component specification sheets available
on the WWW or a photo of a prototype.

VISIONMANAGER 515

Notification Objects record the communications among the designers and
are routed in asynchronous mode. These notifications can be used to solicit
feedback, to give approval, to broadcast change notifications, or to initiate
negotiations. A Notification Object consists of:
• Feature Objects, the focus of the notification
• affected Interpretation Objects, share an interest in the Feature Objects
• Person Objects, the mailing list, and
• a Note Object, describes the rationale or situation.
Notification Objects are stored as a part of Feature Objects in the shared
product model.

2.3. DESIGN EVOLUTION CAPTURE

VisionManager indexes versions at different levels of granularity, i.e.,
Feature Object, Interpretation Object, and Manager Object, and allows the
user to capture different types of versions such as private, public and
consensus. The following sections elaborate on how VisionManager supports
design evolution capture.

2.3.1. Version Composition
The three primary object types in SME are the basis for the three different
version types in the VisionManager.
• Feature Versions represent the most primitive versions which the user can

access. These capture the evolution of a single design feature.
• Interpretation Versions are the second type of version in VisionManager.

A series of Interpretation Versions illustrate the evolution of the Feature
Classes and the Feature Objects belonging to a particular Interpretation
Object. This allows the user to view the design as it develops from a
particular perspective.

• Manager Versions allow the user to trace the evolution of a group of
Interpretation Objects. With Manager Versions the change in an
assembly model, (e.g., Electrical) can be traced over the project lifespan.

The content of Feature, Interpretation and Manager versions is the same
as their SME modeling counterparts, with the addition of several flags. These
flags are set by designer to indicate the version type, (e.g., public, private,
consensus). At present, the version type is set by the user at the Interpretation
Version level and inherited by all of its Feature Objects.

2.3.2. Public and Private Versions
A public version is one which can be accessed by anyone with access
privilege to the project database. Private versions allow the designer or team
to retain a milestone of the work without sharing it with the rest of the teaJU..
There are different levels of privacy: private to the group, the sub-group, and

516 RENATE FRUCHTER ET AL.

individual. Access to the version is granted and confirmed via Person
Objects. The labels and number of levels of privacy can be defined by the
user at run-time to match the project organization.

2.3.3. Consensus Versions
A consensus version of an interpretation is one which has been accepted by
the entire team. This version may not be complete in terms of its design
status, but the team-members agree that it does not conflict with other
interpretations. There are different levels of consensus: project-wide
consensus, group consensus, sub-group consensus. The consensus types can
be defined by the user at run-time to match the team organization.

2.4. CONTENT-BASED DESIGN ACCESS AND RETRIEVAL

In the following we describe how VisionManager enables designers or the
team to check-in, visualize and check-out version from the archive.

2.4.i. Version Check-in
VisionManager relies on a centralized database to record the version
evolution of the product model. Since the design is not being stored in files
or directory hierarchies, all access to current or historic versions is
accomplished through VisionManager's check-in and check-out facilities.

Explored designs are indexed and stored through VisionManager's
check-in process. Check-in consists of the following steps:
• Designer specifies the check-in granularity level. VisionManager requires

designers to check-in their design at either the Manager Object or the
interpretation Object level.

• VisionManager verifies responsibility and access permission.
VisionManager references the project's Person Objects to verify that the
check-in is being performed by a designer who is responsible for the
interpretation Object.

• VisionManager archives the design version. VisionManager compares the
Interpretation Object's Feature Classes and each of its Feature Objects to
the previously stored versions. Each component of the Feature Object is
checked: Graphic Objects, Note Objects, Notification Objects, and
HyperLink Objects. To reduce the storage of redundant information, the
system records only those objects which have changed.

Interpretation Objects are retained by the VisionManager as alternatives.
For instance, in our scenario, the sensor designer is considering 3

different sensor technologies: infrared emitter/detector pairs, contact
switches, and fiber optic sensors (Figure 8). Each option is captured in an
Interpretation Object and may undergo several revisions. Infrared sensors
are the preferred solution at this stage and the designers make their solution

VISIONMANAGER 517

publicly accessible as sensor version S 1. The rationale for selecting this
technology over the other two alternatives is recorded as Note Objects linked
to Feature Objects.

LEGEND :

Private
Versio

~ Sensor Interpretation
~ Objectn rn Contact Switches

((aVO) Fiber Optic

(<i>'\~) Infrared Emitter/Detectors

Figure 8. A public-to-public design evolution generated by the Sensors sub-assembly
designer while exploring three alternatives.

2.4.2. Shared Interest Detection and Notifications
When an interpretation is checked in, VisionManager assists the designer by
inferring which features have been changed and who shares an interest in
those changes. A feature is changed if any part of the Feature Object's
information, (e.g., Graphic Objects, Notes Objects) has been altered since the
previous version. Once a changed feature is found, VisionManager searches
all of the Interpretation Objects for Feature Objects which share graphics
with the changed feature. This process yields a list of changed Feature
Objects and affected Interpretation Objects. VisionManager identifies which
team members are interested in the changes by comparing the declared
interests in the Person Objects to the list of affected Interpretations Objects .
With this information and a text note written by the user, the system builds
the Notification Object. This facility is invoked:
• by the user to check consistency with other public versions,
• optionally when a private version is stored in the database, or
• automatically when a public or consensus version is stored.

It is always left to the users discretion to modify any part of the
Notification Object, or discard it. For instance, even though VisionManager
has identified several persons who may be interested in a change, the user
may want to solicit feedback from only one of them. The user removes the
other persons from the mailing list before sending the email. Notification

518 RENATE FRUCHTER ET AL.

Objects not only serve as a means of communication among the designers,
they are also a record of the rationale behind feature changes.

In our scenario, the mechanism designer generated three potential
solutions: screw/nut, linkage, gears (Figure 9). Since there are two required
functions, cinching and locking, the designer initially specifies two separate
gear trains for driving the forkbolt. The mechanism designer sends a
message to the actuator designer indicating the need for two motors that fall
within certain speed & torque ranges. The Actuators designer specifies the
motors and sends a notification back to the Mechanism designer. After
incorporation of the motors in a private version, the designer determines that
there is no room for two drive trains and two motors within the confines of
the car door. The redesign uses only one motor and a, solenoid. Each time a
notification is sent, the originator's design must be versioned for public
access. This insures accuracy when referencing graphics.

t Mechanism Designer

--~--
I I ~" d' 1...Rrrr.. 1 :7" l..11 I
I~t, II J , ____ ____ i , ___ ~

r:;:') tW9 gear EJ trams

r:;:') notenough EJ space

~ redesign with EJ wormgear

~ sati factory EJ solution!
r:;:') motor & EJ solenoid

LEGEND: ~,...,.,...
(a:zQzm) Screw & Nut Drive (~) Linkage

~ Note Object ('"'A"'I G ' = with Rationale ~ ear Reducuon
- or Intents

Figure 9. Email notifications sent between the Mechanism and Actuator designers.

VISIONMANAGER 519

2.5. VISUALIZATION AND REUSE OF DESIGN EVOLUTION

The design evolution is only as useful as the visualization and retrieval
mechanisms which allow users to revisit design alternatives. VisionManager
supports visualization by enabling the user to browse the project evolution
based on its content. The browsing and filtering mechanisms leverage model
graphics and semantics rather than filenames and time-stamps.

The user first specifies the level of detail at which he/she wants to view the
evolution: Feature Versions, Interpretation Versions, or Manager Versions.
Specification of the subject of the evolution can be provided by either
entering a text string or selecting a graphic. For example, to specify an
Interpretation Object, the user could either type: "Actuators" or click on one
of the graphic entities in the CAD model that is a member of the Actuators
Interpretation Object. If the entity is shared among several Interpretation
Objects, the user must specify from which point-of-view the evolution should
be viewed (e.g., Actuators, Mechanisms, Figure 10).

Vtrnon. \.Wtl .t 1)I:~.tp."l;M:t.n ftf'wlt1
IEtIkiW=, ",..........,
Jllt(wi~

Figure 10. Check-Out of an Actuators version after searching all Interpretation Objects
for the string "motor".

2.5.1. Evolution Filtering
In a project with many Interpretations Objects, the version space will be large
and difficult to navigate without computer assistance. Evolutions can be
played back as movies. This may not be the most efficient means to locate a
particular version. In addition to referencing components or assemblies by
their semantic model information (i.e., Feature Class and Name),
VisionManager provides mechanisms for content-based evolution filtering.

The most basic filters utilize the flags, (e.g., Hot-Item, Daily-Backup), set
by the user when checking in an Interpretation Object. For instance, the user
may wish to view all "Hot-Item" EE versions at the Manager Version level.

520 RENATE FRUCHTER ET AL.

In a similar fashion, the user can also specify which type of versions to view,
(e.g., public, consensus).

VisionManager also allows the user to specify a filter based on an
"increment of change" in the version evolution. In order to gauge the change
between two given versions, VisionManager must first measure the volume of
Feature Objects, Interpretation Objects and Manager Objects. The user can
set preferences to base Feature Object volume on the number of : Graphic
Objects, Note Objects, HyperLink Objects, and/or Notification Objects. An
Interpretation Object's volume can either be the number of Feature Objects
it contains or the sum of the Feature Objects' volumes. Similarly, a Manager
Object's volume can either be the number of Interpretation Objects it
contains or the sum of the Interpretation Objects' volumes. For example, the
user may request to view the Sensor Interpretation Object at increments of
five Feature Object changes. The system will produce a subset of the full
Interpretation Version evolution in which five features have been changed
between subsequent versions.

2.5.2. Design Reuse
The check-out function in the VisionManager system allows designers to
backtrack to previously versioned interpretations, or to incorporate portions
of earlier versions in their current design.

When an Interpretation Object is checked-out, its contents, (i.e., Feature
Classes and Feature Objects) are merged into the AutoCAD design space.
The graphic entities contained by the Graphic Objects are added to the
model only if they are not already present. The relative position and
orientation of graphic entities is preserved within, but not across,
Interpretation Versions. Consequently, VisionManager relies on the user to
place the graphic entities in the model. When a Feature Object is checked­
out, its contents (i.e., Feature Class, Feature Name, Graphic Objects, etc.) can
be added to a current Interpretation Object in the AutoCAD space.
Alternatively, the "shell" of the Interpretation Object (i.e., just its Feature
Classes) can be merged as well. The description of the mechanisms which
are used to maintain consistency between the AutoCAD design space and the
Illustra DBMS is beyond the scope of the paper.

3. Related Research

The points of departure for this research are the following domains:
collaboration technologies, database version and configuration management,
and design rationale and documentation.

VISIONMANAGER 521

3.l. COLLABORATION TECHNOLOGIES.

Communication of intents, problems, and decisions is critical in achieving
better cooperation among professionals across organizations. In recent years,
commercial efforts, (e.g., CORBA) and research work addressing issues in
concurrent engineering, such as information sharing and exchange, multi­
criteria representation, analysis and evaluation, has been of growing interest.
Two recent projects propose integrated approaches for multi-criteria and
multi-disciplinary semantic representation and reasoning (Clayton, 1994;
Fruchter and Reiner, 1995; Saad, 1995). Other research directions have
proposed different integration frameworks to address the information
exchange needs for collaborative work, such as, blackboard architectures to
link CAD with expert systems (Fenves, 1990; Phol, 1990), blackboard
object-oriented database framework (Sriram, 1991), and federated agent
architecture (Cutkosky, 1993; Khedro, 1995). The prototypes developed in
these studies do not include capabilities for versioning and documentation of
design rationale.

3.2. VERSION AND CONFIGURATION MANAGEMENT

Previous research on integration has focused on the use of database
management systems as the primary integration scheme to enable design
software applications to share data. In this scheme, software applications are
able to store, access and update data through a central data base or
distributed database. Different systems have been developed for project data
management to support collaborative work. A recent study explores a
relation database approach to change management in a CAD environment to
support collaborative engineering (Krishnamurthy, 1995). The proposed
change management consists of three layers: versions, assemblies, and
configurations. A version is a specific design description of a primitive
entity, an assembly integrates individual versions to describe the state of a
composite entity, as well as a design in a discipline. Configurations integrate
discipline designs to describe the overall project as a collection of the
different discipline drawings. These approaches track only the evolution of
graphic entities without tracking evolution of design rationale or cross­
disciplinary communication.

3.3. DESIGN RATIONALE

Three major approaches to design rationale have been proposed in the past
decade: history-based rationale, argumentation-based, and device model
based rationale.

History-based rationale approaches, such as the electronic notebook
document design by recording the sequence of events that happen during

522 RENATE FRUCHTER ET AL.

design (Lakin, 1989). The approach requires a low overhead for recording
design activities, however, does not consider the specific use of these
documents, detection of interests, or the needs of document users. This
approach has the same pitfalls as the documents produced in typical practice,
i.e., there is no link between the product model and the created document.
The access to relevant information is even harder than with the current
design documents due to the increased amount of information recorded.

The argumentation-based approach is derived from hypertext research,
where the goal is to provide uniform structure to a potentially diverse
medium (Kunz" 1970; McCall" 1987; Chung, 1994). The document is
recorded as non-interpreted text. This approach requires designers to learn
the documentation and access methods, and adds a high documentation
overhead to the design process.

Device-based approach takes a model-based approach used in diagnosis
expert systems (Gruber, 1991; Baudin, 1989). The key in this approach is to
develop reusable devise models. This approach does not address the
requirements posed by team work, such as shared interests, notifications,
negotiation. This approach requires the designer to formalize the device
model. Consequently increases the designer's overhead in documenting the
design and is unrealistic during conceptual design. More recent research
explored mechanisms for active design documentation that uses an initial
domain specific design model able to generate and explain standard design
decisions. In this approach designers can adjust the initial design model.
(Bicharra Garcia, 1993).

4. Conclusions

This paper presents an initial effort in the development of a computer
environment to support capture, visualization and reuse of design in multi­
disciplinary teamwork. VisionManager proposes a model-based and content­
based paradigm for design evolution capture. The system provides
capabilities to:

•

•

•
•
•

augment a shared graphic design model design with the team members'
ontology, design intents, interests, and responsibilities,
capture versions at different levels of granularity, such as, feature level,
discipline perspective level, and project level,
create private, public, and consensus versions in a hierarchical archive,
infer the perspectives and corresponding ontologies of a shared feature,
infer shared interests and route change notifications with regard to a
modified feature or perspective,

VISIONMANAGER 523

• visualize the design evolution of features, discipline perspectives, and the
overall project based on captured semantics, and

• reuse previous alternatives captured in archived versions.

VisionManager is particularly promising since it provides a rich
knowledge archive of explored perspectives, shared interests, alternatives, and
the design intent behind them, that designers will not be able to remember
on their own. This archive is built up during the design process, rather than
as an independent process performed by an expert assistant who is familiar
with the technicalities of indexing and retrieval.

VisionManager provides a mechanism for creating the "team memory" or
the "corporate memory." The "team memory" can serve a number of roles:

• archive of design evolution for different users, such as, current team
members, project managers, clients, or new team members who join the
team later and need to become acquainted with previous decisions,

• learning resource for apprentices, who need to learn the organization's
design practice, and

• case-study resource for future projects.

We plan to test VisionManager in two learning environments, one is
mechatronic system design (Toye, 1993), and the other is computer
integrated architecture/engineering/construction (Fruchter and Krawinkler,
1995).

References

Asimov, W.: 1962, Introduction to Design, Prentice-Hall, Englewood Cliffs, NJ.
Baudin, C., Uderwood, J., Baya, V., Mabogunje, A.: 1993, Using device models to facilitate

the retrieval of multimedia design information, Proceedings 13th IJCAI, pp. 1237-1243.
Chung, P. W. H. and Goodwin, R.: 1994, Representing design history, in J. S. Gero and F.

Sudweeks (eds), Artificial Intelligence in Design '94, Kluwer, Dordrecht, pp. 735-751.
Clayton, J. M., Fruchter, R., Krawinkler, H. and Teicholz, P.: 1994, Interpretation objects

for multi-disciplinary design, in J. S. Gero and F. Sudweeks (eds), Artificial Intelligence
in Design '94, Kluwer, Dordrecht, pp. 573-590.

Coyne, R. D., Rosenman, M. A., Radford, A. D., Balachandran, M., and Gero, J. S.: 1990,
Knowledge-Based Design Systems, Addison-Wesley Publishing Company.

Cutkosky, M., Engelmore, R., Fikes, R., Gruber, T. R., Genesereth, M., Mark, W.,
Tenenbaum, J. M., Weber, J. C: 1993, PACT: An experiment in integrating concurrent
engineering systems, IEEE Computer, special issue on Computer Support for Concurrent
Engineering, pp. 28-37.

Fenves, S. J., Fleming, U., Hendrickson, C., Maher, M. L. and Schmitt, G.: 1990, Integrated
software environment for building design and construction, Computer-Aided Design,
22(1), 27-36.

Fruchter, R. and Krawinkler, H.: 1995, A/ElC teamwork, Proceedings Second ASCE Congress
of Computing in Civil Engineering, Atlanta, pp. 441-448.

524 RENATE FRUCHTER ET AL.

Fruchter, R., Reiner, K., Toye, G. and Leifer, L.: 1995, Collaborative mechatronic system
design, Proceedings of CERA95 Conference, Washington D.C., pp. 231-242

Gruber, T.R.: 1989, The Acquisition of Strategic Knowledge, Boston Academic Press,
Bicharra Garcia, A C., Howard, C. and Stefik, M. J.: 1993, Active design documentats: A new

approach for supporting documentation in preliminary routine design, CIFE Tech. Report
Nr. 82, CIFE, Stanford University, Stanford.

Khedro, T.: 1995, AgentCAD for cooperative design, to be published in Proceedings CAAD
Futures 95, Singapore.

Krishnamurthy, K. and Law, K. H.: 1995, Configuration management in a CAD paradigm, to
appear in Proceedings 1995 International Mechanical Engineering Congress, San
Francisco.

Kunz, W. and Rittel, H.: 1970, Issues of Elements of Information Systems, Center for
Planning an Development Research, UC. Berkeley.

Lakin, F., Wambaug, H., Leifer, L., Cannon, D. and Sivard, C.: 1989, The Electronic Design
Notebook: Performing medium and processing medium, Visual Computer: International
Journal of Computer Graphics, 5(4), 214-226.

McCall, R., 1987, PHIBIS: Procedurally hierarchical issue-based information systems,
Planning and Design Acquisition, Boston, MA

Pohl, J. and Chapman, A: 1990, Expert system for architectural design, Journal of Real
Estate Construction, 1, 29-45.

Saad, M.: 1995, Shared Understanding in Synchronous Collaobrative Building Design, PhD
Thesis, University of Sydney.

Schon, D.: 1983, The Reflective Practitioner, Basic Books, Inc., New York.
Sriram, D., Logcher, R., Wong, A. and Ahmed, S.: 1991, An object-oriented framework for

collaborative engineering design, in D. Sriram, R. Logcher and S. Fukada (eds),
Computer-Aided Cooperative Product Development, Springer-Verlag, Berlin.

Toye, G., Cutkosky, M. R., Leifer, L., Tennenbaum, M., Glicksman, M. J.: 1993, SHARE: A
methodology and environment for collaborative product development, 2nd IEEE
Workshop on Enabling Technologies Infrastructure for Collaborative Enterprises, pp.
33-47.

10
rules, models and theories in design

Elicitation of rules for graphic design evaluation
George Glaze, Jeff Johnson, Nigel Cross

A model-based tool for finding faults in hardware designs
Markus Stumptner, Franz Wotawa

On knowledge level theories of design process
Tim Smithers

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 527-540.
© 1996 Kluwer Academic Publishers.

ELICITATION OF RULES FOR GRAPmC DESIGN EVALUATION

GEORGE GLAZE
Faculty of Visual Communications
West Hertfordshire College
Watford WDI 3EZ UK

JEFF JOHNSON AND NIGEL CROSS
Design Discipline
Faculty of Technology
The Open University
Milton Keynes MK7 6AA UK

Abstract, This paper reports a set of experiments in which graphic design rules were
elicited from two graphic design experts, In these experiments no attempt is made to
judge a design to be 'good', but the rules are sufficient to diagnose a design as 'bad'. The
experiments show that graphic design rules can be elicited from expert graphic designers
in a sufficiently explicit way for them to become operational in a computerised expert
system. The experiments show that the graphic design experts do not apply their rules
consistently, but when the rules are made explicit they agree entirely with the diagnosis
of the rule based system, These experiments therefore support the thesis that there are
rules governing the aesthetics of graphic design, as perceived by practising graphic
designers, which can be implemented on computers, These rules may not guarantee
'good' design but may assist the novice to produce designs which are 'not bad',

1. Introduction

This paper deals with the issue of making explicit the implicit aesthetic
judgement of graphic design professionals. It addresses the issues of the
expression of intuitive, emotive and configurational reporting and the
difficulties associated with the interpretation of the professional's diverse and
specialised comments. It reports a procedure of rule elicitation through the
diagnosis and reporting (in a critique) by two professionals of bad design
symptoms in a sample of single-sheet (A4 size) poster desktop publications,
A new procedure for the diagnosis of bad symptoms in a population of such
desktop publications is presented.

Also examined are the effectiveness and reliability of the rules
formulated from the professional's intuitive design critique. This focuses on

528 GEORGE GLASS ET AL.

the inconsistency of the professionals' diagnoses of bad symptoms and on
factors which might inhibit accurate diagnosis and consistent reporting.

Sets of formalized rules were elicited from two expert graphic designers,
based on their critiques of a sample of A4-size amateur desktop poster
publications. The expressions and bad symptoms reported by the experts
were interpreted into rules. The formalized rules were used for the diagnosis
of bad symptoms in a second sample of similar desktop publications. The
experts subsequently diagnosed bad symptoms in this sample also. The
results of the experts' diagnoses of bad symptoms in the second sample are
compared with the application of the formalised rules used systematically.
The performance of the two procedures is analysed to determine the
correspondence of the systematic, rule-based diagnoses with those of the
experts.

We do not attempt to predict 'good' design; only to identify symptoms of
'bad' design. Application of a rule based system that identified 'bad' design
symptoms could at least result in the elimination of such symptoms, and
therefore enable a user to produce designs that are 'not bad'. By definition, a
design that is not diagnosed to be bad is 'not bad'; all 'good' designs will be
'not bad', but some 'not bad' designs may not be good.

2. Knowledge Elicitation for Graphic Design

Knowledge elicitation in graphic design is difficult particularly because
there is little consensus on the subtle features which contribute to the
aesthetics of a visual representation and ambiguity in the application of a
design prescription.

Although graphic designers, like some other experts, find it difficult to
articulate their implicit strategies, they do at times communicate their
expertise verbally and by demonstration: for example the apprentice
approach to design practice and some forms of design education confirm
the success of these methods of knowledge transmission.

Tunnic1iffe and Scrivener (1991) offer a procedure devised for the
elicitation of knowledge in the graphic design domain. In their opinion
traditional methods of knowledge elicitation are inappropriate to graphic
design because they offer a 'reductionist' view more suited to scientific
problems. They contend that to reduce the overall problem of designing to
discrete parts for analysis distorts the knowledge elicited and may miss
essential design knowledge. They emphasise that graphic designing relies on
narrative, metaphors, analogies and gestalts. In design knowledge elicitation,
they suggest, it is necessary to arrive at information relating to the
interdependence of elements in a design, e.g. components such as headline
text, body text and pictures, and 'weight, balance, colour, impact and

ELICITATION OF RULES FOR GRAPHIC DESIGN EVALUATION 529

emphasis'. They used a procedure based on a combination of protocol
analysis and teachback techniques. They report that these techniques allow
the graphic designers to perform in a way natural to them. These procedures
provide a holistic view of the graphic designer's processes and facilitate the
subsequent analysis of the verbal and visual data generated and recorded.

Of the available techniques of knowledge acquisition and elicitation,
critiquing was considered to be the most appropriate for our own study.
Designers routinely criticise their own work using explicit language and
therefore should be happy to criticise the work of others. Critiquing is a
relatively simple and inexpensive procedure to arrange and provides a rich
source of data for analysis. In our procedure, expert graphic designers were
asked to comment critically on graphic design work produced by
(anonymous) others.

3. Rules Elicited from Graphic Design Experts

Normally, only one expert is used as the source for eliciting rules for rule
based systems. Moore and Miles (1991) have discussed the reasons for this,
and suggested some advantages of using more than one expert, particularly
in a design domain context. We used two graphic design experts for this
study, but did not attempt to amalgamate their separate sets of rules into one
set. The inconsistencies, and even occasional contradictions, between experts
in any given domain can make impossible the amalgamation of rules elicited
from different experts.

Our chosen experts worked independently of each other, and did not
know that more than one expert was being consulted, nor what the purpose
of the experiment was. Not giving the experts a full explanation of the
purpose of the task and their contribution is seen in retrospect to have
contributed to inconsistency and perhaps poor motivation. The experts were
unaware that their comments eventually would be formulated into rules.

3.1. PREPARATION OF THE GRAPHIC DESIGN SAMPLES

We were particularly interested in providing an evaluation system which
might be used to assist inexperienced, novice 'designers' in the production of
well designed, simple desktop-published documents. For example, many
people use wordprocessors to produce simple 'posters' of single sheets to
make announcements. These are often poorly designed and laid out from a
graphic design point of view. Our aim was to see if we could develop a set of
evaluation rules that could be applied to such documents. Application of the
rules in a rule based system could then provide a design evaluation feedback
to the 'designer', who could then adjust their design to produce a more
aesthetically satisfactory design.

530 GEORGE GLASS ET AL.

We collected 40 random examples of single-sheet, A4-size posters from
the notice boards of our faculty building. These were drawn from the many
examples of informal notices that proliferate on such notice boards, e.g.
advertizing articles for sale, clubs to join, forthcoming meetings, etc. The
posters were photocopied sequentially during the same print run. The
specimens were duplicated to be the same size as the originals on A4 sheets.

Forty questionnaire sheets were given to each of two graphic design
experts, together with the forty copied posters and a covering letter
explaining what the experts were required to do. The experts were requested
to inspect the sample of posters identifying any 'bad symptoms' of graphic
design in the specimens. Comments on each 'bad symptom' were to be
reported on the accompanying questionnaire. Their comments were
expected to be their personal view on the symptoms reported.

The experts were asked to assess the relative importance of individual
symptoms by assigning a weighting on a scale 1, 2 or 3 corresponding to
their considered importance; 1 representing not very important, 2 important
and 3 very important. Written comments on each of their findings was also
encouraged to expose the constraints on the expert's diagnosis. The level of
detail was to be to the expert's discretion but would clearly be a factor in the
classification and discrimination of reported symptoms.

Both experts employed a similar approach to identifying design defects
in the specimens. Bad symptoms were identified on the specimens by a
freely drawn line encircling the feature which was also referred to in the
questionnaire. Where there was more than one symptom, each was identified
by an alphanumeric code. The comments on the associated questionnaire
were similarly coded.

3.2. DESCRIPTION BY THE EXPERTS OF THE 'BAD SYMPTOMS' DETECTED
IN EACH SPECIMEN OF THE SAMPLE

In their descriptions and comments on the bad symptoms identified, the
experts, as expected, used a mixture of ambiguous expressions, specialist
terminology, and emotive statements. These comments were used to establish
the implicit or explicit 'rules' that were being applied by each of the experts.

Data analysis began with the transcription and interpretation of the
experts' responses. Where necessary a response was recomposed into logical
English statements embracing the essence of the expert's individual
comment. Subsequently each statement was formalised to simulate (for each
expert) a robust set of rules appropriate for a simple rule-based application.

ELICITATION OF RULES FOR GRAPHIC DESIGN EVALUATION 531

3.3. INTERPRETATION OF FREE FORMAT SPEECH TO FORM TECHNICALLY
DEFINED AND RIGOROUS RULES

The first author's experience and familiarity with the conventions,
terminology and phraseology of the graphic design domain informed the
interpretation of the experts' comments. The rules were initially formulated
by this researcher who attempted to interpret the expert comments.

However it was recognised that the interpretation of idiosyncratic words
and phrases is often variable between individuals. Specialist idiom can also
be inconsistent at different times and in different situations. Accurate
interpretation relies on the precise and logical definitions of specialist
expressions. Consequently the interpretation was verified by asking the
experts who originated the comments to confirm the meaning of many of
the terms received in their responses. The information received was used in
formulating an experts' glossary.

3.4. FORMULATION OF RULES

Rules were formulated from the symptoms of bad design identified by the
experts. The process of formulating a rule was iterative, involving an initial
formulation, testing and perhaps one or more attempts at reformulation
before eventual acceptance.

Follow-up interviews with the experts were also used to ensure that an
identified bad symptom was being correctly interpreted.

The following are examples of some of the bad symptoms reported by
the experts and the rules elicited from their comments.

3.4.1 Examples of expert (A) symptoms and rules
SYMPTOM(S): "Bad gap (word spacing)."
REASON(S): "Such unfortunate alignment, causing rivers, in which the words
on the line below are closer than the words on the same line, distract from
their intended sense."
RULE FORMULATED:
Line space should be greater than word space

SYMPTOM(S): "The easy use of space at the top of the page is not echoed in
the graceless foot of the page.
"Not visually centred."
REASON(S): "One is left with a feeling that the elements are out of phase -
this must be counter productive."
RULES FORMULATED:
i. If there are top and bottom margins then the top margin should be less
than or equal to the bottom margin

532 GEORGE GLASS ET AL.

ii. Where two or more vertically adjacent blocks of type are centred then the
horizontal separation of their centres should be less than Imm

3.4.2 Examples of expert (B) symptoms and rules
SYMPTOM(S): "Far too close to the top of the page."
REASON(S): "Top heavy, otherwise OK."
RULE FORMULATED:
Not all blocks should be above the centre of the page

SYMPTOM(S): "More space at top than bottom.
"Thrown together, some centred type, some ranged left, some ranged left
and then set right.
"Crooked pasting up."
REASON(S): "Just a mess."
RULES FORMULATED:
i. If there are top and bottom margins then the top margin should be less
than or equal to the bottom margin
ii. When more than 70% of blocks are centred then all blocks should be
centred
iii. Where more than 70% of blocks are centred then for any non-centred
block on one side of the centre line there should be a block on the opposite
side such that a reflection of either block about the centre line intersects the
other to produce a block with area greater than 90% of both blocks.
iv. Blocks should be parallel to the horizontal edges of the page or at an
angle greater than 10 degrees

Although there was overlap of similar, and sometimes identical, rules used
by the two experts, there were also substantial differences between the two
rule sets.

4. Testing the Rules Elicited from the Experts

The objective now was to compare the performance of a simulated rule­
based system with that of the expert on a new set of publications from the
same general population. The purpose was to determine the effectiveness of
the rules and whether the expert's application of the rules could be predicted
on a new sample of posters.

4.1. EXPERIMENTAL DESIGN AND METHOD OF ANALYSIS

4.1.1. Procedure
(a) Apply the rule-based diagnostic system to a new sample of posters

unseen by the design experts.

ELICITATION OF RULES FOR GRAPHIC DESIGN EV ALVA TION 533

The lists of rules previously elicited from the experts were applied to a
new sample of posters. The results were recorded as a prediction of the
expert's evaluation.

(b) Obtain the expert's diagnoses of bad design symptoms on the new
sample of poster layouts.
The unmarked samples were then sent to the experts for their diagnosis,
as for the first sample of posters.

4.1.2. Rule sets
Crucial to the experiment was the need to determine beforehand the most
appropriate statistical design for the data characteristics. A study of the rule
sets revealed that several applied insufficiently to be useful for the purpose
of statistical analysis. Pilot studies of the statistical method had shown that
rules which applied to fewer than 15 posters would generate unreliable
results. Nothing at all could be concluded where a rule applied to fewer than
5 posters. Consequently several rules were eliminated because they failed to
satisfy these pre-conditions, leaving 17 A-rules and 13 B-rules.

4.1.3. Sample size
From a study of the statistical requirements it appeared that 30 was the
minimum number of specimens required to ensure reliable results from the
implementation. It was also essential to determine the minimum sample size
to ensure that the experts' time was not used unnecessarily. Consequently a
new set of 30 posters was collected in the same way as before.

4.1.4. The experts' evaluation of the posters
Following the same procedure as described earlier, the new samples were
distributed to experts (A) and (B) for their independent observations and
comments on the bad symptoms identified in the specimen layouts in the
sample.

Separate lists of the experts' comments were made and later compared. It
was noted that the degree of detail varied between the experts and from one
specimen to the other as expected from the previous responses. Often
different symptoms in the same specimens were identified by the experts.
Moreover designers describe the same symptom using personal expressions
in a personal blend of specialist and emotive terms. They also attach
different levels of importance to the same symptom. This suggests that the
criteria designers employ are different and their values are variable. In the
experts' responses to the new sample, subtle variations to previous comments
were apparent and some new comments were reported.

We examined the returned samples and each of the experts' comments to
determine which of the formalised rules applied. This procedure relied on

534 GEORGE GLASS ET AL.

the accurate translation and matching of rules formulated from the
comments reported in the old with those reported in the diagnosis of the new
samples. A list of the bad features abstracted from the comments reported
by each expert and the number of times the comments applied was recorded,
see Tables 1 and 2.

TABLE 1. Comparison of a rule based diagnosis using (A)'s rules, with expert (A)'s
own diagnosis of bad symptoms in the same sample.

Rule Number Bad Bad Bad
of posters symptoms symptoms symptoms
to which diagnosed diagnosed diagnosed
the rule by rule by expert by expert
could be based A Ain
applied system follow-up

A1 If the are left and right margins, then they
should be equal; + or - 2mm, excepting when a

28 17 0 17
picb.Jre bleeds off the page

A2 If there are top and bottom margins, then the top
margin should be less than or equal to bottom

28 8 0 8
margin

A3 Blocks should not be in contact - vertically 23 6 2 6
A4 Blocks should not be in contact - horizontally 23 5 0 5
A5 Word blocks should not touch - horizontally 30 0 0 0
A6 Vertically adjacent blocks should be vertically

left and right aligned
17 3 1 3

A7 When more than 70% of blocks are centred 23
then all blocks should be centred

9 4 9

A8 Blocks of capital letters should be equal to or
less than 4 lines

25 4 1 4

A9 For three or more vertically adjacent text
blocks of the same fount, the space between the

17 5 0 5
tops and bottoms should be equal

A10 The longest line in a non-list block of text
greater than four lines should be a minimum of
twenty characters

15 0 0 0

A11 There should be less than four typefaces 30 3 3 3
A12 There should be less than five type sizes;

excepting lists, tables and diagrams
30 8 2 8

A13 The words in a line should be separated by less
than or equal width to a lowercase 'n' in the
fount used; excepting lists and tables

30 12 9 12

A14 Characters in a word should not touch;
excepting ligatures, script or italic text and

30 2 0 2
imported artwork

A15 Ascenders and descenders in consecutive lines 26 0 0 0
of text should not touch

A16 The largest block must be above the horizontal
centre of the page. If more than one large
blocks of equal size, then at least one must
obey this rule

30 11 2 11

A17 The distance between centre lines of vertically
adjacent blocks of centred strings of words
must be less than 1 mm

30 23 1 23

While there were forty specimens in the old sample there were just thirty
specimens in the new sample. The general standard of design of the new
sample of poster layouts was reported by the experts to be 'much better' than

ELICITATION OF RULES FOR GRAPHIC DESIGN EVALUATION 535

the design of layouts in the old sample. As a result fewer bad symptoms
were reported by the experts in the new sample.

4.1.5. Application of the rule sets to the new posters
The specimens were also evaluated using a systematic application of the
previously formulated rules. The results are shown in Tables I and 2. The
figures show (i) the number of posters in the sample to which the rule was
applicable; (ii) the number of times 'bad' symptoms were observed in those
posters by systematic application of the rule; (iii) the number of times 'bad'
symptoms comparable to the rule were reported by the expert; (iv) the
number of times 'bad' symptoms were identified by the expert when
subsequently talked-through the rules by the experimenter in a follow-up
interview.

TABLE 2. Comparison of a rule based diagnosis using (B)'s rules, with expert (B)'s
own diagnosis of bad symptoms in the same sample.

Rule Number Bad Bad Bad
of posters symptoms symptoms symptoms
to which diagnosed diagnosed diagnosed
the rule by rule by expert by expert
could be based B Bin
applied system follow-up

81 If there are left and right margins, then they
should be equal; + or - 2 mm

28 17 1 17

82 If there are top and bottom margins, then the top 28 8 8 8
margin should be less than or equal to bottom
margin

83 Characters should be recognisable 30 1 0 1
84 Characters should not touch 30 12 0 12
85 The largest block must be above the horizontal 30 11 1 11

centre of the page. If more than one large block
of equal size then at least one must obey this
rule

86 There should be less than four typefaces;
excepting any imported artworks

30 2 2 2

87 If there are three or more vertically adjacent 15 8 3 8
blocks of the same fount then the distance
between the adjacent -edges of any two of these

88 Vertically adjacent characters should not form
a word

30 0 0 0

89 The width of blocks below the centre of the
page should be less than at least one block
above the centre of the page

30 12 1 14

810 The type size of text below the centre of the
page should be less than the largest type size
above the centre of the paae

30 2 0 2

811 The bottom margin should be less than 1/3 of
the page heiaht

30 0 0 0

812 Within a box rule the space at the top, the top 15
should be less than or equal to the space at the

10 1 10

bottom
813 Blocks should be parallel to the horizontal 30 2 0 2

edges of the page or at an angle greater than 10
degrees from the horizontal

536 GEORGE GLASS ET AL.

4.1.6. Analysis
The analysis is based on the association between our identification of bad
symptoms by the systematic application of the expert's prior rules and the
expert's own reported bad symptoms. Our assumption was that the experts
would use the same rules for the new sample as for the old. Our aim was to
determine if the experts tended to agree with the application of their rules.

Fisher's exact test (Siegel, 1956) was used in the analysis of the data. The
Fisher exact test is appropriate where figures smaller than 5 occur in the
data. On this basis of this analysis Expert (A) used rules 11 and 13
consistently, and Expert (B) used rules 2 and 6 consistently. These were the
only cases in which a statistically significant relationship was found. In all
other cases we have no reason to reject the null hypothesis that the designers
did not use their rules to judge the designs.

This was an unexpected negative result which could have seriously
undermined the thesis that elements of graphic design aesthetics are rule­
based, and can be built into computer systems. However, follow-up
interviews then produced an equally unexpected positive result. In these the
researcher pointed out to the experts that their previous 'rules' had been
violated, and the experts then agreed 100% that these 'rules' had been
correctly applied in the simulated rule based system.

5. Follow-Up Interviews

Analysis of the data revealed discrepancies perhaps due to ambiguities in
some of the definitions derived from both experts' comments. To facilitate
verification and clarification of these issues follow-up interviews with the
experts were convened. On these occasions, the experts were informed of the
rules that had been elicited from their earlier diagnoses of bad symptoms.

5.1. FOLLOW-UP INTERVIEW WITH (A)

The elicited rules were discussed with (A) after the implementation tests were
completed. The discussion revealed inconsistencies in the expert's reporting
of bad symptoms and conditions which affected the application of rules and
their interdependence. In some instances the expert had not applied his
'rules' because there were additional factors which conditioned the rule's
application in the second sample.

After the follow-up interview, several of the rules were revised, adding
conditions of their application. The definitions were also refined; e.g.

(A13) Original: The words in a line should be separated by less than or equal width
to a lowercase In' in the font used; excepting lists and tables

Revised: The words in a line should be separated by less than or equal width to a
lowercase 'i'in the/ont used; excepting lists and tables.

ELICITATION OF RULES FOR GRAPHIC DESIGN EVALUATION 537

Expert (A) acknowledged that there were anomalies in his reporting of
some bad symptoms; e.g. although it was agreed that

(A8) Blocks of capital letters should be equal to or less than 4 lines
this was reported on only one occasion when the expert gave the following
reason for the bad symptom as "The bottom 7 lines are unreadable".

Although reported by Expert (A) to be important this symptom was not
reported in three other instances where we observed that the rule applied. In
our systematic application of the rule these bad symptoms were routinely
identified, reported and shown as mismatches in the result of the
implementation. Some possible other factors in the identification of this bad
symptom are:
(i) The lines of type are centred; so are the three other instances in the

other specimens.
(ii) The type was set solid, i.e. with no additional spacing between

consecutive lines of type.
(iii) The type size is 24 points.
(iv) The block of capital letters reported is positioned at the bottom of the

page.
(v) The type style is a serif typeface. Would there have been a difference if

a sans serif face had been used?
The association of these factors and perhaps others which contribute to

the symptom being reported as bad was not explicitly addressed at the
follow-up interview. However it was observed that the other three instances
had some leading (additional line spacing); it is evident that the addition of
leading would improve the readability of this block of type.

However a block of three lines of type in the same layout and with the
same type parameter as above was not judged by the expert to be bad, so the
numbe r of lines (between 4 and 7) is the crucial factor in this instance.
Enhancement of the rules and their re-application to the sample of posters
produced complete matches in the observed instances.

5.2. FOLLOW-UP INTERVIEW WITH (B)

The same procedure was employed as applied to the meeting with (A). The
researcher showed the list of rules to (B) and both referred to them during
the discussion. The discussion with (B) revealed conditions which affected
the application of rules and their interdependence as had the interview with
(A).

The new information obtained at the follow-up interview was used to
enhance the formulation and subsequent application of the (B) rules. There
were two notable instances of rule enhancement:

(B 13) Original: Blocks should be parallel to the horizontal edges of the page or at
an angle greater than 10 degrees from the horizontal

538 GEORGE GLASS ET AL.

was modified to:
The horizontal edges of blocks should be parallel to the horizontal edges of the page.
(B2) If there are top and bottom margins, then the top margin should be less than or

equal to the bottom margin
was modified to:

If there are top and bottom margins, then the top margin should be less than the
bottom margin.

Enhancement of the rules produced complete matches in the observed
instances in the re-application of the re-formulated rules to the sample.

5.3. COMMENTARY ON THE FOLLOW-UP INTERVIEWS

The results show that for the two designers studied, these designers' intuitive
judgement of bad design in a population of A4 desktop publications can be
elicited and formulated into a coherent and rigorous set of rules which are
generalizable to disparate specimens within the general population.

Analysis of the results shows that these designers (perhaps unknowingly)
do use rules to diagnose bad design symptoms. These designers' intuitive
knowledge can be interpreted as rules. A graphic designer consistently
reuses some of the same 'rules' in the evaluation of different specimens.

From their comments, it seems that the experts attempt mentally to
recompose a layout when assessing its defects before offering their
diagnosis. Indeed alternative solutions were sometimes offered. Also the
experts evidently attempt to determine the prevailing constraints in an
attempt to evolve a more appropriate alternative solution. This can be
deduced from the recommendations and suggestions they offer in their
reasons why a symptom is bad.

A graphic designer's perception of layout design also appears to be
conditioned by the number of bad symptoms present in a layout, i.e. the
fewer the number of defects the more forgiving the assessor. Consequently a
major defect is sometimes overlooked where there are few or no other bad
symptoms. Where there are many bad symptoms the expert's diagnosis is
more stringent.

Graphic designers may apply their rules inconsistently to different
specimens. The evidence suggests that the performance of the rules benefits
from feed-back to their source, i.e. it was observed that rule application was
highly consistent with the expert after the follow-up interview.

It has been demonstrated that the systematic rule based procedure is
more consistent than the expert in the application of rules formulated from
the expert's comments.

ELICITATION OF RULES FOR GRAPHIC DESIGN EVALUATION 539

6. Some Possible Causes of the Experts' Inconsistency

What were the reasons for the experts' inconsistency in the application of
their rules? The experiment shows that the expert's judgement is not
absolute, it is provisional and inconsistent. Inconsistency suggests that the
expert is perhaps uncertain of the application of the rule and/or the factors
affecting its application. It may also reveal the addition of new rules. But this
is difficult to verify. It may show the withdrawal of a previously used rule.
The addition or withdrawal of a rule in regrading marks the point when,
where and in what circumstances a rule is used.

The experts agreed with the rules formulated from their critiques of the
specimens in the samples when their rules were discussed at the follow-up
interview. In some instances the experts had not applied their 'rules' because
there were additional factors which conditioned the rule's application in the
second sample. One reason for this perhaps was due to the higher standard
of design reported by the experts in the second sample of specimens. As
reported earlier, the result was that the experts were more forgiving of the
bad symptoms observed in the second sample.

Inconsistency is perhaps due in part to the monotony of the repetitious
nature of following a diagnostic procedure. The variability within the sample
may be another factor, e.g. some contained imagery while others were text
only.

Inconsistency may result from visual illusions and perceptual constancy.
The expert's cognitive style may be field-dependent or field-independent,
i.e. in the perception of a publication some people may be more affected by
the content and others by the page. Inconsistency may be due to interest in
or dislike for the subject of the narrative. The expert's attitude may be
affected by low motivation resulting from the lack of interest and lack of
reward.

7. Conclusions

Pye (1978) suggests that 'people do not unanimously agree about what is
beautiful and what is not, for they do not unanimously agree about anything
whatever'. Here it has been demonstrated that complete agreement between
the successive critiques of the same expert is unlikely and suggests a reason
that agreement in different individuals' opinions should not be expected.
This suggests why a rule based system performs aesthetic evaluation with
greater consistency and reliability than experts.

We have described a novel method for the elicitation of aesthetic rules of
graphic design evaluation from two graphic design experts. The procedure

540 GEORGE GLASS ET AL.

devised relies on the graphic design experts' independent diagnosis of
symptoms of bad design in a sample of graphic layouts.

The diagnosis of 'bad' design symptoms ina graphic layout is shown to
be an effective method of making explicit the graphic designer's implicit
intuitive, aesthetic judgement. It is argued that the presence of a bad design
symptom in a graphic layout indicates that the design is not good and that
the absence of bad design symptoms suggests that the design is not bad.

The procedure devised required the graphic design experts to provide
their rationale for their diagnosis and this was used to inform the application
of their rules to the bad symptoms identified in the graphic layouts.

The subtle expressions used by the graphic design experts provided
interpretational difficulties which were resolved by the formulation of the
rules into representational statements suitable for use in a computer system
using the methodology of 'The Expert System Test'. This methodology
supports the unambiguous application of a rule in the diagnosis of a bad
symptom.

The results of our tests show that the systematic application of graphic
design rules performs more consistently in design evaluation than the
experts from whom they were elicited.

It can be concluded that:
• Rules for aesthetic evaluation of graphic design can be elicited from an

expert and consistently applied in a rule based system.
• Expert designers do not apply their own implicit evaluation rules

consistently.
• When an expert designer has their rules made explicit to them, they will

apply them consistently, in agreement with the rule based system.
The rules of aesthetic evaluation identified in this study are acceptable to

expert graphic designers, perhaps representing "canons" which they believe,
i.e. they are real aesthetic (bad, not bad) evaluation rules. With the rules
made explicit, they could be built into a computerised graphics system to
support more naive users.

References

Moore, C. J. and Miles, J. c.: 1991, Knowledge elicitation using more than one expert to
coverthe same domain, Artificial Intelligence Review,S, 255-271.

Pye, D.: 1978, The Nature andAesthetics of Design, The Herbert Press Ltd., London.
Siegel, S.: 1956, Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill Book

Company, London.
Tunnicliffe, A. J. and Scrivener, S. A. R.: 1991, Knowledge elicitation in design, Design

Studies, 12(2), 73-80.

J. S. Guo and F. Sudweeks (eds), Anificiallntelligence in Design '96, 541-559.
© 1996 Kluwer Academic Publishers.

A MODEL-BASED TOOL FOR FINDING FAULTS IN HARDWARE
DESIGNS

MARKUS STUMPTNER AND FRANZ WafAWA
Christian Doppler Laboratory for Expert Systems

Institut flir Informationssysteme
Technische Universitiit Wien

Abstract. The state of the art in integrated circuit design is the use of special hardware
description languages such as VHDL. The designs programmed in VHDL are refined up
to the point where the physical realization of the new circuit or board can be created auto­
matically. Before that stage is reached, the designs are tested by simulating them and
comparing their output to that prescribed by the specification. A significant part of the
design effort is taken up by detection of unacceptable deviations from this specification
and the correction of such faults. This paper deals with the development of VHDLDlAG,
a knowledge-based design aid for VHDL programs, with the goal of reducing time spent
in fault detection and localization in very large designs (hundreds of thousands of lines
of code). Size and variability of these programs makes it infeasible in practice to use
techniques based on a detailed representation of program semantics. Instead, the func­
tional topology of the program is derived from the source code. Model-based Diagnosis
is then applied to find or at least focus in on the component(s) in the program that caused
the behavioral divergence. The support given to the developer is sufficiently detailed to
yield substantial reductions in the fault localization costs when compared to the current
manpower-intensive approach. A prototype is currently being tested as an integral part of
the standard computer-aided design environment. Discrimination between diagnoses can
be improved by use of multiple test cases (as well as interactive input by the developer).

1. Introduction

The current state of the art in the design of integrated circuits is based on heavy
use of hardware specification languages. Starting from a specification, a new
ASIC or circuit board is designed by developing a description in such a language,
which can then be executed to simulate the functionality of the circuit. This sig­
nificantly increases the chance that errors in the design can be found and correc­
ted before the physical circuit is produced, thus reducing the costs of the overall
design process (throwing away and redoing the masks and tooling for a circuit
design that was found to be defective is an extremely expensive proposition). As

542 MARKUS STUMPTNER AND FRANZ WffiAWA

the design process continues, the design is continually refined, until a level of de­
tail has been achieved where it can be transfonned automatically into a repres­
entation at the logic gate level. The gate level description is used as the basis for
layouting and the production of the physical circuit, a process which also requires
little human interference.

As a result, IC design is increasingly getting similar to the software design
process, and the search for faults in the programs that describe the designs
tends to absorb a significant part of the design effort in the earlier stages of the
design process, all the more so since large hardware designs (comprising mul­
tiple ASIC's and microprocessors) can reach dimensions of several 100.000 lines
of VHDL code and thousands of components and signals at the top level. For
such designs, typically written by large design teams (or multiple teams at dif­
ferent physical locations), fault detection and localization becomes a very time­
consuming activity.

This paper describes the principles behind the VHDLDIAG tool that is used
as a design aid in the development of hardware descriptions in VHDL (Very High
Speed Integrated Circuit Hardware Description Language), which is probably the
most widely used of these languages. We use techniques of model-based dia­
gnosis for creating a simple internal representation of the design, checking test
runs for errors, and locating the source of the errors. If unique identification is
not possible, the tool helps at least in focusing the attention of the user (i.e., the
hardware designer) on those parts of the system where the problem originates,
proposes signals whose observation will reduce the set of diagnoses, and can also
continue analysis on the basis of observations entered interactively by the user.
The system is used in conjunction with existing commercial design support tools
(e.g., simulators and graphical design tools) and is intended for use in all design
phases where VHDL is used.

The paper is structured as follows: Section 2 takes a closer look at the hard­
ware design cycle using VHDL and the requirements for a knowledge-base de­
bugging tool. Sections 3 and 4 describe the representation and reasoning tech­
niques on the basis of a simple example. Finally, we discuss experiences with
implementation and test use of the system and compare our approach with other
work related to knowledge-based software design support.

2. The Hardware Design Cycle

Figure 1 gives an overview over the hardware design cycle using VHDL. Typic­
ally, the design of an integrated circuit (either an ASIC or a circuit board with
mUltiple ASICs mounted on it) starts with a specification delineating the func­
tional requirements.

This specification document can be given as either a pure textual document
or as a VHDL program. It usually consists of a coarse description of the inten-

A MODEL-BASED TOOL FOR FINDING HARDWARE DESIGN FAULTS 543

Tim.
AI><1l1octo<sS
Simulation tim.
ProgntlD size

Figure 1. The hardware design cycle.

ded architecture of the design, i.e., a partitioning into components, the functional
description of all parts and their interactions, and other design information such
as expected fault probabilities, used technology, timing constraints and physical
constraints (i.e., working temperature range). Finally, a testing guide will be sup­
plied. If the basic partitioning and the functional descriptions are already written
in VHDL, one gains the big advantage of being able to test or verify the specific­
ation using the mental model of the expected hardware device. Otherwise, a very
simple VHDL design will be created initially to reproduce as closely as possible
the specified behavior without paying attention to architectural or structural no­
tions.

From here on, design progresses by the addition of more detailed substruc­
ture to the design, i.e., the description of the design in terms of components and
their subcomponents. The functional behavior of the design is distributed across
the components so their interaction will reproduce the originally specified beha­
vior. Testing of the new versions of the design is achieved through simulating its
behavior and having the designer observe the data values occurring on the signal
lines between components. The graphs of signals over time are called waveforms
(see Figure 2). The waveform traces of the program to be tested, usually compris­
ing several 10.000 signal changes, are compared to the traces generated by the
specification on the same input values. From here on, we will refer to the former
as the implementation waveform and the latter as the specification waveform. A
discrepancy between the two may indicate the existence of a fault in the design.

The next abstraction level reached after the functional specification is the so­
called register transfer level (RTL). The RTL design will be much larger than the
original specification, increasing simulation and therefore testing time. A typical
RT programs could have about 6 MB source code and produce simulation runs
lasting from one hour to several days, depending on the simulated amount of
real time. After finishing the RT program implementation, a synthesis tool con-

544 MARKUS STUMPI'NER AND FRANZ WCJfAWA

!l ---!llo Y. ilm'I> !low l{Ioo Ii"o
....... 1.- 11_ ~~

.... _ .. _<MIT .. _""'""", I!III1lIIIIIlIIFIliIIIlIIIIllJlIlllIIIlIlfIIlIlIllll1I1III'll.nUDlIIIIIIIIIIIIIIIIIIIUlllllUnUlIIUlI111111I,nUlIUlIIIII1IIII!IlI11JIIII1I1IIlII'lIJIrnIlI1IIIiIIIIIlIlUlilmlll
_RWIGI_e1_MJUTM_SA(ll::l) ..,.. " t~ _ _ '~I _.
~_"_ElUUT"'_"_L(UI) '" 1I_1ftIf.IGt_ .. _ENUTJIII._8'T(~) •

.". RWlICJ' .I'I . ElUU1"_.J.Ol(.J1::1} ~ ._:~ __ >;)~ 7ZLlZHZ. .. "'. '\, ml:ii:itt -ZZZ%ll .az:aaz.
RMCR_I1 _EtuuT~_:JOIt(lI;G' 1-._""'-=::: .. "'. ·'--y-=="'==="'-,nr·=- -,,~:::.-pm::: .. ",,:,. =-~:: ~;r:~,' r ·~·T=ii?=A=ki -~';r"",=="-----'- r ,-"-"""=,,,=0:::,, ~';nr-·-=U.-'""·III

::=;~=":;;=:~t----'L.'-----'l!!.U"-U---Nr----~u,r--U----'fu,r------,N-

fT1I_~_t1 _{NljTJA.WAt-:=:r.==:::;~===~:::-===!;===~;::'===I~R-~=11 fJ1t_~_I1 _ElUUT(~_SDS F i

"._ .O'.EMIT"_"""'_l U U U, ~. I U U U U ,
...... " .fJUVT".s...",-('~) , ;' •
_MW)QI. I'1 . uwrMJCol'l(J1:::J) 1~ /"

. 1nnd'. " . 1MIr""')lMlJ3. L U . U. . ~
ft')CR_OI_[NtII'''_JCM.(11~) rr~ _ '.f! -.t "

ItW)(RJ"_ENUTM._~:iII)

tnI. RWXR. I1 . £l\llUTMdCWA 'L-_~~~~-,-J.
.rwxR_,". ElUUTM.JO"3T(1:11)

~_In_(tUUTM_:ICI . l(,,:a,

,-

n:

'---_----'r ..
=-!~-=~=:~I==========================f
. RW'IOI. eI_ElUUTM)O(ADS.L I-________________________ ----f
rrv_RW')(fI . I'1 . fJUUTfAfl".L

·~~~~:;:t:::~
mt_~_"_flUUTf.IOfIIt1"_lr

___ n_<Mrf"'_~ 1IIlIlI1I1IIIIllInnJIIIIlII1IIIlJlIlllIIIIIlnJll1lll1lll1lll1mlllll1fll1llllllllmnJnl11llllllIDJI1IJiIIII1IIImll1ll1llll11111D11ll1111111l1IrlJll1l1lllll1l1lllllmllJ1l1llHl11
AW)(A., f.NU'TIA IItE __ L

~_.....;;.,;;_""",;;'.""",_,r----m,~'-'.~Ulf~r-lJt~
fTI . R'fOGiI _I1 . ENU1MJCD!

fw-.Il_E,IulIr""-~l.' ___ ._, __ , __ ~. ______ , _ !_~ ___ 3. _-==_-=
~---"-"",""'_>ICO""t--------------------------u
rwaRW)GI~I1_fMlT"_JQJt""~ ________________________ -IIl
~~-:::~~--o

Figure 2. A typical wavefonn trace.

verts it to a gate-level program with a limited amount of user interaction (which
deals with specification of certain parameters such as, say, the width of a bus).
Gate-level programs are then simulated as welL The resulting waveform traces
are checked for correctness. Because of the automatic conversion, a detected mis­
behavior of a gate-level program (that performed correctly at RTL level) can only
be caused by timing problems and virtually never by a functional fault. Timing
faults are mainly corrected using the synthesis tool and trying different parameter
values. The gate-level VHDL code is not modified by hand. In contrast, faults in
RT programs or specifications are directly corrected. While the assumption usu­
ally holds that the more abstract (already tested) program is the correct one, the
designer also has to check for the possibility that this is not the case.

Figure 3 shows the difference between the abstraction levels using a small part
of a VHDL behavior and a gate-level program.

Next, we take a brief look at the testing considerations for the various design
phases.

Functional Specification In addition to preliminary information about structure
and behavior, the functional specification als contains information about the

A MODEL-BASED TOOL FOR FINDING HARDWARE DESIGN FAULTS 545

signal S,A,B: integer := 0 ; signal S,A,B: bit_vector(1 to 4) := ·0000· ;

S <= A + B ; c1: carryadder(A(1),B(1):0' ,S(1),QC1);
c2: carryadder(A(2),B(2),QC1,S(2),QC2);
c3: carryadder(A(3),B(3),QC2,S(3),QC3);
c4: carryadder(A(4),B(4),QC3,S(4),Q);

(1) Behavior (2) Gate-level

Figure 3. VHDL behavior vs. gate-level: Adding two numbers.

intended gate technology, environmental considerations, etc. It can only be
verified by comparison to the underlying mental model or older versions of
itself, possibly also written in VHDL (in the case of regression tests).

Register Transfer Program Multiple versions of the RTL program will usually
be created until the program meets the requirements (Le., matches the beha­
vior of the specification). Every version must be tested using most of the test
cases. Usually up to 20 versions are shipped out for testing. Comparing test
results and finding the faults is a major task while programming in register
transfer level. A study has shown that up to 60 percent of the effort in this
design stage are used for these tasks.

Gate-level Because simulation time and compare time are very high compared
to RTL programs, automatic detection of discrepancies is also recommen­
ded for the gate-level phase. A simulation run is typically compared with the
simulation run of the associated RT program. Subsequent gate-level versions
are not directly compared to each other.

3. Knowledge-Based VIIDL Design Support

The original goal of the project was to develop a tool that would reduce the over­
all design effort, without engendering significant changes in the overall structure
of the design process (which is codified and fixed by the funding institution).
The main interest lay in reducing the amount of time for each individual simu­
lation/fault detection/fault correction cycle, as well as (by improving the quality
of the detection and correction stages) possibly reducing the number of cycles.
Figure 4 shows the design subcycle. The time involved in a single iteration de­
pends strongly on the complexity and size of the program (Le., the time increases
as the design progresses).

Of the three stages, simulation is already being handled by highly optimized
commercial tools. Detection and correction are largely manual tasks open to im­
provement.

Of major importance is the requirement that any tools generated should not
result in the need to alter or embellish the design cycle or the designs themselves.

546 MARKUS STUMPfNER AND FRANZ WafAWA

The effort of using the tools should be kept to a minimum, Le., while entering
numerical parameters would be considered adequate, for example, developing a
separate representation for every design was out of the question. This is import­
ant since designs often involve integration of VHDL code coming from differ­
ent sources which mayor may not be using the same tools (e.g., circuits from
subcontractors or from the extensive standard libraries supplied by the simulator
companies).

Figure 4. The VHDL design subcycle.

What is required therefore is a generic approach that will allow the mapping
of the semantics of a VHDL program to the somewhat abstracted internal repres­
entation. Given a discrepancy, the resulting model of the program should then be
analyzed to find or at least limit the area of the program where the fault can have
originated. Therefore, the model must represent the structure and the functional
and causal relationships between the signals in the VHDL program. This can
be achieved with an adaptation of the representation and reasoning mechanisms
commonly used in model-based diagnosis. However, apart from the model, we
also need to derive the observations that describe the actual fault which occurred.
Since virtually all the information available about a simulation run is contained
in the resulting waveforms, the comparison of specification and implementation
waveforms is a crucial prerequisite to checking the correctness of the program
and an integrated part of the tool. Therefore we deal with this issue first. Section 4
deals with the diagnosis process.

3.1. FINDING FAULTS IN THE DESIGN

Currently, comparison is done manually by the user (hardware developer) with
the help of test benches which can be used to format the output in an appropri­
ate manner. However, the test benches themselves require significant development
effort and are by their nature both specific to a particular circuit and abstraction

A MODEL-BASED TOOL FOR FINDING HARDWARE DESIGN FAULTS 547

level. Ultimately, a major part of the detection effort is spent by the designer in
scrolling along an implementation waveform such as in figure 2, trying to spot
timing or signal value differences with regard to the matching signal from the
other trace.

The VHDLDIAG diagnosis tool eliminates the need to write testbenches by
executing an automatic comparison between implementation and specification
trace. Internally, a waveform trace is represented as a set of events, each of which
is a tuple (s, v, t) representing the fact that a certain signal s changed to value v at
time t. The value of each signal at an arbitrary point in time is the value produced
by the last event up to that time. Instead of checking the waveforms manually, the
designer now merely needs to provide

- the specification of which signals are to be simulated.
- the choice of the exact comparison operator.

All the traced signals can be compared in a single comparison run after the
simulation is finished. 1 Note that programs have to be syntactically correct to
be simulated. Also, the approach obviously cannot deal with errors that do not
produce divergent signal values, Le., a nonterminating loop inside a user-defined
function, which will simply cause the simulation to hang.

The need to provide a choice of compare operators arises from the fact that
every program manifestation may have a (slightly) modified behavior that is ex­
pressed by subtle waveform trace differences without impeding the correct func­
tion of the design. These differences can occur, for example, because abstract
hardware descriptions do not take delay times into account while gate-level de­
scriptions do, or because a simulation run contains minor errors (Le., double ini­
tialization cycles) that do not influence the overall outcome. Testing that both
traces are identical is therefore not always an useful way to detect errors, despite
the deterministic nature of the simulation. Another (real world) example would
be that of two otherwise identical simulation runs using different clock cycles. In
such a case an identity comparison of signal value behaviors would deliver liter­
ally thousands of errors. The different compare operators can be used to introduce
tolerances into the comparison process.

Identity (I) Comparing for identity means that an error occurs if at some time t a
signal s has different values in both traces.

Identity plus Tolerance (IT) The introduction of a tolerance limit allows a small
temporal difference 8 between two waveforms. An event that occurs at time
t in one waveform trace must occur in the interval [t - 8, t + 8] within the
second trace.

ITbe number of signals to be traced and compared is currently not restricted by the diagnosis
tool but by the simulators which do not have the capacity to trace a large number of signals, as the
ability to consider more than about a hundred signals per run (out of, say, 10,000 in a large ASIC)
was beyond the capability of any human observer.

548 MARKUS STUMPI'NER AND FRANZ WafAWA

Functional (F) A functional comparison ignores the absolute time values in both
traces. Instead, the events in both waveform traces are grouped according to
the partial order defined by their time values. All events occuring at the same
time are summarized in a so-called state. Two waveforms are said to be equal
if their sequences of states are equal.

Functional plus Tolerance (FT) This mode allows an event a to change its pos­
ition with regard to an event b in the functional ordering, as long as the relat­
ive position of a to b is not displaced by more than 8 along the original time
axis.

The following is an estimate of the utility of the different compare modes
based on use with actual trace files (0 - never used, I - always used). Several
modes can be used for comparing the same pair of traces. Interactive tuning of
the compare parameters is then used to improve the hit rate beyond the values in
the table.

Compare Mode Degree of Fault detected No fault detected
Utilization but no fault but real fault

I 0.7 0.5 0
IT 0.5 0.4 0.1
F 0.5 0.2 0.1
Ff 0.2 0.2 0.2

From a more theoretical viewpoint we can order the compare modes by their
relative strictness. In a two dimensional space, each dimension consisting of pos­
sible waveform traces, we denote by Rm the number discrepancies reported by
each mode m E {I, IT, F,FT}. The following relations hold for all possible
traces:

RJ C Rp C RpT
RJ C RIT C RpT

The comparison process also allows for sampling, i.e., the restriction of the
comparison to specific, possibly periodic time points or intervals during the sim­
ulation.

The need to provide tolerance intervals for values instead of event times did
not arise as floating-point signals occur rarely in the designs. It is, however, pos­
sible for different data types to be used for a pair of matching signals in the two
traces. Gate-level programs, for example, typically use a four-valued logic and bit
vectors where behavior and register transfer programs use nine-valued logics and
integers, respectively. A simple value comparison would result in many spurious
errors. Therefore, the designer can specify equivalence classes for data values to
be used during the comparison.

In summary, the compare functionality implemented in the diagnosis tool
is generic and not tied to a particular commercial simulation environment.

A MODEL-BASED TOOL FOR FINDING HARDWARE DESIGN FAULTS 549

It makes test bench generation unnecessary and the required parameters can
usually be chosen without problems by the designer. The result is a set
of observations that are delivered to the actual model-based diagnosis en­
gine, of the form (Signal, {(Value, Time)I ... }) for correct signal events and
(Signal, Value, Expected_Value, Time) for discrepancies, i.e. deviations from
the correct behavior. These observations are the basis for deducing which (prob­
ably unobserved) parts of the system may contain the fault.

4. Locating Design Defects

After finding the symptoms (signals showing a discrepancy), we have to find their
source (as mentioned, typically only a few percent of the signals in a system are
observed).

4.1. ADAPTING MODEL-BASED DIAGNOSIS TO DESIGN PROBLEMS

The model-based approach is based on the notion of providing a representation
of the interactions underlying the correct behavior of a device. By describing the
structure of a system and the function of its components, it is in principle possible
both to reason about the way to achieve desired behavior (Stroulia et al., 1992),
i.e., to synthesize a design (although this requires a very detailed model), as well
as to ask for the possible reasons why the desired behavior was not achieved. In
the diagnosis community, the model-based approach has achieved wide recogni­
tion due to the advantages already mentioned: once an adequate model has been
developed for a particular domain, it can be used to diagnose different actual sys­
tems from that domain. In addition, the model can be used to search for single or
multiple faults in the system without alteration.

The usual model-based system representation in diagnosis can be adapted to
the design of VHDL programs without much trouble. A system is assumed to con­
sist of a set of components COM P, whose correct behavior is described by a lo­
gical theory called system description (SD). The assumption that a component C
behaves correctly is expressed by the fact ok(C). The set of observations OBS
contains statements about the actual, observed behavior of the system.

Using the standard consistency-based view as defined by Reiter (1987), a dia­
gnosis a for a VHDL program is a subset of CO M P S such that the assumption
of incorrectness for exa~tly the components in a is consistent with the observa­
tions:

SD U OBS U {ok(c)ic ¢ a} U {...,ok(c)lc E a} ~ 1..
The basis for this is that an incorrect output value (where the incorrectness

could be observed directly or derived from observations of other signals) cannot
be produced by a correctly functioning component with correct inputs. Therefore,
to make the system consistent and avoid a contradiction, the component must be
assumed to work incorrectly. In practical terms, one is interested in finding rnin-

550 MARKUS STUMPTNER AND FRANZ WC1fAWA

imal diagnoses, i.e., a minimal set of components whose malfunction explains the
misbehavior of the system (otherwise, one could explain every error by simply
assume every component to be malfunctioning). We will return to the special fea­
tures involved in diagnosing designs instead of finished artifacts, after discussing
the representation.

Developing a model-based representation for VHDL programs faced two
problems. First, the definition of formal semantics for VHDL is an open research
topic (Kloos and Treuer, 1986), although the definition of the VHDL languages
as an IEEE standard means that the existing commercial VHDL environments
are reasonably compatible. Second, the size of the programs involved precludes
the use of a more intricate representation. Merely executing (i.e., simulating) a
VHDL program using a highly optimized commercial simulator takes from hours
to days of real time on a high-end workstation. Therefore, diagnosing a complete
logical representation of the full VHDL program and its semantics is not feasible.
A strongly abstracted view of the design must be used for diagnosis. Accordingly,
our representation abstracts over values and time points (Hamscher, 1991), but re­
tains the capability to distinguish between the initialization phase and operating
mode of a circuit, a requirement for handling feedback loops.

Additional criteria for the choice of representation were:

- No diagnoses may be excluded due to abstractions. In other words, mislead­
ing the designer is worse than offering him an answer that does not uniquely
identify the component involved.

- Integration with available commercial simulation packages.
- Computational costs must be minimized by requiring very few additional

simulation runs.

The principal idea is to abstract as much as possible over time and values on
the one hand, while preserving the capability to discriminate between substan­
tial parts of the VHDL-code on the other hand. Stronger discrimination between
diagnoses can be achieved by applying multiple test cases and measurement se­
lection (i.e., specifying signals that offer good chances of discriminating between
diagnoses when included in a trace). Further discrimination can be achieved by
requesting the user to evaluate the correctness of particular signals.

4.2. A VHDL EXAMPLE

To give an example of how to design models and find faults in VHDL, we intro­
duce a simple VHDL program which represents a device we have called D75. The
D75 is a sequential device with five input ports a, b, c, d, e and three outputs /, g,
andh.

A possible initial design of the D75, consisting of four components, is shown
in Figure 5. A designer who uses VHDL must now implement a program for
every component to get the same behavior as the specification. The behavior can

A MODEL-BASED TOOL FOR FINDING HARDWARE DESIGN FAULTS 551

..........

1--_0{] g
S3

e O------"~.~~):.+-.... ---.
f---o{] h

Figure 5. The D75 - Diagnosis components.

be tested by checking the waveform traces for every test case specified by the de­
signer. If this check leads to discrepancies we want to find the component that
causes the misbehavior. The dotted lines in Figure 5 show the functional depend­
encies between inputs and outputs of the components.

The following VHDL code fragment describes the internal topology of the
D75 as shown in figure 5. (A full VHDL program would include additional de­
clarations; they are not required for understanding the example and hence omit­
ted.)

entity d75_e is
port (signal a,b,c,d,e: in integer;

signal f,g,h: out integer);
end d75_e;

architecture a2 of d75_e is

signal s1,s2,s3: integer := 0;

begin
i1: c1 port map (a,b,c,s1,s2);
i2: c2 port map (s1,s3,f) ;
i3: c3 port map (d,e,s3,s3) ;
i4: c4 port map (s2,s3,g,h) ;

end a2;

This VHDL top level implementation of the D75 shows the most important
VHDL components, entities and architectures. Entities are interface declarations,
whereas architectures are behavior definitions, i.e., they associate a behavior with
an entity. An architecture consists of a set of concurrent statements, so called be­
cause they are executed in parallel (il ... i4 in the example above). Communic­
ation between concurrent statements is achieved by signals. Signals are defined
in the declaration part of the architecture or entity, or in the interface declaration
(port ...) of the entity. VHDL is strongly typed. Each entity has a type associated
with it (this means that multiple entities of the same type can exist). For brev-

552 MARKUS STUMPTNER AND FRANZ WC1fAWA

ity, we have omitted the type definitions cl, c2, c3, and c4. For details on
VHDL syntax and semantics see, e.g., IEEE (1988).

The behavior of the concurrent statements in the D75 is described by signal
assignments for every concurrent statement. We write ini for the i-th input and
ou ti for the i-th output of the concurrent statement. We order the signals of the
port maps so that input signals come first and outputs last.

il port map(inl,in2,in3,outl,out2)
outl <= inl * in2;
out2 <= (-l)*(in2 * in3);

i2 port map(inl,in2,outl)
outl <= inl + in2;

i3 port map(inl,in2,in3,outl)
outl <= inl + in2 + in3 after 5 ns;

i4 port map(inl,in2,outl,out2)
outl <= inl;
out2 <= in2;

A concurrent statement represents a parallel process associated with a partic­
ular component in the system. Due to the hierarchical structure of entities (each
of which has a set of concurrent statements associated with it), VHDL code is
partitioned into hierarchies of concurrent statements which usually bottom out in
a sequence of sequential statements, since the computation of a new signal value
(which in our case only uses standard arithmetic operators and a simple delay) can
be arbitrarily complex, using library functions and user-defined functions that use
the full expressiveness of the imperative language parts of VHDL (these bear a
strong resemblance to the language Ada). The current version of the VHDLDIAG
system does not analyze the semantics of sequential statements, its granularity is
at the level of concurrent statements.

4.3. SYSTEM DESCRIPTION

Since the simulation is executed by commercial simulation tools, the internal state
of the system as it is simulated is not visible, apart from the signal values that
are contained in the trace. Therefore, it is not possible to determine by observa­
tion in which manner exactly a particular (e.g., incorrect) data value was com­
puted. VHDLDIAG analyzes the VHDL code statically and computes the func­
tional dependencies between signals (i.e., which signals are possibly involved in
the computation of which other signals) regardless of whether the actual branch of
the program that contains the signal assignment in question is actually executed
at runtime. The system model based on functional dependencies is then used to
search for the components which are responsible for the discrepancies. For ex­
ample, in the D75 circuit, 81 depends functionally on signals a and b.

The main idea of our abstraction is to ignore time and values of the signals.
In our system description we only talk about correct or incorrect signals which
means that we do not care when the discrepancy occurred and what the expected

A MODEL-BASED TOOL FOR FINDING HARDWARE DESIGN FAULTS 553

value would be. A simple ordinal time axis is retained for the handling of feed­
back loops. The length of the time axis is equal to the number of components
(since we are ignoring actual time values, n time steps are sufficient to propagate
any observation through all components in the system).

On one hand this abstraction has the advantage that we do not need to reason
about thousands of time points for several hundreds of signals. On the other hand
it has the obvious drawback that we can exclude fewer diagnoses than with a de­
tailed model. However, programmers use this abstraction during debugging very
effectively to identify the faulty concurrent statement.

4.3.1. Components
The system description modeling the component behavior of a VHDL program is
a set of sentences (one for each value of T) on the time axis) for every concurrent
statement C E COM P S and out; E out(C) of the form

ok(C) 1\ ok(inlh 1\ ..• 1\ ok(inn)T -t ok(C,out;)T+1
and for the initialization
ok(C) -t ok(C,out;)o
where out; depends functionally on the input signals inl ... inn. In effect

these rules state that the output of a component is correct if the component is cor­
rect and the input signals on which the output depends are correct. For example,
the following describes the concurrent statement i4 in the D75:
ok(i4) 1\ ok(s2h -t ok(i4,gh+1
ok(i4) 1\ ok(s3h -t ok(i4, hh+1
where T E {I, ... ,4}

4.3.2. Connections
Let Driver(s) = {clc E COMPSI\s E out(c)} where sisasignal. The system
description modeling the connections of the VHDL program given by E and A is
the set of sentences which includes for each signal s E Signals(A, E) 1\ s E
out(c) 1\ c E COM P S the sentence

ACjEDriver(s) ok(cj, sh -t Ok(S)T
i.e., the output of a signal is correct if all signal values being placed on it are

correct. For example, given component i3 from our example the rule
ok(i3, s3h -t ok(s3h

must be element of the system description.
For a more detailed discussion of the representational issues, see Friedrich et

al. (1995).

4.4. COMPUTING DIAGNOSES

Given the system description, Diagnoses are computed by applying the stand­
ard hitting set DAG method as described in Reiter (1987), Greiner et al. (1989)

554 MARKUS STUMPTNER AND FRANZ WarAWA

and de Kleer (1995). In principle, the method is based on computing the so­
called conflict set. In MBD terminology, a conflict is a disjunction of abnormal­
ity assumptions for individual components that is implied by S DUO B S. In
other words, at least one of the components in C must be abnormal for S D to
be consistent with OBS. Computing a minimal hitting set for the set of min­
imal conflicts yields a diagnosis. The system description basically has the effect
of propagating correctness assumption claims along signals as long as compon­
ents are assumed correct. If an inconsistency is derived because the correctness is
propagated to a signal that was observed to be incorrect, the components involved
in the propagation are part of the conflict. E.g., in Figure 5, if signals 81 and 83
are known to be ok, but ...,ok(f) E OBS (f is known to be not ok), and ok(i2)
is assumed, then ok(f) will be derived, yielding a contradiction that results in the
conflict {i2} (i.e., i2 must be part of any diagnosis given these particular observa­
tions). Various heuristics are used to restrict the size of the hitting set DAG and
improve performance. For more detail, see Friedrich et al. (1995).

The diagnosis tool (called VHDLDIAG) has been implemented in Smalltalk
(Visualworks) and is currently used in actual production work by selected design­
ers. Below are typical performance figures, produced with an actual ASIC:

Components at top level 379
Number of interface signals at top level 210
Number of signals attop level 412
Maximum number of levels
Average number of levels
Size of source code
Number of gates in produced circuit

Simulation and Compare time
Actual Diagnosis time

4.4.1. The assumption of model correctness

5
",2
6MB
> 100,000

30 minutes
2 minutes

In a certain respect the problem of diagnosing a design is unique in the realm of
model-based reasoning. In conventional model-based diagnosis, the system de­
scription is an exact specification not only of the overall behavior of the system,
but of its individual parts. For example, when diagnosing the hardware imple­
mentation of a 16-bit adder, the adder's system description will describe the be­
havior of the logical gates from which the adder is composed. A fault is assumed
to occur because one of the components does not act according to its specifica­
tion.

In diagnosing a design, however, the assumption that the specification will be
a complete representation of the structure of the artifact is obviously invalid. In
our case, the internal structure and the way in which the behavior is described
will differ widely between a functional specification and its RTL implementation

A MODEL-BASED TOOL FOR FINDING HARDWARE DESIGN FAULTS 555

- the implementation will usually contain many internal components and signals
which have no counterpart at all in the functional specification. The only part of
the specification that is directly usable is the waveform trace generated by the spe­
cification. We are therefore forced to base our model of the VHDL implementa­
tion on analysis of the code of the implementation itself. That implies, however,
that it is the model that reflects the incorrectness of the design and whose output
(the implementation trace) is confronted with observations that are correct (the
specification trace), whereas in traditional diagnosis problems, the model is cor­
rect and it is the observations, made from the behavior of the actual system, that
reflect on the incorrect behavior. In addition, the question of how a design defect
may manifest itself in the model leads us to the related issue of so-called struc­
tural faults.

4.4.2. The assumption of structural correctness
Structural faults are faults that do not occur because a component is functioning
incorrectly, but because there is a missing or additional connection between two
components, as in a bridge fault in electrical engineering. The bridge fault prob­
lem was first noted by Davis (1984) and mainly excluded from consideration in
subsequent work on diagnosis. However, it is very relevant when diagnosis is ap­
plied to designs, and in particular, software designs. The use of an incorrect ar­
gument in an expression (e.g., by using a different variable name, switching the
ordering of arguments), or the omission of part of a complex expression constitute
typical examples of such faults.

The usual way for dealing with structural faults is to assume the existence of
a different, complementary model that allows to reason about the likelihood of
such faults (Le., modelling of spatial neighbourhood in the case of bridge faults).
In software, such models could take the shape of considering name misspellings,
variable switchings, or attempts to repair expressions (Le., synthesize missing
parts) to provide correct functionality. This is an open research issue.

5. Discussion

The notion of using knowledge-based systems as a support for software and re­
lated design tasks is not new. Previous research efforts usually aimed at work­
ing with languages that had strictly limited expressiveness, such as telecommu­
nications protocols (Riese, 1993) or logic programming (Console et al., 1993).
In addition they usually dealt with relatively small problems so that employing a
representation that expressed the complete semantics of the problem domain was
feasible. In our case, an adequate subset of the language had to be identified so
that the representation would be abstract enough to deal with large programs, but
would work even if the full expressiveness of VHDL were used in the programs.
The result was a representation that focuses on the functional structure of the pro-

556 MARKUS STUMPTNER AND FRANZ WcrrAWA

gram. Even if full discrimination (Le., finding a unique minimal diagnosis) is not
achieved in a particular case, the tool still aids the designer in understanding the
functional dependencies in the circuit. Information flow is described and import­
ant areas are identified so the designer can start debugging with a more detailed
focus. Other salient points of the problem domain include:

- the existence of hidden structural differences between specification and im­
plementation - signals may not match or have no counterpart, compon­
ents may have no counterpart, the internals of components may have been
changed.

- functional differences between specification and implementation - e.g., pro­
gram control structures may be replaced by interacting subcomponents

- parts of the system may be unrepresentable - for example, the simulator may
be coupled with actual existing hardware that is too complex to be integrated
into the design (e.g., a commercial microprocessor to be mounted on a circuit
board that is being simulated).

- No changes to the design
- Requirements for external axiomatizations are inacceptable, as their pre-

paration is time-consuming and requires additional training for designers
who already have to cope with the complexity of VHDL. Finally, in case
of designs coming from different teams, (sometimes subcontractors in dif­
ferent companies using different development methodologies), or in case
of designs that incorporate complex existing hardware (i.e., the abovemen­
tioned board designs which include a microprocessor and therefore require
interfacing to an actual, physical processor for simulation) external axiomat­
izations are often impossible to obtain.

The last point bears some elaboration. First, it effectively disqualifies the
verification-based systems which are available on the market and often applied
successfully in similar circumstances. These systems do require a separate axio­
matization of the properties to be verified (for each circuit), and even the best
available are very limited in the size (I'V 1 K lines of actual VHDL code) as well as
complexity of the systems they can be applied to (e.g. Barrow (1983) and Burch
(1994». In addition, while they can be used to verify individual properties of a
program, they do not try to pinpoint the location of the error. Thus they comple­
ment the simulation/debugging approach rather than avoiding it.

In design, model-based techniques have been used to guide the redesign of
a component or system (Goel and Chandrasekaran, 1989; Stroulia et al., 1992).
Like the verification approach, this concept requires the existence of an independ­
ent functional specification which describes (qualitatively or quantitatively) the
variables and causal relations in the system. In the VHDL design domain, such a
specification unfortunately does not exist. Instead, wavefonn traces provide spe­
cifications about particular aspects of the system behavior (test cases) on the basis

A MODEL-BASED TOOL FOR FINDING HARDWARE DESIGN FAULTS 557

of limited observations of the system. The only description about the composi­
tion and detailed workings of the design is the possibly incorrect program itself.
A description of the functionality of larger program components is therefore not
available. What is available as the basis of a system model are the semantics of
individual VHDL statements.

With our current abstract representation, the guidance for redesign apart from
pointing out the violating statement is limited. Consider the statement S < =
f (El, ••• , En) . If it is assumed to behave incorrectly, this might be due to a
number of reasons which would lead to different redesign approaches, such as
changing one of the expressions Ei, changing the function f, changing the tar­
get S or eliminating the whole statement. Providing capabilities for distinguishing
between these possibilities requires detailed reasoning about sequential statement
semantics and variable/signal values. The local integration of such mechanisms
in a manner that does not significantly degrade overall performance (and again
limit practical usability) is an open topic. One possible approach would be the
use of fault modes, which are commonly used in hardware diagnosis to discern
between different types of faults and prune the search space. Software diagnosis
must in principle deal with an unlimited number of fault models including struc­
tural faults. The possibility of expressing structural faults through fault modes has
been recently examined in Bottcher (1994).

Finally, much work has been done in knowledge-based debugging support for
software. We cite two examples. The PROUST system (Johnson, 1986) requires a
separate description of the program to be manually developed and entered so that
assumptions about the intentions of the programmer can be gleaned from compar­
ison with the description. Similarly, in Allemang and Chandrasekaran (1991), it
is necessary to provide an axiomatization of the intended functionality. The Talus
system (Murray, 1988) attempts to match student solutions to example programs
to find the the source of divergent outputs. While structural variations between
the example and student programs are allowed, the system still requires a dir­
ect match between the subresults produced inside a function and also uses the
full semantics of the language used (a functional subset of LISP) to reason about
the program, an approach that is not acceptable as a general method in our case,
where the computational effort would be too high. Both for PROUST and Talus,
the goal is to aid students, i.e., novice programmers in finding as many bugs as
possible in small programs. In contrast, in our case, the goal is to help experts or
at least experienced users orient themselves in very large programs of different
structure and functional architecture.

6. Conclusion

In this paper, we have described the VHDLDIAG tool which provides design sup­
port by using model-based reasoning for determining the source of errors in hard-

558 MARKUS STUMPTNER AND FRANZ WafAWA

ware designs that are written in the VHDL specification language. One of the
basic requirements was that the tool should fit into the standard design process
used. The tool parses the standard VHDL source code written by the designers,
and derives observations about execution correctness by automatically comparing
the waveform traces produced by specification and more detailed implementation
versions of the VHDL design.

The system uses a model of the functional structure of the design to identify
components that are responsible for incorrect behavior. If a test case does not
allow complete discrimination of the components involved, multiple test cases,
automatically generated proposals for measurement selection, and finally inter­
active input from the designer can be used for restricting search further.

The tool has been implemented in VisualworkslSmalltalk and has been suc­
cessfully used for finding faults in full-scale, actual ASIC designs. It is currently
being tested in its future production environment. Results so far indicate sav­
ings of up to 10 % of the whole design cycle. Possible future improvements
include a more complete representation of VHDL semantics. In particular, we
will investigate the representational issues of the sequential parts of the language
along the lines of design for imperative languages as described in Allemang and
Chandrasekaran (1991) and Liver (1994). While computationally more expensive,
this representation could be used (strictly locally) to increase the discriminatory
power if the standard representation produces too many diagnosis candidates. In
the vein of the tutoring environments discussed in the previous section, we also
intend to utilize this for providing limited repair capability for designs.

Acknowledgement

This work was supported by Siemens Austria under project grant DDV GR
21196106/4).

References

Allemang, D. and Chandrasekaran, B.: 1991, Maintaining knowledge about temporal intervals,
Proceedings 6th Knowledge-Based Software Engineering Conference, IEEE, pp. 136-143.

Barrow, B.: 1983, Proving the correctness of digital hardware designs, Proceedings AAAl, pp. 17-
21.

Bottcher, C.: 1994, No faults in structure? How to diagnose hidden interaction, Proceedings lJCAl,
Montreal.

Burch, J. R.: 1994, Symbolic model checking for sequential circuit verification, IEEE Transactions
on Computer-Aided Design of Circuits and Systems, 13(4),401-423.

Console, L., Friedrich, G. and Theseider Dupre, D.: 1993, Model-based diagnosis meets error dia­
gnosis in logic programs, Proceedings IlCAl, Morgan Kaufmann, pp. 1494-1499.

Davis, R.: 1984, Diagnostic reasoning based on structure and behavior, Artificial Intelligence,
24:347-410, 1984.

de Kleer, J.: 1995, Focusing on probable diagnoses, Proceedings AAAl, Morgan Kaufmann,
pp.842-848.

A MODEL-BASED TOOL FOR FINDING HARDWARE DESIGN FAULTS 559

Friedrich, G., Stumptner, M. and Wotawa, F.: 1995, Model-based diagnosis of hardware designs,
In Proceedings on the Sixth International Workshop on Principles of Diagnosis, Goslar.

Goel, A. and Chandrasekaran, B.: 1989, Functional representation of designs and redesign problem
solving, Proceedings IleAl, Morgan Kaufmann, pp.1388-1394.

Greiner, R., Smith, B. A. and Wilkerson, R. W.: 1989, A correction to the algorithm in Reiter's
theory of diagnosis, Artificial Intelligence, 41(1),79--88.

Hamscher, W. C.: 1991, Modeling digital circuits for troubleshooting, Artificial Intelligence, Sl(1-
3),223-271.

Johnson, W. L.: 1986, Intention-Based Diagnosis of Novice Programming Errors, Pitman Publish­
ing.

Kloos, C. D. and Breuer, P. T. (eds): 1995, Formal Semanticsfor VHDL, Kluwer, Dordrecht.
Liver, B.: 1994, Modeling software systems for diagnosis, Proceedings Fifth International Work­

shop on Principles of Diagnosis, New Paltz, NY, pp. 179-184.
Murray, W. R.: 1988, Automatic Program Debugging for Intelligent Tutoring Systems, Pitman

Publishing.
Reiter, R.: 1987, A theory of diagnosis from first principles, Artificial Intelligence, 32, 57-95.
Riese, M.: 1993, Model-based diagnosis of communication protocols, PhD thesis, EPFL, Lausanne.
Stroulia, E., Shankar, M., Goel, A. and Penberthy, L.: 1992, A model-based approach to blame-

assignment in design, in J. S. Gero (ed.), Artificial Intelligence in Design '92, Kluwer,
Dordrecht, pp. 519-537.

IEEE: 1988, Standard VHDL Language Reference Manual LRM Std 1076-1987.

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 561-579.
© 1996 Kluwer Academic Publishers.

ON KNOWLEDGE LEVEL THEORIES OF DESIGN PROCESS

TIM SMITHERS
Euskal Herriko Unibertsitatea, Informatika Fakultatea
649 Postakutxa. Euskal Herria, 20080 Donostia, Espaina

Abstract. AI in Design research is a mixture of scientific and engineering activities, with
the emphasis on the latter_ So far, almost all of this work has been carried out in the ab­
sence of usable theories of design process. Yet, as in other areas of technological devel­
opment and application, such theoretical understanding could make a big difference to
the effectiveness and applicability of the techniques and systems developed. This paper
first briefly reviews the nature of theories in science, and the nature of the design pro­
cess with respect to this. It then reviews some important problems with attempts to un­
derstand design in terms of cognition in AI in Design research. It suggests that what we
need instead are Knowledge Level theories of design process. It also identifies the need
for greater care and precision in the use of the terms theory, model, method, and descrip­
tion in the field. It ends by identifying some important benefits the development, testing,
and use of Knowledge Level theories of design process could have on the field of AI in
Design as a whole.

1. Introduction

A review of the proceedings of the previous Artificial Intelligence in Design (AID)
conferences (Gero, 1991; Gero, 1992; Gero and Sudweeks, 1994), shows AID re­
search to be a mixture of scientific and engineering activities. The (nearly) over­
whelming emphasis is, however, on the engineering activities concerned with the
development, testing, and application of AI techniques and systems for use in
design of various kinds in various domains. (A review of AID work published
in journals yields a similar conclusion.)

So far, all of this engineering activity has been carried out in the absence of
any usable theory or theories of design process. Yet, as in other areas of techno­
logical development and application, such theoretical understanding could make
a big difference to the effectiveness and applicability of the computational tech­
niques and systems developed and applied by AID research.

The history of science and technology shows that theoretical understanding
is not a necessary prerequisite for the development and effective application of

562 TIM SMITHERS

technology. This is true for AID technology too. Good empirical understanding
is sufficient to build some useful systems, but theoretical understanding can and
does result in better, more effective, more efficient, and more acceptable applic­
ations and products. Theory also makes new ideas, techniques, and applications
possible since we cannot discover everything from empirical practice and invest­
igation alone. If this were true, we would not need any science!

For example, the steam engines of Boulton and Watt, used to power the indus­
trial revolution in England during the late 18th and early 19th century (Dickinson
and Jenkins, 1981), were all designed and built before any theory of heat engines
was developed. Thermodynamics came later, developed first (nearly) by Carnot in
1824, then, after work by Joule and Kelvin, (more completely) by Clausius, who
published his two laws on the relationship between the flow of heat and mechan­
ical work in 1850 (Hills, 1989). Boulton and Watt successfully designed and built
all their steam engines on the basis of an empirical understanding they, and oth­
ers, developed by building and testing a large number of steam engines. Today,
however, thermodynamics, together with the theory of fluid dynamics, forms an
essential input to the design of efficient and cleaner internal combustion engines.
The design and manufacture of the modem car engine would not be possible with­
out this theoretical understanding.

Another example of useful technology coming before theoretical understand­
ing was the Tea Clippers (fast square rigged sailing ships) of the 19th Century,
which were designed, constructed, and sailed to considerable (financial) success,
with no theoretical understanding of the fluid dynamics that governs the beha­
viour of both sails and hulls. Today, in contrast, this theoretical understanding
forms an essential part of the design of ocean racing yachts. A rare example of
theory coming before the technology is the computer: Thring and others had largely
worked out the basics of the theory of computation before the first computers
were designed and built during and just after the Second World War.

Some theory is, of course, used and applied in AID research, but this is either
mathematical theory or theory from other fields and domains. What we don't have
is any usable theoretical understanding of design process, the process that AID is
fundamentally concerned with: AID does not have the equivalents of theories of
thermodynamics or fluid dynamics.

A survey of AID research shows not just a lack of development of a usable
theory (or theories) of design process, it also demonstrates widespread ignorance
and neglect of related and relevant work on the fundamental nature of design pro­
cess by researchers in the Design Research community. See Akin (1978; 1986;
1988), Alexander (1971) Archea (1987), Bazjanac (1974) Cross et al. (1981),
Cross (1989), Darke (1979), Hillier and Leaman (1974; 1976), Hubka (1982),
Jones (1991), Lawson (1990), Mitchell (1990), Rowe (1987), Schon (1983; 1985;
1987; 1992a; 1992b), for some particularly relevant work in this area. As a con­
sequence, in much AID research, designing gets characterised by what we can get

ON KNOWLEDGE LEVEL THEORIES OF DESIGN PROCESS 563

computer programs to do, rather than what really goes on when professional de­
signers design. A completely inadequate characterisation of the full richness and
complexity of real designing, and of what AI-based designing systems or design
support systems must effectively deal with in real applications.

This is not the only isolation that AID research demonstrates. There is also
very little evidence of a general awareness and understanding of some signific­
ant and again relevant developments in Knowledge Engineering. In the last ten
years or so there has been a steady and effective development of understanding,
techniques, and general methods for the systematic design and construction of
knowledge systems. See Akkermans et al. (1993), Breuker and Wielinga (1988),
Breuker and Velde (1994), Bylander and Chandrasekaran (1988), Schreiber et al.
(1993; 1994), Steels (1990), Wielinga and Breuker (1987), and references therein,
for example. As a consequence, in AID, we still see systems built in ways remin­
iscent of the construction of the first generation Expert Systems of the 1970s and
early 1980s. We see very little of the kind of modelling of expertise that modern
Knowledge Engineering methods explicitly advocate and actively support. The
adoption and use of these modern Knowledge Engineering methods and tech­
niques could significantly improve the system building activities of AID research.
AID should not have to repeat the lessons of the field of knowledge systems to
develop such methods for itself.

This rather critical view of current AID research is not intended to suggest that
there has been no attempts to develop theories of design, see Akman et al. (1990),
Arciszewski and Michalski (1994), Brazier et al. (1994; 1995), Dasgupta (1991),
Gero and Maher (1990), Gero (1994), Tomiyama (1994), Treur (1991), Smith­
ers (1992; 1995), Smithers and Troxell (1990), Smithers et al. (1994), Yoshikawa
(1981) and references therein. However, none of these are explicit attempts to
develop Knowledge Level theories of design process, nor can they properly be
understood as such. It is also not the case that there has been no work reported
in AID on modern knowledge acquisition methods and relate topics, see Alberts
(1994), Alberts and Dikker (1994), Bernaras (1994), for example. Nor is it the
case that there are no examples of a good appreciation and understanding of the
relevant Design Research literature, see Blessing (1994), and McDonnell (1994),
for example. However, all of these works represent isolated exceptions rather than
a connected body of work within AID research, and hardly any of the theories
have been or are being used in practice, and thus effectively tested.

If AID research is to move on from its present largely empirical and some­
what isolated practice, it needs to become more actively concerned with the de­
velopment of usable theories of design process. It must develop theories which ac­
knowledge and reflect our understanding of designing as one of the most remark­
able and rich kinds of knowledge intensive intelligent behaviour we can observe
and study: remarkable in its achievements and rich in its diversity and generality.
The study and investigation of design in AID research should not, deliberately

564 TIM SMITHERS

or inadvertently, diminish or dismiss this remarkableness and richness. It should
lead to a better understanding and appreciation of them.

In this paper I propose that the appropriate kind of theory or theories of design
process for AID to be trying to develop, test, and use, are Knowledge Level the­
ories of design process. Knowledge Level theories could both properly connect
up with the important body of work in Knowledge Engineering on Knowledge
Level modelling of expertise and the design and construction of knowledge sys­
tems, and they could embody, in an appropriately abstract way, the insights and
understanding we have of the nature of design process developed in Design Re­
search. First, I briefly review the nature of scientific theories, and argue for a more
disciplined use of some important terms. Some problems with cognitive theories
of design process in the context of AID research are then discussed. I then re­
view Newell's concept of the Knowledge Level and the extensions developed and
used in modem Knowledge Engineering methods. Following this I present a set of
Knowledge Level principles to be used in the development of Knowledge Level
theories of design process. I end with a discussion of the role of Knowledge Level
theories of design process in AID research.

2. On the Nature of Scientific Theories

The aim of scientific theories, in a broad sense, is to offer general understanding
and explanations of the phenomena we observe. The role of explanation is to "re­
move puzzlement," (Wilkes, 1989), to demystify, and to "increase intelligibility,"
(Boden, 1962). Theories in science are the vehicles for delivering this general un­
derstanding and explanation. They are abstract statements about the general prop­
erties, characteristics, and underlying processes and mechanisms of all (possible)
instances of a real phenomenon. What makes it a theory is that it is expressed
in a way that makes no reference to, and in no way depends upon any particular
instances (examples) of the phenomenon.

To be a good theory does not require it to support predictions, but it must be
able to support the construction of effective explanations of particular instances or
classes of the phenomenon covered. Evolution by Natural Selection is an example
of a theory, widely regarded in biology as providing the best explanation of the
origin of species, but which does not support the making of predictions of what
new species will evolve, for example.

To construct effective explanations, all the terms and concepts used to form a
theory must be operationalised. These operationalisations must make it possible,
in practice, to identify and classify, unambiguously, particular examples and states
of the phenomenon covered by the theory. This operationalisation of the terms
and concepts used in a theory depend, in turn, on the successful establishment
of appropriate scientific observables, see Jackson (1995). An observable, in this
sense, is a symbolic representation of some aspect of the phenomenon being the-

ON KNOWLEDGE LEVEL THEORIES OF DESIGN PROCESS 565

orised about. It is the result of a projection process which must have two proper­
ties: (1) it must be possible for other interested persons to make the same obser­
vation, to make the same relation between the aspect of the phenomenon and its
symbolic characterisation; and (2) it must be possible to record and preserve its
value or values for future reference and comparison. It is this communally estab­
lished projection process and recordability of observables that operationalises the
concepts and terms of a scientific theory.

Thus the process of developing and testing theories in science involves, in
large part, the development and use of terms and concepts that can be operation­
alised well enough to make them effective in forming explanations. It is an on­
going and often difficult process, with no notion of absolute truth or correctness
involved. The doing of science, and, in particular, the development of scientific
theories, is thus an essentially social process (Hull, 1988).

The development and testing of theories is the concern of science. It is not the
concern of engineering, though much engineering is often required in the process
of developing and testing scientific theories. Engineering is concerned with build­
ing things, and with the materials, techniques, and methods required to do this,
including the effective use of relevant scientific theories. The practices of science
and engineering are thus often intertwined, but, nonetheless, to be distinguished.

We also need to be clear that mathematical theories (including logic theories)
are not scientific theories. They are formal constructions in the formal domain.
Mathematics provides formal languages with which to express scientific theories
and models. The use of mathematical theory for presentation and development
does not, however, mean that what is presented and developed is necessarily a
scientific theory: no amount of use of formalism necessarily makes anything a
scientific theory of anything.

2.1. ON THEORIES, MODELS, DESCRIPTIONS, AND METHODS

There is a widespread habit in the AID literature (and elsewhere) to mix up the
use of the terms theory, model, description, and method. For example, the "model
of design process" presented in Smithers (1992) and Smithers and Troxell (1990)
should be called a theory of design process: it is presented as a general state­
ment about designing in general, and is not a model of some particular kind of
designing in some particular domain. (In Smithers et al. (1994), this misuse is
corrected.) Another example is to be found in Gero (1994). This describes steps
towards a theory of exploration in designing, not a model of exploration, as the
author describe it. There are many more examples where theory and model are
used interchangeably, but theories and models are quite different things! So too
are descriptions!

Theories, as we have seen, are general statements which make no reference
to and do not depend upon particular instances of the phenomenon they are sup­
posed to be theories about. Models, on the other hand, do refer to particular in-

566 TIM SMITHERS

stances or classes of instances of a phenomenon, they must in order to be models
since models must be models of something. Models are best constructed from a
theory. In this case the theory provides a 'kit of parts' from which to build them,
but to complete a model we have to introduce boundary conditions and initial con­
ditions and any particular constraints that make it a sufficient model. Models are
thus particularisations and specialisations of theory.

Models can also be built using empirical understanding and knowledge. This
is what we have to do when we no theoretical understanding. In this case they are
particularisations of this empirical knowledge. Such models may be poor mod­
els because we cannot be sure of their consistency, whereas we can if we start
from a good theory. It is also difficult and sometimes impossible to know when
an empirical model is no longer safe to use, to know when the implicit modelling
assumptions it depends upon no longer hold. This is why engineering does not
require theory, but works better when it can use theoretical understanding.

The empirical understanding that forms the basis for all theory construction
and model building (directly or indirectly) comes from attempts to describe what
we observe. The terms, concepts, analogies, and metaphors we use in forming
such descriptions are the breeding ground for the theoretical constructs and ob­
servables that we seek to operationalise, on the way to forming good theories.
These descriptions are, however, not theories or models, and cannot be. Before
we have a theory or a model of what is described we must add further structure
that supports the explanation (and perhaps, prediction) forming that we expect
form theories. This structure is not to be found in the description: the descrip­
tion is of what needs explaining, it cannot therefore, also be the explanation! We
therefore need to guard against taking descriptions to be models or theories: in
particular, descriptions of what designers do when they design are not straightfor­
wardly models or theories of design process and should not be presented as such.

Design methods (normative statements about ways of designing) though par­
ticular to certain types of designing, are also not models or theories of design
process. Design methods (for humans or machines) specify actions, and an or­
ganization to be adopted. The aim being to ensure a good and consistent qual­
ity of designing. In principle, design methods should be derived from a model
of the particular kind of the design process involved. And, from the preceding,
the model itself is best derived from a theory of design process. If design meth­
ods are presented in the absence of a model and theory it is difficult to know that
the method itself is consistent. In other words, to know if, when it is applied, we
will get a stable design process under all conditions: one that reliably results in
a convergence on good designs. It is basically impossible to know if it is truly
normative, as it is intended to be.

Thus, it can be seen that important differences exist between theories, models,
descriptions, and methods of designing. Furthermore, if the usage of these terms
does not respect these differences important distinctions are lost.

ON KNOWLEDGE LEVEL THEORIES OF DESIGN PROCESS 567

3. On the Nature of Theories of Design Process

For there to be a scientific theory or theories of the design process, designing
must exist as a uniquely identifiable phenomenon. That is, it must have the status
of being a natural kind. This is a real question! Not all things that were once
thought to be real phenomenon in the history of science have turned out to be
so. We can be mistaken in what we try to theories about: Phlogiston, the Ether,
and Cold Fusion, for example. It could be that there is no fundamental difference
between designing and doing other kinds of knowledge intensive activities, such
as planning, scheduling, diagnosing, tutoring, playing chess, telling and under­
standing stories, etc., and some people do indeed claim this (Newell et al., 1958;
Newell and Simon, 1972; Newell, 1990). If this is true we should not be expect­
ing or attempting to develop theories of design process, rather, some more general
theory of problem solving, as Newell and Simon have long advocated. However,
for many in the field of AID research, designing is a fundamentally distinct kind
of process, and so they adopt the working hypothesis that we can form theories of
design process. The same working hypothesis underlies all the attempts to under­
stand designing in Design Research, though it is seldom, if ever, acknowledged,
and is perhaps not even recognised as being one of the starting assumptions in this
field.

3.1. PROBLEMS WITH THEORIES OF DESIGN AS COGNITION

A very common further assumption in AID, and in Design Research in general,
is that designing is a cognitive phenomenon, a cognitive process, where cogni­
tion here refers to the whole range of individual and collective behaviour that
people engage when solving problems, when designing, for example. For theories
of Design as Cognition, designing is thus defined by what people do when they
design. Consequently, we see attempts to develop cognitive theories of design:
theories of Design as Cognition. (They are often referred to as cognitive models,
but see section 2.1 above. Worse still, descriptions of human design behaviour are
sometimes presented as models of design.) This assumption, that any theory of
design process must be a cognitive theory, is so widespread that often it is not
even made explicit. It is as if it is not possible to have any other kind of theory of
design process.

There are, however, some serious methodological problems with any attempt
to develop a theory of Design as Cognition as a theory of design process for AID
Problems that go largely unnoticed and unacknowledged by those engaged in this
kind of work.

Designing forms only a part of the full range of human (cognitive) behaviour
that people are in general capable of, and typically engage in. Designing is a par­
ticularly sophisticated kind of behaviour, drawing on numerous human cognitive
capacities in complicated ways. It is, nonetheless, embedded in the full range of

568 TIM SMITHERS

human cognitive behaviour. This is what Simon argues at some length in Simon
(1981).

The problem is that Cognitive Science does not yet have any well established
theoretical understanding of the cognitive capacities used during design, and dur­
ing other kinds of sophisticated human behaviour (Newell, 1990) notwithstand­
ing. As a consequence, the terms and concepts used to present theories of Design
as Cognition cannot be operationalised well enough to support the construction
of effective explanations of human design behaviour: why designers do what they
do, when they do it, and how they do it-we are not asking for predictions here,
just good explanations! Instead, they have a more descriptive folk-theoretic status:
they can be effective in describing what happens, but not in explaining why and
how it does. This is a problem currently shared by all cognitive theories of human
behaviour which build upon, or otherwise take as a starting point, the concepts of
folk psychology. Folk theoretic concepts like beliefs, desires, goals, ideas, mental
images, etc., do not yet have any effective operationalisations. They have yet to
be established as scientific observables, and perhaps may never be so, see Stich
(1986), and Churchland (1988; 1989), for some arguments as to why not.

A simple way of seeing what consequences this problem has for trying to un­
derstand the design process, is to ask how you tell, from a theory of Design as
Cognition, when a particular human designer (or group of designers) is (or are)
doing design and when not-just asking them provides no basis for an explana­
tion! If a theory of design cannot be used to establish when a designer is doing
design and when not, it is not a theory of design! But, without a much more com­
plete general theory of human cognition, any attempt at developing and testing
a theory of Design as Cognition is going to have a very difficult time making
precisely this kind of necessary distinction. A more complete general theory of
human cognition is a necessary prerequisite to the development of any theory of
Design as Cognition, which would thus be a refinement of the general theory. AID
research can neither wait for such a general theory (or theories) of cognition, nor
can it develop one by itself, nor, as we will see, does it need to. Though it can and
should contribute to this more general project.

Another problem faced by any theory of Design as Cognition is that it needs
to deal with, and ultimately explain, all the variations and differences we see in
all human designing. The practices of experienced professional designers is full
of contingencies: it is deeply influenced by the particular education, training, and
previous experiences of the people involved Human design behaviour does not
follow straightforwardly from a set of identifiable process laws. The actual prac­
tices and behaviour of human designers seldom, at least on the surface, demon­
strate how things must be done. We seldom see the necessities of designing, or
know when we do. We see much more of how things can be done, and not how
they must be done. Going from the observation and description of all this con­
tingent human design behaviour to theories embodying necessary and sufficient

ON KNOWLEDGE LEVEL THEORIES OF DESIGN PROCESS 569

properties. characteristics. and laws of design process is not a simple and direct
possibility. as much of the history of Design Research shows. see Cross (1984)
and McDonnell (1994). Indeed. the history of Design Research shows that it is
only recently that people in the field have recognised the need for more reflection
on the fundamental nature of design process. and less on prescriptions of how
it should be done. There is also growing concern for the wider aspects and im­
plications of this basic contingent nature of human problem solving behaviour
in the field of computer science and computer systems applications. See. for ex­
ample. the special issues of the Communications of the Association for Comput­
ing Machinery on Participatory Design (Kuhn and Muller. 1993). Social Comput­
ing (Schuler. 1994). Requirements Gathering (Holtzblatt and Beyer. 1995). and
Representations of Work. (Suchman. 1995a).

Any explanations or models derived from theories of Design as Cognition
must be presented in terms of human behaviour. albeit abstract terms. Thus. a
further methodological problem with such theories is that any attempt to develop
methods of design from them must specify design behaviour: they must say what
designers must do. Specifying what people must do is not in general an easy
thing to do. and telling designers how they must act in order to design well has
never been very successful in practice. Rather than feeling they are well guided
to design well. human designers typically feel unnecessarily constrained or oth­
erwise prevented from doing things in the way they want or need to. This dissat­
isfaction derives. as we can see. from the fact that any attempt to specify design
behaviour will tend to remove or limit the natural contingent nature of human
design behaviour. They may also have wider implications within design teams
an organisations related to ownership. power. and who knows how the work is
actually done. see Suchman (1995b) and Bannon (1995). When design methods
are presented and adopted as design management methods or strategies. they can.
however. be more successful. see Taguchi (1986; 1989). for example.

4. Designing as a Knowledge Process

If the scientific aim of AID is to understand and explain human design practice.
we have to develop a theory or theories of human designing. theories of Design
as Cognition. no matter how hard this proves to be. Taking design process to
be defined by what people do when they design is, however. not the only way
of attempting to understand design process. In particular. theories of Design as
Cognition are not the only kind of theories of design process we can seek to de­
velop in AID. Just as AI research has demonstrated that it is possible to realise
certain kinds of expert behaviour in computation-based knowledge systems. AID
research has also demonstrated that certain aspects and activities of designing can
be understood and realised in the same way. albeit in rather limited demonstra­
tions. so far. An important conclusion that can be drawn from the largely empir-

570 TIM SMITHERS

ical efforts and results of AID research up to now, is that human design practice
is not the only way we can seek to implement design process. Computation, and
knowledge systems, in particular, offer an alternative, and, of more practical im­
portance, an additional form of implementation that we can seek to effectively
combine with human design competence and practice.

4.1. IMPLEMENTATION THEORIES OF DESIGN

Within AID, theories of Design as Cognition can thus be understood as imple­
mentation theories of design-theories about how design processes are imple­
mented by human designers. However, it is not just an alternative theory of im­
plementation that AID needs. It needs to develop an implementation independ­
ent theory of design process. This is because we need a theory of design pro­
cess which covers both kinds of implementation, human designing and know­
ledge system-based designing. This is especially true if we are to have the much
needed theoretical basis for developing effective AI-based design support systems
- which is where we can reasonably expect most to be gained by the widespread
application and use of knowledge systems technology in design.

4.2. NEWELL'S KNOWLEDGE LEVEL

This need for an implementation independent level of understanding of intelli­
gent problem solving behaviour is not particular to AID. It is a need shared by all
attempts in AI research to understand knowledge intensive problem solving be­
haviour, and was recognised a long time ago by Allen Newell. In his Knowledge
Level paper, Newell (1981) argued for a separation of the (computational) Sym­
bol Level into two levels. One he continued to call the Symbol Level, at which
the symbol processing needed to realise some particular kind of problem solving
behaviour should be described and specified. The other level, he called the Know­
ledge Level. He presented this fundamental idea as a hypothesis, his Knowledge
Level Hypothesis, which states that:

There exists a distinct computer system level lying immediately above the sym­
bol level, which is characterised by knowledge as the medium and the prin­
ciple of rationality as the law of behaviour.

Knowledge, the medium at the Knowledge Level, is understood as a competence
notion, "being a potential for generating action." The principle of rationality, the
law of behaviour at the Knowledge Level, says that actions are selected to attain
the agent's goals.

The key insight that this hypothesis embodies is that the concept of know­
ledge can be used to effectively abstract away from the details and particular­
ities of human or machine problem solving behaviour, yet still be used to cap­
ture the essential nature and character of the problem solving process itself. By

ON KNOWLEDGE LEVEL THEORIES OF DESIGN PROCESS 571

presenting knowledge as a competence no~on, as a potential to act in a way that
solves problems, Newell established the basis for effectively operationalising the
concept of knowledge, and thus for making it a practical scientific observable in
the understanding and explaining of human and computer-based problem solving
behaviour. People and knowledge systems solve certain problems because they
know certain things, and they know how and when they can use what they know to
solve those problems. At Newell's Knowledge Level, problem solving becomes a
knowledge process. Designing too can be understood as a kind of knowledge pro­
cess. We can therefore seek to develop a theoretical understanding of this know­
ledge process: we can attempt to develop a Knowledge Level theory (or theories)
of design process.

4.3. THE KNOWLEDGE ENGINEERING KNOWLEDGE LEVEL

Starting from Newell's concept of the Knowledge Level, the fieid of knowledge
engineering (KE) has developed techniques for Knowledge Level modelling of
expertise. This has been one of the most significant developments in AI in the
past ten years (van de Velde, 1993; Akkermans et al., 1993). Here knowledge is,
again, taken as a competence notion. It is this "competence-like" notion of know­
ledge that supports its effective operationalisation into a practical observable for
the modelling of human problem solving behaviour. It supports effective abstrac­
tion over the particular activities of people, and it provides the basis for forming
models of different kinds of human problem solving behaviour. The abstracting
away of the particularities and contingencies of the human problem solving be­
haviour makes it possible to say what knowledge is necessary and sufficient for
different kinds of expert behaviour, and how it needs to be organised, generated,
and used to realise the kind of problem solving behaviour being modeled.

There are, however, two important differences between Newell's Knowledge
Level, KLN, and the concept of the Knowledge Level subsequently developed
and used in modem knowledge engineering methods, KLKE. KLKE models of
expert behaviour make no cognitive claims, that is, they do not attempt to say
what the human problem solving behaviour must be. They cannot do this since
KLKE models of expert behaviour are not intended as models of human imple­
mentation. They are intended to support, in a uniform and systematic way, the
formulation of implementation specifications for computer-based systems. It is
the implementation independent Knowledge Level modeling of problem solving
behaviour that forms the core of knowledge engineering methods such as Com­
monKADS (Breuker and Wielinga, 1989; Schreiber et ai., 1994). Newell, and
others, in contrast, make the claim that a proper KLN description and explana­
tion of a problem solving computation-based system can be used to say how the
same problem solving must be done by humans. They explicitly seek to establish
cognitive claims via KLN theories and models by equating the symbol processing
involved with cognition.

572 TIM SMITHERS

A second important difference between KLN and the modem knowledge en­
gineering concept of Knowledge Level, KLKE, is that at the KLKE knowledge
is differentiated and structured, whereas, for Newell, the knowledge an agent is
identified as having at the KLN is one undifferentiated body. This extension of
Newell's original idea is fundamental to the success of KLKE modelling of hu­
man problem solving behaviour and to supporting the subsequent development of
knowledge system applications to replicate it. The role of models of expertise in
modem knowledge system development methods, such as CommonKADS, is to
effectively model the necessary and sufficient elements of expert problem solv­
ing behaviour in an implementation independent way, in terms of a knowledge
process. This is so that they can both capture the essential nature and character­
istics of the problem solving process, as displayed in the human expert, without
attempting to deal with all the detailed variations, differences, and contingencies
normally seen, and still provide the basis for developing implementation specific­
ations of computer-based knowledge systems that replicate, often only in part, the
modeled expert behaviour. It is the lack of any necessary cognitive commitment
in KLKE models and the recognition of the role differentiation and structure of
knowledge that provides this implementation independence, yet supports the ef­
fective transfer from human implementation to computer-based implementation
(again, at least in part).

This ability to capture the fundamental nature of knowledge intensive prob­
lem solving behaviour, as seen in human expert behaviour, in a way that abstracts
away from all the cognitive complications, is what is needed in a theory or the­
ories of design process in AID research. The principles underlying KLKE mod­
elling of expertise could thus provide the basis for developing appropriate KLKE
theories of design process.

KLKE theories of design process thus offer a way of understanding and ex­
plaining designing in a way that does not depend upon a (more) complete cognit­
ive science, and in a way that is more easily related to the concepts and techniques
of computation, as developed in AID research. They would identify the necessary
and sufficient types of knowledge, the roles they play, the interactions between
these types, and their organisation for the knowledge process to be a design pro­
cess. As KLKE theories they would not depend upon, and so would not attempt
to explain, what people do when they do design. As general theories of design
process they could, however, be used to build KLK E models of particular kinds
of designing, in particular domains, which could then be used to understand how
people and organisations implement this design process, and how computation
might be effectively (and acceptably) introduced into this human practice. In par­
ticular, any KLKE theory of design process should be able to be used to establish
operationalised distinctions between such widely used Jolk-categories as routine
design, original design, and creative design, or be able to be used to show why
these are not, after all, proper kinds of designing.

ON KNOWLEDGE LEVEL THEORIES OF DESIGN PROCESS 573

5. Knowledge Level Principles for Knowledge Level Theories

The major activity in the development of effective modern knowledge engineer­
ing methods, has been towards the modelling of expertise. There has so far been
little attempt to develop KLKE theories of problem solving expertise, but see
Benjamins and Jansweijer (1994) for an exception. The models of expertise that
have been constructed according to these KE methods are therefore empirical
models, models based on observational data of human expert behaviour. They are
not theory-based models. For this, we would need KLKE theories. It is, however,
recognised that theory-based models are not just desirable but important for stren­
gthening the KE methods that depend upon such modelling activities (Akker­
mans, 1995; van Harmelen, 1995).

In an important attempt to make explicit the principles and underlying as­
sumptions of the practice of expertise modelling, as supported by the Common­
KADS method, Akkermans et al. (1994), presents a set of knowledge differenti­
ating and structuring principles. These KLKE modelling principles are used here
as a basis for a set of principles for developing KLK E theories of design process.
They are intended to identify the assumptions needed for the development of such
KLKE theories, and they have been derived quite directly from the Akkermans et
al KLKE modelling principles. The five principles are:

• 1. The Knowledge Application Principle: All instances of effective real­
world designing can be viewed as the rationalisable application of appropriate do­
main and task knowledge by a designing agent, or a team of designing agents.

• 2. The KL Principle: The Knowledge Level is the appropriate level for de­
veloping a general theory of design process that captures the necessary and suf­
ficient properties and organisation of those knowledge processes that are design
processes. It calls for the theoretical description of design problem solving at a
conceptual level that is independent of representation and implementation media,
mechanisms and practices.

• 3. The Role Limiting Principle: All knowledge used and developed by a
design process is structured with each part having identifiable, stable, and restric­
ted roles within the totality of the design process.

• 4. The Differentiated Rationality Principle: Within the limitations of a
particular structuring and role assignment of knowledge, the principle of ration­
ality must be further specialised to account for the way in which designs are pro­
duced by applying the appropriate type of knowledge in the appropriate way. This
specialisation of the principle of rationality we can call the rationality of explora­
tion, since it is exploration that is at the heart of all effective designing.

• 5. The Knowledge 1)ping Principle: A Knowledge Level theory of design
process specifies three different categories of knowledge: domain knowledge; task
knowledge; and inference knowledge. Within these categories further generic types
of knowledge can be distinguished.

574 TIM SMITHERS

Any KLKE theory of design process developed according to these principles
should thus explicitly present the necessary and sufficient categories of know­
ledge involved, how they must be and can be organised according to their par­
ticular and distinct roles within in the design process as a whole, and what form
the rationality of exploration must have in operating over this knowledge and its
organisation to realise effective designing.

6. KLKE Theories of Design Process in AI in Design

As I established at the beginning of this paper, the large majority of the activities
within the field of AID research are concerned with the engineering of AI-based
design systems, and, more typically, AI-based design support systems. Often, this
engineering research is focused on particular techniques and on particular aspects
of designing in particular design domains. This strong emphasis on the problems
of building effective AI-based design systems and design support system is, of
course, both natural and appropriate for AID research. We should not expect the
field to change significantly in this respect as more theoretical understanding of
design process is developed and used within it. We can, however, ask in what way
should the development of KLKE theories of design process impact on AID re­
search in general?

The development, testing, and use of KLK E theories of design process should
result in a closer and more effective contact with Design Research in general and
with the field of Knowledge Engineering. By attempting to develop theories of
design process· that abstract away from the details and complications of human
professional design practice, it should be possible to build into such theories the
insights into the fundamental nature of designing and the abstractions used to
present them, that have been developed by workers Design Research. In other
words, KLKE theories of design process provide a way of expressing, in a the­
oretical form, the results of the work in Design Research that AI in Design is cur­
rently largely unaware of. This would both significantly strengthen work in AID
research, and offer a new and important direction for work in Design Research.

By developing KLKE theories of design process based upon essential similar
principles now embodied in modem KE methods for the design and implementa­
tion of application knowledge systems, it will be possible for design theory to be
used directly in the construction and development of models of particular kinds
of designing in particular domains, models of design expertise. This would both
strengthen the models used in this crucial KE activity, and contribute to the the
development of KLKE theories of expert behaviour in general. It would there­
fore lead directly to the better engineering of AI-based design and design support
systems for application. It should also make possible a much clearer and sounder
understanding of how computation can be effectively and acceptably applied in
human design practice.

ON KNOWLEDGE LEVEL THEORIES OF DESIGN PROCESS 575

A further development could be in the development and application ofKLKE

methods of designing explicitly based upon established theoretical understand­
ing and modelling of design processes. These would form an essential part of the
enterprise models now being developed to support organisation restructuring and
more flexible and responsive management methods and strategies, without suffer­
ing from the effects of having to be prescriptive of human behaviour. The respons­
ibility of how a KLKE design method is to be applied in professional design prac­
tice would be and would remain the responsibility of the professional designers
involved: they could continue to own and protect the secrete of how they design.

7. Conclusions

Theories are the vehicles for delivering scientific understanding and explanations
of phenomenon-puzzlement reducing, demystifying, and intelligibility increas­
ing descriptions of things. To do this, theories must employ terms and concepts
that can be practically operationalised.

Human design is but one kind of human behaviour. Theories of design as cog­
nition must therefore be properly connected up to and embedded in a general the­
ory of human cognition. But we currently have very little of such a general theory.
As a consequence theories of Design as Cognition in AI in Design become dan­
gerously free floating and of little effective use in explaining design process: they
can't even be used reliably to say what designing is and is not.

Knowledge Engineering Knowledge Level theories of design process are a
more appropriate type of theory for AID research to be developing. By abstracting
away from the particularities of human behaviour, and the as yet largely myster­
ious cognitive goings on, KLKE theories and models of design process escape
the problem of there not yet being a sufficient general theory of human cognition.
As for other kinds of expert behaviour like planning, scheduling, diagnosing, etc.,
they also allow us to better understand how other technologies, in particular com­
putational technologies, can be effectively and acceptably introduced into human
design practice.

The use of the terms theories, models, descriptions, and methods, is currently
very undisciplined in AID research. This means it is very difficult to identify what
are proper theoretical contributions to the field. Without good theoretical devel­
opments, the field cannot expect to progress towards good explanations of design
process, nor towards more effective technological developments and applications.
AID research thus needs to devote more effort to the development, testing, and
use of KLKE theories of design process, and, by so doing, establish proper and
more effective connections with the important work being done in Design Re­
search and Knowledge Engineering. The principles presented above provide a
sound basis for developing such Knowledge Level theories of design process.

576 TIM SMITHERS

Acknowledgments

I am grateful to Hans Akkermans, Amaia Bernaras, Francis Brazier, Brian Lo­
gan, Janet McDonnell, Rolf Pfeifer, Luc Steels, Jan Treur, Wade Troxell, Frank
van Hannelen, Pieter van Langen, and Walter van de Velde, for numerous discus­
sions that have been influential in the development of the work presented here. An
earlier version parts of this paper were presented in Smithers (1995). I am also
grateful to Amaia Bernaras and four anonymous referees for helpful comments
on an earlier version of this paper. Finally, I am happy to acknowledge the finan­
cial support of the University of the Basque Country for my current position, and
the Faculty of Informatics, in particular, for providing a very supportive academic
home.

References

Akman, V., ten Hagen, P. J. W., and Tomiyama, T.: 1990, A fundamental and theoretical framework
for an intelligent CAD System, Computer-Aided Design, 22(6), 368-376.

Akin, 0.: 1978, How do architects design, in J-C. Latombe (ed.), Artificial Intelligence and Pattern
Recognition in Computer Aided Design, North-Holland, pp. 65-98.

Akin, 0.: 1986, Psychology of Architectural Design, Pion Limited, London.
Akin, 0.: 1988, Expertise of the architect, in M. D. Rychener (ed.), Expert Systems for Engineering

Design, Academic Press.
Akkermans, J. M., van Harmelen, E, Guss Schreiber, A. T., Wielinga, B. J.: 1993, A formaliza­

tion of knowledge-kevel models for knowledge acquisition, International Journal of Intelligent
Systems, 8,169-208.

Akkermans, J. M., van de Velde, W., Wielinga, B. J., and Schreiber, A. T.: 1994, Rational: prin­
ciples underlying expertise modelling, in B. J. Wielinga (ed.), Expertise Model Definition Doc­
ument, Chapter 1, KAD-II project document KADS-WM2lUvA/026/5.0, pp. 5-9.

Akkermans, J. M.: 1995, In personal discussion, Amsterdam, January.
Alberts, L. K.: 1994, YMIR: a sharable ontology for formal representation of engineering-design

knowledge, in J. S. Gero and E. Tyugu (eds), Formal Design Methodsfor CAD, Elsevier, pp. 3-
32.

Alberts, L. K. and Dikker, E: 1994. Integrating standards and synthesis knowledge using the YMIR
ontology, in J. S. Gero and E Sudweeks (eds), Artificial Intelligence in Design '94, Kluwer,
Dordrecht, pp. 517-534.

Alexander, C.: 1971. Notes on the Synthesis of Form, Harvard University Press, paperback edition,
first published in 1964.

Archea, J.: 1987. Puzzle-making: what architects do when no one is looking, in Kalay, Y. E. (ed.),
Principle of Computer-Aided Design: Computability of Design, John Wiley and Sons, pp. 37-
52.

Arciszewski, T. and Michalski, R. S.: 1994. Inferential design theory: a conceptual outline, in J. S.
Gero and E Sudweeks (eds),Artificiallntelligence in Design '94, Kluwer, Dordrecht, pp. 295-
308.

Bannon, L. 1.: 1995. The politics of design: representing work, in (Suchman, 1995a), pp. 66-68.
Bazjanac, V.: 1974. Architectural design theory: models of the design process, in Spillers, W. R.

(ed), Basic Questions of Design Theory, North-Holland, pp. 2-19.
Benjammins, R. and Jansweijer, W.: 1994. Towards a competence theory of diagnosis, IEEE Ex­

pert, 9(5), pp. 43-52.
Bemaras,.: 1994. Problem-oriented and task-oriented models of design in the CommonKADS

framework, in J. S. Gero and E Sudweeks (eds), Artificial Intelligence in Design '94, Kluwer,
Dordrecht, pp. 499-516.

ON KNOWLEDGE LEVEL THEORIES OF DESIGN PROCESS 577

Blessing, L. T. M.: 1994. A Process-Based approach to Computer-Supported Engineering Design,
PhD. Thesis, University of Twente, Enschede, The Netherlands.

Boden, M. A.: 1962. The paradox of explanation, Proc. Aristotelian Soc., n.s., pp. 159-178. Reprin­
ted in Boden M. A., 1981, Minds and Mechanisms, Ithaca, N.Y., Cornell University Press.

Brazier, F. M. T., van Langen, P. H. G., Ruttkay, Zs., and Treur, J.: 1994. On formal specification of
design tasks, in J. S. Gero and F. Sudweeks (eds), Arti.ficiallntelligence in Design '94, Kluwer,
Dordrecht, pp. 535-552.

Brazier, F. M. T., van Langen, P. H. G., and Treur, J.: 1995, A logical theory of design, in J. S.
Gero and F. Sudweeks (eds), Advances in Formal Design Methods for CAD, Preprints of the
IFIP WG 5.2 Workshop on Formal Design Methods for Computer-Aided Design, Key Centre
of Design Computing, University of Sydney, pp. 247-271.

Breuker, J. A. and Wielinga, B. J.: 1988, Models of expertise in knowledge acquisition, in P. Guida
and G. Tasso (eds), Topics in Expert Systems Design: Methodologies and Tools, North-Holland,
Amsterdam.

Breuker, J. A. and Wielinga, B. J: 1989, Model-driven knowledge acquisition, in P. Guida and G.
Tasso (eds), Topics in the Design of Expert Systems, North-Holland, Amsterdam, pp. 265-296.

Breuker, J. A. and van de Yelde, W.: 1994, The CommmonKADS Library of Expertise Modeling,
lOS Press.

Bylander, T and Chandrasekaran, B.: 1988, Generic tasks in knowledge-based reasoning: The right
level of abstraction for knowledge acquisition, in B. Gaines and J. Boose (eds), Knowledge
Acquisitionfor Knowledge Based Systems, Academic Press.

Churchland, P. M.: 1988, On the ontological status of intentional states: Nailing folk psychology to
its perch, Behavioural and Brain Sciences, 11(3), 507-508.

Churchland, P. M.: 1989, A Neurocomputational Perspective: The Nature of Mind and the Structure
of Science, The MIT Press.

Cross, N., Naughton, J., and Walker, D.: 1981, Design method and scientific method, Design Stud-
ies, 2(4),195-201.

Cross, N. (ed.): 1984, Developments in Design Methodology, John Wiley.
Cross, N.: 1989, Engineering Design Methods, John Wlley.
Darke, J: 1979, The primary generator and the design process, Design Studies, 1(1), 36-44.
Dasgupta, S.: 1991, Design Theory and Computer Science, Processes and Methodology of Com-

puter Systems Design, Cambridge University Press.
Dickinson, H. W. and Jenkins, R: 1981, James Watt and the Steam Engine, Encore Editions. First

published in 1927.
Gero, J. S. (ed.): 1991,Artificiallntelligence in Design '91, Butterworth-Heinemann, Oxford.
Gero, J. S. (ed.): 1992. Artificial Intelligence in Design '92, Kluwer, Dordrecht.
Gero, J. S.: 1994, Towards a model of exploration in computer-aided design, in J; S. Gero and E.

Tyugu (eds), Formal Design Methods for CAD, Elsevier, pp. 315-336.
Gero, J. S. and Maher, M. L.: 1990, Theoretical requirements for creative design by analogy, in

P. A. Fitzhorn (ed.), Proceedings First International Workshop on Formal Methods in Engineer­
ing Design, Manufacturing, and Assembly, The Broadmoor Hotel, Colorado Springs, Colorado,
USA, January 15-17, 1990. Available from Department of Mechanical Engineering. Colorado
State University.

Gero, J. S. and Sudweeks, F. (eds): 1994, Artificial Intelligence in Design '94, Kluwer, Dordrecht.
Hillier, W. and Leaman, A.: 1974, How is design possible, Journal of Architectural Research, 3,

4-11.
Hillier, W. and Leaman, A.: 1976, Architecture as a discipline, Journal of Architectural Research,

S,8-32.
Hills, R. L.: 1989, Power from Steam, A History of the Stationary Steam Engine, Cambridge Uni­

versity Press.
Holtzblatt, K. and Beyer, H. R. (eds): 1995, Requirements gathering, the human factor, Communic­

ations of the ACM, 38(5), 31-88.
Hubka, Y.: 1982. Principles of Engineering Design, Butterworth Scientific, translation by W. E.

Eder.
Hull, D. L.: 1988, Science as Process: An Evolutionary Account of the Social and Conceptual De-

578 TIM SMITHERS

velopment of Science, The University of Chicago Press, Chicago.
Atlee Jackson, E.: 1995, No provable limits to "scientific knowledge", Complexity, 1(2),14-17.
Jones, J. c.: 1991, Designing Designing, Architecture Design and Technology Press.
Kyhn, S. and Muller, M. J. (eds): 1993, Participatory design, Communications of the ACM, 36(4),

25-103.
Lawson, B: 1990, How Designers Think, Academic Press.
McDonnell, J. T.: 1994, Supporting Engineering Design Using Knowledge Based Systems Techno­

logy with a Case Study in Electricity Distribution Network Design, PhD Thesis, Department of
Computer Science, BruneI University, England.

Mitchell, W. J.: 1990, The Logic of Architecture, The MIT Press.
Newell, A.: 1981, The knowledge level, AI Magazine, 1(2), 1-20. Also in Artificial Intelligence,

18(1),87-127,1982.
Newell, A.: 1990, Unified Theories of Cognition, Harvard University Press.
Newell, A., Shaw, J. C. and Simon, H. A.: 1958, Elements of a theory of human problem solving,

Psychological Review, 65, 151-166.
Newell, A. and Simon, H. A.: 1972, Human Problem Solving, Prentice-Hall, Englewood Cliffs,

N.J.
Rowe, P. G.: 1987,Design Thinking, The MIT Press.
Schon, D. A.: 1983, The Reflective Practitioner, How Professionals Think in Action, Basic Books.
Schon, D. A.: 1985, The Design Studio, An Exploration of its Traditions and Potential, RlBA Pub-

lications.
Schon, D. A.: 1987, Educating the Reflective Practitioner, Jossey-Bass.
SchOn, D. A.: 1992, Designing as a reflective conversation with the materials of a design situation,

Knowledge Based Systems, 5(1), 3-14.
Schon, D. A.: 1992, Kinds of seeing and their functions in Ddesigning, Design Studies, 13(2), 135-

156.
Schreiber, A. T., Wielinga, B. J., and Breuker, J. A. (eds): 1993, KADS: a principled approach to

knowledge-based systems development, Knowledge-Based Systems Book Series, 11, Academic
Press.

Schreiber, A. T., WieIinga, B. J., de Hoog. R., Akkermans, J. M. and van de Velde, W.: 1994, Com­
monKADS: A comprehensive methodology for KBS development, IEEE Expert, 9(6), 28-37.

Schuler, d. (ed.): 1994, Social computing, Communications of the ACM. 37(1), 29-80.
126-127.

Simon, H. A.: 1981, The Sciences of the Artificial, Second Edition, MIT Press. (First edition, 1969.)
Smithers, T. and Troxell, W.O.: 1990, Design is intelligent behaviour, but what's the formalism?,

AI EDAM, 4(2), 89-98.
Smithers, T.: 1992, Design as exploration: Puzzle-making and puzzle solving, Exploration-Based

Models of Design and Search-Based Models of Design, Workshop Notes, AID' 92, CMU, Pitt­
sburgh, June.

Smithers, T. (ed.): 1994, The Nature and Role of Theory in AI in Design Research, Workshop Notes,
AID' 94, Swiss Federal Institute of Technology, Lasuanne, Switerzland, August. Available from
the Faculty of Informatics, University of the Basque Country, San Sebastian, Spain.

Smithers, T., Corne, D., and Ross, P.: 1994, On computing exploration and solving design pprob­
lems, in J. S. Gero and E. Tyugu (eds.), Formal Design Methodsfor CAD, Elsevier, pp. 293-
313.

Smithers, T.: 1995. AI in design needs knowledge level theories, in J. S. Gero and F. Sud­
weeks (eds), Proceedings Fourth Workshop on Research Directions for Artificial Intelligence
in Design, Department of Architecture and Design Science, University of Sydney, pp. 73-79.

Steels, L.: 1990, Components of expertise, AI Magazine, 11(2), 30-61.
Stich, S.: 1986, From Folk Psychology to Cognitive Science, The Case Against Belief, A Bradford

Book, The MIT Press.
Suchman, L. A. (ed.): 1995, Representations of Work, Special Issue of Communications of the

ACM, 38(9), 33-68.
Suchman, L. A.: 1995, Making work visible, in L. A. Suchman (ed.), Communications of the ACM,

38(9), 56-64.

ON KNOWLEDGE LEVEL THEORIES OF DESIGN PROCESS 579

Taguchi, G.: 1986, Introduction to Quality Engineering, Asian Productivity Organization, First Edi­
tion.

Taguchi, G., Elsayed, E. A., and Hsiang, T. C.: 1989, Quality Engineering in Production Systems,
McGraw-Hill Book Company, First Edition.

Tomiyama, T.: 1994, From general design theory to knowledge-intensive engineering, AlEDAM,
8(4),319-333.

Treur, J.: 1991, A logical framework for design processes, in P. J. W. ten Hagen and P. J. Veerkamp
(eds), Intelligent CAD Systems lll, Proceedings of the Third Eurographics Workshop on Intel­
ligent CAD Systems, Springer-Verlag, pp. 3-20.

van de Velde, W.: 1993, Issues in knowledge level modelling, in D. J-M. David, J-P. Krivine and
R. Simmons (eds), Second Generation in Expert Systems, Springer-Verlag, Berlin, pp. 211-231.

van Harmelen, E: 1995, In personal discussion, Amsterdam, January.
Wielinga, B. J. and Breuker, J. A.: 1987, Models of expertise, in B. du Boulay, D. Hogg and

L. Steels (eds), Advances in Artificial Intelligence II, Elsevier Science, pp. 497-509.
Wilkes, K.: 1989, Explanation-how not to miss the point, in A. Montefiore and D. Noble (eds),

Goals, No Goals, and Own Goals, Unwin Hyman, London, pp. 194-210.
Yoshikawa, H.: 1981, General design theory and a CAD system, in T. Sata andE. A. Warman (eds),

Man-Machine Communication in CAD/CAM, North-Holland, pp. 35-58.

11
conceptual design

A representation scheme to support conceptual design of
mechatronic systems

Martin K. Stacey, Helen C. Sharp, Marian Petre, George Rzevski,
Rodney A. Buckland

Generating conceptual solutions on FuncSION: Evolution of a
functional synthesiser

Amaresh Chakrabarti, Ming Xi Tang
Adopting a minimum commitment principle for computer aided

geometric design systems
Xiaohong Guan, Ken 1. MacCallum

J. S. Gero and F. Sudweeks (eds), Artificiol InteUigence in Design '96, 583-602.
© 1996 Kluwer Academic Publishers.

A REPRESENTATION SCHEME TO SUPPORT CONCEPTUAL
DESIGN OF MECHATRONIC SYSTEMS

MARTIN STACEY, HELEN SHARP, MARIAN PETRE
Computing Department, The Open University,
Milton Keynes, UK

AND

GEORGERZEVS~,RODNEYBUCKLAND

Design Discipline, The Open University,
Milton Keynes, UK

Abstract. This paper outlines DROOL, a novel knowledge representation scheme for
supporting early stages of the design of multi-technology systems. The key idea behind
DROOL is that mechatronic systems should be considered as interlocking flows of
matter, energy and information. This provides a powerful framework for thinking about
important aspects of conceptual design, and an equally powerful structure for organising
a design representation scheme. The paper presents an object model for DROOL, and
shows how the scheme describes design concepts at various levels of abstraction, in
terms of component hierarchies and interlocking flows. The development of DROOL is
part of the FACADE Project, whose aim is to develop intelligent computer tools to
facilitate communication among designers with different specialties in concurrent
engineering projects. The FACADE System comprises a suite of interfaces with
different visual representations to support different conceptual design activities, with a
single underlying product representation: DROOL. Development is concentrating on
two interfaces with alternative visual representations in which designers can describe the
flows of matter, energy and information in mechatronic systems: blob diagrams and
concept arrays.

1. Introduction

The FACADE Project (Rzevski, 1995) aims to develop computer based
support for the conceptual design of mechatronic systems in a concurrent
engineering context. Its primary goal is to facilitate the communication of
conceptual design ideas and their implications between the different
members of a design team.

The design of mechatronic systems is characterised by engineers from
different disciplines collaborating to design a complex artefact, all of whom
have particular perspectives on the artefact, and work with different views of

584 MARTIN K. STACEY ET AL.

it. The design of any complex product is a combination of many different
design activities, in which designers create, modify and evaluate different
elements of the future product. But these different design activities are
linked: designers collaborate, and individual designers switch quickly
between views. They need to see how their own and others' design decisions
affect other aspects of the design, which are described using other notations
and visual representations. This requires an intelligent design support system
that can display the different aspects of a design in different visual
representations, and that can propagate changes, implications and constraints
between them.

Each design activity requires different computer support: it needs a
design environment making particular aspects of the design explicit in its
visual representation of one view of the design, and providing a set of
operations that are natural and easy to use with that view. Conceptual design
requires tools differing fundamentally from conventional CAD systems.
CAD packages require precise details which designers do not want to specify
or guess in conceptual design; indeed having to do this may inhibit creative
thinking during the early stages of design (Faltings, 1991).

Our intelligent design support tool comprises a suite of design
environments supporting different views of the artefact, which communicate
with an underlying product model. This paper describes the DROOL
knowledge representation scheme used to generate product models in the
FACADE System.

In the next section we present a view of conceptual design, and discuss
two contrasting visual representations of conceptual designs that are the
focus of the development of the FACADE System: Concept Arrays and Blob
Diagrams. Section 3 introduces the notion of orthogonal object lattices
describing different groupings of objects in DROOL product models, and
presents an object model for DROOL. In section 4 we describe how DROOL
objects represent different aspects of engineering product models. In section
5 we illustrate the use of DROOL with an example of a conceptual design of
a mechatronic system: FireSat, a satellite intended to monitor bush fIres in
Australia. We conclude in section 6 by summarising the present development
of DROOL and outlining potential ways of increasing its scope.

2. Conceptual Design of Mechatronic Systems

Conceptual design is concerned with making major decisions about what the
artefact does and how it works, what its major components are and how they
interact. This stage is followed by embodiment design, working out the
details of how the chosen principles and mechanisms are implemented in an
artefact constructed from available and manufacturable parts. Examples of
mechatronic products which we consider include coffee makers, satellites,

A REPRESENTATION SCHEME FOR CONCEPTUAL DESIGN 585

knitting machines, photocopiers and industrial robots, and the conceptual
design of each one will involve many different design activities.

It is common for engineers doing conceptual design to think about the
functions or physical entities that they need in the design, and think about
how they have to be connected, without thinking immediately about their
physical shapes or how they should be laid out in three dimensional space.
Within the time available we can only build interfaces to support a few
design activities, and we are concentrating on those activities we regard as
central to the design of a wide range of mechatronic systems. So we have
chosen to exclude computer support for spatial conceptual design, spatial
layout design or the design of appearance, to focus on design activities that
are usually prior to spatial design (Rzevski et al, 1995).

2.1. PROVISIONALITY AND ABSTRACTION

Conceptual design is on the whole characterised by provisionality,
uncertainty and imprecision. At the same time, there may be very precise
constraints that need to be accommodated. Any tool to support conceptual
design must acknowledge this (cf Hewson's work on sketching in design,
1994), and provide the ability to work with any mixture of precise decisions
and constraints with uncertainty and imprecision; it must allow designers to
suspend decisions and activities at any point and return to them later.
Similarly, conceptual design involves reasoning about design elements and
the relationships between them at a wide range of levels of abstraction. These
design elements are typically types of mechanisms and physical principles,
fleshed out with approximate sizes or capacities. But they might include
components conceived as abstract functions, or specific major components
around which the rest of the system is designed. While the elements of
conceptual designs are almost always implicitly physical objects or
combinations of objects, they are thought about in functional terms. A
design tool must provide the ability to work with concepts at different levels
of abstraction, to switch between abstraction levels, and include elements at
very different abstraction levels in the same product model.

Many computer design support systems have been developed to support
structured design methodologies that expect designers to work systematically
from abstract and general requirements and concepts to more concrete and
detailed designs, for example Modessa (Kersten, 1995), MAX (De Vries,
1994), Schemebuilder (for instance, Bracewell et aI, 1993, 1995) and the
Norwegian Mechatronics Design Methodology programme (Hildre and
Aaslund, 1995). These methodologies are intended to encourage designers
to explore the space of alternative approaches to achieving their goals
without being locked into a concrete solution too soon; they have the
disadvantage that designers often find them too rigid, and often want to work

586 MARTIN K. STACEY ET AL.

by modifying relatively concrete designs, for good reasons (Rzevski et aI,
1995). Other systems are less ideologically committed, but focus on later
stages of the design process to support constraint-based design and
consistency maintenance, for example the Edinburgh Designer System
(Smithers et aI, 1990), which evolved in parallel with a sophisticated artificial
intelligence oriented view of engineering design.

The FACADE System is being designed to avoid imposing a discipline
on designers by requiring them to follow a top-down methodology. Instead
it is intended to allow designers to make use of whatever discipline they find
useful, without restricting their freedom to work concretely or abstractly, or
mix abstraction levels.

2.2. CONCEPT ARRAYS

Designers of complex mechatronic products need to think about how matter,
energy and information flow through the system. For example, the flows in a
photocopier include the transmission of paper from paper tray to collection
rack, the transmission of electric current through the paper transport
mechanisms, the flash, and the focusing mechanism, and the transmission of
information from the control pad to the focusing mechanism. We argue
elsewhere that thinking in terms of the flows in a mechatronic system and the
types of operations different components of the system perform on the flows
is a valuable conceptual tool in design (Rzevski, 1995b). Reasoning
explicitly about flows enables designers to think about how different parts of
a flow fit together, and how primary flows require subsidiary flows (for
example of electricity or information), so designers can evaluate the integrity
of the flow processes and check the completeness of the conceptual design.

These flows comprise the process system in Andreasen's (1980) Theory
of Domains, which states that the synthesis of machines consists in
successively establishing four systems: the process system; the functional
system, a structure of functions or effects needed in the machine to create the
transformations; the organic system, a structure of organs, each realising one
or more functions through physical effects; and the parts system, a structure
of single machine parts making up the embodiment of the machine. Our
view is that this is too complex: while processes are primary, the concepts
that engineers use in conceptual design are typically a combination of
process, function and organ. We propose the use of a set of Concept Arrays
to facilitate thinking about flows (Rzevski et aI, 1995). A Concept Array
shows the elements of a design tabulated in an array with columns for each
type of flow, and rows for Input, Storage, Processing and Conversion,
Transfer and Transmission, Use, and Disposal. Membership of an individual
flow can be shown by marking or colour coding its participant elements.
(Concept Arrays are different from the evaluation charts described by Pugh

A REPRESENTATION SCHEME FOR CONCEPTUAL DESIGN 587

(1990), and Quality Function Deployment arrays (see for instance Day,
1993), which chart concepts against issues or evaluation criteria to facilitate
the evaluation and selection of concepts.)

Designers use the stack of arrays to develop the design by listing the
user's requirements in the flrst requirements array, and listing more concrete
versions of the requirements and concepts in subsequent arrays. For
example, the array shown in Figure 1 contains the major flows of matter
(fuel), energy (electric current, heat and kinetic energy) and information
(camera images) for a satellite. When concepts have been selected for
particular flows, this process can be repeated recursively for the subsidiary
flows needed to make the primary flow work. In this approach to conceptual
design, describing the ordering of the design elements is secondary to
naming them. The links between them are conceptually implicit. In the early
stages of the design process, naming the flows and what they transmit, and
the design elements that participate in them, is suffIcient to record the
information designers wish to convey to themselves and each other.

Information Energy Matter

Input cco camera with 500W Solar arrays (Propellant loaded
thin-film filters for at launch site)
IR and visible

Storage 32 MByte RAM Ni-cd battery Spherical propellant
Tape reoorder Momentum wheels tanks

Sic orbit

Processingl JPEGlrnage Electrical heaters 20N thrusters
Conversion compression Transmitter SSAs for attitude control

Articulation drives 200N thrusters
20N thrusters for orbit control
200N thrusters

Transferl Sic transmitter in RegUated 28V Pressurised propellant
Transmission Kaband power bus transfer system

Use Sic power bus
Payload

Disposal Sic heat pipes (Sic to parking orbit
atEOL)

Figure 1. A concept array for FireSat.

The development of the FACADE System includes a design environment
to support designing using Concept Arrays. The primary design action is
naming or renaming design elements participating in flows by writing in
cells in arrays, which are displayed as tables. Additional information can be
supplied through dialogues and form m1ing, when the designer needs to

588 MARTIN K. STACEY ET AL.

define the design elements, or requires more complete record keeping or
further reasoning from the design support system, for example about costs
or the integrity and completeness of the flows. The design system tracks the
relationships between the increasingly concrete requirements and concepts
named in corresponding cells in the hierarchy of arrays, and infers
connections between the design elements to construct representations of the
flow, which can be checked for completeness and integrity.

2.3. BLOB DIAGRAMS

Schematic diagrams can provide an alternative graphical representation of a
product in the early stages of design, in which rough sketches, symbols or
icons represent elements of the artefact which it is known will be needed,
although details (precise or otherwise) are not yet known. We call them blobs
to avoid making any commitment about what they are; their shapes are
frequently unimportant or are symbols rather than pictures. Lines between
the blobs represent connections of some description. These may be physical
conduits for petrol or electricity, or a functional relationship such as
'powers' or 'stabilises'. As the design progresses, design choices are made
and the provisionality lessens. The informal graphical representations
designers use in blob design afford both provisionality and the explicit
representation of structure, especially logical structure.

We are developing a design environment for supporting blob design in
the FACADE System. This includes a graphical interface with which the
designer produces blobs and the connections between them by drawing
them. The designer can add detailed information about the design elements
denoted by the blobs by filling in forms and answering questions in
managed dialogues. This interface should show blobs, that appear vague and
uncertain (ideally in ways that symbolise particular types of uncertainty),
until particular embodiments of the concepts are chosen.

Blob design includes two very different design situations. In one, the
structure of a design element is known, so we know what inputs and outputs
it can have. The choice of input or output channel determines both what is
transmitted and the direction of flow. Explicit labelling of links is required
only to disambiguate the choice of channel. In the other situation, the task
involves constructing the objects themselves, as well as networks of objects,
so that an underspecified object may have an indeterminate set of inputs and
outputs. So links between objects need to be actively labelled with what they
transmit; the required input and output channels and internal structures are
added to the design elements denoted by the blobs.

The design environment communicates the identities of the concepts
represented by the blobs and the nature of the connections between them to
the product model when they are drawn, as well as additional information

A REPRESENTATION SCHEME FOR CONCEPTUAL DESIGN 589

specified using forms and dialogues. The knowledge representation
formalism should support both design processes, and so both directions of
flow of information: from component to connection, and from connection
to component.

2.4. A COMMON THEME: CONNECTIVITY DESIGN

Both the design activities we have described here are fundamentally
concerned with deciding what the important elements in the design are and
what they do, and deciding how they are connected. The two types of visual
representation both show individual components (at some level of
abstraction); the blob representation shows the connections between them;
the array representation leaves the connections implicit but highlights the
role the components play in the flows of matter, energy and information.

So blob design and designing with Concept Arrays are both ways of
designing one aspect of an artefact, which we call connectivity design. We
take the view that connectivity design is the central part of the conceptual
design of a wide range of mechatronic systems. Not all: in many cases the
critical part of conceptual design is thinking about the shape of the artefact
or about how its parts interact in three dimensional space (Stacey, in
preparation). Even when connectivity design is not central to the conceptual
design, thinking in terms of connectivity is essential to developing a
conceptual design into an embodiment, as is spatial design.

2.5. CONSIDERATIONS FOR A KNOWLEDGE REPRESENTATION SCHEME

A design support system to support different design activities contributing to
connectivity design requires a representation scheme that can represent
design elements and their properties at different levels of abstraction; and
that can represent the connections between the elements. In the simplest
outlines of designs, the representation needs to label the connections with
their types and identities; more sophisticated descriptions must include what
the connections carry, and how the different design elements influence the
content of these transmissions. The representation requirements for design
activities involving spatial thinking and spatial visual representations are very
different; we are excluding these concerns from the design of DROOL,
except to consider how the scheme might be extended to include them at a
later stage. A product representation for conceptual design needs to include
different types of information without forcing artificial distinctions between
concept categories on the designer, although these categories may be
significant for the structure of the product representation. Theoretical studies
of the design of mechatronic systems have highlighted the range of different
types of product models that have complementary roles in mechatronic
design (reviewed by Buur, 1990). Various taxonomies have been proposed

590 MARTIN K. STACEY ET AL.

besides Andreasen's (1980). Hildre and Aaslund (1995) argue that no single
product model can capture all aspects of a mechatronic system; our view is
that a single representation scheme can cover many different aspects of a
design by linking objects describing different aspects of a design to their
physical manifestations. (We discuss this further in sections 4.3 and 6.5.)

The development of the DROOL knowledge representation scheme has
been motivated by the following important guiding principles for the design
support system the FACADE Project is developing.
• Separation of Configuration and Function. A component of a machine

may take part in several different functional systems and processes, and
what they are may only be determined in the course of designing the
machine. So the scheme should distinguish between configurational
elements of designs (physical things described at some level of
abstraction: what components are) and functional elements (what
components do when they participate in flows), so that the mappings
between the configurational and functional elements can be created and
changed in the course of the development of the design. This principle is
a major difference between DROOL and the many alternative product
representation schemes.

• Provisionality and Abstraction. The scheme should represent design
elements at different levels of abstraction, and represent the uncertain or
provisional status of aspects of the design. It should enable the designer
to change the design by replacing design elements with more concrete
versions, more abstract generalisations, or alternative instantiations of the
same abstraction.- It should enable the free combination of design
elements described at different levels of abstraction in the same product
model.

• Multiple Views. The scheme should integrate representations of different
aspects of the products, to track the relationships between them, and to
enable designers to combine concepts formulated in different terms. The
scheme's primary component should be representations of flows of
matter, energy and information.

• Incremental Development. The scheme should permit the incremental
development of conceptual designs from the specification of
requirements to embodiment design, by the addition of information to
concept descriptions, and the replacement of abstract concepts with
concrete ones. But it should not constrain the designer to follow any
particular methodology or order of design actions.

3. A Representation Scheme for Mechatronic Devices

In this section we outline the DROOL knowledge representation scheme:
Design Representations in Orthogonal Object Lattices. This is an object

A REPRESENTATION SCHEME FOR CONCEPTUAL DESIGN 591

oriented scheme implemented in VisualWorks, a descendant of Smalltalk-80
produced by ParcPlace Systems, Inc. The scheme takes its name from the
use of alternative groupings of design elements, as lattices of objects, to
define different views of the product model and its place in a hierarchy of
abstractions.

3.1. ALTERNATIVE MODELS OF MECHATRONIC SYSTEMS

DROOL is one of a number of object-oriented formalisms for product
models, several of which have features in common with it. Gui (1991)
presents a simpler component-connector model for configuration design. A
number of projects employ the idea of grouping device components
differently for different system views on a design. We took inspiration from
the EDC Product Model developed by Tim Murdoch and Nigel Ball at
Cambridge University, a more elaborate scheme than DROOL intended more
for detailed configuration design (Murdoch and Ball, 1994; Murdoch, 1995;
Ball and Murdoch, 1995). It uses the concept of system to group assemblies
relevant to particular system views of designs. DROOL does this, but
configurational elements are secondary to functional elements in the system
views. Other object oriented knowledge representation schemes developed to
support different views on designs, to meet different requirements, include
SHARED (Wong and Sriram, 1993) in engineering and ICON (Brown et al,
1995) in building design.

Of course, component-connector models of devices have been around a
long time in the field of qualitative reasoning. In their seminal work on the
qualitative physics of flows and pressures, De Kleer and Brown (1984)
employ valves, pressure sensors, pressure references, conduits and terminals
(that is, outside connections) as objects; they point out the limitations of
component-connector models (p2I). Barrow (1984) uses modules which
have ports as well as states and state and output equations, and connected
assertions, in his VERIFY system for verifying the correctness of digital
circuits.

3.2. ORTHOGONAL OBJEcr LATIICES

Different types of relationship group subsets of the objects in a product
model into independent but interlocking graph structures. These different
lattices of objects provide alternative views of the design which are
independent but interlock. We term these structures lattices because they are
ordered, but need not be trees. DROOL includes three types of lattice; the
inclusion of qualitative spatial relationships and geometry would require
others.

Configuration Views: Composition Trees. Almost all machines are
hierarchical in structure: they comprise aggregations of components,

592 MARTIN K. STACEY ET AL.

which themselves have components. DROOL supports the hierarchical
description of assemblies as trees of components, with the relationships
'Is-Component-Of and 'Includes'.

• Process Views: Flow Networks. DROOL represents flows of matter,
energy and information explicitly as objects, as well as the design
components and connections that make up those flows. It also uses
explicit objects to represent the causal interactions that link the different
flows into networks.

• Alternative Versions: Abstraction Lattice. DROOL can link
representations of components at different levels of abstraction with the
relationships 'Is-Generalisation-Of and 'Is-Specialisation-Of. This
enables designers to change designs by following these links to substitute
more abstract or more concrete design components. As assemblies can
be generalised in different ways they form an abstraction lattice rather
than a tree.

3.3. AN OBJECT MODEL

The major conceptually significant objects in the DROOL knowledge
representation scheme are shown in Figure 2. This is an ERMIA diagram
(Green and Benyon, 1995, in press) of the object model, which shows the
major conceptual relationships between the objects. Each box denotes a class
of entities, and the lines show essential and optional relationships between the
entities that belong to each class.

Section 4.1 introduces the objects representing configurational elements
of the design (physical structures described at some level of abstraction, and
how they are physically connected). These are Assemblies, Ports and
Conduits. The objects representing process elements in the design are
introduced in section 4.2; these are Flows, Transforms, Roles, Transmissions,
Transform-Interactions, and Flowing-Entities. In DROOL the process
elements of the design are functional aspects of the configurational
elements. There is an incomplete mapping between the configurational
objects, shown on the left of Figure 2, and the process objects shown on the
right: assemblies implement transforms, ports take roles, and conduits
convey transmissions. We discuss the motivation for separating form and
function in this way in section 4.3.

Configuration objects are used to represent the attributes and variables
the other objects in the product model can have. Interdependency objects
represent the relationships between configurations, including design
constraints. DROOL permits the constraints . and dependencies between
aspects of the system to be specified freely, and at differing degrees of
precision and detail, because the designer may find it useful to highlight all
sorts of relationships.

A REPRESENTATION SCHEME FOR CONCEPfUAL DESIGN 593

internal to

component of

owns

'--___ --' 1 conveys

One-to-? Relationship

M Many-to-? Relationship

Flow

comprises

has

(within assembly)

Transform
Interaction

transmits

Flowing
Entity

• An entity of this class must have
this relationship, so it requires
the existence of an entity of the
other class.

o An entity of this class mayor may
not have this r.elationship, so it
does not require the existence of
any entity of the other class.

Figure 2. ERMIA Diagram of the DROOL Object Model

594 MARTIN K. STACEY ET AL.

4. Representing Mechatronic Systems in DROOL

In this section we describe how the objects listed in section 3.3 are used to
model aspects of the conceptual designs of mechatronic systems. DROOL
embodies a fundamental design decision to separate the objects representing
aspects of machine function from the objects representing the identity and
configuration of components of the machine. Although DROOL is designed
primarily to support functional descriptions in terms of flows of matter,
energy and information, these functional descriptions are attached to
physical descriptions, so we begin with how DROOL models the
configurational structure of mechatronic systems in section 4.1, and discuss
how DROOL models processes in section 4.2, and the relation between
function and configuration in section 4.3. Section 4.4 discusses how models
of transforms can be implemented in DROOL. Section 4.5 considers
networks of flows as maps of causal influence. Section 4.6 deals with how
abstraction is handled.

4.1. REPRESENTING THE CONFIGURATIONAL STRUCTURE OF MACHINES

We assume that the elements that make up the conceptual design of a
mechatronic system are, in some sense, physical objects. So if an element in
a conceptual design is specified as a requirement 'Do X', it is modelled in
DROOL as a component 'Thing to do X'. All such physical things are
modelled with Assembly objects. The physical composition of an assembly
is modelled by listing its components, which are also assemblies; these
components may be functionally and structurally related in all the ways
DROOL supports.

Configuration design consists in creating or modifying physical objects,
and composing them to create new composite objects. New assemblies are
created in DROOL in three ways: (1) by defining them ab initio; (2) by
adding or removing information from the descriptions of previous
assemblies, to make them more or less abstract; and (3) by grouping or
merging previously existing assemblies. Assemblies are modified by
changing their set of characteristics, and the values of the characteristics, and
by adding or removing other objects.

The present version of DROOL supports one type of physical
relationship between assemblies other than composition. This is connection
through conduits that can convey flows of matter, energy and information.
They are made by using Conduit objects representing physical connections
to connect special parts of assemblies called ports, which we represent with
Port objects. Port objects belong to the lowest level Assembly object for
which they are defined; they include restrictions on the types of flow they
can convey. DROOL permits the inclusion in product models of assemblies

A REPRESENTATION SCHEME FOR CONCEPTUAL DESIGN 595

that do not playa direct part in any flows of matter, energy or information,
but serve some other function like housing or anchoring other components.
But we have not yet incorporated any mechanisms for describing spatial
relationships or other aspects of configuration, to model the way assemblies
are composed of components.

4.2. REPRESENTING PROCESSES

The DROOL view of functional systems is that they comprise a network of
functional units that communicate by passing matter, energy or information
between them; these functional systems are processes defined in terms of
single flows of one flowing-entity. The flows are represented by Flow
objects, which point to chains or networks of Transform objects linked
through Role objects by Transmission objects. The Transform objects
represent functional units that act on the flow of the flowing-entity in some
way. The Transmission objects represent the state of the flow between
Transform objects; they do not influence the flow. Transmission objects
point to Flowing-Entity objects that represent the state of the flowing-entity
conveyed by the flow between each pair of transforms. The Role objects
define the different inputs and outputs of each transform, so that these are
represented independently of physical embodiment or connections to other
transforms. Transform-Interaction objects represent explicitly the
interactions between transforms in different flows.

4.3. RELATING FUNCTION TO CONFIGURATION IN DROOL

Transform objects belong to Assembly objects: they represent how the
assembly acts on the flowing-entity. Similarly transmissions depend on
conduits to convey them, and ports fulfil roles in transforms. Why then does
DROOL separate function from physical existence by using parallel sets of
objects? The first reason is that we find it useful to think of functional units,
transforms, as primary elements in conceptual designs of mechatronic
systems. The second reason is that a single physical conduit can convey
more than one flow (for example a pipe carrying a flowing liquid and heat),
and we require the ability to express this relation explicitly. The third reason
is pragmatic: assemblies may have several functional aspects, which may be
added or removed in the course of design, so representing them as first-class
objects is both conceptually and computationally easier.

The DROOL approach to relating function to configuration rests on a
number of assumptions, that have guided our choice of objects and the
relationships between them. Each action on a flow is performed by a
physical thing, so each functional unit (a transform) is implemented by a
physical component of the machine (an assembly). A transform passes
matter, energy or information (the flowing-entity) to other transforms in the

596 MARTIN K. STACEY ET AL.

same flow located at other assemblies. (Flows and flowing-entities are not
changed at or by transmissions.) Flows interact, notably when flows of
information guide the behaviour of flows of matter or energy. In order to
model the interactions between flows, we employ the axiom that interactions
happen at physical locations, and that these physical locations are the
assemblies implementing the transforms: transforms can influence other
transforms in other flows located at the same assembly.

4.4. MODELLING FLOWS OF ENERGY, MATTER AND INFORMATION

The simplest DROOL product models are produced simply by naming and
linking components of the design participating in flows of matter, energy
and information. DROOL is also designed to support more detailed
representations of designs. This requires adding information to the
transform objects about how transforms make changes to the flowing-entity
and to the properties of the flow at its inputs and outputs. This is the
rationale for using objects to represent the state of the flow between
transforms, and the state of the flowing-entity. In the terms of Andreasen's
(1980) Theory of Domains, this information is part of the functional system
and organic system levels of the product model.

DROOL is designed to support the development of representations of
transforms that enable a full range of inferences about its behaviour. This
involves defining a transform function. This states how the characteristics of
the transform and its assembly, and of the transmissions and flowing-entities
at its inputs and outputs, determine the behaviour of the transform and are
determined by that behaviour.

According to this view, the transforms are parameterised finite state
machines: their behaviour is determined both by discrete changes of state
(corresponding to the choice of function with which the outputs are
calculated from the inputs in an envisionment of the system's behaviour) and
continuous changes of parameters (corresponding to the inputs to a
particular function for computing outputs).

4.5. MAPPING CAUSALITY IN DROOL

We take the metaphysical view that the behaviour of each part of a
mechatronic system is caused by flows of matter, energy and information; so
causal influences are conveyed between assemblies by flows, ~nd are
conveyed between flows at assemblies. The flow of the flowing-entity (for
example a liquid, or an object being manufactured) is not the same as the
flow of causal influence around the system; in many systems the flowing­
entity travels in one direction only, but an emergent property of the flow
(such as the pressure of a flowing liquid) can travel in the other direction, so
that events downstream can affect what happens upstream. Thus a transform

A REPRESENTATION SCHEME FOR CONCEPTUAL DESIGN 597

function can influence and be influenced by transmission characteristics at
both inputs and outputs, but can only be influenced by the characteristics of
the flowing-entity at its inputs, and can only determine the characteristics of
the flowing-entity at its outputs. Modelling the organisation of a
mechatronic device in DROOL as a network of flows of matter, energy and
information thus creates a map of the causal influences in the system.

4.6. REPRESENTING ABSTRACTION IN DROOL

DROOL handles changes in abstraction and generality by adding and
removing information from assemblies. This information includes the
characteristics of the assemblies and their ranges and values; the attributes of
the assemblies' ports and their values; the sets of subassemblies belonging to
the assemblies, and the existence of transforms associated with the
assemblies, as well as their transform methods.

DROOL represents functional decompositions by expanding functional
units into sequences of more concrete functional units: it represents simple,
powerful transforms as associated with highly abstract assemblies; alternative
decompositions are represented as specialisations of these assemblies that
have subassemblies whose transforms in that system are a sequence
constituting the functional decomposition.

We envisage the development of a permanent assembly library describing
useful high level abstractions, some components of actual completed designs,
and a few useful middle level descriptions. However any assembly library
will contain only a small fraction of the potentially useful assembly
representations, so most assemblies will be constructed by modifying others,
especially by composing high level abstract assemblies and adding detail to
them.

s. FireSat: An Example from Outer Space

We illustrate the Concept Array approach and the use of DROOL to
represent conceptual designs with a design for FireSat (Rzevski and
Buckland, 1995), a proposed satellite system to monitor bush fires in
Australia. The array shown in Figure 1 is a partial concept array; it follows
the arrays developed to describe the customer's requirements and more
precise operational specifications of those requirements. It only includes the
parts of the satellite system that go into orbit; the characteristics of the
ground segment are an integral part of the conceptual design of a satellite,
but we have deleted the information flow in the ground segment from the
array for simplicity and clarity.

The array shows parts of several flows, which include: The flow of
information from the on-board camera to the microprocessor for data

598 MARTIN K. STACEY ET AL.

compression to the data storage system to the satellite's transmitter. The flow
of electrical energy from a solar array to a battery to a regulated power bus
(with power conditioning circuitry) to the transmitter, camera, articulation
drives and heaters. The flow of matter (propellant) from the tanks to the
thrusters and out into space. The conversion of chemical energy (in the
propellant) to kinetic and potential energy (of the satellite as a whole; an
orbit is a dynamic configuration of potential and kinetic energy). DROOL
represents each of the entries in the Concept Array with a transform, each
belonging to an assembly, which represents an action performed by a
component of the satellite. A new assembly is created or retrieved by
DROOL and added to the product model when a label for a new component
is added to a Concept Array; if the component is mentioned in another cell
in the array, another transform is added to the assembly if an appropriate
one does not exist.

In Figure I, the concept listed for the transmission of propellant is
'pressurised propellant transfer system'. This can be specialised in two ways,
by choosing a blowdown system, suitable for monopropellant thrusters, in
which compressed helium stored in the propellant tank pushes out the
propellant, or by choosing a regulated system, more suitable for bipropellant
thrusters, in which compressed helium in separate tanks is allowed to flow
into the fuel and oxidiser tanks to push out the fuel and oxidiser. In a
DROOL representation of the design of a satellite, this choice is encoded by
substituting an assembly representing a blowdown system or regulated
system for the assembly representing the more general concept.

Figure 3. A Partial DROOL Representation of Blowdown Propellant Transfer System

A partial DROOL representation of a blowdown propellant transfer
system is shown in Figure 3. The assembly representing the propellant tank
is shown in the lower right hand corner; it is linked through a port
representing the outlet to a conduit representing the propellant pipe; this is
linked to the thruster assembly through its inlet port. The propellant tank
assembly has a transform representing its output of propellant, which is part
of the propellant flow (the flow object is not shown). This transform is

A REPRESENTATION SCHEME FOR CONCEPTUAL DESIGN 599

linked through its out role to a propellant flow transmission associated with
the propellant pipe conduit, which has a flowing-entity object representing
the state of the propellant in the pipe. The propellant flow transmission is
linked through an in role to the transform representing the burning of the
liquid propellant to produce gas. The out role of this transform is associated
with the vent port of the thruster. It is linked by a transform-interaction to a
transform representing the conversion of chemical energy into linear and
rotational kinetic energy (not shown).

The flow of heat from the thrusters to the propellant tanks is a significant
influence on the design of a satellite, and a factor limiting the use of the
thrusters. To model this flow, we add another set of functional objects
representing the flow of heat to the same set of configurational objects. We
include a heat generation transform in the representation of the thruster,
which is linked through a heat flow transmission (associated with the
propellant pipe conduit) to a heat dissipation transform in the representation
of the propellant tank. The generation of heat is caused by the burning of
fuel; this influence is represented by a transform-interaction. Similarly, the
thermal properties of the propellant tank influence its emission of
propellant; this influence is represented by a transform-interaction.

If we decide to choose bipropellant thrusters, we replace the propellant
pipe conduit with separate conduits for fuel and oxidiser, and a pair of
regulated pressurised propellant transfer systems. Each has an assembly
representing the helium tank and an assembly representing the fuel or
oxidiser tank, connected by a helium pipe conduit. The helium tank
representation includes a transform representing the output of pressurised
helium, which is linked to a helium flow transmission. This is linked to the
helium input transform of the fuel tank assembly, which is linked through a
transform-interaction (describing the effect of the helium pressure on the
fuel pressure) to the fuel output transform.

6. Present and Future Developments

The DROOL view of conceptual designs comes from engineering
experience, observations and rational reconstructions of design processes; we
have not yet tested it systematically. DROOL and the first prototype design
environments are being implemented. Using the prototypes of our intelligent
support system to test the validity of our view of conceptual design is a
central part of the future development of the FACADE Project.

We argue in this paper that DROOL has the power to represent the
essential features of the conceptual designs of a wide range of mechatronic
systems. But its set of relationship types is insufficient to support some
important design activities, notably spatial design at both the conceptual and
embodiment stages. DROOL has been designed to be open-ended, so that

600 MARTIN K. STACEY ET AL.

additional features can be added without forcing a redesign of its core
elements. We conclude by noting some of its limitations and potential
extensions.

6.1. SPATIAL RELATIONSHIPS

DROOL does not support spatial relationships. This limits its ability to model
the configuration of mechanical systems and support configuration design
activities. While including labelled binary relations between assemblies is
computationally easy, supporting inferences about spatial relationships
requires more sophistication. To do this, SHARED (Wong and Sriram 1993)
employs qualitative spatial relationships based on a point interval algebraic
formulation (Mukerjee, 1991).

6.2. GEOMETRY

Supporting the transition from conceptual design to detailed embodiment
design requires the addition of geometric descriptions to a representation
scheme designed for conceptual designs, such as DROOL. The approach to
this that best fits the structure of DROOL models is that taken in the EDC
Product Model (Murdoch and Ball, 1994), which employs feature objects to
represent geometry-owning regions of assemblies; the division of assemblies
into features need not correspond to its decomposition into subassemblies.

6.3. FLOWS WITHOUT CONDUITS

Some flows of matter, energy and information do not flow through defined
conduits constructed to convey them. A vitally important example is heat
produced as a side effect by the operation of devices for doing other jobs.
Thinking about these flows can be important for making major design
decisions, for example in designing a satellite to ensure thermal control.
They can be described at various levels of detail, which would make different
demands for extensions to DROOL. The simplest approach is simply to
define a flow with a transform asserting that, say, heat is lost by the assembly.
This requires no extensions to DROOL, but does not allow us to say what
happens to the heat or other flowing-entity after it is lost by the assembly.
The next simplest approach is defining null ports without conduits for
emitting and absorbing the flow, and defining a flow of, say, heat as a
network with transmissions linking all the major emitters with all the major
absorbers. This could be used with characteristics describing the limits on the
capacities of each transform, to guide qualitative design decisions about
where barriers or specially designed disposal mechanisms are required.
Accurate modelling of flows without conduits requires geometric modelling
of spatial layouts.

A REPRESENTATION SCHEME FOR CONCEPTUAL DESIGN 601

6.4. DESIGN ELEMENTS THAT ARE NOT COMPONENTS

Some types of conceptual design involve reasoning with design elements that
are not components of the machine in any sense, so are excluded from the
DROOL representation. We exclude these design activities from the scope of
the FACADE System. We note that not-component concepts are usually
spatial, for example the trajectories of machine parts, objects being processed
and radiation, so including mechanisms for spatial reasoning is a prerequisite
for including not-component concepts in the scope of DROOL.

6.5 OTHER FUNCTIONAL VIEWS

The interlocking flow view is of course not the only way to think: about the
functioning of mechatronic systems. Other types of functional system view
could be represented by adding slots and objects to the present version of
DROOL, provided they share its basic assumptions: (1) Functional units have
physical locations at physical components of the device (assemblies), and
communicate with other functional units having physical locations (not
necessarily different ones). (2) Actions on physical or functional units can
be described by changes to parameter values. (3) Actions on an object being
processed can be described in terms of its states before and after the action.

Acknowledgements

The research described in this paper has been supported by EPSRC Grant
GRI J48689 to George Rzevski, Helen Sharp and Marian Petre. Claudia
Eckert made helpful comments on an earlier draft of this paper, as did the
reviewers.

References

Andreasen, M. M.: 1980, Syntesemetoder pa systemgrundlag, PhD Thesis, Lunds Tekniska
Hogskola.

Ball, N. R. and Murdoch, T.N.S.: 1995, A layered framework for sharing design data.
Proceedings of the 10th International Conference on Engineering Design, Heurista,
Prague, Czech Republic, pp. 1471-1476.

Barrow, H. G.: 1984, VERIFY: A program for proving correctness of digital hardware
designs, Artificial Intelligence, 24, 437-491.

Bracewell, R. H., Bradley, D. A., Chaplin, R. V., Langdon, P. M. and Sharpe, J. E. E.: 1993,
Schemebuilder: A design aid for the conceptual design stages of product design,
Proceedings of the 9th International Conference on Engineering Design, Heurista, Den
Haag, pp 1311-1318.

Bracewell, R. H., Chaplin, R. V., Langdon, P. M., Li, M., Oh, V. K., Sharpe, J. E. E. and
Yan, X. T.: 1995, Integrated platform for ai support of complex design (part i): rapid
development of schemes from first principles, in 1. E. E. Sharpe and V. K. Oh (eds) Al
System Support for Conceptual Design, Springer-Verlag, Berlin.

602 MARTIN K. STACEY ET AL.

Brown, F. Eo, Cooper, G. S., Ford, S., Aouad, G., Brandon, P., Child, T., Kirkham, J. A.,
Oxman, R. and Young, B.: 1995, An integrated approach to CAD: modelling concepts in
building design and construction, Design Studies, 16(3), 327-347.

Buur, J.: 1990, A Theoretical Approach to Mechatronics Design, PhD Thesis, Institute for
Engineering Design, Technical University of Denmark, Lyngby.

Day, R. G.: 1993, Quality Function Deployment, ASQC Quality Press, Milwaukee.
De Kleer, J. and Brown, J. S.: 1984, A qualitative physics based on confluences, Artificial

Intelligence, 24, 7-83.
Faltings, B.: 1991, Qualitative models in conceptual design, in J. S. Gero (ed.) Artificial

Intelligence in Design '91, Butterworth-Heinemann, London, pp. 645-663.
Green, T. R. G. and Benyon, D. R.: 1995, Displays as data structures: Entity-relationship

models of information artefacts, in K. Nordby, P. H. Helmersen, D. J. Gilmore and S. A.
Arnesen (eds) Human Computer Interaction: Interact '95, Chapman & Hall, London, pp.
55-60.

Green, T. R. G. and Benyon, D. R.: in press, The skull beneath the skin: entity-relationship
modelling of information artefacts,lnternational Journal of Human Computer Studies.

Gui, J. K.: 1991, Object-oriented assembly and assembly design process modeling, Journal
of Engineering Design, 2(2), 141-149.

Hewson, R.: 1994, Marking and making: a characterisation of sketching for typographic
design, PhD Thesis, Institute of Educational Technology, The Open University, Milton
Keynes.

Hildre, H. P. and Aaslund, K.: 1995, Conceptual design for mechatronics, in J. E. E. Sharpe
and V. K. Oh (eds.) A1 System Support for Conceptual Design, Springer-Verlag, Berlin.

Kersten, T.: 1995, 'Modessa' A computer based conceptual design support system, in J. E. E.
Sharpe and V. K. Oh (eds.) A1 System Support for Conceptual Design, Springer-Verlag,
Berlin.

Mukerjee, A.: 1991, Qualitative geometric design, in J. Rossignac and J. Turner (eds)
Proceedings of the First ACM/SIGGRAPH Symposium on Solid Modeling Foundations
and CAD/CAM Applications, ACM Press.

Murdoch, T. N. S.: 1995, Sharing design data, Technical Report CUED/C-EDCffR-28,
Cambridge University Engineering Department, Cambridge.

Murdoch, T. N. S. and Ball, N. R.: 1994, The development of an edc product data model,
Technical Report CUED/C-EDCffR-21, Cambridge University Engineering Department,
Cambridge.

Pugh, S.: 1990, Total Design, Addison-Wesley, Wokingham.
Rzevski, G.: 1995a, FACADE: Concurrent engineering applied to multi-technology products,

Proceedings of the International Workshop on Concurrent/Simultaneous Engineering
Frameworks and Applications, Lisbon, Portugal.

Rzevski, G.: 1995b. Intelligent systems: Issues and trends, Proceedings of the International
Conference on Intelligent Manufacturing, Wuhan, China.

Rzevski, G. and Buckland, R. A.: 1995, FireSat: A satellite designed using concept arrays,
Technical Report 9502, The Open University, Centre for the Design of Intelligent
Systems, Milton Keynes.

Rzevski, G., Buckland, R. A., Petre, M., Stacey, M. K., and Sharp, H. S.: 1995, Conceptual
design of mechatronic systems, Technical Report 9503, The Open University, Centre for
the Design of Intelligent Systems, Milton Keynes.

Smithers, T., Conkie, A., Doheny, J., Logan, B., Millington, K. and Tang, M. x.: 1990,
Design as intelligent behaviour: An AI in design research programme, Artificial
Intelligence in Engineering, 5(2), 78-109.

Stacey, M. K.: in preparation, Mental Processes in Engineering Design.
Vries, T. J. A. de: 1994, Conceptual Design of Controlled Electro-mechanical Systems, a

Modeling Perspective, PhD Thesis, Universiteit Twente, Enschede.
Wong, A. and Sriram, D.: 1993, SHARED: An information model for cooperative product

development, Research in Engineering Design, 5(1), 21-39.

I. S. Gero and F. Sudweelcs (eels), Artificial Intelligence in Design '96, 603·622.
© 1996 Kluwer Academic Publishers.

GENERATING CONCEPTUAL SOLUTIONS ON FUNCSION:
EVOLUTION OF A FUNCTIONAL SYNTHESISER

AMARESH CHAKRABARTI AND MING XI TANG
Engineering Design Centre, Department of Engineering
University of Cambridge
Trumpington Street, Cambridge CBIIPZ, UK

Abstract. FuncSION is a software that can synthesise, using a database of functional
elements, an exhaustive set of solution concepts to satisfy functional requirements of a
design problem. It is intended to stimulate designers' thinking by providing a framework
where these solutions are offered to the designers for exploration in the conceptual
design stage. Reported in this paper are some of the testing results using FuncSION in
two case studies and three hands on experiments, in terms of its ability to (i) offer a
wide range of new, interesting and useful ideas, and (ii) facilitate exploration of these
ideas in an effective way. The main results are: it does provide useful ideas and
interesting insights to the designers, but does this at the cost of having to deal with a
potentially huge list of candidate solutions which are hard to explore sufficiently. Based
on these results, a scheme for coping with a large number of solutions without losing
explorability is proposed, whereby designs could be generated and explored at multiple
levels of abstraction, using pre-defined as well as customised clustering strategies at any
of these levels. An implementation of the scheme, in terms of a user editable
hierarchical database of elements and solutions, and a general algorithm for synthesis at
multiple levels are proposed. A set of clustering strategies for identifying and grouping
the solutions considered by experienced designers to be redundant and wasteful is also
discussed, with some initial testing results.

1. Introduction

In transmission design, the major functional requirement of a design is to
transmit and transform forces and motions. This can be expressed as a
transformation from a set of input characteristics to a set of output
characteristics. Each of these characteristics may be required to change with
time. The transformation at an instant between the input and the output
characteristics is an instantaneous transformation. An ordered set of such
transformations can be used to express the overall functional requirement of
a problem. In this approach, a solution concept is an abstract description of a

604 AMARESH CHAKRABARTI AND MING XI TANG

system, of identifiable functional elements, that can satisfy given functional
requirements. For instance, a solution concept, for transmitting a force on
the same plane but into a different direction and position, could be a system
in which an input rack takes the input force to rotate a pinion, which moves
an output rack in the required direction to provide the required output force.

The instantaneous transformation of a given system can be deduced
using the information about its constituent elements, connections, and their
rules of combination. FuncSION (acronym for Functional Synthesiser for
Input Output Networks) is a system developed at the EDC in Cambridge
University that synthesises solution concepts, using functional elements from
a database as illustrated in Figure 1, to fulfil a given functional requirement
of a design in terms of its required instantaneous transformation, so that
designs so synthesised fulfils the required function at one instant of time.

In the representation that FuncSION uses, a design problem is defined as
a transformation between a set of instantaneous input (and output vectors,
each of which has a set of characteristics such as kind (the type of YO, such
as force, rotation etc.), orientation (the spatial axis along which an YO is
oriented) sense (the sense of the YO along the spatial axis) a position (spatial
co-ordinates) and magnitude, to represent the required YO characteristics.
FuncSION allows the user-definition of a database of functional elements,
where each element is expressed as a transformer which transforms an input
vector of given characteristics into an output vector of specified
characteristics (for example, a screw element can transform an input vector
of the rotation kind into an output vector of the translation kind so that they
are co-axial to each other).

In FuncSION, the synthesis of a solution concept is supported in a three
step process. The first step involves Kind Synthesis, where an exhaustive
search algorithm is used to synthesise a set of topological networks of
causally connected functional elements, each of which is structurally feasible
and can transform the give input kind into the output kind required of a
design problem. Concepts generated by this procedure is exhaustive, i.e., all
possible combinations of elements, from a given database of elements and
using a specified maximum number of the transformations allowed in any
solution concept, which fulfils the given functional requirement, are
generated. In the second and third steps, possible alternative spatial
configurations (i.e., spatial layouts) of each such topological candidate
solution concept can be generated, using two further procedures called
orientation and sense synthesis, so that the concepts can also satisfy the
orientation and sense constraints imposed by the design problem. The
representations for the design problem, design solution concepts and
synthesis procedures used in FuncSION are reported in Chakrabarti and
Bligh (1994).

EVOLUTION OF A FUNCTIONAL SYNTHESISER 605

I Tie-rod 1 0
~O O~

Axial transmission of
translation

I Screw 0
--....O---~O ~~

Axial rotation to translation
transformation

Tie-rod 2

Transverse transmission
of translation

--!.O Wedge o
o ,

Intersecting transmission
of translation

I Shaft 0
.. ~O-----O ••

Axial transmission of rotation

'- '- Lever I-dr lever type R
'- /'

o

I Le~r 2 or lever type T

o

Translation to rotation in a skew way

Cam
0

I 0 o~

~ Intersecting rotation
to translation

o I/O Point I Input 0 Output ~ ~ Rotatio~ Translation

Figure 1. The elements used by FuncSION in the synthesis of conceptual solutions.

The objective of this paper is to present the development of FuncSION based
on its application in real design cases and its evaluation by experienced
designers. In Section 2 the results of testing FuncSION are discussed. From
these tests, the main research problems to be tackled before utilising the
potential of FuncSION are identified in Section 3 and Section 4. A scheme
for solving these problems and its implementation is presented in Section 5,
with some of initial test results.

606 AMARESH CHAKRABARTI AND MING XI TANG

2. Testing

2.1. MAS PROJECT CASE STUDIES

The Mobile Arm Support (MAS) project was intended to design a means for
enhancing the mobility of Muscular Dystrophy (MD) sufferers. People
having this disorder have little or no lifting strength in their arms, although
they do not lose any of the finer controls of their fingers. In the task
clarification phase of the project, it was found that the MD sufferers are
capable of using their inertia to move their arms in horizontal plane in
absence of significant surface resistance. It was decided that an arm support
would be designed as a means of enhancing mobility, which would be able
to provide powered vertical motion of the arm. There should be enough
freedom in the horizontal direction for the users to use their own strength to
move their arms in the horizontal plane. .I. tle project ran in two phases
spanning a total of over three years, which led to the development of two
prototypes.

2.1.1. Comparison with Designs generated in MAS I Project
The two designers who worked in MAS I project were assisted by a
brainstorming session, which gave them an initial pool of ideas. They
explored these ideas, and eventually came up with three variants, one of
which was selected for embodiment.

As a retrospective study, an input-output requirement, which describes
the intended instantaneous function of the arm support, was given
independently to FuncSION, for it to generate ideas and their spatial
configurations. As vertical mobility was the ml!in requirement, the input was
either a translation or a rotation, which could be in any of the three reference
directions, and the output was specified as a vertical translation. With the two
specifications given to it (one is a torque to force transformation, and the
other, a force to force transformation) a total of 162 ideas were generated.
These ideas were compared with those that designers generated.

There were a total of 73 ideas generated by the designers. Most of these
ideas are either physical effect-like solutions, or incomplete and
incomprehensible, or from a different domain of knowledge, and thus are
not within the realm of FuncSION, leaving a total of 27, not necessarily
distinct ideas which could be compared with the solutions FuncSION
generated. FuncSION managed to generate 22 of these.

Of the 162 solutions that FuncSION suggested, 13 (the number of
distinct ideas of the 22) were generated by the designers. However, given that
FuncSION allows the same element to be used more than once in a solution,
it often generates a number of solutions which might be considered as
variants of other ideas (possibly giving an inflated impression of its

EVOLUTION OF A FUNCTIONAL SYNTHESISER 607

originality). Also, some solutions generated might be too expensive to be
considered by the designers at all. One method to compare designers'
solutions with solutions generated by FuncSION, in the above context, might
be to group designs generated by FuncSION into a number of clusters and
to eliminate those clusters which contain "expensive" solutions. If an idea
exists in the designers' documents which can be abstracted as one of the
solutions in a cluster from FuncSION, then to assume that this cluster has
been considered by the designers. There are two problems with this method.
One is the issues of what criteria should be used to group designs as similar,
and to classify designs as wasteful/expensive. The second is that the designs
generated by the designers are often at a different level of abstraction than
those generated by FuncSION. If these solutions are at a higher level of
abstraction, these cannot be discussed within the realm of FuncSION (e.g.,
those ideas that are physical-effect-like). If these are at a lower level of
abstraction, we need to abstract them to the right level before these can be
compared with solutions generated by FuncSION; this has two consequent
difficulties.

Take the instance of the "shaft rack and pinion" solution (Bauert, 1993)
as an example, this could be interpreted as a "shaft lever tie rod" solution
before it is compared with FuncSION (because a pinion and a rack could be
abstracted as a lever and an axial tie-rod respectively).The difficulties are
that if we interpret, by having spotted an instance of the "shaft rack and
pinion" design, that the designers have considered the whole cluster that
represents "shaft levers tie rod", then we might have made two layers of
mis-conception: whether or not the designers considered "shaft lever tie
rod" solution class as a whole (various possible embodiments of this class at
the level of abstraction at which the designers considered their design);
whether or not they considered the whole cluster of "shaft lever tie rod"
type solutions (the variants of this solution at the same level of abstraction
such as "lever tie rod", "shaft lever" etc.).

We have tried to deal with the first problem, of finding criteria for
clustering designs, by carrying out a set of further experiments with
experienced designers, and identifying their common notions of
wasteful/expensive and similar as clustering heuristics. The second problem,
about comparison of designers' idea-instances with FuncSION's solution
clusters, was dealt with by this assumption that if designers' instances can be
abstracted into more than one solution in a cluster, then they must have
considered the solution types represented by that whole cluster. However, if
there is just one single or no idea-instance that could be abstracted as a
solution in a cluster from FuncSION, then the designers did not consider this
solution cluster.

There were interesting and inexpensive solutions that were suggested by
the computer, which designers did not conceive (one example of which is a

608 AMARESH CHAKRABARTI AND MING XI TANG

single link lever connecting an input rotation to a tie-rod via a four bar
linkage to provide an output hand motion). It was interesting to note that
some solutions which were regarded by the designers as distinct solutions
were regarded by the computer as topologically the same (e.g., the final two
solutions in MAS I, see Figure 2). This signifies the importance of
considering spatial configurations as distinct solutions.

Lever 1 t Tie-rod 2 t Q==------- - -

Tie-rod 1 t Levers Lever 1 t Tie-rod 21

Screw Tie-rod 1

a. MAS I Final Solution

"
Screw

• b. MAS I pre-final solution

Figure 2. The fmal solutions in MAS I project.

2.1.2. Comparisons with Designs Generated in MAS II Project
In phase two of MAS project, designers were given the designs generated by
FuncSION in Phase I, along with the other existing ones, for consideration.
They went through these as an exercise, hardly taking note of them as
serious solutions, and got on with designing as they otherwise would (and
again did not come up with those feasible designs as in phase I). Possible
reasons might have been that (i) right from the beginning this was taken as a
redesign exercise, with the intention of modifying the previous designs to
alleviate the existing problems; (ii) concepts generated by FuncSION were
not easy to understand due to their user-non-friendly abstract representation,
and lack of visualisation of how they worked; (iii) there were too many
solutions to browse; (iv) there were a large number of infeasible, expensive,
or similar solutions which discouraged the designers to explore further.
However, these are only guesses, and needed validating before they can be

EVOLUTION OF A FUNCTIONAL SYNTHESISER 609

given serious consideration. We thus did some further testing for an
evaluation, which is discussed below.

2.2. HANDS ON EXPERIMENTS BY EXPERIENCED DESIGNERS

Three experienced designers were asked to use the system to evaluate the
solutions generated by the computer for aspects of their originality,
feasibility, redundancy and wastefulness, and to comment on whether and
how they would modify the ideas they find unacceptable to make them
acceptable. They were also asked to make comments on the ease of use of
the package, and to make any other observations or suggestions.

2.2.1. Experience of Designer A
Designer A went through the MAS design exercise twice using a different
database of basic elements each time. In the first experiment he used 5
elements: two lever types, two types of transitional elements, and a screw type
element. He wanted to check whether or not FuncSION produced the
solution he had in mind, which it did. He then went through the second
experiment, where he used another database of five elements. He could not
think of any sensible solution using these elements, and wanted to check
whether FuncSION could surprise him. There were three solutions which he
found useful and interesting.

However, there were a large number of solutions which he thought were
redundant (with repetitive transitional elements, e.g., three shafts in series as a
distinct solution to two shafts) or wasteful (e.g., having two cams in a single
110 design). For instance, of the 20 solutions in this second experiment, there
were 4 redundant and 3 wasteful designs, which totalled 33% of the total
number of solutions.

He found that he could not cope with more than 20 solutions at a time,
and suggested that browsing the solutions using user-defined categories
(such as all solutions with a screw, or all solutions with lever only) would
make handling large number of solutions easier. The solutions were difficult
to visualise or interpret as we expected, and he thought having iconic
representations coupled with simulation facilities would make visualisation
easier.

2.2.2. Experience of Designer B
Designer B went through the MAS exercise thrice, each time with a further
reduced database of elements and less number of elements to be used in a
solution concept, so as to bring down a large number of solutions to explore
(from 700 to 50 to 6). In each of these cases, he found that a solution
concept having additional tie-rods or shafts were just variations on the
original theme.

610 AMARESH CHAKRABARTI AND MING XI TANG

In the above cases, designs with a lever preceding a screw were
considered wasteful, as long as levers were being interpreted as links and not
as temporal elements such as gears. Once this bias was removed, however,
some of the solutions having levers preceding gears were now considered
geared variations of the rest of the solution. Similarly, a solution having
three levers in series followed by a tie rod was originally considered as a
feasible but not exciting solution when the levers were interpreted as links.
But when the levers were interpreted as gears, the designer found the same
solution a clever new idea as this became a rack and pinion solution. This
means that being able to see the solution at levels of greater detail reveals
more insights as to how useful it might be. He felt that the solutions in these
exercises gave him six distinct ideas. The first one consisted of two cams,
which he felt, unlike Designer A, was not a wasteful idea, but a new idea he
did not think of. The other clusters were screws with tie-rods and levers,
levers and tie-rods, two cams connected by a lever, a cam driving two levers,
and a cam connected with tie-rods, which included both MAS I and MAS II
final solutions! Having a vertical tie rod on a screw gave him the idea of
using a sleeve to isolate the transitional component of the screw (an insight).

Regarding visualisation issues, levers were not understood as being
capable of being abstractions of gears, in the beginning. Also, a lever, as
used in FuncSION, was not a conventional see-saw type but a more
fundamental element which could be combined in various ways to produce
bell crank levers as well as see-saws. Cams, in the present representation, were
hard to visualise, and it was hard to visualise tie rods as axial links.

Regarding the procedural bits, Designer B felt that when he found an
interesting Cam based design, he wanted to explore all the Cam based
designs. So a user-defined clustering facility such as find all designs that
have a shaft in the middle would be useful. He suggested that it would be
useful to do synthesis with only output specified.

2.2.3. Experience of Designer C
Designer C went through the MAS exercise twice. In the first run, he chose
three elements from the database, and asked for solutions having at most
three elements. There were two solutions: one with two levers and the other
with two levers and a cam in between. He expected both the solutions and
there were no surprises, although both were perfectly reasonable solutions.
He then chose a 4 element-database, and solved again for the same
requirements. This time there were twenty solutions, several redundant (the
heuristic was that one or many translators in series, or at the beginning or
end), though he thought these variations might be useful for optimisation
purposes. Here also, the solutions did not surprise him. This is not surprising
because the database chosen was very limited and there was not much scope

EVOLUTION OF A FUNCTIONAL SYNTHESISER 611

for innovation. He felt that visualisation would be improved if the symbols
were more self-explanatory, and if two solutions could be seen alongside one
another.

3. Observations and Discussion

Designers in the above experiments found that FuncSION in general
generates a range of interesting solutions, and often comes up with
surprisingly clever ideas and insight. However, it also generates a large
number of redundant and expensive solutions, and this makes it difficult or
frustrating to evaluate and explore the ideas to any depth. They had some
difficulty in visualising the designs at the present representation, and could
visualise only when these designs were shown at a lower level of abstraction.

On the whole the above experiments suggested a common pattern of
when solutions were considered similar: if two solutions are different only by
a transitional element (e.g., a tie rod, or a shaft), then they are similar. The
consideration for wastefulness was not as straightforward, however.

If this criterion of what redundant solutions mean were applied to cluster
the designs FuncSION suggested in the MAS I and II cases described before,
and the wasteful designs it suggested were clustered using the wastefulness
criterion, the rest of its designs could fall into 12 different clusters of
solutions of an average size of about 12. Of these, only 4 clusters were
considered at any length at all by the designers in MAS I and MAS II, while
just a single low-level instance was found for 2 of the 8 other clusters. This
indicated the potential of FuncSION for suggesting different ideas and idea
types. It is important to note that the above clusters were the result of solving
the MAS problem using a database of 5 elements only. If this database were
increased to 7 for instance, the number of clusters, after eliminating the
expensive solutions would be as high as 29, of which only 6 would then have
been considered by the designers, and only 4 of these at any length!

Based on the experience gained from these case studies and experiments,
it was felt that FuncSION needed further attention in three different areas:

3.1. TOO MANY SOLUTIONS

One of the problems associated with the synthesis approach adopted by
FuncSION is that the system may generate so many solutions that it is
difficult for the designer to even browse through them. Some of these
solutions were considered by the designers to be redundant (which is a
variation another which uses additional, non-essential elements), or wasteful.
However, the exploration of 'redundant' solutions often might be useful if
the non-redundant ones cannot provide some additional functions which are
not within the realm of the main function.

612 AMARESH CHAKRABARTI AND MINH XI TANG

Take the solution that was generated by FuncSION for Phase II of the
MAS project (see Figure 3) as an example. There are two consecutive tie­
rods of the same type, which might appear to be redundant unless one were
trying to provide two extra degrees of freedom for the movement of the
output point in the horizontal plane.

tie-rod 2t tie-rod 2 t output

tie-rod 1

screw

input

MAS IT final solution

Figure 3. Redundancy can be useful.

Take the MAS I project as another example in which the final two
solutions are considered by FuncSION to be topologically the same (Figure
2). The two solutions are only different in terms of the sense configuration.
However, for the designers, one was considered to be a substantial
modification of the another as it made the design more compact. So, whether
a design is to be considered redundant or not, depends largely on other
requirements that the design might have. Also, the exploration of redundant
solutions might be useful if these non-redundant ones can provide some
additional functions which were not originally thought of.

However, it was clear that far too many solutions were typically produced
by FuncSION for the designer to meaningfully explore. For example, take a
typical case of synthesis where only 32 topologically distinct solutions are
generated from a database of 5 elements and a single 110 function, each of
these can have at least 4 spatial configurations, each of which can have at
least 3 physical concepts, giving a total of 384 solutions. The conclusion is
that a strategy is needed to generate or present these solutions whereby they
could be browsed through without being overwhelmed by them.

EVOLUTION OF A FUNCTIONAL SYNTHESISER 613

3.2. TOO DIFFICULT TO INTERPRET AND TO VISUALISE

Two main issues concerning the interpretation and the visualisation of the
synthesis results were considered vital by the designers who evaluated the
FuncSION system. The first is that the representation of elements in the
database is too abstract. For example a shaft looks similar to a screw in terms
of input/output function. The second is that the static representation for
functional elements and conceptual solutions makes it hard for the designer
to image the likely behaviour of an element or a conceptual solution, thus
contributing little towards supporting designers' creative thinking. That is,
the expected behaviour of each element or a solution needs to be visualised
in order to give the designers more information. Thus a means of visualising
solutions and their elements should be developed.

3.3. SOME DESIGNS DO NOT FUNCTION TEMPORALLY

So far, all the solutions that FuncSION generated work at one instant of time.
For instance, a lever type element represents a transformation from an
instantaneous input to an instantaneous output. This could be an abstraction
of a gear or belt type element, which can provide translation at that point for
an extended length of time, or it could be a link type lever whose position
and direction of output change with time. The conclusion is that a temporal
reasoning facility is required to evaluate the potential of each such solution
to function temporally.

4. Objectives Revisited

The central objective of FuncSION is to provide an environment which
would stimulate designers thinking by supporting them to explore a wide
range of ideas and, if they wish, variants of these ideas, so as to increase their
chances of developing new, interesting and useful designs. Two factors
contribute to developing such ideas: there must be a wide range of computer
generated ideas for them to explore, and these solutions must be explored
and evaluated sufficiently by the designers.

In order to generate a wide range of ideas, FuncSION needs a wide
variety of elements in its database, which in turn produces a large number of
solutions, many of which are similar to each other. If a means could be
developed to cluster these solutions into groups of similar solutions, and also
weed out solutions that are considered "wasteful" by the designers for a
specified requirement, then this number could be more manageable.
The evaluation on FuncSION indicated that it is easier to explore solutions if
they are not too many, and if they can be visualised easily. It is easier to
visualise a solution if it, and its component elements, can be seen at a

614 AMARESH CHAKRABARTI AND MINH XI TANG

sufficient degree of detail (in terms of their behaviour as well as their spatial
relations), Le., the less abstract it is. On the other hand, the more abstract the
database used by FuncSION is (Le., where the an element can represent a
large number of less abstract elements), the less the number of solutions
generated will be. Therefore, there is a conflict about the right level of
abstraction, see Figure 4. If it is too high, the solutions will be more difficult
to visualise, and consequently to explore, whereas, if it is too low, there will
be too many detailed solutions to explore. What further complicates this
issue is that the "right" level of abstraction varies according to the
experience of the designer. Experienced designers might only need to look
at designs at a higher level of abstraction than an inexperienced designer,
and still be able to imagine their details and evaluate them, while
inexperienced designers. might need more visualisation support, Le., further
degrees of possible detail of the solutions before they could evaluate them.

~tYOfi~.
explorability range of Id~

llJ ~ " no. & range of building TT n blocks in the database ...
visualisation number of solutions

~
abstraction level

means increase in A will require increase in B

means increase in A will require decrease in B

Figure 4. The factors that affect the novelty of ideas in a design.

Based on the results of evaluation, we conclude that FuncSION must be
able to offer designers a wide variety of solutions to explore; the number of
these solutions need to be small without compromising their range. support
Designers should be visualise and browse through these designs at various
degrees of detail, and should be able to see the variants a given design could
have for he evaluates them. They should be able to put their own clusters on

EVOLUTION OF A FUNCTIONAL SYNTHESISER 615

the solution space, based on criteria such as what they consider, or is
generally considered wasteful, and invoke any particular cluster at their will.

5. Further Development, Implementation and Evaluation

Four strategies have been initially identified to avoid over-generalisation of
the synthesis solutions in a computer-based system. These strategies are
• to use a hierarchical functional element structure,
• to provide synthesis programs which operate at different levels of

abstraction,
• to use design heuristics to cluster design solutions, and
• to provide alternative control strategies for visualisation and browsing.
A new version of FuncSION has been implemented using a knowledge­
based system development tool called GoldWorksIII ™ on a SparcStation. It
consists of a database of functional elements and their transformation rules, a
functional synthesiser with synthesis algorithms that operate at different
levels of abstraction, and a graphical user interface for browsing through and
visualising the solution concept generated.

5.1. DATABASE

A way of eliminating unnecessary combinations of synthesis solutions is to
allow the designers to choose the types of functional elements and their
interfaces from a hierarchical structure. For instance, a lever element, at a
lower level of abstraction, can be split into link type, gear type, pulley type,
etc., while an axial tie rod can be split into axial links, chains, belts, ropes,
racks etc.

Once a solution is generated at a given level of abstraction, it should be
possible for the designers to navigate through the solution, or parts of it, at
other levels of abstraction before making any change. The functional
database should be hierarchically structured to enable the designers to edit
or modify the elements at various levels of the hierarchy.

An object-oriented product data model is used to build a database of
functional elements which can be selected to synthesise solutions based on a
user defined input/output requirement specification. Each functional element
in the database has a type which is associated with a set of rules that
determines how it responds to different orientation or. sense inputs. In the
current implementation there are 72 such rules.

5.2. ALGORITHMS FOR CLUSTERING AND BROWSING SOLUTIONS

The implementation of the original version of FuncSION used specific
features of the functional elements to solve the design problems at a specific

616 AMARESH CHAKRABARTI AND MING XI TANG

level. It is therefore unable to deal with a hierarchical structure of functional
elements and therefore is abstraction-level-specific. However, it is possible to
extend the algorithm so that it can solve multiple input/output synthesis
problems using a set of black boxes with inputs and outputs having
attributes, the exact values of which would depend on the level of the
functional element hierarchy. The key idea is to separate data from the
synthesis procedures, and wrap them both with a common interface. In the
new version of FuncSION, a three-steps strategy is used to synthesise
solutions. The first step generates an exhaustive set of candidate solution
concepts for a selected set of functional elements. The second step tests the
feasibility and functionality of the solution concepts to eliminate infeasible
ones. The third step clusters the feasible solution concepts based on user
selected heuristics.

For example, suppose we have three elements (1 2 3) (in this list each
number represents a functional element and the actual elements can be filled
in later). In the generate stage, all the combinations of these three elements
are generated, resulting in a list of candidate solution concept structures (1,
2, 3, (1 2), (2 1), (1 3), (3 1), (2 3), (3 2), (1 2 3), (3 2 1), (1 3 2), (3 1 2), (2
1 3), (2 3 1». In this list, (1 2), for example, means that the connection form
element 1 to element 2 forms a possible solution concept structure.

In the test stage, each candidate solution concept structure is mapped to a
chosen level of the functional element hierarchy in the database, retrieving
the real element attributes. The compatibility of functional elements within
each candidate solution concept can then be tested. This is done by
removing those which are incompatible in terms of input/output
transformation. For example, if the output of element 1 does not match the
input of element 2, then the solution concept structure (1 2) is incompatible.
All the compatible solution concepts must also be tested using the
input/output requirement specification. The results of this process form the
solutions of the kind synthesis step (Chakrabarti and Bligh, 1994).

Each kind synthesis solution can then be selected by the designers for
orientation and sense synthesis. The orientation synthesis is done by
propagating an input orientation from the input point to the output point of
a kind synthesis solution concept using the orientation transformation rules,
the result of orientation is a list of orientation synthesis solution concepts
The sense synthesis is done by propagating an input sense from the input to
the output point of an orientation synthesis solution concept. Both
orientation and sense synthesis generate multiple solution concepts because
one element typically responds to the same orientation and sense input in
more than one way and can have alternative spatial configurations.

The outcome of kind, orientation and sense synthesis may still be a large
set of solution concepts with alternative spatial configurations. The clustering

EVOLUTION OF A FUNCTIONAL SYNTHESISER 617

heuristics discussed above can then be selected by the designers and applied
to these solutions to group solution concepts with distinct features.

A solution concept generated at one level of the functional element
hierarchy can be specialised in a number of different ways. We have so far
implemented the following:
1. any solution concept generated by the system at one level of the

functional element hierarchy can be mapped to a lower level by
substituting the elements in the solution concept with those at a lower
level. This may produce a list of combinations. For example, if a solution
(lever -> tie-rod) is mapped to a lower level, then for a hierarchy with two
possible variants of a lever (a gear and a link-liver) and a tie-rod (a rack
and a link-type-tie-rod), there will be 4 low level combinations, i.e., (gear
-> rack), (gear -> link-type-tie-rod), (link-lever -> rack) and (link-Iever->
link-type-tie-rod). The lower level elements may introduce interface
constraints that would render some combinations invalid (in this example
the second and the third solutions are invalid). A program has been
designed to work out only the valid mappings.

2. a solution concept can be modified by a designer by replacing any part
of it with an element or an interface at a lower level of abstraction. This
allows the designers to specialise or further constrain a solution concept
in a depth-first manner. For example, if a solution concept contains an a
lever, then it is possible for the designer to modify this element by
looking at its sub-class or super-class elements. Any modification made
by a designer is checked by the system to ensure the consistency of the
solution.

3. solution concepts generated at a low level can be clustered into a higher
level by merging low level elements or interfaces into higher level ones.

It is necessary to integrate design heuristics into the synthesis process in
order to offer the designers a wide range of solutions and their variants in a
controlled manner. We define a variant solution in the following ways:
• Designer's preference, i.e., the solutions that a designer would consider as

the variants of another design,
• Generalised solution concepts based on experiments, i.e., what we have

found universally as variants from the hands-on experiments (this can
grow as one does more experiments with the designers), or

• Variations of past design examples even though they may have been
noted by the designers as wasteful. Here a wasteful solution is the one
considered by the designers as inefficient or too expensive.

All these could form part of a library of heuristics or filters that could be
integrated with a systematic synthesis program to weed out the solutions
which may be generally regarded as being "bad ideas". This results in an
organised concept solution tree instead of a huge number of solutions at the
same level of abstraction.

618 AMARESH CHAKRABARTI AND MING XI TANG

A number of heuristics have been found useful in the experiments and
can be selectively (by the designers) applied to the synthesis program to
cluster the solutions generated by the computer. These heuristics include:
fixing the number of transformations; each element is used more than once;
each element is used no more than once; each element is used at least once;
each element is used exactly once; no element is used repeatedly more than
a specified times; no element is repeatedly used consecutively; same tie-rods
are not directly connected; no translators such as shaft, tie-rod etc. are used;
fixing the input/output elements; and only input is specified while the output
is left open.

5.3. GRAPHICAL USER INTERFACE

The synthesis algorithm described in Chakrabarti and Bligh (1994) used a
breadth-first search strategy to generate general to specific synthesis
solutions. While this remains a useful control strategy in the new
development, a number of alternative control strategies must also be used for
the designers to explore the whole solution concept tree. Some of these
control strategies are:
• to allow the designers to path through all the levels of the solution

concept tree;
• to pick up of a few solution concepts from a user-defined level on a

random basis before generating all the possible solution concepts at that
level;

• to set default values for the numbers of solution concepts to be generated
at each level of the functional element hierarchy.

A new graphical user interface is designed to allow the designers to control
the functional synthesis process with visualisation support by
• ionising each functional element for an easy selection;
• simulating the behaviour of individual components as well as the solution

concepts generated from individual elements;
• helping the designers to browse through the solution concept tree.
Simulation is an important way of supporting the understanding of a
synthesis solution so as to help with its selection and modification. While a
3D modelling tool can be used to visualise the final solution after
embodiment design, it is only necessary at the functional synthesis stage to
use a two dimensional graphical display scheme. Within this scheme, each
functional element has an iconic image that can be actively manipulated
within a graphical window.

EVOLUTION OF A FUNCTIONAL SYNTHESISER

R

NR

c~ lever-type T ~ lever-type R

wedge lever-typeR

MAS lever-type R~

lever-type R~

cam

cam~ wedge~

wedge
cam~ wedge

Case A

R
wedge~ lever-type T

lever-type T ~ lever-type R ~ wedge wedge NR

lever-type T ~ c~ wedge
lever-type T ~ scre~ wedge

lever-type R..... cam wedg~ lever-type T ~ screw

wedg~ lever-type T" lever-type R

wedge..... wedge

R: idea clusters generated by lile algorilhm lilat allow repitition of elements

NR: idea clusters generated by lile algorithm that does not allow repitition of elements

c=:::> idea clusters lilat would be considered wasteful by the designers

MAS: idea clusters generated by the designers in MAS projects

Figure 5. A comparison between a Repeat and a Non-repeat algorithm.

619

620 AMARESH CHAKRABARTI AND MING XI TANG

5.4. EVALUATION OF THE NEW VERSION

In order to evaluate the newly implemented system, we have produced some
test cases using some of the heuristics discussed above. Figure 5 shows how
the solution clusters, produced by a repeated (each element is used more
than once) and a non-repeated (each element is used no more than once)
algorithm in two of the test cases, relate to the ideas generated by the
designers in the MAS project.

In Case A (in the case of a rotation to translation input/output
requirement using 7 elements with a maximum of 3 allowed transformers
per solution), the repeated algorithm produced 18 clusters, 2 of which would
have been considered by the designers as wasteful, and 5 of the remaining
ones were independently generated by the designers. For the same case, the
non-repeated algorithm generated 12 solution clusters with no wasteful
clusters, but failed to produce 2 of the 5 clusters which were independently
generated by the designers.

In Case B, the number of clusters for the repeated algorithm is 13 (in the
case of a translation to translation input/output requirement using 7 elements
with a maximum of 3 allowed transformers per solution), none of which
would have been considered wasteful by the designers. The number of
clusters produced by the non-repeat algorithm in this case is 11, which
included the two that were independently touched upon by the designers.

The indication is that the non-repeated algorithm generates less number
of variants or redundant solutions and thus less number of wasteful solutions,
but at the cost of omitting some of the solution clusters which would still be
regarded useful and important by the designers. This simply pontificates the
point that it is a heuristic and not a general principle. It should therefore
only be used in situations where the designers are given a prior warning
about its possible consequences.

6. Related Work, Conclusions and Further Work

There are three main areas which relate to this piece of work. One is
computational synthesis approaches and approaches that they take to cope
with complexity, one is design methodology and how generation aspects
could be supported, and the third is the systems and user interface issues.

There have been evidences in design theory and methodology that it is
important to generate a range of designs and explore them sufficiently
before homing in on specific designs for further development. In fact in
some of the protocol studies done in the recent past, it has been found that
the best approach in conceptual phase has been a consecutive expansion and
narrowing down of ideas (Dylla, 1989; Fricke, 1992). It has been a major
problem however, in synthesis support systems as well as in manual methods

EVOLUTION OF A FUNCTIONAL SYNTHESISER 621

suggested in design methodology (Pahl and Beitz, 1984) as to how to
explore designs without compromising their range.

As mentioned in Lee et al (1992), granularity of building blocks is
particularly important for managing complexity, and they felt complexity
could be tackled using a few important parameters at a time. However, this is
only part of the problem. Even if the problem is solved using few parameters
at a time, there would still be a large number of feasible alternatives to
compare, evaluate and modify. We feel that the major part of complexity
arises from the conflict about level of abstraction right for getting high
explorability as well as wide range of solutions. Our approach tackles this in
three new ways. One is to clustering designs based on designers' heuristics
of similar designs; the second is to provide range by generating solutions at
a high level of abstraction, while allowing visualisation at a low level for each
of these solutions, and the third is by bringing designer in the navigation
process which is essential for design support systems.

In conclusion, this new version of FuncSION provides a database of
hierarchical functional components and their interfaces for the user to select.
The system generates synthesis solutions using an algorithm at a level of
abstraction selected by the designer. The solutions generated by the system
can be clustered using the heuristics chosen by the designer, allowing the
designer to switch between mUltiple solutions and to concentrate on the
interesting ones. Visualisation and simulation techniques are provided for
the designer to explore and browse the hierarchical structure of functional
components and the tree of synthesis solutions.

Initial testing results have shown that the integration of a hierarchical
functional component database with systematic synthesis techniques, the
heuristics for clustering, visualisation and simulation contributed to stimulate
the designers' think. The newly developed version of FuncSION provided a
good basis for utilising AI techniques in functional modelling of mechanical
engineering design.

Work is being carried out to fully incorporate the control strategies and
clustering heuristics discussed in this paper, and to enhance the visualisation
facilities further with a fully animated graphical user interface. This new
version of FuncSION is being integrated with an embodiment generator and
a kinematic analysis system to form an integrated functional modelling
system.

Acknowledgements

The work presented in this paper is currently being funded by the EPSRC.
We would like to acknowledge the support from Dr Stuart Burgess, Dr
Thomas Bligh, Mark Nowack and Doug Isgrove who acted as the designers

622 AMARESH CHAKRABARTI AND MING XI TANG

in the experiments reported in this paper. We would like also to acknowledge
the support from Dr Nigel Ball, Dr Lucienne Blessing and Dr Tim Murdoch
for their support in the development of the past and current version of
FuncSION.

References

Ball, N. R. and Bauert, F.: 1992, The integrated design framework: Supporting the design
process using a blackboard system, in J. S. Gero (ed.), Artificial Intelligence in Design
'92, Kluwer, Dordrecht, pp. 21-38.

Bauert, F.: 1993, The mobile arm support phase in design, manufacture, testing, software
tools, Technical Report CUEDIC-EDCffR /3, Cambridge University.

Chakrabarti, A. and Bligh, T. P.: 1994, A two-step approach to conceptual design of
mechanical device, in J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design
'94, Kluwer, Dordrecht, pp. 21-38.

Ehrlenspiel, K. and Dylla, N. D.: 1989, Experimental Investigation of the design process, in:
V. Hubka (ed.), Proceeding of ICED89, International Conference on Engineering Design,
Mechanical Engineering Publication, Bury St Edmunds, Vol. 1, pp. 77-95.

Fricke, G.: 1992, Experimental investigation of individual processes in engineering design,
in N. Cross, K. Doorst and N. Roozenburg (eds), Research in Design Thinking, Delft
University Press, Delft, pp.105-109.

Johnson, A. L et al: 1993, Modelling functionality in CAD: Implications for product
representation, Proceedings of the 9th International Conference on Engineering Design.

Lee, C-L., Iyenger, G. and Kota, S.: 1992, Automated configuration design of hydraulic
systems, in J. S. Gero (ed.), Artificial Intelligence in Design '92, Kluwer, Dordrecht, pp.
61-82.

Pabl, G. and Beitz, W.: 1984, Engineering Design, Design Council, London.
Thornton, A.: 1993, Constraint Specification and Satisfaction in Embodiment Design, PhD

Thesis, University of Cambridge, Department of Engineering.

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 623-639.
© 1996 Kluwer Academic Publishers.

ADOPTING A MINIMUM COMMITMENT PRINCIPLE FOR
COMPUTER AIDED GEOMETRIC DESIGN SYSTEMS

XIAOHONG GUAN AND KEN J. MACCALLUM

CAD Centre
Department of Design, Manufacture and Engineering Management
University of Strathclyde
75 Montrose Street, Glasgow GllXJ, UK

Abstract. In spite of the ever increasing capacity, existing computer aided geometric
design systems are normally only used in practice to model and analyse what has already
been designed. They do not seem to contribute to design as much as they might be able to,
mainly due to their inability to support designers in the conceptualisation and synthesis
stages. In this paper, we propose a minimum commitment modelling principle for devel­
oping computer aided geometric design systems with the objective of preserving in the
systems the maximum design solution space conceived by a designer in the process of
geometric design. We assert that, by adopting this principle, these systems have the po­
tential of extending their support to the early concept exploration stages and the gradual
refinement of the established concepts, and therefore have a better capability to assist the
entire geometric design process. Aspects of minimum commitment have been used in a
limited way in a few design related systems and in bulldirlg computer based planning sys­
tems, but there seems no clear formulation of the principle and its implications for CAD
systems. An approach to applying the principle in building a geometric design system is
discussed based on our ongoing research into a computational geometric design approach
using vague geometry.

1. Introduction

For the past three decades, we have seen significant evolution of computer aided
design (CAD) systems from simple, ad hoc, special-purpose systems, such as nu­
merical control tools, 2D interactive drawing and draughting tools, to more soph­
isticated, integrated, general-purpose systems based on 3D geometric modelling,
parametric, variational and design with feature techniques. These systems have
!>een positively transforming or influencing many aspects of the traditional engin­
eering design process in various ways.

However, it is commonly recognised that these systems only offer support in

624 XIAOHONG GUAN AND KEN J. MACCALLUM

modelling and analysing what has already been designed and do not contribute
to design as much as they might be able to. This is mainly because of their inab­
ility to support designers in the conceptualisation and synthesis stages. This, we
believe, results from an activity gap and an information gap between the systems
and practical design. The activity gap refers to the mismatch between the practical
design activities and the way in which they are carried out and those which are
supported by these systems. The information gap refers to the mismatch between
the type and level of information which is available and handled by designers in
practice and that which is required when using the systems.

To reduce, minimise or eliminate these gaps, we propose a minimum commit­
ment modelling principle for such systems which aims at maintaining the geo­
metric design solution space conceived by the designer. In the following section,
an informal model of the geometric design process adopted in this research is
summarised. In Section 3, we establish the principal goal for a computer aided
geometric design (CAGD) system and the minimum commitment principle for
achieving it. Here, a CAGD system refers to that which can be used by a designer
to develop or model the geometry of a product. Existing applications of the prin­
ciple to related areas are reviewed briefly in Section 4. In Section 5, our approach
to applying the principle in building a geometric design system using vague geo­
metry is discussed.

2. A Geometric Design Model

In our research, we have established and adopted a model of geometric design
based on the various views of general engineering design, such as those described
in Ervin and Gross (1987), Soh (1990), Tjalve (1979), and Tomiyama and Yoshi­
kawa (1985). In this model, geometric design is viewed as a process of establish­
ing the set of geometric properties of a product to the extent that is required for
physically manufacturing the product. The relevant product component structure,
complete or partial, should already have been developed before starting the geo­
metric design, but may be modified during the process. The term' component' is
used throughout this paper in a wider sense than that which is used in domains
such as manufacturing. Dependent on the context, it may correspond to 'subsys­
tem', 'subassembly', 'component', or 'part'.

The geometric properties are defined by a set of geometric parameters which
characterise or specify the overall shape and size of the product as well as the
shape, size, location, and orientation of the constituent components. These prop­
erties are completely and uniquely defined if values of all the geometric paramet­
ers are fully and uniquely specified.

Values of the geometric parameters may be specified by a designer through a
set of geometric constraints. These constraints define an n-dimensional solution
space for the geometry of the corresponding components or product. This solu-

ADOPTING MINIMUM COMMITMENT PRINCIPLE 625

tion space is termed here as the conceived solution space, that is, the geometric
design solution space conceived by the designer mentally. It may be large at the
early stages of design due to, for example, the vagueness of information, and is
iteratively modified or refined as new or more precise information arrives. Geo­
metric design can therefore be regarded as a process of incrementally modifying
and refining the conceived solution space until it degenerates into a point at which
all the parameters are uniquely defined.

Whenever an activity or action of constraint manipulation is carried out which
changes the possible values of those geometric parameters (thus the conceived
solution space) defined by the manipulated constraints, it is said that a decision
is made towards the geometric design (or properties) of the product. Examples
of such constraint manipulation activities include specifying new as well as de­
leting and modifying existing constraints. Such a decision is considered to be a
commitment since it requires the dedication to the consequences or effect, e.g.
modification, reduction or expansion of the solution space in a particular direc­
tion, resulting from its implementation.

For those geometric parameters that have a domain of real numbers (i.e. with
numeric values), one decision on a geometric parameter is said to show greater
commitment of the designer than another one on the same parameter if the total
sum of the widths of all the closed value ranges it defines for the parameter is less
than that defined by the other decision. The width of a closed real interva1Jrange is
the difference of its upper bound and lower bound. In this case, the corresponding
solution space is reduced. Otherwise, if the total sum of the corresponding widths
is greater than that of the other, it is regarded as showing less commitment and
results in a larger solution space.

3. The Minimum Commitment Principle for CAGD Systems

We believe that a CAGD system should play the role of an Intelligent Design As­
sistant (IDA) (Duffy et al., 1985) which, although playing a role secondary to the
designer, actively participates in the design process. Here, we note the key abilit­
ies of such a CAGD system to model the geometric design solutions conceived by
the designer and to take care of the management, analysis and presentation of the
modelled solutions. Following the design model described in the previous section,
the geometric models established in the system based on the constraints on geo­
metric parameters specified by the designer define a solution space which corres­
ponds to the solution space conceived by the designer (i.e. the conceived solution
space). This geometric solution space captured inside the system is termed as the
modelled solution space (Figure 1).

Traditionally, instead of capturing and maintaining a solution space, CAGD
systems tend to support the modelling of one or a small number of concretely
and precisely defined distinct solutions (points) within the solution space. Thus,

626 XIAOHONG GUAN AND KEN J. MACCALLUM

asc/ou as
possibl.

minimise IIII! diffe,.e.nce

Figure 1. Faithful interpretation in a computer-based design support system of design information
supplied by the designer and preservation of the solution space defined.

single and specific choices have to be made on the geometry of the object being
considered for it to be modelled in such a system. This reflects a trial-and-error
approach to design. Here, we assert that an IDA-based CAGD system should aim
at supporting the capture and maintaining of the design solution space. Further,
the modelled space should be as close as possible to that intended by the designer,
i.e. the conceived solution space (Figure 1). With respect to the geometric design
model presented earlier, this means that the computational scheme used in such a
system should be as faithful as possible in interpreting the geometric constraints
to facilitate the modelling and maintaining of the solution space defined by these
constraints, rather than a specific solution that satisfies these constraints. A system
capable of achieving this may therefore have an improved capability to support
the conceptualisation and synthesis stages of the design process.

To achieve the above goal, we propose the following principle for IDA-based
CAGD systems:

Minimum Commitment Modelling Principle A commitment that is modelled
in a CAGD system should not be greater than that desired and requested by
the user.

This principle states that the level of commitment which the system models is

ADOPTING MINIMUM COMMITMENT PRINCIPLE 627

the minimum needed to describe the range of possible solutions intended by the
designer. With respect to the geometric design model described in Section 2, this
means that the system, when used, should neither force the designer to constrain
prematurely or unnecessarily the geometric parameters that characterise the geo­
metric properties of a product, nor make unnecessary assumptions or reductions
of the intended solution space by opting for representing or recording only a spe­
cific value for each of the parameters that satisfies the given constraints.

The term 'minimum' commitment is chosen to emphasise the minimum ne­
cessary for the design to progress in accordance with the designer's decisions.
Minimum commitment therefore implies a space of possible designs, within which
alternative solution points may be investigated without committing to any solu­
tions. The principle serves to support two arguments:

- a designer should not be forced to define a specific (even default) object or
value for representation in the system, when only vague (e.g. approximate or
incomplete) information is known;

- a designer should be able to use the computer's representation of a minimum
commitment model to help explore a space which is not easily to visualise
cognitively except as solution points.

However, the principle does not prevent commitments being made by a de­
signer at any stage if they properly reflect the designer's conception. It does not
impose any restrictions or make any judgement on how designers should pursue
design. We do not intend to claim in any way that the designers must follow a
minimum commitment route in their design practice, although the principle has
been proposed for engineering design as the review in the next section will ex­
plicate. Here, we emphasise that the CAGD system supports such a principle in
relation to its user, the designer.

A corollary of the above principle is that changes to a modelled solution space
proceed incrementally to advance the status of a design while maintaining min­
imum commitment. Consequently, we propose that the minimum commitment
modelling principle is complemented by the Principle of Incremental Refinement:

Principle of Incremental Refinement A CAGD system should support the in-
cremental refinement of a design solution space, i.e. the continuous evolu­
tion of vague concepts into a complete and precise solution, in steps which
are sufficiently small to maintain commitment at a minimum.

4. Existing Applications of Minimum Commitment

Minimum commitment can be considered as a common sense principle or strategy
for dealing with uncertain, complex situations typical in design. It suggests con­
centrating on what are important or known, rather than those that are minor or re­
quire unknown or unavailable information (thus requiring guesses or assumptions

628 XIAOHONG GUAN AND KEN J. MACCALLUM

based on insufficient data, information and knowledge). A simple application of
this principle can be seen in writing, e.g., technical papers or thesis. In this case,
the author normally avoids committing to detailed writing before an appropriate
outline or plan (probably selected from a set of alternatives) is laid out.

In this section, we briefly examine the use of the principle in such areas as
engineering design, computer based planning and design systems.

4.1. ENGINEERING DESIGN

In his text on engineering design, Asimow put forward a minimum commitment
principle for design as follows:

In the solution of a design problem at any stage of the process, commitments
which will fix future design decisions must not be made beyond what is ne­
cessary to execute the immediate solution. This will allow the maximum free­
dom in finding solutions to subproblems at the lower level of design. (Asimow,
1962)

Minimum commitment here does not suggest that the designer avoids decisions
which are necessary and important for advancing the design. Instead, the designer
should ignore those unnecessary aspects or unimportant details to give themselves
an as large as possible amount of play in the subsequent exploration. This is there­
fore different from what Janis and Mann (1979) described as the 'procrastination
in defensive avoidance' which refers to the situation where the decision maker,
when facing a difficult decision, avoids necessary decisions.

Dym has also considered minimum commitment (he and others have used the
term least commitment instead) as a general design approach or strategy which
requires the designers to:

make as few commitments as possible to any particular configuration because
the data available are perhaps too abstract or very uncertain at this point in
the design process. (Dym, 1994)

Least commitment is regarded as 'a (good) habit of thought' which 'militates
against making decisions before there is reason to make them' . It is considered as
of particularly importance for the early stages of design 'where consequences of
anyone design decision are likely to be propagated far down the line' .

French also discourages premature detailed studies in conceptual design stage
since they 'may prove to have been a complete waste of time when some hitherto
unconsidered facet of the problem is studied, and shows that a radical revision of
ideas is necessary' (French, 1992). Using an example (designing a way of cen­
tering discs on shafts in high-speed rotors), he further explained the importance
of not making (even unconsciously) unnecessary design decisions without some
sort of review at early stages to avoid imposing unnecessary difficulties in down­
stream process «French, 1992), p.7). This is consistent with one of the principles

ADOPTING MINIMUM COMMITMENT PRINCIPLE 629

for solution search proposed by Hubka (1987) generalised from experience. It
states that 'concretisation too early can confine the considerations in a particu­
lar direction'. It is considered as imposing design 'prejudice', 'mental set' and
'fixation' .

On the other hand, if some commitments have to be made, then the designer
should carry out proper exploration and evaluation of alternative decisions. Cog­
nitive research shows that, although' obsessional mulling over the uncertainties of
a major decision and preoccupation with the search for an ideal choice often lead
nowhere and may even be detrimental' , a decision maker has a greater chance of
making better and sound decisions if, among other suggested actions, a thorough
search of alternatives and relevant information is carried out before evaluating and
making an actual choice (Janis and Mann, 1979). If we consider designing as a
process of decision making which advances the design from its initial state (the
problem definition) to the final state (the finished design model), then the designer
should make a good exploration of alternatives before sticking to a specific solu­
tion if he/she is to make better design decisions. However, as revealed by Goel
and Pirolli's study (1989), designers adopt a limited commitment mode control
strategy in design evaluation to resolve/negotiate the 'tension between keeping
options open for as long as possible and making commitments' .

To summarise, it is well known that design is an iterative and incremental
refinement process, and experiences the transition from uncertainty to certainty.
At the early stages of this process, designers concentrate on concept exploration
and synthesis and may still be defining the design problem more clearly. Under
this situation, it is better that they delay premature and unnecessary detailed de­
cisions but concentrate on design conceptualisation and synthesis, since unneces­
sary early commitments may have the following negative effect:

- a reduced solution space;
- small details committed at an earlier stage restrict the freedom in subsequent

design;
- possible conflict as new information arrives;
- wasted effort on the details if an incorrect major decision is made.

If, however, some commitments have to be made, then proper exploration and
evaluation should be carried out.

4.2. PLANNING SYSTEMS

Minimum commitment, again known as least commitment, has been used in build­
ing computer based planning systems in artificial intelligence research. Originally
introduced by Sacerdoti (1977) in developing a planning system called NOAH,
the idea behind the least commitment principle is to delay decisions until one has
as much useful information as possible for making them. This application in the
planning systems is best summarised by Weld:

630 XIAOHONG GUAN AND KEN I. MACCALLUM

Instead of committing prematurely to a complete, total ordered sequence of
actions, plans are represented as a partially ordered sequence, and the plan­
ning algorithm practices least commitment planning - only the essential or­
dering decisions are recorded. (Weld, 1994)

The key method used in a planner to achieve the delay of decisions on the
orders of actions is to specify only the necessary ordering constraints on the ac­
tions that are satisfied through relevant constraint satisfaction algorithms, and to
refine the constraints gradually. Another embodiment of this principle is the use
of abstract planning operators that use variables to avoid premature commitment
to specific planning choices. As demonstrated by Weld (1994), adoption ofleast
commitment can increase the computational efficiency of the planning system.

4.3. COMPUTER-BASED DESIGN SYSTEMS

While traditionally CAD systems are only capable of modelling concrete and pre­
cise solutions which requires commitments of the users to precise and single choices,
some existing design related systems adopt a least commitment approach in some
aspects to permit ranges of values or choices. For example, in a constraint based
2D layout system, WRIGHT (Baykan et al., 1992), Baykan and Fox regard spa­
tial layout as generating configurations of design units that satisfy given spatial
relations and limits on dimensions. These spatial relations and dimensions are
handled through a constraint propagation method. A least commitment based ap­
proach is adopted which only removes from variable ranges those values that vi­
olate a constraint and which, instead of choosing specific locations, selects con­
straints to be satisfied by design units.

Another such example is the ALADIN system reported in (Farinacci et al.,
1992) for aiding the design of aluminum alloys for aerospace application. In the
system, alloy design is treated as a planning problem where 'the final alloy design
is a sequence of steps to be taken in a product plant in order to produce the alloy' .
This has enabled the system to use, in the targeted alloy design domain, a least
commitment approach similar to that which has been widely used in computer
based planning systems (as reviewed in the previous subsection). Thus, design
hypotheses are described as ranges of values which' are kept as broad as possible
until more data is present to force them to be restricted, which allows the system
to avoid trial-and-error in selecting values' .

Based on an approach of 'design by least commitment', Mantyla et al pro­
posed the use of relaxed feature models in a generative process planning system
to avoid the problem of over-specification of geometric models that persists in ex­
isting process planning systems which restricts the subsequent manufacturing op­
tions (Miintyla et al., 1989). This design by least commitment approach encour­
ages the designer to 'systematically avoid making design decisions that unneces­
sarily limit the freedom of later process planning in the search for good manufac­
turing solutions' . In the feature relaxation approach, a choice of including round-

ADOPTING MINIMUM COMMITMENT PRINCIPLE 631

ing at the end of a slot feature or leaving it out, for example, is considered as a
commitment to certain applicable manufacturing operations. Such a commitment
(e.g. either to include the rounding or not to), if not functionally significant or es­
sential, is thought to be harmful and better be relaxed so as to generate a better
manufacturing plan. Feature relaxation is achieved by examining the variations
of a feature model of a part that can be generated by varying the types of the fea­
tures of the model or geometric attributes of the features. The notion of relaxation
groups is introduced which consists of features that can be treated as variations of
each other. Features contained in a relaxation group are used for relaxation. For
instance, internal slot and break slot are classified in the same relaxation group,
thus the shape of the rounding at the end of an internal slot can be relaxed to that
of a break slot which gives some additional process alternatives. By introducing
certain 'vagueness' into a feature model, feature relaxation is thought to facilitate
a systematic search of the space of similar parts which reveals manufacturing al­
ternatives that were not present in the original model. The process planner, there­
fore, has 'more freedom to create a better process plan' as well as provide more
meaningful feedback during manufacturability analysis.

Hei-Or et al described a relaxed parametric design paradigm where' decisions
which needlessly limit the freedom of design in later stages are avoided' (Hel-Or
et aI., 1994). Existing parametric design systems are considered to cause over­
specification and overwork since the process of correcting under-constrained and
over-constrained models (that are easily produced in the process of defining a
full and exact specification of the constraint models required by these systems) is
time-consuming and error-prone. To overcome these problems, the relaxed para­
metric design paradigm uses 'soft constraints', i.e. constraints that need not to be
satisfied exactly. A probabilistic-constraints scheme is developed to implement
the relaxed parametric design paradigm. Instead of specifying and solving rigid
constraints as in conventional parametric design systems, this scheme uses soft
constraints which are associated with certain softness functions. A softness func­
tion specifies the amount of rigidity with which the constraint is to be satisfied.
This scheme treats the relaxed parametric model as a static stochastic system.
The softness functions of the constraints are expressed as covariance matrices.
Kalman filter is used to solve the corresponding parametric system. A simple 20
parametric modeller has been implemented to test the algorithm developed.

Encouraging least commitment design practice is also one of the precepts that
have driven the development of the feature-based thin-walled component design
system reported in Nielsen (1991). In this system, feature-fonns are represented
by a set of virtual boundaries' which are geometric abstractions such as mid­
planes, centrelines, and locating points. In using the system, one needs not to sup­
ply information required for completely defining the feature-fonns in 3~. Min­
imum commitment design is encouraged by supporting the use of such abstract
feature-fonns which can be modified incrementally.

632 XIAOHONG GUAN AND KEN J. MACCALLUM

4.4. SUMMARY

SO' far, we have briefly reviewed the existing applicatiO'ns O'f the minimum cO'm­
mitment principle in a number O'f areas including design and cO'mputatiO'nal sup­
PO'rt systems. We have seen the benefit O'f adO'pting minimum O'r least cO'mmitment
principle in engineering design. The use O'f this principle in develO'ping cO'mputa­
tiO'nal systems has sO' far been directed mainly to' cO'mputer-based planning sys­
tems. A few cO'mputer-based design O'r manufacturing process planning systems
have been develO'ped in which we have seen the use O'f the minimum cO'mmitment
principle in sO'me ways and to' certain extent.

We believe that the minimum cO'mmitment principle can be further explO'ited
and extended to' develO'P systems fO'r supporting the early geO'metric design and
ultimately to' the entire process (and probably to' O'ther aspects O'f design as well).
Early stages O'f design are the period in which a designer has least infO'nnatiO'n
and mO'st uncertainty. TherefO're, early stages O'f design are the phases where the
designer, ultimately the design, can benefit mO'st effectively frO'm adO'pting min­
imum cO'mmitment principle. HO'wever, cO'gnitive limitatiO'ns O'f visualising and
evO'lving a sO'lutiO'n space may make designers CO'mmit too early to' cO'ncrete SO'lu­
tiO'n points in spite O'f the uncertainty. Thus, there exists ,the-need to' support this
visualisatiO'n and evO'lutiO'n withO'ut making unnecessary cO'mmitment. In the next
sectiO'n, we will briefly introduce O'ur O'ngO'ing research effO'rt directed tO'wards this
aspect.

5. An Approach to Minimum Commitment for CAGD

We have been develO'ping an approach to' geO'metric design guided by the min­
imum cO'mmitment mO'delling and incremental refinement principles and the geO'­
metric design mO'del described earlier in this paper. FO'llO'wing the design model,
the geO'metry O'f an O'bject is characterised in this approach by a hierarchy O'f cO'm­
PO'nent arrangements, each cO'mponent having variO'US geO'metric parameters. The
value space O'f these geO'metric parameters are derived, using the techniques O'f
cO'nstraint reasO'ning, frO'm high-level geO'metric relatiO'nships O'r cO'nstraints given
by designers and are represented unifO'rmly by real interval numbers. FO'r a mO're
detailed descriptiO'n O'f the approach supporting the system, see Guan (1993) and
Guan and MacCallum (1995).

The protO'type system embedding this apprO'ach is being develO'ped using CO'm­
mO'n Lisp and CO'mmO'n Lisp Object System (CLOS) (Guan et at., 1995). It cur­
rently is capable O'fmodelling a set O'fprimitive shapes (such as cuboid, cylinder,

sphere), independentsize cO'nstraints O'f inequlity O'r equality types (such as width

~20. 4, depth::;34, radius=6), and basic spatial relatiO'nships (such as above, right,

front). The minimum cO'mmitment modelling and incremental refinement prin­
ciples have been embodied in the system in twO' main aspects:

- supPO'rting the modelling O'f 'vague geO'metry' , and

ADOPTING MINIMUM COMMITMENT PRINCIPLE 633

- supporting the progression of vague modelling.

Vague geometry here refers to the vague expression of form used by a designer,
most often at the early design stage. Vagueness is, typically, an inherent part of a
process of evolving ideas from abstract to concrete. It reflects a designer's desire
to communicate overall appearance or overall concept, to illustrate abstract con­
cepts, or to illustrate concepts in ways which given economy of effort. It may also
reflect lack of knowledge or certainty of some aspects of the geometry at certain
stage of design.

The system aims to support the designer in modelling vague geometry. For
instance, suppose we know that a component, G, of a product being designed can
be modelled roughly as a cuboid. We are not sure of the exact size of the cuboid,
but know that its width is definitely within the range of 10 to 15 units, its depth

is exactly 6 units, and its height is about 6 units. Further, we know so far that G

is going to be placed above another component, geometryl. The conceived solu­
tion space described by these fragments of information is visually illustrated in
Figure 2(a). It is the solution space for the geometric properties of the component
G which we have conceived so far.

Using the system, the above vaguely specified information can be used to
build the geometric model for the component G using the following operation1:

(create-geometry :shape 'cuboid
:size-constraints '«width = 10 -> 15)

(depth = 6)
(height -= 6»

:spatial-relationships '«above geometryl»)

Figure 2(b) illustrates the solution space corresponding to the geometric model
or representation of G established in the system. The width of G being within the
range of 10 to 15 is captured directly by an interval whose lower bound and upper
bound are 10 and 15, respectively. The height of G being about 6 is also rep­
resented by an interval. The lower bound and the upper bound of this interval are
determined by the given 6 and a user-defined degree of approximation which is
used as the width of the interval. Here, this degree of approximation is assumed
to be 2 which yields the value range for the depth of G to be 5 to 7. The depth

of G being exactly 6 is also represented by an interval whose lower and upper
bounds are both 6.

In representing the location information G above geometryl, the notion of
geometric configuration space is introduced in the system to provide a geomet­
ric bound to all objects considered in a specific level of configuration. It is a 3D
cuboid space that is associated with a 3D right-handed Cartesian co-ordinate sys­
tem (e.g.OXYZ in the figure, note that only the OXZ projection is illustrated). The
location of a component in a specific configuration is characterised by a datum

1 Note that, although the system is used here by directly calling the corresponding Lisp functions
or CLOS methods. a graphic user interface is available for the system.

634

1
6

S

6

XIAOHONG GUAN AND KEN J. MACCALLUM

,iu 'ow, ,_, DIG

.. _ .. _ .. _ .. _ .. _ ".........,
d<p,h l---r

10

heigh!

tkRre~ 0/ approximation 2

10

htiRIII

d~grtt of approXimtJlilJfI 2

13

. :

IS

".­-- /ocrui,/O 018<'-''1'

widlh

(a) The conceived solution space of object G

geomecric configuration !lipacc

Z ~

htiglll

IS wid,h 0 wid,h

(b) The modelled solution space of object G.

z

htiRIII

IS width
o

geometric configuruioo """'"

(

.rmce111ln.,.tg;fn2

~p~,""~lIIfollM ~:
1DGiJIiD,. sollu:iolt .ptK~ of G :

........................... . .
. . -:.' :-:"<::;:;:-::::::::"',<

..... ,. ' •.... ««::::;'
-::.)#.i4ni1.H<#.#i:

width

(c) The modelled solution space of object G after refinement.

x

x

Figure 2. Conceived solution space and modelled solution space in the vague geometry based
system.

ADOPTING MINIMUM COMMITMENT PRINCIPLE 635

point on the component such as the geometric centre. This datum point is situated
in a 3D uncertain region, represented by three intervals, which captures the ap­
proximation associated with the location of the component and is the minimum
space that includes all the possible solutions of the location (within the corres­
ponding geometric configuration space). Instead of choosing one specific point
position for G that conforms to the given spatial relation, G above geometry1 is
modelled in such a way that it defines the boundary of the location uncertain re­
gion (uncertain-region2) of component G along the OZ co-ordinate axis direc­
tion (Figure 2(b».

This way of interpreting or representing geometric information reduces the
level of commitment and thus preserves the solution space in two senses:

- From the user's point of view, early stage vague information can be used dir­
ectly by the system. The user is neither forced to specify precisely at which
point the component should be in the configuration space, nor forced to choose
for its width one specific value between 10 and 15 and for its height one
value close to 6. In other words, the user is not forced to specify and work
on one specific solution prematurely.

- The system, on the other hand, is built with the goal of making as few un­
necessary or unessential assumptions as possible in interpreting such vague
information internally. Thus unlike conventional systems that model one or a
few specific solution points in the conceived solution space, it aims to model
the space by representing and managing the corresponding boundaries or
bounds.

Figure 3(a) shows a graphic display of the geometric model of G generated
by the system. In the current implementation, the solution spaces associated with
the size and location of a component, here G, reSUlting from a (vague) geometric
specification is not presented in the display. Thus, only an instance (correspond­
ing to the minimum size and the lowerest-Ieftest-frontest position in the location
uncertain region) of the defined solutions is displayed, although the correspond­
ing size ranges and location uncertain region are represented in the system. The
issue of suitable visualisation of size ranges and location uncertain regions calls
for further research.

Naturally, we will want to make progress on the vague model towards a com­
plete and precise solution. In the above example, we should be able to refine the
size and location of the component G as new information arrives or when we feel
necessary or suitable. For example, if we now know that the width of component
G should be no less than 13 units and that it should also be located to the right of
geometry1, we can then issue the following commands to the system:

(add-size-constraint '((width geometry2) >= 13))
(specify-location geometry2

:spatial-re1ationships '((right geometry1)))

636 XIAOHONG GUAN AND KEN J. MACCALLUM

(a) The geometric configuration that contains an instance of the geometric model of G.

"CIS

(b) G refined.

Figure 3. Graphical presentation of geometric models in the system.

ADOPTING MINIMUM COMMITMENT PRINCIPLE 637

As a result, the modelled solution space of component G is refined from that
illustrated in Figure 2(b) to that in Figure 2(c). Note that geometry2 in the above
commands is the unique name (identifier) generated by the system for the com­
ponent G. In the current implementation, this unique name is used when the com­
ponent is referred to. Again, a graphical display of the refined model is shown in
Figure 3(b).

It should be pointed out that:

- Besides refining the solution space by reducing the vagueness of the existing
model, a piece of information in an existing model can be removed when a
piece of new information is added in and is in conft.ict with the existing one.
This means that the evolution of the (shape and size 00 solution space in­
clude not only an incremental reduction, but also an expansion. For instance,
the above geometry! relation in the previous example can be retracted if a
below geometry! relation is introduced for G and we decide to substitute it
for the above relation.

- When using the system, the user makes decisions in terms of what shape,
size and location a component should have. The system models and main­
tains the consequences of these decisions. Since the decisions are made in­
crementally and interactively, the modelling process in the system is also in­
cremental and interactive. The system does not automate the decision mak­
ing process involved in geometric design.

6. Conclusions and Future Work

By introducing the notions of conceived solution space and modelled solution
space, we have formulated a major goal of effective CAGD systems. That is to
capture and maintain a solution space and to minimise the difference between the
modelled solution space and the conceived solution space. A minimum commit­
ment modelling principle, togther with that of incremental refinement, is proposed
subsequently for guiding the development of such a system. Supporting this prin­
ciple means that a CAGD system should model, record or interpret design inform­
ation as faithfully or precisely as possible by not making or requiring its user to
make unnecessary assumptions that would lead to a modelled solution space dis­
torted from the conceived solution space.

We distinguish minimum commitment modelling principle for CAGD sys­
tems from that for engineering design itself and focused on the former. While ad­
opting a minimum commitment strategy in engineering design reduces backtrack­
ing, the proposed minimum commitment modelling principle for CAGD systems
helps the systems to preserve a design solution space thus encourages the early
modelling of geometric concepts and their exploration as well as the adoption of
the principle in design itself.

638 XIAOHONG GUAN AND KEN J. MACCALLUM

We have, in this paper, described our initial effort in developing a computer­
based geometric design system that adopts the minimum commitment modelling
and incremental refinement principles through supporting the modelling of vague
geometry and the evolution of such vague concepts into complete geometric mod­
els of design. Through this, we seek to explore the implications of adopting the
principles in the area of geometric design, and also to obtain useful insight into
the possible application of them to other aspects of design.

The planned research programme for developing the system further include,
among others, the following areas.

- Extension of the approach to modelling various types of vague geometry.
We have established a taxonomy of vague geometry by classifying vague­
ness into approximation, abstraction and incompleteness and geometry into
shape, size, location and orientation. Our research so far has been concen­
trated on some of these aspects. A natural continuation is to study those as­
pects of vague geometry that have not been considered, such as vague shapes,
and to develop the corresponding modelling methods.

- Development and enhancement of the ability of the system to enable the gradual
evolution of vague models into complete and precise design. Such evolution
can be the refinement of the rough size or location of an object as demon-

, strated in this paper. It can also be the refinement of an outline geometric
model of a product into (i) those of its constituent subsystems, and (ii) a
finer, more precise or complex shape of the product.

- Visualisation or presentation of the modelled solution space. Although it cap­
tures the geometric design solution space, the system currently does not yet
have an effective visual means of presenting or conveying the captured space
to the user. Research with respect to this would increase the usability of the
system and encourage the user to engage in exploration of alternative solu­
tions.

Finally, research could be carried out with respect to alternative or better ways
of interpreting or modelling the conceived solution space which enable or maxim­
ise, in a computer-based system, the benefit of minimum commitment modelling
principle.

7. Acknowledgement

The authors wish to acknowledge the support received from EPSRC, UK for the
research described in this paper.

References

Asimow, M.: 1962, Introduction to Design, Prentice-Hall, Inc., Englewood Cliffs.
Baykan, C. A. and Fox, M. S.: 1992, WRIGHT: a constraint based spatial layout system, in C. Tong

and D. Sriram (eds), AI in Engineering Design, Academic Press, Inc.

ADOPTING MINIMUM COMMITMENT PRINCIPLE 639

Dym, C. L.: 1994, Engineering Design: A Synthesis of Views, Cambridge University Press.
Ervin, S. M. and Gross, M. D.: 1987, Roadlab - a constraint based laboratory for road design, Arti­

jicialIntelligence in Engineering, 2(4),224-234.
French, M.: 1992, Form, Structure and Mechanism, MacMillan Education Ltd.
Goel, V. and Pirolli, P.: 1989, Motivating the notion of generic design within information processing

theory: the design problem space, AI Magazine, Spring, 19-36.
Guan, X.: 1993, Computational Support for Early Geometric Design, PhD Thesis, University of

Strathclyde, 'Glasgow, September.
Guan, X. and MacCallum, K. J.: 1995, Modelling of vague and precise geometric information for

supporting the entire design process, in M. Mlintyla, T. Tomiyama, and S. Finger (eds), Pre­
prints of the IFIP WG5.2 First Workshop on Knowledge Intensive CAD, IFIP.

Guan, X., Stevenson, D. A. and MacCallum, K. J.: 1995, A prototype system for early geomet­
ric configuration, Proceedings of the Third International Conference on Computer Integrated
Manufacturing (ICCIM), Singapore, July 11-14.

Hel-Or, Y., Rappoport, A. and Werman, M.: 1994, Relaxed parametric design with probabilistic
constraints, Computer-Aided Design, 26(6),426-434.

Hubka, v.: 1987, Principles of Engineering Design, Springer-Verlag, heurista edition.
Janis, I. L. and Mann, L.: 1979, Decision Making: A Psychological Analysis of Conflict, Choice,

and Commitment, Free Press, New York.
Duffy, A. H. B., MacCallum, K. J. and Green, S.: 1985, An intelligent concept design assistant, in

H. Yoshikawa and E. A. Warman (eds), Design Theory for CAD: Proceedings of the IFlP WG
5.2 Working Conference on Design Theory for CAD 1985 (Tokyo), North-Holland, pp. 301-
317.

Mlintyla, M., Opas, J. and Puhakka, J.: 1989, Generative process planning of prismatic parts by
feature relaxation, Proceedings of ASME Design Automation Conference, I, pp. 49-60.

Nielsen, E. H.: 1991, Designing Mechanical Components with Features: Representing the Form
and Intent of In-progress Design for Automated Modification and Evaluation, PhD Disserta­
tion, Department of Mechanical Engineering, University of Massachusetts.

Farinacci, M., Hulthage, I., Rychener, M. and Fox, M.: 1992, ALADIN: an innovative materials
design system, in C. Tong and D. Sriram (eds), Artificial Intelligence in Engineering Design,
n, Academic Press, Inc, pp. 215-262.

Sacerdoti, E. D.: 1977, A Structure for Plans and Behavior. Elsevier North-Holland, Inc.
Suh, N. P.: 1990, The Principles of Design, Oxford University Press.
Tjalve, E.: 1979, A Short Course in Industrial Design, Newnes-Butterworths.
Tomiyama, T. and Yoshikawa, H.: 1985, Extended general design theory, in H. Yoshikawa and E. A.

Warman (eds.), Design Theory for CAD, Proceedings of the IFlP WG5.2 Working Conference
1985 (Tokyo), North-Holland, pp. 95-124.

Weld, D. S.: 1994, An introduction to least commitment planning, AI Magazine, 15(4),27-61.

12
spatial and layout planning in design

The generation of form using an evolutionary approach
Michael A. Rosenman

Evolutionary layout design
Walter Hower, Manfred Rosendahl, Derrick Kastner

DOM-ARCADE: Assistance services for construction, evaluation,
and adaptation of design layouts

Shirin Bakhtari, Brigitte Bartsch-Sporl, Wolfgang Oertel

1. S. Gero and F. Sudweelcs (eds), Artijicialln/el/igence in Design '96, 643-662.
C 1996 Kluwer Academic Publishers.

THE GENERATION OF FORM USING AN EVOLUTIONARY
APPROACH

MICHAEL A. ROSENMAN
Key Centre of Design Computing
Department of Architectural and Design Science
University of Sydney NSW 2006 Australia

Abstract. This paper presents an evolutionary approach to design using a hierarchical
growth model. It argues that the evolutionary approach fits well to the well-known
generate-and-test approach in design and is especially suited to design situations where
the (inter)relationships between complex arrangements of elements and their behaviour
are not known. The evolutionary approach is used as the computational method for the
synthesis and evaluation stage of the design process. A hierarchical model of design is
used to avoid the combinatorial problems involved in linear models. The concepts are
exemplified in the context of the design of house plans.

1. Introduction

Design is a purposeful knowledge-based human activity whose aim is to create
structural descriptions, i.e. form, which when realized satisfy the particular
given intended purposes (Rosenman and Gero, 1994). Design may be
categorized as routine or non-routine with the latter further categorized as
innovative or creative. The lesser the knowledge about existing relationships
between the requirements and the form to satisfy those requirements, the more
the design problem tends towards creative design. Thus, for non-routine design,
a knowledge-lean methodology is necessary. Natural evolution has produced a
large variety of forms well-suited to their environment, this process being
capable of acceleration by selective breeding. This suggests that, even though
resources of time and technology are limited, the use of an evolutionary
approach may lead to a mechanism useful for providing meaningful design
solutions in a non-routine design environment. An example of the capabilities
of an evolutionary approach in a creative domain is the generation of creative
Art forms through the use of simple geometric primitives and rules (Todd and
Latham, 1992). This paper is an initial investigation into the possibilities of the
approach.

644 MICHAEL A. ROSENMAN

2. An Evolutionary Model Of Design

2.1. GENETIC ALGORITHMS

Genetic algorithms (GAs) are a class of algorithms, based on the adaptive
process of natural evolution, which employ a general uniform knowledge-lean
methodology without preconceived prejudices as to the solution (Beasley et al.,
1993; Holland, 1975). While GAs have been used to solve a variety of problems
mainly optimization, learning and control problems, (Goldberg" 1989;
Grefenstette et al., 1989), there has been very some limited research and
applications in design (Gero et al.,1994; Jo, 1993, Jo and Gero, 1995; Schnier
and Gero, 1995; Woodbury, 1993). The trend which has developed in GA
applications is to encode the genotype as a string of characters, usually binary.
Each such character represents a one-to-one correspondence to a property in the
phenotype, as distinct from nature where the genotype encodes instructions for
the generation of living form.

2.2 EVOLUTION AND DESIGN

The evolutionary approach is basically a generate and test approach which
corresponds well to the procedures for design synthesis and evaluation in the
design process. The specific characteristics of the approach are:

• a large pool or population of members (e.g. design solutions);
• members are selected for 'survival' using a biased random selection

mechanism based on their 'fitness', i.e. relation to a fitness function;
• new members are generated from the existing ones using evolutionary

mechanisms as crossover, inversion, 'gene splicing' and mutation.

The advantages of the evolutionary approach are:

• more diverse sections of the state space can be investigated than with
other methods, thus tending to discover a variety of potential solutions
with less fear of immediate convergence to single local points;

• a probabilistic selection method directs the random generative process to
produce meaningful and satisfactory solutions.

2.2.1. Growth of Form
Whereas the process of generation of form in living systems involves the
placement of different kinds of protein in particular locations, the process of
generation of form in design involves the placement of units of different kinds
of material in particular locations. Normally in the design domain, we represent
objects in terms of the shape of their envelope. However, we may describe an

THE GENERATION OF FORM USING AN EVOLUTIONARY APPROACH 645

object, at a lower level of abstraction, as a composition of material units (cells
or building blocks), where the type and scale of such units are chosen depending
on the context and suitability for the level of abstraction required. An object can
then be described by the location of each such unit and can be 'grown' by
locating a required number of such units, one at a time in sequence, Figure 1.

00
M1 M2

ee
M3 M4

(a) (b) (c)

Figure 1. A growth model of form; (a)units of materials, (b) growth through location of
units of material, (c) distinct elements.

The form produced will depend on the form of the unit material and the location
procedures, i.e. rules of growth, used. Different location procedures will create
different geometries, as in crystal growth. In general, random aggregation of
different units of materials will be generated, Figure 1 (b). Distinct elements
may emerge as a case of aggregations of the same material units, Figure 1 (c).

The genotype for a homogeneous object is thus the sequence of coded
instructions for selecting and locating material units, analogous to the DNA
string in natural evolution. When this code is interpreted and executed, the
phenotype, i.e. the object (or rather its representation), will be generated. A
general model of form growth can be proposed as:

For given total units of material required
SELECT a unit of material, Mm
LOCATE unit of material, Mm (using locating procedures) relative to

other units

A gene in such a model becomes (Ot, Mm, L(Mm», where L(Mm) is the
instruction for locating the unit of material Mm relative to the generated object
at each step, Ot. Initially Ot is a single unit. The genotype is a sequence of such
genes. Where a homogenous object is considered, the material identification is
constant and the gene is basically a sequence of location operators. Obviously,
such a model is computationally infeasible in general and a more
computationally feasible approach is required.

2.2.2. Elements, Components and Assemblies
An object may be simple or complex. A simple object is termed an element and
by definition is homogeneous otherwise it can be decomposed into separate

646 MICHAEL A. ROSENMAN

elements each being homogeneous. Note that composite materials like
reinforced concrete, are treated as conceptually homogeneous. An element is
thus a composition of material units. A complex object is termed an assembly
and is composed of objects termed components. Recursively, components may
be assemblies or elements. A formal description is as follows:

0:-
A:-
C:-
R(C) :­

Ci :-
E :­
Mm:­
R(Mm} :­
Mmi:-

AlE
(C, R(C)}

{u(Ci}
{u<Rk(Ci, Cj)) }

An object is an assembly or an element
An assembly is a set of components and a
set of relationships among the components

o ith component is an object
(Mm, R(Mm)} An element of material Mm is a set of
{u(Mmp} material units of type Mm and a set of
{u(Rt(Mmp, Mmq}}} relationships among the material units
ith unit of material Mm

2.2.3. Levels of Abstraction and Parametric Design
The 'size' of the unit of material will vary according to the problem and the
level of abstraction required. Obviously, the smaller the unit, the larger the
genotype required to generate an object with the associated problems of an
exponential increase in computation time.

2.2.4. Evaluation of Design Solutions
The evaluation of designs is carried out by interpreting the generated design
solution, the phenotype, and determining its behaviours according to a set of
behavioural requirements formulated from the design requirements. The actual
levels of performance of the object's behaviours may be determined using
causal knowledge in the form of formulae, rules, etc. or by users exercising
judgment in the case of qualitative behaviours such as aesthetic qUality. Such
judgments are subjective and personal and they may be made as a complex
evaluation of many factors without rationalization of the separate factors. The
designer takes full responsibility for such evaluations. Such subjective
evaluation coupled with user interaction is the approach taken in the generation
of Biomorphs (Dawkins, 1986) and creative Art forms (Todd and Latham).

Since an object exhibits more than one behaviour, the evaluation of the
fitness of the object is a multiobjective problem and hence will involve
evaluation using concepts similar to Pareto optimization (Hom et al., 1994; Jo,
1993; Jo and Gero, 1995). Constraints can be implemented through the use of
penalty functions.

The issue of 'emergent' behaviour and functionality, i.e. the evolution of the
fitness function itself, while of importance, will not be treated in this paper.

THE GENERATION OF FORM USING AN EVOLUTIONARY APPROACH 647

2.2.5. Design Through Hierarchical Decomposition / Aggregation
Simon (1969) points out, that even though organisms are very complex, it is
only possible for them to evolve if their structure is organised hierachically. The
above formulation allows for the generation of objects through the recursive
generation of its components until a level is reached where the generation
becomes one of generating an element. Such an approach assumes a knowledge
of the decomposition structure of an object.

The advantages of a hierarchical approach are that only those factors
relevant to the design of that component are considered and factors relevant to
the relationships between components are treated at their assembly level.
Instead of one long genotype consisting of a large number of low-level genes,
the genotype is composed of a set of chromosomes relevant to their particular
level. In addition to reducing the combinatorial problem substantially,
parallelism is supported since all the different chromosomes (components) at a
particular level can be generated in parallel. If the set of possible alternatives of
component types is sufficiently rich, i.e. large and varied enough, then many
different combinations of members of different such sets are possible, at the
next level, with a good chance of satisfying the criteria and constraints at that
level. Only when no such possible combination satisfies such criteria is there a
need for some generation of new alternatives at the lower level.

There are basically two approaches. The first is a top-down approach, used
by Cramer (1985) and also in Genetic Programming (Koza,1992; Rosca and
Ballard, 1994). This approach considers the entire object tree at the one time,
with crossover occurring between corresponding subtrees at any level. The
second is a bottom-up multi-level approach where, although the overall
decomposition structure is known, the composition of the various levels is not.
At each level, a component is generated from a combination of components
from the level immediately below. At each level, an initial population is
generated and then evolved over a number of generations until a satisfactory
population of objects at that level is obtained. Members of that population are
then selected as suitable components for generating the initial population at the
next level. The process is repeated for all levels, Figure 2.

In a flat model of form generation, a genotype will consist of a string of a
very large number of basic genes. In a hierarchical model, there are a number of
component chromosomes, at different levels, consisting of much shorter strings
of genes which are the chromosomes at the next lower level. All in all, the total
number of basic genes willthe same in the flat and hierarchical models.

648 MICHAEL A. ROSENMAN

-~---------------------------------Element Level

Figure 2. Multi-level combination and propagation.

2.3. DESIGN GRAMMARS

In order to generate an object (a design solution) a generative method, such as a
design grammar, is required. A design grammar deals with a vocabulary of
design elements and transformation on these elements and hence defines a
design space (Woodbury,1993). In shape grammars, the vocabulary consists of
shapes and the grammar rules define transformations on these shapes (Stiny,
1980). Successive application of shape grammar rules generates shape
compositions which may be related to designs such as buildings (Stiny and
Mitchell, 1978). While design grammars provide a generative capability, they
are syntactic mechanisms without the evaluative mechanisms for directing the
generation towards meaningful solutions.

2.3.1. Recipes and Blueprints-Genotypes and Phenotypes
A recipe (or plan) is a set of instructions or operations, whereas a blueprint is a
representation of the solution (Dawkins, 1986; Woodbury, 1993).

The aim of the design process, in an evolutionary approach, is the attainment
of a set of instructions, a genotype, that when executed, yields a design
description of a product, a phenotype, whose interpreted behaviours satisfy a set
of required behaviours, the fitness function. In this approach, a grammar rule is
a gene, the plan (sequence of rules) is the genotype and the design solution is
the phenotype.

THE GENERATION OF FORM USING AN EVOLUTIONARY APPROACH 649

The advantage of the use of grammar rules as the genetic information is in
the simplicity of the information needed to be kept, since the generative rules
are fewer in number than solution parameters and generally less complex.
Moreover, small changes in such rules or their combinations can lead to large
and unexpected changes in the design solutions, a desirable property for creative
design (Woodbury, 1993).

2.3.2. The Evolution of New Rules and Plans
There are basically two approaches in the generation of genotypes of design
grammar rules, analogous to the two approaches in classifier systems, the
Michigan and Pitt approaches (Goldberg, 1989; Wilson and Goldberg, 1989).
The first approach, as taken by Gero et al. (1994), attempts to 'learn' new
grammar rules. The second approach, taken in this paper, is based on the
premise that the grammar rules are fundamental operators, which cannot be
decomposed or recomposed, that the particular grammar contains all required
rules and that the aim of the design process is to find satisfactory sequences of
such rules.

2.3.3. A General Model for An Evolutionary Approach to Design
The general model of design using an evolutionary approach may be stated as
follows:

for all levels in the object hierarchy
for all components at that level

GENERATE initial population of members (by synthesizing lower level
units)

EVOLVE population until satisfactory

3. A House Design Example - Space Generation

The above concepts can be exemplified through the generation of 2-D plans for
single-storey houses. The work of 10 (1993) and 10 and Gero (1995)
demonstrated that a single-level approach was not able to converge towards
satisfactory solutions mainly due to the interactions of the various factors of the
fitness function required for the various elements.

3.1. A HOUSE SPATIAL HIERARCHY

A house can be considered to be composed of a number of zones, such as living
zone, entertainment zone, bed zone, utility zone, etc. Each zone is composed of
a number of rooms (or spaces), such as living room, dining room, bedroom,
hall, bathroom, etc. Different houses are composed of different zones where
each zone may be composed of different rooms. Each room is composed of a

650 MICHAEL A. ROSENMAN

number of space units. Generally, in a design such as a house, the space unit
will be constant. The scale (level of abstraction) of the space unit depends on
the precision required in differences between various possible room sizes. The
smaller the unit, the longer the genotype for a given size of room but the greater
the shape alternatives.

3.2. GENERATION - THE DESIGN GRAMMAR

In the above formulation, the generation of spaces, basically comes down to
locating spatial component units for that level. At the room level, the
component unit is a fundamental unit of space. At the zone level, the component
unit is a room and at the house level the component unit is a zone.

The design grammar used here is based on the method for constructing
polygonal shapes represented as closed loops of edge vectors (Rosenman,
1995). The grammar is based on a single fundamental rule which states that any
two polygons, Pi and Pj, may be joined through the conjunction of negative
edge vectors, V 1 and V 2, that are equal in magnitude and opposite in direction.
The conjoining of these vectors results in an internal edge (neutralized vector)
and a renaming of the new polygon, Pk. The edge conjoining rule, Rlis:

Vm+Vn = Vmn = o Rl

Rule RI is commutative and applies for all values of vector direction. This rule
ensure that new cells are always added at the perimeter of the new resultant
shape. This rule is shown diagrammatically in Figure 3.

· · · · · · ~k

Figure 3. Edge vector rule for the construction of 2-D shapes.

The fundamental conjoining rule can be specialized for different types of
geometries. Orthogonal geometries are based on the following four vectors of
unit length: W = (1, 90), N = (1, 0), E = (1, 270), S= (1,180).

so that Rulel becomes:

N+S
E+W

=
=

NS
EW

= 0 RIa
= 0 RIb

THE GENERATION OF FORM USING AN EVOLUTIONARY APPROACH 651

These two (sub)rules allow for the generation of all polyminoes. Orthogonal
geometries will be used in this paper without loss of generality. Other (sub)rules
may be formed for other geometries (Rosenman, 1995).

3.2.1. Genotype and Phenotype
A polygon is described by its sequence of edge vectors. A suffix is used to
identify individual edges of the same vector type. Thus the square cell of Figure
4 is described as (WI, Nl, El, Sl). The sequence of edge vectors describing the
(polymino) shape is the phenotype in a geometric sense. This provides the
description of the shape's structure from which its behaviour may be derived.

d1 W2 El
Nl

WI : E2

Nl

WIDEI

Sl S2 Sl

P2(g) = (PI ,PI ,EIIW I) P3(g) = (P2,PI,N2ISI)
PI(P) = (WI,NI,EI.SI) P2(p) = (WI,NI,N2,EI,S I,S2) P3(p) = (WI,NI,W2,N2,EI,E2,SI,SZ)

Figure 4. Generation of a trimino.

The genotype for any generated polymino is the sequence of the two subshapes
(polyminoes) used and the two edges joined. An example of the generation of a
trimino is shown in Figure 4. Figure 4 shows a basic unit or cell, PI, which
provides a starting point for the generation of polyminoes. Each generated shape
is accompanied by its genotype and phenotype. The generation of these
polyminoes occurs from a random selection of edges in the first shape conjoined
with a random selection from equal and opposite edges in the second shape. At
each step in the generation, the phenotype is reinterpreted to generate a new
edge vector description and the conjoining (sub)rules applied. The genotype for
the generated trimino is given as (P2, PI, N2ISl). This can be expanded as
«PI, PI, ElIWI), PI, N2ISl). When the same units are used for generation, the
unit can be omitted and the genotype represented as the sequence of edge vector
con joinings. That is P3(g) = (ElIWl, N2ISl).

The length of the genotype (and phenotype) depends on the size of the
polymino to be generated, that is on the area of the polymino. This corresponds
to required room sizes. For different room types, minimum and maximum area
constraints can be given so that polyminoes will be generated (randomly) with
areas within those constraints.

Once a popUlation of different rooms is generated for each room type in a
given zone, the zone can be generated through the conjoining of rooms in a
progressive fashion. Because of the cell-type structure of the polygons, the

652 MICHAEL A. ROSENMAN

conjoining may occur at any appropriate pair of of cell edges. Therefore, a large
number of possible zone forms can be generated from two rooms. An example
of some possibilities arising from the conjoining of two polyminoes is given in
Figure 5.

NI

w:rn-E~2
W~ _: E2

WI rJl
S2

PI(P) = (W1.W2.W3. .EI.N2.E2.S 1.E3.S2)

N2 Nl

W3e]_- 101
SI W2 E2 NI __

WI ' El ,
S3 S2

P2(P) = (WI.N I.W2.SI.W3.N2. .EI.El.E3.S2.S3)

, I

-~ .. ~ --
I I

--+-+--

P3(G) = (PI.P2.WIIEI) P4(G) = (p1.P2 .WIlEl) PS(G) = (PI.P2.N2IS I) P6(G) = (P I.P2.N3S2) P7 = (PI.P2.E2IWI)

... 111 Conjoined Edge • Overlap

Figure 5. Some examples of conjoining two polyminoes.

The two polyminoes, PI and P2, represent instances of two different room types
and the polyminoes resulting from the joining of the two rooms represent
instances of a particular zone type. When one pair of edges are conjoined other
edges may also be conjoined, e.g. P4, P5 and P6. In the case of overlap, as in
P6, the resultant shape is discarded.

The same process used for generating zones is used to generate houses. The
joining of different instances of different zone types generates different
instances of houses.

3.2.2. Order of Selection
At the zone and house level, the order of selection of the units to be joined may
influence the solution and its performance. For example, if living rooms and
dining rooms are chosen as the fIrst two rooms in the living zone, they will
always be adjacent. However, there are problems with choosing a random order
of room selections for every zone instance generation for the same population as
future crossovers may lose some room types and include more than one of the
same type. Thus for any population, the same order of room types must be kept.
A given order may be chosen randomly or from an algorithm based on the
number (and/or strength) of interconnections required in an interconnection
matrix as used, for example, by Coyne (1988) in his plan of actions.

THE GENERATION OF FORM USING AN EVOLUTIONARY APPROACH 653

3.3. THE EVOLUTION OF HOUSE DESIGNS

The above grammar can be used to generate initial populations for each level in
the spatial hierarchy. Each such initial population is then evolved, as necessary,
so that solutions are 'adapted' to design requirements.

3.3.1. The Evaluation Criteria-Fitness Functions
At each level, different fitness functions apply according to the requirements for
that level. While the requirements for designs of houses involve many factors,
many of which cannot be quantified or adequately formulated in a fitness
function, some simple factors will be used initially to test the feasibility of the
approach. For this example, the fitness function for rooms will consist of
minimizing the perimeter to area ratio and the number of angles. This
requirement tends to produce useful compact forms. For zones, the fitness
function will consist of minimizing a sum of adjacency requirements between
rooms reflecting functional requirements. At the house level, the fitness
function will consist of minimizing a sum of adjacency requirements between
rooms in one zone and rooms in other zones. This has the tendency to select
those arrangement of zones where adjacency interrelations are required between
rooms of different zones. In addition to these quantative assessments, qUalitative
assessments will be made subjectively and interactively by a user/designer.

Although the above criteria have been described in terms of optimizing
functions, the aim is not to produce global optimum solutions but rather to
direct the evolutionary process to produce populations of good solutions either
as components for higher levels or at the final level itself. So that, even though
the global optimum solution for the shape of a room using the above ctiteria,
may be known, this may not be the optimum solution at the zone and and house
levels. By selecting other non-optimal but good solutions, according to the
given criteria, good unexpected results may be achieved for the overall design.

Other factors are required in more realistic design contexts. For example, a
house needs to meet site requirements, both in terms of size and orientation for
view or climate. Such factors can be formulated as constraints at various levels.
These constraints can be handled explicitly as survival factors or as penalty
functions. That is, a solution which does not meet a constraint is eliminated or,
alternatively, a penalty can be added to the fitness of the solution according to
the degree of violation. It is argued that with a sufficiently large population of
room and zone alternatives such constraints can be met. If not, then redesign,
i.e. new zone andlor room forms, must be produced.

3.3.2. Propagation-Crossover
Simple crossover is used for the production of 'child' members during the
evolution process. Looking first at the room level to see the effect of such a
crossover process, crossover can occur at any of the four sites as shown in

654 MICHAEL A. ROSENMAN

Figure 6(a) with two results as shown in Figure 6(b). Since we are always
dealing with cells of the same space unit, the cell identification in the genotype
representation has been omitted for simplicity.

W2

WI

51

EI

E2

E3

• • • •

N2 N3

• • •
R1 '" (NIISI,: EIIWI,:E IIWI,:SIINI,:S tiNt)

• • • • R2 =(EtIWt: Nt lSt~ WtIE~: N2ISt,:W3IEt) • • • •
1

• •

2 3 4

R2 =(EIIWI, NtlSt:WtlEt, N21St, W1IEt)

•
2

R1 = (Nt 1S t, EtlW I, E jW I, StINI:SIINI)
•

• •
R2 =(EIIWI, IISI , WIIEI, N2ISI:W3IEI)

4

1 2 3 4
(a)

X R3 =(NtISt,EtIWt,WIIEt, lISI,WJIEt)

R4= (EilWt, NtlSt, EtlWI, Stl ,S IINI)

X RS = (NIISI, EIIWI , El lWt, S IINI, W3IEI)

R6 = (EtlW I, NtlSI, WIIEI, N21SI, StINI)

(b)

Em, --1-+­
, I

I

Figure 6. Crossover at room level; (a) initial rooms Rl and R2 generated from unit
square cell Ul, (b) crossover at sites 2 and 4.

At the zone level, crossover occurs as shown in Figure 7. Two initial instances
of living zones, Zl and Z2 are shown in Figure 7(a). Each zone has one instance
of each of living room, dining room and entrance. Figure 7(b) shows crossover
for one of the four possible sites. A similar process is followed at the house
level.

THE GENERATION OF FORM USING AN EVOLUTIONARY APPROACH 655

Living Room

L2

~~~ 
1:::. 
~ 

--f-

- .. f0- b 
~' 

..... -
.. ., .. ., 

Z1 == «LI,' D2,'E4IW2),' E I,·. NsIS3) •• • 
2 3 4 

SITE 2 -CROSSOVER 

.-,., 

r- 5h-..... --
ZS == «LI, D2, E3IW2), E2, S21N3) 

Dining Room Entrance 

I 
LiZ J' I 

I 

I-~ ~ 
'--..... -

•• • I 
•• • I 

Z2 == «L2,: 01,: E3IW2),: E2,: S21N3) 

2 3 4 

(a) 

~. 

L 
D' 

ZS = «L2, Dl, E4IW2), El, NsIS3) 

(b) 

Figure 7. Examples of zone crossover; (a) rooms and initial zones, Zl and Z2, (b) 
crossover at Site 2. 

4. Implementation And Results 

A computer program written in C++ and Tc1-Tk: under the Sun Solaris 
OpenWindows environment is under implementation. Currently, only the 
simple criteria described previously have been used. Each evolution run, for all 
levels, tends to converge fairly quickly to some solution which may not 
necessarily be the best or, in some limited cases, even acceptable. The usual 
method to break out of such convergence is to introduce some level of mutation. 



656 MICHAEL A. ROSENMAN 

Rather than use a mutation operator, it was found that a more efficient strategy 
was to generate multiple runs with different initial randomly generated 
populations. This produces a variety of gene pools thus covering a more diverse 
area of the possible design space. Moreover, such runs can be generated in 
parallel. Users can nominate the population size, number of generations for each 
run and select rooms, zones and houses from any generation in any run as 
suitable for fmal room, zone or house populations. 

Results are shown in the following figures, Figures 8 to 11 for room, zone 
and house solutions. 

..., .... I.V .. " ~ 10M 

.. • .. • It ., 

[?O ... -.. -
~!I. --.. .. .. · .. · .. .. .. 
· 

--
JoUf ........ u. ........ &&tJ UMIIAII ..... ~ .... Ia. ............. 
• • • • • • III • ... 

a.&a.UIM .... II;ItII ...... aa. .... 
.. • .. .. " iW • • 

............... _ .. "~ ............ ........... -.-..- ........ -
IoU ............ "* .... II.U,.. ..... u... uu ................. .......... .... ........ "., ... " ....... ., 

! .. I 
" :-== :;= = = I 
~l;~- - """- I 

Figure 8. Results of living room generation. 

The upper part of Figure 8 shows 5 Living Room shapes selected from previous 
runs. with a randomly generated initial popUlation of 40 Living Rooms in a 
new run. The lower part of Figure 8 shows the evolution of this population 
through 16 generations. Three new shapes are selected, during this evolution. 
The graph shows the evolution through 30 generations where the population 
converged on the square shape (evolved at the 16th generation). The upper line 
in the graph shows the evolution of the best solution while the lower line shows 
the evolution of the popUlation average. The Dining Room, Kitchen and 
Entrance were generated in a similar way. 



THE GENERATION OF FORM USING AN EVOLUTIONARY APPROACH 657 

laDI .... ~i&II ... ..... __ sa. ...... ..... 
• • III ,. 'f!' ... • • .. ... . 

~~-~~] a3 ~ Dlr 9 gn f.D ~ ~ u:rrfl bn ~ :'). 

.. 
· · · · · · .. .. .. · 

-- .­- ~ ............ ,.... .... r ~ ........... 

~~~·66~~@J~rt,~ .. 

f~ -~-"--I

(a)

~ --.~ 'r,;J --~-----=:'! -' ... -........ ~ 8) [ij IE @ eJ rJ1 I -.."-"''''-_._M ___
~ &j a ~ co LiB ~ CijJ f:dj g, Jtj:J ti.18tt3
::-::-=~ ::-::-=~~ r-' ~ ~.:=a~

fB~~&C[33~B,~~~t? {J~

&3 ~ =t3 ~ ~:J ce dB ~ d;i8 ~ .!6J rJr cB
::- c-:- :-:- r f:M r-::- r:- p ~ r

t:9Jd:1dBdS1Jaa2J~~~B
Q-, .0., fh If1 J u. u.o. -- ... sa. UIiII... UU £aM -0 L::5:: Ir;j tD • .. ,. .. • • tit ••

~r,;J':=---~ ':"= •,,:._:'i:'~: ==--o...,.JI,J ~ ~ ~ ~ ~ ~
.. ' · · .. · ·

.. I
~ .- .'::.;:==- = 1

=- - I

i
I
!
1
1

i
i

I

I
I

:.1
;;; .~ I ,- !4

b __ ;"' "

; ;

(b)

Figure 9. Results of Living Zone generation; (a) initial Living Zone population, (b)
evolved population.

658 MICHAEL A. ROSENMAN

Figure 9(a) shows an initial population for the Living Zone, randomly generated
by selecting rooms from the final selctions for Living Room, Dining Room,
Kitchen and Entrance populations. Figure 9(b) shows the 14th generation of the
final run. Twenty five Living Zones have been selected .

. . .

!!t _ ... -
............... -
............ If_~

W 01J 11 qj 0:0 f:P 9J §l bP Q(:; ~ 50 cfl - - •. . , - ::" .. - :'''' :w
LtJ & cf] EjIJ cfP c;§
.:w ~ ,. . ..
...... _" .. --.......- I q;;:Jt1 ~ \1rjjQjJ gJ Eb 6P B:JBJQp
:;:' ::' ::" :;:' :':' :;:' ::' - ..
'bl Eb Eb ~

I.'!.I J'*" .~;.

o..a-....
~ .. - .. - ..

...

Figure 10. Results of Bed and Living Zones generation.

Figure 10 shows a set of Bedroom and Living Zones selected during a later
run. The Bedroom Zone consists of a Master Bedroom, Bedroom, Bathroom
and Hall. Figure l1(a) shows the initial population of the second run in the
house generation process (one house was previously selected in the first run).
Figure 11 (b) shows the 10th generation in the evolution of this population.
Three new houses have been selected as satisfactory during the course of the
evolution.

The total area of this house type is 80 sqm, corresponding to a genotype of
length 79 in a single genotype. The example of Jo (1993), showed that no
satisfactory convergence was obtained with a single genotype of this length.
The size of the population and the number of generations and runs required to
generate a satisfactory number of members depends on the genotype length.
The longest genotype was of length 19, for the Living Room (area 20 units).
Convergence was usually achieved by approximately 25 generations. The
addition of more zones and rooms presents no problem for the hierarchical
approach used here although it would present extra combinatorial problems for
the single genotype approach.

THE GENERATION OF FORM USING AN EVOLUTIONARY APPROACH 659

. .tI

... · · .. · ~ · · I • · ·

.­-

,.... !1~~ ~­
_ ... -

............ - --

.. . If. •• If. IIlfl: . . .

(a)

r.u_ cvoorr cm. • r ,t,!,.
~11111~ _ I ~4..~ ~. _a. --.,-----

I

..
w •

..
o

~~~'I ~~~~~~~~ 
I ~~~~~~~~ 

-
(b) 

.. .. 

Figure 11. Results of House Generation; (a) initial house population, (b) evolved 
population of houses. 



660 MICHAEL A. ROSENMAN 

5. Changing The Fitness Function 

Once a population of members exists for a given fitness function this population 
can be used as the initial population if a change in the fitness function occurs. In 
this way, existing designs adapted to a previous context can evolve to create 
new designs adapted to a new context. For example, if the house fitness 
function involves the minimization of house perimeter to area ratio as a 
reflection of some energy efficiency requirement, compact house plans will 
result, as for example in Figure 12. If subsequently, the fitness function involves 
maximizing the perimeter to area ratio as some reflection of a requirement 
desiring maximum cross-ventilation, then the existing designs may adapt to 
those in Figure 13. 

LZl = ((L 1, 01, 53INo!), El, SlIN1), K1, E91W2) 

BZl = «(MB1, HA1, SIIN1I, BA1, WelE2), Bl, S21N2) 

"U2 112 P1 
I~ 

~ 

LZ2 = «(L1, 01, SllN6), E2, w.IE2I, K2, SeINJ) 

BZ2 = ((MB2, HA2, SlIN2), BA2, S21N2), Bl, WsIE2) 
B 

_. 
H1 = (LZ1, BZ1, WllE8) 

Area 
Perimeter 
PIA Ratio 

= 70 
= 38 
= 0.543 

H2 = (LZ2, BZ2, W11E3) 

Area 
Perimeter 
PIA Ratio 

= 77 
= 42 
= 0.545 

Figure 12. Two compact house plans resulting from a fitness function involving 
minimum perimeter to area ratio. 

l 

C 

II B: 

t 
I", 

H3 = (LZ1, BZ2, WllE3) 

Area 
Perimeter 
PIA Ratio 

-"". 
'11!E l' l~ 

B 
EJ2 [ 1 
1 

~ .... 

H4 = (LZ2, BZ1, Wl1Ea) 

Area 
Perimeter 
PIA Ratio 

Figure 13. Evolution of house plans from rxisting house plans resulting from a new 
fitness function involving maximum perimeter to area ratio. 



THE GENERATION OF FORM USING AN EVOLUTIONARY APPROACH 661 

Note that a change in the fitness function at one level does not affect the fitness 
function at lower levels. Thus a change in the fitness function of the house 
design, does not necessarily involve a change in the fitness function of the zones 
and the rooms. If a change in the fitness function of zones is required, such as 
also maximizing perimeter to area ratio, the new populations of zones must be 
produced from the existing room populations before new house designs can be 
generated anew. 

6. Summary 

This paper has presented concepts for a general evolutionary approach to the 
generation of design solutions based on the growth of cells in a hierarchical 
organization. While the example presented is based on the generation of 2-D 
plans through the synthesis of a fundamental 2-D space unit, the approach can 
be generalized to the synthesis of any material cells. Although the example was 
based on orthogonal geometry, the method for growth is general for any 
polygonal geometry and may be extended to polyhedral geometry. 

The main advantage of a hierarchical approach is that at each higher level 
the number of components making up the assembly at that level is reduced and 
genotypes are shorter. The fitness function relates only to the requirements for 
that component. It is argued that because a number of possibilities is considered, 
the effect of suboptimization is mitigated. In addition to reducing combinatorial 
problems, parallelism is supported. 

As an alternative to mutation in the evolution of popUlations, the use of 
multiple runs with new randomly generated initial populations was used. This 
also has the advantage of allowing parallel processing. 

While the various fitness functions at the different levels of the component 
hierarchy have involved optimization criteria, the goal of the approach is not 
optimization of these factors per se but rather their use as a driving force in the 
generation of satisfactory form. Thus the method produces form by 'growing' a 
set of fundamental units (cells) of material according to 'growing' rules whose 
sequence is directed by adapting to a given environment. 

Further work will involve the inclusion of more realistic criteria and 
constraints as well as investigating the need for the recursive generation of new 
lower level components when no satisfactory assembly can be generated. 
Efficiency issues need to be investigated. 

An area of further research is that of incorporating schema-based 
representations with an evolutionary approach for generation (10, 1993; Jo and 
Gero, 1995). A functional decomposition approach would be required in which 
distinct components to satisfy those functions are at least identified. 



662 MICHAEL A. ROSENMAN 

Acknowledgements 

This work is partially supported by the Australian Research Council. 

References 

Beasley, D., Bull, D. R. and Martin R. R.: 1993, An overview of genetic algorithms: Part I, 
fundamentals, University Computing, 15(2), 58-69. 

Coyne, R. D.: 1988, Logic Models of Design, Pitman, London. 
Cramer, N. L.: 1985, A representation for the adaptive generation of simple sequential programs, 

Proceedings of an International Conference on Genetic Algorithms and their Application, pp. 
183-187. 

Dawkins, R.: 1986, The Blind Watchmaker, Penguin Books. 
Gero, J. S., Louis, S. J. and Kundu, S.: 1994, Evolutionary learning of novel grammars for design 

improvement, AIEDAM, 8(3), 83-94. 
Goldberg, D. E.: 1989, Genetic Algorithms in Search, Optimization, and Machine Learning, 

Addison-Wesley, Reading, Mass. 
Grefenstette, J. J. and Baker, J. E.: 1989, How genetic algorithms work; a critical look at implicit 

parallelism, in J. D. Schaffer (ed.), Proceedings of the Third International Conference on 
Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, pp. 20-27. 

Holland, J. H.: 1975, Adaptation in Natural and Artificial Systems, The University of Michigan 
Press, Ann Arbor. 

Horn, J., Nafpliotis, N. and Goldberg, D. E.: 1994, A niched Pareto genetic algorithm for 
multiobjective optimization, Proceedings of the First IEEE Conference on Evolutionary 
Computation (ICEC '94), Voll, IEEE World Congress on Computational Intelligence, 
Pistcataway, NJ: IEEE Service Center, pp. 82-87. 

Jo, J. H.: 1993, A Computational Design Process Model using a Genetic Evolution Approach, 
PhD Thesis, Department of Architecural and Design Science, University of Sydney 
(unpublished). 

Jo, J. H. and Gero, J. S.: 1995, A genetic search approach to space layout planning, Architectural 
Science Review, 38(1), 37-46. 

Koza, J. R.: 1992, Genetic Programming: On the Programming of Computers by Means of 
Natural Selection, MIT Press, Cambridge, Mass. 

Rosca, J. P. and Ballard, D. H.: 1994, Hierarchical self-organization in genetic programming, 
Proceedings of the Eleventh International Conference on Machine Learning, Morgan 
Kaufmann, San Mateo, CA, pp. 252-258. 

Rosenman, M. A.: 1995, An edge vector representation for the construction of 2-dimensional 
shapes, Environment and Planning B: Planning and Design, 22, 191-212. 

Rosenman, M. A. and Gero, J. S.: 1994, The what, the how, and the why in design, Applied 
Artificial Intelligence, 8(2), 199-218. 

Schnier, T. and Gero, J. S.: 1995, Learning representations for evolutionary computation, in X. 
Yao (ed.), AI'95 Eighth Australian Joint Conference on Artificial Intelligence, World 
Scientific, Singapore, pp. 387-394. 

Simon, H. A.: 1969, The Sciences of the Artificial, MIT Press, Cambridge, Mass. 
Stiny, G. and Mitchell, W.: 1978, The Palladian Grammar, Environment and Planning B, 5,5-18. 
Stiny, G.: 1980, Introduction to shape and shape grammars, Environment and Planning B, 7,343-

351. 
Todd, S. and Latham, W.: 1992, Evolutionary Art and Computers, Academic Press, London. 
Wilson, S. W. and Goldberg, D. E.: 1989, A critical review of classifier systems, in J. D. Schaffer 

(ed.), Proceedings of the Third International Conference on Genetic Algorithms, Morgan 
Kaufmann, San Mateo, CA, pp. 244-255. 

Woodbury, R. F.: 1993, A genetic approach to creative design, in J. S. Gero and M. L. Maher 
(eds), Modelling Creativity and Knowledge-Based Creative Design, Lawrence Erlbaum, 
Hillsdale, NJ, pp. 211-232. 



1. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 663-680. 
© 1996 Kluwer Academic Publishers. 

EVOLUTIONARY LAYOUT DESIGN 

WALTER HOWER 
Department of Computer Science, University College Cork, NUl, 
College Rd, Cork, Republic of Ireland 

AND 

MANFRED ROSENDAHL AND DERRICK KOSTNER 
Institut fUr Informatik, Fachbereich 4, Universitat Koblenz-Landau, 
Rheinau 1, D-56075 Koblenz, Federal Republic of Germany 

Abstract. The present work treats the computation of heterogeneous layout configura­
tions; distinct shapes as rectangles and triangles have to get placed into a target frame. 
In our design application the main restriction is the requirement that the objects must not 
overlap. Here, we further constrain the problem to obey the following requirement: The 
user shall be able to interact with the (semi-) automatic layout system in a way such that 
s/he may pick an object to place it in a subarea, offered by the system, in an arbitrary 
manner without the need to think about the placement of the other objects. (After an al­
gorithm's termination a globally consistent layout should be guaranteed.) Thereby, the 
user still has degrees of freedom to finally arrange the objects. Such a realization shall 
also enhance the acceptance of the system by the user because entire solution classes, ob­
tained by topological layout relations (instead of maintaining single co-ordinate points), 
are offered. The current work employs evolutionary computing techniques in order to get 
timely computations. This paper shows the use of interesting artificial intelligence tech­
niques in the design area with close connections to a class of combinatorial problems in 
operational research with a wide range of applications in business and industry. 

1. Introduction 

The present work treats the computation of heterogeneous layout configurations; 
distinct shapes as rectangles and triangles have to get placed into a target frame. 
In the areas of artificial intelligence (AI) and computer-aided design (CAD) this 
problem can be formulated as a so-called constraint satisfaction problem (CSP). 
Hower (1995)1 may serve as an initial entry point to the CSP realm.2 In our design 

IHower and Jacobi (1994) presents a distributed realization. (Abel et al. (1995) illustrates the 
processing of spatial joins in distributed spatial database systems.) 

21be complexity of backtracking-like algorithms are discussed in Zahn and Hower (1996). 



664 WALTER HOWER ET AL. 

application the main restriction is the requirement that the objects (CSP variables) 
must not overlap (which forms the constraints).3 Here, we further constrain the 
problem to obey the following requirement: 

The user shall be able to interact with the (semi-) automatic layout system in 
a way such that slhe may pick an object to place it in a subarea, offered by the 
system, in an arbitrary manner without the need to think about the placement 
of the other objects. (After an algorithm's termination a globally consistent 
layout should be guaranteed.) 

Due to the combinatorial search space we are facing because of the exponen­
tial number of combinations of the various possibilities of layout configurations 
we supersede our exhaustive topological CSP layout solver TopCsp (Hower, 1996) 
incorporating a complete constraint satisfaction algorithm for a while and ap­
proach the problem in an incomplete heuristic manner.4 The current work there­
fore employs evolutionary computing techniques in order to hope for timely com­
putations. (Also in Dowsland and Dowsland (1992), where a review of packing 
problems5 is given, such heuristics are identified to have promising potential.) We 
subsume by the term evolutionary techniques not only "genetic algorithms" and 
"evolution strategies"; we also include "simulated annealing" in our experiments 
to broaden the comparison. 

The present paper is organized as follows: Section 2 introduces us to the ter­
minology of evolutionary computing. Section 3 appreciates other relevant work. 
Section 4 describes our approach dealing with the layout problem. Section 5 con­
cludes with final remarks. 

2. Terminology 

In a genetic algorithm (GA) the terms chromosome, gene, and pool got their in­
spiration by their relation to natural evolution. In real life often the best or mostly 
adapted individuals of a species will survive in the course of evolution. To trans­
fer this to an algorithm a number of chromosomes are grouped into a pool. Each 
chromosome consists of the same definite number of genes often realized by a bit 
string. The quality of each chromosome, its fitness, is determined by a function 
of its bit string called the fitness function. A new set of chromosomes is generated 
from the pool by the application of mainly two operators: crossover and mutation. 
The crossover takes two chromosomes (called parents) and creates two new ones 
(called children) by swapping one or more of randomly chosen genes. The muta­
tion is only applied to one chromosome and generates a child by tipping over one 

3you may consult Hower and Graf (1995) which surveys the literature on constraint-based 
design. 

4Thanks to Anna Thornton who has encouraged us in lively discussions after the CoPiCAD-94 
workshop (Hower et al., 1994) to try "adaptive" techniques. 

5 see also Hadjiconstantinou and Christofides (1995) 



EVOLUTIONARY LAYOUT DESIGN 665 

gene (or more genes, as used here), also randomly chosen. The fitness function 
then evaluates the fitness of the newly created chromosomes. The pool of the next 
generation is formed by only selecting the chromosomes with the best fitness of 
all individuals of the old generation in conjunction with the new generation. 

The simulated annealing (SA) algorithm has been inspired by the physical 
annealing of solids. Nevertheless, there is a strong analogy to the GA approach; 
therefore, we subsume the SA approach under the label of evolutionary com­
puting (BC). In its pure form one single bit string instead of a pool of chromo­
somes is maintained. Thus, mutation is the only operator. Similar to the GA a 
function that specifies a measure of goodness (sometimes called cost or objective 
function) of the bit string is employed. However, the most important difference 
to the GA is the fact that in one specific case the SA allows the adoption of a 
child with a worse cost. This decision is determined by the following "probab-

cost( child) -cost(parent) 
ility" P := e- T , where T is a normalization factor (tradition-
ally called "temperature") that decreases in the course of the various generations. 
(Generally, a minimization is performed; i.e., a small cost value is better than a 
big one.) A generated random number R in the range from 0 to I is compared 
to P and only if R < P then the probabilistic acceptance of adopting the worse 
child chromosome is achieved. Otherwise (if R 2:: P) the parent is kept. In the 
following we will use the notions fitness (function), chromosome, and gene for 
the SA, too, in order to avoid the change of terminology in the text. 

The evolution strategy (ES) can in some sense be described by a GA with (ad­
ditional) specific features concerning the parameters.6 For instance, each chro­
mosome may contain so-called strategy variables which have an influence on the 
evaluation of chromosomes of further generations. This strategy variables will be 
changed by mutation and crossover as well as the other genes. This mechanism 
is called self-adaptation. Moreover, in the ES there are two different procedures 
of selecting the chromosomes for the next generation. In general, by the (J.L, A)­
selection ("comma strategy") the best J.L of the A children become the parents of 
the new generation. The (J.L + A)-variant ("plus strategy") also takes the parents 
into consideration as the GA does as well. 

3. Relevant Work 

3.1. BASIC MATERIAL 

The article by Bremermann (1962) represents one of the earlier papers of illus­
trating some evolution ideas in the area of computer science. Davis (1987) col­
lects various papers in the GA (mainly) and SA fields. Goldberg (1989) is one 
of the mostly cited GA books. Forrest (1993) also introduces into this computa­
tion philosophy. Beasley et al. (1993a; 1993b) treat the area in an even broader 

6Normally no bit string representation is chosen; real values are preferred. 



666 WALTER HOWER ET AL. 

way. The book by Michalewica (1994) highlights GAs, too. The book by Aarts 
and Korst (1989) is one of the mostly cited books on the SA topic (mainly) and 
"Boltzmann Machines". Rutenbar (1989) presents a brief overview of the SA philo­
sophy. Eglese (1990) represents a more thorough SA discussion. Nakakuki and 
Sadeh (1994) points to keep track of some information gained in the SA com­
putation process (and thereby follows the idea of tabu search (TS)7 a little bit). 
Dockx and Lutsko (1994) proposes a hybrid framework comprising both a genetic 
algorithm and a simulated annealing component. Leung et al. (1994) investigates 
both a GA and SA as well as a TS approach and favours the latter one. Kido et 
al. (1994) combines all these three EC techniques. Reeves (1993) collects mater­
ial concerning (at least) these heuristics in a comfortable book format. Schwefel 
(1995) illustrates the ES approach of computation; Schwefel and Rudolph (1995) 
introduces further parameters where we are able to indicate separately both the 
number of the parent individuals and the number of reproduction iterations. De 
Jong and Spears (1993) briefly reviews EC procedures in general. Rechenberg 
(1994) and Fogel (1995) present the EC world in an exhaustive manner. 

3.2. RELATED ARTICLES 

In Stube (1993) and Hower (1993; 1996) only rectangles are treated while obey­
ing "non-overlap" constraints. 

In Tsang and Warwick (1990), Paredis (1993), Eiben et al. (1994), and Bowen 
and Dozier (1995) GA techniques are employed in CSPs. Minton et al. (1994) 
heuristically repairs inconsistent assignments (dealing with over-constrained CSPs) 
in a hill climbing manner-in some sense similar to the philosophy oflocal changes 
produced by the EC operations. 

In Davis (1985) a GA application to bin packing is briefly sketched. Smith 
(1985) and Falkenauer and Delcharnbre (1992) use a GA in bin packing, too. 
Kroger (1995) also pursues a (parallel) GA approach to pack rectangles. Reeves 
(1995) is a comprehensive study of this topic, too. Chan et al (1991) instantiates 
such a procedure to perform module placement in VLSI. Tam (1992) works with 
a GA to deal with rectangular shapes in floor planning. Kado et al. (1995) pro­
poses a hybrid architecture comprising a GA and a slicing tree structure compon­
ent. Thornton (1994) compares GA and SA realizations to deal with mechanical 
design constraints and prefers the latter one. Kampke (1988) uses SA in bin pack­
ing. Bolz and Wittur (1990) employs SA in order to position a line between two 
rectangles as well as to center a short text sentence inside a box. Cagan (1994) 
combines the idea of shape grammars with the SA technique to treat a geomet­
rical knapsack problem (such that the pieces do not overlap). LUders and Ernest 
(1995) approaches the problem how to automatically produce screen layouts via 
SA (regarding the task as a combinatorial optimization problem). Souilah (1995) 

7 see, for instance,lAIkketangen (1995) 



EVOLUTIONARY LAYOUT DESIGN 667 

also uses SA; there, a non-overlapping design is called "free layout". Bland and 
Dawson (1991) uses a TS strategy in configuration design. Hower et al. (1995) 
mainly focusses on the EC treatment of rectangles and just briefly points to tri­
angles. 

4. The Approach 

4.1. REPRESENTATION 

Here, we focus on the treatment of rectangles and triangles with two edges being 
parallel to the co-ordinate axes. Therefore, we are able to classify the various pos­
sibilities of non-overlapping layout configurations into at most six cases8 when 
relating two objects to each other. Every layout relation concerning two specific 
objects gets a (topological relation) number (E {l, 2, 3, 4, 5, 6}). Furthermore, 
when we deal with n objects we have n . (n - 1) /2 combinations to relate each of 
the n objects with the other ones in a pairwise manner; this number is the number 
of genes of each chromosome (and therefore its length). Thus, in our topological 
EC implementation TopEc each of our chromosomes consists of strings of topo­
logical layout relations; every gene is provided with a relation number for each 
binary combination of objects. Thereby, the fitness, which may range from 1 to 
n . (n - 1) /2, indicates how many object combinations can successfully be ar­
ranged. 

4.2. ARCHITECTURE 

In our realization there are three EC possibilities (ES, GA, SA) to solve a given 
problem. After choosing one of them there are several specifications that can be 
made. 

4.2.1. General Parameters 
One thing to declare is the quality of mutation/crossover. This means that we can 
specify a probability that indicates whether we change a chosen relation of the 
chromosome in work randomly, or whether we take advantage of the knowledge 
at which point in the string (proceeding from the front/top of a string) an incon­
sistency occurs in the intended layout configuration. At this point it is worthwhile 
to mention that only those layout relations are potential candidates to get selected 
by the Ee operators which really allow a non-overlapping placement when just 
considering the two corresponding objects which are currently in the focus. (For 
instance, if two objects are too wide to get placed next to each other the relations 
is left of I is right of are already excluded from the set of possible layout relations 
by the program prior to the evolutionary run.) The genes of a chromosome are vis-

Sfour cases with respect to two rectangles, four, five, or six cases with respect to a rect­
angle/triangle in conjunction with a triangle (depending on the specific case) 



668 WALTER HOWER ET AL. 

ited from the top where the binary relation concerning object 1 and object 2 is loc­
ated. The forthcoming genes with their layout configurations are then considered 
in addition to the possibilities we still have so far, and so on, until the final gene is 
processed which relates the objects with the numbers n -1 and n. In our TopEc 
realizations it is also possible to specify the number of interventions to a single 
chromosome or a pair of chromosomes per generation. A parameter changes per 
generation declares up to how many changes are made, in relation to the number 
of genes in the chromosome. After this, the number of generations of all chromo­
somes for one run can be edited. The next parameters handle more global issues. 
The pool quality determines a part of the pool creation from one run to another. If 
a chromosome achieved a good but not perfect fitness « n· (n - 1) /2) it is use­
ful to partially integrate it into the pool of the following run, to give it a chance 
to become a solution after a few more generations. Furthermore, if one or more 
solutions are found in one run, the odds are good that there are further solutions 
nearby, i.e. they can perhaps be found with a few changes to the chromosome. So 
these chromosomes are undertaking a one-point mutation to join the pool of the 
following run. Now, the pool quality indicates which percentage of chromosomes 
("near-miss" strings and modified solutions) should be adopted from one run to 
the next. (A heuristic chooses the most promising chromosome(s) of the last run.) 
The rest of the new pool is built in the same way as during the initialization phase 
described in 4.2.2. The number of runs can be stated as well. Additionally, the 
parameter distinct solutions can be activated (to save space) or not (to save time). 

4.2.2. Specific Features 
If we select the ES or GA a pool is created where we may choose whether we 
want to take a fixed pool size (of 20 for instance), or whether we favour the us­
age of a button to indicate some functional dependence (of the pool size) related 
to n, the number of objects. To avoid redundancies the pool creation is organized 
as follows: The first third of the genes of each chromosome is chosen systemat­
ically, the last two thirds randomly. This really cannot prevent that there are two 
identical chromosomes in the pool but in most cases it will do so. One parameter 
is the relation of mutation/crossover. This is specified by a probability whether 
during the run of the GA (or ES) the mutation or the crossover operator is used 
(to change the layout relations in one single chromosome or in a pair of chromo­
somes, respectively). 

In our ES we mainly work with the same parameters as the GA does. Further­
more, at the moment we make no use of self-adaptation; however, it is planned to 
introduce it in the future. The important difference to the GA is the fact that in our 
present realization of the ES we support the comma strategy. Thereby, every time 
the new generation of children is preferred to the parents. 

The SA only runs with one single chromosome; so, the pool quality indicates 
the probability of adopting the one chromosome or initiating a new one. (We also 



EVOLUTIONARY LAYOUT DESIGN 669 

modified the SA to run with a pool and introduced the possibility of a crossover. 
However, tests showed that this is not advantageous; the results got even worse.) 

4.3. ILLUSTRATION 

4.3.1. Rectangles 
Let us illustrate the approach by a small example. The target rectangle has the di­
mension 10 x 10, and the four rectangles to be placed into the target frame have 
the following measures of width (w) and height (h): 

WI := 8, hI := 3; W2 := 5, h2 := 5; W3 := 3, h3 := 4; W4 := 2, h4 := 6. 

Figure 1 shows the starting situation. 

8 
10 

.----------,1 3 I IL-_O_bj_. _1 _----' 

10 target object 5 

Figure 1. Initial situation of a placement of rectangles. 

2 
f----l 

Here, we deal with four objects; so, we have six genes (layout relations) in 
each chromosome. Restricting this small example to rectangles there are only four 
possible relations for each of the six pairs of rectangles related to each other (is 
above, is below, is right of, and is left of) to avoid that they overlap. We now look 
at an arbitrarily chosen chromosome shown in Figure 2a. 

The algorithm starts its work from the top of the string and first reaches the 
relation "object I is above object 2". (In our implementation this information will 
be projected to intervals of co-ordinates as presented elsewhere.) This relation and 
also the next one "object I is above object 3" can get fulfilled. 

However, trying to obey the following relation "object 2 is above object 3" is 
leading to an inconsistency because the sum of the heights of the first three ob­
jects (3 + 4 + 5 = 12) is bigger than the target height (10). The fitness function of 
the EC will now provide this chromosome with a fitness of 2 because the first two 



670 

chromosome 

WALTER HOWER ET AL. 

chromosome 

9I!e: Jl!li!1t-'1'!u!a~i~n _ 
(randomly) 

,....,-----'-....,., 9I!e:p!>i!1I)1'!U!a~i~n _ 
(concrete gene) 

a) b) 

. on~-I?ojn~ l!I~t~ti?~ _______ ; 
, (concrete gene) 

obj. I 

d) 

chromosome 

c) 

e) 

Figure 2. Snapshot of potential EC operations and a solution layout. 

obj. 

4 

relations of it could be passed consistently. (Here, the order of the binary combin­
ations of the objects in consideration affects the fitness value. However, due to the 
fact that the numbering of the objects is in some sense arbitrary, and furthermore, 
the layout relations get chosen in a random way, there is actually no real effect on 
the approach.) Now a child of this chromosome (a new generation) will be created 
(see Figure 2b). Here, let the EC operator be the mutation and let it work on one 
concrete gene. Then in the child chromosome the third relation "object 2 is above 
object 3" is changed to another possible binary relation because the evaluation 
of the parent chromosome has stopped there (as mentioned above in the passage 
w.r.t. quality of mutation/crossover). The new chromosome gets a fitness of 5 as 



EVOLUTIONARY LAYOUT DESIGN 671 

its evaluation passes the first five relations without complications. This time the 
sixth relation causes an inconsistency because the relations "object 1 is above ob­
ject 3", "object 1 is above object 4", and "object 3 is above object 4" are leading 
to a height of 13 (3 + 4 + 6 = 13) which exceeds the height of the target frame 
(10). Anyway, the parent is replaced by the child chromosome (in the GA and 
SA because of the better fitness and in the ES in any case because of the comma 
strategy in our present implementation), and the child becomes the new parent. To 
show the individual working method of the three strategies the next generation is 
created with a mutation at a random position in the new parent chromosome (see 
Figure 2c). The second relation is changed from "object 1 is above object 3" to 
"object 1 is below object 3" which causes an inconsistency for a similar reason 
as for the first chromosome. (It is not possible to put the first three objects on top 
of each other.) This leads to a fitness of 1 for the new child chromosome. This 
value is worse than the fitness of the parent. Now we take a separate look at the 
treatment of this situation by each of the three different EC techniques. 

The GA always chooses the best fitness, i.e. in the example it keeps the parent 
chromosome for further processing. However, for the SA we have the following 

cost(pare n t) - cost( child) 
probability P := e T • (In contrast to the original SA we work 
with a maximization of fitness instead of minimization. Thus, in this term the po­
sitions of cost(child) and cost(parent) are exchanged.) The comparison of P with 
the random number R decides whether the parent or the child will survive. Due to 
the comma strategy in our realization the ES always proceeds with the child chro­
mosome no matter whether it is better or not. In the example here we go on as the 
GA would do and create a new generation based on the last parent chromosome 
(see Figure 2b). As in the first case let the EC operator be the mutation and let it 
work on one concrete gene; here the relation will be "object 3 is above object 4". 
In the new child chromosome this gene is mutated to "object 3 is left of object 
4" (see Figure 2d) which leads to a fitness of 6; thereby, one solution class of the 
problem is obtained.9 Figure 2e shows the corresponding final layout class. 

Experimental Results. 
Here we compare TopEc with our previous implementation TopCsp. Let us take 
the example prepared in Figure 3. 

TopCsp, which computes all layouts, works with intervals and relations between 
objects. In our example it computes 2,888 classes of globally consistent solutions 
for placing the objects. lO 

9We work on topological relations; hence, the solution consists of intervals of co-ordinates for 
each object. 

10 At first glance this number perhaps sounds very large because of the small target object with a 
dimension of 8 x 8 that leads to maximal 64 pairs of co-ordinates of the corresponding reference 
points to place one of the six objects (when considering just integer values). However, please re­
member, when we enlarge the edges of the target and placing objects with a factor of 1,000 (for 



672 WALTER HOWER ET AL. 

8 5 4 I 
1-1 

8 target object 
418 ,18 '1~ 

3 2 obj.4 
I------l f------I 3 

2I 1 Obj.31 2I ~ 
I------l 

II ~ 

Figure 3. Rectangle set for the comparison of TopCsp and TopEc. 

For our comparison we run the several EC methods with varying parameters 
on the example. The parameter quality of mutation/crossover is fixed for all runs 
by the relation 80%/20% which means that in 80% of the cases there is a defin­
ite place of change, and in 20% of the cases the place of change is chosen ran­
domly; furthermore, also the changes per generation may be predefined by "up 
to 20%". Table 1 shows the results of our test runs. It has to be read as follows: 
For instance, row 1 means that, in order to get 10% of all solutions, a GA with the 
indicated parameters takes 4% of the time TopCsp has used to derive all solu­
tions. One important point that does not appear in the table is the computation of 
the first solution. In every tested configuration the first solution was computed so 
quicldy that it was not possible to determine the run time-a welcome aspect of 
the current implementation. 

Explanation of the header of Tables 1 and 2: 

example: numbering of the example 
EC: choice of the specific evolutionary computing technique 

mulcr: relation of mutation/crossover 
pq: pool quality 
ps: pool size 

ng: number of generations 
10%,20%,30%: 10%,20%, or 30% (resp.) of all (TopCsp) solutions 

(which are caught by the corresponding EC technique in the time fragment indicated in 
the numbered row related to the TopCsp time). 

Now, let us go into the details of Table 1. The first point to mention is that it 
seems as if the crossover operator is of no real use to the layout problem. When 

instance) there are 64 million pairs of co-ordinates but TopCsp still needs the same space and time 
to compute still 2,888 solution classes really covering all layout possibilities. 



EVOLUTIONARY LAYOUT DESIGN 673 

II example I EC I mu/cr I pq I ps I ng I 10% I 20% I 30% II 

I GA I 50/50 I 75% I 20 I 20 I 4% 1 17% I 84% 

2 I GA 1 9515 1 75% 1 20 1 20 1 2% 1 10% 1 52% 

3 1 GA 1 9515 1 35% 1 20 1 20 1 2% 1 9% 1 41% 

4 1 SA 1 100/0 1 75% 1 1 20 1 3% 1 9% 1 40% 

5 1 SA 1 100/0 1 35% 1 1 20 1 4% 1 11% 1 49% 

6 1 SA 1 100/0 1 75% 1 1 40 1 3% 1 8% 1 34% 

7 1 ES 1 50/50 1 75% 1 20 1 20 1 4% 1 19% 1 102% 

8 1 ES 1 9515 1 75% 1 20 1 20 1 3% 1 13% 1 62% 

TABLE 1. EC runs on rectangles based on topological relations. 

we look at the rows 1 and 2 where only the parameter relation of mutation/crossover 
is changed it becomes obvious that using the crossover is a waste of time. The 
same can be observed in rows 7 and 8. To get a further feeling of the various 
parameters let us have a look upon row 3 where in the GA the parameter pool 
quality is reduced to 35% leading to better results (compared to row 2). (Please 
remember that a pool quality of 75% indicates that three-quarters of the chromo­
somes of the previous run will be adopted into the pool of the next run. Therefore, 
during the course of the runs several chromosomes may exist in a multiplicity of 
generations, compared to one single run.)l1 So when in row 3 the reduction of the 
pool quality leads to better results then we may derive that the chromosomes take 
no advantage of more than 20 generations. By way of contrast, in the SA shown 
in the rows 4, 5, and 6, the reduction of the pool quality (transition from row 4 to 
row 5) yields worse results. Thus, in row 6 we again take the parameters of row 
4 with the exception of the number of the generations; now, we allow 40 (instead 
of 20) generations per run which leads to even better results. The reason for this 
behaviour could be the fact that the SA can escape from local optima on its way to 
find further solutions. Thereby the SA is able to compute more different solutions 
in the course of time and outperforms the GA in this respect. As mentioned above 
we still do not use the power of self-adaptation of the ES which probably causes 
the corresponding results to be the worst of the three techniques. (For instance, in 
the example row 7 the ES takes longer to get only 30% of all solutions than the 
constraint solver needs to compute all the layout possibilities in its entirety.) 

llBy a pool quality of 100% every chromosome would be adopted into a new run being equival­
ent to an enlargement of the number of generations during one run. 



674 WALTER HOWER ET AL. 

On the average we observe the following results: In 3% of the time which 
is needed by the exhaustive constraint solver TopCsp to catch all solutions we 
already get 10% of the solutions via TopEc; in 12% of the time we obtain 20% 
of the solutions. However, to reach 30% of the solutions we need 58% of the time 
required by constraint satisfaction. 

We therefore may conclude that the evolutionary techniques presented here 
represent a promising framework for the task to catch one solution or a few of nu­
merous solutions quickly. However, when we are really interested in the complete 
computation of the entire solution space of all layout possibilities the (incom­
plete) heuristics put up a bad performance; as we know, these techniques cannot 
guarantee to catch the various layout solutions at all. 

Remarks. 
Our experiments show that the choice of the appropriate approach to the packing 
and layout configuration problem of placing the objects actually depends on the 
demand on the degree of the completeness of the solution space. A further aspect 
which should be taken into consideration is the specific use of such an automatic 
layout system: In the case of an inconsistency the complete constraint solver may 
detect the non-possibility of a layout very early whereas the incomplete heurist­
ics do not provide the user with the information that there is no layout possibility 
at all. (For instance, when we enlarge the problem introduced in Figure 3 by a 
working rectangle with the dimension 4 x 3 TopCsp quickly reports the incon­
sistency whereas TopEc still test numerous layouts-without giving the definite 
answer that it is not possible to get just a single layout.) Thus, a parallel architec­
ture would be conceivable where a complete approach (in regard to the inconsist­
ency detection) is used as well as an incomplete one in order to get the answer 
whether (or not) we have an inconsistent problem as quickly as possible. 

4.3.2. Triangles 
Now it is time to mention that all the techniques also work on heterogeneous lay­
out problems comprising rectangles and triangles where two edges are parallel to 
the co-ordinate axes. Figure 4 presents a screenshot after an exemplary program 
run to show the actual status of the work. 

In order to compare TopEc to TopCsp in regard to a problem containing 
triangles let us consider the example problem prepared in Figure 5. 

Table 2 shows the result concerning the GA. Table 3 shows the result concern­
ing the SA. 
Explanation of the header of Table 3: 

example: numbering of the example 
Ee: choice of the specific evolutionary computing technique 
mUt: number of mutations per temperature 



EVOLUTIONARY LAYOUT DESIGN 

Figure 4. Screenshot of a heterogeneous layout. 

II example I EC I mu/cr I pq I ps I ng I 10% I 20% I 30% II 

II I GA I 50/50 I 75% I 20 I 20 I 14% I 30% I 87% II 
II 2 I GA I 9515 I 75% I 20 I 20 I 12% I 29% I 69% II 
II 3 I GA I 9515 I 35% I 20 I 20 I 9% I 29% I 61 % II 

TABLE 2. TopEc(GA) compared to ToPCsp on triangles. 

add/mul: additive or multiplicative temperature reduction parameter 

reducet: degree to reduce the temperature 

(additive: t := t + reducet, mUltiplicative: t := t * reducet) 
10%, 20%, 30%: 10%, 20%, or 30% (resp.) of all (TopCsp) solutions 

675 

(which are caught by the corresponding EC technique in the time fragment indicated in 

the numbered row related to the TopCsp time). 

Incidentally, we obtain even worse results than the ones presented in 4.3.1 



676 WALTER HOWER ET AL. 

4 5 

10 

7 8 

FigureS. Placement problem comprising rectangles and triangles. 

II example I EC I mUt I add/mul I reducet I 10% I 20% I 30% II 

II I SA I 30 add -0.01 I 10% I 27% I 58% 

II 2 I SA I 50 add -0.01 I 11% I 40% I 94% 

II 3 I SA I 30 add -0.03 I 12% I 38% I 139% 

II 4 I SA I 30 mul 0.99 I 10% I 19% I 55% 

II 5 I SA I 50 mul 0.99 I 11% I 24% I 77% 

II 6 I SA I 30 mul 0.97 I 11% I 32% I 82% 

TABLE 3. TopEc(SA) compared to ToPCsp on triangles. 

which you may consult for a further discussion. (For instance, in the example row 
3 of Table 3 SA takes longer to get only 30% of all solutions than the constraint 
solver needs to compute all the layout possibilities in its entirety.) 

Figure 6 shows the screenshot of a solution layout. 



EVOLUTIONARY LAYOUT DESIGN 677 

)( .: 0 
~ :: 0 

st.,., " 1 

Figure 6. Screenshot belonging to Figure 5. 

S. Final Remarks 
In our computer-aided layout design system the user is able to prefer placing cer­
tain objects in a desired area. This feature is obtained by the fact that after the 
algorithms' termination a globally consistent layout is guaranteed. Thereby, our 
system reflects a semi-automatic layout engine where for each object to be placed 
a subarea is offered to the user in which slbe still has degrees of freedom to finally 
arrange the objects. Such a realization also enhances the acceptance of the system 
by the user because entire solution classes, obtained by topological layout rela­
tions (instead of maintaining single co-ordinate points), are offered.12 We have 
seen that the use of an exhaustive layout solver is not necessary when only a few 
placements suffice, and it is out of the question when a large number of objects 
(along with the inherent combinatorial explosion of the various layout possibilit­
ies) have to be placed. Then, heuristics like evolutionary procedures as described 
here shall be preferred. To conclude, this paper shows the use of interesting tech­
niques of AI in Design with close connections to a class of combinatorial prob­
lems in operational research with a wide range of applications in business and 
industry. 

12Grigni et al. (1995) favours topological inference, too. 



678 WALTER HOWER ET AL. 

References 

Aarts, E. and Korst, J.: 1989, Simulated Annealing and Boltzmann Machines. Wiley-Interscience 
Series in Discrete Mathematics and Optimization. John WIley, Chichester, England. 

Abel, D. J., Ooi, B. C., Tan, X-L., Power, R. and Yu, J. X.: 1995, Spatial join strategies in distrib­
uted spatial DBMS, in M. J. Egenbofer and J. R. Herring (eds), Advances in Spatial Databases, 
Vol. 951, Lecture Notes in Computer Science, Proceedings, Springer-Verlag, BerlinlHeidel­
berg, pp. 348-367. 

Beasley, D., Bull, D. R. and Martin, R. R.: 1993, An overview of genetic algorithms: Part I, Fun­
damentals, University Computing, 15(2), 58--69. 

Beasley, D., Bull, D. R. and Martin, R. R.: 1993, An overview of genetic algorithms: Part 2, Re­
search Topics. University Computing, 15(4), 170-181. 

Bland, J. A. and Dawson, G. P.: 1991, Tabu search and design optimization, Computer-Aided 
Design,23(3),195-201. 

Bolz, D. and Wittur, K.: 1990, Die Umsetzung deklarativer Beschreibungen von Graphiken 
durch Simulated Annealing, in K. Kansy and P. Willkirchen (eds), Graphik und Kl, Vol. 
239 of Informatik-Fachberichte, pp. 6S-77. Proceedings, Springer-Verlag, GI-Fachgesprach, 
Konigswinter, 314. April. 

Bowen, J. and Dozier, G.: 1995, Solving constraint satisfaction problems using a genetic/systematic 
search hybrid that realizes when to quit, The 6th International Conference on Genetic AL­
gorithms (fCGA-95), University of Pittsburgh, Pennsylvania, USA, July 15-19. 

Bremermann, H. J.: 1962, Optimization through evolution and recombination, in M. C. Yovits, 
G. T. Jacobi and G. D. Goldstein (eds), Self-organizing systems 1962, Spartan Books, Wash­
ington, D.C., pp. 93-106. 

Cagan, J.: 1994, Shape annealing solution to the constrained geometric knapsack problem, 
Computer-Aided Design, 26(10),763-170. 

Chan, H., Mazumder, P. and Shahookar, K.: 1991, Macro-cell and module placement by genetic 
adaptive search with bitmap-represented chromosome, INTEGRATION, the VLSI journal, 12, 
49-17. 

Davis, L.: 1985, Applying adaptive algorithms to epistatic domains, in A. Joshi (ed.),IJCAI 85, 
Proceedings of the Ninth International Joint Conference on Artificial Intelligence, Vol. I, Dis­
tributed by Morgan Kaufmann Publishers, Inc., Los Altos, California, pp. 162-164. 

Davis, L. (ed.): 1987, Genetic Algorithms and Simulated Annealing, Research Notes in Artificial 
Intelligence, Pitman, LondonIMorgan Kaufmann, Los Altos, California. 

De Jong, K. and Spears, W.: 1993, On the state of evolutionary computation, in S. Forrest (ed.), 
ICGA-93, Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan 
Kaufmann, San Mateo, California, pp 618--623. 

Dockx, K. and Lutsko, J. F.: 1994, SAlGA: Survival of the fittest in Alaska. in P. Cheeseman and R. 
W. Oldford (eds), Selecting Modelsfrom Data: AI and Statistics lV, Springer-Verlag, pp. 463-
469. Fourth International Workshop on Artificial Intelligence and Statistics, Ft. Lauderdale, 
Florida, USA, 1993. 

Dowsland, K. A. and Dowsland, W. B.: 1992, Packing problems, European Journal of Operational 
Research, 56,2-14. 

Eglese, R. W.: 1990, Simulated annealing: A tool for operational research, European Journal of 
Operational Research, 46(3),271-281. 

Eiben, A. E., RaulS, P-E. and Ruttkay, Zs.: 1994, Heuristic genetic algorithms for constrained prob­
lems. Part II: Empirical Results, Rapportnr. IR-351 , Artificial Intelligence Group, Faculteit der 
Wiskunde en Informatica, Vrije Universiteit Amsterdam, The Netherlands. 

Falkenauer, E. and Delchambre, A.: 1992, A genetic algorithm for bin packing and line balancing, 
Proceedings of the 1992 IEEE International Conference on Robotics and Automation, Nice, 
France, pp. 1186-1192. 

Fogel, D. B.: 1995, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. 
IEEE Press, Piscataway, NJ. 

Forrest, S., 1993. Genetic algorithms: Principles of natural selection applied to computation, Sci­
ence, 261, 872-878. 



EVOLUTIONARY LAYOUT DESIGN 679 

Goldberg, D. E.: 1989, Genetic Algorithms in Search, Optimization, and Machine Learning, 
Addison-Wesley. 

Grigni, M., Papadias, D. and Papadimitriou, C.: 1995, Topological inference, in C. S. Mellish 
(ed.),lJCAI-95, Proceedings of the Fourteenth International Joint Conference on Artificial In­
telligence, Vol. I, distributed by Morgan Kaufmann, San Mateo, California, pp. 901-906. 

Hadjiconstantinou, E. and Christofides, N.: 1995, An exact algorithm for general, orthogonal, two­
dimensional knapsack problems, European Journal of Operational Research, 83( 1), 39-56. 

Hower, W. and Grar, W. H.: 1995, Research in constraint-based layout, visualization, CAD, and 
related topics: A bibliographical survey, International Workshop on Constraints for Graphics 
and Visualization (CGV '95), Cassis, France, September 18, DFKI Research Report RR-95-12, 
Deutsches Forschungszentrum fur Kiinstliche Intelligenz GmbH, Saarbriicken. 

Hower, W. and Jacobi, S.: 1994, A distributed realization for constraint satisfaction, in H. Kitano 
et al. (eds), Parallel Processing for Artificial Intelligence 2, Vol. 15, Machine Intelligence and 
Pattern Recognition series, Elsevier Science, Amsterdam, The Netherlands, pp. 107-116. 

Hower, W., Rosendahl, M. and Berling, R.: 1993, Constraint processing in human-computer inter­
action with an emphasis on intelligent CAD, in M. J. Smith and G. Salvendy (eds), Human­
Computer Interaction: Applications and Case Studies, Vol. 19A, Advances in Human Factors 
/ Ergonomics, Elsevier Science, Amsterdam, The Netherlands, pp. 243-248. Proceedings of 
the Fifth International Conference on Human-Computer Interaction (HCI International' 93, Or­
lando, Florida, USA), Volume 1. 

Hower, W., Haroud, D. and Ruttkay, Z. (eds): 1994, Constraint Processing in Computer-Aided 
Design (CoPiCAD-94), Workshop Notes, Third International Conference on Artificial Intelli­
gence in Design (AIO'94), Swiss Federal Institute of Technology, Lausanne, Switzerland, 15-
18 August 1994. 

Hower, W., Kostner, D. and Rosendahl, M.: 1995, Computer-aided layout by evolutionary comput­
ing, in Veltkamp, R. C. and Blake, E. H. (eds), Proceedings of the Fifth Eurographics workshop 
on Programming Paradigms in Graphics, EUROGRAPHICS '95, CWI, Amsterdam, The Neth­
erlands, pp. 251-269. 

Hower, W.: 1995, Constraint satisfaction - Algorithms and complexity analysis, Information 
Processing Letters, 55(3),171-178. 

Hower, W.: 1996, Bottom-up layout generation, Informatica, 20(1). 
Kado, K., Ross, P. and Corne, D.: 1995, A study of genetic algorithm hybrids for facility layout 

problems, The 6th International Conference on Genetic Algorithms (fCGA-95), University of 
Pittsburgh, Pennsylvania, July 15-19. 

IGi.mpke, T.: 1988, Simulated annealing: Use of a new tool in bin packing, Annals of Operations 
Research, 16, 327-332. 

Kido, T., Takagi, K. and Nakanishi, M.: 1994, Analysis and comparisons of genetic algorithm, sim­
ulated annealing, TABU search, and evolutionary combination algorithm, Informatica, Special 
Issue on Artificial Life, 18(4), 399-410. 

Kroger, B.: 1995, Guillotineable bin packing: A genetic approach, European Journal of Opera­
tional Research, Special Issue: Cutting and Packing, 84(3), 645-661. 

Leung, W., Sheung, J., Chan, H. W. and Chan, M.: 1994, An empirical study on search al­
gorithms that utilize randomness, PRlCAI'94, Proceedings of the Third Pacific Rim Interna­
tional Conference on Artificial Intelligence, International Academic Publishers, Beijing, PR 
China, pp. 64-69. 

L9Jkketangen, A.: 1995, Tabu search-Using the search experience to guide the search process. An 
introduction with examples, AI Communications, 8(2), 78-85. 

Liiders, P. and Ernst, R.: 1995, Das Automatisierte Bildschirmlayout - Ein Kombinatorisches 
Optimierungsproblem? Informatik Forschung und Entwicklung, 10(1), 1-13. 

Michalewicz, Z.: 1994, Genetic Algorithms + Data Structures = Evolution Programs, Artificial 
Intelligence, Springer-Verlag, BerlinlHeidelberg, second, extended edition. 

Minton, S., Johnston, M. D., Philips, A. B. and Laird, P.: 1994, Minimizing conflicts: A heuristic 
repair method for constraint satisfaction and scheduling problems, in E. C. Freuder and A. 
K. Mackworth (eds), Constraint-Based Reasoning, Special Issues of Artificial Intelligence, A 
Bradford Book, The MIT Press, Cambridge, Massachusetts, pp.161-205. 



680 WALTER HOWER ET AL. 

Nakakuki, Y. and Sadeh, N.: 1994, Increasing the efficiency of simulated annealing search by learn­
ing to recognize (un)promising runs, Proceedings AAAI-94, Twelfth National Conference on 
Artificial Intelligence, AAAI Press, Menlo Park, CA. 

Paredis, J.: 1993, Genetic state-space search for constrained optimization problems, in R. Ba­
jcsy (ed.),lJCAl-93, Proceedings of the Thirteenth International Joint Conference on Artificial 
Intelligence, ChambCry, Savoie, France, August 28 - September 3, 1993. IJCAll. Vol. 2, dis­
tributed by Morgan Kaufmann, San Mateo, California, pp 967-972. 

Rechenberg, I.: 1994, Evolutionsstrategie '94, volume 1 of Werkstatt Bionik und Evolutionstechnik, 
frommann-holzboog, Stuttgart. 

Reeves, C. R. (ed.): 1993, Modem Heuristic Techniques for Combinatorial Problems, Advanced 
topics in computer science, Blackwell Scientific, Oxford. 

Reeves, C. R.; 1995, Hybrid genetic algorithms for bin-packing and related problems, Annals of 
Operations Research, J.C. Baltzer A.G. Scientific Publishing Company. 

Rutenbar, R. A.: 1989, Simulated annealing algorithms: An overview, IEEE Circuits and Devices 
Magazine, pp. 19-26. 

Schwefel, H-P. and Rudolph, G.: 1995, Contemporary evolution strategies, in F. Moran, A. Morena, 
J. J. Merelo and Chac6n, P. (eds), Advances in Artificial Life, Vol. 929, Lecture Notes in Arti­
jicialIntelligence, Subseries of Lecture Notes in Computer Science, Proceedings of the Third 
European Conference on Artificial Life, Springer-Verlag, BerliniHeidelberg, pp. 893-907. 

Schwefel, H.-P.: 1995, Evolution and Optimum Seeking, Sixth-Generation Computer Technology 
Series, John Wiley, New York, NY. 

Smith, D.: 1985, Bin packing with adaptive search, in J. J. Grefenstette (ed.), Proceedings of 
an International Conference on Genetic Algorithms and their Applications, Lawrence Erlbaum 
Associates, Hillsdale, NJ, pp. 202-207. 

Souilah, A.: 1995, Simulated annealing for manufacturing systems layout design, European 
Journal of Operational Research, 82(3), 592--614. 

Stube, B.: 1993, Ein konstruktives Verfahren zur Plazierung allgemeiner Strukturen unter 
Beriicksichtigung von Constraints, in A. Iwainsky (ed.), Computergrajik und automatisierte 
Layoutsynthese, Wartburg, 11.-13. Oktoberr, GI 3. Workshop, pp. 71--81. 

Tarn, K. Y.: 1992, Genetic algorithms, function optimization, and facility layout design, European 
Journal of Operational Research, 63(2), 322-346. 

Thornton, A. c.: 1994, Genetic algorithms versus simulated annealing: satisfaction of large sets of 
algebraic mechanical design constraints, in J. S. Gero and F. Sudweeks (eds), Artificial Intelli­
gence in Design '94, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 381-398. 

Tsang, E. P. K. and Warwick, T.: 1990, Applying genetic algorithms to constraint satisfaction op­
timization problems, in L. C. Aiello (ed.), ECAl90, Proceedings of the 9th European Confer­
ence on Artificial Intelligence, Pitman Publishing, London, England, pp. 649--654. 

Zahn, M. and Hower, W.: 1996, Backtracking along with constraint processing and their time com­
plexities, Journal of Experimental and Theoretical Artificial Intelligence, 8( 1). 



J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 681-699. 
© 1996 Kluwer Academic Publishers. 

DOM-ARCADE: ASSISTANCE SERVICES FOR CONSTRUCTION, 
EVALUATION, AND ADAPTATION OF DESIGN LAYOUTS 

SHIRIN BAKHTARI AND BRIGITTE BARTSCH-SPORL 

BSR Consulting GmbH 
Wirtstrasse 38, 
D-81539 Munich, Germany 

AND 

WOLFGANG OERTEL 

Technical University of Dresden 
Department of Artificial Intelligence, 
D-OI062 Dresden, Germany 

Abstract. This paper summarizes some aspects of the process and the result of our re­
search and development activities! aimed at building an active assistance system for design­
ing the technical installation systems for highly complex buildings_ The emphasis in the 
development of DOM-ARCADE is set on the conceptual identification and computational 
realization of the considered domain ontology_ The key issue in modelling the domain 
ontology is to make a symbiosis of two kinds of knowledge: the deep domain knowledge 
and the decision making knowledge. The deep knowledge provides the ability of a se­
mantic interpretation of the syntactically specified design layouts. The design decision 
making knowledge is represented as a set of design specialists (critics) that are grouped 
under the ARCADE part of the system. 

The DOM-ARCADE makes extensive use of its deep design knowledge and supports 
designers by suggestions how to assess the quality and reliability of their designed lay­
outs, how to ensure the integrity of their proposed layouts within the current project of 
interest, how to overcome deficiencies in the layout, and how to construct a layout from 
scratch that fits the frame of reference. 

1 This research was supported by the Federal Ministry of Education, Science, Research and 
Technology (BMBF) within the joint project FABEL under contract no. OlIWI04. Project part­
ners in FABEL are GMD - German National Research Center for Information Technology, Sankt 
Augustin, BSR Consulting GmbH, Miinchen, Technical University of Dresden, H1WK Leipzig, 
University of Freiburg, and University of Karlsruhe. 



682 SHIRIN BAKHTARI ET AL. 

1. Introduction 

This paper summarizes some aspects of the process and the result of our research 
and development activities aimed at building an active assistance system for design­
ing the technical installation systems like e.g. air conditioning, sewage, etc. con­
sidering the designed shape for highly complex buildings, e.g. office buildings. 

The DOM -ARCADE system is designed to undertake the role of an active design 
assistant and makes extensive use of its deep design knowledge and decision mak­
ing knowledge in order to support designers by suggestions how to assess the 
quality and reliability of their designed layouts, how to ensure the integrity of 
their proposed layouts within the current project of interest, how to overcome de­
ficiencies in the layout, and how to construct a layout from scratch that fits the 
frame of reference. 

Our research and development program aimed at building an active design 
assistance system was two-pronged: As computer scientists we studied first the 
current design practice with the goal to spell out what are the specific charac­
teristics of the design domain and what functionalities should comprise a design 
assistance system in order to make a qualitative leap forward with regard to the 
actual design practice. Secondly, in response to the domain specific requirements 
we were considered with the development of a new integration concept that can 
meet the articulated requirements. 

An essential characteristic of most complex real-world applications, such as 
design, is that the activities are almost carried out in a multiple discipline collab­
orative framework using a common and shared knowledge platform. Within such 
a collaborative framework the domain knowledge shared among different design­
ers and engineers - having different foci of interest on the domain knowledge - is 
referred to as an ontology. There are notable research and development investiga­
tions in this field, such as the ARPA funded Knowledge Sharing and Reuse Effort 
at Stanford (Neches et al., 1991), the YMIR ontology modelling (Alberts et al., 
1994) that is proposed by the group at Twente University for design applications, 
and the ROOMMOVE system proposed in Branki et al. (1994). 

The emphasis in the development of DOM-ARCADE is set on the identification 
and computational representation of the domain ontology. It is notable that for our 
purpose, the key issue in modelling the design ontology is to make a symbiosis 
of two kinds of design knowledge: the deep design knowledge and the decision 
making knowledge. 

The representation of the deep design knowledge provides the ability of a se­
mantic interpretation of the syntactically specified design layouts. It enables to 
review a proposed layout and determine the meaning and permissible use of the 
involved design objects and their geometric-topological relations. The decision 
making knowledge, on the other side, is represented as a set of different design 
specialists that operate on the basis of the deep design knowledge. We group the 



DOM-ARCADE 683 

design specialists by function and their scope of application in different service 
units. These service units build an ARCADE along the edge of the DOM which is 
viewed as the heart of the system. The following design specialists comprise the 
support functionality of our system: 

- DOM-A assesses the quality and the reliability of the proposed layouts as 
well as their integrity within a certain project of i.nterest. 

- DOM-R rectifies the proposed layout in terms of shortcomings and errors 
of omission. In case there are shortcomings that can not get rectified, the 
design specialist may also remote and reuse similar layouts from a layout­
management-base that can cover them. 

- DOM-C supports the completion of a partially specified layout. It also assists 
problem solving from first principles. 

- DOM-AD effects adaptation. It provides suggestions how to make a not yet 
satisfactory layout suitable to meet the requirements of the target task. 

- DOM-E undertakes the role of an authority that monitors and evaluates the 
non-linear process of adaptation. 

The objectives of this paper are the following: In section 2 we discuss some signi­
ficant issues central to our approach to building active design assistance systems. 
Then we answer the following questions: How is the knowledge in DOM represen­
ted and how are the design specialists specified and realized. A scenario explains 
further how the DOM-ARCADEis used. The technical underpinnings are explained 
in section 6. We conclude by a summary of what is gained. 

2. Recounting the DOM-ARCADE Development Cascade 

The purpose of recounting the incremental development of a set of functionalities 
is to share the idea behind and the history of our stepwise refinement of the con­
ceptualization and of the cascade of system developments that resulted in DOM­
ARCADE2• 

In the beginning of the FABEL project (Fabel, 1993), we studied our applic­
ation domain which is designing the technical installation for highly complex 
buildings, e.g. office buildings. The first task that had been under our consid­
eration was to figure out what are the specific characteristics of the considered 
domain and what are the requirements in terms of needed, demanded, and de­
sired support services. The main interests of the architects and engineers were in 
support for tedious and error-prone tasks as well as for problems concerning the 
integrity of the rather insular designed layouts that have to be integrated into a 
workable final state of the design (Bakhtari et ai., 1994). A summary of the res­
ults of our knowledge engineering process together with suggestions how to meet 
these requirements is given in Bartsch-SpOrl et al. (1996). 

2The technical underpinnings are described in section 6. 



684 

ystem 
developer 

SHIRIN BAKHTARI ET AL. 

FAENSY 
generic knowl<:dgc-tw.:d r-­

..,;---1 development oy.tem 

knowledge 

engineer 

.. ~ 

DOM 
..,;_-----l domain-spccir,c 

develOpment system 

t---

. > 

Lisp 

UNIX 
--------------------------------- - ---- - -:------------------------------- ---------------------

designer 
(domain expert) 

DOM·A 

DOM 

..,;------l application.y tern 

Lisp 

UNIX I 

WINDOWS 

~ U'" 

...... :> spccir,calion 

...................... > in~lancialion 

'"j [r--DO-M-.A-re--'Y'--. 

[ DOM·ARCADE 

Figure 1. The DOM-ARCADE system development path. 

Subsequently, we turned to studying the scientific literature about design prin­
ciples and processes and applying AI methods for design tasks and more specific 
for building design. We investigated the topic of problem classes and adequate 
AI methods for design. The essential insight is that we have to deal mainly with 
both routine and innovative design tasks (Bakhtari et al., 1994) and to start with a 
rather new integration approach that bundles together a mixture of non-AI and AI­
methods with the main goal to offer design support functions that come in small 
units and can be used on a voluntary basis (Bartsch-Sp5rl, 1995). Such an ap­
proach has the advantage that it does not force the designers to follow a rigid flow 
of work. It also does not put pressure on the system developers to produce a func­
tionally complete system from the very beginning. Instead, it allows to start with 
e.g. a useful set of basic functions and to deliver sophisticated further functional­
ities at a later stage. 

The DOM - ARCADE application system - as shown in Figure 1 - is the result of 
a set of prototypes and system developments, starting with the generic knowledge­
based development system, FAENSY (Oertel, 1994) which has been implemented 
in Allegro Common Lisp and runs on UNIX workstations with a user interface 
based on Tcl!fk (Ousterhout, 1993). The specification of the deep design know­
ledge was the first step towards the domain ontology modelling, abbreviated to 
DOM (Bakhtari et al., 1995a). 

The DOM development system has especially been designed for development 



DOM-ARCADE 685 

issues in the course of ontological engineering. In favour of more efficient de­
velopment, we decided to carry on with our development framework that is to 
develop and test on UNIX workstations and run the application system under WIN­

Dows. The specification and realization of the design specialists followed in terms 
of quality assessment (A) (Bakhtari et ai., 1995b), rectification (R), construction 
(C) (Bakhtari et aI., 1995c), adaptation (AD), and the evaluation of the non-linear 
process of adaptation (E). 

designer IT 

Figure 2. The ooM-ARCADE in its CAD-Environment. 

The provided functionalities in the DOM-ARCADE are accessible in a CAD 

environment3. Our system is accessible through AUTOCAD4, through DANCER 

(Hovestadt, 1993) for specification of conceptual design layouts, and also through 
the FABEL case-base manager (Walther et aI., 1994) as shown in Figure 2. 

In fact, most of the current CAD systems provide a platform for compositions 
of syntax primitives of the design vocabulary, e.g. lines, points, etc. This is also 
valid for the design platform DANCER that we use in the FABEL project. 

Hence, the first step towards the realization of the DOM system is the formula­
tion of identification rules that enable the access to the semantics of the syntactic­
ally specified design objects and their topological arrangement in a proposed lay­
out. 

300M in the german language means cathedral. The translation is given to make the figure 
comprehensible. 

4 AUTOCAD is a trademark of AutoDesk. 



686 SHIRIN BAKHTARI ET AL. 

3. How is the Deep Design Knowledge Represented? 

The DOM system incorporates and maintains a rich core of deep design know­
ledge that enables the system to append semantic knowledge to the syntax primit­
ives, e.g. a line could be the visualization primitive for a supply-air duct, a sewage­
vertical-pipeline, etc. The represented deep knowledge in the DOM establishes 
the meaning and permissible use of the design objects and the topological rela­
tions between these objects (Bakhtari et aI., 1995a). The concerning knowledge 
includes a set of appropriate models for the involved subsystems as well as rules 
of interest, e.g. for admissible topological relations. 

The deep design knowledge is built up as a network over a set of generic se­
mantic structures that we call concepts. The relations between the concepts are 
identified by a set of identification rules and are specified as associations. The 
most important associations are specialization (taxonomy) and partialization (par­
tonomy). The knowledge how to classify design objects relies on taxonomic know­
ledge and uses identification and construction rules that classify the syntactic design 
entities into classes of concepts. 

Due to the subsystem for which the design concepts are used - e.g. supply­
air subsystem or heating subsystem - we have also formalized some subsystem 
characteristic features that are also integrated within the whole network. Since the 
concepts are allocated in a concept network, their subsystem characteristic fea­
tures are also determinable. The relations between entities are identified in terms 
of their corresponding topological relations, e.g. contact, overlap, etc. Further, the 
design objects which have to be viewed as a whole will get aggregated and made 
explicit as instances of the aggregate concepts. The knowledge about aggrega­
tions allows to compose higher order objects like e.g. a pipeline-system. 

The process of semantic interpretation enables to establish useful information 
about the meaning and permissible use of the involved concepts and topological 
arrangements in the proposed layout. As soon as a design layout has been spe­
cified - partially or completely - through a design platform and transferred to 
the DOM-ARCADE system, the process of semantic interpretation can be invoked. 
Each proposed design layout goes first through a qualification and aptitude test 
due to a syntax examination. The knowledge needed for the aptitude test com­
prises a set of design specific constraints - e.g. examination rules for acceptable 
values for the attributes, consistency checks, etc. - that are represented for all sub­
systems that may be involved in the proposed layout. Each design object is then 
represented in terms of its geometrical data, descriptive data, and visualization 
data. 

Figure 3 illustrates an example of a layout that has been drawn on a design 
platform and transferred to the DOM-ARCADE system. The proposed layout in­
cludes the design of four subsystems that can be identified in accordance with 
their specified visualization data. By agreement, the design objects for the sewage 



DOM-ARCADE 687 

Figure 3. Four views of a proposed layout including four subsystems on the interface of the 
OOM-ARCADE development system. 

subsystem are in dark-blue, the cold-water-supply subsystem in green, etc.5. 

The DOM provides a semantic view on the syntactically qualified design ob­
jects and identifies these as instances of generic semantic structures - concepts. 
All aggregate concepts are further built upon the meanwhile determined semantics. 
The syntactically specified relations between the concepts go through a test for 
their admissible design due to the specific subsystem for which they have been 
drawn. These relations get first identified in terms of their corresponding semantic 
topological relations e.g. connect, contact, overlap, etc. The question that has to 
be answered at this stage is whether the designed relations may get qualified through 
the semantic interpretation. Each designed topological relation, e.g. the connect­
ing duct for the in- and outlets of the sewage subsystem, has to be positioned in a 
certain manner within the predefined technical service shaft. The predefined space 
of the shaft is defined by boarders - in the ceilings and walls - that surround the 
actual room space - shown as a block in Figure 3. 

5Because of publishing reasons we reproduced the layout in black and white, thus, the distinc­
tion between the subsystems is unfortunately not really replicable. 



688 SHIRIN BAKHTARI ET AL. 

The detennination of the semantics, pennissible use of the design objects, and 
admissible topological relations between the objects due to each subsystem pro­
ceeds on the basis of an analysis function that is invoked through the interface of 
the DOM-ARCADE system. We make the semantic interpretation transparent for 
the user through a textual window upon the layout. 

4. The Design Specialists in the ARCADE 

The pursuit of the representation of the decision making knowledge in terms of 
a variety of design specialists is to develop tangible tools for architects and en­
gineers which enable the system to get adapted within the continuous process of 
synthetic and analytic activities of designing a building. Hence, the qualitative 
leap forward that can make a meaningful contribution to the current design prac­
tice is to make extensive use of the deep knowledge - as described in the previous 
section - and let design specialists review the layout in terms of design decision 
making knowledge to ensure the quality and reliability of each proposed layout 
at multiple stages of elaboration as well as their integrity in the final state of the 
design of the building (Bakhtari etal., 1995c). 

The representation of deep design knowledge enables the system to detennine 
the semantics and the pennissible use of design objects and their topological rela­
tions, while the design specialists incorporate the knowledge needed for problem 
solving. Each of the design specialists has its territory of specific knowledge and 
the corresponding problem solving ability. DOM-A for instance, reviews a lay­
out in order to assess the quality of it by applying a rule-based problem solving 
method. DOM-R on the other side, uses mainly case-based techniques (Kolodner, 
1993) to remote and reuse similar former layouts in order to cover the target re­
quirements. Each design layout may be reviewed by one or more of the design 
specialists that are introduced in the following sections. A scenario of the their 
deployment for a proposed layout is given in section 5. 

4.1. DOM-A 

DOM-A addresses a crucial task in building design assistance systems which is the 
quality assessment. The knowledge for the quality assessment specialist is form­
alized on the basis of two categories of functions: engineering judgements and 
specific design decisions. 

Engineering judgements comprise functionalities which are of quite general 
necessity and usefulness for architectural and engineering design. Design decisions 
are specific agreements while designing a new building. These agreements are 
subject of negotiations between the designers who are going to be involved in 
designing a new building at the beginning of the project. We call these project 
specific agreements maxims and group them within a frame of reference. 



DOM-ARCADE 689 

With the distinction of the mentioned two categories we reckon on the fol­
lowing merit. Since the frame of reference includes maxims and agreements for 
a particular project, the designer may want to switch between different frames of 
reference for different purposes. Thus the part concerning the frame of reference 
is being held interchangeable. 

The criterion of success in quality assessment is that of being conform refer­
ring to the engineering judgements and to the design decisions. Beside some valid 
standards for the design of buildings, one of the engineering judgement rules is 
the coherence assessment. 

- Coherence assessment examines all involved geometrical and topological ar­
rangements in a proposed layout for their coherent connections. In general, 
the examination can be viewed as a check for a closed loop or chain of well 
arranged duct-systems that connect all well situated in- and outlets together 
in order to satisfy a subsystem specific functionality. 

The frame of reference in the current implementation of our system includes 
design agreements, principles, and rationals that are documented as the ARMILLA 

methodology (Haller, 1985). ARMILLA is a rational methodology for spatial or­
dering and organization for designing the technical installation systems for highly 
complex buildings. Our concerning frame of reference includes e.g. the following 
functionalities: 

- Spatial ordering and organization maxims that check the position of the in­
volved concepts and their topological relations for their conformance relative 
to the frame of reference. 

- Coordination maxims that review a layout including more than one subsys­
tem for allowed and not allowed collisions. The coordination maxims give 
regulations and priorities for the spatial organization of different subsystems 
within the layer structure of the technical service space. 

- Configuration maxims for the spatial ordering of in- and outlets. 

4.2. DOM-R 

The DOM-R specialist operates as a tolerant and cooperative critic. The problem 
solving of this specialist is two-fold: Rectification and remote and reuse of similar 
layouts that have turned out to be successfully used for problem solving in similar 
cases. 

For manners of rectification, it incorporates knowledge about syntactically 
well-formed layouts. It has problem solving knowledge about 

- how to rectify the shortcomings and errors of omissions, 
- how to adjust the geometrical dimensions in order to get the design objects 

well situated, and 



690 SHIRIN BAKHTARI ET AL. 

- how to use the scope of validity in order to get some necessary modifications 
on the proposed layout done. 

Actually, the rectification was - in our primary program - planned as a first 
step towards the development of an adaptation specialist. As the amount of know­
ledge grew rapidly while specifying the knowledge needed and its functionality 
got more and more useful and also necessary for general purposes, we decided to 
group the functionality and put it with the knowledge about how to remote former 
cases together. 

In case the rectification process can not cover an identified shortcoming or 
a mistake DOM-R applies a case-based technique (Aamodt et al., 1994) and re­
trieves a similar layout that can cover the requirements. Case-based methods can 
offer comprehensive support in knowledge-intensive and structurally complex do­
mains. Whenever a decision has to be made, we try to access the cases which 
we have tackled successfully and reuse them in order to get the current case of 
interest appropriately solved. If the process of retrieval fails then we ask the de­
signer to solve the raised problem. 

With the help of the retrieval functionality, it is possible to find cases that are 
related syntactically or semantically to the layout actually handled on the design 
board. 

4.3. OOM-C 

Over the period of our ontological engineering, we found out that the knowledge 
for quality assessment has much in common with the knowledge for the construc­
tion of new layouts from scratch. 

The layout construction functionalities are applicable for generating a solu­
tion from scratch as well as for the completion of a partially specified case. The 
design of subsystems from scratch proceeds on the basis of the deep design know­
ledge, the knowledge that is specified for the applicability of engineering rules, 
and the knowledge included in the concerning frame of reference. The construc­
tion specialist can be asked for assistance in several steps and at multiple stages 
of elaboration. It may serve as inspiration or as a coach for the designer while 
designing a specific layout for a certain subsystem by indicating alternatives. This 
specialist serves as an assistant during the following design stages: 

- the completion of a partially specified case, 
- the indication of possible alternatives, and 
- assistance for case construction from scratch. 

4.4. DOM-AD 

Whereas DOM-R is used for small and mostly local rectification steps, the more 
complicated adaptation problems (Blumenthal et aI., 1994) are tackled by DOM-



DOM-ARCADE 691 

AD. We say "tackled" and not "solved" because DOM-AD operates in an open 
world domain where we can neither guarantee that the target problem is solvable 
nor that our domain knowledge and problem solving capabilities are sufficient to 
solve the adaptation problem at hand. Though in practice, the specialist has shown 
that in very many cases it came up with solutions that are acceptable both for the 
system's background knowledge and for our users as well. 

When we speak of adaptation then we mean a modification in the layout of 
current interest that is in conflict with at least one part of the deep design know­
ledge, or with the decision making knowledge, or with the articulated require­
ments of the target problem. We say that DOM-AD was successful if a sequence 
of modification actions has led to a new constellation in the considered layout 
with the following characteristics: 

- all involved design objects are identified as instances of the generic semantic 
structures (concepts) and their usage is permissible - in regard to the repres­
ented deep design knowledge, 

- all relations between the objects have a corresponding topological relation 
within the knowledge network of the system - in regard to the represented 
deep design knowledge, 

- the designed subsystems fulfil their functionality - concerning the design 
specialist, and 

- the designed layout fits the frame of reference. 

When we look at our approach to adaptation from a more problem solving 
methodological point of view then it can be characterized as an ontology-driven 
process. Compared to other approaches that proceed in the context of case-based 
adaptation (Voss et ai., 1996) we tackle a complex open world problem by a re­
markably well-structured knowledge-based approach. In particular, we rather re­
use ontological knowledge which is the rational behind the designed layouts and 
do not use former layouts (cases) to carry out the adaptation. 

4.5. DOM-E 

The knowledge of the specialist that monitors th~ non-linear process of adaptation 
- DOM-E - relies in general on the evaluation knowledge. During each iteration 
of the adaptation process a goal is identified as one of the following alternatives: 

- a result of the quality assessment process which has turned out to be non­
conform with the rationals of the underlying ontology, or, 

- a user requirement for modifying some involved concepts or their topolo­
gical arrangements. 

In case the adaptation actions at the first level were successful, we examine 
the obtained solution according to the frame of reference and assess the quality of 
the obtained result. If new discrepancies occur, then we first classify and specify 



692 SHIRIN BAKHTARI ET AL. 

the new discrepancies and view at the new list of discrepancies as our new list of 
goals. 

If the evaluation monitoring specialist identifies that there is at least one dis­
crepancy that is non-resolvable it stops the process. A discrepancy is viewed as 
non-resolvable if it can not get embedded within the whole knowledge network in 
the DOM. 

5. A Scenario 

The central issue of this section is to give a general idea of how the DOM-ARCADE 

is used and how the design specialists operate on a proposed layout. As we have 
outlined previously, the DOM-ARCADE is accessible as soon as a layout has been 
specified - partially or completely - through a design platform and transferred 
to our system. An example of a proposed layout is shown in Figure 4 with the 
following criteria6: 

iI 
iI 
i! 
ii 
!! 
II 
!! 
ii 
ii 

.. ....-- . -·~----:1 

!I 
II 
;; 

a a ii 
/I 
;; 
ij 

I 
'I 
H 

o 

Figure 4. A proposed layout. 

6 As mentioned before, because of publishing reasons we had to reproduce all layouts in black 
and white, thus, the distinction between the subsystems is really hard. 



DOM-ARCADE 693 

- The layout includes the design of four subsystems: The return-air subsystem 
(in blue), the sewage subsystem (in dark-blue), the cold-water-supply sub­
system (in green), and the warm-water-supply subsystem (in brown). 

- The layout has been designed for a certain project of interest which is called 
the murten-project 7. 

- The frame of reference is specified as the one which includes the ARMILLA 

methodology of designing the technical installation systems. 
- The call for assistance is articulated as follows: Assess the quality and reli­

ability of each subsystem and the integrity of all involved subsystems within 
the design of the murten-project, modify and complete the layout if neces­
sary. 

In the first stage, all syntactic design objects and relations between the objects 
involved in the proposed case will be specified in terms of a system internal rep­
resentation due to each subsystem. The DOM constitutes a semantic view on the 
syntactically qualified design objects and identifies these as instances of generic 
semantic structures - concepts - e.g. as an outlet, a main-connecting-duct, etc. 
The concepts are - as mentioned above - allocated in a concept network where 
their subsystem characteristic features get determined. The relations between en­
tities get identified in terms of their corresponding topological relations e.g. con­
tact, overlap, etc. Further, the design entities which have to be viewed as a whole 
will get aggregated and made explicit as instances of the aggregate concepts. 

The rectification specialist DOM-R gets active and operates in terms of a syn­
tax qualification and aptitude examination. The quality assessment specialist DOM­

A gets invoked and reviews the layout on the basis of its semantic interpretation. 
The DOM-A applies first the engineering judgement rules. Its result is the follow­
ing: 

- There is no vertical-main-duct (that goes through all stories of the building 
and lets water run through) for the sewage subsystem designed, which means 
that the designed sewage-inlets are not connected. This leads to a water-jam 
at that story and violates the engineering rules. Since this is an essential and 
decisive mistake, it has to get mended before the examination can proceed. 

Now the cue is given to the DOM-C specialist. This specialist is told to gener­
ate a vertical-main-duct for the sewage subsystem as well as to generate the ducts 
missing that are needed for the connection of the designed sewage-inlets to the 
vertical-main-duct. Since each duct has to be designed and placed in accordance 
with regard to the frame of reference, the first step is to take the considered organ­
ization and configuration principles into account. 

Figure 5 shows the generated organization, e.g. logical partitions and layer 
structures as well as the configuration concepts, e.g. in- and outlet positions for 

7 Murten is the name of the city in Switzerland where this building is built. 



694 SHIRIN BAKHTARI ET AL. 

Ii 

II 
.1 
;1 
!I 
" 11 

Figure 5. The proposed layout with the generated relevant organization and configuration prin­
ciples. 

the proposed layout. In accordance with the frame of reference, the completion 
rules get active and generate the ducts missing. The result is shown in Figure 6. 

The assessment specialist DOM-A reviews the new constellation. As the gen­
erated sewage system passes the examination, the DOM-A continues its process 
and applies all the rules for the integrity test which considers first the workabil­
ity of the designed subsystems regarding to the collision maxims, specific design 
rules, and algorithms that e.g. deal with priorities and arrangement maxims. The 
result is formulated as the following: 

- The in- and outlet connecting ducts for the subsystems cold-water-supply 
(green) and warm-water-supply (brown) are designed too close to each other. 
Their positions violate the minimum distance between these two subsystems. 
The layout design has to ensure that one really gets cold-water if it is wanted. 
So, adapt the position of the two mentioned ducts to the laying structures and 
constraints that are specified in the frame of reference. 

Now, the adaptation specialist DOM-AD is told to carry on with the process. 
The specialist recalls all the organization and configuration concepts that have 
been generated for the construction and completion specialist. Further, some of 



DOM-ARCADE 695 

IF 

il 
1-d I. 

~ 

-O·----··----~---h II 
Ii 
[j 

H 

!! 
!I 

Figure 6. The layout after construction of the missing sewage ducts. 

the relevant adaptation rules and algorithms are invoked. The question of which 
adaptation rules are to be viewed as relevant and which algorithm is to be applied 
and whether the adaptation process may proceed or is to be stopped is answered 
by DOM-E. In the case of our example the adaptation is successfully done in one 
step. Figure 7 shows the result of the whole process that is: 

--- A coherent layout after the application of the quality assessment functions, 
construction assistance and its adaptation in order to fit the frame of refer­
ence and which can be successfully integrated within the whole design of 
the morten-project. 

6. Technical Underpinning 

One major characteristic of the architectural and engineering design is that the 
requisite knowledge is accumulated experimentally. The important implication 
is that we have to deal with incomplete knowledge and to take precautions for 
a stepwise extension as well as for a goal-oriented modification of the know­
ledge without incurring the full cost of re-representation and re-organization of 
the whole system. 



696 SHIRIN BAKHTARI ET AL. 

I I, 
I _L Ii 

;:=.r 

·D-~~.I. 
II 

Figure 7. The result: A coherent layout after the application of the quality assessment functions, 
construction assistance and its adaptation to fit the frame of reference. 

Therefore, each step of knowledge extension has to proceed in a guided way 
and the scope of completion or modification of some knowledge chunks should be 
kept local. Thus, to put it concisely, the DOM-ARCADE has a throughout object­
oriented realization which allows software developers to create units of generic 
functionality and shareable units of information within a collaborative framework 
for that particular domain. Following the object-oriented knowledge modelling, 
the deep design knowledge is represented as a hierarchy of knowledge elements. 
Knowledge elements can be concepts, schemes, cases, specializations, or partial­
izations. 

(defclass knowledge 0 
«concepts) (schemes) (cases) (specials) (partials))) 

The extension of the scope of knowledge is easily done through addition of 
single knowledge elements within this framework. Concepts are the generic know­
ledge elements. They can be regarded as classes of layout objects. But, the scope 
of knowledge in the DOM system includes also cases - layouts that can be re­
mote and reused - and schemes. Schemes are a set of design patterns for cer­
tain subsystems, e.g. patterns for an orthogonal and well-ordered supply-air sys-



DOM-ARCADE 697 

tern design. The current implementation of our system includes patterns that are 
defined within the ARMILLA frame of reference. 

The knowledge model is represented as a network with various kinds of asso­
ciations, e.g. specialization, partialization. The specialization part represents the 
current state of the involved knowledge elements in terms of a taxonomy, the part­
of-relation between the elements is represented by the partialization. Concepts, 
for instance, include the following features: 

(defstruct (concept (:type list» 

name crspace crtime analyse synthesize adapt) 

Each concept name has a corresponding classification term in the real world, 
e.g. trunk, duct, in- or outlets, etc. The creation-space (crspace) and the creation­
time (crtime) determine where and when the concept was defined. Corresponding 
to the methods of a class, the procedural knowledge - the problem solving know­
ledge of each design specialist - is represented in the parts analyse, synthesize, 
and adapt. 

Since a proposed layout includes arrangements of physical and abstract do­
main objects, the main issue is to determine and establish links between the ob­
jects that comprise a proposed layout and the specified classes in the formal rep­
resentation. In other words, the objects that are involved in the proposed lay­
out are subjects of classification due to a set of identification and/or construction 
rules. The specific arrangement of the objects is also kept in terms of aggregate re­
lations and topological relations. Examples for topological relations are e.g. con­
tact, overlap, etc. 

(defclass data 0 
«objects) (conceptnames) (aggregates) (contact) ... (includes))) 

The organization and interaction between the system components is also or­
ganized in the object-oriented paradigm. The main system classes are: Transfer, 
Data, Knowledge, and Behavior, where each of which includes static components 
(slots) and dynamic components (methods). A class specification together with 
its set of instances build a so-called base. So we get a transfer base, a data base, 
a knowledge base, and a behavior base. Each of these classes is specified by a set 
of slots and a set of methods. The slots are containers for sets, for instance sets of 
files, building objects, connections, concepts, or assistance operations. The meth­
ods are defined to operate on the whole instances or on single objects of the sets 
that are stored in the slots of instances. Examples for this kind of methods are 
create, delete, get, eval, draw, load, save, open, close. 

We reckon with the merit that it is possible to work simultaneously with a set 
of transfer bases, data bases, knowledge bases, and behavior bases and to connect 
them with each other in several not pre-determined ways. Our goal is to make an 
isomorphic mapping between the structure of the system kernel and the structure 
of the user interface. Having achieved this goal it guarantees a clear, transparent 



698 SHIRIN BAKHTARI ET AL. 

organization of the whole system and allows the user to influence internal pro­
cesses consciously and goal-driven. 

As mentioned previously, the DOM-ARCADE development system is imple­
mented in Allegro Common Lisp and runs on UNIX workstations with a user inter­
face based on Tcl!fk: (Ousterhout, 1993) using the generic knowledge-based de­
velopment tool FAENSY. The DOM development system is especially designed for 
development issues in the course of ontological engineering. The DOM-ARCADE 

application runs also under WINDOWS. 

7. What is gained? 

Since we followed an application-driven research and development approach, a 
significant feature of the DOM -ARCADE systems is that it does not require a change 
of the designers working practice. It undertakes the role of a competent and co­
operative design assistant and is adapted within the continuous loops of construc­
tion, evaluation, and adaptation issues of designing an artefact. 

Our research and development program is accentuated by the domain onto­
logy modelling. We make extensive use of the ontology for the realization of a 
variety of building design support functionalities. We followed the goal to develop 
support functions that come ih small units and can therefore be used as tangible 
tools by architects and engineers on a voluntary basis. The support functions are 
offered to the designers as design specialists that assist whenever they are asked, 
thus, they do not intrude into a design process, and may be launched either stand­
alone or in combination with other specialists. 

The functionality of the system can be extended easily to either more design 
specialists or to a variety of further project specific agreements that will be spe­
cified as different frames of reference and the user may let the layouts get re­
viewed due to different frames of reference. 

One example for the limitations of the system deployment is the following: 
With our adaptation approach we cannot overcome the risk of seeing from time 
to time an adaptation attempt fail. This situation could be improved to a certain 
extent by a new adaptation-oriented retrieval approach (Smyth et aI., 1995) deliv­
ering as its result either nothing or a solution that will be adaptable without risk. 
But even then we will never be able to guarantee a success rate of 100 percent 
because of the open world domain we live and operate in. 

References 

Aamodt, A. and Plaza, E.: 1994, Case-based reasoning: Foundational issues. Methodological vari­
ations, and system approaches, AI Communication, 7(1), 39-59. 

Alberts, L. K. and Dikker, F.: 1994, Integrating standards and synthesis knowledge using the YMIR 
ontology, in 1. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '94, Kluwer, 
Dordrecht, pp. 517-534. 



DOM-ARCADE 699 

Bakhtari, S. and Bartsch-SpOrl, B.: 1994, Bridging the gap between AI technology and design re­
quirements, in J. S. Gero and E Sudweeks (eds), Artificial Intelligence in Design '94, Kluwer, 
Dordrecht, pp. 753-768. 

Bakhtari, S., Bartsch-SpOrl, B., Oertel, W. and Eltz, U.: 1995a, DOM: Domain Ontology Modelling 
for Architectural and Engineering Design, Fabel-Report (33), GMD, Sankt Augustin. 

Bakhtari, S. and Oertel, W.: 1995b, OOM-ArC: An active decision support system for quality 
assessment of cases, in A Aamodt and M. Veloso (eds), ICCBR-95 Case-Based Reasoning. 
Research and Developments, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 
pp.381-39O. 

Bakhtari, S. and Oertel, W.: 1995c, OOM: An active assistance system for architectural and engin­
eering design, Proceedings of the 6th International Conference on Computer-Aided Architec­
tural Design, CAAD Futures-95. 

Bartsch-SpOrl, B.: 1995, Towards the integration of case-based, schema-based and model-based 
reasoning for supporting complex design tasks, in A Aamodt and M. Veloso (eds), ICCBR-
95 Case-Based Reasoning. Research and Developments, Lecture Notes in Computer Science, 
Springer-Verlag, Berlin, pp. 145-156. 

Bartsch-SpOrl, B. and Bakhtari, S.: 1996, A support system for building design-Experiences and 
convictions from the FABEL Project, in J. Sharpe (ed.), AI System Support for Conceptual 
Design, Springer-Verlag, London, pp. 279-297. 

Branki, C., Douglas, J., Bailey, D.: 1994, Agent communications server for shared ontologies in 
planning and design, Workshop Notes: A Semantic Basis for Sharing Knowledge and Data in 
Design (A1D-94), Lausanne, Switzerland, pp. 20-27. 

Blumenthal, B. E and Porter, B. W.: 1994, Analysis and empirical studies of derivational analogy, 
Artificial Intelligence, 67,287-327. 

Fabel-Consortium: 1993, A Survey of FABEL, Fabel-Report Nr. 2, GMD, Sankt Augustin. 
Haller, E: 1985, ARMILLA - ein Installationsmodell. Institut for Baugestaltung, Baukonstruktion 

und Entwerfen, Universitat Karlsruhe. 
Hovestadt, L.: 1993, A4 Digital Building: Extensive computer support for the design, construction, 

and management of buildings, in U. Flemming and S. van Wyk (eds), Proceedings of the Fifth 
International Conference on Computer-Aided Architectural Design Futures: CAAD Futures, 
North-Holland, Amsterdam, pp. 405-422. 

Kolodner, J.: 1993, Case-based Reasoning, Morgan Kaufmann, San Mateo, CA 
Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T. and Swartout, W.: 1991, Enabling 

technology for knowledge sharing, AI Magazine. 
Oertel, W.: 1994, FAENSY: Fabel Development System, FABEL Report Nr. 27, GMD, Sankt Au­

gustin. 
Ousterhout, J. K.: 1993, An Introduction to Tel and Tk, Addison-Wesley. 
Smyth, B. and Keane, M. T.: 1995, Experiments on adaptation-guided retrieval in case-based 

design, in A. Aamodt and M. Veloso (eds), ICCBR-95 Case-Based Reasoning. Research and 
Developments, Lecture Notes in Computer Science, Springer-Verlag, Berlin, pp. 313-324. 

Voss, A, Bartsch-SpOrl, B. and Oxman, R.: 1996, A Study of Case Adaptation Systems, in J. S. 
Gero and E Sudweeks (eds), Artificial Intelligence in Design '96, Kluwer, Dordrecht (this 
volume). 

Walther, J., Graether, W., Oertel, W., Schrnidt-Belz, B. and Voss, A: 1994, An open architecture for 
mUltiple case retrieval methods, in M. Keane, J. P. Haton, and M. Manago (eds), Proceedings 
of the Second European Workshop on Case-Based Reasoning EWCBR-94, AcknoSoft Press, 
pp. 373-380. 



13 
creativity and innovation in design 

Emergent behaviour in co-evolutionary design 
Josiah Poon, Mary Lou Maher 

Innovative design based on sharable physical knowledge 
Valeri V. Sushkov, Lammert K. Alberts, Nicholaas J. I Mars 

Assisting creativity by composite representation 
Ewa Grabska, Adam Borkowski 

Skeleton-based techniques for the creative synthesis of 
structural shapes 

Derek M. Stal, George M. Turkiyyah 



J. S. Gero and F. Sudweeks (eds), Anificiallntelligence in Design '96, 703-722. 
© 1996 Kluwer Academic Publishers. 

EMERGENT BEHAVIOUR IN CO-EVOLUTIONARY DESIGN 

JOSIAH POON AND MARY LOU MAHER 

Key Centre of Design Computing 
Department of Architectural and Design Science 
University of Sydney NSW 2006 Australia 

Abstract. An important aspect of creative design is the concept of emergence. Though 
emergence is important, its mechanism is either not well understood or it is limited to 
the domain of shapes. This deficiency can be compensated by considering definitions of 
emergent behaviour from the Artificial Life (ALife) research community. With these new 
insights, it is proposed that a computational technique, called evolving representations 
of design genes, can be extended to emergent behaviour. We demonstrate emergent be­
haviour in a co-evolutionary model of design. This co-evolutionary approach to design 
allows a solution space (structure space) to evolve in response to a problem space (be­
haviour space). Since the behaviour space is now an active participant, behaviour may 
emerge with new structures at the end of the design process. This paper hypothesizes that 
emergent behaviour can be identified using the same technique. The floor plan example 
of Gero and Schnier (1995) is extended to demonstrate how behaviour can emerge in a 
co-evolutionary design process. 

1. Introduction 

Emergence has recently drawn the attention of research workers in the design 
community (Gero and Yan 1994, Gero, Damski and Han 1995, Edmonds and 
Soufi 1992, Liu 1995). This is an important research agenda because emergence 
contributes to creative design (Gero 1992). However, the definitions offered from 
the design community are usually applied to shape only. Hence, this paper at­
tempts to borrow characteristics of emergence identified from other research com­
munities, i.e. ALife community, to enhance our understanding of emergent beha­
viour. This cross-breed of explanation is expected to help us to develop a general 
theory of emergence for design. The theory should be general enough to cover not 
only shape emergence or emergent structure, but also emergent behaviour. 

Section 2 carries out a small survey on definitions offered by the two research 
communities and to identify key concepts for emergence. It is then followed 
by a section on the discussion of evolving representation of design genes and 



704 JOSIAH POON AND MARY LOU MAHER 

how it satisfies our refined understanding of emergence. Section 4 introduces co­
evolutionary design. A discussion of how the evolving representation can model 
emergent behaviour and how complex behaviour can emerge from the process are 
presented in section 5. The floor plan example used by Gero and Schnier (1995) 
is extended in section 6 to illustrate how the process works. 

2. Emergence 

Emergence is, very often, used and discussed by the design community without 
a proper definition, e.g. Liu (1995). The process which leads to emergence is 
largely unknown. The omission of a definition makes the development of a com­
putational model for emergence difficult. ALife community is another research 
group which frequently makes reference to the terminology of emergence. Hence, 
it is beneficial to visit definitions offered by these two communities to elicit the 
similarity and differences when this term is used. The expectation from this com­
pare and contrast exercise aims to help us generalize emergence in design beyond 
emergent shape. 

2.1. HOW IS EMERGENCE BEING DEFINED? 

The most notable definition on emergence offered by the design community 
comes from Gero (1992), which says 

"A property that is only implicit, i.e. not represented explicitly, is said to be 
an emergent property if it can be made explicit." 
The context that Gero addresses is shape emergence. A process to discover 

emergent shapes is reported by Gero and Yan (1994). The process comprises de­
construction followed by re-construction, which in their own words, is shape hid­
ing and shape emergence (Figure 1). 

A few more definitions from the design community are presented here which 
relate primarily to shape emergence: 

" ... drawing might be thought of as a visual image together with an associated 
description that imposes structure upon it. Thus a drawing may be thought of 
as a structured entity. From this perspective, an emergent shape occurs when a 
revised description, or structure, is discovered ... " (Edmonds and Soufi 1992) 

" ... emergent subshapes are ... emergent entities and relationships - ones that 
they never explicitly input ... " (Mitchell 1993) 

There are some research works which are loosely related to design com­
munity. For example, the research focus of Finke, Ward and Smith (1992) is to 
explore the cognitive processes and structures that contribute to creative thinking 
and discovery. They regard emergence as one of the properties for preinventive 
structures. 



EMERGENTBEHA~OUR 705 

Figure 1. A process model for shape emergence (Gero and Yan, 1994). 

" ... emergence, which refers to the extent to which unexpected features and 
relations appear in the preinventive structure. By definition, these features and 
relations are not anticipated in advance and become apparent only after the 
preinventive structure is completely fonned ... " 

In the work of Hofstadter and McGraw (1993) to create alphabetic style, they 
did not give a definition for emergence but offered an implementation 

" ... implemented as a large number of small codelets that are run in simulated 
parallel ... " 

Research workers in ALife community (or non-design community) offer more 
definitions and explanation/elaboration to emergence. For example, to name a 
few: 

" ... emergent properties ... collections of units at a lower level of organization, 
through their interaction, often give rise to properties that are not the mere 
superposition of their individual contributions ... " (Taylor 1990) 

"The key idea is that functionality is made to emerge as a global side-effect of 
some intensive, local interactions among components that make up the system 
... " (Maes 1990) 

"Emergent functionality means that a function is not achieved directly by a 
component or a hierarchical system of components, but indirectly by the inter­
action of more primitive components among themselves and with the world." 
(Steels 1991) 

Forrest (1990) echoed Hoftstadter's idea that" . .infonnation which is absent at 
lower levels can exist at the level of collective activities .. " and considered this is 
the essence of the following constituents of emergent computation: 



706 JOSIAH POON AND MARY LOU MAHER 

1. A collection of agents, each following explicit instructions; 
2. Interactions among the agents (according to the instructions), which form 

implicit global patterns at the macroscopic level, i.e. epiphenomena; 
3. A natural interpretation of the epiphenomena as computations. 

Mataric (1993) characterizes emergent behaviour in the field of swarm intelli­
gence as below: 

1. it is manifested by global states or time-extended patterns which are not ex­
plicitly programmed in, but result from local interactions among a system's 
components; 

2. it is considered interesting based on some observer-established metric. 

One common theme connects these definitions/explanations in the ALife 
community: global behaviour occurs as a result of local interactions among low 
level units. 

2.2. SIMll..ARITIES, DISSIMll..ARITIES AND INSPIRATIONS 

The obvious similarities between the two research communities in defining this 
terminology is to make implicit to explicit. That is to say, a property which is 
not intentionally or explicitly described or input or programmed in the original 
representation becomes an explicit, known pattern. At the surface, the two com­
munities seem to have different approaches to explain how this process occurs. 
The design community uses de-construction and re-construction to explain emer­
gence, while ALife community emphasizes emergence as a collective behaviour 
of local interactions among lower level units. However, similarities can be found 
on detailed studies. According to the data-driven approach by Gero and Damski 
(1994), new shapes are derived by 

1. de-construction: hiding the original shapes; removing the existing relation­
ships between existing data points 

2. re-construction: establishing new relationships between data points where 
the fitness of these new relationships are assessed by available schema or 
the aesthetic judgment of human designers 

The discovery of new relationships between data points can be argued to be an 
equivalent process of local interaction between low level units (as proposed in the 
ALife community). It is also observed that emergence in the design community has 
the premise that new behaviours are identified on top of existing behaviour or the 
de-construction of existing behaviour. Having said these similarities, additional 
ideas which are shared by the ALife community are characterized as follows: 

- Lower level buDding units. This is not explicitly mentioned in Gero's defin­
ition, though it is implicitly referred to in the data-driven approach in Gero 
and Damski (1994), i.e. half planes. 



EMERGENT BEHAVIOUR 707 

- Bottom-up approach. ALife community tends to elaborate the definition 
more by stating the emergent function/computation is a result of the inter­
action of lower level units. The data-driven approach proposed by Gero and 
Damski (1994) can be regarded as a bottom-up approach. 

- Local interaction but global effect. The effect of local interactions between 
low level units (bottom-up approach) is manifested at a higher level. In GA 
terms, the resulting behaviour is displayed at the phenotype 1 and not at the 
genotype 2 level. 

- Self-organization, coDective phenomena and coDective behaviour. For­
rest (1990) regards these are the three overlapping themes essential to emer­
gence. 

- The whole is greater than the sum of its parts. Using the example of Gero 
and Schnier (1995), if we sequence four pen movement commands one after 
another: 

1. draw one unit length to the right; 
2. draw one unit length down; 
3. draw one unit length to the left; 
4. draw one unit length up; 

the end result is not just two horizonta1lines and two vertical lines, we have 
an emerged behaviour of a square. 

- External observer. Forrest (1990) highlights that the emergent pattern is an 
interpretation to the epiphenomena. In other words, there is an external ob­
server to interpret the pattern where this emergent pattern makes sense to the 
observer. 

These extra items for emergence are hidden in the work of Gero and Damski 
(1994). That is to say, the data-driven approach (in shape emergence) fits well into 
the framework of emergence described by ALife community because the process 
to create a new shape starts from the lower level units (the half planes). 

The best way to summarize the concept of emergence is to combine defin­
itions and explanations from these two communities. Hence, emergence can be 
defined as "global pattern as a result of local interactions of low level units" and 
includes the characteristics: de-construction and reconstruction, low level units, 
local interaction, global effect, self-organization, collective phenomena and beha­
viour. 

1 It can be a living organism for biological sytems or a design solution for design systems; 
21t is a way of representing or encoding the information which is used to produce the phenotype. 



708 JOSIAH POON AND MARY LOU MAHER 

3. Evolving New Representations of Design Genes 

In the work of Gero and Schnier (1995), new evolved complex representations 
from each genetic cycle are deposited to the pool of basic genes 3 for building 
genotypes, i.e. the size of alphabets for coding increases. The solution space is 
incrementally restructured by the insertion of evolving structure elements into the 
pool of building blocks. 

To further clarify this idea, there is a pool which serves as the source to 
provide materials to build up genotypes (see Figure 2). In each genetic cycle, a 
process is executed to combine basic genes randomly from this pool to form gen­
otypes for fitness evaluation. At the start, the pool only contains 7 basic genes of 
{sl, s2, .. s6, s7}. Good and bad phenotypes and their corresponding genotypes 
are separated after the evaluation process at each cycle. A process is invoked to 
identify common useful representations (the building blocks) among these geno­
types which contribute to their success. The quality of each pair of genes is eval­
uated to determine the correlation of the pair and the goodness of the phenotype. 
Hence, as shown in Figure 2, all adjacent genes in the genotype are grouped to­
gether (ie. s 1 with s3, s3 and s6, s6 and s7) and they are measured for their con­
tribution to the fitness value of the corresponding design. After the pair-wise per­
formance evaluation, each pair of genes that achieves a threshold value or above 
will become a single entity. So, for example, sl and s3 evolved to become esl and 
s3 and s6 become es2. These evolved structures will join the existing building­
block genes in the pool to develop design solutions in the next generation. 

In other words, the number of alphabets has increased from 7 to 9 and the set 
of basic genes becomes {sl, s2, .. s6, s7, esl, es2}. These 9 basic genes are used 
to generate solution genotypes at the next generation. An evolved representation, 
say, esl (a basic gene by then), may interact with another basic gene. This will 
give rise to another evolved representation which is more complex. It has to be 
noted that the adjacency of two genetic units do not imply the adjacency of char­
acteristics in the phenotype4. The phenotype of an evolved representation may be 
a disjoint manifestation. Two observations can be made if we proceed with the 
genetic cycles using the evolving representation approach: (1) the number of ba­
sic genes (alphabets) increases and (2) the evolved representation is getting more 
and more complex. 

Though their work primarily concentrates on genetic engineering, it does not 
exclude an implicit end result of emergence. To qualify their work on emergence, 
we recall the definition offered by Maes (1990) where it states that emergence 
occurs as a global side effect (which is the result of "good fitness") of some in-

3Gene is the biological unit of heredity which occupies its own place on a genotype. This can 
be viewed as the design variable for design systems. 

4see evolved gene 340 and 349 in Figure 12 of Gero and Schnier (1995) 



EMERGENTBEHA~OUR 709 

tensive, local interactions among components (the "adjacency" of genes in the 
genotype). 

Pool of Basic Genes for 
Building Solution-Genotype 

s5 

Solution-Genotype 

~ 
esl es2 

". 
". 

Figure 2. Evolving representation according to Gero and Schnier (1995). 

4. Co-Evolutionary Design 

Design as a sequential process which moves from the formulation of the problem 
to the synthesis of solutions faces a lot of challenges (Come, Smithers and Ross 
1993, Gero 1993, Jonas 1993, Maher and Poon 1996). The central theme behind 
these views is that design should be considered as an iterative process where there 
is interplay between problem reformulation and solution generation. According to 
the evolutionary design process model offered by Hybs and Gero (1992), the for­
mulation of functional requirements is to define expected behaviour, Be, which is 
represented as the problem space. The solution space can be considered to contain 
structure elements where the design process is to search the right combination of 
structure elements to satisfy the requirements, Be. The behaviour (Bs) exhibited 
by the current structural combination is compared against Be in the evaluation 
process. Reformulation, which is defined as S ~ Be, is conducted if necessary. 

This idea of the co-evolutionary nature of design is graphically illustrated in 
Figure 3 as the interaction of problem space (the required behaviour) and solu­
tion space (the potential structural combinations). The diagram highlights the co­
evolution of the behaviour-space with the structure-space over time and has the 
following characteristics: 

- There are two distinct search spaces: behaviour-space and structure-space. 
- These state spaces interact over a time spectrum. 



710 JOSIAH POON AND MARY LOU MAHER 

TIME 

Figure 3. Co-evolution of behaviour-space and structure-space. 

- Horizontal movement is an evolutionary process. 
- Diagonal movement is a search process where goals lead to solution. This 

can be the 

• Downward arrow: "Problem leads to Solution" or synthesis where 
Be -+ S(Bs) . 

• Upward arrow: "Solution refocuses the Problem" or reformulation 
where S -+ Be. 

The behaviour-space(t) is the design goal (the required behaviour) at time 
t and structure-space(t) is the solution space which defines the current search 
space for design solutions. The structure-space(t) provides not only a state space 
where a design solution can be found, but it also prompts new requirements for 
behaviour-space(t+l) which were not in the original behaviour-space at time t. 
This is represented by the upward arrow from structure-space at t to behaviour­
space at time t+ 1. The upward arrow is an inverse operation where structure­
space(t) becomes the goal and a "search" is carried out in the behaviour-space, the 
space at time t+ 1, for a "solution". This iterative relationship between behaviour­
space and structure-space evolves over time. 

This model of exploration depicts an evolutionary system, or in fact, two 
evolutionary systems. The evolutionary systems are the behaviour-space and the 
structure-space. The evolution of each space is guided by the most recent popula­
tion in the other space. This model is called co-evolution and provides the basis 
for a computational model of design exploration. The basis for co-evolution is a 
simple genetic algorithm (Goldberg 1989) where special consideration is given 
to the representation and application of the fitness function so that the problem 
definition can change in response to the current solution space. A computational 
implementation of co-evolutionary design is reported in Maher and Poon (1995) 
and Maher, Poon and Boulanger (1995). 



EMERGENTBEHA~OUR 711 

S. Emergent Behaviour in Co-Evolutionary Design 

The work of Maher and Poon (1996) and Gero and Schnier (1995) leads to two 
research issues. They are highlighted here and will be further discussed in the 
following two sections: 

1. A mechanism for evolving more complex representations of behaviour. 
2. Emergent behaviour in co-evolutionary design. 

5.1. EVOLVING MORE COMPLEX REPRESENTATIONS OF BEHA~OUR 

Emergence is defined as a recognition of collective phenomena resulting from 
local interactions of low level units. A complex evolving representation can thus 
be classified as an emergent representation. To follow this line of logic, a complex 
evolving behaviour is an emergent behaviour. In general, the methods of Gero 
and Schnier (1995) do not specify whether the evolving representation is struc­
ture or behaviour. In this example, the initial basic genes represent simple pen 
movements that we assume represent structure or shape. The example extends a 
basic GA (Goldberg 1989) by the incorporation of evolving genes. The solutions 
are represented as genotypes and the performances are measured by a constant 
fitness function. The evolution in Gero and Schnier (1995) example brings forth 
evolved structures. The simplest way to emerge complex behaviour is a direct ap­
plication of the algorithm of evolving representation to behaviour variables, as 
illustrated in Figure 4. 

Pool of Basic Genes for 
Building Problem-Genotype 

b5 

b4 

Problem-Genotype 

T7hl\r71 
, 

ebl eb2 

'" -' 

Figure 4. Direct application of evolving representation to behaviour space. 



712 JOSIAH POON AND MARY LOU MAHER 

5.2. INTERACTIONS BETWEEN BEHAVIOUR VARIABLES 

Adjacency is considered to be the interaction between genes in the example of 
Gero and Schnier (1995). Their rationale of using "adjacency" is the consecutive 
drawing commands used to draw the floor plan. At the level of behaviour space, 
if the idea of Gero and Schnier (1995) is followed closely, we can apply the same 
mechanism for behaviour variables to interact, i.e. only neighboring genes are al­
lowed to interact locally. However, there is an implicit assumption behind their 
approach: the evolved structure is an ordered pair where (a, b) =1= (b, a). For ex­
ample, in Figure 5, using a movement of one unit left and one unit up, a different 
order of these two movements produces different results. 

(8) one right, one up (b) one up, one right 

Figure 5. Example to demonstrate different phenotypes result from arranging same genes in dif­
ferent orders. 

The ordered pair adjacency interaction is a good approach if a chronological 
sequence is required, otherwise, this can be relaxed to keep the pair in a set, i.e. 
{a, b}. To further relax the original approach is to break another implicit assump­
tion. Their consideration of "adjacency" assumes the genes to be arranged in a 
linear manner. The linear presentation of genes is a human notation. The chemical 
notation for water, H20, does not imply the actual configuration of the molecule. 
In fact, a water molecule is not arranged as H-H-O, but H-O-H. Hence, we can 
treat the behaviour variables to float around in a space and can interact with other 
variables, either strongly or weakly. Since there is no fixed a priori arrangement 
of genes, local interaction to neighboring genes means much more interactions 
than a linear arrangement. 

The consideration of how two behaviour variables interact depends upon the 
necessity of chronological control and the basic assumption about genes arrange­
ment. In summary, the interaction scheme between two behaviour variables can 
be classified as the following patterns with decreasing constraints (Figure 6): 

(a) linear arrangement of genes and an evolved gene is an ordered pair 
(b) linear arrangement of genes and an evolved gene is a set 
(c) no predefined sequence of genes and an evolved gene is an ordered pair 
(d) no predefined sequence of genes and an evolved gene is a set 

5.3. EMERGENT BEHAVIOURS CORRELATE WITH GOALS 

It has been pointed out in section 4 that the formulation of functional require­
ments is to define expected behaviour, Be (Hybs and Gero 1992), i.e. expected be-



EMERGENTBEHA~OUR 

r-'\ r-'\ 

••••• "'--/ "'--/ 

(a) ordered neighbouring interaction 

/.~ . ~. 
\MI . -. 

(c) ordered mutual interaction 

r-'\ r-'\ 

••••• "'--/ "'--/ 

(b) neighbouring interaction 

/." .~ . 
,,-UJ .-. 

(d) mutual interaction 

Figure 6. Different interaction schemes for "adjacent" genes. 

713 

haviour is derived from functions. Emergent behaviour must then be goal-oriented 
as well where this complex behaviour cannot emerge outside the context of a fit­
ness function. For example, if the design goal is to maximize the area of a floor 
plan, taking no explicit consideration of the appropriateness of room arrangement, 
the fitness evaluation to a design solution only derives a numerical result about 
the area of a floor plan. Since there is no way to assess the quality of a floor plan, 
there will not be any complex behaviour of room arrangement emerging from the 
design process. If emergent behaviours of room arrangement are sought, the fit­
ness function must be modified to cater for room arrangement as part of its evalu­
ation. 

Though emergent behaviour is goal related, this does not necessarily represent 
a causal relationship. When Fogel (1995) discusses the identification of "good" 
building blocks in the context of genetic algorithms, he suggests that there are no 
viable credit assignment algorithms for isolated genetic structures or behavioural 
traits because these elements are highly integrated. According to his arguments, 
credit assignment does not exist in evolution, it is a human construction. Hence, 
emerged behaviour patterns should be carefully interpreted as a statistical correl­
ation between the complex evolved behaviour and the fitness of the phenotype. 

5.4. EMERGENT BEHA~OUR BASED ON FITNESS MEASUREMENT IN 
CO-EVOLUTIONARY DESIGN 

In Gero and Schnier (1995), complex behaviour is learnt from a target case. 
In other words, emergent behaviour is identified outside the design process. 
However, in co-evolutionary design, learning of emergent behaviour is part of the 
design process. Learning is interwoven with the synthesis of solutions throughout 
the design cycles. The behaviour emerged by learning from a design is a static 
behaviour where emergent behaviour is dynamic and responsive to the changing 



714 JOSIAH POON AND MARY LOU MAHER 

solution space in co-evolutionary design. 
Complex behaviour that emerges from co-evolutionary design case can be 

learnt using the evolving representation algorithm. The end result is a collection 
of many useful behaviour patterns. Emergent behaviour is derived from the eval­
uation of behaviour-phenotypes by the current best structure. A close match in­
dicates a "good" phenotype. These evolved behaviours can be used to help find 
design solutions in a new design context. 

The original idea of evolving representation is further extended. The evolved 
structure remains in the algorithm. The emergent behaviours, which are equally 
important, are added to the pool for building the behaviour-genotype. 

In the original thesis (Gero and Schnier 1995), the insertion of these evolved 
structures to the pool reduces the search space and transforms the search space. 
Here, an emergent behaviour is critical because it can reformulate the behaviour 
space. The evolved behaviour serves as constraints and re-draws the boundary of 
the structure-space. 

The method used to co-evolve behaviours and structures is shown in figure 7. 
These are the core steps to be found in every cycle of an iterative design. There 
are four main parts in the method. 

The first part is to synthesize design solutions (Generate Structure­
Phenotypes) and the second part is to learn useful structures from the "good" 
structure-phenotypes (Identify Useful Structure-Gene-Pairs). Figure 8 is a gen­
eric diagram to describe these two main parts. In fact, this diagram can be ap­
plied to structure dimension (part 1 and 2 in Figure 7) and behaviour dimension 
(part 3 and 4 in Figure 7). This generic diagram shows a pool of basic genes 
{TI, T2, .. , T6, T7} which is the source to construct genotypes. Each genotype is 
combined from the basic genes in a stochastic manner and therefore the length of 
each genotype may vary. After the mapping process, phenotypes are evaluated by 
the current best phenotype from the other population. When we are at part one of 
the method, this will be current best behaviour (CBB) from the behaviour dimen­
sion. The fitnesses of phenotypes help us in two ways: 

- To determine the current best (CB) which, at this stage, is current best struc­
ture (CBS). The CBS becomes the target case for the fitness function to as­
sess the behaviour-phenotypes in the next evaluation. 

- To divide the population into "good" and "bad" individuals; the degree of 
"goodness" indicates one's closeness to the requirements. 

Genotypes of the "good" phenotypes are selected and the gene-pairs are analysed. 
For all these "good" genotypes, adjacent pairs of genes are loaded to a table. 
Whenever a genotype carries the current adjacent pair, the fitness of the pheno­
type is included to the pair's contribution. Those pairs, for example, {eTI, eT2}, 

which contribute above a threshold value, are inserted to the pool of basic genes. 
In other words, the genes that build up genotypes are evolving. 



EMERGENT BEHAVIOUR 715 

1. Generate Structure-Phenotypes 
- Build structure-genotypes from structure-genes in base pool 

- Crossover structure-genotypes 

- Map structure-genotypes to structure-phenotypes 

- Evaluate structure-phenotypes against current best behaviour (CBB) 

- Classify structure-phenotypes into "good" and "bad" 
- Select best performing structure-phenotype as current best structure (CBS) 

2. ldenti/Y Useful Structure-Gene-Pairs 
- Identify all structure-gene-pairs in "good" structure-phenotypes 

- Compute contribution of structure-gene-pairs 

- Select structure-gene-pairs above threshold to become {est, .. esn} 

3. Generate Behaviour-Phenotypes 
- Build behaviour-genotypes from behaviour-genes in base pool 

- Crossover behaviour-genotypes 

- Map behaviour-genotypes to behaviour-phenotypes 

- Evaluate behaviour-phenotypes against CBS 

- Classify behaviour-phenotypes into "good" and "bad" 

- Select best performing behaviour-phenotype as CBB 

4. ldenti/Y Useful Behaviour-Gene-Pairs 
- Identify all behaviour-gene-pairs in "good" behaviour-phenotypes 

- Compute contribution of behaviour-gene-pairs 

- Select behaviour-gene-pairs above threshold to become {ebl, .. ebn} 

Figure 7. Method to co-evolve behaviours and structures. 

The third part is to reformulate behavioural requirements (Generate 
Behaviour-Phenotypes). The first three steps again follow the generic mechan­
ism as displayed in Figure 8. The performance of phenotypes are evaluated by 
the CBS and the best performing phenotype becomes the CBB. CBB is used to 
evaluate structure-phenotypes in the next cycle. 

The final part is another learning process where emergent behaviour occurs 
(Identify Useful Behaviour-Gene-Pairs). The complex emerged behavioural 
patterns are added to the pool of basic genes for the generation of behaviour­
genotype in the next cycle.The algorithm to calculate the contribution of a pair 
of behaviour genes to the fitness of a "good" phenotype is: 

1. Put all adjacent behaviour pairs to a table. 
2. Set the initial contribution of each pair of these behaviour genes to zero. 
3. Identify genotypes which exhibit the behaviour described in the pair from 

the pool of solutions. 
4. Add the fitness of the phenotype which bears the current adjacent pairs to the 

appropriate entry in the table. 



716 JOSIAH POON AND MARY LOU MAHER 

Pool of Basic Genes ----rl 

r5 r3 

r4 

Genotypes 

- - -;. .,. - - Phenotypes 
" " / good / bad ~", 

I ~ I '----...-/ \ 

~ evaluate I '----...-/ \ ~ ----=-===-----i .. ~ I ''----...-/ I 
I ~\ ~, 

Current Best from 
opposite 
population 

I ~ I '----...-/ I \ c=::> ":-----... I \ Y _ -" '----...-/ C=::>" I 
P --:::- c=::> ---/0 -;rl " \ - - - - - - - - - -

I IT] er2, 
\ IT] / E)lol)led Represe"totions 

..... ./ 

Figure 8. Generic mechanism to generate new representations. 

This general algorithm can pick up behaviour patterns which are commonly 
exhibited by the "good" population in the pool of solutions. To include a prelimin­
ary selection such that only solutions from the structure space which are evolved­
structure-carriers, this algorithm can pick up behaviours which are generally dis­
played among these evolved-structure-carrier solutions. 

The fitness function varies at each cycle. A different eBB is used to measure 
the performance of generated structures, and a different eBS is used to measure 
performance of generated behaviour. This approach to forming a fitness function 
is like having a different target case each time. However, both the eBB and eBS 
encapsulate new complex knowledge that emerge with the design process. 

6. An Example: Emergent Behaviour in Floor Plans 

We extend the example of Gero and Schnier (1995) to include a representation of 
behaviour. Figure 9 shows the genotype and phenotype representations of struc­
ture and behaviour. In the original example of floor plan layout in Gero and 



EMERGENTBEHA~OUR 717 

Schnier (1995), genotypes are built from "basic" genes (the pen movements of 
~,i, -t and t) and evolved complex genes (which are learned from a target 
design case). The phenotype is represented as a floor plan. In their example, the 
basic genes and a phenotype are considered to be along the dimension of the 
structure space in Figure 9. 

In the work of Gero and Schnier (1995), two processes are carried out: learn­
ing and design. The learning process is first executed and completed before the 
commencement of the design process. These two processes have different criteria 
to measure the fitness of a phenotype. During the learning process, the fitness of a 
phenotype is classified as "good" or "bad" according to its closeness to the target 
design case. "Good" phenotypes are chosen where statistical correlations between 
the recurrence of gene-pairs and fitness of phenotypes are identified. Gene-pairs 
which achieve better than a user-defined threshold value will be included as a 
complex representation to be remembered. While the goal at design stage is to 
design a floor plan which has minimal overall wall length under three design con­
straints. One of the generated designs can be found in Figure 10. 

Structure 
Space 

Basic Genes 

-t-! 

Phenotype 

rn 
Behaviour ~ 
S BedRoom, Kitchen, LivingRoom. ... 
'Pace 

floor plan 

topology 

Figure 9. Basic genes and phenotype in the structure space and behaviour space of a floor plan 
design. 

Here, we extend the example in two ways such that (1) pen movements in­
clude a jump (for example, -t -t) to indicate an entrance; (2) appropriate be­
haviours are required to be exhibited by the room arrangements. The objective 
is to re-use the implicit behaviour between areas on the floor plan. The "basic" 
genes for the behaviour space is a collection of room-types and the phenotype is 
a topology to describe relationships between these rooms (along the dimension of 
behaviour space in Figure 9). The fitness of a behaviour-phenotype is measured 
in terms of its closeness to the topology of the given design. The quality of each 
gene-pair is again a numerical value to correlate occurrence and performance of 
phenotypes. A threshold value is defined to select complex behaviours as emer­
gence. 



718 JOSIAH POON AND MARY LOU MAHER 

II 
II ~ R I I 

I J 

~ 
Figure 10. Generated floor plans. 

6.1. ROOM ADJACENCY 

We define the adjacency of two rooms A and B, adjacent(A, B), where there is 
an entrance .or pathway to lead from room A to B, and vice versa. However, to 
resolve relationships such as adjacent(adjacent(adjacent(A, B), C), D), this be­
comes much harder with our primitive definition of adjacency. Hence, adjacency 
is defined as 

- there is an entrance or pathway to lead from room A to B, and vice versa, as 
shown in Figure l1(a) where a solid line indicates a wall and a dashed line 
to represent an entrance; or 

- A, Band C are adjacent iff A is adjacent to B and B is adjacent to C and C is 
adjacent to A, e.g. Figure 11(b). 

ltl 
(a) (b) 

Figure 11. Examples of adjacency. 

The floor plan of a house in Figure 12 provides an illustration of the represent­
ation. This floor plan has ten room-types: {Lounge, DiningRoom, Kitchen, Bath, 
Bedrooml, Bedroom2, MasterBed, Ensuite, Entry, Corridor} which makes up 10 
edges on the adjacency graph. An adjacency graph is a graph where the nodes 
represent the room-types and the edges denote the two room-types are adjacent to 
each other. 

Adjacency pairs of the enclosed areas are stored in a list, Ladj. These adja­
cency pairs will be compared against the required adjacency. Redundant genes are 
allowed in the Ladj where the length of Ladj varies from floor plan to floor plan. 
The relationship between genotypes and phenotypes, structure space and beha­
viour space can be found in Figure 13. 



EMERGENT BEHAVIOUR 719 

Structure-Phenotype: Behaviour-Phenotype: 
Floor Plan Adjacency Graph 

Ensultt 

I 

-C'~;'''' 
\ Corrido, 

Lounge ............... / \ ............ 
BedRooml 

Entry BedRooml 

Figure 12. Representation of behaviour. 

Structure Space 

mJJPping 
------.. 1 2 J 4 S 4S 

Behavwur Space 

ABCDEBCCD~ C;-B ___ ~ ~ 
\ -E ~ 
D 

PMnotyp< (adjauncy graph) 

Figure 13. Relationships between genotype and phenotype, structure space and behaviour space 
of a floor plan design. 

6.2. EVALUATION AND EMERGENCE 

The characteristics of a co-evolutionary design is that it has a changing fitness 
function. The fitness function evolves with time while it maintains to be relevant 
to the initial expectation. Hence, we define a fitness function in a co-evolutionary 
paradigm as a concatenation of initial requirements ~nit and current best beha­
viour (or structure), i.e. Fitness = ~nit + CB (B or S). 

During the conceptual design stage, user requirement is usually a vague one 
which may be a list of room-types, with a possible specification of some room­
type adjacency. Any initial room-type adjacency will be defined as the current 
best behaviour (CBB). 

During the synthesis of solution, Be -+ S(Bs), genotypes in the structure 
space are first generated to describe the turtle-graphic drawing for the phenotypes 
(floor plans). The phenotypes are then matched against the ~nit and CBB. The 



720 JOSIAH POON AND MARY LOU MAHER 

CBB is empty or very simple at this initial stage, however, this will be getting 
more and more complex along with the time spectrum. There are two matchings 
to complete. The first matches the number of enclosed areas in a floor plan solu­
tion (which represent rooms) and the number of room-types in Rinit. The second 
match compares the adjacencies on the floor plan solution to the adjacencies in 
CBB. Using the adjacency graph in Figure 13 for illustration, the pairs BC and 
CD require the floor plan to have a room (if it is assigned to be Room-C) to have 
openings (entrance) to Room-B and Room-D. This CBB does not specify the con­
nections between other rooms. This CBB is satisfied as soon as there exists a path­
way to lead from Room-C to Room-B and another pathway to Room-D. The best 
performing floor plan after the evaluation is to become the current best structure 
(CBS). The phenotypes are then classified into two categories, the "good" and the 
"bad". Adjacent pairs of genotypes in the "good" subpopulation are analysed to 
identify how these pairs contribution to the "goodness" in the phenotypes. Pairs 
which demonstrate high statistical correlation to fitness of structure-phenotypes 
are added to the pool of basic pen movements. Each of these evolved structures 
will be labelled as a single entity and can be re-used in subsequent cycles. 

During the reformulation of problem specifications, S -t Be, current best 
floor plan (CBS) from the structure-space is used as the goal to assess perform­
ance of relationships in behaviour-space. Many adjacency graphs are generated 
to satisfy the CBS on hand. Each graph is first tested if it has the same number 
of rooms as on the floor plan of CBS. Then the adjacency of the CBS is matched 
against the adjacency graph. Since there is no-function-in-structure, the CBS does 
not have an implicit assumption behind each enclosed areas. Phenotypes in the 
behaviour dimension are submitting ideas to propose how these areas can be best 
utilised. The best adjacency graph will be kept as a CBB for the evaluation of 
structures in the next cycle. The population of behaviour-phenotypes are also clas­
sified into "good" and "bad". Genes in the "good" population are analysed pair­
wise. Pairs are added to the pool of behaviour-genes if they display strong evid­
ence of correlation with "fit" phenotypes. 

Let's say the pair {Corridor, Lounge} is an emergent behaviour from a cycle. 
This pair will become a single entity. The recurrence of this pair of adjacent 
rooms in subsequent cycles will be replaced by the single entity. The end result 
after the process is a list of emergent (and complex) representation of useful be­
haviours to be applied immediately within the design process. The emergent be­
haviours begin with simple patterns, but they become more complex when a pair 
of adjacent genes is emergent behaviours from previous cycles. 

The behaviour-space and structure-space represent a cooperative type of co­
evolution. The fitness function in the co-evolutionary paradigm is an emergent 
and complex one. The function imposes more sophisticated requirements while 
proposed solutions are getting more complex as time proceeds. 



EMERGENTBEHA~OUR 721 

7. Conclusion 

Emergence has been applied primarily to shapes in the design community. This 
limitation can be complemented by the various explanations from the ALife com­
munity where it is usually applied to behaviour. "Local interactions of low level 
units" is the key to emergence which can be achieved by a data-driven approach 
(Gero and Damski 1994). However, this approach still awaits to be tested outside 
the domain of shapes. For example, in a 2D visual representation in Figure 14, 
the triangle (denoted by the solid line) evolved outside the data points is found by 
the extrapolation of line segments (relationships) between data points. This can 
be resolved using the half plane concept proposed by Gero and Damski (1994). 
However, for the symbolic representation outside the non-shape domain, the prob­
lem lies on the "search" for a generalized relationships between low level units, 
before these relationships start to interact which leads to emergence. 

Figure 14. Triangle emerged from extrapolation of line segments. 

This paper further draws on the work by Gero and Schnier (1995) and argues 
its bottom-up approach to evolving representation qualifies this algorithm to be 
a computational tool for emergence. It is discussed that an evolving complex be­
haviour is an emergent behaviour. Emergence can take place in co-evolutionary 
design where the learning of emergent pattern is part of the design process and is 
in response to alternative solutions for structure or behaviour. 

Acknowledgements 

This work is supported by an Australian Postgraduate Award. 

References 

Corne, D., Smithers, T. and Ross, P.: 1993, Solving design problems by computational exploration, 
in 1. S. Gero and F. Sudweeks (eds), Pre prints of the IFlP WG5.2 Workshop on Formal Design 
Methods for Computer-Aided Design, pp. 249-270. 

Edmonds, E. and Soufi, B.: 1992, The computational modelling of emergent shapes in design, in 
1. S. Gero and F. Sudweeks (eds), Pre prints of the Second International Conference on Com­
putational Models of Creative Design, Dept of Architectural and Design Science, Unveristy of 
Sydney,pp.173-189. 



722 JOSIAH POON AND MARY LOU MAHER 

Finke, R. A., Ward, T. B. and Smith, S. M.: 1992, Creative cognition: Theory, research, and ap­
plications, MIT Press. 

Fogel, D. B.: 1995, Evolutionary computation: Toward a new philosophy of machine intelligence, 
IEEE Press. 

Forrest, S.: 1990, Emergent computation: Self-organizing, collective and cooperative phenomena 
in natural and artificial computing networks, Physica 42, 1-11. 

Gero, J.: 1992, Creativity, emergence and evolution in design, in I. S. Gero and F. Sudweeks (eds), 
Pre prints of the Second International Round-Table Conference on Computational Models of 
Creative Design, Key Centre of Design Computing. 

Gero, J.: 1993, Towards a model of exploration in computer-aided design, in J. S. Gero and F. Sud­
weeks (eds), Pre prints of the IFIP WG5.2 Workshop on Formal Design Methodsfor Computer­
Aided Design, Key Centre of Design Computing, University of Sydney, pp. 271-279. 

Gero, J., Darnski, J. and Han, J.: 1995, Emergence in caad systems, in M. Tan (ed.), Proceedings of 
CAAD Futures'95. 

Gero, J. S. and Darnski, J.: 1994, Object emergence in 3d using a data driven approach, in J. S. Gero 
and F. Sudweeks (eds), Artificial Intelligence in Design '94, Kluwer, Dordrecht, pp. 419-436. 

Gero, J. and Schnier, T.: 1995, Evolving representation of design cases and their use in creative 
design, in J. Gero and F. Sudweeks (eds), Pre prints of the Third International Conference on 
Computational Models of Creative Design, Key Centre of Design Computing, University of 
Sydney, Sydney. 

Gero, J. and Yan, M.: 1994, Shape emergence by symbolic reasoning, Environment and Planning 
B: Planning and Design 21,191-218. 

Goldberg, D. E.: 1989, Genetic algorithms: In search of optimization and machine learning, 
Addison-Wesley. 

Hofstadter, D. and McGraw, G.: 1993, Letter spirit: An emergent model of the perception and 
creation of alphabetic style, Technical Report CRCC-68, Center for Research on Concepts and 
Cognition, Indiana University. 

Hybs, I. and Gero, J. S.: 1992, An evolutionary process model of design, Design Studies 
13(3), 273-290. 

Jonas, W.: 1993, Design as problem-solving? or: Here is the solution - what was the problem, 
Design Studies 14(2),157-170. 

Liu, Y.-T.: 1995, Some phenomena of seeing shapes in design, Design Studies 16, 367-385. 
Maes, P.: 1990, Situated agents can have goals, in P. Maes (ed.), Designing Autonomous Agents, 

MlTlElsevier, pp. 49-70. 
Maher, M. L. and Poon, J.: 1995, Co-evolution of the fitness function and design solution for design 

exploration, Proceedings of IEEE International Conference on Evolutionary Computing, IEEE. 
Maher, M. L. and Poon, J.: 1996, Modelling design exploration as co-evolution, Microcomputers 

in Civil Engineering (Special Issues on Evolutionary Systems in Design), to appear. 
Maher, M. L., Poon, J. and Boulanger, S.: 1995, Formalising design exploration as co-evolution: A 

combined gene approach, in J. S. Gero and F. Sudweeks (eds), Pre prints of the Second IFIP 
WG5.2 Workshop on Advances in Formal Design Methods for CAD, Key Centre of Design 
Computing, University of Sydney, Sydney, pp. 1-28. 

Mataric, M. J.: 1993, Designing emergent behaviors: From local interactions to collective intelli­
gence, in H. L. R. Jean-Arcady Meyer and S. W. Wilson (eds), From Animals to Animats 2: 
Proceedings of the Second International Conference on Simulation of Adaptive Behavior, MIT 
Press, pp. 432~1. 

Mitchell, W, J.: 1993, A computational view of design creativity, in J. S. Gero and M. L. Maher 
(eds), Modelling Creativity and Knowledge-Based Creative Design, Lawrence Erlbaum Asso­
ciates. 

Steels, L.: 1991, Towards a theory of emergent functionality, in I.-A. Meyer and S. W. WIlson (eds), 
From Animals to Animats: Proceedings of the First International Conference on Simulation of 
Adaptive Behavior, MIT Press, pp. 451-461. 

Taylor, C. E.: 1990, "Fleshing out" artificial life II, in J. D. F. Christopher G. Langton, 
Charles Taylor and S. Rasmussen (eds), Artificial Life II: Proceedings of the Workshop on Ar­
tificial Life, Addison-Wesley, pp. 25-38. 



J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 723-742. 
© 1996 Kluwer Academic Publishers. 

INNOVATIVE DESIGN BASED ON SHARABLE PHYSICAL KNOWLEDGE 

VALERI V_ SUSHKOV AND LAMMERT K. ALBERTS 

AND 

NICHOLAAS 1.1. MARS 
Department of Computer Science 
University of Twente 
PO Box 217, 7500 AE Enschede, The Netherlands 

1. Introduction 

Building a computational model of the early engineering design phases is a neces­
sary condition to develop automated support for the entire process of computer­
aided design. Over the last few years, many research efforts have been concen­
trated in this area but mostly limited to modeling reasoning process about con­
ceptual design within a single engineering domain. However, as follows from a 
nature of the innovative design one of its main characteristics is the use of know­
ledge unknown in the domain a priori. 

According to a systematic design methodology (Pahl et al., 1984), the entire 
cycle of a design process can be presented in a top-down manner: 

1. Formulation of initial design specifications (IDS). In the innovative 
design phase, IDS may only indicate certain key features of the required 
design and neglect its detailed aspects. 

2. Generation of design concepts that would meet the IDS. 
3. If several alternative concepts have been generated, further revision 

and refinement of the IDS based on specific aspects of alternatives. Evalu­
ation of the alternatives to select a concept that would meet all the require­
ments. 

4. Formulation of the exact functional specifications with respect to the concept 
selected. 

5. Generation of a new design description through instantiation of conceptual 
knowledge into specific design. 



724 VALERI V. SUSHKOV ET AL. 

The most difficult step in this methodology is formulation of the IDS in such 
a way that it would be possible to systematically find alternative concepts that 
would be capable of meeting them. This means that explicit relationships between 
all possible requirements that may arise and available natural and design know­
ledge have to be established. 

To develop a framework for modeling domain-independent innovative design 
one has to find answers to the following questions: 

- what is needed to overcome the ill-structuredness of initial problem formu­
lations; 

- what knowledge is needed to generate new design concepts according to spe­
cifications given; 

- in what form should this knowledge be represented; 
- what reasoning method should be used to manipulate this knowledge effect-

ively. 

The paper discusses intermediate results obtained during developing the In­
vention Designer project aimed at automation of the early design phases. A product­
based model of innovative design presented below is based on a systematic ap­
proach to structuring conceptual knowledge for innovative design. 

To overcame ill-structuredness of problem formulations, an ontology of design 
specifications is proposed. 

2. Types of Innovative Design 

The essence of engineering design process is the mapping between known phys­
ical knowledge given a required function into a description of a realisable design 
product. Every engineering domain contains a set of fundamental physical laws 
(or "first principles") thus providing a basis for designing new products through 
combining and instantiating these principles. The use of first principles governs 
tasks of routine design or redesign rather well. The problem arises when a de­
signer experiences the lack of domain-dependent fundamental knowledge on the 
basis of which a new product can be designed. 

Even a quick look at the evolution of modem technology reveals that one of its 
trends is to create products embedding diverse physical principles. Due to com­
plex technical, ergonomic and ecological constraints even simple products tend 
to integrate various technologies. In many cases, a complex and unreliable design 
based on the principles of one domain can be replaced by a simple and reliable 
design built upon the principles of another domain. Essential there is that know­
ledge required for innovative design can be drawn from different domain and a 
new product can utilize physical principles from different domains. 

Transferring physical knowledge from one domain to another can signific­
antly simplify a design. Suppose, a problem is formulated as to prevent an elec­
trical motor from overheating. One of the known solutions within the electrical 



SHARABLE PHYSICAL KNOWLEDGE 725 

domain uses a temperature sensor which reads the current temperature value and 
an electronic system switching the power supply off when the threshold value of 
the temperature is reached. This problem can be solved much easier and the over­
all design can be made more reliable if the poles of the motor are made of an alloy 
with a Curie point equal to the required threshold value of the temperature. When 
the temperature reaches the threshold value, the magnetic properties of the poles 
change and the motor stops (Petrovich and Tsourikov, 1986). The necessity of 
introducing a complex and unreliable additional design has disappeared. 

As a consequence, it is possible to distinguish between two types of innovat­
ive designs with respect to engineering domains where a new design was gener­
ated: 

1. Domain-dependent innovative design, when a new product is entirely 
based on previous domain knowledge and physical principles. 

2. Domain-independent innovative design, when a new product is based on a 
new physical principle that has not been used in the domain before. 

To organize the cross-domain search for appropriate design knowledge at the 
level of specific design descriptions is nearly impossible: all available specific 
design knowledge of each engineering domain would have to be stored and prop­
erly indexed. Another problem is that it is unclear how to adapt previous know­
ledge to a new situation - no proven technique for conceptual adaptation of spe­
cific knowledge is available yet. The task can be simplified by organizing the 
search at the level of fundamental physical principles and using a procedure based 
on synthesis rather than on adaptation. 

There are several known approaches exploring ways of using modeled phys­
ical knowledge in the innovative stages of engineering design, such as: design 
from first principles (Williams, 1990); synthesis of new design concepts based on 
Bond Graph approach (Zaripov, 1988; Malmqvist, 1993; Schmekel, 1992); sys­
tematic design on the basis of Design Catalogues (Pahl et ai., 1984); and model­
ing domain-dependent engineering principles in form of primitive generic design 
components and synthesis of design concepts from these primitives (Alberts, 1993). 

All of these approaches deal with instantiating physical principles into spe­
cific design descriptions. The common idea behind the methods is the direct map­
ping between physical functions and relevant physical principles. This may pro­
duce the desired results in a case when it is known what physical function is re­
quired. On the other hand, in the innovative design phase, a problem might be 
formulated in terms that have nothing to do with physical entities. To overcome 
this situation, one should understand how to translate ambiguous formulations in­
herent to conceptual design phases into functions expressed in physical or design 
terms. 

Using physical handbooks and encyclopedia does not help much because phys­
ics as described in those sources is not adequately structured and organized prop­
erly with respect to engineering tasks. A systematic approach to organize this 



726 VALERI V. SUSHKOV ET AL. 

knowledge is required. Conceptual physical knowledge can be drawn from classes 
of specific designs and should describe general functional and design aspects of 
groups of designs based on the same physical principle. 

In order to develop a knowledge-based support for the domain-independent 
innovative design a unifying approach to structuring and representing various types 
of knowledge is required. This means breaking barriers created by the historical 
division of engineering sciences into different domains. Therefore, fundamental 
principles that would have to be used to provide the domain-independent innov­
ative design are to be represented in a form that would enable reasoning about 
conceptual aspects of existing artificial systems essential to design new products. 

3. TIPS Pointer to Physical Effects 

An approach to tackle the problems mentioned in the previous section is proposed 
by the Theory of Inventive Problem Solving (TIPS) (Altshuller, 1988; Sushkovet 
al., 1995). Apart studying evolutionary trends of artificial systems and discover­
ing general principles of innovative design, Altshuller describes the framework 
for organizing the use of fundamental physical knowledge in creative and innov­
ative designs. 

The physical knowledge is represented in a form of generally described phys­
ical phenomena and can be retrieved and used in a new situation according to the 
generalized technical function performed by a group of different designs based 
on the same phenomenon. Two designs that do not necessarily belong to the same 
engineering domain and based on the same phenomenon which is used to produce 
the same function are regarded as analogous designs. For instance, a phenomenon 
of thermal expansion may be used to perform a function "to displace an object" 
in various contexts. 

In TIPS, all the physical phenomena are collected in TIPS Pointer of Physical 
effects (PPE) (Selutski, 1987). The physical effects in PPE are structured accord­
ing to generalized technical functions. The functions are labeled generalized since 
they indicate some non-precise technical result that can be achieved by a whole 
group of different designs, for instance, to control an electromagnetic field. The 
current set of functions which is used in the software system Invention Machine 1 

counts hundreds of functions covering most of the possible IDS. 
Apart from the database of physical effects and lists of functions, the applic­

ability of each effect is illustrated by analogous design cases drawn from various 
engineering domains. The analogous cases are used to demonstrate how the same 
effect is used to achieve the same function in different design implementations. A 
fragment of the organization of the PPE is shown in Figure 1. 

As shown in the picture, PPE defines functions in a way different from what 
we can see, for instance, in Design Catalogues (Pahl et al., 1984). The functions 

1 Invention Machine is a trademark of Invention Machine Lab, Minsk, Belarus 



SHARABLE PHYSICAL KNOWLEDGE 

Generalized tecbnk:al 
functions 

To separate gas and liquid 

To orient particles 

To change shape 

To protect an object 

To move an object 

Pbyslcal effects 
DesIgn cases 

to establisb an analogy 
Curie Point 

Evaporation 
Previous designs 

Ferromagnetism 

Crystallization 

Figure 1. A fragment of the pointer to physical effects. 

727 

formulated in PPE cover the whole classes of manipulations with abstract phys­
ical quantities, without exact identification what engineering domain they belong 
to. Examples of technical functions in PPE are to protect substance, to separate 
gas and liquid, to increase speed, to control displacement. 

Summarizing, PPE has three basic features: 

1. Technical functions are used as indices of physical effects. They were col­
lected and generalized after studying a large number of patents. 

2. A technical function can be mapped onto a single effect directly perform­
ing the necessary physical function as well as onto an effect which does not 
produce the required final result itself but is a necessary auxiliary effect for 
obtaining the function. 

3. PPE also includes a collection of design cases, illustrating design applica­
tions of each effect. The collection is designed to help in establishing an ex­
plicit analogy between the previous case and a new problem. 

A drawback of PPE is that no formal representation of the physical effects is 
suggested. As a consequence, a solution to an inventive problem is only suggested 
as a set of physical effects without an indication of what a design implementation 
based on these effects will look like. This leaves the evaluation of the applicab­
ility of the retrieved effects to the responsibility of a human designer. Also, spe­
cific design implementations used in PPE as analogous design cases are domain­
specific and do not always help in establishing an analogy with a new situation. 

4. Integration of Experiential and Exact Knowledge 

The purpose of product-based modeling of design is to enable reasoning about 
the relationships between design products and its functions (Tong et aI., 1992). It 
is possible to distinguish between two strategies for mapping between previously 
used designs and functions (Figure 2): 



728 VALERI V. SUSHKOV ET AL. 

1---------------------------------------------
, Routine design: reuse and flIlaptaJion 

New requirement 

New design 

Specific design 
cases 

I ____________________________________________ J 

Innovative design: search and synthesis 

Retrieval 
New requirement 

Synthesis 

New design 

-------------------------------------- ______ 1 

Figure 2. 1\\'0 ways of using of previous knowledge in innovative design. 

1. Reuse of design knowledge incorporated in previous designs and adaptation 
of the knowledge to a new situation by using AI techniques for reusing past 
experience, like case-based reasoning (Sycara et al., 1989; Kolodner et ai., 
1993). This makes it possible to index previous design cases and use the in­
dices to retrieve analogous cases. However, the probability of finding a previ­
ous design case similar to a given one is strongly limited by 'missing' know­
ledge. This point is crucial for the innovative phase of design. It does not 
seem possible to index and store all aspects of a design solution: the set of 
possible initial requirements and all physical and design aspects of a final 
artifact is infinite. 

2. Use of previous design knowledge represented in terms of primitive design 
components - generic building blocks. A function given is decomposed into 
a set of primitive functions and a new design description is synthesized by 
combining corresponding components fulfilling each primitive function (Za­
ripov, 1988; Alberts, 1993). 

Using the physical principles in innovative design can lead to two types of 
innovative design solutions obtained by the use of physical principles: i) the prin­
ciple was previously used as a basis of designing some artifact in some engineer­
ing domain and ii) the knowledge has not been instantiated into any design yet. 
The model of the innovative design introduced in the paper is limited to the first 
time of innovative design solutions. 



SHARABLE PHYSICAL KNOWLEDGE 729 

Analysis of more than 400.000 patents made by Altshuller indicated that the 
second situation is only met in two percent of all inventions (Altshuller, 1988), 
virtually all of which are based on recent scientific discoveries that had not been 
used before. Brown and Chandrasekaran 1985 also subdivide the innovative design 
category into inventions and innovations; the latter are based on innovative use of 
existing knowledge or designs. This means that for most new design problems re­
quiring an inventive solution existing knowledge can be used and no generation 
of new fundamental knowledge is required. We regard this as a strong argument 
why a systematic approach to innovative design can be based on using previous 
experience. 

We argue that the best way to model innovative design based on fundamental 
knowledge is to integrate both experiential knowledge that deal with managing 
IDS and exact knowledge represented in form of generic building blocks. The 
role of exact knowledge in our model is twofold: first it enables one to repres­
ent various types of conceptual knowledge in a uniform way, second it is used for 
automated synthesis of new design concepts by combining and instantiating fun­
damental physical knowledge. We argue that a knowledge base incorporating all 
available physical principles can be effectively used to organize the use of deep 
physical knowledge to provide knowledge-based support for computer-aided in­
novative design. 

We distinguish between two major directions in which our current research is 
being carried out: 

1. Modeling physical principles to be sharable between different engineering 
domains. We regard this as a task of generic knowledge modeling since deep 
physical knowledge 
can be used to generate a number of various types of specific design know­
ledge. Structuring and organizing modeled generic physical knowledge into 
a knowledge base. 

2. Translation of initial key requirements into physical functions. In this 
activity, one has to formalize the collection of experientially defined tech­
nical functions of PPE and relate it to a predefined set of physical functions. 

In the next sections, we will discuss a framework for modeling physical prin­
ciples on the basis of YMIR - an ontological approach to modeling generic design 
knowledge, examples of modeled principles, and present fragments of the onto­
logy for IDS. 

5. YMIR: a Sharable Ontology for Modeling Design Knowledge 

To model generic physical knowledge for innovative design we use YMIR, a 
sharable ontology for modeling design knowledge in a uniform way. YMIR was 
developed at the Knowledge-Based Systems Group of the University of Twente 
(Alberts, 1993) and defines a taxonomy of concepts for the formal description 



730 VALERI V. SUSHKOV ET AL. 

of design knowledge in different domains. The concepts in YMIR for the ele­
ments from which to synthesize technical system descriptions are called generic 
system models (GSM). These generalized concepts have been defined in terms of 
network models in System Theory (Shearer et al., 1969). Generic system models 
explicitly incorporate the relation between such features of an engineering system 
as behavior and form. The advantage of YMIR is that the modeling framework is 
applicable to all domains in which technical systems can be described as system­
theoretical network models. 

In contrast to Bond Graphs, YMIR is not limited to only model energy as­
pects of a design. Using material and geometrical aspects of designs to model 
their behaviors makes it possible to incorporate necessary information on mater­
ial properties of designs. This claim is important since, in many situations, ini­
tial key requirements are formulated in terms of changing parameters of material 
components. As a consequence, the requirements can not be directly expressed 
in terms of energy transformations without knowing a particular effect which can 
meet those requirements. 

6. Generic Physical Principle (GPP) 

In YMIR, the GSM is used as a basic concept to represent generic design know­
ledge. The same framework can be used to model fundamental physical know­
ledge from the engineering point of view. In that case, a physical principle is rep­
resented as a system that has input and output ports and its behavior comprises 
different physical functions. A GSM representing a physical principle is more ab­
stract in nature than a GSM representing specific design knowledge because it has 
no influence of design constraints and other specific limitations. 

Any part of a system performing some specific function can be modeled as a 
set of fundamental physical phenomena occuring in the design. This makes it pos­
sible to apply the same physical model to represent different groups of designs. 
From a knowledge-based point of view, any physical phenomenon might be rep­
resented as a tuple: 

E =< E,M,C,t >, 
where E is a set of energy parameters, M is a set of material parameters, C is 
a set of context variables (conditions making the effect occur), and t is the time 
variable. On the basis of this definition the concept of a Generic Physical Prin­
ciple (GPP) is introduced. A GPP is a model of an abstract physical system based 
on a specific physical phenomenon. The basic 

model of a GPP has three parts: 

1. Behavior: a set of relations between input and output energy flows. 
2. Form: material and geometrical parameters which determine the behavior of 

GPP. 
3. Structure: lists of ports for input and output energy flows. 



SHARABLE PHYSICAL KNOWLEDGE 

EIN I 
inpu~ port '" L.._C_M_---I 

EoUT 

"'. output port 

Figure 3. Graphical fonn of GPP. 

731 

The basic idea behind the GPP concept is that the behavior of a system based 
on any physical principle can be expressed as a set of related physical functions, 
each of which, in turn, can be instantiated into a multitude of technical functions 
by adding specific contexts. Therefore, a GPP can be regarded as a high-level 
model of generic design knowledge which can be instantiated into a primitive 
design concept by adding constraints and domain-specific information. 

A general form of GPP is depicted in Figure 3. Here, em is a specific physical 
property of a material which provides the transformation of an input energy flow 
Ein into an output energy flow E out . Two types of GPPs are distinguished: 

1. Homogeneous GPP: input and output flows are of the same type of energy. 
2. Heterogeneous GPP: input and output energy flows are of different types 

of energy. The elements transforming one type of energy into another are 
known as transducers in System Theory. 

Summarizing, GPP incorporates both high-level energy transformation know­
ledge as a capability of some physical phenomenon to produce physical func­
tions and material aspects that make this transformation possible. Availability of 
material-related information in GPP enables one to translate between a GPP and 
more specific design description. 

A uniform way of representing GPPs and using the law of energy conserva­
tion make it possible to link several primitive GPPs into a more complex structure 
labeled a Generic Design Concept (GDC) (one of the possible definitions of a 
Design Concept notion in general is given in and). GDC is a synthesized concept 
of a new design which does not contradict physical realizability. 

7. Modeling at Macro- and Microscopic Levels 

Each GPP is modeled as a system model at the appropriate level of abstraction. 
The choice of the level of abstraction depends on what energy and form-related 
information on a physical effect is crucial to translate between physical and en­
gineering levels and to check the applicability of translated knowledge against 
functional requirements. 

Let us consider, for instance, the effect of louIe heat. The louIe heat arises 
in a conductive material when electrical current passes through the material. The 
heat is generated as a consequence of increasing internal energy of the material 



732 VALERI V. SUSHKOV ET AL. 

through collisions of migrating electrons which lose own energy. This effect is 
used in many technical systems, like electric stoves, toasters and hair dryers. 

There are, at least, two levels of abstraction at which the modeling might be 
performed: microscopic and macroscopic. Modeling physical behavior at the mi­
croscopic level requires establishing explicit relationships between energy charac­
teristics of migrating electrons and the general increase of internal energy of the 
material. To model the effect under macroscopic observations means to investig­
ate what information is crucial to achieve an externally observed result: arising 
of heat in a resistive material as a consequence of the current passing through the 
material. More precisely, we have to establish relations between input and output 
energy flows, and to specify how particular form-related aspects of a material are 
involved in the relations. 

The latter gives no clear understanding what internal physical processes cause 
the effect but exactly shows what is needed to cause the resulting effect and how 
one or another property of a material subjected to an action of external energy 
flow can be used in a practical way. In that case, the internal physical behavior 
does not need to be modeled unless we are interested in in comprehensive mod­
eling of the processes behind the effect. However, to make a final decision what 
level of abstraction would be more appropriate for modeling, first we need to ana­
lyze what information on the effect is necessary and enough to translate between 
the physical model and its design implementation. 

This method of modeling an external behavior of a system as a black-box 
might be used for all the types of transducers. An external energy flow ampli­
fies some internal physical process inside the material which is very weak to be 
observed or can not be applied within the required range of parameters. In other 
words, the source of energy already presents in a system and may produce much 
more required energy by converting flow of some other type of energy. It tum, ex­
istence of the weak energy source is provided by some other external energy flow 
acting on the material (like gravitational forces or thermal radiation of environ­
ment). If this external flow has no influence on the system workability within the 
required interval of parameters, it might be omitted while modeling. 

8. Modeling Physical Principles as GPPs 

YMIR introduces two types of variables that are used to describe a behavior of a 
system: 

1. System variables which describe energy flows in a system. Two 
types of system variables are distinguished: implicit variables which describe 
the energy flow through the system (e.g., electrical current and force flow), 
and explicit variables, which describe the potential differences across the 
system (e.g., voltage and displacement respectively). 

2. Form-related variables which describe principal material and 



SHARABLE PHYSICAL KNOWLEDGE 733 

I 
in H in , , , , 

\ I 

\ 
........ - - -", 

!J. U 
lout I'----~~ H 

~ ~ 
out 

T 

Figure 4. General model of the effect of louIe heat. 

geometrical properties of a design. They serve as parameters in the equations 
relating the system variables (e.g., length, modulus of elasticity). 

Besides, derived forms of both types of variables can be used as arguments 
of functions. For instance, power and kinetic energy are derived system variables 
and area and volume are derived form-related variables. 

The behavior of a generic system model is expressed as a set of relations 
between input and output system variables, where form-related variables serve 
as relating parameters. The physical behavior of the effect of Joule heat can be 
defined by the tuple: 

~=« Uin,lin >,< Tout,Hout >,F > 

where Uin and lin are input voltage and current,Tout,Hout are output temperature 
difference and the heat flow, and F is a set of form-related variables which are 
used as parameters in the equations of energy transformations. 

The model of the effect of Joule heat discussed above is depicted in Figure 4. 
The arrows indicate directions of specific energy flows. The arrow above the box 
indicates the direction of the energy transformation. 

A relation between the pairs of input or output system variables is established 
in a correct way easily whereas to establish the relation between input and out­
put system variables at the same level of abstraction is not possible. The problem 
arises because modeling of the same physical property of a material in terms of 
both domains is not allowed. In terms of electrical domain, the relation between 
the voltage U and current I is established by the Ohm law I = U / R whereas 
an electrical resistance R may not be used as a form-related variable to estab­
lish the relation between system variables characterizing the domain of heat and 
mass transfer. To establish this relation one has to use appropriate form-related 
variables of the thermal domain, like thermal capacity or thermal resistivity. To 
establish a relation between input and output energy flows one should investigate 
how form-related variables from both domains are interrelated. 

As said in previous section, a solution to this problem consists in modeling 
the external behavior of the effect and to hide microscopic-level information in­
side a black box. Therefore, the behavior of the effect can be defined as a relation 



734 VALERI V. SUSHKOV ET AL. 

between both input system variables and relevant output system variables. In the 
effect of Joule heat, such variable is the difference between values of the tem­
perature of the material before and after heating. Thus, the observed temperature 
difference is a time-dependent function of the internal process of heat and mass 
transfer occuring inside the material. 

The model of the effect of Joule heat is a system in which an output is defined 
as a thermal capacitance. A particular behavior of the system depicted in Figure 4, 
where a subject of interest (or essence of the effect, in other words) is the rela­
tion between the temperature difference and input voltage and time required to 
achieve the difference. According to the law of energy conservation, we assume 
that all electrical energy is transformed into a thermal energy generated by the 
heat source, and the thermal capacitance is created by the material from which 
the material component is made of. 

As known from System theory, thermodynamic power is defined as a product 
of entropy flow and temperature. Therefore, a relation of electrical-thermal trans­
formation can be written as Ea T = I a U, where E is entropy flow through 
the system. However, entropy was introduced as an associated parameter with 
the flow of heat through a thermal resistance, since the thermal resistance dis­
sipates no energy and the net heat flow is always zero. Hence, it is assumed that 
Ea T = H, where H is the heat flow. 

As a result of the heat flow through a given material, this material stores in­
ternal energy by virtue of temperature rise. For a real thermal system including 
non-dot material component the relation between the temperature rise and amount 
of heat flowing through the component is: 

where the system variable a Tout is the temperature difference for the time period 
from tl to t2, and form-related-variables are: Mm and em are the mass and the 
specific heat of the resistive material respectively. 

To define the external behavior of the effect of Joule heat we relate both pairs 
of system variables as 

dT dU 
dt = !(di); 

and substituting the heat flow variable with a relation for electrical power in terms 
of input voltage and electrical resistance, we obtain the equation for a particular 
behavior of the effect of Joule heat: 

Although the effect of Jo~ heat is non-reversible, this relation is correct unless 
the rise of temperature influences the relation between input system variables. At 



SHARABLE PHYSICAL KNOWLEDGE 735 

into account another physical effect which always accompanies the effect of Joule 
heat: electrical resistivity of a conductor is changed as a consequence of heating 
the conductor. This influence can be regarded as a feedback, and this relation must 
be included in the model of the system forming the effect as a part of its behavior. 

To model this part of the effect behavior, first the electrical resistance is defined 
as a form-derived variable in terms of form variables: 

Lm 
R=PM Am; 

where: PM is electrical resistivity of the material, L M is the length of the con­
ductor and AM is its cross-sectional area. For temperature intervals of as much 
as few hundred degrees, electrical resistivity is related to temperature by a linear 
expression of the form: 

where aM is the temperature coefficient of the resistivity, and PO is the electrical 
resistivity at a temperature To. 

Substituting R = poL/A, we can define the behavior of the system based on 
the Joule effect as: 

with the feedback constraint equation is P = po (1 + aM L\ Tout). 
Summarizing, an overall model of the effect of Joule heat includes three parts: 

form, structure specified by input and output ports, and behavior as a set of rela­
tions between system variables (Tables 1,2, and 3). 

Type of relation 

Input system variables 

Output system variables 

Transformation 

Feedback relation 

TABLE 1. GPP behavior 

Physical model 

RI =<Iin,Uin,R> 
Ro =< Hout,Tout,C > 

RT =< Tout, lin, Uin, Hout > 
RF =< lin, Tout> 

Mathematical expression 

The same approach is used to model the effect of thermal expansion. The ef­
fect of thermal expansion states that all substances change their shapes as a con­
sequence of undergoing changes in temperature. The effect can be widely applied 



736 VALERI V. SUSHKOV ET AL. 

TABLE 2. GPP form 

Form parameter Form variable 

Mass of an object Mm 
Specific heat of a material em 
Resistivity of the material p 

Initial resistivity of the material Po 
Length of the object L 
Cross-sectional area of the object AM 
Temperature coefficient of resistivity of the material aM 

TABLE 3. GPP structure 

Input ports Output ports 

in various technical systems where the precise change of mechanical parameters 
is needed. For instance, it is used to precisely control the displacement of a table 
in a microscope. 

The black-box model of the effect of thermal expansion for changing a linear 
size of a material is depicted in Figure 5. In this model, an input heat flow Hin 

causes elementary mechanical deformations of a crystal grid of the material. Un­
der macroscopic observations, these elementary deformations result in changing 
a linear size of a whole material. 

In terms which relate thermal and mechanical domains, the behavior of the 
effect can be expressed as: 

T in H in F out D out 
, , , , 

\ I 
,l----"t, 

Tout 
H ",' ____ ~' 

Din Fin out 
~ ~ 

Figure 5. Black-box model of the effect of thermal expansion. 



SHARABLE PHYSICAL KNOWLEDGE 737 

where Hin and lin are input heat flow and temperature, Dout and Fout are out­
put displacement and mechanical force correspondingly, and F is a set of form­
related variables which provide transformation of energy. 

The basic relation between linear size of a material and temperature is: 

where aL is the increase in length, Lo is the initial length of the material element, 
T is the temperature. Tl and T2 are the initial and final values of the temperature, 
and 0 M is the coefficient of thermal expansion for the material M. 

In terms of system theory, and following the law of energy conservation we 
can write the following relation for the behavior of the effect of thermal expan-
sion: 

or in an exact form·: 

dD _ dT F . 
dt - I( dt' ), 

aD = rT20MLOdTj 
JTl 

where aD is the linear displacement of the element subjected to heating. 

9. Generic Design Concept 

A generic design concept is synthesized on the basis of causal chaining several 
GPPs into a physical system whose overall behavior achieves the function re­
quired on the basis of energy resources given. Two GPPs may be connected if 
two conditions are satisfied: 

1. Output energy flow of the first GPP and input energy flow of the second 
GPP are of the same type, 

2. Values of parameters of both input and output energy flows belong to the 
same interval. 

The GDC includes at least, two components: an energy source and a GPP that 
provides the required transformation of energy or material parameter. Summariz­
ing the contents of previous section, a topology for Generic Design Concept can 
be synthesized which would be capable of performing the function "controlled 
displacement" on the basis of two effect described above: Joule heat and thermal 
expansion (Figure 6). 

10. Mapping Between IDS and GPP 

The behavior of any GPP can be observed from two points of view which may be 
of a particular interest to a designer: 



738 VALERI V. SUSHKOV ET AL. 

Energy Source Joule heat 
I . 

In 

, -­ H in ..-----..., 
~-=-=-,-------"'~, --, , 

;:::::\ , , 
lout '--__ ....J H." 

.n Hout'----....J 

Overall function: /I D = !(/lU) 

Figure 6. Example of generic design concept. 

- A material property of some component of the effect provides the transform­
ation of an input energy flow under the set of specific conditions. 

- The transformation of the input energy flow into the output energy flow leads 
to the change of the value of a material property of some system's compon­
ent. 

These two viewpoints are used to distinguish between two classes of oper­
ations that can be produced on the basis of the same effect: modification of an 
energy flow and modification of a material parameter. To retrieve a specific GPP 
that would be capable of performing one of these operations, an initial require­
ment must be translated into a physical function which represents one of those 
operations. Then, a GPP that has a behavior including the required function is re­
trieved from the collection of GPPs. 

To provide this translation, a new research direction has been recently initiated 
within the Invention Designer project. It is argued that to develop a formal method 
that would provide the adequate translation an ontological approach to represent 
IDS is needed. An ontology of IDS defines a taxonomy of possible concepts of 
IDS and distinguishes what levels of abstractions are needed to translate from one 
IDS concept into another. 

Analysis of the TIPS Pointer to Physical Effects leads to the conclusion that 
generalized technical functions can be identified with a limited set of fundamental 
physical functions which, in turn, can be expressed in terms of operations over 
physical parameters. If to express the physical entities in terms of system or form­
related variables, one can come up with the classification of physical functions 
which may be then mapped to different GPPs. 

On the basis of this classification, we can represent physical functions per­
formed by a GPPs in a qualitative form. Using these qualitative notations we 
bridge a gap between the generalized technical functions and physical functions. 
Since any system or form-related variable can be directly associated with its de­
rivations, the basic function has to be defined once and then its instances can be 
generated. 

Currently, all possible IDS fall into four categories: commonsense, constrained, 
behavioral and functional. Due to the lack of space we omit a detailed description 



SHARABLE PHYSICAL KNOWLEDGE 

Design Specification 
Categories 

Subcategories Examples 

_""""=============:=: to reduce manufacturing costs Commonsense complex to increase reliability 
requirements to Improve ergono11Ucalfeatures 

Technical behaviour -=::::::::- Object A displaces object B 
Behavioural Specif"lC8tiOns < Object A protects object B 

Physical behaviour _ to melt substance 

to generate electrical energy <Physical function ~ to reduce electrical resistance 

Fnnctional specifications to increase heat flow 

Mathematical function _ x =; 

Numerically expressed _ Speed = 200 mph <constraints 
Constrained specifications 

Qualitatively expressed - Heating is not allowed 
constraints 

Figure 7. IDS ontology. 

of the ontology. The IDS taxonomy with examples is shown in Figure 7. 

739 

Translation between the first and other categories is not clear how to achieve 
yet by automated means. For this reason a current research concentrates on es­
tablishing an adequate translation between behavioral IDS, constrained IDS and 
physical functions. 

11. Invention Designer 

Invention Designer developed as an implementation of the concepts introduced in 
previous sections illustrates applicability of sharable physical knowledge to in­
novative design. Current knowledge base of Invention Designer consists of 25 
GPPs which are retrieved according to given specifications of a physical function 
and energy sources that are allowed to use. An example of working with Invention 
Designer is show in Figure 8. 

An inference mechanism consists in search for a GPP whose behavior matches 
the function given. Then, other GPPs that can link the GPP selected to the energy 
source are searched. 

Currently, the alternatives can not be evaluated against specific constraints and 
requirements. Therefore, the Invention Designer supports the step "Generation of 
design concepts that would meet the IDS" of the schema proposed in Section 1. 



740 VALERI V. SUSHKOV ET AL. 

~ invention DeeIgner 

FUncIIan System VaItabIes MatedaI ~ Enetgy Sources 
generate f.- ~-(- .. ~ eliminate A I ?~cemenr A area (solid) AI ~~~ A 
vary '='---r==- w~ r amplify 

::!~ ~ature tronsparency 1t1ermaI 
flux electric. resistance electromagnetic 

conrrOl electrical current electric. voltage 
voltage electric. capacitance 

---I ---I ..:...J ---I 
FUncIIan ~gWgj 

System \aIabIe 
MateIIaI R:IIarneI8r 

Q!!Q!gcement 

Eneogy SourC4I electrical 

, .6WY) ~ 

~ Concept Generator 
~ 

O1ZHZJ-=::~ f Electrical source PeltIer Effect lhermal Expansion 

J ... ,~, J---I 

Figure 8. An example of working with Invention Designer. A causal network consisting of two ef­
fects - Peltier effect and the effect of thermal expansion was generated to perform the function "to 
control mechanical displacement. The search was limited by specifying available source of elec­
trical energy. 

12. Related Research 

The use of fundamental laws of natural sciences to model and represent know­
ledge for innovative engineering design is studied by a number of research groups 
worldwide. Among them are the University of Tokyo (Ishi et ai., 1993; Taura et 
aI., 1995), investigating how physical phenomena can be modeled to build knowledge­
intensive CAD systems, European groups systematizing physical knowledge to 
be used in creative design (Linde, 1994), and innovative design (Taleb-Bendiab, 
1993; Schmekel, 1992) as well as groups in the USA (Tsourikov, 1993; Williams, 
1990) and Russia (Zaripov, 1988). To model design knowledge in a uniform and 
sharable way, a growing interest in using ontological approaches should be poin-
ted out (Alberts, 1993). 

13. Conclusions 

We discussed a possibility to develop a model of innovative design based on the 
use of sharable physical knowledge in a systematic way. The concept of Generic 
Physical Principle makes it possible to develop a collection of sharable physical 
phenomena the use of which will be independent of specific engineering domain. 

Among the principal features of the approach discussed are: 

1. A basic knowledge structure is introduced for modeling sharable physical 



SHARABLE PHYSICAL KNOWLEDGE 741 

knowledge - Generic Physical Principle. It incorporates both energy and ma­
terial aspects of physical principles that are needed to make instantiations of 
physical knowledge into design concepts. 

2. An ontological approach to modeling design knowledge is applied to model 
different types of physical principles in a uniform way and to evaluate future 
designs against physical realizability at the earliest stages. 

3. To organize and structure a collection of GPPs and to complete a knowledge 
base of GPPs the available TIPS Pointer of Physical Effects 
is used as a primary knowledge source. 

4. A uniform way of modeling and representing GPPs makes it possible to com­
bine GPPs into more complex sharable structures labeled Generic Design 
Concepts. 

5. Modeling of GPPs is based on system-theoretical approach which helps 
to make abstractions of physical functions performed by GPPs and to 
develop an ontology for design specifications. 

Currently, a knowledge base of GPPs on the basis of the approach discussed 
above is being developed. It will serve as a testbed for verifying the concepts in­
troduced. In the short-run we plan to develop a knowledge base of 200 GPPs and 
to implement a mechanism for constraint management. 

One of the problems still to be solved is what to do when IDS can not be 
translated into any of predefined functions. This means that an initial problem 
statement requires reformulation. The reformulation of the problem can be done 
by using the Theory of Inventive Problem Solving techniques (Altshuller, 1988) 
which help to obtain a formulation as a kind of particular function recognizable 
by PPE. However these techniques are not ready to be modeled formally yet. 

One of the research directions which requires thorough study is the develop­
ment of an ontology for IDS. A taxonomy of abstract design functions will help 
to translate initial key requirements into exact physical functions. 

References 

Alberts, L. K.: 1993, YMIR: a domain-independent ontology for the formal representation of 
engineering-design knowledge, IFIP Workshop on Formal Design Methods for CAD, Tallinn, 
Estonia, pp. 139-152. 

Andersson, K.: 1993, A vocabulary for conceptual design - Part of a design grammar, in J. S. Gero 
and E. Tyugu (eds), Formal Design Methods for CAD, Elsever Science, Amsterdam, pp. 157-
171. 

Altshuller, G. S.: 1988, Creativity as an Exact Science, Gordon and Breach Scientific Publishers, 
New York. 

Brown, D. and Chandrasekaran, B.: 1985, Expert systems for a class of mechanical design activity, 
in J. S. Gero (ed), Knowledge Engineering in Computer-Aided Design, North-Holland, Ams­
terdam. 

Ishi, M., Tomiyama, T.'and Youshikava, H.: 1993. A synthetic reasoning method for conceptual 
design, in M. Wozny and G. OIling (eds), Towards Worlds Class Manufacturing, Elsiever Sci­
ence, North-Holland. 



742 VALERI V. SUSHKOV ET AL. 

Kolodner, L. K. and Wills, L. M.: 1993, Case-based creative design, Artificial Intelligence and Cre­
ativity, Autumn, 50-57. 

Linde, H.: 1994, COIS - A Contradiction-Oriented Innovation Strategy, Fachhochschule Coburg, 
Germany. 

Malmqvist, J.: 1993, Computer-aided conceptual design of energy-transforming technical systems, 
Proceedings of International Conference on Engineering Design ICED'93, The Hague, August 
17-19,pp.1541-1550. 

Pabl, G. and Beitz, W.: 1984, Engineering Design: a Systematic Approach. Springer Verlag. 
Petrovich, N. T. and Tsourikov, V.M: 1986, A Way to Invention, Evrika, Molodaya Gvardia, Mo­

scow (in Russian). 
Schmekel, H.: 1992, A System for Conceptual Design Based on General and Systematic Principles 

of Design, Doctoral Thesis, The Royal Institute of Technology, Stockholm. 
Selutsky, A. B. (ed.): 1987, Daring Formulae of Creativity, Karelia, Petrozavodsk (In Russian). 
Shearer, J. L., Murphy A. T. and Richardson, H. H.: 1969, Introduction To System Dynamics, 

Addison-Wesley. 
Sushkov, V. V, Mars, N. J. I. and Wognum, P. M.: 1995, Introduction to TIPS: a Theory For Creative 

Design, Artificial Intelligence in Engineering, 9. 
Sycara, K. and Navinchandra, D.: 1989, Integrating case-based reasoning and qualitative reasoning 

in design, in J. S. Gero (ed.), AI in Design, Computational Mechanics, UK. 

Taleb-Bendiab.: 1993, CONCEPTDESIGNER: a Knowledge-Based System for Conceptual Engin­
eering Design, ICED' 93, The Hague, The Netherlands, pp. 1303--1310. 

Tong, C. and Sriram, D. (eds): 1992, Artificial Intelligence in Engineering Design, Volume II: Mod­
els of innovative design, reasoning about physical systems, and reasoning about geometry, 
Academic Press Inc. 

Taura, T., Koyama, T. and Kawaguchi, T.: 1995, Research on natural law database, Design Sym­
posium, Tokyo. 

Tsourikov, V. M.: 1993, Inventive machine: Second generation, AI and Society, 7(1), 62-78. 
Williams, B. C.: 19W, Interaction-based invention: Designing novel devices from first principles, 

Proceedings 2nd AAAI Workshop on Model Based Reasoning, AAAI, Boston, MA. pp. 168-
175. 

Zaripov, M. F.: 1988, Energy-Informational Method of Scientific and Engineering Creativity, 
VNIIPI, Moscow (In Russian). 



J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96,743-759. 
© 1996 Kluwer Academic Publishers. 

ASSISTING CREATIVITY BY COMPOSITE REPRESENTATION 

EWAGRABSKA 
Institute of Computer Science, Jagiellonian University, 
ul. Nawojki 11, 30-072 Cracow, Poland 

AND 

ADAM BORKOWSKI 
Institute of Fundamental Technological Research 
Polish Academy of Sciences 
ul. Swietokrzyska 21,00-049 Warsaw, Poland 

Abstract. The paper presents a composite syntactic-semantic representation of objects 
that is particularly suited for creative design in engineering. This representation is to a 
great extent oriented towards visual evaluation. The role of emergence both in art and 
in engineering design is discussed firstly. It is shown on examples taken from Escher's 
prints, Civil Engineering and Mechanical Engineering that the emergence can occur with 
respect to the shape of the object or to its internal structure or topology. The composite 
representation supports the search for alternative solutions in both domains. It has been 
implemented as a design tool including the editor of graph grammars, the generator of 
composition graphs, the library of primitives and the visualisation module. 

1. Introduction 

Design is associated with patterning, shaping and form giving at many levels. In 
particular, creative design is closely associated with the action of drawing and 
with the visual perception of the result. Computers certainly offer substantial sup­
port for visual thinking and imagery since they allow the designer to generate and 
manipulate drawings easily. Moreover, due to the possibility to generate patterns 
iteratively computer allows the user to analyze and evaluate new classes of pic­
tures, e.g., fractals. 

In this paper we propose an approach to creative design, in which visual eval­
uation is an important mode of work of a designer. Our proposal is based on the 
composite representation allowing to integrate the product modelling and the pro­
cess modelling in the conceptual phase. We discuss design within the framework 
of graph transformations which are described by rules transforming subgraphs of 



744 EWA GRABSKA AND ADAM BORKOWSKI 

limited size (Schneider and Ehrig, 1994; Borkowska and Grabska, 1995). The 
result of product modelling is the artifact represented as a union of transformed 
primitives being basic geometrical shapes. However, graphical design is not re­
duced to the problem of selection and arrangement of such basic shapes. If we 
choose primitives that are to be components of the graphical solution, transform 
and arrange them according to a certain conception, then we often obtain a draw­
ing which exhibits attributes quite different from the mere summation of the prop­
erties of all its components. The components interact with one another (Coyne 
et ai., 1990). Therefore visual evaluation gives an opportunity for designers to 
see shapes in their own drawings that they had not conciously constructed. Such 
a phenomenon, called emergence, attracted large scientific interest recently (Ed­
monds, 1992; Gero and Yan, 1994; Weld, 1994). 

In the following sections we discuss the features of emergence in art and in 
engineering design. In the case of art the emergent attributes of shape, color or 
texture influence the visual impact of the work of art on the spectator. In engin­
eering a discovery can be triggered by an emergence, provided the visualisation 
of different aspects of the considered object is available. 

It is commonly agreed that a computer tool assisting design should enable 
the user to browse comfortably through alternative solutions. Several interesting 
paradigms were reported recently in the literature, among them a maze concept 
by Boulanger and Smith (1994). We believe that the graphical environment de­
scribed in this paper serves the same purpose. 

2. Emergence in art 

Our attempt to bring design and computer systems together depends on joining 
the computer generation with the human perception of the result in the form of 
visual representations. Although this paper deals with computational aspects of 
creative design, we do not agree with Chomsky's opinion that rewrite rules can 
be identified with the creativity governed by rules (Coyne et aI., 1990). Our ap­
proach to design is closer to M. C. Escher's approach because his work as the 
mathematician and the designer was only preparatory to his work as the graphic 
artist (Schattschneider, 1990). 

We adapted Escher's strict separation of structural (syntactic) and semantic 
aspects of the artwork in the process of creative design. Our approach to design is 
atomistic. Artifacts are formed from simple building blocks called primitives. The 
primitives are our atoms, the indivisibles, but just as physical atoms have internal 
structure and can be split into elementary particles, in the same way the primitives 
may sometimes be further divided. Thus, we deal with the hierarchical organiza­
tion of an artifact. Given the primitives, we define rules limiting the way they may 
be combined together. These rules determine the syntax of an artifact and allow us 
to define its structure. 



ASSISTING CREATIVITY BY COMPOSITE REPRESENTATION 745 

Conventionally, we describe an artifact by means of a graphical model with 
primitives defined as simple geometric shapes appropriate to the artifact's type. 
Each occurance of a primitive within a model is called an instance. Instances 
are defined by specifying their transformations such as sizes, position, etc. In 
other words, they are transformed geometric primitives forming components of 
the graphical model. 

In this section we consider the notion of emergence in its basic meaning ap-

Figure 1. Emergent shapes: a) Escher's visual trick; b) new coloring; c) syntax. 

plicable to art. The well known artworks of Escher will serve us as an illustra­
tion. The pattern in Figure l.a shows a well known visual trick used by Escher 
for many prints, e.g., for "Cycle", "Metamorphose", and "Concave and Convex" 
(MacGillavry, 1986). A set of three adjoining parallelograms, repeated in two dir­
ections, can be interpreted as a stack of blocks in two different ways. Seen from 
below, the black face is the bottom of each block. On the contrary, seen from 
above, the black faces are the tops of blocks. This double interpretation of Es­
cher's pattern was intended. The pattern was designed to be ambiguos. For both 
interpretations the pattern is composed of twelve instances of the parallelogram 
(Figurere I.c). On the other hand, in the structure of the pattern two primitives: 
a cube and a parallelogram can be distinguished. Moreover, there exist also addi­
tional two-dimensional interpretations of the pattern, e.g., this figure can be seen 
as the star surrounded with six parallelograms. Reflection upon coloring the pat­
tern and changing colors of its components may lead to the new pattern in which 
the central star is seen as a structural element, i.e., a primitive (Figure La). Color 
belongs to the attributes which are essential both in extracting new properties of 
the pattern and in its modification. It is possible that the star was not conciously 
constructed by Escher, i.e., it might be an emergent shape. Escher strictly separ­
ated the syntactic and semantic aspects of his work of art in the process of creative 
design. We illustrate this problem using his woodcut "Square Limit". The wood­
cut presents fish-shaped elements which are regularly and continuosly halved in 
the direction from within outward (see: p.315 in Schattschneider (1990». Escher 
used recursion for gradual reduction of the shapes because he wanted to obtain 
an infinite number of component elements in the bounded area of the plane. The 
structure of the "Square Limit" proposed by him is shown in Figure 2.b. Each 
triangle corresponds to one component of the woodcut. In the next step of creat-



746 EWA GRABSKA AND ADAM BORKOWSKI 

b 

Figure 2. "Square Limit": a) structure; b) coloring. 

a 

Figure 3. Two visual variations of Escher's Square Limit. 

ive work the structure was equipped with the color attribute. Figure 2.b presents 
Escher's proposal of coloring of the "Square Limit". It is worth to notice that dif­
ferent coloring the same structure gives the observer an opportunity to see shapes 
that had not been conciously constructed by the designer (Weld, 1994). Then Es­
cher could look for shapes replacing the triangles. He has choosen the fish shaped 
one. Two different realizations proposed by us are shown in Figure 3. In Sec. 4 we 
shall generalize Escher's approach to design. One of the key ideas of our proposal 
is to specify a single graph defining the internal structure of the designed object 
and to let the designer play with visual variations by modifying the realization 
scheme. 



ASSISTING CREATIVITY BY COMPOSITE REPRESENTATION 747 

3. Emergence and discovery in engineering design 

Contrary to pure art, the shape of an engineering object is subordinate to its func­
tion and to the desired qualitative attributes of the designed artifact. Hence, the 
notion of emergence should be understood here in a broader sense. Acquiring a 
new idea by an alternative interpretation of a picture remains essential. However, 
this time the designer may look not only at the object itself but also at the visual 
representation of such important data as, e.g., the stress field inside the designed 

.. 

a) .. ~ 
b) :=H:::::::::::·:=::::=:=:::=::::::::::r = 

: : - -

• II 

- -
• II ! + i 

:::0 -'-':::-'-':::::::::::::::::::::::::::::::::,0 ::: 
: : : : 

Figure 4, Alternative solutions of a deck: a) unidirectional slabs; b) bidirectional plate. 

object or the shape of its natural vibration. 
Since in engineering we prefer to deal with unambiguous descriptions, it hap­

pens rarely that the visualisation of a single attribute of an object can be inter­
preted in many ways. More freedom in interpretation occurs when visual counter­
parts of several attributes or alternative solutions are perceived simultaneously. 

Figure 5. Examples of a reinforced concrete deck: a) discrete solution; b) smooth solution. 

It is a conscious or subconscious process of merging, combining and modifying 



748 EWA GRABSKA AND ADAM BORKOWSKI 

Figure 6. Exhibition hall in Torino (Italy) (the authors - R. Biscaretti di Ruffia and P. L. Nervi.) 

such pictures in our mind that leads to discoveries in design. Some of such pro­
cesses can be classified as emergent. 

Let us consider several examples from Civil and Mechanical Engineering. In 
spite of their apparent variety, load carrying structures in Civil Engineering are 
composed of a small number of primitives. One can consider a column, a beam 
and an arch as such primary blocks, since a plate can be regarded as the bidirec­
tional beam, a shell - as the bidirectional arch and a cable structure is the reversed 
arch. Figure 4.a shows the simplest solution of a deck over a given rectangular 
area: the rows of columns are connected by beams and the spans between them 
are covered by slabs. Such a deck would have an appearance similar to the cast­
in-situ one shown in Figure 5.a, except that the junctions between slabs could be 
aesthetically nonacceptable. The designer would probably take into account not 
only this circumstance. He or she would also consider the load carrying capacity: 
a plate working in 2 directions (Figure 4.b) is obviously stronger for the same 
thickness than a collection of uni-directional slabs. Pursuing further the idea of 
smooth flow of stresses in the structure, one might prefer to remove the beams 



ASSISTING CREATIVITY BY COMPOSITE REPRESENTATION 749 

completely and to choose the structure shown in Figure 5.b. A concept of plate 
emerges from the initial scheme of Figure 4.a when the flow of stresses is re­
interpreted in the bidirectional sense. Similar situations arrise for more complic­
ated structures. Consider covering a huge area of an exhibition hall or a hangar for 
aeroplanes. Since arch is reasonable choice when dealing with long spans, one 
might compose the roof of a large number of adjacent arches (Figure 6). Nervi 
managed to make this simple structure aesthetically appealing by gradually lead­
ing forces to the foundation via intermediate pylons. However, we conjecture that 
the hangar build by the same designer in early 1940' s (Figure 7) impresses the ob­
server even more. It is a principally bidirectional structure: the arches arranged 

Figure 7. Hangar for aeroplanes in Italy (the author - P. L. Nervi). 

into a grid inclined at 45 degrees to the boundary of the building interact at each 
node and transmit the forces to the truss at the bottom of the roof. At the same 
time this roof can be viewed as a cylindrical shell with the diaphragms at the ends 
and the stiffeners a long the edges. Such a duality in the interpretation of Figure 7 
resembles the visual effects discussed in Sec. 2. 

The diversity of objects in Machine Engineering is much broader. As an ex­
ample of discovery that can be interpreted in terms of emergency let us consider 
the design of the motorcycle. For a long time the scheme taken from the bicycle 
prevailed: the rear wheel and the fender were attached separately to the load car­
rying frame. Looking at the stress flow diagrams and considering the functional 



750 EWA GRABSKA AND ADAM BORKOWSKI 

scheme of the motorcycle one eventually came upon the idea that the fender could 
bear the load as well. Such a solution was adopted indeed some years ago and 

fr • fTame, fn - fender, sa - shock absorber} rc - rocker arm, 
rw - rear Wheel, if - integrateo fTame 

Figure 8. Conceptual solutions of motorcycles: a) conventional scheme with the shock-absorber 
attached to the upper part of the load-carrying structure; b) solution with shock-absorber integrated 
into the hinge. 

most modem motorcycles have an integrated load carrying structure. Note that 
several aspects influenced the design simultaneosly: the forces must be transmit­
ted from the body of the motorcycle to the wheel, the driver must be protected 
against the mud and the form of the bike must be aesthetically acceptable. Re­
cently a more radical change in the solution of the rear part of the motorcycle 
has been introduced. Figure 8.a shows the previous arrangement: the rear wheel 
is attached to the main block by means of 2 elements - a horizontal rocker-arm 
and a vertical or sligthly skew shock-absorber. The rocker-arm is pin-jointed to 
the frame of the bike in order to allow the wheel to move vertically. Hence, its 
only function is to keep the wheel at a constant horizontal distance from the main 
block. Vertical forces are taken over of by the shock-absorber. 

Once upon a time some ingenious designer noticed that an elastic-damping 
element can be incorporated into the hinge that connects the rocker-arm to the 
main block of the motorcycle. As a result the radically new solution depicted in 
Figure 8.b was found. Due to its simplicity and the advantages it shows in heavy 
terrain, such a solution prevails nowadays in cross-country machines. 



ASSISTING CREATIVITY BY COMPOSITE REPRESENTATION 751 

The discovery of the integrated load-carrying block can be viewed as the shape 
emergency: looking at the old-fashioned motorcycle the designer could envision 
the unification of certain parts. On the contrary, the transition between the schemes 
shown in Figure. 8.a and 8.b involves the change of structure or topology. There­
fore, we are confronted here with the topological emergency. It plays crucial role 
in any kind of creative design. 

4. Composite syntactic-semantic representation 

Creativity can be discussed in relation to both artifact and process (Coyne et al., 
1990). In this section we propose a composite representation which integrates 
the two aspects of creative design. Our representation includes the following ele­
ments: the composition graphs (CP-graphs) generated by a graph grammar, the 
realization schemes and the control diagrams. 

The syntax of an artifact is described by a CP-graph. Such a graph has two 
types of node labels. For a given node, a label of the first type contains the name 
of a primitive and a label of the second type lists the bonds. The number of node 
bonds expresses the maximal number of the connections between the primitive 
corresponding to the node and other primitives. Each CP-graph has two kinds of 
bonds: engaged bonds which are connected by means of edges and the remaining 
bonds called free bonds. 

sa 

2 0 fr o...J-o fn o 3 
1 

:= o if 
2 0 

1 
fr -frame 
fn • fender ;} 

rc~rw 
sa - shock absorber 
rc • rocker arm 
rw - rear wheel 
if - integrated frame 

Figure 9. CP-graph representation of shape emergence for conceptual solutions of motorcycles. 

The CP-graph g1 shown in Figure 9 represents the conventional solution of a 
motorcycle depicted in Figure 8.a. The primitives are the following: a frame (f r ), 
a fender (fn), a shock absorber (sa), a rocker-arm (rc), and a rear whell (rw) . 
The abbreviations of the primitives Ir, In, sa, rc, and rw are the node labels of 
the CP-graph g1. We draw a picture of a CP-graph representing bonds as small 
circles placed in the nodes and showing edges as the lines connecting the pairs of 
bonds. The CP-graph g2 shown in Figure 9 is the result of shape emergence, in 



752 EWA GRABSKA AND ADAM BORKOWSKI 

which integrated load carrying block was proposed (see: Figure 8). On the other 
hand, the CP-graph 92 can be obtained by applying the rule PI to the graph 91 . 

In general, a rule P is composed of two CP-graphs - left-hand side and right­
hand side, which are denoted by 1(P) and r(p), respectively. The replacement op­
erator:= means that the CP-graph l(p) is to be replaced by the CP-graph r(p). We 
assume that for each rule p, l(p) and r(p) have the same number of free bonds 
with the same numeration. For example, the number of free-bonds of I (PI) and 
r (PI) of the rule PI in Figure 9 equals 2, and the order numbers of the bonds are 
1 and 2. 

To apply the rule PI to the CP-graph 91 we remove the I (PI) from 91 and 
insert r(pl) . Then we replace two edges between the node fr and two nodes sa 
and rc of graph 91 by the edges connecting free bonds of the node constituting 
r (pd with the bonds of the same two nodes in the same bond order. 

The topological emergence considered in Sec. 3 and related to the new solu­
tion of a motorcycle (Figure 8.b) can be described by the rule P2 shown in Fig­
ure 10. The graph 93 in this figure is the result of application of P2 to the graph 

if if g3: f 

111 
a-

il 111 
.- sa sa 

f 
re o 2 "-re~rw 

Figure 10. CP-graph representation of topological emergence in designing motorcycles. 

92. The new conceptual solution of a motorcycle is the result of two modifica­
tion of the conventional solution. This creative process can be described by two 
CP-graph rules constituting the graph grammar. The process of transforming the 
CP-graph 91 by the rule PI and then the CP-graph 92 by the rule P2 is a derivation 
of the graph grammar. 

Having a set of rules we want to generate such CP-graphs which are syntactic 
descriptions of plausible solutions. In other words, some means of representing 
and using control knowledge for CP-graph grammmars is needed. In our approach 
we represent such a knowledge by the control diagram which is a connected dir­
ected labelled graph. With exception of the initial and the final node labelled I and 
F, respectively, all other nodes of a control diagram are labelled by production 
names. Applying a derivation process according to the order stated in the control 
diagram, we start with a production which corresponds to the label of a direct 



ASSISTING CREATIVITY BY COMPOSITE REPRESENTATION 753 

Figure 11. Control diagram of the creative process for motorcycles. 

succesor of the initial node. The derivation proces stops when the final node is 
reached. Figure 11 presents a very simple control diagram of the creative process 
for motocyc1es described by the two rules PI and P2 and presented above. We as­
sume that CP-graph gl is an initial graph. The control diagram has 2 paths leading 
to 2 solutions. The first path corresponds to the derivation from the CP-graph gl 
to the CP-graph g3 by means of the rules PI and P2. The second path allows us to 
apply the rule PI to the CP-graph gl and generate the CP-graph g2 . 

Usually, control diagrams are more complex. We shall have an opportunity of 
seeing it in the next example. 

Let us consider Escher's visual trick discussed in Sec. 2. The CP-graph gl 
in Figure 12 shows the syntax of the pattern composed of 12 primitives, which 

Figure 12. CP-graph representation of a cube interpretation of Escher's visual trick. 

was presented in Figure 1. Each node corresponds to a single parallelogram. Node 
bonds corresponding to the fragments of the parallelogram assigned to the nodes, 
namely to its sides. The edges connecting bonds represent the coincidence rela-



754 EWA GRABSKA AND ADAM BORKOWSKI 

tion that says that there exists coincidence of the appropriate pairs of sides of the 
neighbouring parallelograms. 

Figure 13. Control diagram of the set of rules shown in Figure 12. 

The CP-graph g2 in Figure 12 corresponds to the interpretation of the pattern 
seen from below. In this case we distinguish three cubes with black bottoms, and 
three parallelograms. The sequence Pl,P2,P3 of the graph rules in this figure al-

p: 

Figure 14. CP-graph representation of star interpretation of Escher's visual trick. 

lows us to derive the graph g2 from the graph gl. 
It is worth to noting that these 3 rules are independent. Each permutation of 

the sequence Pl,P2,P3 of rules leads us from the initial graph gl to the graph g2. 
The control diagram shown in Figure 13 describes the derivations. The number of 
paths from the node I to the node F is equal to 6, i.e., to the number of permuta­
tion of the sequence. Different paths in the control diagram are associated with 
different order of perception of the succesive cubes in Figure 1. 



ASSISTING CREATIVITY BY COMPOSITE REPRESENTATION 755 

The CP-graph 9 in Figure 14 is the result of applying of the graph rule p 
shown in this figure to the CP-graph 91 in Figure 13. The rule p describes joining 
six parallelograms together in one star. In the structure 9 the edges also represent 
the coincidence relation of appropriate sides. 

As it has been considered for Escher's "Square Limit" a CP-graph enables us 
to play with shapes of primitives for different graphical models defined for the 
structure. Figure 15 presents our propositions of two graphical models defined 

Figure 15. Two realization of the syntax shown in Figure 14 .. 

for the syntax shown in Figure 14. In our approach shapes are seperated from the 
syntax. They are defined in a realization scheme being the third element of our 
composite representation. 

A realization scheme is composed of 3 units. For the first of them the user 
defines a set of primitives together with a set of admissible transformations in the 
Euclidean space. We assume that the set of admissible transformations contains 
at least similarities. A question arises in what way a set of admissible transforma­
tions and a set of primitives have to be chosen in order to make the most of com­
puter in designing. Obviously, the optimal choice depends on the purposes that 
the designer is to gain. It seems that the most universal choice would be if affine 
transformations were accepted as the set of addmissible transformations. We must 
emphasize that sometimes it is better to have more prototypical parts and less ad­
missible transformations. For instance, if we want to built a graphical model of 
the fragments of conic curves it is better to accept all conic curves as primitives 
(they will be parametrized) and to take isometries as a set of admissible trans­
formations (Grabska, 1993). Non-geometrical attributes, like color, texture, etc, 
that are to be associated with primitives are also defined within the first unit of 
the realization scheme. 



756 EWA GRABSKA AND ADAM BORKOWSKI 

c 

c 

Figure 16. Coloring relation between bonds. 

The second unit of a realization scheme contains CP-graph nodes with labels 
corresponding to the names of primitives. In other words, the designer assigns the 
primitives to the CP-graph nodes and relates the fragments of primitives to the 
bonds of nodes corresponding to these primitives. Additionally, the attributes are 
transfered from primitives to CP-graph nodes. 

The third unit contains the descriptions of conditions related to an artifact 
and its component. Moreover, the transformations that match the components of 
graphical models are determined. First of all, these are the topological relations 
between primitives of an artifact. But we also consider non-geometrical relations 
between components. Names of relations are defined in the syntax (a CP-graph) 
of an artifact as edge labels and then in the third unit of the realization scheme 
such relations are represented by means of the appropriate predicates. 

Let us consider non-topological relation between bonds. Figure 16 presents the 
next realization of the syntax shown in Figure 14 and the CP-graph being the syn­
tax enriched with 12 bonds representing component fragments of the realization 
(2 small circles for each of 6 non-central components) and 6 new edges labelled 
by c for connecting these bonds. We experiment with coloring small circles by 
means of the relation between colors which is taken to be equality, i. e., an edge 
labelled by c connects two bonds if the circles corresponding to the bonds are 
unicolored. This relation is satisfied for the realization shown in Figure 16. 

5. Remarks on implementation 

The composite representation was implemented in a prototype program developed 
by the first author and her students. It is written in C++ under Microsoft Windows 
Operating System for PC computers and is source-code portable to other hard­
ware platforms for which MS Windows is available. 

The prototype program is a bridge design tool allowing the user to acomplish 



ASSISTING CREATIVITY BY COMPOSITE REPRESENTATION 757 

an efficient search of alternative conceptual solutions. A CP-graph grammar with 
33 rules generating different types of bridges has been outlined in Borkowski and 
Grabska (1995). The main modules of the code are: an editor of CP-graph gram­
mars and control diagrams, a generator of CP-graphs, and a realization block with 
a browser of primitives. Each of them is access able through a separate window 
of the Windows 3.1 environment. The editor allows the user to define rules of a 
CP-graph grammar and a control diagrams for them. In the generator, CP-graph 
structures of designed bridges are derived using sequences of rules supplied by 
the editor. The realization block enables the user to assign primitives to nodes of 
CP-graph rules and change technical parameters of bridges. 

Every designing session must consist of several steps. The first step in design­
ing a new bridge with this application is to specify a terrain. It may be done 
by dragging a mouse. All information concerning the shape of terrain must be 
entered at this point of designing process. It may be done by dragging a mouse 
or reading the profile of the valley from a disk file. Next the type of bridge, the 
number of pylons and the length of bridge have to be specified. It is done by us­
ing a dialog window into which all needed data is to be entered. Also the choice 
whether the bridge is to be generated automatically or by hand is to be made here 
by clicking an appropriate box in this dialog window. Pressing the OK button res­
ults either in generating and drawing on the screen a bridge based on the entered 
data (if automatic generation was choosen) or in drawing a skeleton of a bridge 
(i.e. showing the positions of pylons). In the later case the bridge has to be gener­
ated by adding subsequent elements by hand. After the bridge has been drawn the 
pylons are equally spaced. If it is necessary to modify their position, this can be 
done by dragging with a mouse their position lines. A removal of any individual 
pylon is also possible. Now, when a general structure of a bridge has been fixed, 
the upper or lower arcs may be added to the beam in order to improve the aesthet­
ics. At every point of the design process the user can display the CP-graph, cor­
responding to current stage of a bridge. A transition from, e.g., continuous beam 
to cable bridge is accomplished by mere replacement of the primitives. The rules 
that exclude certain sizes or combinations of elements are included into the pre­
dicates of the realization scheme implemented in the realization block. Thus, the 
program keeps the designer in the domain of admissible solutions. 

The most radical and, therefore, most interesting changes occur when the CP­
graph is modified. Unfortunately a bridge is not the best object for such search: 
its topology is too stiff. Therefore, we are experimenting at present with a more 
advanced version of the program. This version is thought as a general purpose 
knowledge representation scheme preserving the main feature of the composite 
model - the clear separation of syntactic and semantic elements. Implemented as 
an expert system shell such a program can be easily ported to a certain domain of 
engineering design by means of the exchangeable libraries of primitives and the 
domain specific realization schemes. 



758 EWA GRABSKA AND ADAM BORKOWSKI 

6. Conclusions 

Up to now the best means of considering conceptual solutions has been sketch­
ing. A thorough study of traditional sketching allows us to share opinion that con­
temporary CAD tools still appear to be too cumbersome for genuine sketching 
(Goldschmidt, 1991). On the other hand, computers offer some new possibilities 
and ideas for this creative activity, which are not available by traditional means, 
for instance visualization of recursive and iterative methods. One of reasons to 
use these possibilities can be intention of employing the theory of fractals as a 
new paradigm of architecture (Schmitt, 1987; Grabska et ai., 1994). 

In order to persuade designers to use computers in the process of creative 
design we must equip CAD tools with "an intelligence" that traditional tools of 
sketching, a pencil and a paper, do not possess. It is commonly agreed that an 
intelligent drawing pad should incorporate the knowledge about constraints im­
posed upon the designed artifact. It seems, however, to be not sufficient. The com­
posite representation we outlined above forces the designer to think about objects 
at 2 levels: the higher level of structural properties and the lower level of geo­
metry, primitives etc. Defining syntax and semantics in an explicit way is the real 
benefit of CAD. We believe that such a mode might be advantageous for creativ­
ity. 

One of the main topics discussed in our paper is emergence. We demonstrated 
on real life examples that the emergence can occur on both levels of our represent­
ation scheme. By visualizing the internal structure of the designed artifact through 
its CP-graph the designer has a chance to grasp the essence of the current solution. 
Whether he or she comes upon a sparking new idea looking at that graph depends 
entirely upon the "human component" - our role as the developers of new tools is 
giving the user a chance for creative work. 

References 

Boulanger, S. and Smith, I.: 1994, Models of design processes, in I. Smith (ed.), Proceedings of the 
EGSEAI Workshop, Lausanne, pp. 132-145. 

Borkowski, A and Grabska, E.: 1995, Representing designs by composition graphs, in IABSE Col­
loquium Bergamo 1995, Knowledge Support Systems in Civil Engineering, IABSE Reports, 
Vol. 72, Zurich, pp. 27-36. '~ . 

Coyne, R. D., Rosenman, M. A, Radford, A D., BalaCh~dran, M. and Gero, J. S.: 1990, 
Knowledged-Based Design System, Addison-Wesley Publis1ring Company, Inc. 

Edmonds, E. A.: 1992, Knowledge-based systems and new paradigm for creati vity, in J. S. Gero and 
M. L. Maher (eds), Modelling Creativity and Knowledged-Based Creative Design, Lawrence 
Erlbaum, NJ, pp. 269-282. 

Gero, J. S. and Yan, M.: 1994, Shape emergence using symbolic reasoning, Environment and Plan­
ning B: Planning and Design, 21, pp. 191-218. 

Goldschmidt, G: 1991 ",The dialectics of sketching, Creativity Research Journal, 4(2), 123-143. 
Grabska, E.: 1993, Theoretical concepts of graphical modeling: Realization of CP-graphs, Machine 

GRAPHICS and VISION, 2(1), 3-38. 
Grabska, E.: 1995, Visual evaluation in design space, in T. Oksala (ed.), Proceedings of the Decon 

95 - Design: Emergence, Content, Baden-Baden, pp. 1-7. 



ASSISTING CREATNITY BY COMPOSITE REPRESENTATION 759 

Grabska, E., Oksala, T. and Seppanen, J: 1994, Fractal dimensions in architecture design: Between 
artificial and natural beauty, Acta Polytechnica Scandynavica, Civil Engineering and Building 
Construction Series No. 19, Helsinki, pp. 29-35. 

MacGillavry, C. H.: 1986, The symmetry of M. C. Escher's "Impossible" images, Compo and Math. 
with Appls, 12B(1/2), 123-138. 

Schattschneider, D.: 1990, Vision of Symmetry; Notebook, Periodic Drawings, and Related Work of 
M. C. Escher, W. H. Freeman and Company. 

Schmitt, G.: 1987, Expert systems and iterative fractal generators in design and evaluation, Pro­
ceedings ofCAAD Futures'87, Eindhoven. 

Schneider, H. 1. and Ehrig H.: 1994, Graph Transfomw.tions in Computer Science, Lecture Notes 
in Computer Science, 776, Springer-Verlag, Berlin. 



1. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 761·780. 
© 1996 Kluwer Academic Publishers. 

SKELETON-BASED TECHNIQUES FOR THE CREATIVE SYNTHESIS 
OF STRUCTURAL SHAPES 

DEREK M. STAL AND GEORGE M. TURKIYYAH 
University of Washington, Box 352700 
Seattle, WA 98195 USA 

Abstract. A dominant problem in engineering design is that very often an optimal design 
lies outside the search space defined at the start point of the design process. To access new 
state-space that may contain the optimal design, it is necessary to change the problem 
formulation during design by changing the design variables or grammar of the problem. 
This generation and exploration of new search spaces is referred to as creative design. 
We describe a creative shape generation methodology that combines ideas from compu­
tational geometry and numerical optimization and can synthesize and optimize shapes 
from high level functional specifications of performance requirements and design ob­
jectives. The methodology uses a geometric abstraction of shape-tbe skeleton-as the 
basis for shape representation and parameterization. This parameterization supports cre­
ative design as it is adaptive and changes throughout the design process to accommodate 
the shape changes that occur. The design process iterates on the construction of skeleton­
based design spaces and the formulation of search problems that explore these spaces. 
This methodology is capable of generating new shapes with geometries and topologies 
significantly different from those of the starting shape and which lie outside the initial 
design space. Two examples illustrate the implemented synthesis process. 

1. Introduction 

The generation and manipulation of three dimensional geometric shapes to achieve 
certain engineering objectives is a problem generic to a large number of design 
applications where "form follows function", i.e., where the designed physical ar­
tifacts derive their ability to fulfill their function to a large extent from their shape. 
The design of such artifacts is often determined by the need to optimize criteria 
such as weight, volume, fit, etc. as well as the need to satisfy appropriate perform­
ance objectives. Depending on the particular design context, various functional 
and behavioral objectives such as controlling fluid motion, heat dissipation, buck­
ling, structural vibrations, peak stresses or displacements may be used. 

The problem of generating shapes that optimally satisfy required behavioral 



762 DEREK M. STAL AND GEORGE M. TURKIYYAH 

objectives and manufacturing constraints has recently become of significant prac­
tical importance in a number of technological applications. The increased pop­
ularity and broader use of composites and high performance materials to which 
the structural shape of both individual components and complete systems is crit­
ically important, have brought to the forefront the need for effective shape design 
methodologies. Similarly, with the growing acceptance of layered manufacturing 
processes that allow effective production of general geometries and topologies, 
the need for generative design methodologies that synthesize general geometric 
shapes from functional specifications is being recognized as a necessary tool for 
increased design productivity. 

Unfortunately, in the current state of the art, there are no adequate performance­
based design tools-tools that allow designers to describe requirements and ob­
jectives, and directly obtain design descriptions that meet design goals. Available 
computer-aided design tools provide only very low level abstractions that do not 
allow designers to express functional specifications as the means of generating 
geometric shapes. Similarly, state-of-the-art shape optimization techniques, while 
very effective in fine-tuning already conceived and parameterized shapes, do not 
have generative design capabilities: they cannot handle the generation of design 
parameterizations, large shape changes or topological transitions adequately. 

Consider, for example, the task of designing a minimal material thermal fin 
that fits within a given volume. The goal of such a design would be to produce a 
shape that can dissipate enough heat to keep the maximum temperature below an 
appropriate threshold without compromising the structural integrity of the part. 
Using today's tools, not only is a designer required to generate parameterizations 
for the shape but available methods limit, due to the static nature of the represent­
ations they use, the kind of designs they can be generated. Starting from a three­
spoke fin design, the current generation of design systems could, at best, generate 
a "better" three-spoke fin; a more efficient design, however, could be a four-fin 
design that existing design processes are unable to produce. 

Thus, optimal shapes very often possess features that are incompletely defined 
in the original object structure. In order to access these optimal forms, the space 
being searched must also evolve during the design process. This is referred to as 
creative design and can be characterized as the exploration of space that is only 
partially defined in the initial design domain (Brown, 1992). Therefore, creative 
processes produce new variables and types during design that move or extend the 
state space of potential designs and admit solutions, potentially optimal ones, that 
were not accessible from the starting problem formulation (Gero, 1990). 

In this paper we propose and demonstrate a technique, combining ideas from 
computational geometry and numerical optimization to produce a creative design 
methodology that promises to deliver performance-based capabilities to design 
and optimization systems. Geometric reasoning allows us to modify and update 
the design state space during the design process while numerical optimization al-



SKELETON-BASED SHAPE DESIGN 763 

lows us to search these subspaces efficiently. As a result, the methodology is cap­
able of generating new geometric shapes from a description of design goals and 
requirements. 

2. Requirements for a Creative Shape Design Process 

Engineering design, in general, involves three major types of variables: functional, 
behavioral, and structural. Function describes the performance criteria for which 
object or shape is being designed; behavior is a measure of to what level the func­
tional requirements are satisfied; and structure represents what will be manifested 
in the final artifact (Gero, 1994). There corresponds to each of these variables a 
space which represents their respective domains and ranges and is referred to as 
the design state space. The state space incorporates all the characteristics of the 
design variables present in the initial object and represents the locus of all pos­
sible designs with those variables and their bounds. 

Traditionally, design is based upon a priori knowledge of the variables which 
define structure and function, and to provide a starting point for a search through 
possible combinations of constrained values to find an optimal solution (Gero, 
1994). The range of the values of variables is not only fixed a priori, but also typ­
ically very small. For problems in which the values are real numbers, the search 
becomes a numerical optimization and all accessible solutions lie within the do­
main of the state-space defined by the initial variables. This design process, whose 
search space is substantially smaller than the space of all possible designs, is re­
ferred to as routine design. 

"Innovative" design, on the other hand, seeks to expand the state-space by 
manipulating the ranges of design variables. Thus, it can be characterized as the 
exploration of a well-defined space (Coyne et al., 1987) which spans the domain 
of all possible designs defined by variable set, or object formulation. Since the 
same variables are used to describe the object, however, the underlying structure 
will remain unchanged regardless of how much it is altered. For example, in the 
design of a three-dimensional form the geometry may be significantly changed 
during the search process but the topology will remain the same. 

Optimal designs, however, often lie outside the space spanned by the initial 
design variables. These solutions are therefore unattainable through design pro­
cesses that are routine or innovative in nature. Thus, in order to find optimal designs, 
there is a need to not only search and explore well-defined spaces, but also im­
plement models of design that allow expansion/modification of the state-space. 
Such creative methodologies not only change the ranges of design variables but 
produce new variables during the design. The exploration process no longer con­
sists of a single search through a well-defined space but rather a series of searches 
through spaces generated at each step in an iterative design process. A diagram of 
the de.sign state-spaces inspired by Gero (1990) is shown in Figure 1. 



764 DEREK M. STAL AND GEORGE M. TURKlYYAH 

Bound of Possible Design 
Based on Initial V.riable Set 

Routine Design 

Innovative Design 

Figure 1. State-space of routine, innovative, and creative designs. 

Several strategies have been proposed to generate, expand, search, and ex­
plore design spaces. Schmidt et al. (1994) and Cagan et al. (1993) have developed 
simulated shape annealing algorithms for shape design, the latter also incorporat­
ing interactive shape grammar generators into the design process. Various genetic 
and evolutionary algorithms, such as those of Carlson (1994), Goldberg (1989), 
Maher (1994a), and Zhao et al. (1994) have also been described. Genetic algorithms 
operate analogously to evolutionary systems: various features in the design pro­
cess are combined through genetic crossover. The "offspring" are evaluated and 
the most successful survive the selection process. These designs are again com­
bined and the process continues until a single optimal design is found. Chapman 
et al. (1994) have added a conceptual interpolation feature to this process which 
allows new designs to be generated from existing designs with similar functions. 
Case-based algorithms (Maher, 1994b) and design processes that incorporate ho­
mogenization principles (Papalambros, 1990) have also been proposed. 

The difficulties in generating optimal shapes in a Euclidean space are those 
inherently involved in creative design: given a set of design goals, objectives, and 
possible constraints, the final design space is not defined a priori in a computa­
tionally usable form. As a result, the objective and constraints are not specified in 
terms of specific design variables but rather in terms of properties and character­
istics of the final unknown shape. For example, geometric constraints (i.e, max­
imum thickness, maximum radius of curvature, etc.) are defined in terms of shape 
features that are generated only as the design evolves. Moreover, some constraints 
may not even be activated during the design process if the features they are pre­
dicated on do not appear in the shape. 



SKELETON-BASED SHAPE DESIGN 765 

In order for a design process to be able to produce novel shapes, it must pos­
sess several features. First, it must be capable of changing parameterizations dur­
ing the design process. This is an essential characteristic of creative design and, 
since a good shape parameterization of the optimal shape is not generally known 
a-priori, it is unlikely that the initial parameterization is going to be adequate 
throughout the design process. Therefore, there is a need for mechanisms to re­
cognize when a given parameterization is no longer adequate as well as mechan­
isms for modifying these parameterizations during the exploration of new state­
spaces. At each stage of design, the design process must also be able to assign 
appropriate values to these parameters in order to guide the synthesis towards the 
optimal solution. 

Secondly, the synthesis must constrain the design space to valid shapes. Dur­
ing design, it is generally necessary to constrain the values that design variables 
may assume to those values that produce valid Euclidean shapes only-no self 
intersections. Without this restriction, physically impossible geometries may be 
generated, rendering the final design unusable. Enforcing these requirements is 
difficult when using, for example, control points of splines or other similar stand­
ard boundary representations as design parameters, because of the large num­
ber of constraints generally needed to prevent all pairwise boundary segment or 
boundary facet intersections. 

Third, a spatially adaptive description of the evolving shape must be provided. 
Different regions of a shape are likely to require different resolutions during the 
design process. For computational purposes, an effective design procedure should 
be able to take advantage of the fact that regions of a shape that do not have inter­
esting features or where features are not evolving during the design process can 
be parameterized using a coarse resolution. Such spatial adaptivity is particularly 
important in three dimensions because of the large number of design paramet­
ers that would be needed for a non-adaptive description. Additionally, topological 
modifications to the design must be permitted. 

Finally, the design process must be able to express and manipulate general 
constraints. In order to be applicable over a broad range of problems, a design 
methodology must handle geometric and behavioral design requirements and con­
straints. These include constraints on shape characteristics such as area, volume, 
thickness, curvature, etc. as well as behavior quantities such as stresses, displace­
ments, temperatures, etc. 

3. Overview of the Design Process 

We describe a shape generation methodology that satisfies the above requirements 
and can synthesize and optimize shapes from high level functional specifications 
of perfonnance requirements and design objectives. This methodology uses a geo­
metric abstraction of shape-the skeleton-as the basis for shape representation 



766 DEREK M. STAL AND GEORGE M. TURKIYYAH 

and parameterization. This parameterization is adaptive and changes throughout 
the design process to accommodate the shape changes that occur. The design pro­
cess iterates on the construction of skeleton-based design spaces, fonnulation of 
search problems in these spaces, and solution of these problems using numerical 
optimization procedures. This methodology is capable of generating new shapes 
with geometries and topologies significantly different from those of a starting 
shape. 

The design strategy consists of a sequence of motions through geometrically 
valid design subspaces. Each step consists of the fonnulation and solution of a 
search problem in a specific subspace. At each design step, the current shape is 
parameterized and the problem requirements are expressed in terms of the design 
variables. This parameterization constrains the search to a specific portion of Eu­
clidean space. The resulting numerical optimization problem is then solved using 
standard numerical techniques until convergence, i.e., until no further progress 
can be made with the current design parameterization. A new parameterization is 
then generated which allows the exploration of a different region of the design 
space and allows the design to proceed further towards the optimal solution. The 
process is repeated until convergence to a final shape. 

The advantages of adopting such a strategy, the repeated fonnulation and solu­
tion of a sequence of search problems of moderate size, are twofold. First, each 
design subspace constructed in the sequence is computationally tractable, as op­
posed to the intractable space that contains all possible shape geometries and to­
pologies. Second, we are able to capitalize on known and efficient numerical op­
timization strategies for searching multidimensional spaces. 

The design subspaces generated, i.e., the shape parameterizations used dur­
ing the design, are based on the skeleton (or medial axis) of a shape-a lower­
dimensional geometric abstraction that captures significant intrinsic shape char­
acteristics as will be described in the next section. At every design iteration, the 
set of parameters used to define the design is based on sampling the skeleton of 
the current shape. The lengths of rays emanating from these selected points are 
the design parameters during this design step. The numerical optimization process 
determines the values of these parameters that produce an optimal shape. During 
optimization, the lengths of the two rays emanating from a given skeletal point 
are not constrained to have the same value. The object may shrink on one side of 
the skeleton and expand on the other. This implies that the final shape will have 
a different skeleton that will be used as the basis of the parameterization for the 
next design step. 

Starting from an initial shape, the overall design process can be summarized 
as follows: 

1. Generate the skeleton and construct a skeleton-based parameterization of 
the current shape. The skeleton is an abstract description of the shape con­
sisting of the lines/surfaces of symmetry of the shape. Skeleton-based shape 



SKELETON-BASED SHAPE DESIGN 767 

parameterizations may be defined to consist of a set of design variables (ray 
lengths) whose values, together with the skeleton, can reconstruct a valid 
shape. Thus, this parameterization defines the search space which includes 
all possible combinations of values of the design variables that do not viol­
ate shape integrity constraints. 

2. Formulate a search problem in the newly constructed design space. By ex­
pressing the objectives and constraints in terms of the design variables, a 
search problem to find the optimal combination of the values of the design 
variables can be formulated. Since the design variables consist of a vector of 
n scalars, the search problem can be formulated as a constrained n-dimensional 
non-linear optimization problem. Initial values for the design variables are 
assigned so that the starting configuration represents the geometry and topo­
logy of the current shape. 

3. Solve the optimization problema~'(!peat steps 1,2,3 until convergence. The 
solution of the optimization proble results in new values of the design vari­
ables that define a new shape. The hape geometry and topology can change 
at iteration. Topology changes occur when ray pairs collapse on the interior 
skeleton or extend to the exterior skeleton, as described in the next section. 
Geometric changes will arise from the solution of the problem optimization 
which changes the values of the design variables to satisfy supplied goals 
and constraints. When the geometry and topology do not change between 
iterations, convergence has been reached. 

The resulting framework achieves powerful capabilities for the design of gen­
eral shapes which overcomes the problems associated with current shape design 
procedures. In particular, it does not preimpose a fixed parameterization on the 
design space nor does it preimpose a specific structure such as a Cartesian grid 
on the design domain, both of which are key elements of a creative design pro­
cess. Therefore, the class of optimal sha~s that can be obtained is not restricted 
and the process always generates valid Euclidean shapes. This method handles a 
large class of design constraints and is able to adequately support large geometric 
changes and topological modifications. 

4. The Skeleton: A universal shape (re) parameterizer 

In this section, we describe the skeleton and the central role it plays in the design 
process. The skeleton, or medial axis (MA), of a two-dimensional object may be 
described as the set of centers of maximal inscribed discs, i.e., which contain no 
other discs and touch the boundary at two points. Every point on the skeleton is 
therefore equidistant from at least two points on the boundary. The skeleton was 
first devised by Blum (1973) who used it for the representation and classifica­
tion of biological shapes and it has since been used in a number of applications, 
particularly in computer vision (Faugeras, 1993). On the skeleton, points that are 



768 DEREK M. STAL AND GEORGE M. TURKIYYAH 

equidistant from more than two boundary points are called junction points and 
those equidistant from only one point are end points. Figure 2 shows interior and 
exterior skeletons of various shapes as dotted lines. 

Figure 2. Examples of shape skeletons (skeletons are shown as dotted lines). 

We use the skeleton of a shape as the basis for shape representation. A shape 
can have an interior as well as an exterior skeleton. The exterior skeleton can be 
defined as the topological closure of the locus of maximal inscribed disks in­
cluded in the complement of the shape. In three dimensions, the skeleton can 
be similarly defined as the set of points that are minimally equidistant from two 
boundary points and is composed of a set of skeletal patches (surfaces). Surface 
patches intersect at junction curves consisting of points minimally equidistant 
from three boundary points. We use the interior skeleton to parameterize a shape 
during optimization. Numerous automatic methods for generating skeletons have 
been proposed, based on both discrete and geometric approaches. A review and 
discussion of the extensive variety of generation techniques is presented in Turki­
yyah et al. (1996) and will not be repeated here. 

4.1. SHAPE PARAMETERIZATION 

The skeleton is an intuitive and appealing representation. It captures all significant 
aspects of intrinsic shape characteristics. For example, elongated shapes have a 
skeleton arc that follows their middle axis, pointed sub-shapes have a skeleton arc 
that follows the bisector of the angle made by the two lines, and rounded shapes 
have skeletons ending at distances equal to the minimum radius of curvature of 
the rounded boundary. Similarly, in 3D thin elongated skeletal regions correspond 
to long thin protrusions. The topology of the skeleton graph is also directly related 
to the topology of the shape. The number of cycles in the 2D skeleton graph and 
the number of closed surfaces in the 3D skeleton hypergraph correspond to the 
number of internal holes in the shape. The skeleton thus characterizes the basic 
shape characteristics. The geometry of the skeleton does not depend on a spe­
cific coordinate system but only on the object shape and boundary curvature, and 



SKELETON-BASED SHAPE DESIGN 769 

changees continuously as the shape changes. As a result. a skeleton based repres­
entation is appropriate for defining and supporting shape evolution during shape 
synthesis. Further, the skeleton represents a shape in tenus of a graph which is 
more amenable to ffianipulations inside design systems. 

Line segments that join a skeleton point to its corresponding boundary point 
will be termed rays. Each regular point of the skeleton is the base of two rays 
emanating from it (Figure 3). Rays are perpendicular to the boundary, provided 
that the corresponding boundary (i.e., at the tip of the ray) is locally smooth. If a 
ray tip is located at a position that has a discontinuous derivative, then the direc­
tion of the ray will fall between the right -side and left -side perpendiculars to the 
boundary. Three or more skeleton arcs meet at a junction in 20 and three or more 
surface patches meet at junctions in 3~. Junction and end points of the skeleton 
have three and one associated rays, respectively. It is important to note here that 
a shape can be recovered from the skeleton and the lengths of the rays by joining 
the ray tips. 

Figure 3. Skeleton-based rays: Design variables. 

Perturbations in the lengths of the rays emanating from the skeleton, define 
shape changes. As a result, the skeleton of a shape allows the automatic genera­
tion of shape parameterizations (a set of ray lengths) and, therefore, of a design 
space that can be searched during each iteration of the design process. We use a 
finite set of skeleton rays as design variables (Figure 3): they form the vector of 
parameters that parameterize the shape. By joining the tips of rays we can repro­
duce a shape from its skeleton and the values of these parameters. Changes in the 
magnitudes of rays cause shape changes and may even alter shape topology as 
will be shown below. The number of rays to be used in a given design iteration 
depends on the nature of the problem, the total number of desired design vari­
ables, the required shape resolution, the stage of the design, etc. and may depend 
on the curvature of the skeleton arcs/patches. Thus, the state-space is continually 
changing and more possible designs become accessible. 

There are two principal properties that make a skeleton-based parameteriza­
tion an ideal candidate for shape design parameterization: 



770 DEREK M. STAL AND GEORGE M. TURKIYYAH 

- Shape integrity requirements can be fonnulated as simple bounds on design 
variables. The skeleton-based strategy proposed can impose integrity con­
straints by simply placing skeleton-based lower and upper bounds on design 
variables di ::; d i ::; di (i = 1, 2, ... , n) where d i and di are respectively 
the lower and the upper bounds on the design variables, derived from the in­
terior and exterior skeletons respectively. As shown in Figure 4, the interior 
skeleton is the lower bound for the rays emanating from it, while the exterior 
skeleton is the upper bound for these rays. Qualitatively, the interior skel­
eton limit guarantees that the shape does not produce "negative regions" by 
collapsing upon itself, while the exterior skeleton limit guarantees that the 
shape will not overlap, i.e. produce "double regions". 

Upper Bound I 

Lower 
Bound 

~ 
, 
, 

Negative _­
Region 

Figure 4. Interior and exterior skeletons guarantee shape integrity. 

- Topological transitions can occur naturally in the design space defined by 
the skeleton design variables. Changes in the values of design parameters 
(produced by, for example, a numerical optimization process) result in im­
proved shapes that may be qualitatively different from the initial one: indent­
ations, protrusions and holes can appear or be removed. Large shape changes 
as well as topological changes may occur. For example, when pairs of rays, 
emanating from a same location, simultaneously reach their lower bounds 
on the interior skeleton, portions of zero thickness appear and are removed. 
When rays from different branches meet one another at their respective up­
per bounds, defined by the exterior skeleton, they may be interpreted as de­
fining continuity of the shape at these locations and hence make the current 
shape continuous. 



SKELETON-BASED SHAPE DESIGN 771 

4.2. RESKELETONIZATION AS A MEANS OF EXPANDING THE DESIGN SPACE 

As discussed, creative design algorithms must be able modify the search space 
during design. This is done by changing the design variables which are used to 
define an object and, hence, the search formulation. The skeleton provides us with 
powerful tool for this task. For any object, a skeleton can be found and the ob­
ject can subsequently be reparameterized with rays. These rays are then used as 
design variables during an optimization process that modifies the values of these 
variables (ray lengths) and generates a new shape. The new object is then skel­
etonized and another parameterization is found with the new skeleton. Now, the 
description of the object has changed and a new design space may be searched 
that was inaccessible from the original parameterization. This use of the skeleton 
as a tool for exploration of new search space is illustrated next. 

Consider the object shown in Figure 5. The skeleton for the shape is shown 
as a dotted curve and the rays which define the parameterization are depicted as 
solid arrows. Two rays extend from each node on the skeleton, one on each side. 
During optimization the rays become the design variables: the length of each ray 
may be varied from zero to an exterior skeleton or other design bounds. The ori­
entation of the rays, however, will not change during the optimization. For this 
illustration, the design criteria are hypothetical goals that produce the shapes in 
the subsequent figures. 

El-l---f-+--f--f-Oj 
Figure 5. Original object parameterization defining the initial search space. 

Two intermediate shapes obtained during the search (optimization) process 
are shown in Figures 6(a) and 6(b). The final shape at the end of the first optim­
ization is shown in Figure 6(c). Note that during the optimization, the orientation 
and origin of each ray has not changed-only the lengths of the rays have been 
modified. For this reason, the accessible shapes from the optimization are restric­
ted to those that can be generated with the current rays and their orientations. 

In figure 6( d), the shape from the end of the first optimization has been repara­
meterized. The new skeleton is shown as the dotted curves and the new rays are 
shown as arrows emanating from it. The the shapes in Figure 6( c) and Figure 6( c) 
are substantially similar. However, during the reparameterization process, some of 
the original geometry may be lost due to the use of a finite number of rays. If an 
infinite number of rays were used to define the object, then the reparameterization 
would indeed be an exact replication of the original. However, since computation 
and time limitations restrict the design process, minimal ray densities that provide 



772 DEREK M. STAL AND GEORGE M. TURKIYYAH 

A 

B 

c o 

Figure 6. Shape evolution within a fixed design space is shown in (A). (B). and (C). (0) shows a 
reskeletonization that generates a new design space. 

an accurate approximation of the original shape must be used. In this example, the 
new reparameterization in 6(d) (16 rays) provides a very close approximation of 
the original shape in 6(c). 

Subsequent iterations of the design process (optimizations and reparameteriz­
ations) are shown in Figures 7, 8,9, and to. Intermediate shape evolutions from 
the optimization process within a design space are not shown. In each figure. the 
shape is generated by changing the lengths of the rays of the previous paramet­
erization and then, when no further progress can be made with this parameteriz­
ation, the shape is reparameterized with a new skeleton and corresponding rays, 
thus redefining the design variables for the next iteration of the design process. 
Therefore, novel shapes may evolve, since the search space is redefined at each 
iteration and the exploration of state-space is determined during the design pro­
cess. 

During each design iteration, the solution progresses as far towards the op­
timal shape as is possible within the current search space (using a numerical op­
timization procedure). As the parameterization, and hence, the search space chan­
ges, however, the design moves incrementally closer to the optimal shape. This 
is illustrated in Figures 11 and 12. The letters that label each shape in Figure 11 
correspond to the search spaces shown in Figure 12. The dotted curve represents 
the evolution of the object during each optimization and includes the intermediate 
forms generated during the traversal of a individual search space, such as those 
shown in Figures 6(a) and 6(b). When the optimization reaches the boundary of 



SKELETON-BASED SHAPE DESIGN 773 

Figure 7. Second iteration: Evolution and reparameterization. 

Figure 8. Third iteration: Evolution and reparameterization. 

Figure 9. Fourth iteration: Evolution and reparameterization. 

Figure 10. Fifth iteration: Evolution and reparameterization. 



774 DEREK M. STAL AND GEORGE M. TURKIYYAH 

F 

/"""-"", 
\ 
\ , 

E 

Figure 11. Summary of example design . 

• Optimiution Sl4lrtlFinish Point 
---- Optimiulion Route Final Shape (optimal) 

Figure 12. Search space generation and exploration. 

the search space (Figure 6(c», the object is reparameterized (Figure 6(d» and a 
new search space is defined. The end of each optimization and reparameteriza­
tion is shown as a solid dot. Thus, the design progresses toward the optimal solu­
tion efficiently by searching a series of smaller spaces. Even if there was a search 
space that included both the initial and final points of the design (A and F),it 
would be much less efficient to search it than to search multiple smaller spaces. 



SKELETON-BASED SHAPE DESIGN 775 

Thus, the reparameterization through skeletonization of successive shapes sup­
ports not only a creative design process, but a more efficient one as well. 

5. Examples 

We illustrate the methodology through two examples. The first one shows how 
large changes may occur in the context of a problem with relatively simple re­
quirements and constraints. The second example demonstrates the design process 
in the presence of behavioral requirements expressed as constraints on stresses. 

5.1. GENERATION OF AN I-SECTION 

Consider the problem of finding the shape of a solid of fixed area which maxim­
izes the moment of inertia about a horizontal axis. The design is constrained to 
fit in an exterior rectangular box of given dimensions with no thickness of any 
portion of the solid being smaller than a specified threshold. 

Figure 13 shows the evolution of the design (only the upper half of the shape 
is shown-the lower half is symmetric). Starting from a rectangular initial shape 
(upper left), the skeleton is computed (dotted lines) and design variables (arrows) 
are selected at junctions and at midpoints of skeleton arcs. We have chosen only 
the interior skeleton to define design variables. Upper and lower bounds are im­
posed on the design variables so that the shape stays within the outer box (thin 
dotted line) and variables emanating from the main stem of the skeleton (variables 
where the the notion of the "thickness" of an "elongated subshape feature" makes 
sense) are constrained to be smaller than half the minimum allowable thickness. 
Algebraic expressions defining the moment of inertia and the area of the solid can 
be easily written in terms of the design variables (domain integrals) and the res­
ulting optimization problem is solved. 

The first row in Figure 13 shows the iterates produced by a sequential quad­
ratic optimization (SQP) process. The shape evolves as the values of design vari­
ables (lengths of skeleton rays) change. The upper right diagram shows the res­
ulting shape (thick line) defined by the values of the design variables at the end 
of the numerical optimization process. The skeleton of the initial shape is also 
shown in the diagram for reference. 

The shape produced at the end of the first design iteration is used as the start­
ing shape for another design optimization problem since the current parameter­
ization cannot make any further progress towards the optimal shape. The new 
design iteration is initiated by computing the skeleton of the current shape. Again, 
a discrete sampling of the skeleton is used to define a set of rays parameteriz­
ing the shape and defining a new search space. As in the first iteration, junctions 
and mid-points of skeleton arcs are used but naturally different densities may be 
used in different regions (and may indeed result in a more efficient process). The 
second row in the diagram illustrates the evolution of the shape under the con-



776 DEREK M. STAL AND GEORGE M. TURKIYYAH 

.' 

~ : 

. . ................ . 
~ : 

II : 

". 

.,' 

"=". ~ 
N · ,, ' 

::: ................... ...... .......... , 

.... 
~ 
" 

': •• • ••• _ • •• ••• _ ••••••••••••••••• • t 

-······· ······· ···· ·· ·t 
0- . 
00 ; 
,..: : 

!. ~ 

.... . 
", : 
N : 

" 

.-.................. -..... ... ........ ~ ~ ... . 
" 

Figure 13. Design history of a 2D cross section. 



SKELETON-BASED SHAPE DESIGN 777 

trol of an SQP procedure. Notice how "protrusions" in the starting shape have 
collapsed onto the skeleton and automatically disappeared: skeleton rays reached 
their lower bounds (Le., hit the skeleton) during optimization. A third design it­
eration shown in the third row of Figure 13 gets very close to the well-known 
optimal wide flange shape. 

5.2. DESIGN OF A CANTILEVER SUBJECI'ED TO A POINT LOAD 

The goal of this problem is to find a shape that requires minimum material (weight) 
to transfer a given load (10 units) to a given set of supports, as formulated by 
Vimawala (1994). The locations of the load and supports are fixed and the shape 
is constrained to fit in a rectangular domain (5 units x 10 units) as shown in Figure 
14. Additionally, internal stresses cannot exceed specified thresholds. 

10 unilS ---~~ 

T ~--------------- ---- - ------- ------------1 

, ' , : 

10 Units! 

t:::i- -- -- ----------------- -----------------; 

Figure 14. Locations of load and supports. Dotted rectangle indicates the limiting design domain. 

Instead of using 2D plane stress finite elements to model the behavior of the 
continuous shape, a surrogate model-a model using truss elements-was used to 
approximate displacements and stresses. This approximation of the behavior was 
used to avoid the need for generating and adapting finite element meshes during 
the design processes and to reduce the overall computational cost. In this formu­
lation, truss nodes on the model were defined as the tips and bases of the rays with 
truss members spanning between pairs of adjacent truss nodes. In order to model 
a homogeneous material, the stiffness Ai ~ of all truss members was kept con­
stant. The forces in the truss members thus depend only on their relative positions 
in the truss model. During each optimization, the tips of the rays move, changing 
the lengths and positions of the truss elements which are calculated at each iter­
ation inside the optimization problem. Connectivity of the truss model, however, 
remains constant during each optimization. While this behavior is approximate 
and doesn't satisfy the elasticity equations, it is a useful model for shape genera­
tion during preliminary design. 

The starting point of the design is the limiting rectangle. The truss model 
defined by the skeleton and the rays is shown in Figure 15(a). A numerical optim-



778 DEREK M. STAL AND GEORGE M. TURKIYYAH 

ization problem with the ray lengths as variables is fonnulated and solved. Fig­
ure 15(b) shows the shape at the end of the first design iteration. As can been 
seen in the figure, design variables along two skeleton arcs on the right hand 
side reached their lower bounds simultaneously and were removed before start­
ing the next design iteration, shown in Figure 16(a). Selected subsequent optim­
izations and reparameterizations are shown in Figures 16 to 19. After the second 
design iteration, the reduction in the area of the shape was small but changes in 
the shape which required new parameterizations justified the continuation of the 
design. The design continued until the tenth design iteration, when the shape only 
minimally changed. This shape was taken as the final design for the load trans­
fer problem. The boundary of the truss model defined by the location of the ray 
tips represents the exterior outline of the 20 solid model as shown in Figure 20. 
This example also illustrates how behavioral requirements (e.g., maximal stress 
constraints) can be incorporated into skeleton-based design. 

Figure 15. First design iteration: (a) initial shape (b) final shape. 

Figure 16. Second design iteration: (a) initial shape (b) final shape. 

Figure 17. Fourth design iteration: (a) initial shape (b) final shape. 



Figure 18. Seventh design iteration: (a) initial shape (b) final shape. 

Figure 19. Tenth design iteration: (a) initial shape (b) final shape. 

6. Conclusions 

I 
i 
i 
~----.---.--------' 

Figure 20. Final 2D solid shape. 

779 

We have described a procedure for the design of general shapes which overcomes 
several problems associated with current shape design procedures. The proposed 
method may be viewed as a "creative" design methodology because it does not 
preimpose a fixed parameterization on the design space nor does it preimpose 
a specific structure such as a Cartesian grid on the design domain. It does not, 
therefore, restrict the class of optimal shapes that can be obtained and always 
generates valid Euclidean shapes. The skeleton-based design process iterates on 
the construction of skeleton-based design spaces and formulation and solutions of 
numerical optimization search problems in these spaces. Through adaptive para­
meterization, large geometric changes as well as topological modifications may 
occur. Thus, the search space being explored is continually changing in response 
to trends in shapes changes and convergence may occur in a state-space com­
pletely or partially undefined at the outset of design. The methodology and ex-



780 DEREK M. STAL AND GEORGE M. TURKIYYAH 

amples from an implementation in two dimensions were presented. We are cur­
rently investigating three dimensional extensions and the coupling of this method­
ology with skeleton-based finite element mesh generation techniques (Stal, 1995) 
to allow a more general class of design requirements to be considered, such as 
constraints on stresses, displacements, and temperatures. 

References 

Brown, D. C. and Chandrasekaran, B.: 1985, Expert systems for a class of mechanical design activ­
ity, in J. S. Gero (ed.), Knowledge Engineering in Computer-Aided Design, North-Holland, 
Amsterdam, pp. 259-282. 

Blum, H.: 1973, Biological shape and visual science (Part I). Journal of Theoretical Biology, 38, 
205-287. 

Carlson, S. E.: 1994, Comparison of three non-derivative optimization methods with a genetic 
algorithm for component selection, Journal of Engineering Design, 5(4). 

Cagan, J. and Mitchell, W. J.: 1993, Optimally directed shape generation by shape annealing, En­
vironment and Planning B, 20, 5-12. 

Coyne, R. D., Rosenman, M. A., Radford, A. D. and Gero, J. S.: 1987, Innovation and creativity in 
knowledge-based CAD, in J. S. Gero (ed.), Expert Systems in Computer-Aided Design, North­
Holland, Amsterdam, pp. 435--465. 

Chapman, C. D., Saitou, K. and Jakiela, M. J.: 1994, Genetic algorithms as an approach to config­
uration and topology design, ASME Journal of Mechanical Design,116(4). 

Faugeras,O.: 1993, Three-Dimensional Computer Vision: A Geometric Viewpoint, MIT Press. 
Gero, J. S.: 1990, Design prototypes: A knowledge representation schema for design, AI Magazine, 

11(4),26-36. 
Gero, J. S.: 1994, Exploration as a basis of creative engineering design, in K. Khozeimeh (ed.), 

Computing in Civil Engineering, Vol. 2, ASCE. 
Goldberg, D.: 1989, Genetic Algorithms in Search, Optimization. and Machine Learning. Addison­

Wesley, Reading, Massachusetts. 
Maher, M. L.: 1994a, Creative design using a genetic algorithm. in K. Khozeimeh (ed.), Com­

puting in Civil Engineering, Vol. 2, pp. 2014-2021. First ASCE Computing Congress (held in 
conjuction with AlFJC Systems' 94). 

Maher, M. L.: 1994b, Representation of case memory for structural design, in K. Khozeimeh (ed.), 
Computing in Civil Engineering, Vol. 2, pp. 2030--2037. First ASCE Computing Congress 
(held in conjuction with AlFJC Systems' 94). 

Papalambros, P. and Chirehdast, M.: 1990, An integrated environment for structural configuration 
design, Journal of Engineering Design, 1(1), 73-%. 

Schmidt, L. C. and Cagan, 1.: 1994, Recursive annealing: A computational model for machine 
design, Research in Engineering Design. 

Stal, D.: 1995, Three-dimensional Skeleton Generation from Geometric Triangulation. Master's 
Thesis, University of Washington, Department of Civil Engineering. 

Turkiyyah, G. M., Storti, D. W., Ganter, M., Chen, H. and Vunawala, M. S.: 1996, An accelerated 
triangulation scheme for computing skeletons of free-form solid models, CAD, (to appear). 

Vunawala, M. S. and Turkiyyah, G. M.: 1994, Computational Procedures for Shape Design. Tech­
ical Report, SGEM-94-5, Department of Civil Engineering, University of Washington. 

Zhao, F., Louis, S. J. and Lenart, M.: 1994, Evolutionary methods for synthesis of truss topology, 
in K. Khozeimeh (ed.), Computing in Civil Engineering, Vol. 2, pp. 1816-1823. 



FIRST AUTHOR ELECTRONIC ADDRESSES 781 

first author electronic addresses 

Altmeyer, J., altmeyer@informatik.uni-k.de 
Bakhtari, S., shirin@bsr-consulting.de 
Ball, N. R, nrb@eng.cam.ac.uk 
Biljic, T., taner@ie.utoronto.ca 
Chakrabarti, A., acl23@eng.cam.ac.uk 
Coulon, C.-H., coulon@gmd.de 
de Grassi, M.,luca@anvax2.cineca.it 
Dong, A., adong@jerry.me.berkeley.edu 
Feij6, B., bruno@icad.puc-rio.br 
Fruchter, R, fruchter@cive.stanford.edu 
Fujii, H., haru@ori.shirnz.co.jp 
Gage, P. J., p-gage@adfa.oz.au 
Gelsey, A., gelsey@cs.rutgers.edu 
Goel, A., goel@pravda.cc.gatech.edu 
Grabska, E., uigrabsk@cyf-kr.edu.pl 
Grecu, D. L., dgrecu@cs.wpi.edu 
Guan, X., x~an@cad.strathclyde.ac.uk 
Hower, W., walter@cs.ucc.ie 
Koza, J. R, koza@cs.stanford.edu 

Kundu, S., sourav@control.prec.metro-u.ac.jp 
Marling, C., R, marling@alpha.ces.cwru.edu 
Olivier, P., plo@aber.ac.uk 
Peiia-Mora, F., feniosky@iesl.mit.edu 
Poon, J.,josiah@arch.su.edu.au 
Reddy, S. Y., sudha@pal.rockwell.com 
Rogers, J. L., j.l.rogers@larc.nasa.gov 
Rosenman, M. A., mike@arch.su.edu.au 
Schmidt, L. C.,lschmidt@eng.umd.edu 
Schnier, T., thorsten@arch.su.edu.au 
Schwabacher, M., schwabac@cs.rutgers.edu 
Smith, I., smith@lia.di.epfi.ch 
Smithers, T., ccpsmsmt@si.ehu.es 
Stacey, M., m.k.stacey@open.ac.uk 
Stal, D. M., dstal@ce.washington.edu 
Stumptner, M., mst@vexpert.dbai.tuwien.ac.at 
Sushkov, V. V., sushkov@cs.utwente.nl 
Varma, A., anil@ton.berkeley.edu 
Vo~, A., angi.voss@gmd.de 



782 

author index 

Agogino, A., 21, 429 
Alberts, L. K., 723 
Altmeyer, J., 231 
Andre, D., 151 
Bakhtari, S., 681 
Ball, N., 77 
Bartsch-Sporl, B., 173,681 
Bennet III, F. H., 151 
Bento, J., 61 
Bilgic, T., 269 
Bloebaum, C. L., 119 
Borkowski, A., 743 
Brazier, F. M. T., 
Brown, D. C., 409 
Buckland, R., 583 
Cagan, J., 325 
Chakrabarti, A., 603 
Coulon, C.-H., 465 
Cross, N., 527 
Damski, J. c., 
de Grassi, M., 191 
Dong, A., 21 
Ellman, T., 447 
Feij6, B., 61 
Fertig, K. W., 347 
Fox., M. S., 269 
Fruchter, R., 505 
Fujii, H., 485 
Gage, P. J., 311 
Gebhardt, F., 465 
Gelsey, A., 367 
Gero, J. S., 39 
Giretti, A., 191 
Glaze, G., 527 
Goel, A., 387 
G6mez de Silva Garza, A., 387 
Govindaraj, T., 387 

AUTHOR INDEX 

Grabska, W., 743 
Grather, W., 465 
Grecu, D. L., 409 
Gro~, E., 465 
Grue, N., 387 
Guan, X., 623 
Hellgardt, M., 291 
Hirose, K., 485 
Hirsh, H., 447 
Hower, W., 663 
Johnson, J., 527 
Katukura, H., 485 
Kawata, S., 135 
Keane, M. A., 151 
Kostner, D., 663 
Koza, J. R., 151 
Kundu, S., 135, 291 
Landon, M., 3 
Lehtola, N., 61 
Leifer, L., 505 
Lottaz, C., 97 
MacCallum, K., 623 
McCulley, C. M., 119 
Maher, M. L., 703 
Marling, C. R., 211 
Mars, N. J. 1.,723 
Murdoch, T. N. S., 77 
Murdock, J. W., 387 
Nakai, S., 485 
Nakata, K., 3 
Oertel, W., 681 
Olivier, P., 3 
Oxman, R., 173 
Pefia-Mora, F., 251 
Petre, M., 583 
Poon, J., 703 
Prabhakar, S., 

Recker, M., 387 
Reddy, S. Y., 347 
Reiner, K., 505 
Richter, G., 447 
Rogers, J. L., 119 
Rosendahl, M., 663 
Rosenman, M., 643 
Rzevski, G., 583 
Schaaf, J., 465 
Scheer, S., 61 
Schmidt, L. C., 325 
Schmidt-Belz, B., 465 
Schnier, T., 39 
Schurmann,B.,231 
Schwabacher, M., 367, 447 
Sharp, H., 583 
Smith, D., 367 
Smith, I., 97 
Smithers, T., 561 
Spalazzi, L., 191 
Stacey, M., 583 
Stal, D. M., 761 
Stalker, R., 97 
Sterling, L. S., 211 
Stumptner, M., 541 
Sushkov, V. V., 723 
Tang, M. X., 603 
Toye, G., 505 
Treur, J., 
Turkiyyah, G. M., 761 
Vadhavkar, S., 251 
Varma, A., 429 
Vo~, A., 173,465 
Wallace, K. M., 77 
Wood III, W. H., 429 
Wotawa, F, 541 


