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preface

Change is one of the most significant parameters in our society. Designers are
amongst the primary change agents for any society. As a consequence design is an
important research topic in engineering and architecture and related disciplines,
since design is not only a means of change but is also one of the keystones to
economic competitiveness and the fundamental precursor to manufacturing. The
development of computational models founded on the artificial intelligence
paradigm has provided an impetus for much of current design research - both
computational and cognitive.

These forms of design research have only been carried out in the last decade or
so and in the temporal sense they are still immature. Notwithstanding this
immaturity, noticeable advances have been made both in extending our
understanding of design and in developing tools based on that understanding. Whilst
many researchers in the field of artificial intelligence in design utilise ideas about
how humans design as one source of concepts there is normally no attempt to
model human designers. Rather the results of the research presented in this volume
demonstrate approaches to increasing our understanding of design as a process.
The goal in most of this research is to make the computer more useful in design
since it is clear when looking at designs produced by unaided humans that they
often fail to perform satisfactorily. The expectation is that computer-aided human
designers will produce better designs. The research methods employed are closely
linked to the scientific method but that does not imply that the activity of designing
is scientific.

The papers in this volume are from the Fourth International Conference on
Artificial Intelligence in Design held in June 1996 in Stanford, California. They
represent the state-of-the-art and the cutting edge of research and development in
this field. They are of particular interest to researchers, developers and users of
computer systems in design. This volume demonstrates both the breadth and depth
of artificial intelligence in design and points the way forward for our understanding
of design as a process and for the development of computer-based tools to aid
designers. The papers describe advances in both theory and application.

The forty papers are grouped under the following headings:

ix



Case-Based Design
Conceptual Design

Creativity and Innovation in Design

Design Objects
Design Spaces
Distributed Design

Genetic Algorithms/Genetic Programming in Design

Grammars in Design
Learning in Design
Representations in Design
Reuse of Designs

Rules, Models and Theories in Design

Spatial and Layout Planning in Design

All papers were extensively reviewed by three referees drawn from a large
international panel. Thanks go to them, for the quality of these papers depends on
their efforts. They are listed below. After the papers were reviewed, a small panel
considered the reviews prior to making a final recommendation.
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MULTI-LEVEL MOLECULAR REPRESENTATION

Kinematic synthesis using an object-centred spatial decomposition

PATRICK OLIVIER, KEIICHI NAKATA AND MALCOLM LANDON
Centre for Intelligent Systems

University of Wales

Aberystwyth Dyfed SY23 3DB

United Kingdom

Abstract. In the initial molecular representation proposal for kinematic reasoning (Gupta
and Jakiela, 1994), object contours were represented using a list of touching circles each
of equal diameter. Gupta and Jakiela characterise procedures by which: (1) kinematic
analysis can be performed by advancing the driving contour through a small displace-
ment and moving the driven object in such a manner as to minimise divergence in the
spatial relationship between the two contours; and (2) kinematic synthesis can be effected
by deforming a blank component with respect to the known half of a kinematic pair. We
have further developed this approach and employed a multi-level molecular representa-
tion, and have considerably improved both the synthesis and analysis procedures. In this
we paper we describe our kinematic synthesis and analysis algorithms, and give an ac-
count of how the multi-level representation can be maintained with minimum effort dur-
ing the synthesis process.

1. Approaches to Kinematic Analysis and Synthesis

Kinematic pairs are pairs of objects whose motion is dependent on each other
by virtue of their position, shape and the contact that results from their relative
motion. Lower pairs maintain a constant contact over the whole mating surface,
for example, bearings and prismatic joints are typical lower pairs. Higher pairs,
however, are characterized by the absence of full contact over their mating sur-
faces. That is, the points of contact between components of a higher pair change
in the course of their relative motion, as is the case in meshing gears and cam-
follower mechanisms.

Established approaches in engineering include special case analytical tech-
niques, which are highly tuned for the class of higher pair to be either analyzed
or synthesized; and graphical techniques based on the the interference constraint,
that is, that neither component of the pair can occupy the same space. The latter
constraint is the motivation for our approach, as it also is for all approaches ori-
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ginating in computer graphics!. Kinematic reasoning in artificial intelligence has
been primarily motivated by two subfields: robot-motion planning and qualitative
reasoning. In classical robot motion planning chains of lower kinematic pairs (or
one or more mobile robots and a fixed environment (Erdmann and Lozano-Perez,
1986)) are analyzed with the aim of computing obstacle-free paths in the robot
workspace. Whereas in qualitative reasoning the aim is to obtain a high-level de-
scription of mechanism behavior (eg. (Faltings, 1990; Faltings, 1992; Forbus et
al., 1987; Joskowicz, 1988; Joskowicz and Sacks, 1991)). Both problems are ad-
dressed using configuration space calculations (Lozano-Perez, 1983).

Most approaches to kinematic analysis that originate in computer graphics are
based upon checks for interpenetration between the object models (see (Hahn,
1988; Baraff, 1989) and for an example of a relevant application (Garcia-Alonso
et al., 1994)). Objects themselves are typically represented by piece-wise con-
tinuous segments, and when interpenetration occurs rules for determining the res-
ulting motion are invoked. Most of these approaches simplify the interpenetra-
tion computation using the assumptions that vertex-to-vertex, vertex-to-edge and
edge-to-vertex penetrations occur with a very low probability, an assumption that
has been shown to be overly simplistic in the domain of real mechanisms (Krish-
nasamy and Jakiela, 1993). Quadtree and octree representations have been used
before to speed up interpenetration determination for polygon models, but not, as
the actual representation with which the analysis and synthesis is performed.

2. Multi-level Molecular Approach: Interference Detection and Analysis

In the initial molecular approach (Gupta and Jakiela, 1994), objects contours are
represented using points of notional diameters (which resemble a chain of mo-
lecules, hence the naming). Gupta and Jakiela characterise procedures both by
which kinematic synthesis and analysis can be performed. In their analysis pro-
cedure the driving contour is advanced through some through a small virtual dis-
placement and the driven object is displaced in such a manner as to minimise di-
vergence in the spatial relationship between the two contours. We have developed
our own analysis and synthesis procedures based on a multi-level representation,
and show in the following sections the considerable benefits to be gained from
such an approach.

2.1, INTERFERENCE DETERMINATION

Contact is detected within a kinematic pair when one of the molecules of one ob-
ject contour overlaps (interferes) with one of the molecule of the other. That is,
molecules interfere when the distance between their centres is less than one dia-

'However, in section 3 we diverge markedly from established techniques in outlining how this
very constraint can be utilized to use an multi-level molecular for component synthesis.
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meter in length. The maximum number of checks to identify contact is the product
of the number of molecules comprising each object. Interference determination
will prove to be the crucial component of both kinematic analysis and synthesis,
and in this this section we discuss improvements on the worst case brute force
comparison.

2.2. INTERFERENCE: SINGLE-LEVEL MOLECULAR REPRESENTATION

Gupta and Jakiela (1994) describe a method of reducing the number of checks
needed to identify interfering molecules. On checking the distance between two
molecules (distance, in units of molecule diameters), if it is less than one diameter
then the molecules interfere. If the molecules do not interfere, then the argument
can be used that even if the second object's contour ran in a straight line directly
towards the molecule of the first object, it could not interfere with it for at least
(distance — 1) molecules.

This is shown in Figure 1. The two black molecules are checked for overlap
and clearly do not interfere. The second object's contour runs in a straight line to-
wards the molecule in the first object. Knowing that the objects are a continuous
chains of touching molecules we therefore know that the next (distance —2) mo-
lecules of the second object can not interfere with the black molecule on the first
object. We can therefore skip along the second object contour by (distance — 1)
molecules, greatly reducing the number of interference checks required in gen-
eral.

Distance / Diameter -1 th
Successive Molecule

First
Object

Second
Object

Distance

Figure 1. Molecule skipping during interference checking.
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2.3. MULTI-LEVEL REPRESENTATION

In the multi-level approach the contour of each object is represented at the base
level by a continuous chain of circles, not overlapping, but just touching. Fig-
ure 2(a) shows a small square represented in this manner using thirty six mo-
lecules. These base level molecules are then contained inside a level of larger
molecules. Each larger molecule has a diameter three times that of its immedi-
ate children. Its centre is the centre of the middle molecule contained within it.2
Figure 2(b) shows the square with the addition of larger molecules. This process
of creating larger molecules to contain three smaller ones is continued until the
whole object is contained within one or two molecules (Figures 2(c) and 2(d) il-
lustrate this).

Figure 2. An example of multi-level molecular decomposition.

2.4, INTERFERENCE: MULTI-LEVEL MOLECULAR REPRESENTATION

Using a multi-level molecular representation leads to a great reduction in the num-
ber of molecules which have to be checked to establish interference between com-
ponents. In this approach the largest molecules of two objects are first checked
for overlap. Interference between these molecules does not mean that contact has
been detected, but that the smaller molecules contained within them should be
compared. Only the smaller molecules contained within the interfering larger mo-
lecules need to be checked. Smaller molecules contained within larger molecules
that do not interfere can not themselves interfere with each other.

Figure 3 illustrates this; only two of the initial six molecules in Figure 3(a)
interfere; consequently only the molecules contained within them are checked
against each other in Figure 3(b). This procedure is applied recursively (see Fig-
ure 3(c)) until either interference at the base level has been established, or no in-
terference is detected.

2The choice of the number of molecules to be contained in a larger molecule, in this case three,
is rather arbitrary. However, by choosing an odd number, we do not have to recompute the centre
of the larger circle, and three is the smallest reasonable odd number.
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Figure 3. Exploiting molecular decomposition in interference determination.

To reduce the number of checks needed even further, the single- and multi-
level approaches can be combined. When checking the three smaller molecules
contained in a larger molecule against the three smaller molecules contained in an
interfering larger molecule, nine checks for interference are needed. But within
each of the three molecules, there is a linear ordering and Gupta and Jakiela's
skipping algorithm can be applied. At best the number of checks within the pair
of three molecules is reduced from nine to three (see Figure 4).

Figure 4. Exploiting linear ordering in the multi-level interference checking. Figure (a) illustrates
the best case performance (3 checks) and Figure (b) worst case (9 checks).

Whilst precise comparison of performance is very much dependent on the
geometry of the interference problem at hand, Table 1 contrasts the number of
interference checks required using both the single-level and the multi-level mo-
lecular representations on the problem depicted in Figure 5, at varying granularit-
ies.

2.5. MOTION INFERENCE

In analysis the driving object is advanced in each simulation increment by an
angle that will displace the molecule farthest from the the centre of rotation (for
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Figure 5. Test case for comparison of the single- and multi-level molecular representations.

TABLE 1. Number of interference checks for the single- and
multi-level molecular representations.

| No. molecules per object | 324 972 2916 8748 |

Single-level checks 2349 7044 21132 63418
Multi-level checks 414 507 688 849

rotational degree of freedom objects) by no more than one molecule diameter.
Thus the granularity and component geometry of the model place a constraint on
the number of angular increments to perform a complete analysis. When interfer-
ence is detected at the base level in the molecular representation, the nature of the
resulting motion must be inferred.

Unlike the virtual motion mentioned in the previous section, we preprocess
each object and encode on each molecule the sense of the motion that contact
with it gives rise to. For example, for a molecular representation of a gear, the
motion resulting from contacting any molecule of the contour is independent of
the orientation or position of the gear in a mechanism, it is dependent on the re-
lationship between the normal at the point on the contour and its vector position
relative to the degree of freedom. We therefore precompile this qualitative mo-
tion (anti- or clockwise) into each molecule. In the case where multiple overlaps
occur at the base level and the driven object molecules have different qualitative
motions compiled into them, it can be inferred that the motion of the driver is
blocked.
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3. Multi-level Approach: Synthesis
3.1. OVERVIEW

We propose a synthesis algorithm that differs in many respects from that proposed
by Gupta and Jakiela (1994). The class of synthesis problem addressed assumes
full knowledge of one component in the pair, the nature and location of the degree
of freedom of the component to be synthesised, and the input/output function for
the pair. The multi-level properties of the representation are once again exploited
in the interference detection problem, but in this approach we avoid the need to
compress and expand the contour of the component being synthesised and adopt
a simpler procedure. In our procedure the unknown contour (initially a feature-
less circle) and the known contour are overlaid in some relative position and ori-
entation satisfying the required input/output function. Molecules in the unknown
contour that overlap with the known object contour are deleted and replaced with
molecules that precisely trace the known contour between consecutive overlaps
(see Figure 6). This trace is the external contour of the known object and is pre-
compiled prior to synthesis.

Figure 6. Molecular synthesis. In (a) the known contour is depicted with its associated exterior
contour; (b) shows the overlap of an unknown contour, of the component being synthesized and
the known contour; in (c) the overlapping molecules have been deleted; in (d) the new contour is
formed using the molecules in the exterior contour of the known component.

3.2. EXAMPLE OF SYNTHESIS PROCEDURE

Synthesis starts by placing the known shape and the unknown shape into their ini-
tial positions and cutting the unknown to the known shape as shown in Figure 8.
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Foreach angular displacement of known and unknown component

Locate intersections and overlaps
Create a blank list to contain ‘cut’ sections

For each pair of intersections on known contour
If corresponding unl t lecul
are on unknown contours list then
Remove section from between corresponding molecules
on the unknown contour.
Place the ‘cut’ section on the cut list
Generate new section, following the known contour
between the two intersections and put it into the
unknown contour to replace the ‘cut’
Elseif corresponding unknov lecul
are on unknown contours list then
Remove section from between corresponding molecules
on the unknown contour in the cut list - the remaining
sections become two lists on the cut list
Generate new section, following the known contour
between the two intersections, making the section
just ‘cut’ a complete contour
Add the new to the unk n list
Endif
Endfor

For each overlapping section
Remove overlapping section of the uni
Generate a new section, following the known contour
for the length of the overlap, and place it into the
unknown contour to replace section removed

Endfor

Endforeach

Figure 7. Synthesis algorithm.

Figure 8. Initial positions of unknown and known shapes.
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Both shapes are then rotated, resulting in a number of intersections between
them. The intersections are labelled, first by following the known shape as shown
in Figure 9 and then by following the unknown contour as shown in Figure 10.
Table 2 shows how these labels correspond.

Figure 9. Intersections numbered by following known contour.

Figure 10. Intersections labelled by following unknown contour.

TABLE 2. Corresponding labels between
known and unknown contours.

a b

Known Shape c
f e d

d
Unknown Shape a

e
b ¢
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The intersections can be thought of as nodes and the contours between them
as arcs. The following explains the notation used to refer to the nodes and arcs in
this example.

ko Known shape molecule at node A. It is the last interfering molecule when the
known contour moves from the outside to the inside of the unknown shape.
It is the first interfering molecule when the known contour moves from the
inside to the outside of the unknown shape.

Ka+1..-kp—1 The molecules making the arc between molecules k, and k.

v, Unknown shape molecule at node C. It is the first interfering molecule when
the unknown contour moves from the outside to the inside of the known
shape. It is the last interfering molecule when the unknown contour moves
from the inside to the outside of the known shape.

Vet1..-Vd—1 The molecules making the arc between molecules v, and vg.

v; The new node molecule after cutting the unknown contour. It is the outside
molecule related to x; where i is the corresponding intersection on the known
contour.

vgy1.--Vj_1 The molecules making the new arc between molecules v} and v}.

At the start of the example the contours are as in Table 3. It then follows the
algorithm outlined in Figure 7.

TABLE 3. Contours at the initial position.

RayKa41:e:Rb—13yKbyRb41.eeRe—1yKcyKet1.eeRd—1, l

Known Contours:
RdyKRd41.e.KRe—-1yReyRet1 e Rf—1 3 KfsKfy1.ecRa—1

l Unknown Contours: | ¥a,Ua41.::Up—15Ub, Ub41---Vc—15 Uy Vep1+--Vd—15 '

VdyVd41:::Ve—-19Vey Ve41:eeVUf—13Vf,Uf41...Va—1

| Cut Contours: | Empty. |

STEP 1

Known contour nodes x, and x; match with unknown contour nodes v 5 and ve.
Unknown contour nodes v and v, are on a contour in the unknown contour list.
Remove the nodes and the contour between them placing them on the cut list.
Generate new nodes v} and v; and a new arc v} +1...v;_1 to follow arc Kq+1..Kp_1
and place them into the unknown contour.

Figure 11 shows this in detail. At the intersection between s, and v § the
known contour moves from outside to inside the unknown shape. «, is therefore
the last interfering molecule on the known contour. The unknown contour moves
from outside to inside the known shape. vy is therefore the first interfering mo-
lecule on the unknown contour. At the intersection between &3 and v, the known
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TABLE 4. Contours after Step 1.

Unknown Contours: | ¥a, Va+1++sUb—13Ubs Ub41+eeUc—1y Uy Uct1+eeUd—15

* * * *
VdyUd41++Ve—1y Ve, ve+1...vf_1,vf, Vf41...Va—-1

| Cut Contours: | ve,Vetrvpor,v5 I

contour moves from inside to outside the unknown shape. «;, is therefore the first
interfering molecule on the known contour. The unknown contour moves from in-
side to outside the known shape. v, is therefore the last interfering molecule on
the unknown contour. The molecules v¢ and v, together with all the molecules
between them are removed from the unknown contour and placed on the cut list.
v; is the outside molecule associated with x, and v} is the outside molecule as-
sociated with k3. These molecules, together with all the molecules on the outside
contour between them, replace the cut section in the unknown contour. Figure 12
shows the changes to the two contours during Step 1. The result is summarised in
Table 4.

Figure 11. A close up of the intersections for Step 1.
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Figure 12. After Step 1.

STEP 2

Known contour nodes k. and k4 match with unknown contour nodes v4 and v,.
Unknown contour nodes v4 and v, are on an unknown contour. Remove the nodes
and the contour between them placing them on the cut list. Generate new nodes
vy and v; and a new arc v, ...vj_; to follow arc k.41..k4—1 and place them into
the unknown contour. Figure 13 shows this in detail. At the intersection between
k¢ and vy the known contour moves from outside to inside the unknown shape.
K is therefore the last interfering molecule on the known contour. The unknown
contour moves from outside to inside the known shape. v is therefore the first in-
terfering molecule on the unknown contour. At the intersection between x4 and v,
the known contour moves from inside to outside the unknown shape. x4 is there-
fore the first interfering molecule on the known contour. The unknown contour
moves from inside to outside the known shape. v, is therefore the last interfering
molecule on the unknown contour.

The molecules vy and v, together with all the molecules between them are re-
moved from the unknown contour and placed on the cut list. v is the outside mo-
lecule associated with . and v} is the outside molecule associated with 4. These
molecules, together with all the molecules on the outside contour between them,
replace the cut section in the unknown contour. Figure 3.2 shows the changes to
the two contours during Step 2, and Table 5 summarises the result.

STEP 3

Known contour nodes «. and x5 match with unknown contour nodes v, and v..
Unknown contour nodes vy and v, are not on an unknown contour; they are on
a cut contour. The contour between the nodes is removed from the cut contour,
leaving behind the two end molecules. What is removed is placed into the blank
contour list as a separate contour. New nodes vy and v; are generated and a new
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Figure 13. A close up of the intersections for Step 2.

TABLE 5. Contours after Step 2.

. .
I Unknown Contours: | Vg Vg1 - oVd—15 Uy Udp1 eV 1, Vg » Vg g1 --VF 1, Uy Vf f1e0Va1 I

Cut Contours: Vey Vet1.Uf—1, Vg,

Vey Va+1e0eUb—14Uby Ubf1.0eVe—15Vcy Vet1.:.Ud—1,Ud
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arc v}, q...v5_y to follow arc ke41..5¢—1 is added to them to complete the new
contour. Figure 14 shows this in detail. At the intersection between k. and v; the
known contour moves from outside to inside the unknown shape. k. is therefore
the last interfering molecule on the known contour. The unknown contour moves
from outside to inside the known shape. vy is therefore the first interfering mo-
lecule on the unknown contour.

At the intersection between «f and v, the known contour moves from inside
to outside the unknown shape. & is therefore the first interfering molecule on the
known contour. The unknown contour moves from inside to outside the known
shape. v, is therefore the last interfering molecule on the unknown contour. The
molecules vy and v, are on a cut contour. The molecules between them are re-
stored as a separate contour. vy is the outside molecule associated with x. and v}
is the outside molecule associated with « ¢. These molecules, together with all the
molecules on the outside contour between them, are added to the new contour.
There are now two separate contours making up the unknown shape. Figure 15
shows the changes to the two contours during Step 3, and the result is summar-
ised in Table 6.

Figure 14. A close up of the intersections for Step 3.
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Figure 15. After Step 3.

TABLE 6. Contours after Step 3.

Unknown Contours: | vg,Vg41.-Ug_1,VgsVd+1eeVe15 Vg Voq1-0Vf_15Vfs Vff1.0Var1,s

* * * *
Vp 3 Ub41+4:Vc—1, V¢ sy Uct1+Vp_1

Cut Contours: Vey Vet1---Uf—1, Uf,
Va, Va41:Vb—1, Vb,
Vey Ue41+--Vd—1,Ud

4. Reconstructing the Multiple Levels During Synthesis

A crucial factor in the efficient performance of the synthesis procedure is that
interferences must be rapidly detected using the hierarchical procedure detailed
earlier. However, during synthesis, base level molecules of the unknown contour
are constantly being added to and replaced. This section shows how a data struc-
ture, based on a multi-linked B tree (i.e., Bt tree with bidirectional links), con-
taining the multiple levels of representation of an object can be maintained effi-
ciently in the course of the contour deletions and insertions during synthesis.

An example object contains twenty seven molecules, but molecules fourteen
to seventeen are to be removed and replaced with twelve new molecules. The ini-
tial state of the data structure is shown in Figure 16.

The four molecules being replaced are overwritten by the first four new mo-
lecules. Molecule 14 is overwritten by the first of the new molecules, 1', 15 by
2',16 by 3' and 17 by 4'. The intermediate state of the data structure is shown in
Figure 17.

To speed up the process we wish to insert larger molecules containing three of
the smaller ones. A new larger molecule can not be placed inside another larger
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Figure 16. Initial data structure.
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Figure 17. Removed molecules are overwritten.

molecule, so the insertion point must be moved to the start of a larger molecule.
This is done by creating a new larger molecule and placing in it old smaller mo-
lecules after the insertion point. In this example, a new larger molecule is created
and 18 is placed in it. The two larger molecules are then filled, the original with
the next smaller molecules to be inserted, 5', and the new with the last molecules
to be inserted, 11' and 12'. This is shown in Figure 18. Now the remaining mo-
lecules are built into new larger molecules, in Figure 19.
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S L ) L g ey s

1 234567 89 10111213172 3 45 19 2021 223 24 25 2 27 11'12°18

t +d

Next molecule to be inserted Last molecule to be inserted

New larger molecule

Figure 18. Ready to insert larger molecules.
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Figure 19. New larger molecules.

The new larger molecules are then inserted into the list of larger molecules in
the same way as the smaller molecules were inserted into them.

There are no molecules to be removed, so none can be overwritten. The in-
sertion point is already at the start of a larger molecule, so the three molecules
to be inserted are built into a new larger molecule to be inserted into the larger
molecules, as shown in Figure 20.
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Figure 20. New larger molecule.

No molecules can be overwritten, but the insertion point is not at the start of
a larger molecule. A new larger molecule is created, and the molecule after the
insertion point is placed in it. The molecule to be inserted is placed in the original
larger molecule to fill it, but there are no further molecules to insert which can be
used to fill the newly created larger molecule. The new molecule is inserted into
the top level. As the top molecule does not have a parent a new level is created
containing it and the molecule being inserted. Figure 21 shows the completed data
structure.
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Figure 21. The completed data structure.
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5. Closing Comments

Our current efforts are directed towards developing the representation for three-
dimensional problems. The original single-level molecular representation depended
very heavily on the linear ordering of molecules to facilitate the skipping compon-
ent of the interference detection algorithm. In the multi-level case there is no such
dependence. It is likely that points distributed on the nodes of a regular triangu-
lar mesh may be aggregated into spheres enclosing hexagonal collection of points
as in the two-dimensional case. Synthesis in three-dimensions will need a further
extension in the form of a data structure by which areas of such spheres may be
added and deleted the hierarchical decomposition efficiently maintained.
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Abstract. An emerging model in concurrent product design and manufacturing is the
federation of workgroups across traditional functional “silos.” Along with the benefits of
this concurrency comes the complexity of sharing and accessing design information. The
primary challenge in sharing design information across functional workgroups lies in
reducing the complex expressions of associations between design elements.
Collaborative design systems have addressed this problem from the perspective of
formalizing a shared ontology or product model. We share the perspective that the design
model and ontology are an expression of the “meaning” of the design and provide a
means by which information sharing in design may be achieved. However, in many
design cases, formalizing an ontology before the design begins, establishing the
knowledge sharing agreements or mapping out the design hierarchy is potentially more
expensive than the design itself. This paper introduces a technique for inducing a
representation of the design based upon the syntactic patterns contained in the corpus of
design documents. The association between the design and the representation for the
design is captured by basing the representation on terminological patterns in the design
text. In the first stage, we create a “dictionary” of noun-phrases found in the text corpus
based upon a measurement of the content carrying power of the phrase. In the second
stage, we cluster the words to discover inter-term dependencies and build a Bayesian
belief network which describes a conceptual hierarchy specific to the domain of the
design. We integrate the design document learning system with an agent-based
collaborative design system for fetching design information based on the “smart
drawings” paradigm.

1. Motivation

The design of complex mechanical systems requires an intimate
understanding of the interactions among the different disciplines and
subsystems so that cross-disciplinary tradeoffs can be made. Any change
that might have been precipitated explicitly by modifying a requirement or
implicitly by observing a failed simulation will propagate a chain of
interaction between designers, manufacturing engineers, process planning
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engineers, and sales and marketing professionals. Knowing the role of
individual functional and physical design elements and their association to
other elements in the overall design helps the product design team
“understand” the design from the perspective of other members.

In reality, to “know” the interaction between design elements, designers
expend a considerable amount of effort in accessing and absorbing design
information. One can characterize this scenario roughly as a three-step
process. First, the designer looks for possible related elements such as inter-
dependent design functions or physical components. Next, the designer
analyzes and interprets the relations between them, relations that might be
explicitly stated in mathematical equations, rules, or implied by design
standards and “best-practices.” Finally, the designer decides which of the
associations is plausible in some sense. If there is no reason to reject or defer,
then the association is accepted (Baya et al., 1993). Unfortunately, few CAD
applications have begun to address the problem of reducing the time
designers spend understanding the design, including absorbing design
information, keeping up with design changes and reconciling problems or
sharing information (Toye et al., 1993). According to Akman (1994), only
systems which embed advanced reasoning capabilities will be able to deal
with the complexity arising from the management of large quantities of
design data.

Since this assessment is typically achieved by reading natural language
texts such as memos and design specifications associated with the design
model (Ullman, 1988), we would like to build a program to automate this
process. This research introduces an automated technique to acquire a
representation of the design based upon contextual clues in the design
documents. By allowing the current context of the design to influence the
representation, we eliminate the a priori determination of a structured
hierarchy or design language and permit dynamic updating of the design
vocabulary.

The research was motivated by a desire to take advantage of existing
design information to assist in collaborative design. Current CAD tools
adequately capture the final design details such as specifications and analysis
results. Still, we need to develop tools that learn the interconnections between
well-documented design elements so that federated workgroups can have
access to relevant information without necessarily having to be an expert in
each area of the design. The underlying aim of the research then is to
discover the terminological patterns in design text as a basis for constructing
a meaningful engineering model of the design.



TEXT ANALYSIS FOR CONSTRUCTING DESIGN REPRESENTATIONS 23

2. Prior Research

The kernel of design information systems is the ontology which describes
the product model. The ontology is a repository of information and
provides a means by which concurrency in design may be achieved. The
evolving STEP standard (ISO CD 10303-1) highlights the thrust towards
product modeling and a common ontology in product models. Product
modeling-based systems have been quite successful at setting up complex
rules which describe in detail the possible underlying structures of a design
(Wong and Sriram, 1993; Szykman and Cagan, 1992); at the same time
ontology-based systems are trying to define semantic relations and to model
the functional and behavioral structures underlying the synthesis of a design
for representing stereotypical information (Olsen et al., 1995; Shah, 1993).
A similar design-document learning system to the one proposed here is
being pursued by Reich (1993) except that the relationships between words
are not learned but rather negotiated by the designers. How the words fit
together into a structure communicated an idea.

We agree that an ontology provides a means for sharing information.
However, the approach presented in this research differs from that taken by
other researchers in the design community who developed specialized
grammars and shared ontologies (Gruber, 1992) or product-models in that it
derives from the design documents. Information models should capture and
represent product information to give the reader an “understanding” of the
design the model represents. But they must also be dynamic to reflect the
evolutionary nature of design. Even though one could argue that the
addition of new ontology and negotiated agreements makes the ontology-
based or product modeling-based systems dynamic with the design, since the
“meaning” of design elements changes with an evolving design, modifying
the model or adding new ontology to reflect the changes in real-time might
be difficult. In fact, the evolutionary and uncertain nature of design require
representations that operate on meaning, not expression (Wood and
Agogino, 1995).

Part of the problem of these systems is that they assume that the
“meaning” of a design could be computed as a function of the constituents.
To “understand” a design, designers must take advantage of a variety of
mechanisms that use all sorts of knowledge to fill in any necessary
information. In making a computer model of design knowledge, this
presents a serious problem. On the one hand, it is impossible to isolate all
aspects of domain-dependent knowledge from the others. On the other hand,
it is clearly undesirable to give the program all the knowledge related to the
design. In this research, the dilemma is resolved by inferring plausible
conclusions by relating the various elements of the design using the design
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documents themselves as a complete and accurate representation of the
current state of the design.

We propose the architecture of an intelligent agent in a collaborative
design environment which dynamically learns the current status of the
design. One application of the agent is the retrieval of relevant information
to the current needs of the designer. The system achieves the learning and
understanding of the design using the design documents as the “model of
the world.” We present a theory of design discourse as a theoretical premise
for generating a model of the design based on the design documents, and
illustrate how to integrate learning the design within a collaborative design
framework for bringing relevant design information to the decision-maker
based on the “smart drawings” system presented in a prior paper (Dong et
al., 1995).

3. Methodology

3.1. GENERAL THEORY

In discourse, people take advantage of a variety of mechanisms that depend
upon the existence of an intelligent hearer who will use all sorts of
knowledge to fill in any necessary information (Wilensky, 1983). To make
an intelligent agent understand the design as communicated by the designers
through design documents, then, we must construct a framework within
which the agent has a sufficient search space to formulate an adequate
understanding of the design (Dong et al., 1995). In order for the agent to fill
in necessary information regarding the design, though, it must learn the
connections between the functions or components of the design. Currently,
the solution strategy is to have experts construct both the ontology and
describe the decomposition of the design to the agent. However, we argue
that this information is in fact available and contained in the design
documents themselves. Research in full-text retrieval systems (Lewis, Croft
and Bhandaru, 1989) verify how certain syntactic patterns in documents
refer to meaningful concepts, and how language-oriented techniques for
information retrieval can build the relationships between categories, category
instances and relations of those concepts. These categories define a model of
the design. By reading the design documents periodically, the agent excerpts
the current connections between the different design elements.

In building this agent, we assume to a first-approximation that the
linguistic content (words) of the design documents provide a useful index to
the composition and structure of key design concepts at the current state of
the design. Second, it is assumed that every statistical association derives
from causal interaction; therefore logical coherence is based on statistical
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coherence. Based upon these assumptions, we propose the following theory
of design discourse as the theoretical foundation for the learning algorithm:
A theory of design discourse—The content of design

documents is related to a conceptual structure of the design,
whose communication comprises the goal of the designer.

The claim is the agent can induce a model of the design, including the
functions and components of the design and their relations by learning over
the design text associated with the product. Eastman (1991) identifies several
criteria for describing engineering product models: (1) the semantics, which
describe the functions, components and attributes of the design; and (2) class
structures, which describe both the generalizations (properties relevant to any
design element), and the decomposition (how functions and components are
inter-related) of the design.

While the product model derived by this method is not the same as that
proposed by Eastman, these criteria serve as a guideline for learning the
design. In essence, the sequence of operations in the program are (as shown
in Figure 1) to: (1) extract the natural language text annotations to CAD
drawings to excerpt the semantics of the design; (2) generate the class
structures describing which properties are relevant to any function of a
design using clustering; and (3) build a decomposition of the design which
in this method is accomplished with belief networks.

CAD
Annotate Drawings
Parse
NLP/IR
Index
Term Relevance Scoring
C tual Clusteri
Machine Learning oneep usterng
Belief Network

Figure 1. Process Flow Chart—The figure outlines the sequence of operations of the
program in learning the content and structure of the design. The research proposes a
methodology for annotating CAD documents to create “smart drawings,” techniques for
extracting the design vocabulary from the design text using natural language processing
and information retrieval, and model learning and inference by applying machine
learning.



26 ANDY DONG AND ALICE M. AGOGINO

3.2. STAGE 1: TEXT ANALYSIS

The general method to discover terminological patterns in design
documents, which act as a basis for constructing the design model, is to parse
the document text, cluster inter-term dependencies and build a conceptual
hierarchy.

First, the text was passed through a parser and indexer, freeWAIS-sf'
(Pfeifer and Huynh, 1994) waisindex, which returns a dictionary of every
word in the text except for common “stop words.”? We then filter this set of
terms to develop a set of content-carrying terms. The filtering process is
based upon a word score metric similar to that described by the CLARIT
method (Evans et al., 1991). The scoring equation is based on the freeWAIS-
sf term relevance score (TRS) metric shown in Equation 1. The primary
statistics include (1) a frequency count of the number of times the word was
encountered in individual documents in the corpus; and (2) an inverted
weighted distribution measurement for the number of documents containing
a particular term. The idea is that the frequency measurement correlates with
the text semantics. Words that occur often in a text are better indicators of
what the text is about. More terms can always describe the document
concepts better, but too many terms dilute the importance of any individual
concept. Thus the distribution (or inverted document frequency) of the
terms in the documents captures the intuition that words which have high
frequency across documents are “general” in the domain and do not serve
as good discriminators of concepts.

(log(#f) +10)xidf

TRS = number_of _terms_in_a_ document
0.5x 2 word
doc.

=0.5+ —m——

d max z word
doc
1
idf =
¥ Z word

doc

Equation 1. The freeWAIS-sf TRS Metric—The TRS metric is based upon the term
frequency #f which counts the number of times the word appears over all documents, the
inverted document frequency idf which counts the number of documents containing the
word (a measurement of distribution) and normalized by the number of terms in a
document, to account for the rarity of a word.

' One advantage to using a WAIS (Wide Area Information Server) program such as freeWAIS-
sf for full-text document parsing, indexing and retrieval is that documents can be queried and
retrieved over the Internet using the Z39.50 V2 protocol.

2 Stop words include conjunctions and articles such as “a”, “the,” “since” and other words
frequently used in natural language to connect terms but not necessarily to distinguish topics
or provide contextual cues for topics.
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The score does not account for variations in author style or the presentation
of the text. For example, one might score words which are typed in bold face
or italicized or words from more recent design documents higher than
others. Other factors such as the person who wrote the document, paragraph
headers or document titles could be used as additional word weights;
however, the efficacy and numerical value of these weights is difficult to
quantify. Further, this complicates the clustering. For example, “recent”
terms might be associated by time rather than meaning which violates the
purpose of the algorithm. Thus the algorithm has limited sensitivity to the
organization and presentation of the text.

Then, the program computes the average score and standard deviation.
Words whose score fall above the mean become the inventory of index terms
for the corpus, the certified terminology. The system filters out words which
are relatively frequent, have less value in forming good topic discriminators
than relatively rare words, and words which are seldom used since they are
probably not conditionally dependent upon the concepts described or vice
versa. We will explain later why this conditional relevance is important in
building a dependency matrix of concepts which forms the basis of the
representation.

Finally, based on the set of certified, content-carrying terms, the system
determines their contextual similarity by measuring the frequency of
occurrence of any two of the certified terms in the documents. That is, the
program generates a nxn matrix, where n is the number of certified words,
which scores how “often” the certified words co-occur. This matrix is
created by executing a waisquery consisting of the query string “[word-A]
AND [word-B]”. The query sums up the score for similarity between the
query string and the document base. The conjecture is that if the query
string appears frequently over the entire document base then the words have
a shared contextual dependency. In freeWAIS-sf, document similarity is
measured as a vector product formula. The similarity between the query
string O and the document D is given by

similarity(Q, D) = 3. (W X wy)
x

Equation 2. The freeWAIS-sf Similarity Metric

where wy is the weight assigned to term k in the query and wy, is the weight
assigned to term k in the document D.

3.3. STAGE 2: CLUSTERING AND INDUCING A BAYESIAN NETWORK

Once the system has developed a prescribed vocabulary, the program maps
the terms into context descriptors. The words themselves have no
“meaning” outside the context in which they appear. In fact, research in
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full-text information retrieval has shown that words which appear in the same
context tend to have a shared dependency (Gardiner, Riedl and Slagle,
1994). Thus, we need to map the relevance between the assigned terms and
the context in which they appear.

For this process, we apply two machine learning techniques. In the first
portion, we classify related terms into “conceptual cells” using unsupervised
learning. These cells represent terms which are self-similar in the documents.
This determination is based on the observation that terms which appear toge-
ther (in the same context) in documents typically connote similar meaning
(Gardiner, Riedl and Slagle, 1994; Lewis, Croft and Bhandaru, 1989). Since
the matrix measures closeness based on the spread of data or distance be-
tween words, a convenient distance-based clustering technique is the K-
means algorithm in Table 1 (Duda, 1973). The variable x; is the score in the
matrix for the pairwise occurrence of two words in the document collection.

TABLE 1. K Means Algorithm.

procedure K_MEANS
( Initialize the cluster centers w;, j=1,2,...,N;)
(repeat
; Group the patterns with the closest cluster center
(for all x; do
(Assign x; to ©;,, where w;, = min x;—w "
j J
endloop )
; Compute the sample means
(for all w; do
1
W= —3x,
M; riei
endloop )
until there is no change in cluster assignments from one iteration to the next
)
end ; { K. MEANS }

Next, the goal is to obtain a decomposition that explicitly reveals as much
information regarding the conditional independence of design elements as
possible. The key feature of belief networks is their explicit representation of
the conditional independence among events (Pearl, 1988). That is, they can
explicitly and compactly represent the dependency of design elements.
Topological transformations (through arc reversals and node absorption for
example) can answer questions concerning possible causal relations or
dependencies between design elements. Since the Bayesian network conveys
an intuitive understanding of how the reasoning process works, the designer
can also follow the reasoning process of the design based upon the
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dependencies/independencies of the events to determine how the change in
any one element might affect any other element.

The general method for constructing belief networks is to draw arcs from
causal nodes to effect nodes and then attach a probability to that arc (Russell
and Norvig, 1995). While techniques exist for constructing the most
probable belief network Bs given a database D of instances (often called the
maximum a posteriori structure) based on assumptions of a uniform
distribution of belief network structures (Cooper and Herskovits, 1992), the
Bayesian Dirichlet likelihood equivalent metric (Heckerman and Geiger,
1995) and minimum description length (Lam and Bacchus, 1993), we
generate an initial network using a heuristic approach. We plan to apply one
of the metrics to optimize the network locally about a network structure
which correctly represents the design.

The heuristic used to construct the Bayesian network is based upon the
conjecture that seeing a lower TRS word with respect to a word that it shares
contextual similarity causes the system to update the belief that the higher
TRS word will appear (Evans et al., 1991). This causal influence and
contextual similarity is found by pairing words with the highest TRS in the
co-occurrence matrix. The strategy for building the network is to link the
highest associated words in their own clusters first then to link the words
between clusters. The algorithm is outlined in the Table 2.

TABLE 2. Network Algorithm—In the first box, the table illustrates the general method
for creating belief networks based on expert knowledge. In the bottom box, the table
outlines the heuristic algorithm employed by the program.

General Procedure

1. Choose the set of relevant variables Xj that describe the domain

Choose an ordering on the variables

While there are variables left:

(@) Pick a variable Xj and add a node to the network for it

(b) Set Parents (Xj) to some minimal set of nodes already in the net such that
the conditional independence property is satisfied (direct causal influence)

(c) Define the conditional probability table for X;

W

Network Algorithm

Define a variable X; for each word

Order the variables Xj in their respective clusters by ascending TRS

3. While there are variables left in the cluster

(@) Select the variable X; with the lowest TRS and add as node in the network

(b) Set Xj as Parent Of(Xj) where Xj and Xj have the highest similarity in the
co-occurrence matrix and TRS(Xj) > TRS(Xj)

(¢) Select next node in ordering as Xj+] and continue; repeat for each cluster

N
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4. Order the clusters by ascending cumulative TRS
5. While there are variables left in the cluster
(@) Select a variable Xj from the lowest TRS cluster
() Set Xj as ParentOf(Xj) as the node from the next cluster with the highest
similarity in the co-occurrence matrix
(c) Select next node in ordering as Xj+] and continue; repeat for each node and
cluster
6. Define the conditional probability table for Xj

3.4. AGENT ARCHITECTURE FOR DESIGN INFORMATION RETRIEVAL

Figure 2 depicts the agent architecture for learning the design based on the
documents. The architecture augments the “smart drawings” system
presented in a previous paper (Dong, Agogino, Moore and Woods, 1995).

The agent environment consists of the database of design documents,
including the CAD drawings, design specifications, design notes and memos
and e-mails written between designers. The agent reads the text periodically
to generate the list of content-carrying words. By manipulating the list and
using the document database for additional data, the agent constructs the
inter-term clusters and belief networks to build a model of the design. The
model helps the agent to understand the design by finding out what
properties are relevant to a function in the design and the decomposition of
the design. In response to requests from the user, the agent can retrieve
relevant design information.

Figure 2. Agent Architecture—The user annotates and adds design documents to the
document database. The agent interacts with the document database by parsing and
scoring the words in the document. The agent uses the data to create the clustering and
belief network to learn the connections between the design elements. The user can then
ask for relevant information with respect to current information needs by having the
agent search for related design components.
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4. Experimentation and Results

For this project, we created a machine-readable form of The Mechanical
Engineers’ Handbook (Kutz, 1986) which was scanned and run through an
optical character recognition (OCR) software (“dirty”)’ to output the final
text. The program was then run on the chapters on controller design to
derive a model of controllers.

The cluster results are shown in Figure 3. These clusters indicate which
properties are relevant to any particular function or element of the design,
giving the agent knowledge of relevant issues in the design. The clusters
indicate, for example, that the main content of the documents is the design
of a controller or the control of a system. The third cluster reveals that the
performance of the system is influenced by the gain and order of the
control as well as any damping in the system while the sixth cluster indicates
that the position seems to be the variable to be controlled in the system as it
is tightly related to the feedback, input and output. One critique of the
clusters is that zero appears with performance and root appears with stable,
whereas it is known that both the zero and root of the system affect the
stability. However, in the document collection, zero statistically appears
more often with performance and root with stable since, for example, the
documents discuss more often that a zero affects steady-state error (a
measurement of controller performance) whereas the closed-loop roots
determine the stability of the system. The cluster results agree with known
knowledge of the relevant properties of the functions and attributes of
controllers.

((system design controller control)

(transfer function time error state signal response plant)
(zero integral gain order damping performance steady action)
(stable root frequency process model loop)

(valve pressure power pneumatic motor displacement)
(variable value position feedback input output)

(disturbance diagram constant) ... )

Figure 3. Cluster Results—The cluster results for the chapters on controller design.

Finally, the system generates the belief network shown in Figure 4 and
the conditional probability table associated with the network. The states for
each of the event nodes (words) are 0, when the word (or design element) is
not present in the document, and 1 otherwise. The conditional probability
table for the network is based on frequency counts. For example, the
probability of the word controller co-occurring with the word design is given
by:

3 “Dirty” OCR refers to documents un-modified after the OCR process, i.e. no spell check.
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Figure 4. Initial Belief Network (partial)—This figure illustrates parts of the belief
network generated using the heuristic algorithm. For purposes of clarity, not all arcs and
nodes are shown.

For clarity, not all nodes and their associated arcs are shown in Figure 4. For
the nodes shown, the arcs are complete. One can read some interesting
inferences off of the network. The first inference expresses the dependency
of the design elements. The expression of dependency describes the
decomposition of the design.

1. The system to be controlled is characterized by the desired response and
the controller design. The control law is conditioned on the transfer
JSunction, the error and the desired response of the system.

The second inference illustrates the degree of dependency between design
elements. These types of inferences relate both information and the degree
of relevance based on the amount of evidence available.
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2. The concept of system response is more dependent upon gain in this
controller design than the specific input criteria.

The third is perhaps the most interesting since it shows how the system could
infer the interaction of several elements in the design which produce a
certain function. Therefore, if the designer were interested in increasing the
pressure in the controller, one of the design elements to modify is the motor
and followed by checking if the valve could handle the increased stress.
More notable is that without explicitly telling the system these design
element connections or the design topic, the system correctly extracted from
the text that these chapters discussed controller design using pneumatic
devices.

3. The motor changes the displacement of the valve which affects the
pressure.

While the arc directions could change through topological
transformations, the above network and associated inferences illustrate two
important ideas. First, inspection of the network indicates that the heuristic
generates a network with arcs between elements in the direction of physical
causality, as illustrated by the third example in that the motor causes
displacement rather than vice versa. Second, the network illustrates the more
important problem of capturing the dependencies between design elements.
By capturing these dependencies, the system is more efficient in searching
for meaningful and relevant design information. The combination of the
cluster information and the belief network augments the search by finding
closely associated design elements (cluster information) which may not
actually appear in the designer’s query while removing less relevant
information if less evidence supports the association between the design
elements (belief network).

The program was then integrated with a “smart drawing” (Dong et al.,
1995) system as shown in Figure 5. Some preliminary tests were conducted
to test how well the system learned the design data. One of the tests asked the
system to retrieve relevant information to the “Lyapunov stability of the
controller.” Based on the clustering results, the program knows that the
roots of the system affect stability, so that documents which discuss roots
frequently should also be returned and scored high in relevance. By
expanding the query to include closely related terms which in this example
indicate closely related attributes to the stability of the system, the program
can find documents related to stability that may not mention the word

* One aesthetic limitation of the current implementation is that the user is given only the
path to the document rather than the document title, for example. By selecting one of the
documents, though, the system automatically brings up a viewer for the document type, such
as a text file or AutoCAD drawing.
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stability in the document. Those elements which have shared dependencies
in the belief network are scored higher. Without expanding the query based
on the learned data (i.e. a standard freeWAIS query), only documents which
frequently discuss both stability and controller would have scored high. That
is, the dynamically learned design structure augmented retrieval to include
information not explicitly cast in the query but which should be reported
together by virtue of design dependency. In this case, design documents
which discuss any property shown relevant based on the clusters to stability
or controller score high.

Figure 5. Smart Drawings Desktop—The agent learns the content of the design data
based on the design documents using the learning methodology outlined above. Then,
when prompted, the agent can retrieve relevant design information based on the current
information needs of the designer using the information content of the active document
as the query.

The role of the clusters and belief network for design information
retrieval is similar to the purpose of the decision dependency network
presented by Garcia, Howard and Stefik (1994) in the Explanation interface
to their ADD system. The Explanation interface displays related information
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by retrieving documents that are generally reported together. The key
differentiation is that the dependency network is based on a pre-processed
parametric design model for the design domain which seems to violate their
thesis that the evolution of the design description via documents relates to
the evolution of the design. For example, to capture design rationale, ADD
prompts the designer for decisions which deviate from the preferred norm.
This strategy for design rationale capture suggests that changes in the design
affect how the design should have been modeled or parametrized, that, in
fact, the design model dynamically evolves with the design.

Systems such as ADD and the one proposed which address the problem
of accessing design information by employing a structured design model to
augment the retrieval of unstructured design documents can improve recall
over those which have only an unstructured model (such as freeWAIS-sf) or
only structure (ontology-based systems). However, the important metrics for
evaluating these systems should include both the overhead for creating the
structured model to account for the dynamic nature of the design as well as
the performance in retrieving relevant information compared to baseline
systems which employ no structure. The design learning methodology
proposed illustrates a preliminary system which addresses both metrics.

While this is only a preliminary test of how well the system learns the
design data, what these tests suggest is the ability to augment design
information search by finding related information based upon meaning, not
just how the search request is expressed in the query. Second, the clustering
and belief network open the possibility of organizing the retrieved data in a
manner which is more meaningful to the designer than just straight
frequency metrics, such as ordering by related concepts. We are currently
investigating how to integrate the utility of the information to the designer
based on the preferences of the designer and the structure of the design
model in the belief network to improve the relevance ranking of the returned
information beyond simple frequency count measures. In particular, we are
implementing a “concept query” mechanism which more closely analyzes
what concepts would be interesting to the designer and the cost of obtaining
that information.

S. Summary and Future Directions

This research develops a computable learning method to extract the content
of the design model to facilitate information sharing among designers. The
premise of the methodology is that the design specifications and solutions as
communicated through design documents are related to a model of the
design. Certain combinations of the chosen properties of the design give rise
to the corresponding combinations of design descriptions in the design text.
Therefore, by learning these descriptions (words) through text analysis, the
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system induces a model of the design. The learning algorithm is based upon
natural language processing text analysis to extract content-carrying terms,
and then applying techniques from machine learning to cluster inter-
dependent terms and decompose the design into dependent elements using
belief networks. The model derived for the controller design example was
plausible and correct based upon knowledge of controllers.

What this research emphasizes is that CAD systems cannot ignore the
communication of design information with respect to the current and
relevant information needs of the design based on the annotation of the
drawings (Ullman, 1990). That is, the effect of techniques which implement
inductive learning techniques such as the one proposed to generate new
knowledge structures about the design rather than techniques that improve
the efficiency of problem-solving (explanation-based learning techniques) is
tantamount to improving CAD systems. By putting the knowledge of design
components in a form in which we can explicitly express the connections
between the different parts of the system’s knowledge, we enrich the
possibility of interaction for collaborative design.

The methodology explored in this paper only begins to explore the
possibilities of full-text analysis for deriving a model of the design and its
application. For example, one could augment the learned design structure
with formally derived ontologies or use the learned structure as the basis for
a formal ontology (Gruber, 1993). In particular, enhancing the parsing
ability of the program and augmenting the co-occurrence measurement
strategy to consider the number of words between two contextually similar
words (Grefenstette, 1992) promise to improve the efficiency of the
algorithm and achieve finer granularity in representing the design data. We
are currently investigating these issues as well as testing the relevance of the
learned knowledge in design documents from mechanical engineering
design courses.
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LEARNING GENETIC REPRESENTATIONS AS ALTERNATIVE TO HAND-
CODED SHAPE GRAMMARS
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Abstract. Shape grammars have been used to analyze and describe designs, and to create
new designs that are similar in style to the designs the grammar is based on. The gram-
mars are created by hand, involving a large amount of research about the designs and the
design process. This paper proposes a different approach, where a system is given design
examples, and in a bottom-up process learns stylistic features of the examples. This is
achieved by using an evolutionary system that is able to change the representation it is
using. With the creation of a more and more complex evolved representation, the search
space of the evolutionary process is transformed so that the search for new designs is
biased towards designs similar to the design examples.

1. Introduction

Shape grammars (Stiny, 1980) have been introduced as a method for formal de-
scriptions of designs. Shape grammars consist of an alphabet of shapes, a starting
shape, and shape rules that define spatial relations between shapes.

The power of shape grammars to analyze and describe designs has been
shown in a variety of design areas, from architectural design (examples in-
clude Palladian Villas, Frank Lloyd Wright Houses, Wren's City Church de-
signs and Japanese tearooms (Stiny and Mitchell, 1978; Knight, 1981; Kon-
ing and Eizenberg, 1981; Buelinckx, 1993), over garden landscaping (Stiny and
Mitchell, 1980; Knight, 1990) to de Stijl style paintings (Knight, 1989).

In all these examples, however, the translation from a set of designs into a
shape grammar (and the reverse) has been done by hand. Very few attempts have
been made to automatize the process. Chase (1989) showed how the automatic
generation of shapes from (given) shape grammars can be realized. Mackenzie
(1989) described a system that is able to produce grammars from example de-
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signs, if the designs are described in terms of their basic components and their
topology. The transformations used in that paper are not unique, many different
grammars are possible for any given set of designs. The system uses a 'utility’
function to distinguish between good and bad representations. This demonstrates
a general problem: to create a 'sensible' shape grammar, a large amount of high
level knowledge is required. Intentions of the designer, logical units in the design,
logical stages in the design process are all represented in the grammars.

The purpose of this paper is to describe an alternative, more computationally
oriented view. In the spirit of artificial life research, it uses a bottom-up approach,
where complex shapes are created by assembling smaller sub-parts.

2. Evolving coding and Frank Lloyd Wright houses

In Gero and Schnier (1995), we described an evolutionary system which produces
problem solutions that are based on example designs. In evolutionary systems, the
results of a search process are very much influenced by the representation of the
problem space in the coding. In usual implementations, this can pose a serious
problem, because the representation might bias the results too much into certain
directions. The system described in Gero and Schnier (1995), on the other hand,
makes use of this by intentionally biasing the solution space towards a set of po-
tentially interesting solutions. It does this in a two stage process. In the first step,
the system is given a set of example designs. The goal of the evolutionary process
in this step is to create individuals that resemble the example designs as closely
as possible. To do this, the fitness function measures what and how much of the
example designs are described by the individuals. The coding of the individuals
is chosen to be very low-level, using very simple 'basic' genes.

While the individuals are evolved, they are at the same time analyzed, and
successful combinations of low level genes are identified. For every such gene
combination, a new gene is created (an 'evolved' gene) and introduced into the
population. In the course of the evolution, the evolved genes which are produced
aggregate more and more basic and lower-level evolved genes, encoding more
and more complex aspects of the example designs. The coding itself, therefore,
contains information about the example applications. Any evolutionary system
using this coding is biased towards solutions similar to the design examples. This
is used in the second step, where a conventional evolutionary system creates solu-
tions to a design problem, using both original basic genes and the evolved genes.
The system therefore produces solutions that incorporate aspects of the example
designs, but are adapted to the new design requirements. Figure 1 illustrates the
idea: beginning with a basic representation, the system creates an evolved cod-
ing based on a set of design examples. This evolved representation is then used to
create new designs that show design features from the examples.
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Figure 1. Use of evolved representation to capture and use typical features of a set of example
designs.

2.1. INDIVIDUAL STYLE AND THE STYLE OF FRANK LLOYD WRIGHT'S
PRAIRIE HOUSES

In Chan (1995), the author explained that the distinct features of a design are pro-
duced by both common features and common procedures used by the architect.
Describing a style as a function of how it is generated therefore requires a deep
understanding of the design process, usually supported by comments from the de-
signer. Shape grammars usually take this approach, they represent both the com-
mon procedures (in the rules and the sequences of rules that are possible), and
the common features (in the shapes manipulated by the rules). However, Chan
also noted that “common features present in an architects work are indeed used
by viewers to categorize the architect's style. ...a style is said to be the function
of common features”. This means that, even without knowledge about the design
process, it is possible to infer important aspects of a style common to a set of
designs.

Chan (1992) has analyzed the style of Frank Lloyd Wright's prairie houses
more closely. Some of the aspects that are of interest for the work presented here
are:

. Floorplans are always based on a grid, the grid size depends on the project.

. The fireplace is at the center of the composition, all spaces extend from there.

. One major shape in the floorplan is long and narrow, much of the house is
only one room in depth.

. The prairie houses have similar topological arrangements.

5. The first design step after developing an abstract of the space, is to create a
geometric pattern (based on the grid).

. The next design step integrates the functional requirements.

. The elevation follows directly from application of an 'elevation grammar' to
the plan.

I W N =

~N N

Item 1 allows us to use a basic coding that is based on unit length horizontal
and vertical lines. The next two items are aspects that we wish our system to pick
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up from the example designs, together with some of the topological arrangements
from item 4. Items 5 and 6 describe the first steps in the design process, the plans
used here represent in their level of detail approximately the ones produced after
these steps.

The elevations are not considered in this work. As item 7 states, they are a
result of the development of a floorplan. Learning features in elevations without
having a given floorplan does therefore not seem sensible.

2.1.1. Shape rules for Frank Lloyd Wright houses

The work in this paper is based on the analysis of Frank Lloyd Wright's Prairie
Houses by Koning and Eizenberg (1981). Based on the layouts of 11 prairie
houses, Koning and Eizenberg develop a shape grammar that can be used to con-
struct 10 of these houses, as well as many others that show a similar style. Their
work is a typical example of the top-down analysis described above. The design
using the rules is separated into 24 different steps. Roughly, the following phases
can be distinguished: starting with the fireplace, a basic composition is created
(18 rules). This composition is further elaborated by adding corners and porches,
and detailing the interior layout (16 rules). More exterior details are added (22
rules), and the design is extended into the third dimension (12 rules). The roof is
established (19 rules), together with some more details (4 rules). With the 8 rules
to manipulate labels, 99 rules are necessary to create the ten different layouts.

The focus of this paper is the designs that are created by the first 34 rules:
2-dimensional layouts, with a developed basic layout, organized into function
zones, and some detailing.

2.2. SEMANTICS

An important aspect of the designs we are looking at is the distinction between
different function zones. The layouts have zones representing living space, ser-
vice space and porches. Of central importance is the location of the fireplace. In
the shape grammar used in Koning and Eizenberg (1981), the zones for service
and living space are established around the fireplace with the first rules, and de-
tailed at the end of the first 38 rules. At the same time, porches are added.

2.2.1. Semantics in basic coding

As described, both shapes and functional organization can be important aspects
of a style of a set of designs. A system like the one described in Gero and Schnier
(1995) that uses only four primitives to describe outlines (line, step, right turn, left
turn) would therefore not be sufficient. To capture information about the func-
tional organization, the evolving coding has to be able to integrate information
about the semantics of the shapes. To do this, the basic coding has to be changed,
so that semantic information can be attached to the outlines.
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This is done by changing the set of primitives coded by the basic genes. The
elements to change direction (left turn, right turn) remain unchanged. But instead
of having only either a drawn line or a step ahead, the changed basic coding now
includes a set of lines of different types, with the step ahead represented as a line
of type 'invisible'. The number of types is not restricted, the number of types used
depends on the application.

The line types in the the basic coding are interpreted to represent the differ-
ent semantics or functions of the rooms. The fitness functions used in both steps
of the evolution reflect this. In the first step, to score for a certain part of a de-
sign, any individual produced has to fit the design not only in line types, but also
in shape. This also means that the number of line types in the basic coding can
be higher than the number used in any specific example. Individuals exhibiting
unused line types don't score any fitness, the evolving genes therefore do not in-
corporate any combinations of basic genes that produce these line types. In the
second phase, the way the results are interpreted depends on the way the line
types are used. If the line types specify the function of an enclosed room, the func-
tion of the room is defined by the line type that has the majority. If the line type
encodes a detail in the outline, e.g. a certain wall type or a window, then the result
can be used directly without further interpretation. Both functions can be mixed,
as seen in the example used here.

The line types can be represented by different colours, the coding then has
some similarities to colour grammars (see e.g. Knight, 1994). In colour gram-
mars, however, the colours don't have any semantics attached, and colours can
be mixed.

3. Learning evolved genes

3.1. GENETIC ENGINEERING

One foundation for evolving representations is genetic engineering. It is derived
from genetic engineering notions related to human intervention in the genetics of
natural organisms. If a group of similar organisms can be seperated into two sets
distinguished by a difference in one particular attribute, then a comparison of the
genetic codes of the organisms in the two groups can reveal what genes or gene
groups are responsible for the difference. This knowledege can be used to modify
that attribute, and introduce it into or eliminate it from organisms by manipulating
its genetic material (see Gero and Schnier (1995) for a more detailled discussion).

A useful notion related to genetic engineering is the definition of ' genotype'
and 'phenotype’. The genotype is the set of genetic instructions that make up the
genetic code, while the phenotype is the structure that is produced as the result of
the interpretation of the genotype (Langton, 1988).
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3.2. EVOLVING REPRESENTATION

The starting point in the development of a system that creates and makes use of
an evolving coding is a standard evolutionary system. The first step is to create a
population of randomly created individuals. The coding of these individuals, the
'basic’ genes, is chosen to be very low-level, putting as little domain knowledge
into the coding as possible, and making sure not to exclude any interesting part of
the search space. The individuals are then subjected to the standard evolutionary
cycle of replication with errors and survival of the fittest. But at the same time,
an additional operation screens the population, identifying particularly successful
combinations of genes. For every such gene combination, a new, 'evolved' gene
is created that represents this combination, and is introduced into the population.
Figure 2 shows pseudo-code describing the algorithm. More detailed explanations
to some of the steps can be found in the following sections.

begin
create-population
while not end-criterion
select 2 parents
create offspring
if offspring not already in population
then add offspring to population
register offspring for shared fitness fi
if n new individuals produced
then select best gene combination
create evolved gene
add evolved gene
replace all occurences of gene combination with evolved gene fi
if m new individuals produced
then recalculate weights
recalculate all fitnesses fi

end
end

Figure 2. Pseudocode for an evolutionary system used to produce an evolved representation.

Since the goal during the development of a representation is variety and not
optimization, all offspring created in the variation function are kept if they:

— are not empty, i.e. they draw at least one segment.

— match (as described below) the design case at least at one position.

— no other individual already in the population has a genotype that codes for
the same phenotype as the new individual. If such an individual exists, then
the individual with the shorter genotype is kept. The use of evolved genes
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is hereby encouraged, since evolved genes usually lead to shorter genotypes.
This is the only instance where an individual in the population can be re-
placed.

As aresult, there is no step in the pseudo-code where individuals are deleted.

In the first few cycles, the evolved genes will be composed from basic genes,
but in later cycles most evolved genes will represent combinations of other, lower-
level evolved genes, or combinations of those with basic genes. This growing
hierarchy of representations gives rise to a more and more complex and abstract
coding, which is increasingly adapted to the application. In other words, the pro-
cess gradually collects application-specific knowledge and codes it into the rep-
resentation, rather than being coded into it by the user in the first place.

What does this mean in terms of search space? The length of the genotype is
only restricted by the size of the computer memory. The search space is extremely
large with respect to the number of states that can be evaluated in a limited com-
putation time, and can therefore be seen as having infinite size. However, since the
alphabet used for genotypes is finite at any state during the evolution, the set of
possible designs that can be defined by a genotype of a certain length is limited.
The search space can therefore be illustrated by a number of concentric circles,
each defining the space of designs that can be defined by a genotype of a certain
length. The inner circle contains the genotypes of length one, i.e. the basic build-
ing blocks. The further away a design (or part of design) is from the centre, the
more difficult it is to find by means of generate and search. Every time an evolved
gene is created, the structure of the search space is changed. The state of the new
gene in the search space is moved into the centre, all design states in the next
circle that can be derived from that state are moved into the second circle, and
so on. Figure 3 illustrates this: the original search space is illustrated in Figure
3(a), with the four basic building blocks in the centre. The building blocks code
for vectors of one unit length with the directions up, down, left and right. The ar-
row points to the starting point of the next element drawn (if any). The second
circle shows all designs that can be derived from genes of length two (i.e., using
two building blocks). The other circles give some examples of designs using gen-
otypes of length three, four and five. If now the two closed shapes in the fourth
circle are identified as particularly successful and an evolved gene is introduced
for them, then the search space changes as shown in Figure 3(b). The squares now
become basic building blocks, and the shapes on the fifth circle that are derived
from the squares, can now be found in the second circle. The more evolved genes
a design state involves, the more it is moved towards the centre. For example, the
shape with the four squares that is now on the fifth circle (i.e. can be constructed
from genotypes of length five) would have been on the fourteenth circle before!.

!fourteen lines, the shape cannot be drawn without drawing two lines twice
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Since the introduction of a new gene increases the size of the alphabet of the cod-
ing, the size of the circles also grows.

Figure 3. Example of an evolving representation: (a) original representation and (b) representation
with evolved genes. Some of the corresponding genotypes are give, capital letters denote evolved
genes. The transformation from phenotype to genotype is not always unique, e.g. the genotypes
"ABc’ and 'BAc’ produce the same phenotype. Arc segments indicate that only part of the space is
shown.

The introduction of evolved genes obviously changes the probability that a
gene sequence maps onto a useful feature. The number of different genes that can
be used in a genotype expands, but at the same time the length of the genotype
that is necessary to describe a feature shrinks, effectively reducing the size of the
search space. For example, the floorplan shown in Figure 10 (a) was produced by
a genotype of length eight, using two basic and 326 evolved genes. Expressed in
basic genes only, the genotype has a length of 445. The space of designs that can
be coded by genes of length 445 using two basic genes is about 110 orders of
magnitude larger than the space of genes of length eight using 328 genes.
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4. Learning genetic representations of floorplans

4.1. EXAMPLE FLOORPLANS

In the examples of the Frank Lloyd Wright prairie houses, lines that enclose living
spaces use a different line type from lines that enclose service spaces or porches,
and the fire place has a type of its own. Since only the main floor is considered
here, no bedroom zones occur in the designs.

From the eleven Prairie Houses analyzed by Koning and Eizenberg (1981),
four have been selected as examples for the evolving coding: the Henderson
house, the Thomas house, the Martin house and the Baker house (Koning and
Eizenberg, 1981). Since the basic coding only allows horizontal or vertical lines,
the diagonal lines at the wings of the Henderson house have been changed into
a stepped shape. Figure 4 shows the floorplans used. As a comparison, Figure 5
shows the plans of the Thomas house as given in Koning and Eizenberg (1981).

Figure 4. Frank Lloyd Wright Houses used to create the evolved coding: Henderson house (top
left), Martin house (top right), Baker house (bottom left), Thomas house (bottom right).

4.2. BASIC CODING

The basic coding has to allow for lines with a variable number of line types. The
coding presented in Gero (1994) used four basic genes, each coding for a different
basic element: a left turn, a right turn, a line ahead, and a step ahead. One possib-
ility for including line types is to increase the number of different basic genes,
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Figure 5. Thomas house defocused and reduced to four function zones, bedroom level, main floor
level, and external form (Koning & Eizenberg 1981).

so that one basic gene is used for every additional type. If the number of types
increases, or if additional basic elements like diagonal lines are introduced, the
number of different basic genes used grows.

Another possibility is to keep the number of different basic genes constant,
and use two or more successive basic genes to code for the elements. The first
basic gene on a genotype would select the type of primitve used, in this case either
turn or line. The following one or more basic genes then code for an attribute
value. If the first gene coded for a turn, the attribute represents either of the two
values 'left' or 'right'. For lines, the attribute defines the type of the line, steps
ahead are treated as a line of type 'invisible'. The number of successive basic
genes needed to code for the line types varies depending on the number of line
types and on the number of basic genes used.

The second coding has the advantage that it is easily extensible, for example
to introduce curved lines, only a new type of primitives would be added. This type
could have one or more additional attributes. Similarly, for diagonal lines, one
could change the number of values the turn can represent to eight. At the same
time the coding remains very simple, this is one of the goals in the design of the
basic coding.

A major difference from the first coding is that the meaning of basic genes is
not totally position independent anymore.

In the example presented here, the second approach was chosen. Two basic
genes (values 0 and 1) are used, the basic coding (without evolved genes) is there-
fore a binary coding. The first basic gene selects the type of the primitve:

0 A line. The attribute can take five value (five line types, including the 'step
ahead', requiring three basic genes. The eight possible values are taken mod-
ulo five, three line types are therefore produced by two different values.

1 A turn. The following basic genes distinguishes between left and rigth turn.
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The basic coding is shown in Figure 6.

11 00 01 10
Eisibigﬁne line i |
(a) right turn  left turn

0000 0001 0010 0011 0100

0101 0110 0111
invisible line line type 1 line type 2 line type 3 line type 4
®) 10 | 11 _!

right turn left turn

Figure 6. Basic coding, (a): original coding, (b) coding expanded to allow for different line types

4.3. CREATING EVOLVED GENES

To create evolved genes, the algorithm shown in Figure 2 is used. A special fitness
function is used that measures what percentage of the examples is represented by
an individual, while at the same time preventing convergence.

4.3.1. Fitness Calculation
The fitness calculation for a new individual during the evolution of the represent-
ation stage involves the following steps.

1. Transform the genotype of the individual into a phenotype, i.e. line-drawing.

2. Find all positions where the phenotype 'matches’ the design case. A match
is declared if and only if for all line segments in the phenotype there is a
corresponding line segment in the design case (but not necessarily the other
way round).

. At all matching positions, draw the phenotype as a partial drawing.

4. Create the sum of the weights associated with all line segments in the design
case that are represented in the partial drawing (see below for a description
how the weights are calculated).

5. This sum is the current fitness value for the individual. Whenever the weights
for the segments in the design case are recalculated, the fitness values of all
individuals in the population have to be updated.

w

As an example, Figure 7(a) shows a design case with associated weights, and
the shapes produced by two different individuals. Both individuals can be applied
at two different positions, resulting in fitnesses of 24 and 18.

This fitness alone would lead to a convergence of individuals that describe
only some aspects of the design case. To prevent this, another analogy from evol-
ution in nature is used. The different aspects of the design case are seen as a re-
source (for example food) that has to be shared between all individuals using it.
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2 4 2 2 4
4 3 4 3 2
1 5 2 1 5 2
2 1 2 1
1 3 1
2 4 2  —ss— 4
4 | 3 Za ] 18
2 1 I
design example  Individual individual at different positions segments covered fitness
with weights to score by individual

Figure 7. Example of fitness calculation for two different individuals.

Individuals therefore get high rewards if they describe aspects of the case that are
covered only by few other individuals (evolutionary niches), and only little addi-
tional fitness for aspects that are described by many individuals.

To create the 'niching' effect, every line segment in the design case has a
weight associated with it (the values in Figure 7). This weight is calculated regu-
larly as a fixed value divided by the number of individuals in the population that
can be used to 'stamp' that segment. If for example only two individuals code for
a'stamp' that can be used for a certain part in the design case, both get 50% of the
constant value as fitness for that part. If 20 individuals do so, each one gets only a
fitness of 5%. This effectively prevents convergence towards only some features
in the design case (e.g. only horizontal lines). The effect can be seen in Figure 8:
without sharing, the evolving genes develop mainly in a very small region, fitness
sharing leads to a much better distribution of evolved individuals.

4.3.2. Results

Figure 9 shows examples of evolved genes created from the four example designs.
Shown are some of the last evolved genes created from the examples. Clearly vis-
ible are the shapes of rooms, and the different line types, associated with the dif-
ferent functions. Two of the evolved genes shown (310 and 318) have the fireplace
as part of the line-drawing they code for (in this case from the Henderson house).

4.4. CREATING NEW FLOORPLANS USING THE EVOLVED REPRESENTATION

In the second phase, the representation evolved from the example cases is used to
create new designs that show similarities in style to the example cases. For this,
a standard evolutionary system is used, with the set of basic and evolved genes
used in the coding.
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Figure 8. Distribution of individuals in population, (a) without fitness sharing, (b) with fitness
sharing. Thicker lines represent more individuals covering that segment.

4.4.1. Fitnesses

The evolved coding, as exemplified in Figure 9, captures information about shape
and function of parts of the example designs. However, the way these parts are
assembled to create new designs is only influenced by the fitness function that
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Figure 9. Examples of evolved genes created from the example designs shown in Figure 4. The
labels refer to the numerical sequence in which the genes evolved.

evaluates new designs. This means that any gene that codes for a room of a certain
type, for example, has no influence on what other room is next to it; and there
is nothing preventing a design from using two evolved genes that each include
a fireplace. As a result, topological constraints are not automatically satisfied by
using the evolved coding. If designs created by the evolutionary system are to
fulfil topological constraints, they have to be included in the fitness function (see
Section 5 for how we plan to integrate more topology information into the evolved
coding).

Frank Lloyd Wright's prairie houses follow a number of topological con-
straints, and they all have to be made part of the fitness. For the results presented
here, fourteen different aspects influence the fitness. The following list shows the
fitnesses used:

— One porch, size between 9 and 12 units

— porch connected to living area, and not connected to service area

— two to four rooms in the service area, total size between 45 and 60 units

— two to four rooms in the living area, total size between 55 and 70 units

— only one service and one living area, i.e. all rooms of that type are connected
— one fireplace, two units length, between living and service area

— no 'dead ends', i.e. lines that do not enclose any room.

4.4.2. Pareto optimization

For a human designer, it is relatively easy to find designs that fulfill all the fitness
conditions. For a standard evolutionary system, the fitnesses have to be integrated
into one fitness. This could for example be done by calculating a value between
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0 and 1 for every individual fitness, and adding or multiplying them into a single
fitness value. Unfortunately, by integrating all fitnesses into one value, the inform-
ation about what fitness conditions are fulfilled and what conditions are not is lost
to the system. As a result, the system ends up converging towards a population
that is good in some respects while individuals good in different aspects are lost.
Even after a very high number of individuals have been produced, the system is
not able to find satisfying solutions.

A better way to handle a high number of individuals is therefore to utilize
'Pareto optimization' (see for example Radford and Gero, 1988). In a Pareto op-
timization process, only a partial ranking between two individuals can be estab-
lished. If two individuals are compared, one individual is better than the other
(dominates it) only if it is better or equal in all fitness criteria and better in at least
one criterion. The comparison therefore often ends up in a draw. To select indi-
viduals that are used to produce offspring in the genetic operations, two individu-
als are picked randomly from the population and compared to a randomly picked
reference subset (10% of the population). If one of the individuals is dominated
by one of the reference individuals while the other is not, the second individual is
selected as the parent. Otherwise, neither of the individuals is preferred.

This selection alone is not sufficient to prevent all individuals clustering as a
small subset of possible, good solutions. As an additional measure to prevent con-
vergence, 'niching' is used (Horn and Nafpliotis, 1993). Here, candidate individu-
als are compared with a number of other individuals in the population. For every
individual, the distance between the fitness values is calculated. The number of in-
dividuals with a distance smaller than a threshold value is called the niche-count.
In niching Pareto optimization, in order to select between two individuals that
either both dominate the reference set or are both dominated by at least one indi-
vidual in the reference set, the individual is chosen that has a smaller niche-count.

If a newly created individual dominates another individual in the population,
it replaces it. If not, and the new individual is dominated by at least one other
individual in the population, it is rejected. The third possibility is that the new in-
dividual populates a new part of the Pareto optimal front, and is therefore neither
dominated nor dominates another individual. In this case, the individual has to be
added to the population without replacing another individual, leading to a grow-
ing population. As an example, in one of the runs presented below, the population
grew from 500 to 1581 individuals.

4.4.3. Results
Two runs where done using a set of 326 individuals created from the floorplans in
Figure 4.

Run 1 ran for 60.677 loops, each loop creating two offspring individuals. The
initial population was 1.000 individuals, the final population consisted of 1.652
individuals. From some 120.000 produced and tested individuals, 14.359 indi-
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viduals where good enough to be introduced into the population.

Run 2 ran for 99.207 loops, the population grew from 500 to 1.581 individu-
als. Of the nearly 200.000 individuals produced, 12.502 made it into the popula-
tion. Again, all 326 evolved genes where used.

The first result from Run 1 (Figure 10(a)) has a perfect fitness. The fitness
function does not check if the fireplaces are straight, therefore a corner-fireplace
could result. Since none of the floorplans in the example drawing have a corner
fireplace, this feature cannot have been part of the evolved coding. It therefore
must be coded in basic genes. The second-best result from Run 1 (Figure 10(b))
has a penalty due to one segment of 'dead end' close to the fireplace, but fulfills
all other fitness criteria.

Both results of Run 2 (Figure 10(c) and (d)) have perfect fitnesses. Again,
the system has taken advantage of a small weakness in the fitness function, that
allowed it to put the porch inside the living space.

Figure 10. Floorplans created using the evolved genes from the example designs shown in Figure
4, (a) and (b) initial population 1000 individuals, (c) and (d) initial population 500 individuals.

Figure 11 shows how one of the results (the second of Run 1, see Figure
10(b)) can be extended into three dimensions by a graphic artist. The resulting
house is obviously quite similar to the Thomas house (see Figure 5).
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Figure 11. Floorplan from Figure 11 (b) manually extended into three dimensions; shown are
bedroom level, main floor level, and roof view.

5. Discussion

5.1. FRANK LLOYD WRIGHT PRAIRIE HOUSE PLANS

As described above, no aspects of the topology are coded in the evolved coding.
This results in the fact that some aspects of the example design that the system
could have learned have to be added as fitness. It also shows in the results: shapes
that have been outer walls in the original drawings are used in the inside (e.g. the
stepped line separating the right two parts of the living room in Figure 10(b), or
the outer walls of the porch in Figure 10(a)).

5.1.1. Possible improvement: more line types

One way to improve the 'knowledge-content' of the evolved coding is to use a
higher number of line types. Different line types could be used depending on the
functions of both of the rooms a wall separates, and again different line types for
outer walls. This way, knowledge that for example three out of four sides of the
porch are outer walls, and the fourth wall is a wall to a living space, could be
integrated into the evolved coding.

An example of the Thomas house drawn with this enhanced coding is shown
in Figure 12.

To realize this, no changes other than changing the parameter for the number
of line types used and modifying the example drawings are required in the first
step. In the second step, the fitness function would have to be added that checks if
lines are used in a correct context.

A system using this coding would avoid problems like the two problems with
the design results in Figure 10. It would also reduce the number of fitness criteria
required.

5.2. LEARNING REPRESENTATIONS

What has been successfully presented has been both the concepts and a demon-
stration example of the evolutionary learning of a genetic representation of a set
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Figure 12. Thomas house drawn as design example with increased number of line types.

of building layouts. This representation can then be used to generate layouts with
a similar style. The approach is based on the use of genetic engineering concepts
to evolve not just the solution to a problem but also to allow the genes which
are used to represent it also to evolve. This results in the evolution of complex
genes, genes which are capable of forming increasingly large and complex parts
of the phenotype or design. Evolutionary systems commence with a knowledge-
lean representation that often contains little or no domain knowledge. What is
happening here is that the evolved genes increasingly contain knowledge about
the domain under consideration. They turn a knowledge-lean representation into
a knowledge-rich representation. From an evolutionary viewpoint there are two
distinct activities. In the first the genes are allowed to evolve with a fitness as-
sociated with the designs which act as exemplars. Then these evolved genes are
used to generate designs with a completely different set of fitnesses. The resulting
designs embody the knowledge which has been encoded in the evolved represent-
ation. This opens up possibilities in case-based design as well as an alternative
approach to the generation of design grammars.
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Abstract. This paper proposes a reactive agent architecture for the integration of solid
modelling processes into more general design processes. The basic idea is to focus on
reactivity rather than on symbolic representations of design knowledge. Also an
Application Programming Interface is proposed to help developers writing intelligent
CAD systems with links to any open architecture geometric modeller. In the proposed
approach, solid modelling processes are formally immersed in the design process with
the concept of modified CSG trees. Furthermore, solids are considered to be reactive
design agents. A working system is also presented.

1. Introduction

In the 1980s, the research in solid modelling focused on geometric and
topological problems of isolated objects. Nowadays, the focus is on complete
engineering models and a number of concepts has been emerged to support
a new generation of CAD systems such as product modelling, feature-based
modelling, tolerance modelling, constraint modelling, variational geometry,
geometric reasoning and parametric methods (Wozny et al., 1990). In the
CAD market, developers have been concentrated on feature-based
parametric modelling and most of them have been using the paradigm of
object-oriented architectures and the techniques of knowledge representation



62 BRUNO FEIJO ET AL.

(Haase, 1992). In the design research arena, there are promising proposals
for constraint modelling based on grammar formalisms (Brown et al., 1994).
However, despite all those advances in the area of CAD systems there is still a
gap between design research and solid modelling. This paper explores some
possibilities to narrow this lacuna with a broader view of objects and
modelling processes. Firstly solid modelling processes are formally
immersed in the design problem space. Secondly, solids are considered
reactive agents whose intelligence emerges mainly from the interactions with
other agents. Thirdly, an Application Programming Interface is proposed to
link the agent environment with generic solid modelling systems.

2. Design Problem Space

Design was first identified with problem solving in Simon (1969). According
to his approach, a state space represents all possible states of the problem
(i.e.: all possible problem descriptions) that need to be considered when a
solution is attempted. Besides, he claims that it is practically computable to
cover all the space.

Design as problem solving is a search process within a state space. In the
context of traditional search, design knowledge is to be expressed in terms of
goals and operators. Such a plain concept of searching does not directly
address the characteristics of the design problem (Maher, 1990). The
difficulties in this case are related to the variations of goals during the
problem solving process and the problem of predetermining the relevant
operators. Therefore, the notion of design as problem solving needs to be
presented in a broader sense. For instance, the proposal of design as
exploration by Smithers and Troxell (1990) can be understood as a meta-
search process within the design problem space. This approach opens a
promising research area to restore the concept of meta-planning for design
perceived by Simon (1969) more than two decades ago. Generally speaking,
the implementation methods for design as problem solving do not need to
use the classical binomial goal-operator or even traditional planning
techniques. In this case, the minimum requirement is to conform to the
general principles of improving upon blind trial-and-error search, that is: (1)
the progress principle (i.e. the ability to detect when progress is being
made); (2) goals and subgoals (i.e. the decomposition procedure that
reduces the problem space); and (3) the use of knowledge (i.e. if one knows
how to solve a problem, then one can avoid search entirely) (Minsky, 1988).
Most of the implementation methods in intelligent CAD systems are strongly
based on a symbolic representation of the design world. In the sake of
efficiency, the authors do not entirely support this approach and believe that
a trade-off between procedural methods and symbolic representation can be
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achieved. One possible way of accomplishing this trade-off is through the
use of hybrid agent architectures.

3. Agents

Agent technology has being applied in distributed AI (Bond and Gasser,
1988), in groupware (Baecker, 1993), in virtual environments (Bates et al,
1992) and in robotics (Brooks, 1990). Also agent-oriented programming
has been proposed as a post-object paradigm (Shoham, 1993). Agent theory
is not mature yet and leads to several definitions of agents and their
properties. A complete survey on agent theories, architectures and languages
can be found elsewhere (Wooldridge and Jennings, 1994).

In this work, the authors adopt the definition of agents as active objects
described by the intentional stance. Indeed the notion of agency is bound to
that of action. Therefore, agents are active objects, because they originate
actions that affect their environment. To ascribe the intentional stance to
agents means that they possess beliefs and desires.

Intention can be formally defined in terms of non-classical logic, such as
the multi-modal logic proposed by Cohen and Levesque (1990) for their
rational agents. However, this is not the scope of the present work.

There are three approaches to build agent-based computer systems:
deliberative, reactive and hybrid architectures. The deliberative architecture
is based on the classical symbolic Al paradigm. Examples of this approach
can be found in Wood (1993) and Vere and Bickmore (1990). In this case,
the symbolic model of the world is explicitly represented and the agents act
via explicit logical reasoning. Usually, in this approach, an AI Planning
system is the central component of the agent. This architecture, however, has
several drawbacks: (1) the frame problem renders the knowledge difficult to
represent in practice; (2) it is computationally inefficient; (3) it cannot cope
with unpredictable events such as the actions of other agents; (4) it always
requires that plans be too detailed, although one generally acknowledges that
no system could produce completely detailed plans in domains of realistic
complexity (Agre and Chapman, 1989). This scenario gets even worst if one
thinks about meta-planning for design as problem solving. Therefore,
alternative approaches to agent architecture have been proposed.

The reactive architecture is an alternative approach that breaks with the
traditional symbolic AI paradigm. This sort of architecture is strongly
advocated by Rodney Brooks who claims that intelligence can emerge
without having explicit manipulable internal representation or explicit
reasoning systems (Brooks, 1991). This architecture is based on reactive
agents that must respond dynamically to changes in their environment.

The hybrid architecture attempts to harmonize the classical architecture
with the reactive approach (Arkin, 1990; Georgeff, Lansky and Schoppers,
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1987). The authors support the idea of a hybrid agent architecture for solid
modelling environments, although only the reactive side is presented in this
paper. Also the authors believe that a special agent language for solid
modelling should be developed. However, this is an issue not yet fully
investigated by the authors.

4. The Agency Principles

The principle underlying the reactive agent architecture proposed in this
work are after Brooks (1991), that is: emergence and situatedness. The
principle of emergence states that the intelligence of the agent system
emerges from the interaction of agents among themselves and with their
environment (Steels, 1990). As pointed by Brooks (1991, p.16): “It is hard
to identify the seat of intelligence within any system, as intelligence is
produced by the interactions of many components. Intelligence can only be
determined by the total behavior of the system and how that behavior
appears in relation to the environment. The key idea of emergence is:
Intelligence is in the eye of the observer”. This principle can also be
identified in the work by Marvin Minsky (1988) where he proposes that
intelligence emerges from a society of mindless agents.

Situatedness is also an idea proposed by Brooks (1991) who claims that
the agent’s intelligence is situated in the world and not in any formal model
of the world built in the agent. Therefore, an agent uses its perception of the
world rather than deductions based upon a symbolic representation of this
world (such as those found in theorem provers or expert systems). This is a
dramatic change from traditional Al paradigm and it is not fully investigated
in the present paper. However, the authors believe that maintaining the
traditional AI means that design agents will always have access to direct and
perfect perceptions/actions and, consequently, no external world will really
exist with its surprises, creative moments and ongoing design history.

5. Design Agents, States and Design History

From the design point of view, goals can be decomposed in terms of form
(mainly physical attributes) or function (functional specifications describing
the functions to be performed by the form). The question of decomposition
(form vs function) may pose a dilemma for goal decomposition. However, as
discussed by Maher (1990), in a problem solving approach to design this
situation does not occur because representations of goals may capture both
the notions of form and function. In this paper, the authors propose to
represent goals by means of reactive design agents as a consequence of the
previous investigation in design process models found in Feijé and Bento,
(1991), Bento (1992), Scheer (1993), Prates (1993). The following
definitions hold:
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Def. design agent is an object ai(LF,f) where I stands for identification
attributes, F stands for a set of form attributes and f stands for a set of
function attributes.

Def. A state Tj is a set of design agents ai.

Def. A design history H is a sequence of states 70, T1, ..., Tn where T0
is the input specification and Tn is the artifact description.

Def. The design problem space DPS is the set of all possible design
histories.

In this context, design is an evolutionary process that starts with a set of
input specifications, T0, generates a kernel idea in the early stages of the
process and refines it (by decomposition, generation or transformation)
towards the artifact description Tn. Relationships between design agents and
constraints within or across design agents may be defined both in terms of F
and f.

6. Design Views

The authors of this paper claim that the solid modelling process can be
viewed as a semantic tree called modified CSG tree. A classical CSG tree can
be viewed in the example of Figure 1a. The proposed modifications consider
the following changes: (1) the representation is hybrid (CSG/Brep); (2) one-
place nodes are allowed for local operations (e.g. face extrusion); (3) both
local and global operations are implemented based on the same set of
operators (e.g. Euler operators); (4) primitive solids are instances of Brep
(Boundary Representation); (5) the binary tree is exhibited in reverse order;
(6) each modelling state has one of the following relationships with other
solids: part-of, is-a, trans-of and term-of, (7) general nodes are allowed (that
is, other than topological ones). Figure 1b shows a modified CSG tree.

The relation trans-of is associated to local operations found in Brep and
the relation term-of is associated to terms of a global operations (such as the
boolean difference between two solids).

The idea of the modified CSG tree is to permit the integration of solid
modelling process into more general design process models. The nodes of
the tree can be viewed as design agents with specific intentions. Furthermore,
the authors propose the concept of design views where at least two
orthogonal views co-exist when one is carrying out a solid modelling
process. The first one is the geometric view in which lies the modified CSG
tree and the second one is the construction view from where more general
design agents drive the modelling view. Figure 2 illustrates those two views.
Other possible views represent specific relationships such as part-of and is-a.
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Figure 1. Traditional CSG tree and modified CSG tree.

Figure 2. Design views.

In a system with those two views, a design agent can inherit properties
from both the geometric view and the construction view. This integration
allows a designer to specify a change in the radius of a cylinder either from
the construction view environment or from a mouse movement in the 3D
environment of the solid modeller. In any case, if the system is reactive, there
will be a chain of dynamic modifications according to pre-established
conditions or intentions.
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7. The Object Paradigm

Design agents are based on the object paradigm. However, they do not
commit themselves to any specific object-oriented language. For instance,
inheritance of agent properties is automatically established when an agent is
made child of another agent. Also inheritance is overridden by the explicit
local inclusion of a specific method or attribute, with a null or non-null
value. In this case, searching for a value or a method in the ancestry tree is
prevented by the simple local occurrence of the attribute(s)/method(s) in
question. Furthermore, inheritance is totally dynamic during execution time.
Also design agents are mutable objects in the sense that their properties may
change with the passing of time. Another characteristic of the proposed
agents is that an object can be defined as an aggregation of parts which are
themselves other objects. Objects formed in this manner are called, in the
scope of this work, composite agents and the type of relationship amongst
them are called part-of. The method for implementing composite agents is
by defining agent names as the values of composite agents’ attributes.

The ability of supporting mutable objects implies the propagation, or at
least the communication, of changes occurring in the mutant object to those
other objects that have references to it. This propagation of changes is
implemented by procedures attached to attributes called attached predicates.
Attached predicates are used for the purpose of triggering procedures on
variable access, drawing on the style of active values and access-oriented
programming techniques (Stefik, Bobrow and Khan, 1986) (Inference
Corporation, 1985). This idea is also motivated by the new concept of active
database systems (Abiteboul et al., 1995) (Widom and Ceri, 1995) (Picouet
and Vianu, 1995). The understanding of the active objects context used by
DBMS workers might help one situating the present work.

Active database systems provide “trigger systems” that execute actions
in response to specified events according to rules in ECA form, that is: on
<Event> if <Condition> then <Action>. These rules have three methods of
firing: immediate (i.e. a rule is fired as soon as its event and condition
becomes true); deferred (i.e. rule application is delayed until a specific state
is reached); concurrent (i.e. a separate process is spawned for the rule action
and executed concurrently with other processes). In relational active
database systems, the action involves a sequence of insertions, deletions and
modifications, and in object-oriented active systems it involves one or more
method calls. From these definitions, one can notice that DBMS workers and
Al workers share some fundamental concepts, although they use different
sets of terminology. However, the context, problems and goals of those areas
are substantially distinct. Moreover, the lack of extensive theoretical works in
those areas make difficult to look for a common formal framework (e.g., see
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Aiken et al. (1992), Beeri and Milo (1991), Hull and Jacobs (1991) and
Picouet (1995) for the case of DBMS).

Only one kind of attached predicate is implemented in this work, called
if-changed. This kind of predicate is a procedure that must be executed in
the case of an attribute value being tentatively changed, before the assertion
of the attribute value takes place. This predicate behaves like “watchdogs”
of the attributes to which they are attached.

The attached predicate if-changed are used to implement internal
reactivity within an agent. For instance, the attempt of changing the radius of
a cylinder may cause a change in the value of its height if some relation is
previously imposed on these attributes (say, height = 5 * radius), as
illustrated in Fig. 3.

function setr(r)
if r>0 then
h=5*r
return add (new value of h in cylinder1)
end
return FALSE
end

Figure 3. Internal reactivity.

However, more interesting cases of reactivity involves several agents. The
rest of the paper considers this kind of reactivity.

8. A Reactive Design Agent Architecture

The authors propose the following taxonomy for the attributes of design
agents:

identification attributes (I): [label] [description] [status]
form attributes (F)
relationship attributes:[is-a] [children] [part-of] [link-to]
[alternative] [version] [trans-of] [term-of]
structure attributes: [physical] [geometric] [behavioural]
function attributes (f): [intent] [functional specification] [performance
specification]

In this taxonomy, description is a short note in text format or even in
audio format; status is the current situation of an agent (alive, alternative or
version); trans-of and term-of are used by the modified CSG tree mentioned
above; structure attributes may be physical (e.g. color), geometric (e.g.
radius), behavioural (e.g. temperature = 35 C, obtained from a thermal
analysis); intent describes the designer’s intention. In the evolutionary
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design process functional specifications (e.g. pleasant temperature) tend to
be transformed into performance specifications (e.g. 18 temperature 25).

The data structure for design agents used in this work follows the
taxonomy above, that is:

agent { label; description; parents; children; part_of_list; link_list;
attribute_list };
attribute { label; datatype; attribute_type; ifch; putfn; value }.

Figure 4 illustrates the proposed agent architecture. In this architecture,
GeoODbj is part of the solid modeller application and Hagent is a hybrid
agent representing a class of solids. Hagentl is, for example, an instance of
Hagent. Each hybrid agent in the Geometric view has a counterpart in the
Construction view and the integration between these views is made by
binding them. This binding is established by associating addresses of objects
in the Geometric view (void *) with labels in the Construction view (char *).
In this case, a design agent Hagenti can inherit properties from both the
geometric view and the construction view.

Figure 4. Proposed agent architecture.

Design agents are reactive in solid modelling through the relation link-to.
The members linki of the list of links link_list of a design agent are twofold,
that is:

linki = {agentk; reactionk}, i=1,n
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where n is the number of linked agents and reactionk is the reaction of
agentk. For instance, if the agent cylinderl would be linked to the agents
box1 and box2, its link_list could be: {{box1,reactbox1}, {box2,reactbox2}}.
In this case, reactionk is defined as follows:

Def. Given the attributes attr and attrk of the agents agent and agentk
and a set of other attributes of these agents {t1,...,tn}, reactionk(agent,
agentk) establishes that if the condition attr = f(attrk, t1, ...) is not
satisfied, then the intention of agent should be imposed over agentk
by the inverse attrk = fo(attr, t1, ...) followed by an action and the
addition of new attributes values through the predicate add_value.
action is optional and can be any procedure returning or not a new
attribute value.

Figure 5 presents the pseudo-code version of a generic predicate reactionk
and an example for the case where the radius of cylinderl is intended to be
equal to 1/3 of the height of box2 and an action is imposed in order to move
box2 along the axis X.

Before adding a new value to an attribute of an agent, the predicate
add_value executes every predicate reactionj found in the link_list of the
agent. This mechanism guarantees the full propagation of the changes.

In order to have reciprocity between two agents, one should define the
predicate reaction for both agents. In the example of Figure 5, one should
define another reaction with the condition height = 3.0 * radius and an
inverse radius = height/3.0.

function reactionk (agent, agentj) function reactboxl (cylinderl, box2)
get attribute values get radius of cylinderl
get height of box2
get positionx of box2
if condition is not satisfied then if radius < > (height / 3.0) then
find the inverse of condition and get new attribute value  height = 3.0 * radius
perform action newpos = radius + positionx
return add_value (the new attribute values) return add_value (height to box2) and
add_value (newpos to box2)
end end
return TRUE return TRUE
end end
(a) General Template (b) An Example

Figure 5. The function reaction

9. A Development Tool for Design Agents

In this paper, an abstraction layer is proposed for the development of CAD
systems based on an architecture of design agents. The integration of the
construction environment into the geometric one (and vice-versa) is done by
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registering functions and manipulating them through their labels. This
abstraction layer is valid for any solid modeller or geometric modeller that
use an open architecture. Two in-house solid modellers were tested and a
commercial one (ACIS, from Spatial Technology) is under investigation.
This abstraction layer .uses the Application Programming Interface (API)
presented in Table 1.

TABLE I Proposed APIL.

- Control functions

add_agent
add_attr
add_if ch
add
del_agent
del_attr

(label )

( label, attr, datatype )
( label, attr, ifch )

( label, pred, def )
(label )

( label, attr )

- Information and modification functions

list_agent
list_pred
list_parent
list_children
list_parts
list_links
list_attr
has_pred
has_attr
has_attr_val
has_if_nd
has_if_ch
has_parents
has_part
has_link
has_link_pred

O

O

(label )

( label )

( label )

( label )

( label )
(pred)

( label, attr )
( label, attr )
( label, attr )
( label, attr )
(label, prt )
( label, prt )
(label, Ink )
( label, Ink )

- Relationship functions

is_a
part_of
link_to
del_is_a
del_part_of
del_link_to

(chd, prt)

( subpart, part )

( chd, prt, rprt, rchd )
(chd, prt)

(chd, prt)

( chd, prt, rprt, rchd )

- Assignment and retrieval functions

add_value ( label, attr, value )
put_value ( label, attr, value )
get_value ( label, attr )
jask_value (label, attr )
ask_datatype (label, attr )
ask_number (value)

ask_agent (label )

- Auxiliary functions

next_label ( list, pos )
next_agent (pos)
next_attr ( obj, pos )

- Graphics interface functions

hist_forward O

hist_backward O

display_view ( view, clc )
display_curr_state ( view, clc )

find_mM ( view, xm, xM, ym, yM )
pick (view, x,y)
get_node_level ( view, label )
get_node_depth ( view, label )

- Solid modeller interface functions

bind_g_modeller ( char *appl, void
(*allconst)(void), void(*allgeo)(void) )

bind_g_agent ( char *Hcagent, void
*Hgagent )

bind_g_attr ( char *Hcagent, char
*attr, char *datatype, char *putfn )

unbind_g_modeller ( char *appl)

register_g_action ( char *name, void *act )

register_c_action ( char *name, void *act )

do_action O

set_action ( char *appl, void *act )
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The hybrid nature of the agents (Figure 4) is established by the solid
modeller interface functions. For instance, bind_g_modeller binds a
geometric modeller to the agent environment by specifying the following
parameters: the application name (e.g. ACIS); a pointer to a function that
registers all predicates in the construction view; and a pointer to a function
that registers all predicates in the geometric view. bind_g_agent binds the
geometric agent Hgagent to the construction agent Hcagent. bind_g_attr
binds a geometric attribute to its counterpart in the construction view
through the function putfn. putfn is a procedure to update an attribute in the
geometric view when a change is made in the construction view.
register_g_action registers a function that should be executed by the
geometric modeller to manipulate agents in the construction view. This
function is determined by its name and a pointer to it. register_c_action
registers a function to be executed by the construction environment to
manipulate the geometric modeller.

The authors developed a construction environment called DObEd
(Design Object Editor) integrated into a solid modeller written in C++ and
using the proposed API. Fig. 6a shows the 3D environment of the solid
modeller with 3 solids, HBoxLeft, HCyl and HBoxRight (H standing for
Hybrid), which are instances of the classes HCylinder and HBox. Figure 6b
illustrates the environment to work with the construction view. In this
example, the geometric attributes of the solids are as follows: radius and
height of the cylinder; length, height and width of the boxes; coordinates
posx, posy and posz of the center of mass of the solids. The following agent
intentions are defined:

cyl_bxr of HCyl over HBoxRight:
height of HBoxRight = 3.0 * radius of Hcyl
push HBoxRight
bxr_cyl of HBoxRight over Hcyl:
radius of Hcyl = height of HBoxRight / 3.0
cyl_bxl of Heyl over HBoxLeft:
height of HBoxLeft = radius of Hcyl/ 2.0
bxl_cyl of HBoxLeft over HCyl:
radius of HCyl = 2.0 * height of HBoxLeft

The lists of agents, predicates, attributes and predicates can be browsed
through the Design Object Interface developed with the proposed API, as
illustrated in Figure 7.
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Figure 6. Geometric and construction environments.

Figure 7. Design object interface and predicate definition.

10. Conclusions

The authors of this work believe that design automation systems should have
their focus on reactivity rather than on symbolic representations of design
knowledge. The complexity of the design process, its surprises, creative
insights and large number of variables seem to be more adequately
manipulated within an environment that can be adjusted without
interruptions during design state evolution.

The authors started investigating this sort of reactive environment in the
domain of solid modelling. Traditional constraint solid modelling (Feng and
Kusiak, 1995; Solano and Brunet, 1994) cannot cope gracefully with several
types of events, such as the creation of a new solid as a consequence of
changing the height of another one or the call of an entire design code for
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conformance checking. The approach proposed by the authors does not
exclude the use of mathematical programming or any other formalism, once
they can be used in specific tasks. In fact, the authors are investigating the
use of an API based on logic and objects in order to have logical deductions
within the reactive environment. Anyway, the authors do not have the
intention of pursuing optimal solutions from a set of constraints or
preserving completeness properties. However, impossible sets of intention
can be easily identified within few steps of execution. Again the idea here is
to leave tasks and decisions for the reactive nature of the environment.

Future work also include the development of other design views that
could manipulate geometric agents in a more autonomous way. This would
be the case where an agent defines the intention of another agent.

The authors have not carried out extensive tests to compare the agent-
based approach with other symbolic modelling approaches. However, the
prototype reveals high degrees of functionality, speed and very low space
requirements, specially because it uses straightforward procedural
programming. Moreover, in reactive agent-based approaches there are no
time consuming inference processes.
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A FRAMEWORK FOR DESIGN OBJECT EVOLUTION

Building and cataloging artefact prototypes
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Abstract. This paper presents current work on Product Data Modelling in the
Cambridge Engineering Design Centre (EDC) that offers a novel approach to
circumventing some of the known problems with the Object Oriented paradigm in the
design domain. A data driven approach to object based design is described that allows the
designer to build class prototypes during the design process and capture these prototypes
onto a catalogue. Catalogue class entries can be reused in an evolving product
configuration through a process of selection and specialization with new characteristics.
New classes generated during the design can be instantiated as part of the developing
product design object and also written back onto the catalog as new prototypes.
Catalogues implicitly cluster design objects into abstraction hierarchies that are
maintained and developed by the designer rather than a computer programmer. The paper
illustrates the technique with an industrial case study and discusses how the approach is
being used to develop applications within and without the EDC.

1. Introduction

Design problems are multidimensional and highly interdependent. It is rare
for any part of a design to serve only one purpose and it is frequently
necessary to devise a solution which satisfies (not necessarily optimally) a
whole range of requirements. Any attempt to balance design decisions across
an entire product configuration to obtain total functionality and design
optimization involves a complicated process of data processing. For example
modification to an element in one sub-assembly may result in unpredictable
consequences and unresolved conflicts among various others. The task of
synthesizing, analyzing and evaluating a self-contained design system is
difficult as it needs a vast amount of knowledge and information from
diverse sources. Further complications arise when various sub-systems within
a design environment have been implemented using different design
philosophies, computer languages and system platforms. As a result, the
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design, implementation and maintenance of such complex design
environments is a costly, lengthy process that has yet to be fully achieved
(Wallace, 1992).

2. Design Data Representations

A design system must be able to represent and supply useful amounts of well
understood and well structured objects for use in design. For example
knowledge base objects can be categorised by their structural, functional and
causal relationships. A structural relationship states how two (geometric)
objects are physically connected. A functional relationship determines how
two or more (not necessarily directly connected) objects contribute to the
behaviour of an overall system in responding to a particular set of initial
states. A causal relationship identifies the dynamic nature of two objects in
qualitative terms eg. what is the behaviour of object B if object A behaves in
certain way. It is instructive to consider the types of design knowledge
supported in the CAD domain with respect to required input, output and
constraints. Table 1 presents four distinct generations of CAD tool
functionality with current CAD tools belonging to the second generation
(Burgess and Wallace, 1995).

TABLE 1. Generations of CAD functionality.

GENER- INPUT INPUT OUTPUTS CAD

ATION REQUESTS CONSTRAINTS TOOL TYPE

Fourth Transmit Functional Working Functional

power 3D Geometric principle Synthesiser

Engineering

Third Shaft, keyway | 3D Geometric Dimensions Functional
Engineering Materials Modeller

Second Cylinders, 3D Geometric Dimensions Solid Modeller

resent) slots
First Lines,circles 2D Geometric Dimensions 2D Draughting

The types of design objects representing the input to each generation are
characterized by an increasing level of abstraction against a geometric
understanding of product breakdown. Current generation CAD systems
focus on variant design ie. manipulation of object parameters rather than
redefinition of the object itself. However variant design is at the lowest level
of the three levels of design identified by Pahl and Beitz (1984) as
* original design which involves elaborating an original solution principle;
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 adaptive design which involves elaborating a known system;
e variant design which involves varying the size or arrangement of certain
aspects of the chosen system;
and object manipulations in the design context (Ahmed et al, 1991) extend
beyond simple parametric change to encompass -
« addition / removal / renaming of a instance or class variable;
* changes to the type of a class variable;
e changes to the default value or range of class variable;
* addition of super / sub classes in a class hierarchy;
* re-ordering of a class hierarchy;
¢ addition / removal of classes from a class library.
If we consider the types of object manipulation that are needed to
support different design activity (Table 2) then variant design can be seen as
requiring simple parametric change.

TABLE 2. Class manipulation as a function of design.

ORIGINAL ADAPTIVE VARIANT
DESIGN DESIGN DESIGN
change instance variable \ \ \
change class variable v \ X
change class method \ \ X
change class hierarchy \? X X
change class library ' \? X X

To support designers beyond variant design new CAD tools require a
flexible class representation that permits manipulation of generic container
classes to support at least the first three types of manipulation without
recourse to library re-compilation. Essentially this library should allow the
designer to construct “design objects” during the process of design in an
evolutionary fashion. Note that original design does not necessarily imply
completely new class representations - much creative design is feasible
without radical changes to the design object representation.

3. Object Oriented Approach

Design can be considered to be object-oriented, constructive and incremental
in that designers use basic components and simple mechanisms to construct
larger and more complicated systems. A thorough understanding of basic
components, their function, behaviour, and relationships in a dynamic
situation forms a good basis for creating new designs. Computer-based
design support systems need sophisticated knowledge representation
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schemes, powerful inferencing systems and efficient control methods in
order to cope with the complexity of real world designs.

3.1 OBJECT ORIENTED TECHNOLOGY IN DESIGN

Object Orientation (OO) is a paradigm which attempts to overcome the

limitations of conventional computational models by bridging the gap

between a piece of data and its operations (Khoshafian and Abnous, 1990).

In an object-oriented system, objects represent dynamic entities in computer

memory that define data state. An object can typically serve to group data

that pertains to one real world entity and encapsulate both state and

behaviour by having a set of procedures that specify permissible operations.

Sets of similar objects are grouped together under classes. This simplifies

association of knowledge within objects by keeping the implementation

details private within each class, thus allowing interactions between objects of

different classes to be easily controlled and manipulated. The information

about how an object behaves is hidden from the behaviours of other objects,

only their interactions and relationships in different circumstances are

described globally. An Object-Oriented approach is applicable in the design

domain because of features such as abstract data typing and polymorphism

but has significant weaknesses (Nguyen and Rieu, 1991) such as

» generic relationships are fixed at the class level;

* semantic relationships are difficult to represent in composite objects;

* object variants can only be modelled by multiple instantiation;

* object evolution / reclassification requires class library recompilation.

These weaknesses have led to a number of extensions to the paradigm

(Nguyen and Rieu, 1992; Demaid and Zucker, 1992; MacKellar and

Peckham, 1992; Donaldson and MacCallum, 1994) such as

* semantic relationships - extending object relationships beyond IS-A and
HAS-A;

* multiple object perspectives - allowing an object to belong
simultaneously to several points of view;

* dynamic reclassification of objects - support for object migration
through a class hierarchy;

* dynamic evolution of class definitions - changes to class data members
and function members;

The latter is an essential pre-requisite in applications supporting design

synthesis and is the subject of this paper.

3.2 RESEARCH AT THE CAMBRIDGE ENGINEERING DESIGN CENTRE

The research aim of the Cambridge Engineering Design Centre (EDC) is to
support designers and design teams throughout the design process by
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providing them with knowledge-based tools. Complex mechanical
engineering systems have been targetted because of their large geometric
content and requirements for team-based design that supports evolving
design knowledge at different stages of the design process.

The major research efforts applying Artificial Intelligence-based design
techniques have focused on:

» resolving the tensions between formalising design data and ensuring its
usefulness by developing the Cambridge Product Data Model (CPDM)
(Murdoch and Ball, 1994; Murdoch, 1995) to provide a distinct
representation of generic and domain specific knowledge (using multi-layer
and multi-perspective knowledge structures of design process) and achieve a
high degree of reusability;

» developing a theoretically consistent process model (PROSUS) (Blessing,
1993) that can provide a good basis for systematizing design methodologies
in the mechanical engineering domain;

» validating computational design techniques via case studies involving
actual design data capture and design result evaluation;

* understanding design activities and capturing design experience and
expertise though collaborative projects with industrial partners.
Object-oriented techniques and tools offer a useful way of coping with the
complexity inherent in CAD/CAE projects. Clear strategies are being
adopted at the EDC in the design of object-oriented systems by

* identification of objects (class elicitation);

* identification of class hierarchies (class structuring);

» establishment of message protocols (interactions between objects);

* mappings of methods - functions (reasoning about objects).

3.3 EXAMPLE CASE STUDY

The mature and complex nature of aero engine design has lead to the
development of a wide range of specialist analysis techniques and tools. A
good example of the nature of the tasks undertaken in aero engine design
can be found in the high pressure turbine cooling air system (HPT/CAS), a
portion of which is shown in Figure 1. The disc rim and blade root from the
high pressure turbine are shown shaded. The combustion chamber lies to the
top left of the figure, the centre line of the engine below it and the lower
pressure turbines to the top right. The turbine blade requires extensive
cooling in order not to melt in the main air stream. The high pressures at this
point mean that cooling air must be drawn from the high pressure
compressor situated up-stream of the combustion chamber. The arrows
indicate the main direction of cooling flows for this cooling air
configuration.
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Figure 1. Section through a 1970’s high pressure turbine cooling air system.

The traditional mechanism for grouping product data using a Bill of
Materials breakdown was found to be inadequate to the task of representing
this system. Consequently the EDC initiated a Product Data Modelling
project to address the issues of capturing and indexing complex technical
systems. Figure 2 shows a schematic for part of the HPT/CAS developed
using the CPDM class libraries. The figure shows two groupings of design
information : firstly the geometry of the HPT/CAS components and parts
(represented by a simple 2D view) and secondly the flow of cooling air
through the system (represented by flow lines between key points on each
component). Both groupings represent functional interactions between
physical components, one force transfer and one air flow, which must be
supported by the CPDM representation.

Another important issue in grouping design data presented itself during the
HPT/CAS case study. The HPT/CAS bleeds high pressure cool air from the
last stage of the HP compressor, feeds it inside the combustion annulus and
through to the HP turbine where it is used to cool the shaft, disc and blade.
The design of the system takes advantage of parts from the HP compressor,
combustor and HP turbine assemblies. This implies that these parts are being
designed by two design teams with different functional requirements and
perspectives of the design problem. This is a typical scenario in the design of
complex and mature products where secondary systems are required to
support the overall functionality without increasing cost or reducing
performance. References within the paper to the HPT/CAS are shown in a
bold typeface.
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Figure 2. Schematic of HPT/CAS configuration.

4. The Product Data Model Architecture

The Cambridge Product Data Model (CPDM) forms the kernel of the
Integrated Design Framework (Ball and Bauert, 1992) that supports the
integration of heterogeneous systems capturing the creation and evolution of
common design information. The following requirements have guided the
design and development of the system architecture :

(]

support for the simple product breakdown tree;

support for part decomposition in terms of components and features;
modelling both physical and functional interactions between assemblies,
parts and components;

support for multiple perspectives on the product data;

support for independent but interlinked product breakdowns;

support the attachment of simple static data;

capture of geometric data and CAD / CAM files;

support the attachment of existing methods of representing technical
data;

adapt to new schema data as the product and the design process develops.
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Attempts to satisfy the above list of requirements have produced an
object-oriented system implemented in C++ that represents engineering
design entities such as parts, components and assemblies. Each design entity
has links to resource objects that can be instantiated to capture data for a
specific design application. A neutral 'data entry' application (discussed in
section 5) is built into the CPDM as a design knowledge acquisition tool for
the designers to extend the object classes in the hierarchy or create instances
of design object classes to be used in the new design. The definitions of
objects and the way in which they can be structured in the CPDM also
provides basic guidelines for defining engineering design objects. The
CPDM is intended to form the basis for a number of engineering design
tools being developed to share data through a common object-based
database.

The development of CPDM represents the EDC’s formulation of
engineering design knowledge in an object-oriented way so that it can be
shared by domain-specific design application systems. The key issues
addressed in the development of this system are generality and reusability of
engineering design objects. The underlying construct behind this approach
is the prototype (Gero, 1990) - a generalized artefact that can be
manipulated during the design process by the designer allowing co-
development of the design object representation and the actual product. The
design prototype plays two roles in this approach - a representation schema
for collecting and integrating information relating to a design concept and
an operationalization mechanism for the concept. To fulfill these roles a
design prototype must capture descriptions of function, behaviour and
structure as well as embedding knowledge which supports the reasoning
behind design synthesis, analysis and refinement.

The relationship of this work to other research in the field is compared in
Table 3 by considering the types of extension (described in 3.1) to the OO
paradigm offered by three other systems - SHOOD, SORAC and CFS.

TABLE 3. Generations of CAD functionality.

CPDM SHOOD SORAC CFS
semantic relationships \ \/ V V
multiple perspectives \ v \ \
dynamic reclassification X \ X X
class schema evolution \ \ X \

SHOOD (Nguyen and Rieu, 1992) is an object-oriented data model
designed to support highly dynamic applications. It implements support for
object schema evolution (at both class and instance level), user defined




A FRAMEWORK FOR DESIGN OBJECT EVOLUTION 85

semantic relationships between objects, and support for multiple object
representations.

SORAC (MacKellar and Peckham, 1992) is a semantic modelling tool

that supports active semantic relationships modelling parts and connections
and allows a designer to specify behaviours associated with relationships
within an OO representation.
CFS (Donaldson and MacCallum, 1994) is an OO frame system that supports
the evolutionary development of a design concept model and provides a
testbed for prototype-based representation. Each concept in CFS is an
instance of a composite class whose 'slots' point to 'feature' objects.

All of these systems support the development of semantic relationships
and multiple perspectives albeit using different mechanisms. Dynamic
schema evolution is not supported in SORAC because the emphasis is on
rich semantic modelling rather than novel class structures. The issue of
dynamic object reclassification is comprehensively addressed in SHOOD but
not in the other systems. The remainder of this section describes the
architecture of the CPDM and highlights how this architecture supports
» semantic relationships, by specification of Equation objects;

» multiple perspectives by specification of System objects;
» class schema evolution by specification of Resource objects.
The issue of dynamic reclassification is discussed in section 5.

4.1. DESIGN OBJECT HIERARCHY

The framework for indexing a single layer of artefact data is shown in
Figure 3. In common with many product data models the product (three
shaft gas turbine) is broken down into assemblies (HP module) and
assemblies into either parts (turbine blade) or further assemblies (HP
turbine) (Murdoch and Ball, 1994). A part is broken down in terms of
components (aerofoil section) where the actual geometry is defined. The
geometry of a component may be enhanced by the addition of features
(drilled holes). Interfaces (fir tree root - disk connection) are shown
between nodes on the product breakdown and describe the connections
between artefact elements.

The component network supports two different types of perspective. One
is a traditional product hierarchy where parts are collected into assemblies,
and assemblies into further assemblies until the product is complete. This
conforms to a traditional Bill of Materials view of modelling product data in
clustering elements according to physical relationships. The breakdown is
strictly hierarchical with each node being referred to only once in the tree
structure (eg. the core of a three-shaft gas turbine is described in terms of
three compressor assemblies, a combustor assembly and three turbine
assemblies).
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Figure 3. CPDM Framework: A hierarchical network of product elements.

The second type of perspective is product systems, where components are
clustered according to functional relationships (see section 4.3).

4.2. LAYERS

The product schema shown in Figure 3 has been described using an example
from a mechanical breakdown of the product. This combined tree and
network breakdown may also be used to support other types of information.
Figure 4 demonstrates the requirement for multiple layers of artefact data
during the life of a product. The first layer is shown supporting the
functional description of the product and others are shown supporting
embodiment, detail and life cycle information. Each layer uses a entity
structure to support different but compatible breakdowns of a single product
similar to Andreasen's chromosome model (Mortensen and Andreasen,
1993). Links between layers map causal relationships between entities.
Compatibility is defined in terms of a consistent mapping between layers
(eg. the mapping between the function ‘compress air’ and product
assembly ‘HP compressor’ is shown by linking the compress air nodes in
the function layer to the HP compressor node in the detail layer).
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Figure 4. Multiple Layers of cross linked artefact data.

4.3. MULTIPLE PERSPECTIVES

The product definition (Figure 3) also supports the concept of systems that
provide new groupings of existing nodes in the product breakdown. Systems
(cooling air system) may be broken down into their constituents of
assemblies (compressor, combustor, turbine), parts and components or
further systems (HPT cooling air system). Systems in the CPDM support
“tightly coupled views” in that all processing occurs in the base objects
rather than in the System object itself. This constrasts with more
sophisticated approaches supporting “loosely coupled views” where
processing occurs in the view directly (MacKellar and Peckham, 1994).

The use of multiple layers of data (Figure 4) and multiple perspectives
within each layer (Figure 3) enables management of data ownership. The
design of complex technical systems requires multi-disciplinary design
teams. Each team requires its own perspective on the design data. By
declaring these perspectives in the form of system networks the ownership of
a specific item of product data can be managed effectively.

4.4. RESOURCES

There are at least five types of core product data, found in several of the
stages of the design process :
* Specification: a description of requirements for other product data;
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* Function: a description of the behavioural properties defined by the
interaction among and between product elements and users;

* Geometry: a description of shape and material properties;

e Attribute: a description of other physical and abstract properties;

¢ Production and Use Processes: a description of how, when and where to
make, transport, use, maintain and retire the product.

Specification information is relevant to all stages of the design process
and is applicable to all types of design data. Whether the specification is used
to direct the creation of a product concept or to support the evaluation of
competing layout designs, its key element is the list of requirements.

The description of functionality and behaviour are central to both the
conceptual and embodiment stages of design. Function structures and state-
transition diagrams are frequently used during conceptual design and whilst
working in the process domain. The information held and manipulated
within these methods is also central to embodiment design and whilst
working in the artefact domain, where recognisable, though abstract, physical
shapes are used. Thus product data concerning functionality must be
capable of being shared between tasks and either added to or abstracted
from other types of product information.

Geometry, combined with the structure of a technical system, defines
many physical aspects of the artefact. The definition of geometry can be
divided into shape and dimension. While parameters can be used to define
the specific sizes and material properties, shape requires more sophisticated
methods. Attributes capture the remaining internal properties such as
ergonomics and aesthetics. Recognising the separation of parameter and
attribute properties is important in understanding the difference between
design properties (those which the design team can manipulate) and internal
and external properties (those which the design team can effect). Other
whole-life properties are captured under the production and use processes.

Specification, Function, Geometry and Attribute data has been captured
through the implementation of a number of Resource sub-classes which can
be attached to any Artefact via list structures. These subclasses provide the
basic container objects that designers can use to build specific “design
objects” from the CPDM class library. This permits class schema evolution
using a language defined in terms of Resource sub-classes without requiring
reconstruction of the CPDM libraries. Two Resource subclasses are described
in the following sections: Criteria and Characteristic.

4.4.1. Criteria

In the research literature, specification information is defined in terms of
either a free text design brief or lists of specific design requirements (Pahl &
Beitz, 1984, Hauser & Clausing, 1988). Methodical strategies for developing
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a specification result in structured text or requirements lists. Free text can be
supported by simply referencing document filenames and directories.
Requirements, however, must be specifically defined. The majority of
specification data is modelled using lists of requirement and exchange rate
objects in the Resource sub-class Criteria. The data definition of the class
Requirement, shown in Figure 5, was developed from that used in the
undergraduate teaching tool SpecBuilder (Thomas & Wallace, 1990) and the
configuration optimisation tool KATE (Murdoch, 1993).

class Requirement: {

character string keyword;

character string requirement;
character string who;

character string when;

Property property;

List of real target values;

List of real importance weightings;
Descriptor type of requirement;

};

Figure 5. Class requirement embedded in the Resource sub-class Criteria

The first four entries are similar to those found in the SpecBuilder
program which also captures the importance of the requirement in terms of
either a demand or weighted wish. This and further numeric information is
captured here in a list of several importance weightings associated against
target values. The type of requirement captures whether the requirement is
attainment of a specific goal or optimization of a property value. The
pointer to a property is used to reference data stored elsewhere and by
methods within the Requirement class to determine how well the current
property value meets the specified requirement.

4.4.2. Characteristic

The functional, geometric and attribute properties of an artefact are stored in
the class Characteristic shown in Figure 6. The class contains lists of three
properties (function, parameter and attribute) and several items capturing
other geometric information.

Functions capture the potential input and output energy, signal and material
flows to an artefact ( labyrinth seal - air-output ). Parameters capture the
sizes of certain geometric and material features ( radial position ).
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class Characteristic: public Resource {

List of Functions functions;

List of Parameters parameters;
List of Attributes attributes;

List of Points Interest points interest;
Origin origin;
Orientation orientation;

}:

Figure 6. Characteristic sub-class of Resource.

Attributes capture information which may be derived or measured from
other artefact properties ( seal leakage ). The Points Interest capture
physical points in space in and around the artefact and are used to assemble
artefact objects in 3D space. They also define the position of the functional
input and output points. The origin and orientation objects store the position
and orientation of the artefact in local coordinates.

The Parameter class is shown in Figure 7. This class overlays four
different types of information (real, integer, text or object reference) onto a
single data member. Thus a parameter may store wall thickness, number of
holes, name of surface colour or simply point to a class containing further
and more extensive information. This latter option has been provided to
support inter-change of standard shapes and materials. Other entries support
the definition of ranges for variation and tolerances on the current parameter
value and a state descriptor to capture variability and inter-linkage to other
product data. The final item is a list of parametric Equation objects. These
equations may be either equalities or inequalities. To maintain a determinate
shape, only one equality equation is allowed to support parametric
geometry. Any inequalities listed model constraints in the product
parameters.

Equation objects may be used to construct links between any
Characteristic property of an Artefact thus enabling the designer to model
semantic relationships between design objects at any level in the Product
hierarchy (labyrinth seal: maximum-rotation-speed <= maximum-
rubbing-speed/2*n*radius). Capturing the relationships between parameter
and attribute characteristics constitutes a major design activity and is
supported in the CPDM through mappings based on Equation objects,
Analytical (tabular) Data objects, C++ code subroutines and external
standalone tools.

The list of Parameters in Characteristic define geometric variables which
need to be mapped to an actual physical shape in order to define a specific
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3D body. The mapping of parameters to geometry within the CPDM has
been implemented by building up a body from intersecting primitives and
swept laminas using the ACIS solid modelling kernel (Spatial Technology,
1995).

class Parameter: {

character string name;
union {

real Rvalue;
integer Ivalue;
character string text;
Pointer pointer;
};

descriptor code;

real value min, max;
real value tolerance;
descriptor state;
List of equation parametric equations;

};

Figure 7. Parameter class.

5. Building Design Objects - The Design Object Catalogues

One of the motivations behind the CPDM research is to enable the evolution
of design representations during the process of design rather than as a pre /
post design activity. Specification of the representation before the process is
often premature since a designer’s grasp of the problem will be incomplete
and probably biased towards past solutions. Documentation of the
representation after the design is complete may be too late if there is
pressure to move onto the next problem. Hence the underlying philosophy
is one that “doing the design is capturing the data”.

The basic approach taken in the EDC to capture design data has been to
enable direct modelling of design object through
* browsing of existing catalogues (by domain type);
» selecting a catalogue entry on the basis of similarity in Resource space;
 adapting the entry by adding new Resource subclass member definitions;
» saving the new node back onto the catalogue as a new class prototype ;
* adding the entry onto the design product tree as a new leaf node;
» specializing the node by entering variable data (slot filling).
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The first four activities are performed using an in-house CPDM
application called Compdef. This application supports the building of design
prototypes (as described in section 4) within catalogues classified by product
domain such as aerospace or civil engineering. The last two activities are
performed using a design application that is targetted at instantiating specific
Resource sub-class objects.

Each catalogue entry is a design object prototype that represents an
intermediate state between class and instance. It is a generic object that can
be instantiated within the context of a specific design. The implicit
relationship between different prototypes in a catalogue is equivalent to an
abstraction hierarchy where child members have been constructed by a
designer through specification of new Resource objects rather than
predefined as part of a fixed library. As described in 3.1 dynamic
reclassification of abstraction hierarchies may have a role to play within the
CPDM as a clustering mechanism for catalogue prototypes based of
Resource object configuration. Such hierarchies will be one of a group of
clustering perspectives available to the designer. The efficacy of each
mechanism in the group will be dependent on design context. As yet no
research has been conducted into identifying the membership of this group.

Methods mapping data members within a class prototype are modelled
using the Equation and Analytical Methods subclasses. If these are
inappropiate then a Tool class is available to link in external methods.

6. Integration of design applications using the Cambridge PDM

The CPDM class libraries support the storage of project information on a
series of databases. This information can be accessed directly by workbench
applications developed within the EDC using predefined database query and
access routines. Applications developed outside this environment require a
wrapper to access the database and translate the project information to and
from the CPDM protocol. The wrapper also enables certain workbench tools
to communicate with the stand-alone tools directly as part of the Integrated
Design Framework. The supporting knowledge-base uses the same CPDM
schema and data resources, combined with embedded design knowledge to
provide catalogues of re-usable design objects. These objects are defined
using workbench tools designed specifically for knowledge capture.

6.1 CURRENTLY AVAILABLE APPLICATIONS

Applications possess various levels of design integration. Those developed in
the EDC using the CPDM schema and database query routines can be said to
be fully integrated. Stand-alone applications, however, require other methods
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of communication and data transfer, aspects which form part of a bespoke
wrapper. The following comprise the operational EDC application set:

Name Description Type

Compdef Design prototype builder CPDM

BuildSite Generic Configuration Builder CPDM
Compgeom Solid Model Visualization CPDM

KATE Configuration Optimization CPDM

CMS Cambridge Materials Selector  Stand-alone (PC)
PROSUS Design Event capture CPDM

Review Design Guidelines database Stand-alone (PC)
FUNCSION Functional Synthesiser Stand-alone (Unix)

+ commercial CAD and FE systems using IGES interfaces.

6.2 INTEGRATION STRATEGY

This combination of existing stand-alone and newly developed design
applications has been integrated into the IDF design workbench shown in
Figure 8. The project database and supporting knowledge database are
shown as parallel ‘object buses’ carrying information to and from various
design tools. These databases currently comprise a Lisp environment
supporting a number of functional modelling design tools and a C++
environment supporting the main CPDM data definition and configuration
optimisation and process integration design tools.

The EDC design tools stand between these two databases showing various
levels of integration and data sharing capabilities. Examples of these tools
are listed in the key. Below the project databases are a number of translation
modules. One specifically translates the Lisp based functional information
into the PDM data definition. Others support the transfer of information to
and from the commercial design tools shown at the base of the figure.

No mechanism has yet been developed to maintain the consistency of the
CPDM across the workbench application set. The FUNCSION application
uses an Assumption-Based Truth Maintenance System (Tang, 1995) to
monitor data integrity and this approach may be applied to the CPDM.

6.3. IMPLEMENTATION DETAILS

The system has been implemented on a Local Area Network of Sun SPARCs
running under SunOS and Solaris. All CPDM class libraries and PDM
applications are written in C++4.0.1 with GUIs built using Sun’s DevGuide
tool. Two additional third party libraries are used within the PDM classes -
Sun’s XGL (a 2D geometry library) and Spatial Technoloy’s ACIS (a 3D
Geometry library). The SPARCWORKS 3.0.1 debugging environment is
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used for all C++ development. PC-based applications are currently supported
under the Solaris Windows emulator WABI.

Figure 8. EDC Design environment.

The database supporting this work is Quillion Systems Limited’s Object-
Based system called QuikTrieve (Quillion, 1992). Object persistence is
supported on the CPDM through the development of a C++ interface (QT-
IDF) that maps objects in an EDC application’s virtual memory space onto
Quiktrieve data objects. This interface does not require bespoke coding
within each application and enables rapid linkage of an application to the
database via a few simple function calls - open, close, get, put, delete.

The schema and data definition described in this report results in very fine
granularity of data that allows participants to select only the information
specifically required for their activity.

6.4. PROJECT STATUS

Projects involving the CPDM are both industrially and academically driven.
A number of Design for X projects are being pursued in conjunction with
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industrial clients in aerospace and civil engineering. Most of this work is
categorised under the theme of ‘Configuration Optimization’ and the
application of CPDM libraries is providing a focussed approach to a number
of diverse projects such as ‘design of reliability’ and ‘design for technical
merit’ (Stephenson and Wallace, 1995; Murdoch and Wallace, 1995).

A case study from an undergraduate design course, the Integrated
Design Project, is being used to demonstrate some of the key requirements
of product data modelling. Teams of six students design, build and test
autonomous vehicles that are able to navigate a course marked out by a
white lines and perform various pallet handling tasks. The three distinct
systems of these vehicles - mechanical, electronic and software - are being
analysed and modelled using the CPDM with Compdef and Buildsite tools
(Murdoch and Ball, 1995).

7. Conclusions

The CPDM class libraries are a research laboratory for experimentation into
the evolution of design objects during the design process. The underlying
aim of the research is to empower the designer by allowing flexible class
definition as well as instantiation without recourse to rebuilding the systems
environment. The output of the research is to extend the level of design
activity beyond that currently offered by CAD systems from variant into
adaptive design.

Since being made persistent through the application of an OO Database
Management System, the CPDM libraries have also become an integration
medium that supports interfaces between EDC and commercial applications.
Rapid prototyping of new applications (particularly in the DFX domain) is
becoming possible through the addition of new Resource sub-classes to the
base CPDM libraries. This is giving significant leverage to the
implementation effort within the EDC and providing an software
environment for research students to construct experimental systems.
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Abstract. This paper describes IDIOM, a system for composing layouts using cases.
Layouts are interactively composed by users rather than automatically generated as has
been proposed by previous research. The design is incrementally parameterized as cases
are added and therefore, case adaptation, user interpretation and model activation can oc-
cur at any stage. IDIOM supports designers through reducing constraint complexity and
through managing design preferences, thereby restraining proposed solutions and further
adaptation within globally feasible design spaces. Improvements to the algorithm over
previous implementations have increased reliability. In general, designers, who currently
carry out spatial composition tasks using standard drawing tools, have reacted favourably
to the system, providing useful feedback for further work.

1. Introduction

Design systems that support case-based design (CBD) have the potential to help
designers reuse previous designs in new contexts. This approach is one that they
have always employed for creative and routine design activities. Therefore, CBD
has been studied extensively and applied to a range of fields. For example, CBD
systems are proposed for mechanical engineering, civil engineering and architec-
ture (Bahktari and Bartsch-Sporl, 1993; Flemming, 1994; Goel and Chandrasek-
aran, 1989; Goel and Kolodner, 1991; Maher and Zhang, 1991; Navinchandra,
1988; Sycara and Navinchandra, 1991). Although early adaptation work did not
concentrate upon support for geometrical aspects, recent research, particularly
studies associated with building design, have included geometrical aspects and
much progress has been made, e.g. (Adani, 1995; Coulon, 1995; Dave et al., 1994;
Gero and Schnier, 1995; Giretti et al., 1994; Hua, 1994; Zhang and Maher, 1993).
We provide a further contribution by concentrating on interactivity, use of prefer-
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ences and sound computational algorithms for continuous variables.

Designers usually employ information from several designs in order to com-
plete tasks. Therefore, research into case adaptation has evolved into studies of
case combination (Dave et al., 1994; Purvis and Pu, 1995; Sycara and Navin-
chandra, 1991; Zhao and Maher, 1992) which involves three processes (Smith et
al., 1995) analysis of cases for applicable information, interpretation of this in-
formation in the new context and resolution of conflicts between the case and the
new context for a feasible solution. Since the efficiency of the analysis depends
upon the way cases are interpreted and how conflicts are resolved, our work fo-
cuses upon the last two of these processes, interpretation and resolution.

In many fields, the spatial configuration of design components determines design
cost and in-service functionality. In multi-story apartment building design, once
the floor layouts have been determined, it is estimated that 90% of the final cost is
fixed for “standard” construction.! Computer support for layout configuration has
been studied for more than twenty years. Studies include techniques such as math-
ematical programming (Mitchell et al., 1976), optimization (Mitchell et al., 1976),
space discretizations (Voss, 1994), genetic evolution (Gero and Schnier, 1995),
graphs (Coulon, 1995; Choi and Flemming, 1995), hierarchical generate and test
(Flemming et al., 1988), natural language declarations (Fujii, 1995) and constraint
satisfaction (Baykan and Fox, 1992; Medjdoub and Yannou, 1996; Tommelein,
1989). Rather than automate the configuration task, we have developed a system
which supports designers as they compose designs themselves from parts of previ-
ous designs. As discussed later, practicing designers who were interviewed within
the scope of this study emphatically did not wish to have computer systems per-
form automatic layout generation.

Some design requirements are expressed as preferences. Preferences reflect
requirements that cannot be modelled more precisely, such as social and political
considerations, as well as control knowledge that helps designers explore design
spaces. Preferences differ from default information because if deactivated, they
may be reinstated as opportunities arise. Models have been proposed which use
assumption-based truth maintenance (Logan et al., 1991) for discrete variables.
Borning (Borning et al., 1992; Wilson and Borning, 1993) used hierarchies of
constraint sets in order to resolve contradictions in an interactive drawing sys-
tem. Preferences have also been employed for complex Pareto optimality prob-
lems (D' Ambrosio and Birmingham, 1995). In WRIGHT, Baykan and Fox (1992)
allow for constraint weakening in over-constrained situations. Deactivating re-
quirements in order to explore design spaces was first proposed by Navinchandra
(1991). Although design exploration has been investigated by several other re-
searchers (Gero and Kazakov, 1996; Logan and Smithers, 1993; Maher and Poon,
1995), it is agreed that more work is needed; few validated and tested implement-

1“Standard” construction is intended to refer to construction that is most commonly found in a
given socio-economic region.
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ations are available that support practical design tasks. In our research, prefer-
ences are used to support exploration of alternatives for adaptation of spatial con-
figurations.

We combine new ideas with successful parts of previous work (Hua, 1994;
Hua et al., 1992) to support interactive spatial composition using existing designs
and explicitly defined domain models. Preferences are included in these models
and are combined with reliable and fast algorithms for constraint solving in or-
der to produce an interactive system. Various aspects of this system are illustrated
using apartment layouts. The next section contains a general description of the
system and describes the cases employed. Section 3 describes how case combin-
ation is carried out using algorithms that have been improved over previous im-
plementations. Section 4 discusses how the system has been conceived to interact
with the designer and the last three sections discuss implementation details, test-
ing with users, and related work.

2. IDIOM

We have developed a system called Interactive Design using Intelligent Objects
and Models (IDIOM) in order to study design interactivity, the use of prefer-
ences, and explicit domain modelling for case adaptation. Model-based adapta-
tion was first proposed by Goel (1989) for discrete variables. The term, IDIOM,
was chosen because its meaning reflects a goal of this research. A dictionary defin-
ition (from Longman) for the word “Idiom” is

A phrase which means something different from the meaning of the separate
words

This definition provides a useful analogy. We aim to support incremental com-
position of design cases while employing user interaction and domain models to
include holistic considerations of groups of objects. Models are applied to designs
several ways. They are activated when certain groups of objects are present in the
design, they are used to interpret designs in certain contexts and they are incre-
mentally introduced by the designer as the design is composed.

Our current research into case-based building design is motivated by two factors.
The first factor is the observation that although building designers frequently re-
use designs, they rarely wish to adapt whole building cases. Often, the cases which
are most useful are spaces and collections of spaces (Schmitt, 1993).

The second factor is that most design domains cannot be modelled completely
due to a complex consideration of social, political and economic factors. As a res-
ult, it can be frustrating to designers when a system performs automatic design
and proposes just one solution. A much better role for computer systems is to
provide support for defining allowable spaces of acceptable designs. When ex-
ploring these spaces, designers are able to introduce their interpretation of what
is not modelled through user interaction.



100 IAN SMITH ET AL.

Figure 1. An example of a case in IDIOM.

These two factors lead to the definition of an intelligent object that is used
in this paper: an intelligent object is a part of a successful design which has been
interpreted by designers for each new design task through constraint posting, de-
claration of neighbourhood relationships, adaptation and model activation. There-
fore, an object becomes intelligent at run-time. This interpretation is used to ac-
commodate additional objects during subsequent design stages. The notion of an
intelligent object is not new, for example see Rigopoulos and Oppenheim (1992).
An example of an intelligent object is a living room taken from a design of a pre-
viously built apartment building. This living room becomes an intelligent object
when i) the user interprets it in a new context by imposing conditions such as
neighbourhood relationships and ii) when the user activates domain models to add
additional constraints, such as the size of the living room needed for the number
of inhabitants in the apartment. More detail of the models employed is provided
in Section 2.2.

2.1. CASES IN IDIOM

Cases in IDIOM are parts of designs of constructed apartment buildings. Cases
have been carefully selected by an architect for flexibility, compatibility and suc-
cess as designs of parts of existing buildings. They are grouped into types such
as living rooms, kitchens, bathrooms and bedrooms. They contain windows, fur-
niture and doors. An example of a case is shown in Figure 1.

Grey rectangles within spaces represent furniture elements. The size of these
rectangles include the size of the element plus additional space necessary for ad-
equate use. For example, the size of a rectangle representing a dining room table
includes an allowance for chairs as well as adequate room for sitting in them.
Other elements shown in Figure 1 are the window in the right wall and the door on
the left wall. The outer dimensions of the case as well as the positions of elements
such as windows, doors and furniture are treated as variables. Sizes of elements
within cases are fixed. All variables start with default values that correspond to
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their values in the original design. The origins of the case are described by the
location of the building and the name of the architect.

2.2. MODELS IN IDIOM

Models in IDIOM are causal mappings from structural parameters to behaviour
related to individual objects (interpreted cases) and object groups. Behaviour is
interpreted for a given context to correspond to a desired function. Therefore,
model formulation follows the no function-in-structure principle (de Kleer and
Brown, 1984; Gero, 1990). The definition of function, behaviour and structure
follows (Gero, 1990).

We employ models to provide domain knowledge as configurations are com-
posed. Models are abductively implemented through causal inversion (desired be-
havior to required structure). Since abduction is unreliable when a closed-world
assumption is inaccurate, models in IDIOM are interactively activated, thereby
providing one of several ways for the designer to introduce a problem-specific
interpretation of the context.

In order to illustrate these mappings and their interpretations, four examples
of models used are given below. These models reflect the scope of domain know-
ledge that can be included in the system. Models may cover strict rules which are
simplified from physical principles (adequate natural lighting), guidelines (sub-
sidized housing), technological considerations (economical facades) and personal
designer preferences (luxury construction).

— Subsidized housing Government authorities publish specifications for build-
ings to qualify for registration as subsidized housing. Since designers know
that the value of a building is reduced if these specifications are not met, they
often consider them to be minimum requirements. For example, minimum
room sizes are specified for the number of people living in an apartment.

— Economical facades When facades are continuous along one face, that is,
no discontinuities or intermediate corners, the building envelope behaves bet-
ter (reduced risk of leaking, deterioration, etc.) than if intermediate corners
are present.

— Adequate natural lighting Local authorities specify a minimum ratio of
window area to floor area in order to ensure that there is adequate natural
lighting in rooms.

— Luxury construction Most building designers can provide specifications re-
lated to what they believe to correspond to above average construction stand-
ards. Parameters such as sizes of rooms and widths of hallways are linked to
a behaviour which provides above average comfort.

Figure 2 shows the same design with and without activation of a model for lux-
ury construction. Examples of constraints included when this model is activated
are : minimum area of single room = 16m? (top object in Figure 2) and min-
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Figure 2. The same design without (left) and with (right) activation of a model for luxury con-
struction. (Text annotations have been disabled.)

imum area of kitchen = 12m? (bottom right object in Figure 2). Since this model
reflects personal preferences, it should be elaborated upon and modified for each
user. The use of preferences is discussed further in the next two sections.

3. Case Combination through Constraint Solving

Spatial composition of intelligent objects requires consideration of many interact-
ing relationships between variables. Case combination is supported through incre-
mentally solving relevant constraints, thus taking advantage of inter-relationships
to reduce complexity.

Arrangements of intelligent objects and their elements such as doors, win-
dows and pieces of furniture are defined by sets of constraints. Constraint sets
have to be solved rapidly in order to allow interactive use, therefore we restrict
these to linear and simple non-linear relationships. Relationships can be equalit-
ies or inequalities.

One of the most important aspects of the solver in IDIOM is its compatibility
with interactive adaptation. When another case is added, IDIOM finds a solution
whilst maintaining positions and sizes in the current design wherever possible.
Many algorithms in linear programming cannot do this. For example, those which
employ pre-defined objective functions cannot dynamically add parametric values
to the optimization criteria.

3.1. SOURCES OF CONSTRAINTS

There are three sources of constraints: the library of cases, the interpretation of the
design by the user and domain models. When a case is introduced into a design,
all its associated constraints are added to the current set of constraints. The user
can then add further constraints in order to interpret the case in its new environ-
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Figure 3. Linear approximation of y = 4mia

ment. The most important constraint is the specification of the topology of the
design, done by defining neighbourhood relations between objects (as described
in Section 4). In addition, the user can specify constraints on the sizes, distances
and alignments between objects and their elements. Before a new solution is cal-
culated for the layout, constraints from active domain models are added to the
current set of constraints. All constraints restrict values of continuous variables.

When all the constraints present in the system are linear, calculations can be
completed in a reasonable time (less than five seconds). Certain non-linear con-
straints, such as minimum areas can be approximated by linear relationships. Con-
sider the constraint, 2y > Ap,;,, Where x and y are the length and width of an ob-
ject and Ay, is the minimum area imposed by the constraint (illustrated in Fig-
ure 3). Using the minimum sizes, all objects must have, together with the above
constraint, a maximum value for z for consideration of the constraint as follows:
Tmaz = Amin/Ymin. If values of z are larger than &4, then the constraint defin-
ing a minimum on y implies that there are always acceptable values for zy. Thus,
it is sufficient to approximate £y > Ay in the interval [Zmin, Tmaz]. IDIOM
employs a logarithmic relationship, to determine the points, z; and x5 for linear
approximations as shown in Figure 3. Typical constraints in IDIOM which have
a form similar to y > A, can be approximated with an error of less than 5%
using only three linear constraints.

3.2. DIMENSIONALITY REDUCTION

Equalities in the constraint set reduce the degrees of freedom of design spaces.
This approach has been used in statistics (Krishnaiah and Kanal, 1982) and im-
age recognition (Saund, 1989) and was proposed for case-based design (Faltings,
1991). Subsequent development established that equalities can be used to reduce
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the number of variables occurring in inequalities (Hua, 1994).

IDIOM uses Gauss-Jordan elimination to perform dimensionality reduction
and to identify dependent and independent variables. In the inequalities, depend-
ent variables are substituted by independent ones, thereby finding the matrix of
coefficients of the equalities and inequalities.

1 0 ... 00 Qn,+1,1 . Qn, 1 1
01 ... 00 Qn,+1.2 ... an, 2
0 0 . 1 0 an410.-1 .-+ Gpym.—1
00 01 an41m, B
00 ... 00 Qn.+1n.+1 coo QApyne+1

B 00 ... 00 On.+1lne+n; -+ Qnyn.+n; |

where n., is the number of variables, n. is the number of linear independent equal-
ities and n; is the number of inequalities. After the elimination, inequalities con-
tain a reduced number of variables; thus increasing system performance.

Gauss-Jordan elimination has been proved to be a polynomial time method for
exact calculus (Schrijver, 1986), while for floating-point arithmetic its complexity
is O(n3). In IDIOM, the algorithm is implemented using sparse matrices, thus
improving efficiency (more than 95% of the coefficients in typical problems are
Zero).

3.3. TREATMENT OF INEQUALITIES

Design spaces are defined by inequalities that have been simplified using dimen-
sionality reduction. CADRE employs recursive transformation (RT) of all viol-
ated inequalities into equalities in order to define the parameterization for adapta-
tion (Hua, 1994). This method may omit correct solutions.

For example, consider two objects in a design having minimum vertical di-
mensions, Y1min and Y2.min, as shown on the left-hand side of Figure 4. The neigh-
bourhood relationship in the middle of the figure requires that Object 2 has at least
the same size as Object 1. The right hand side of Figure 4 gives an obvious solu-
tion. Among the inequalities describing this example the following three cause
RT to report a conflict although there isn't one.

n Z Yimin
Y2 2 Yomin
Y2 2>

Y1min and yomin are constants, y; and y2 are the vertical sizes of Object 1 and
Object 2. When RT is used, it detects that the current values shown on the left
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of Figure 4 violate the second and third inequality and will transform these into
equalities. This forces both objects to take a size of y2min, resulting in a conflict
with the minimum size of Object 1. No solution is reported. However in reality,
one exists as shown on the right-hand side of Figure 4.

Figure 4. Example of two violated inequalities.

IDIOM avoids this by using the Fourier-Motzkin elimination method which is
an algorithm for solving inequality-systems (Motzkin, 1936). The procedure in-
volves eliminating all variables one by one until a simple inequality-system with
only one variable is found (Schrijver, 1986). For each variable, the Fourier-Motzkin
elimination calculates the following inequalities:

Ty
z; < chja:j—}-bk i k=1...1
j=i+1

T; > Z ck]-a:j—}-bk ;i k=L+1...m;
j=i+l

where ¢, b, | and m are constants determined by the Fourier-Motzkin elimination
and n,, is the number of variables. These inequalities allow the solver to calculate
an interval of possible values for variable z; the bounds of which depend only on
Zit+1-..Tn,, Where the interval for z,, is given by constants. To find a solution
for the inequalities, the solver starts by choosing a value for z,,, . If this value
is chosen within the interval for ,, the Fourier-Motzkin elimination guarantees
that, for z,,_1, an interval of possible values can also be found. Therefore the
solver can recursively determine values for all variables.

Using intervals of possible values, it is easy to find a solution which is as
near to the current solution as possible. The solver chooses a value for a variable
by checking its interval of possible values. If the current value of the variable is
within the interval the solver will use this value. If the value is outside it will be
set to the nearest interval boundary.

In general, this algorithm generates an exponential number of inequalities.
However, Nelson (Schrijver, 1986) showed that if each inequality involves only
two variables, the Fourier-Motzkin elimination method has a complexity of
O(mn*129m+3)ogn). Unfortunately the form of inequalities in IDIOM cannot be
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restricted in this way. Nevertheless, the use of sparse matrices and the reduction of
redundant constraints (Lassez et al., 1993), have improved performance for prob-
lems treated by IDIOM. Table 1 shows the effect of redundancy reduction on a
small example. It involves 3 rooms with few elements; 20 variables, 7 equalities
and 41 inequalities.

TABLE 1. Constraints generated by Fourier-Motzkin elimination, with and
without redundancy reduction (rr).

w/o redundancy reduction (rr)  with rr

Generated constraints 1.6e06 132
Stored constraints 2784 58

3.4. PREFERENCE ACTIVATION

Constraints in IDIOM may be fixed or preferred, hereafter referred to respectively
as fixed constraints and preferences. Fixed constraints must be fulfilled while pref-
erences may be deactivated if they are in conflict with other preferences or fixed
constraints. Preferences are reactivated when possible. The priority of a prefer-
ence can be defined and preferences may have equal priority. IDIOM fulfils all
fixed constraints and as many preferences as possible using the following heurist-
ics :
— A preference that conflicts with fixed constraints is deactivated
— If two preferences with different priorities conflict, the higher priority pref-
erence is activated
— If two preferences with the same priority conflict, IDIOM activates the pref-
erence which conflicts with fewer lower priority preferences
— IDIOM re-activates preferences whenever possible

Preferences are divided into groups of equal priority and activated in order of
importance. For example, six preferences are divided into three groups according
to priority. The most important group g; contains p1, p2 and p3, the second group
g2 contains p4 and ps and the least important group g3 contains pg.

The activation of preferences starts with none activated; as many preferences
as possible are activated in the first group through checking feasibility with all
fixed constraints. This is performed incrementally for each preference. Several
feasible combinations of preferences may have the maximum number of prefer-
ences activated and therefore these are stored into a list of solutions. In this ex-
ample, two preferences out of g; can be activated and the following combinations
are possible: {p;, p3} and {p2, p3}. Then L, the list of solutions after treatment of

a1, is:
L = ({p1,p3},{p2,p3})
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The activation of preferences then sequentially considers all entries in the list with
additions from g2, and stores all combinations which have the maximum num-
ber of preferences activated. Thus the combination {p1,p3} is considered first
and IDIOM finds that only p4 can be added. Then preference activation treats the
combination {p2, p3} and finds for instance, that only ps can be activated together
with this second combination. Thus two solutions are found and a new list is cre-
ated :

L= ({pl,P3,P4}, {P2,P3,P5})

After treating all preference-groups in this manner, preference activation termin-
ates with a list of feasible combinations which contain as many important prefer-
ences as possible. One of these is then used to recalculate the new values of the
design's parameters and for subsequent adaptation. For example the preference in
g3 can be added with the second combination in L, but not with the first combina-
tion. The final list contains one combination of feasible preferences which is used
in further calculations.

L= ({p2,p3,p5)p6})

4. Designer Interaction

Since it is impossible to model everything which influences complex design tasks,
interactive design systems are essential. Interactivity must not be understood to
indicate an absence of reliable computational methods for automating certain tasks.
Users wish to interpret designs and their contexts at intermediate stages and such
input is essential for successful designs. Moreover, this interpretation is what de-
signers enjoy doing best and because of this, they will never use a system which
does not allow for such interaction.

When constructing intelligent design systems, the following three decisions
must be taken:

— How much of the design task will be completely automated ?

— What tasks will be supported through interaction between the system and the
designer ?

— When will users be required to perform tasks independent of computer sup-
port ?

No two systems propose the same answers to these questions. Our goal is to de-
velop conditions where designers feel encouraged to explore the space of feas-
ible design solutions. Support for design exploration is an essential element of
intelligent design support (Gero and Kazakov, 1996; Logan and Smithers, 1993;
Maher and Poon, 1995; Navinchandra, 1991). In our work, constraints are viewed
as useful representations of the boundaries of possible design spaces. Since it is
impossible to model all design knowledge, these constraints cannot sufficiently
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Figure 5. Examples of primitive topologies. These topologies form the basis for neighbourhood
relationships.

define what is feasible — instead they are a partial description of what is not feas-
ible. User interpretation is employed to refine the definition of design spaces for
particular contexts.

IDIOM supports interaction with designers in the following ways :

— User interpretation
— Active design support
— Design critiquing

The next three subsections describe these aspects in more detail.

4.1. USER INTERPRETATION

A designer can interpret a given design, or a group of objects by activating mod-
els. This is done by choosing the desired model from a pull-down menu. For ex-
ample, if the designer wishes to have a luxury apartment by introducing the rel-
evant model, the minimum amount of space required for certain objects in the
apartment would increase.

The designer may define neighbourhood relationships between two rooms and
cause the design to change. A neighbourhood relationship can be specified for
each pair of adjoining objects and is done so according to primitive topologies, as
in Figure 5. These relationships are declared, changed and removed by choosing
two objects consecutively with the mouse. The choice of neighbourhood relation-
ship may affect the size and shape of both of the two adjoining objects. The most
direct method of user interpretation is constraint posting. This is done by double
clicking on an object which produces a dialog box containing the current values of
the object. The designer posts constraints into the box. The constraints that can be
fixed for each object are specifications such as minimum width and length, fixed
and therefore absolute, width and length and fixed minimum area. Preferences are
posted similarly and are given a priority. In this way, the designer can specify that
the minimum area of a dining room is more important than the preferred size of
a single bedroom. The designer can weaken and strengthen priorities as required
by reorganizing their order in a dialog box. For example, if the user decides that
amongst the preferences given in Section 3.4, group g» is more important than gy,
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Figure 6. The double arrow indicates the range of permitted adaptation

the list of feasible preference sets becomes :

L= ({P1>P4,P5}, {p2’p4’p5})

The list, L is determined because p4 and py are activated together (being the most
important and not in mutual conflict), p3 and pg are in conflict with p4 and ps and
only one of p; and ps is compatible at a time. Since L is now different from the
solution given in Section 3.4, a new design space is available for exploration.

4.2. ACTIVE DESIGN SUPPORT

Active design support is most apparent in the displaying of arrows to indicate
how far a given wall, window or piece of furniture can be moved. The element is
clicked on with the mouse, an arrow appears indicating the permitted range and,
the element is moved using the mouse. Figure 6 shows an arrow whose length was
calculated through consideration of the site boundary and the position of the bed
in the room.

Arrows were also used in Dave et al. (1994). IDIOM reuses the idea of arrows
but extends them to deal with elements as well as walls in a design.

Active support is also provided in the form of hints. These hints give advice
mainly on topology. For example, it may be suggested that the user puts the living
room on the south side of the building, or placing the bathroom in the night zone
of the apartment. These hints can be toggled on and off as requested. If hints have
been provided and then not followed, then the system will notify the user in terms
of critiquing.

4.3. DESIGN CRITIQUING

Design critiquing is a well established form of user interaction (Stolz, 1994). Users
are advised of non-critical inconsistencies in their design. Critiques are provided
immediately after the user has declared a neighbourhood relationship that pre-
cludes compliance with a hint provided prior to this declaration. Currently, hints
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and critiques are available in a dialog box that can be turned on and off by the
user.

5. Implementation and Design Scenario

IDIOM is implemented in C and C++ with OpenGL and Motif as the user in-
terface platform. The following is an example of a possible design scenario using
the system (each step performed by the user):

1. Define the dimensions of the site where the layout must be placed
2. Choose a case from the case browser and place it into the site. At this point,
constraints contained in the case and those activated by models are added to
the constraint set
3. Define neighbourhood relationships with adjacent objects. This action auto-
matically adds more constraints to the constraint set
. Where needed, post additional constraints
. Request solution. Here the system calculates the feasible solution space through
conflict resolution with preferences and dimensionality reduction and selects
a solution that involves minimal changes to the case and to the current design
6. Interactively adapt positions of walls, furniture, windows and doors to obtain
configuration required
7. Return to step two

[ N

The screens shown in Figure 7 refer to step 2 on the left and step 5 on the right.
On the left, a double bedroom is being added to the design. After user interpret-
ation, in this case specifying that the hall should share the length of the right
wall through declaration of a neighbourhood relationship, the solution proposed
is shown on the right. Note that the vertical dimensions of both the hall and the
bedroom have changed.

Once a solution is proposed, the user may wish to change positions of walls
and elements within objects. This is carried out through clicking on a wall or ele-
ment. The results of the dimensionality reduction are used to calculate the range
of adaptation possible, as described in Section 3. The screens in Figure 8 show
that moving a wall may change other dimensions that are linked in the paramet-
erization. Here, the living room has been constrained to have the same length to
width ratio, the bathroom dimensions have been fixed and the kitchen wall is re-
quired to share the whole right wall of the living room. Therefore, moving the
living room wall results in a reduction in size of the single room at the top.

6. Testing and Validation

Testing with architects has produced mixed reactions. More traditional architects
who are used to working within well defined schemas and grids find that IDIOM
does not reflect what they do and therefore, the system provides little support. In
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Figure 7. Adding a case to a design (left) and solution proposed after user interpretation and res-
olution with relevant constraints (right).

Figure 8. The figure illustrates Step 6, interactive adaptation. The user clicks on the right wall
of the living/dining room (left) and drags it to the desired position (right). Note the changes to
dimensions of the single room at the top.

contrast, other architects have found that IDIOM provides them with an oppor-
tunity to get away from traditional methods, thus allowing them to explore new
architectural approaches.

The following comments are a sample of those which have been made by de-
signers after becoming acquainted with the system :
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“I prefer to compose building parts for my particular problem rather than ad-
apt existing configurations such as complete layout designs.”

“Automatic layout generation systems are not very attractive. I want to introduce
constraints as the layout is composed.”

“Grids are too restrictive when initial layouts are being examined.”

“Use of models are interesting provided that non-essential models can be turned
on and off.”

“Preferences play an important role in our decision making. Support for pref-
erence management is helpful”

“Rational management of dimensions seems to be the biggest advantage of IDIOM.”

“Neighbourhood relationships between objects need to be made more visual. Ad-
aptation was occasionally blocked because we had overlooked a restrictive con-
dition on topology.”

“Sometimes we got stuck when there was no feasible solution.”

The first two comments provide support for an important starting assumption we
have made: that designers do not want automatic layout generation. The third
comment suggests that computation needs to be carried out in terms of continu-
ous variables rather than working with discrete grids. In general, these comments
have encouraged us to continue development of IDIOM and have helped fix pri-
orities for further work.

Limitations The dimensional parameterization described is currently limited to
rectangular spaces and elements. Only values for continuous variables are manip-
ulated in IDIOM. Complex non-linear constraints slow the system down to the
point where interactive design becomes difficult. For interactive use, constraints
are formulated to be as close as possible to linear relationships. The current imple-
mentation of IDIOM allows for linear and simple non-linear constraints, such as
those applied to areas of objects. When no solution can be found, the system cur-
rently provides little help identifying constraints that when modified, would lead
to solution. This task is far from trivial and is doubtful that a general approach
will be found. Nevertheless, some support should be possible under certain con-
ditions. Our current work is focused on addressing these issues and on improving
user interaction.
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7. Related Work

The system most closely related to IDIOM is CADRE (Dave et al., 1994; Hua,
1994; Hua et al., 1992). Similarities include i) the use of dimensionality reduc-
tion and run-time parameterization to simplify adaptation and ii) certain aspects
of user interaction, such as the use of arrows for defining feasible modifications.
IDIOM differs from CADRE in the following ways: i) IDIOM employs intelligent
objects to compose topological configurations where the CADRE implementation
combines predefined configurations, ii) IDIOM accommodates preference con-
straints whereas in CADRE, all constraints are fixed, iii) in IDIOM, elements
within spaces, such as furniture, doors and windows are included in the paramet-
erization whereas in CADRE, only spaces and structural elements are included,
iv) as explained in Section 3, IDIOM employs a more reliable algorithm for ac-
commodation of inequalities during case combination, v) IDIOM employs expli-
citly defined domain models that are activated by the user whereas in CADRE do-
main knowledge was loaded into the system at the beginning and finally, vi) the
opportunities for interactivity in IDIOM correspond more closely to the needs of
building designers who were interviewed than in CADRE. Perhaps the most im-
portant difference between IDIOM and CADRE is that in IDIOM, the topology is
determined interactively by the user, thereby avoiding difficulties of complexity
experienced with CADRE when generating topologies.
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