Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Figure 1.

Visual examples of speech behaviors that are associated with apraxia of speech in the nonfluent variant (A2, B2) rather than the logopenic variant (A1, B1).

In A1 and A2, the blue vertical lines mark the boundaries of the 2 vowels used to measure lexical stress. In B1 and B2, the black line shows vocal intensity (i.e. loudness) and the blue line fundamental frequency (i.e. vocal pitch, uncorrected) during speech; The intensity contour falls and the pitch contour breaks when the voice is silent during unvoiced sounds (e.g. ‘t’, ‘f’) or during pauses in speech. A1: Normal speech rate and lexical stress on polysyllabic words (here, the first ‘a’ vowel in ‘banana’ is very brief and much shorter than the second vowel) and no phonetic distortions; Total sample length 900 msec. A2: Slow speech rate, equal lexical stress on polysyllabic words (here, the two ‘a’ vowels in banana are of similar and longer duration, giving the perception of equal stress), and phonetic distortion on the final ‘n’ (closure of the velopharyngeal port is mistimed, blocking the nasal airflow before the tongue tip drops away from the palate, creating a sound similar to ‘d’); Total sample length 900 msec. B1: Normal speech rate and smooth transitions between syllables; Total sample length 1500 msec, 7 syllables. B2: Slowed speech rate and syllable segregation (here, the transitions between ‘-bout’ and ‘my’ and between ‘my’ and ‘grand’ are longer and more distinct in the nonfluent case), as well as distortion/substitution where the ‘f’ sound is perceived as ‘f’ but is momentarily voiced (short segment of blue line) similar to a ‘v’; Total sample length 1500 msec, 5 syllables.

More »

Figure 1 Expand

Table 1.

Summary characteristics of logopenic and nonfluent variants of Primary Progressive Aphasia (see text for references). Visual examples of speech behaviors associated with apraxia of speech in the nonfluent variant are provided in Figure 1.

More »

Table 1 Expand

Table 2.

Demographic and formal testing data presented for logopenic and nonfluent variant Primary Progressive Aphasia groups and healthy controls with statistical comparisons between the logopenic and nonfluent variant groups for continuous variable reported.

More »

Table 2 Expand

Table 3.

Comparison between healthy controls and individuals with logopenic (lvPPA) or nonfluent variant (nfvPPA) Primary Progressive Aphasia on acoustic measures of speech.

More »

Table 3 Expand

Table 4.

Results of multivariate discriminant function analyses with aphasia variant as the dependent variable.

More »

Table 4 Expand

Figure 2.

Pairwise variability of vowel duration as a function of proportion of silence time.

The relationship between median Pairwise Variability Index for vowel duration in weak-strong polysyllabic words (PVI_Duration_WS) and proportion of silence time in reading is shown for patients with logopenic variant (lvPPA) and nonfluent variant (nfvPPA) Primary Progressive Aphasia and healthy age-matched adults. For PVI_Duration_WS, smaller values represent more equal stress across the first two syllables of words. Grey squares mark the 7 of 41 patient cases misidentified by the discriminant function Model 1 (lvPPA cases 6 and 7, nfvPPA cases 23, 26, 27, 28, and 37). PiB+ marks the three nfvPPA patients with contradictory positive findings on Pittsburgh compound B scanning, indicative of Alzheimer pathology and more commonly associated with the logopenic variant. Control participants were not included in the discriminant function analysis but are shown here for comparison.

More »

Figure 2 Expand

Figure 3.

Pairwise variability of vowel duration as a function of variability of silence duration.

The relationship between median Pairwise Variability Index for vowel duration in weak-strong polysyllabic words (PVI_Duration_WS) and variability of silence duration in reading is shown for patients with logopenic variant (lvPPA) and nonfluent variant (nfvPPA) Primary Progressive Aphasia and healthy age-matched adults. For PVI_Duration_WS, smaller values represent more equal stress across the first two syllables of words. Grey squares mark the 7 of 41 patient cases misidentified by the discriminant function Model 1 (lvPPA cases 6 and 7, nfvPPA cases 23, 26, 27, 28, and 37). PiB+ marks the three nfvPPA patients with contradictory positive findings on Pittsburgh compound B scanning, indicative of Alzheimer pathology and more commonly associated with the logopenic variant. Control participants were not included in the discriminant function analysis but are shown here for comparison.

More »

Figure 3 Expand

Figure 4.

Pairwise Variability of vowel duration in weak-strong versus strong-weak polsyllable words.

The relationship between median Pairwise Variability Index for vowel duration in weak-strong and strong-weak polysyllabic words (PVI_Duration_WS, PVI_Duration_SW, respectively) for individuals with logopenic variant (lvPPA) and nonfluent variant (nfvPPA) Primary Progressive Aphasia and healthy age-matched adults. Smaller values represent more equal stress (i.e. more similar duration) across the first two syllables of words. Consistent with this, individuals with PVI_Duration_WS less than about 110 and PVI_Duration_SW less than about 80 are confidently diagnosed as nfvPPA by the model. Grey boxes indicate 6 patient cases misclassified in a discriminant function analysis (lvPPA case 6, nfvPPA cases 23, 26, 28 labeled in previous figures, and nfvPPA cases 35 and 41 being the two cases with PVI_Duration_SW values between 80 and 100). The three nfvPPA patients with contradictory positive findings on Pittsburgh compound B scanning were excluded from the analysis and are not shown here. Control participants were not included in the discriminant function analysis but are shown here for comparison.

More »

Figure 4 Expand

Figure 5.

Brain regions in which grey matter intensity correlates significantly with a composite measure of relative vowel duration in words.

A composite measure of pairwise variability for vowel duration in weak-strong and strong-weak polysyllable words was generated for each participant using weights from the discriminant function Model 2. Voxel-based morphometry analyses using diagnostic category (pooled PPA cohort and healthy control group) as a nuisance variable show that the index significantly covaried with atrophy in precentral gyrus, supplementary motor area and inferior frontal gyrus bilaterally. Bilateral atrophy in these areas was detected in the nonfluent variant of primary progressive aphasia but not the logopenic variant. Coloured voxels show regions that were significant in the analysis at P<0.05 FDR corrected. Clusters are overlaid on the MNI standard brain and reported at t>2.41.

More »

Figure 5 Expand

Table 5.

Clusters (>100 voxels) correlating with the Silence+Duration and Duration Indices generated from discriminant function analysis Models 1 and 2, respectively, including control participants and Primary Progressive Aphasia participants with MRI scans.

More »

Table 5 Expand