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We present a study that combines polarized and unpolarized neutrons to derive the magnetic structure of the
swedenborgite compound CaBa(Co3Fe)O7. Integrated intensities from a standard neutron diffraction experiment
and polarization matrices from spherical neutron polarimetry have been simultaneously analyzed revealing a
complex order, which differs from the usual spin configurations on a kagome lattice. We find that the magnetic
structure is well described by a combination of two one-dimensional representations corresponding to the magnetic
superspace symmetry P 2′

1, and it consists of spins rotating around an axis close to the [110] direction. Due to
the propagation vector q = ( 1

3 00), this modulation has cycloidal and helicoidal character rendering this system

a potential multiferroic. The resulting spin configuration can be mapped onto the classical
√

3 × √
3 structure

of a kagome lattice, and it indicates an important interplay between the kagome and the triangular layers of the
crystal structure.
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I. INTRODUCTION

Geometric frustration is a fundamental reason for not
having a long-range ordered magnetic ground state. Antifer-
romagnetic lattices of vertex-sharing triangles, e.g., kagome
layers or pyrochlore nets, are rarely found in real materi-
als but are perfect examples of magnetic frustration. The
magnetic swedenborgites, i.e., structural homologues to the
hexagonal mineral SbNaBe4O7 (Refs. [1,2]), contain kagome
layers and have been subject to recent investigations due to
their diverse magnetic properties, e.g., chiral spin liquids in
Y0.5Ca0.5BaCo4O7 (Refs. [3,4]) and YBa(Co3Fe)O7 (Ref. [5])
spin-glasses in YBa(Co4−xZnx)O7 (x = 0–3) (Refs. [6,7])
and long-range antiferromagnetic order in CaBa(Co2Fe2)O7

(Ref. [8]). By slight structural distortions away from the
hexagonal symmetry, the geometrical frustration is released.
However, as a consequence, there are several different, sim-
ilarly strong, competing spin interactions, and the resulting
ground state is sensitive to the nature of each type of struc-
tural distortion. For example, the orthorhombic distortion in
CaBaCo4O7 results in a ferrimagnetic-like ground state [9,10],
while a different orthorhombic distortion in YbBaCo4O7+δ

allows for an antiferromagnetic state to evolve [11]. In previous
reports, CaBa(Co3Fe)O7 was stated to have a hexagonal crystal
structure, as based on x-ray diffraction data [12]. Later, a
long-range magnetic order was observed, but the spin structure
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could not be solved from the obtained data [13], and the reason
for the release of geometric frustration was not obvious. As the
spins are Heisenberg-like, a Néel order is not expected unless
a significant magnetic coupling between the kagome layers
is at hand. Thus, the position between the planes, denoted
M1 in Fig. 1, plays an important role for the appearance of
long-range magnetic order. Fe carries a large moment and could
easily, at the M1 site, mediate the spin-to-spin interactions
between the layers, resulting in a three-dimensional (3D) spin
system. Here, neutron diffraction analyses were performed
on CaBa(Co3Fe)O7, revealing the structural distortion from
hexagonal symmetry and enabling a determination of its spin-
ordered antiferromagnetic ground state.

II. EXPERIMENT

Powder samples were obtained through a solid-state reac-
tion between stoichiometric amounts of analytic grade CaCO3,
BaCO3, Co3O4, and Fe2O3 in a corundum crucible. The
mixture was heated in air twice at 1100 ◦C with intermediate
grinding to ensure sample homogeneity. To obtain an oxygen
stoichiometric sample, the second heat step ended with a
quenching of the sample from 900 ◦C by removing the sample
from the furnace. As possible oxygen uptakes are reported at
temperatures 200–850 ◦C in air for YBaCo4O7+δ (Ref. [14]),
this quenching prevents oxygen absorption and the sample
is thus estimated to have 7.00(5) oxygen per formula unit.
A relatively large single crystal was mechanically removed
from a sample that was rapidly heated to 1200 ◦C with a
subsequent cooling at an approximate rate of 5 ◦C/min. Judging
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FIG. 1. Visualization of the crystal structure of CaBa(Co3Fe)O7

consisting of triangular M1 sites (dark blue) and kagome M2 sites
(light blue), where the latter form the kagome planes within the a-b
plane.

from the crystal’s dendritic morphology and pointy end, a
self-flux mediation with spontaneous nucleation is assumed
to be the growth mechanism. The use of a corundum crucible
seems important, as several crystals grew directly on its walls.
However, by elemental analysis (EDX in a Philips scanning
electron microscope), Al was not detected in crystals or pow-
ders. All magnetic measurements were done with a vibrating
sample magnetometer (VSM, 40 Hz, 2 mm) in a physical
property measurement system (PPMS, Quantum Design). For
the temperature-dependent measurement, 1 T was applied.
Subsequent magnetizations at chosen temperatures were done
in fields up to 14 T. Electric resistivity was measured on a
regularly shaped, sintered, polycrystalline piece by the four-
contact technique. The gold contacts were attached with silver
glue and the sample with holder was slowly cooled by lowering
it into a dewar with liquid helium. The sample temperature,
as measured by a thermocouple next to the sample, was
continuously recorded as a function of resistivity using an
in-house setup. Powder neutron diffraction data were obtained
at SPODI [15] (FRM II, Munich, Germany) using a constant
wavelength of 2.537 Å. About 20 g of sample powder was
placed in a sample holder of vanadium, and the cryostat walls
were all of aluminum. Helium was used as a cooling agent in a
top-loading closed-cycle refrigerator from Vericold. Neutron
powder diffraction with polarization analysis was performed
at the DNS instrument [16] (FRM II, Munich, Germany).
Polarized neutrons with a wavelength of 4.75 Å were applied
with polarization analysis to separate the magnetic scattering
from the nuclear contribution. Temperatures from 1.2 K up to
300 K were used and controlled by a steady flow of He. The
neutron single-crystal diffraction experiment was carried out
at the D15 diffractometer (ILL, Grenoble) in the four-circle
geometry. A wavelength of 1.17 Å was used from the (331)
reflection of the Cu monochromator. All integrated intensities
were corrected for absorption applying the transmission fac-
tor integral exp[−μ(τin + τout)] by using subroutines of the
CAMBRIDGE CRYSTALLOGRAPHIC SUBROUTINE LIBRARY [17]
[τin and τout represent the path lengths of the beam inside

FIG. 2. Magnetic susceptibility measurements in a field of 1 T on
single crystalline CaBa(Co3Fe)O7 plotted against temperature. The
field-cooled (FC) and zero-field-cooled (ZFC) measurements as well
as the direction of the external field in relation to the crystallographic
c axis are marked and also presented in different colors. The high-
temperature data were only obtained for H ‖ c in ZFC mode.

the crystal before and after the diffraction process, and μ is
the linear absorption coefficient, which is 0.064 mm−1 for
CaBa(Co3Fe)O7]. Spherical neutron polarimetry (SNP) was
performed on the spin-polarized hot-neutron diffractometer
D3 (ILL, Grenoble), where a monochromatic and polarized
neutron beam of wavelength λ = 0.825 Å was selected by the
(111) reflection of a Cu2MnAl Heusler monochromator. The
CRYOgenic Polarization Analysis Device [18] (CRYOPAD)
was used together with the Cryocradle setup in order not to be
limited to a single scattering plane. The sample was mounted
with the b axis along the vertical axis of the diffractometer
with all Cryocradle angles at zero. The nine entries of the
polarization matrices were recorded by measuring the po-
larization [P = n↑−n↓

n↑+n↓ , with n↑ (n↓) the number of spin-up
(spin-down) neutrons] for an initial neutron polarization along
thex,y, or z axis and by analyzing the final neutron polarization
components after the scattering process along these directions
(the standard local coordination system has been employed,
where x is parallel to the scattering vector Q, z is the vertical
direction of the diffractometer, and y completes the right-
handed coordination system). The final neutron polarization
was analyzed using a 3He spin filter, whose efficiency was
tested regularly by measuring the Pzz element of a nuclear
Bragg reflection. The observed data were corrected for the
time-dependent spin filter efficiency, and the initial neutron
polarization of p0 = 0.935 was taken into account for all
calculations.

III. RESULTS AND DISCUSSION

A. Macroscopic properties

The temperature dependence of the magnetic susceptibility,
χ (T ), of the title phase between 400 and 600 K might be
mistaken for paramagnetic behavior, but a simple Curie-Weiss
fit (dashed lines in Fig. 2) reveals a very negative Weiss
temperature (θCW = −4.3 × 103 K), and a far too high moment
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FIG. 3. Electronic resistivity of a sintered CaBa(Co3Fe)O7 poly-
crystalline sample as a function of temperature. The inset displays an
Arrhenius plot with a fit function to extract the activation gap.

per magnetic ion (9.3μB) was obtained, where 4.4μB is
expected for the mean of involved high-spin ions. Even an
approximation with a refined constant (χ0) does not give a
physically meaningful paramagnetic behavior: χ0 is positive
and relatively large and infers a strong van Vleck contribution
of excited spin states and/or Pauli paramagnetism from con-
ducting electrons, of which both are highly unlikely. However,
θCW and the magnetic moment per ion are relatively smaller
and reasonable. Yet, the Weiss constant (θCW = −1.4 × 103 K)
suggests that extremely strong antiferromagnetic spin-spin
interactions occur and that it is necessary to measure at higher
temperatures to reach truly paramagnetic behavior. Close to
TN = 140 K there is a kink in all curves that implies an
antiferromagnetic ordering. Below TN , a minor anisotropy in
χ (T ) is seen that could be explained if the mean spin ordering
orientation is perpendicular to the c axis, becauseH ⊥ c curves
are found below H ‖ c curves. For a zero-field-cooled (ZFC)
sample, a slight kink can be observed in the H ‖ c data around
65 K, which might originate from a subtle spin reorientation
transition. The title compound exhibits typical semiconducting
behavior (Fig. 3). The estimated electron conduction activation
is about 0.5 eV, which corresponds to the lowest possible band
gap: the optical band gap could be significantly larger, and the
observed value is then a result of electron hopping between
impurity states. The low electron conduction removes Pauli
paramagnetism as an explanation for the unusually large χ0 in
the fitted, modified Curie-Weiss approximation, but it suggests
strong electron correlations and supports the observation of
localized magnetic moments.

B. Nuclear structure

Due to the absence of magnetic scattering on integer
positions in reciprocal space (derived from powder neutron
experiments, see Fig. 4, and from SNP on reflections with

FIG. 4. Powder neutron diffraction data at 300 K (red) and 3 K
(blue). The arrows mark the magnetic peaks that could be indexed with
a propagation vector q = (1/300). No additional magnetic scattering
can be found on the integer Bragg peaks. The inset shows a reciprocal
space scan along the a∗ direction recorded using a single crystal.

integer indices, see Sec. III C), the nuclear structure has been
investigated within the magnetic phase, at 10 K, by collecting a
set of 1472 integer (hkl) reflections (473 unique) from a single-
crystal sample corresponding to the Pbn21 space group. The
structural data have been analyzed using the FULLPROF [19]
program by refining the positions and the isotropic temperature
factor of all species as well as the Co/Fe ratio of the involved
sites. Extinction effects were corrected by an empirical ShelX-
like model implemented in FULLPROF. Due to the large number
of free parameters—resulting from 13 atomic sites without
symmetry restrictions concerning the atomic positions—the
isotropic temperature factors have been constrained to the same
value for Ca/Ba, for Co/Fe on all sites, for O2/O3/O4 (oxygen
solely connecting M2 ions), and for O5/O6/O7 (oxygen ions
connecting M1 with M2 positions situated above M1). The
results are in agreement with the swedenborgite structure and
are shown in Table I. The lattice constants obtained from the
powder measurement are a = 6.3145(1) Å, b = 11.0054(1) Å,
and c = 10.2194(1) Å, which corresponds to a distortion from
the hexagonal lattice by less than 0.2◦. The temperature factor
of O1 is smaller with respect to the other oxygen sites, as one
would expect as O1 is shared by three MO4 tetrahedra. The Fe
ions preferably occupy the triangular M1 site, while the overall
Co:Fe ratio averaged over the four sites is 2.92(4):1.08(4),
which is in fair agreement with the nominal stoichiometry
of 3:1. Note that the Co:Fe ratio was constrained to the
same value for the sites within the kagome layer. We have
considered the possibility of a twinned sample due to the fact
that the high-temperature phase might be hexagonal, which
would result in three 120◦ twins. Indeed, the χ2 value could
be reduced from 6.1 to 3.2 by refining the populations of
those three twins resulting in a nearly equal distribution (see
Table I). It has to be noted that a similar agreement can be
achieved by supposing only two twins, since from the three
possible reflections contributing to one observation, two are
equivalent in the orthorhombic setting for a big part of the
strong reflections [e.g., (260), (26̄0), and (4̄00)]. In that case,
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TABLE I. Refined nuclear structure parameters within the Pbn21 space group at 10 K (RF = 9.6, χ 2 = 3.2). The only Wyckoff site in this
space group is the general 4a site. The twin populations refer to the identity twin and the ones related by the rotation axes 31 and 32, respectively.
The extinction parameters xii are the diagonal entries of a tensor used to calculate the extinction factor.

Atom x y z B (Å
2
) occ.

Ca −0.011(3) 0.667(1) 0.873(3) 0.1(1) 1
Ba −0.014(3) 0.667(1) 0.500(3) 0.1(1) 1
Co1/Fe1 −0.003(4) 0.001(1) 0.937(2) 0.03(8) 0.49(2):0.51(2)
Co2/Fe2 −0.015(2) 0.169(1) 0.686(3) 0.03(8) 0.81(1):0.19(1)
Co3/Fe3 0.243(2) 0.085(2) 0.1884(4) 0.03(8) 0.81(1):0.19(1)
Co4/Fe4 0.264(2) 0.919(2) 0.678(2) 0.03(8) 0.81(1):0.19(1)
O1 −0.007(1) 0.003(1) 0.254(2) 0.4(1) 1
O2 −0.0013(7) 0.491(1) 0.223(2) 0.96(8) 1
O3 0.767(2) 0.253(25) 0.763(3) 0.96(8) 1
O4 0.735(2) 0.758(1) 0.214(3) 0.96(8) 1
O5 0.050(1) 0.153(1) 0.499(3) 0.82(8) 1
O6 0.207(1) 0.105(1) −0.003(3) 0.82(8) 1
O7 0.261(1) 0.950(1) 0.499(3) 0.82(8) 1

Twin populations: 0.373(3), 0.302(3), 0.325(3)
Extinction parameters: x11 = 0.002(2), x22 = 0.000(1), x33 = 0.0033(7)

the population of the two twins was found to be in the ratio
1:2, as one would expect.

C. Magnetic structure

Short-range magnetic order is obvious already far above the
observed Néel temperature (TN = 140 K): Already at 200 K,
significant diffuse magnetic neutron scattering is observed

close to Q = 1.35 Å
−1

(Fig. 5), which turns into resolution-
limited long-range order below 135 K, agreeing with the
antiferromagnetic ordering temperature obtained by specific
heat [13] and magnetic susceptibility (Fig. 2).
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FIG. 5. Magnetic diffuse neutron scattering data on
CaBa(Co3Fe)O7 powder as a function of Q = 2/d (d is the
interlayer spacing). The curves are plotted in different colors,
depending on temperature, as indicated in the graph, and the intensity
is directly proportional to the squared scattering factor. Each data set
below 300 K is offset by 0.25 b sr−1 f.u.−1 with respect to the next
higher temperature step. The 1.2 K data are taken from Ref. [13].

The magnetic structure has been investigated at 10 K on
the D15 diffractometer. A reciprocal space scan across the
strong magnetic (102)-q Bragg reflection along the a∗ direction
confirms the propagation vector q = ( 1

3 00). A total of 431
integrated intensities from magnetic Bragg reflections were
collected in P 1 symmetry on (hkl)±q positions in reciprocal
space. Symmetry-adapted spin configurations were derived
using the BASIREPS program yielding the basis vectors ψn

of the irreducible representations �n shown in Table II. The
little group only contains two symmetry operators that are
compatible with q for which each of the four magnetic M sites
splits into two orbits, which are—in principle—symmetry-
independent. This leads to two one-dimensional irreducible
representations, which can be combined in phase quadrature to
a two-dimensional one. Unfortunately, magnetic models with
only in-plane components agree poorly with the observations
(RF > 30). The resulting magnetic structure models consist
of cycloidally modulated spins in the kagome layers and
amplitude-modulated spins on the triangular site, where the
direction of the latter is along the a axis for ψ1 and along the b

TABLE II. Basis vectors ψn of the irreducible representations �1

and �2 and the mixed representation �1 + �2 for the magnetic sites
at given fractional coordinates (x,y,z) associated with a propagation
vector q = ( 1

3 ,0,0) and a phase shift a = exp(iπ/3). The components
u, v, and w connected to the spin S

p,r

�n
have been refined according

to their constraints (an overline indicates a negative number). All
components may be complex.

Site p Atom r (x,y,z) ψ1 ψ2 ψ1 + ψ2

4a 1

⎛
⎝

x

y

z

⎞
⎠

⎛
⎝

u

v

w

⎞
⎠

⎛
⎝

u

v

w

⎞
⎠

⎛
⎝

u1 + iu2

v1 + iv2

w1 + iw2

⎞
⎠

2

⎛
⎝

x + 1/2

y + 1/2

z + 1/2

⎞
⎠ a

⎛
⎝

u

v

w

⎞
⎠ a

⎛
⎝

u

v

w

⎞
⎠ a

⎛
⎝

u1 + iu2

v1 + iv2

w1 + iw2

⎞
⎠
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axis for ψ2. Given the ambiguity in our results, we decided to
investigate the same single crystal using polarized neutrons. In
addition to the general law in magnetic neutron scattering that
only the perpendicular component of the magnetic structure
factor (the magnetic interaction vector M⊥) contributes to
magnetic scattering, neutrons with their polarization axis
parallel to M⊥ will undergo a non-spin-flip (NSF) scattering
process, while neutrons with polarization perpendicular to M⊥
will be scattered with a spin-flip (SF). In chiral magnetic
structures where the Fourier coefficients of the magnetic
moments are imaginary and the real and imaginary parts are
perpendicular to each other, chiral scattering can occur. This
scattering is polarization-dependent and will create additional
polarization along the scattering vector Q and can therefore be
revealed by analyzing the final neutron polarization along the x
direction. As the magnetic Bragg peaks are found as satellites
around the nuclear Bragg peaks, we can ignore the nuclear-
magnetic interference scattering and its effect on the neutron
polarization. However, it has to be taken into account that, if
the magnetic subgroup is of order n while the paramagnetic
group is of order m, m/n magnetic domains (configurational
domains) can be observed. In the present case, the order of the
paramagnetic space group Pbn21 is 4 while the little group is of
order 2. However, both symmetry operators that are lost in the
transition—the twofold screw axis 2z and the b glide plane in
the y-z plane—transform +q into −q, which does not result
in configurational domains. If the magnetic structure cannot
be described by a magnetic space group that is congruent to
the one describing the configurational symmetry, then further
orientational domains may be present. The orientation of those
domains, i.e., their respective M⊥, with respect to the initial
neutron polarization may lead to depolarization of the beam as
the initial polarization vector will be rotated differently by the
individual magnetic domains. Finally, chirality domains have
to be considered for chiral structures. The nine entries of the
polarization matrix were measured for eight different magnetic
Bragg reflections (note that we have verified the absence of
q = 0 magnetic scattering by confirming that the polarization
matrices of integer reflections are the identity matrix), from
which we will use (1̄00)-q to illustrate the deducible symmetry
constraints. As can be seen from Table II, the n glide plane leads
to a translation of a/2 along the direction of propagation and
therefore to a phase shift of exp[−iπ (h ± qa∗ )] in the magnetic
structure factor between atom 1 and atom 2 for all (h00)±q
reflections. In addition, the magnetic moment on atom 2 has a
phase shift of a = exp(iπ/3) for +q, while for −q the complex
conjugate has to be employed. Therefore, in order to produce
nonzero components in the magnetic structure factors, the spin
components (uvw) of atom 2 must be antiparallel to those of
atom 1 (before the application of the phase shift a) yielding
magnetic structure factors of the form (u0w) or (0v0) for the
irreducible representations �1 or �2, respectively. Figure 6
illustrates that the magnetic interaction vectors M⊥ will be
parallel to either the local y or the local z axis for �1 or �2,
respectively. In the first case, this would lead to polarization
matrix elements Pyy = −Pzz = 0.935, while for the latter
one obtains Pyy = −Pzz = −0.935 (taking into account the
initial neutron polarization p0 = 0.935 and 100% spin-filter
efficiency). However, this does not agree with the observed
polarization matrix of the (1̄00)-q reflection yielding Pyy =

FIG. 6. Sketch of the magnetic structure factors (M�1, M�2) and
magnetic interaction vectors (M⊥,�1, M⊥,�2) for (h00)±q reflections
(b axis of the sample vertical) and the two different irreducible
representations �1 and �2. Note that for a mixed representation
�1 + �2, the magnetic interaction vector M⊥,�1+�2 lies within the
yz plane.

−0.25(5) and Pzz = 0.32(8) (after correcting for the spin-filter
efficiency). The reduced polarization values in these channels
indicate that SF and NSF scatterings partially compensate each
other and that the magnetic interaction vector needs to have
both a y and a z component, which therefore leads to the
conclusion that a further reduction of symmetry is present.
Consequently, we have employed a combination of the two
irreducible representations (�1 + �2) to analyze the magnetic
structure, where the u and w coefficients transform according
to �1 and the v coefficients according to �2.

Due to the complexity of the magnetic structure, we have
employed a joint refinement of the magnetic structure param-
eters based on the SNP data and the integrated intensities by
minimizing the function

χ2 = wχχ2
int + (1 − wχ )χ2

SNP, (1)

where χ2
int and χ2

SNP are the respective χ2 values of the
integrated intensities and the polarization matrix entries
(MAG2POL, a unique program specially developed for this
task, has been used for this purpose [20]). Due to the large
amount of information contained in a single polarization
matrix (essentially a magnetic structure can be unambiguously
determined from two complete polarization matrices obtained
from two different sample orientations), the weighting factor
wχ was chosen to be 0.2, which reflects the information ratio
4:1 between eight polarization matrices and an integrated
intensity data set. Note that SNP is very sensitive to the
magnetic moment orientation but not to the amplitude, for
which this information is entirely extracted from the integrated
intensities. In a first step, the refined parameters were the real
and imaginary Fourier components together with their phase
shift for the eight different M sites as well as the population of
the four possible magnetic domains (two orientational and two
chiral domains). An average magnetic form factor was used
for each site by taking into account an even mixture between
bivalent and trivalent ions as well as the respective Co:Fe ratio.
The nuclear structure parameters and the twin populations were
fixed, whereas for the latter the no-twin (four magnetic do-
mains in total), the two-twin (eight magnetic domains in total),
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TABLE III. Results of the correlated refinement between the SNP
data and the integrated intensities (χ 2 = 2.0). Atoms 1 and 2 refer to
the triangular and the kagome sublattices, respectively. The atoms
are listed pairwise related by the twofold screw axis 2z, which was
lost in the magnetic phase transition. The actual spin orientation
is obtained by multiplying the phase factor exp(iϕ) by the Fourier
coefficients ψ1 + ψ2. In the two-twins scenario, the populations of the
orientational domains related by the n glide plane (x + 1/2, ȳ + 1/2,
z + 1/2) were refined to 0.27(1) and 0.26(1), while those of the
respective chiral domains are 0.20(1) and 0.27(1). The obtained values
in the three-twins (no-twins) scenario are 0.34(7) [0.258(5)], 0.15(7)
[0.242(5)], 0.01(5) [0.231(4)], and 0.50(7) [0.269(4)], respectively.

Atom Position ψ1 (μB) ψ2 (μB) phase ϕ

1a (0.997, 0.001, 0.937)

⎛
⎝

2.6(1)
0

2.04(6)i

⎞
⎠

⎛
⎝

0
−2.71

0

⎞
⎠ 0

1b (0.003, 0.999, 0.437)

⎛
⎝

2.59
0

2.04i

⎞
⎠

⎛
⎝

0
−2.71

0

⎞
⎠ −2π/3

2a (0.985, 0.169, 0.686)

⎛
⎝

−2.0(1)
0

−1.7(1)i

⎞
⎠

⎛
⎝

0
2.08

0

⎞
⎠ 0

2b (0.015, 0.831, 0.186)

⎛
⎝

−1.98
0

−1.68i

⎞
⎠

⎛
⎝

0
2.08

0

⎞
⎠ −2π/3

2c (0.243, 0.085, 0.188)

⎛
⎝

−1.98
0

−1.68i

⎞
⎠

⎛
⎝

0
2.08

0

⎞
⎠ −2π/3

2d (0.757, 0.915, 0.688)

⎛
⎝

−1.98
0

−1.68i

⎞
⎠

⎛
⎝

0
2.08

0

⎞
⎠ 0

2e (0.264, 0.918, 0.678)

⎛
⎝

−1.98
0

−1.68i

⎞
⎠

⎛
⎝

0
2.08

0

⎞
⎠ −2π/3

2f (0.736, 0.082, 0.178)

⎛
⎝

−1.98
0

−1.68i

⎞
⎠

⎛
⎝

0
2.08

0

⎞
⎠ 0

and the three-twin scenarios (12 magnetic domains in total)
were tested. From the preliminary refinement results, further
symmetry constraints considering the Fourier components of
the different sites as well as their phases could be deduced:
Although the M sites split into two orbits that are related by the
twofold screw axis 2z, the Fourier components of those sites
can be constrained to the same values while the phase shift
between the magnetic moments can be fixed to −2π/3. Note
that this perfectly matches the magnetic superspace symmetry
P 2′

1, which can be obtained from the program ISODISTORT [21]
by mixing the irreducible representations mDT1 (Pbn′2′

1) and
mDT2 (Pb′n2′

1). The magnetic superspace group formalism
allows symmetry constraints between magnetic moments that
are related by a symmetry operator that transforms q into −q
by taking into account the connected phase shift, instead of
disregarding that symmetry operator and splitting the sites into
two orbits, as is the case for standard representation analysis.
It was therefore possible to describe both data sets by varying
only seven parameters of the magnetic structure: a real (uu0)
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FIG. 7. Upper panel: observed (squares) and calculated (trian-
gles) polarization values of polarization matrices of eight magnetic
Bragg peaks. Lower panel: calculated intensities plotted against
observed intensities (RF = 20.7). The calculated values of both
panels result from a simultaneous fit to the SNP data and integrated
intensities (χ 2 = 2.0).

and an imaginary (00w) component for the triangular M1 sites
as well as for the M2 sites with three additional parameters for
the population of the orientational and chiral domains [χ2 =
2.0 (combined), RF = 20.7 (integrated intensities only)]. Note
that the magnetic moment direction is not along the [11̄0]
direction for Fourier coefficients of the type (uū0) due to the
significant difference between the a and b lattice parameters.
The agreement with the experimental data is considerably
worse for magnetic moments along [11̄0]. The best result has
been obtained when constraining the spin component along the
b axis to be 5% larger than that along the a axis. Furthermore,
we obtain a practically even distribution of the four magnetic
domains in the no-twin and two-twin scenarios, which could
be expected due to the chiral terms Pyx and Pzx being close to
zero. However, as a matter of fact, the presence of three twins
removes the sensitivity of the data to the magnetic domain
population, meaning that equally good fits (�χ2 = 0.03) could
be obtained with an even distribution or with the best fit. The
results and symmetry constraints are summarized in Table III
and Fig. 7 for the two-domain scenario, while the magnetic
structure is shown in Fig. 8. Note that the spin configuration is
essentially the same within the error bars for all twin scenarios
tested.
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FIG. 8. (a) Perspective view of the magnetic structure in
CaBa(Co3Fe)O7. Only the magnetic ions on the triangular M1 (dark
blue) and kagome M2 sites (light blue) are shown. The spin rotation
plane is emphasized by ellipses in the respective colors. Bonds
between the two sites are drawn as a guide to the eye. (b) View of one
layer of bipyramids along the c axis emphasizing the spin alignment
into clusters with a collinear antiferromagnetic configuration within
one bipyramid. The (black) solid lines denote the orthorhombic unit
cells, while the (gray) broken lines show the related hexagonal lattice.
(c) View along the c axis of the classical

√
3 × √

3 structure on a
hexagonal kagome layer onto which the magnetic structure in (b)
can be mapped. The (black) solid lines denote the hexagonal unit
cells, while the (gray) broken lines show the related orthorhombic
lattice.
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FIG. 9. Polarization values for a rotation of the initial neutron spin
component within the local y-z plane and analysis of its longitudinal
component after the scattering from the magnetic Bragg reflection
(1̄00)-q (θ denotes the angle between the neutron polarization vector
and the z axis). The solid line shows the calculation based on the
derived magnetic structure.

To further confirm our results, we have carried out a
measurement by rotating the initial neutron polarization vector
within the local y-z plane and analyzing the longitudinal
component after the scattering process at every step. The
resulting 180◦-periodic curves contain valuable information
concerning the spin alignment in the position and in the
amplitude of the maxima and minima. Such a rotation from
the positive y axis over the z toward the negative y axis has
been performed on the (1̄00)-q reflection (see Fig. 9). The
observed data were compared to a calculation based on the
refined parameters from the joint refinement. One can see that
our derived magnetic structure is in excellent agreement with
the experimental data. All four magnetic domains (in either

FIG. 10. Observed [(red) dots] and calculated [(black) solid line]
diffraction patterns at 3 K with the difference curve shown (in blue)
at the bottom. The first row of (green) markers denotes the position
of nuclear Bragg peaks within the Pbn21 space group, while the
second row indicates the positions of magnetic Bragg peaks with the
propagation vector q = (1/300).
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structural twin scenario) reveal the same P -θ curve for which
the respective domain populations were fixed to the values
shown in Table III.

The obtained magnetic structure model was then refined
to the powder data by using the previously determined sym-
metry constraints and varying the coefficients of the basis
vectors. Figure 10 shows the observed nuclear and magnetic
scattering at 3 K and the calculated pattern. The agreement is
fairly good (RF = 5.5, magnetic RF = 9.2) and the resulting
magnetic structure is qualitatively the same as that obtained
from the single-crystal experiments, where the most significant
differences concern the c components of both sites. The
resulting magnetic moments are [2.25(5) −2.36 2.5(1)i] μB

and [−2.18(3) 2.29 −1.25(9)i] for the M1 and M2 sites,
respectively.

IV. CONCLUSION

We have presented an extensive study combining heat
capacity, susceptibility, powder neutron diffraction, and single-
crystal neutron diffraction experiments. For the latter, we have
employed a simultaneous analysis of integrated intensities
and spherical polarimetry data by refining a global magnetic
structure model in a least-squares refinement to both data sets.
This allowed us to reveal the complex magnetic structure
of the CaBa(Co3Fe)O7 compound, which is different from
other members in the swedenborgite family as well as from
theoretical predictions. Nevertheless, it is closely related to the
classical

√
3 × √

3 structure on a kagome lattice and in fact can
be mapped to that. For hexagonal swedenborgite compounds, a
combination of analytical considerations and classical Monte
Carlo methods suggests a collinear in-plane spin alignment
within a bipyramidal cluster, which, together with the hexag-
onal symmetry, leads to a 120◦ in-plane alignment for M2
spins in triangles shared by three bipyramids [22,23]. On the
other hand, for CaBaCo4O7, which reveals a gigantic magnetic-
field-induced polarization and magnetoelectric coupling [9],
the triangular spin configuration has been observed within
the bipyramids, moreover with a finite c component [10]. In
the orthorhombic compound YBaCo4O7, a q = 0 magnetic
structure was reported revealing antiferromagnetically coupled
M1 spins in the a-b plane and a complex order within the
kagome layer [24]. The latter reveals a significant c compo-
nent, while the in-plane components are reminiscent of the
triangular 120◦ configuration. For the presented compound,
which features a commensurate propagation vector q = ( 1

3 00),
typical triangular spin configurations within the kagome pat-
tern in the a-b plane do not explain the experimental data
satisfactorily. A careful analysis of the polarization matrices
for special magnetic Bragg reflections clearly indicates that the
magnetic structure cannot be described by a single irreducible
representation of the paramagnetic Pbn21 space group. Within
the Landau theory, the combination of two representations
is only allowed for a successive condensation of two order
parameters. Indeed, the obtained magnetic space group P 2′

1 is
not a maximal subgroup of Pbn21 but is obtained by either of
the intermediate space groupsPb′n2′

1 or Pbn′2′
1. An indication

for two magnetic phase transitions might be present in our
susceptibility data (Fig. 2), where a small kink is observable
in the ZFC curve with H ‖ c at a temperature well below

TN . However, there is no indication of a phase transition
at that temperature in the heat-capacity data. Therefore, the
only plausible explanation is the presence of two successive
magnetic phase transitions in a very narrow temperature range
below TN unresolved by the heat capacity measurements [13].
The mixing of irreducible representations �1 and �2 breaks the
n glide plane, and interestingly, it leads to a collinear alignment
of spins within one chain of bipyramids along the c axis.
From the resulting spin configuration between neighboring
M1 and M2 sites, one can draw important conclusions about
the coupling between the triangular and the kagome layers
that are decisive for the three-dimensional ordering in the
swedenborgite compounds. One can see in Fig. 8(a) that all
spins of one bipyramidal chain along the c axis are collinear,
with the spins within the triangular plane being antiparallel
to those in the kagome plane. As the bond lengths between
M1-M2 nearest neighbors and M2-M2 nearest neighbors are
comparable, the resulting magnetic structure is a strong indi-
cation that the predominant exchange interaction is between
M1 and M2 spins along the c axis and that the frustrated
in-plane exchange interactions of the M2 spins must be weaker.
The interaction between the planes was shown not to relieve
the frustration within the M2 plane, but to act as an external
field lifting the ground-state degeneracy [25]. As a result,
the system is able to develop long-range magnetic order
at a quite elevated temperature. However, there is no clear
indication that the magnetic moments would prefer an in-plane
component (u1 u2 0) instead of the higher symmetry direction
[11̄0], but it is in fact similar to the M1 ordering pattern
in YBaCo4O7 (Ref. [24]). A complex scheme of competing
interactions may be responsible for that, especially given the
fact that the moment direction changes slightly as a function
of temperature in the related compound [24]. The maximum
amplitude of the magnetic moments is within the a-b plane
and amounts to 3.7(1)μB and 2.9(1)μB for the M1 and M2
sites, respectively. The amplitude on the M1 site is close
to the expected spin value for an even mixture of M2+ and
M3+ ions (high-spin configuration) taking into account the
Co:Fe ratio on that particular site, which yields 4.01μB. The
maximum amplitude on the M2 site is considerably smaller
than the expected value of 3.69μB and therefore indicates
a remaining degree of frustration within the kagome layer.
When viewed along the c axis [Fig. 8(b)], the clusterlike spin
alignment becomes apparent with an antiferromagnetic order
between the M1 and M2 spins within a bipyramid similar to
the predictions of Refs. [22] and [23]. However, the striking
difference between the proposed structure of CaBa(Co3Fe)O7

and those presented for the swedenborgite family—based
on theoretical or experimental work—is the modulation of
the spins perpendicular to the kagome layers. In addition
to the antiferromagnetic configuration of spins of the same
bipyramidal chain, one can see in Fig. 8(b) that those spins
belonging to three different chains (shown in triangles) reveal
the typical 120◦ configuration, which is indeed in accordance
with the

√
3 × √

3 structure on a hexagonal kagome lattice
[Fig. 8(c)]. However, instead of rotating around the c axis as in
the hexagonal case, the cluster spin-alignment rotates around
an axis close to [110]. For Heisenberg spins without single-
ion anisotropy, both configurations are in fact energetically
equivalent and can be mapped one onto the other. The elliptical
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spin rotation plane is described by the Fourier coefficients
(u1 u2 iw1), where the indices 1 and 2 refer to the irreducible
representations according to which the components transform
and u2 = −1.05u1. Together with the propagation vector q =
( 1

3 00), this results in a spin modulation that has a cycloidal and
a helicoidal character as q is neither perpendicular nor within
the rotation plane. From the point of view of multiferroics,
such a magnetic structure could bear very interesting properties
concerning the symmetry-breaking mechanism, which is quite
different for cycloidal structures and proper screws. Within
one magnetic domain, the handedness of the M1 and M2
spin chains along the a axis is unique with a continuous
rotation for the former and a staggered rotation of the latter

where blocks of two parallel spins are present along the chain.
The magnetic structure can be described in the magnetic
superspace symmetry P 2′

1, which in principle should allow a
ferroelectric polarization along the c axis under the condition
that the magnetoelastic coupling is strong enough, which is
not necessarily the case as the nuclear structure lacks inversion
symmetry already at very high temperatures.
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