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PREFACE

This is a short text on universal algebra. It is a composition of my various
notes that were collected with long breaks for many years, even decades; re-
cently I put it all together to make it more coherent. Some parts were written
and offered to my students during the past years.

The aim was to explain basics of universal algebra that can be useful for a
starting advanced student, intending possibly to work in this area and having
some background in mathematics and in algebra in particular. I will be concise.
Many proofs could be considered as just hints for proving the results. The text
could be easily doubled in size. Almost no mention of the history of universal
algebra will be given; suffice it to say that foundations were laid by G. Birkhoff
in the 1930’s and 1940’s. There will be not many remarks about motivation or
connections to other topics. We start with two chapters collecting some useful
knowledge of two different subjects – set theory and the theory of categories,
just that knowledge that is useful for universal algebra. Also, the chapter on
model theory is intended only as a server for our purposes.

The bibliography at the end of the book is not very extensive. I included
only what I considered to be necessary and closely related to the material
selected for exposition. Many results will be included without paying credit to
their authors.

Selection of the topics was not given only by my esteem of their importance.
The selection reflects also availability provided by my previous notes, and
personal interest. Some most important modern topics will not be included,
or will be just touched. This text contains no original results.

I do not keep to the usual convention of denoting algebras by boldface char-
acters and then their underlying sets by the corresponding non-bold variants.
Instead, I use boldface characters for constants (of any kind) and italics, as
well as greek characters (both upper- and lower-case), for variables (running
over objects of any kind). I do not reserve groups of characters for sorts of
variables.

The rare cases when it is really necessary to distinguish between an algebra
and its underlying set, can be treated by adding a few more words.

Other texts can be also recommended for alternative or further reading:
Burris and Sankappanavar [81]; McKenzie, McNulty and Taylor [87]; Hobby
and Mckenzie [88]; Freese and McKenzie [87]; Grätzer [79]; Garćıa and Taylor
[84]; Gorbunov [99]. Some material in the present book has been also drawn
from the first four of these books.

1



2 PREFACE

I would be grateful for comments of any kind, and in particular for pointing
out errors or inconsistencies. I could use them for improvements that would be
included in a possible second edition which may also contain some extensions.
Please contact me at jezek@karlin.mff.cuni.cz.

My thanks are to Ralph McKenzie, Miklos Maróti and Petar Marković for
many friendly discussions that were also of great value when I was working on
this text.



CHAPTER 1

SET THEORY

The whole of mathematics is based on set theory. Because intuitive set
theory can easily lead to the well-known paradoxes (the set A of all the sets
that are not their own elements can satisfy neither A ∈ A nor A /∈ A), it is
reasonable to work in a theory with a carefully selected system of axioms. Two
such axiom systems, essentially equivalent, are the most common: the Gödel-
Bernays and the Zermelo-Fraenkel systems. For universal algebra the first is
the more convenient. The purpose of this chapter is to present foundations of
set theory based on the Gödel-Bernays system of axioms. The books Gödel [40],
Cohen [66] and Vopěnka, Hájek [72] can be recommended for further reading.

1. Formulas of set theory

Certain strings of symbols will be called formulas. Symbols that may occur
in the strings are the following:

(1) Variables: both lower- and upper-case italic letters or letters of the
Greek alphabet, possibly indexed by numerals (there should be no
restriction on the number of variables)

(2) One unary connective: ¬
(3) Four binary connectives: & ∨ → ↔
(3) Two quantifiers: ∀ ∃
(4) Parentheses: ( )
(5) Equality symbol: =
(6) Membership symbol: ∈

A formula is a string that can be obtained by several applications of the
following rules. For every formula we also specify which variables are called
free and which variables are called bound in it.

(1) For any two (not necessarily distinct) variables x and y, the strings
x=y and x∈y are formulas; both x and y are free, no other variable is
free, and no variable is bound in these formulas.

(2) If f is a formula then ¬(f) is a formula; a variable is free (or bound)
in ¬(f) if and only if it is free (or bound, respectively) in f.

(3) If f and g are two formulas and if no variable is either simultaneously
free in f and bound in g or simultaneously bound in f and free in g,
then the four strings (f)&(g) and (f)∨(g) and (f)→(g) and (f)↔(g)
are formulas; a variable is free (or bound) in the resulting formula if

3



4 1. SET THEORY

and only if it is free (or bound, respectively) in at least one of the the
formulas f and g.

(4) If f is a formula and if x is a variable that is not bound in f, then
both (∀x)(f) and (∃x)(f) are formulas; the variable x is bound in the
resulting formula; a variable other than x is free (or bound) in the
resulting formula if and only if it is free (or bound, respectively) in f.

Observe that no variable is both free and bound in any formula. A variable
occurs in a formula if and only if it is either free or bound in it. By a sentence
we mean a formula without free variables.

Certain formulas are called logical axioms. If f, g and h are three formulas,
then the following are logical axioms provided that they are formulas (some
parentheses are omitted):

(1) f→(g→f)
(2) (f→(g→h))→((f→g)→(f→h))
(3) ((¬f)→(¬g))→(g→f)
(4) (f↔g)→(f→g)
(5) (f↔g)→(g→f)
(6) (f→g)→((g→f)→(f↔g))
(7) (f∨g)↔((¬f)→g)
(8) (f&g)↔¬((¬f)∨(¬g))
(9) ((∀x)f)→g where x and y are two variables not bound in f and g is

obtained from f by replacing all the occurrences of x with y
(10) ((∀x)(f→g))→(f→(∀x)g) where x is a variable not occurring in f
(11) ((∃x)f)↔¬((∀x)¬f) where x is a variable not bound in f
(12) x=x where x is a variable
(13) x=y→y=x where x and y are two variables
(14) (x=y&y=z)→x=z where x, y and z are three variables
(15) (x=y&z=u)→(x∈z↔y∈u) where x, y, z and u are four variables

By a theory we mean a (finite) collection of formulas of the language; these
formulas are called axioms of that theory.

By a proof in a given theory T we mean a finite sequence of formulas such
that each member of the sequence is either a logical axiom or an axiom of T
or can be obtained from one or two earlier members of the sequence by one of
the following two rules:

(1) obtain g from f and f→g;
(2) obtain f from (∀x)f.

By a proof of a given formula in a given theory T we mean a proof in
T which has the given formula as its last member. A formula is said to be
provable in T if there exists a proof of the formula in T.

A theory S is said to be an extension of a theory T if every axiom of T
is an axiom of S. A theory S is said to be stronger than a theory T if every
axiom of T is provable in S. As it is easy to see, it follows that each formula
provable in T is also provable in S. Two theories are said to be equivalent if



2. THEORY OF CLASSES 5

each is stronger than the other one. Clearly, every theory is equivalent to a
theory with the same number of axioms, all the axioms of which are sentences.

It is easy to see that for a sentence f and any formula g, the formula f→g is
provable in a theory T if and only if g is provable in the theory obtained from
T by adding f as a new axiom.

A theory T is said to be inconsistent if there is a formula f such that f&¬f
is provable in T. Clearly, in an inconsistent theory every formula is provable.

We will work in one particular theory, the set theory, and do mathematics
informally. It is useful to have at mind, however, that our theorems should
be expressible as sentences and that it should be possible to translate their
informal proofs to obtain proofs in the above given rigorous sense. Definitions
are to be understood as abbreviations for particular formulas. In order to
introduce set theory, we need to start with a weaker theory.

2. Theory of classes

Any object under our investigation is a class. Thus to say, for an example,
that there exists a class with some property is the same as to say that there
exists an X with the property. By a set we mean a class a such that there
exists an X with a ∈ X. If a ∈ X then we say that a is an element of X. Thus
to be a set is the same as to be an element of something. By a proper class we
mean a class that is not a set.

Theory of classes has the following nine axioms:

(C1) If A and B are two classes such that a ∈ A ↔ a ∈ B for all sets a,
then A = B.

(C2) For any sets a and b there exists a set c such that for any set x, x ∈ c
if and only if either x = a or x = b.

(C3) There exists a class A such that a ∈ A for any set a.

Before we continue with the list of the axioms, we need to introduce two
definitions. The set c, the existence of which is postulated in (C2) is, according
to (C1), uniquely determined by a and b. It will be denoted by {a, b}; put
{a} = {a, a}. For any sets a and b put 〈a, b〉 = {{a}, {a, b}}. The set 〈a, b〉 is
called the ordered pair (or just pair) of a and b. Put 〈a〉 = a; for three sets
a, b, c put 〈a, b, c〉 = 〈a, 〈b, c〉〉; and similarly for four sets, etc.

(C4) For any class A there exists a class B such that for any set a, a ∈ B
if and only there exist two sets x, y with a = 〈x, y〉, x ∈ y and a ∈ A.

(C5) For any two classes A and B there exists a class C such that for any
set a, a ∈ C if and only if a ∈ A and a /∈ B.

(C6) For any class A there exists a class B such that for any set a, a ∈ B
if and only if there exists an x with 〈x, a〉 ∈ A.

(C7) For any two classes A and B there exists a class C such that for any
set a, a ∈ C if and only if there exist two sets x, y with a = 〈x, y〉,
y ∈ B and a ∈ A.

(C8) For any class A there exists a class B such that for any set a, a ∈ B
if and only if there exist two sets x, y with a = 〈x, y〉 and 〈y, x〉 ∈ A.
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(C9) For any class A there exists a class B such that for any set a, a ∈ B
if and only if there exist three sets x, y, z with a = 〈x, 〈y, z〉〉 and
〈y, 〈z, x〉〉 ∈ A.

2.1. Theorem. Let a, b, c, d be four sets. Then 〈a, b〉 = 〈c, d〉 if and only if
a = c and b = d.

Proof. This is easy to see. �

For two classes A and B we write A ⊆ B (or also B ⊇ A) if for every set
x, x ∈ A implies x ∈ B. We say that A is a subclass of B, or that A is a subset
of B in case that A is a set.

For two classes A and B we write A ⊂ B (or also B ⊃ A) if A ⊆ B and
A 6= B. We say that A is a proper subclass of B.

It follows from (C3) and (C1) that there exists precisely one class such that
every set is its element. We use the constant V to denote this class; the class
V is called the universal class.

A class A is said to be a relation if its every element is an ordered pair.
It follows from (C4) that there exists precisely one relation A such that

for any sets x and y, 〈x, y〉 ∈ A if and only if x ∈ y. This relation A will be
denoted by E.

For any two classes A and B, the uniquely determined class C from (C5)
will be denoted by ArB. It contains precisely the elements of A that do not
belong to B. It will be called the difference of A and B.

For any two classes A and B put A∩B = Ar (ArB). This class is called
the intersection of A and B. It contains precisely the elements belonging to
both A and B. We define A ∩B ∩ C = (A ∩B) ∩ C, etc.

For any two classes A and B put A∪B = Vr((VrA)∩(VrB)). This class
is called the union of A and B. It contains precisely the elements belonging to
at least one of the two classes, either A or B. We define A∪B∪C = (A∪B)∪C,
etc.

Put 0 = V r V. This class is called the empty class. A class A is called
nonempty if A 6= 0. Two classes A,B are said to be disjoint if A ∩B = 0.

For any class A, the uniquely determined class B from (C6) will be denoted
by Dom(A). It will be called the domain of A. For a set a, we have a ∈
Dom(A) if and only if 〈x, a〉 ∈ A for at least one x.

For any two classes A and B, the uniquely determined class C from (C7)
will be denoted by A � B. This class is a relation and contains precisely the
ordered pairs 〈x, y〉 ∈ A with y ∈ B. It will be called the restriction of A to
B.

For any class A, the uniquely determined class B from (C8) will be denoted
by Inv(A) and called the inverse of A. This relation contains precisely the
ordered pairs 〈x, y〉 with 〈y, x〉 ∈ A.

For any class A, the uniquely determined class B from (C9) will be denoted
by Inv3(A).

For any class A, the class Dom(Inv(A)) is called the range of A.
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For any two classes A and B put A × B = (V � B) ∩ Inv(V � A). This
relation will be called the direct product of A and B. It contains precisely the
ordered pairs 〈a, b〉 such that a ∈ A and b ∈ B. Put A×B×C = A× (B×C),
etc. Put A1 = A, A2 = A×A, A3 = A×A×A, etc.

We have A � B = A ∩ (V ×B).
A class A is said to be a function if it is a relation and for any three sets

x, y, z, 〈y, x〉 ∈ A and 〈z, x〉 ∈ A imply y = z. If A is a function then instead
of 〈y, x〉 ∈ A we write A’x = y (or A(x) = y if there is no confusion).

For two classes A and X, the range of A � X is denoted by A’’X; if there
is no confucion, if it is clear that we do not mean A’X, we also write A(X) for
A’’X.

Let f be a formula. A sequence x1 through xn of distinct variables is said
to be free for f if none of these variables is bound in f. (The sequence is allowed
to be empty, and need not consist of variables occurring in f.) We say that f is
CT-admissible (or class theory admissible) with respect to such a free sequence
of variables if the following is provable in the theory of classes: there exists a
class A such that for any set a, a ∈ A if and only if there exist x1 through
xn such that a = 〈x1,. . . ,xn〉 and f is satisfied. A formula is said to be CT-
admissible if it is CT-admissible with respect to any sequence of variables free
for f.

Let X and Y be two different variables. We are going to show that the
formula X ∈ Y is CT-admissible. Let x1 through xn be a sequence of variables
free for this formula.

Consider first the case when neither X nor Y is among x1 through xn. We
can take A = 0 if X ∈ Y is satisfied, while A = Vn in the opposite case.

Next consider the case when X is xi for some i, while Y is not among x1

through xn. We can take A = A1×· · ·×An, where all the factors are V, except
the i-th factor, which is Y.

Next consider the case when Y is xi for some i, while X is not among x1

through xn. If X is not a set, we can take A = 0. Otherwise, we can take
A = A1 × · · · × An, where all the factors are V, except the i-th factor, which
is the range of Inv(E) � {X}.

It remains to consider the case when X is xi and Y is xj. Consider first
the subcase when i is less than j. If j is n, let X = E; otherwise, let X =
Inv3(Inv3(Vn-j × E)). We have 〈xi, xj, . . . , xn〉 ∈ X if and only if X ∈ Y.
If j is i+1, let Y = X; otherwise, let Y = Inv3(V × Inv(X)). We have
〈xi, xj-1, xj, . . . , xn〉 ∈ Y if and only if X ∈ Y. Repeating this process, we can
find a class Z such that 〈xi, . . . , xn〉 ∈ Z if and only if X ∈ Y. We can take
A = V×· · ·×V×Z where the number of factors is i. Now consider the subcase
when j is less than i. We can proceed in the same way as above, taking Inv(E)
instead of E and switching i and j.

We are going to show that if f is a CT-admissible formula, then ¬f is also
CT-admissible. If a sequence x1 through xn of variables is free for ¬f, then it
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is also free for f. The resulting class A for f can be replaced with Vn r A to
obtain the resulting class for ¬f.

We are going to show that if f&g is a formula and f and g are both CT-
admissible, then f&g is also CT-admissible. If a sequence x1 through xn is free
for f&g, then it is free for both f and g. Let A be the resulting class for f and
B be the resulting class for g. Then A ∩B is the resulting class for f&g.

We are going to show that if f is a CT-admissible formula and X is a
variable not bound in f, then (∃X)((X ∈ V)&f) is also CT-admissible. Let x1

through xn be a sequence of variables free for this formula. Then X followed by
x1 through xn is a sequence of variables free for f. Let A be the resulting class
for f. Then Dom(A) is the resulting class for (∃X)((X ∈ V)&f). (It would be
more appropriate to write (∃Y)X ∈ Y instead of X ∈ V; we would have to say
that Y is a variable different from X and not occurring in f.

With respect to an arbitrary extension of the theory of classes, certain
formulas of that theory will be called set-restricted formulas. If X and Y are
two variables, then X ∈ Y is a set-restricted formula. If f is a set-restricted
formula, then ¬f is a set-restricted formula. If f and g are two set-restricted
formulas, then f&g, f∨g, f→g and f↔g are set-restricted formulas, under the
assumption that they are formulas. If f is a set-restricted formula and X is
a variable not bound in f, then (∃X)((X ∈ V)&f) and (∀X)((X ∈ V) → f)
are set-restricted formulas. Finally, if f↔g is provable in the theory under
consideration and f is a set-restricted formula, then g is also a set-restricted
formula.

It follows that every set-restricted formula is CT-admissible. Let f be a
set-restricted formula and let x1 through xn be a sequence of variables free
for f. Then we define {〈x1, . . . , xn〉 : f} to be the uniquely determined class,
resulting in the way described above. The following are examples.

For any class A put
⋃

(A) = {x : (∃y)(x ∈ y&y ∈ A}. This class is called
the union of A. It is also sometimes denoted by

⋃

A.
For any class A put

⋂

(A) = {x : (∀y)(y ∈ A → x ∈ y)}. This class is
called the intersection of A. It is also sometimes denoted by

⋂

A.
For any class A put P(A) = {x : x ⊆ A}. This class is called the power-

class of A.

3. Set theory

Set theory is the theory of classes extended by the following axioms:

(S1) For any set a there exists a set b such that whenever x ∈ y ∈ a then
x ∈ b.

(S2) For any set a there exists a set b such that for all sets x, whenever
x ⊆ a then x ∈ b.

(S3) For any set a and any function A, the class A’’a is a set.
(S4) Every nonempty class A contains an element a such that A ∩ a = 0.
(S5) There exists a nonempty set a with (∀x)(x ∈ a→ (∃y)(y ∈ a&x ⊂ y)).
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(S6) There exists a function A with domain V such that A’x ∈ x for any
nonempty set x.

The axiom (S4) will be referred to as the axiom of regularity. The axiom
(S5) will be referred to as the axiom of infinity. The axiom (S6) will be referred
to as the axiom of choice.

3.1. Theorem. Every subclass of a set is a set.

Proof. Let A be a subclass of a set a. Put B = {〈x, y〉 : x = y&x ∈ A},
so that B is a function and A = B’’a. By (S3), A is a set. �

3.2. Theorem. For every set a, the classes
⋃

a and P(a) are sets.

Proof. It follows from (S1), (S2) and 3.1. �

3.3. Theorem. If a and b are two sets, then a ∪ b is a set.

Proof. We have a ∪ b =
⋃

{a, b}; this class is a set by (C2) and (S1). �

For three sets a, b, c put {a, b, c} = {a, b} ∪ {c}. Similarly, for four sets
a, b, c, d put {a, b, c, d} = {a, b, c} ∪ {d}; etc.

3.4. Theorem. If a and b are two sets, then a× b is a set.

Proof. We have a× b ⊆ P(P(a∪ b)). So, we can use 3.1, 3.2 and 3.3. �

3.5. Theorem. If a is a set, then the domain of a, the range of a, the
inverse of a and Inv3(a) are sets.

Proof. It is easy. �

3.6. Theorem. Let A be a function. Then A is a set if and only if the
domain of A is a set.

Proof. We have A ⊆ (A’’Dom(A)) ×Dom(A). �

3.7. Theorem. The empty class 0 is a set.

Proof. By (S5), there exists a set a. We have 0 ⊆ a. �

3.8. Theorem. There is no set a with a ∈ a.

Proof. Suppose a ∈ a. By (S4) applied to {a}, we have {a} ∩ a = 0, a
contradiction. �

Similarly, using (S4) it is possible to prove for any positive n the following:
There do not exist sets a1, . . . , an with a1 ∈ a2, . . . , an−1 ∈ an, an ∈ a1.

3.9. Theorem. The class V is a proper class.

Proof. Suppose that V is a set. Then V ∈ V, a contradiction with 3.8.
�
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4. Relations and functions

By a mapping of a class A into a class B we mean a function F such that
Dom(F ) = A and the range of F is a subclass of B. If, moreover, the range
of B equals B, we say that F is a mapping of A onto B.

A function F is said to be injective if Inv(F ) is also a function. By a
bijection of A onto B we mean an injective mapping of A onto B. By a
permutation of A we mean a bijection of A onto itself.

If F is a function and a ∈ Dom(A), then the element F ’a of the range of
F is called the value of F at a.

By a family we mean a mapping, the domain of which is a set. By a family
of elements of B we mean a mapping of a set into the class B.

Let C be a family with domain I. The set of all mappings f with domain I
such that f ’i ∈ C’i for all i ∈ I is called the direct product of C and is denoted
by ΠC. Clearly, if C ′i = 0 for at least one i ∈ I, then ΠC = 0; the direct
product of the empty family is the one-element set {0}. It follows from the
axiom of choice that if the sets C’i are all nonempty then ΠC is nonempty.

For two classes A and B put

A ◦B = {〈a, b〉 : (∃c)(〈a, c〉 ∈ A & 〈c, b〉 ∈ B)}.

This class is called the composition of A and B. Observe that (A ◦ B) ◦ C =
A ◦ (B ◦ C) for any classes A,B,C. We define A ◦ B ◦ C = (A ◦ B) ◦ C,
A ◦B ◦ C ◦D = (A ◦B ◦ C) ◦D, etc.

Clearly, if F is a mapping of A into B and G is a mapping of B into C, then
G◦F is a mapping of A into C, and for any a ∈ A we have (G◦F )’a = G’(F ’a).

For any class A put idA = {〈a, a〉 : a ∈ A}. This class is called the identity
on A. Clearly, idA is a bijection of A onto A.

For a set a and a class B we denote by Ba the class of all mappings of a
into B. If B is a set then Ba is also a set (since it is a subclass of P(B × a)).

By a relation on a class A we mean a subclass of A×A.
A relation R is said to be reflexive on a class A if 〈a, a〉 ∈ R for all a ∈ A.
A relation R is said to be symmetric if 〈a, b〉 ∈ R implies 〈b, a〉 ∈ R.
A relation R is said to be transitive if 〈a, b〉 ∈ R and 〈b, c〉 ∈ R imply

〈a, c〉 ∈ R.
A relation R is said to be irreflexive if 〈a, a〉 /∈ R for all sets a.
A relation R is said to be antisymmetric if 〈a, b〉 ∈ R and 〈b, a〉 ∈ R imply

a = b.
By an equivalence on a class A we mean a relation that is reflexive on A,

symmetric and transitive. Clearly, for any class A, both idA and A2 are equiv-
alences on A. For any equivalence R on A we have idA ⊆ R ⊆ A2. If R is an
equivalence on A and a ∈ A, then the class R’’{a} = {x : 〈x, a〉 ∈ R} is called
the block of a with respect to R, or the R-block of a.

If R is an equivalence on a set A, then the set {R’’{a} : a ∈ A} (the set
of all R-blocks) will be denoted by A/R and called the factor of A through
R; the mapping {〈R’’{a}, a〉 : a ∈ A} of A onto A/R is called the canonical
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projection of A onto A/R. Often (although there is some inconsistency in the
notation) we also write a/R instead of R’’{a}.

By a partition of a set A we mean a set P of nonempty subsets of A such
that

⋃

P = A and X ∩ Y = 0 for any X,Y ∈ P with X 6= Y .

4.1. Theorem. For any given set A, the mapping assigning to any equiv-
alence R on A the factor A/R, is a bijection of the set of all equivalences on
A onto the set of all partitions of A. If P is a partition of A, then the corre-
sponding equivalence R on A is defined by 〈a, b〉 ∈ R if and only if there is an
X ∈ P with a, b ∈ X.

Proof. It is easy. �

For any function F we define

ker(F ) = {〈x, y〉 : x ∈ Dom(F ) & y ∈ Dom(F ) & F (x) = F (y)}.

This relation is called the kernel of F . Clearly, ker(F ) is an equivalence on
Dom(F ).

4.2. Theorem. Let F be a mapping of a set A into a set B. Then there
exists precisely one mapping G of A/ker(F ) into B such that G ◦ H = F ,
where H is the canonical projection of A onto A/ker(F ). This mapping G is
injective; if F is a mapping of A onto B, then G is a bijection of A/ker(F )
onto B.

Proof. It is easy. �

4.3. Theorem. Let F be a mapping of a class A into a class B. Then F
is a bijection of A onto B if and only if there exists a mapping G of B into A
such that G ◦ F = idA and F ◦G = idB.

Proof. It is easy. �

Let R be a relation on a class A and S be a relation on a class B. By
a homomorphism of A into B with respect to R,S we mean a mapping F of
A into B such that 〈x, y〉 ∈ R implies 〈F ’x, F ’y〉 ∈ S. By an isomorphism
of A onto B with respect to R,S we mean a bijection F of A onto B such
that F is a homomorphism of A into B with respect to R,S and Inv(F ) is a
homomorphism of B into A with respect to S,R. We say that A is isomorphic
to B with respect to R,S if there exists an isomorphism of A onto B with
respect to R,S.

By an ordering on a class A we mean a relation R on A which is reflexive
on A, transitive and antisymmetric. Observe that the class A is uniquely
determined by R: it is both the domain and the range of R. By an ordering
we mean a class which is an ordering on its domain.

Let R be an ordering on A and let B ⊆ A. By a minimal element of B with
respect to R we mean any element a ∈ B such that x = a for any x ∈ B with
〈x, a〉 ∈ R. By a maximal element of B with respect to R we mean any element
a ∈ B such that x = a for any x ∈ B with 〈a, x〉 ∈ R. By the least element of
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B with respect to R we mean any element a ∈ B such that 〈a, x〉 ∈ R for all
x ∈ B. By the greatest element of B with respect to R we mean any element
a ∈ B such that 〈x, a〉 ∈ R for all x ∈ B. Clearly, every subclass of A has at
most one least and at most one greatest element with respect to R.

Let R be an ordering on A and let B ⊆ A. An element a ∈ A is said to
be a lower (or upper, respectively) bound of B with respect to R if 〈a, x〉 ∈ R
(or 〈x, a〉 ∈ R, respectively) for all x ∈ B. An element a ∈ A is said to be
the infimum of B with respect to R if it is the greatest element of the class
of the lower bounds of B with respect to R. An element a ∈ A is said to be
the supremum of B with respect to R if it is the least element of the class of
the upper bounds of B with respect to R. Clearly, every subclass of A has at
most one infimum and at most one supremum with respect to R.

An ordering R is said to be linear if for any a, b ∈ Dom(R), either 〈a, b〉 ∈
R or 〈b, a〉 ∈ R. A linear ordering R is said to be a well ordering if for any
nonempty subclass B of the domain of R, there exists a minimal element of B
with respect to R.

Let R be an ordering on A and let a ∈ A. The class {x ∈ A : 〈x, a〉 ∈ R}
is called the section of a with respect to R (this can be a proper class).

5. Ordinal numbers

For a class A, we denote by ∈A the relation E ∩ (A × A) and by ∈=
A the

relation idA∪ ∈A on A.
By an ordinal number (or just an ordinal) we mean any set a such that

i ∈ j ∈ a implies i ∈ a and the relation ∈=
a is a well ordering. (The first

condition can be also stated as follows: every element of a is a subset of a.)
The class of ordinal numbers will be denoted by On.

5.1. Lemma. Let a be an ordinal number and s be a subset of a such that
i ∈ j ∈ s implies i ∈ s. Then either s ∈ a or s = a.

Proof. Let s 6= a, so that ar s is nonempty and there exists an element
b ∈ ar s with b ∈ c for any element c ∈ ar s different from b. It is easy to see
that s ⊆ b and b ⊆ s, so that s = b and s ∈ a. �

5.2. Theorem. Every element of an ordinal number is an ordinal number.

Proof. Let a be an ordinal and let b ∈ a. If i ∈ j ∈ b, then i ∈ j ∈ a,
so that i ∈ a. Consequently, either i ∈ b or i = b or b ∈ i. The last two cases
are impossible according to the remark following 3.8. Consequently, i ∈ j ∈ b
implies i ∈ b. The second condition is also satisfied, since b is a subset of a. �

Let a and b be two ordinal numbers. We write a < b (or also b > a) if
a ∈ b. We write a ≤ b (or also b ≥ a) if either a < b or a = b. According
to 5.1, a ≤ b if and only if a ⊆ b. We write a 6≤ b (or also b 6≥ a) if a ≤ b does
not hold. For two ordinal numbers a and b, the larger of them is denoted by
max(a, b) and the smaller by min(a, b).
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5.3. Theorem. The relation ∈=
On, i.e., the class of the ordered pairs 〈a, b〉

such that a, b are ordinal numbers with a ≤ b, is a well ordering on On.

Proof. Clearly, ∈=
On is an ordering on On. Let a, b be two ordinals such

that a 6≤ b. Then a is not a subset of b and there exists an element c ∈ a r b
such that every element of c belongs to b. By 5.1 we get either c ∈ b or c = b.
But c /∈ b, and hence c = b. It follows that b < a, and we have proved that
∈=

On is a linear ordering.
It remains to prove that if A is a nonempty subclass of On, then there

exists a minimal element of A with respect to ∈=
On. Take a ∈ A arbitrarily.

If a is minimal in A, we are through. If not, then the subset a ∩ A of a is
nonempty, there exists a minimal element b of a ∩A and it is easy to see that
b is a minimal element of A. �

5.4. Theorem. On is a proper class.

Proof. Suppose On is a set. Then it follows from 5.3 that On is an
ordinal number, so that On ∈ On, a contradiction. �

5.5. Theorem. 0 is an ordinal number. If a is an ordinal number, then
a∪{a} is an ordinal number and a < a∪{a}. If s is a set of ordinal numbers,
then

⋃

s is an ordinal number; if s is nonempty, then
⋃

s is the supremum of
s in On with respect to the well ordering ∈=

On.

Proof. It is easy. �

For an ordinal number a, the ordinal number b = a ∪ {a} is called the
ordinal successor of a. Clearly, a < b and there is no ordinal c with a < c < b.
The ordinal successor of 0 is denoted by 1. We have 1 = {0}.

For a nonempty set s of ordinal numbers, the ordinal number
⋃

s is called
the supremum of s.

By a limit ordinal we mean any ordinal number which is not the ordinal
successor of any ordinal number. Thus 0 is a limit ordinal. Every other limit
ordinal a is the supremum of the set of the ordinal numbers b with b < a (this
set is equal to a).

For a non-limit ordinal number a there exists precisely one ordinal number b
such that a is the ordinal successor of b. This b is called the ordinal predecessor
of a.

In order to prove that all ordinal numbers have a given property, one can
proceed in the following way: prove that 0 has the property; and, for any
ordinal number a, prove that a has the property under the assumption that
all the ordinal numbers less than a have the property. Equivalently, one can
proceed in this way: prove that 0 has the property; for any ordinal number
a prove that if a has the property, then the ordinal successor of a has the
property; and, finally, prove for any limit ordinal number a 6= 0 that if all the
ordinal numbers less than a have the property, then a has the property. In
these cases we say that the proof is done by transfinite induction.
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5.6. Theorem. For every function G with domain V and every ordinal
number a there exists precisely one function f with domain a such that f ’i =
G’(f � i) for all i ∈ a. Also, for every G as above there exists precisely one
function F with domain On such that F ’i = G’(F � i) for all ordinal numbers i.

Proof. Let G be given. Suppose there exists an ordinal number a for
which either such a function f does not exist, or there exist two different such
functions. Then there exists a minimal ordinal a with this property; denote it
by b. Clearly, b > 0. If b is the successor of an ordinal c, then take the unique
function f corresponding to c; it is easy to see that f ∪{〈G’f, b〉} is the unique
function corresponding to b. It remains to consider the case when b is a limit
ordinal. Then it is easy to see that the union of the set of the unique functions
corresponding to the elements of b is the unique function corresponding to b.
The function F is the union of the class of all the functions f obtained in this
way. �

We will usually apply this theorem informally. If we say that a function is
defined by transfinite induction, we mean that the existence and the unicity of
the defined function can be obtained from Theorem 5.6 in the obvious way.

5.7. Theorem. There exist limit ordinal numbers other than 0.

Proof. Suppose, on the contrary, that every ordinal number other than 0
has an ordinal predecessor. By (S5) there exists a nonempty set S such that for
every x ∈ S there exists a y ∈ S with x ⊂ y. Let us define by transfinite induc-
tion a function F with domain On as follows: F ’0 is an arbitrary element of S;
if a is an ordinal number with ordinal predecessor b and if F ’b ∈ S is already
defined, let F ’a be an arbitrary element of S such that F ’b ⊂ F ’a. Clearly,
F is a bijection of the proper class On onto a subset of S, a contradiction
with (S3). �

The least limit ordinal number different from 0 will be denoted by ω. The
elements of ω are called natural numbers.

5.8. Theorem. Let r be a well ordering on a set s. Then there exists
precisely one ordinal number a such that s is isomorphic to a with respect to
r,∈=

a .

Proof. Take an element e not belonging to s and define a mapping F
with domain On by transfinite induction in this way: if i is an ordinal number
and F � a is already defined, then F ’i is the least element of the subset {x ∈
s : x 6= F ’j for all j ∈ i} of s with respect to r; if, however, this subset is
empty, put F ’i = e. Denote by a the least ordinal with F ’a = e. Clearly, the
restriction of F to a is a desired isomorphism.

In order to prove the converse, it is sufficient to show that if a, b are two
ordinal numbers such that there exists an isomorphism f of a onto b with
respect to ∈=

a ,∈
=
b , then a = b. It is easy to see that f ’i = i for all i ∈ a. From

this we get a = b. �
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Given a set s and a well ordering r on s, the unique ordinal number a such
that s is isomorphic to a with respect to r,∈=

a is called the ordinal number (or
also the ordinal type) of s with respect to r. By the ordinal type of a set u of
ordinal numbers we mean the ordinal type of u with respect to ∈=

On ∩(u× u).
Let a and b be two ordinal numbers. We denote by a+b the ordinal number

of the set s = (a × {0}) ∪ (b × {1}) with respect to the well ordering r on s,
where r is defined as follows: 〈〈x, i〉, 〈y, j〉〉 ∈ r if and only if either i < j or
i = j and x ≤ y. (It is easy to check that r is a well ordering.)

Let a and b be two ordinal numbers. We denote by a ·b the ordinal number
of the set s = a× b with respect to the well ordering r on s, where r is defined
as follows: 〈〈x, y〉, 〈u, v〉〉 ∈ r if and only if either y < v or y = v and x ≤ u.
(It is easy to check that r is a well ordering.)

It is easy to see that for any ordinal number a, a+1 is the ordinal successor
of a. We define 2 = 1 + 1.

5.9. Theorem. For any ordinal numbers a, b, c we have

(1) (a+ b) + c = a+ (b+ c)
(2) a+ 0 = 0 + a = a
(3) (a · b) · c = a · (b · c)
(4) a · 0 = 0 · a = 0
(5) a · 1 = 1 · a = a
(6) a · (b+ c) = (a · b) + (a · c)

Proof. It is easy. �

5.10. Example. We do not have a+ b = b+ a for all ordinal numbers a, b.
For example, 1 + ω = ω < ω + 1.

Similarly, we do not have a·b = b·a for all a, b. For example, 2·ω = ω < ω·2.
Also, we do not have (a+ b) · c = (a · c) + (b · c). For example, (1 + 1) ·ω =

ω < ω + ω.

5.11. Theorem. Let a, b, c be ordinal numbers such that a < b. Then

(1) a+ c ≤ b+ c
(2) c+ a < c+ b
(3) a · c ≤ b · c
(4) if c is not a limit ordinal then a · c < b · c
(5) if c > 0 then c · a < c · b

Proof. It is easy. �

5.12. Theorem. Let a, b, c be ordinal numbers. Then

(1) c+ a < c+ b implies a < b
(2) a+ c < b+ c implies a < b
(3) c · a < c · b implies a < b
(4) a · c < b · c implies a < b
(5) if c > 0 and c · a = c · b then a = b

Proof. It is easy. �
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It is easy to see that for every pair a, b of ordinal numbers such that a ≤ b
there exists a unique ordinal number c with a + c = b. This unique ordinal
number c is denoted by b− a.

5.13. Theorem. Let a, b, c be ordinal numbers. Then

(1) (a+ b)− a = b
(2) if a ≤ b then a+ (b− a) = b
(3) if a ≤ b then c · (b− a) = (c · a)− (c · b)

Proof. It is easy. �

5.14. Theorem. For every ordinal number a there exists a unique pair b, n
such that b is an ordinal number, n is a natural number and a = (ω · b) + n.

Proof. It is easy. �

For a given ordinal number a, we define exp(a, b) for any ordinal number b
by transfinite induction as follows: exp(a, 0) = 1; exp(a, b+ 1) = exp(a, b) · a;
if b is a limit ordinal number then exp(0, b) = 0 while exp(a, b) =

⋃

{exp(a, c) :
c ∈ b} for a > 0.

5.15. Theorem. Let a, b, c be ordinal numbers. Then

(1) exp(a, b+ c) = exp(a, b) · exp(a, c)
(2) exp(exp(a, b), c) = exp(a, b · c)

Proof. It is easy. �

In order to prove that all natural numbers have a given property, one
can proceed in this way: prove that 0 has the property; and, for any natural
number n, prove that if n has the property then also n + 1 has the property.
We say in this case that the proof is done by induction (on n). Also, it follows
from 5.6 that for every function g with domain ω and every set a there exists
a unique function f with domain ω, such that f ’0 = a and f ’(n+ 1) = g’(f ’n)
for all n ∈ ω; if we define a function f in this way, we say that it is defined by
induction.

5.16. Theorem. Let a and b be natural numbers. Then

(1) a+ b = b+ a
(2) a · b = b · a

Proof. One can easily prove by induction that x+1 = 1+x for all natural
numbers x. Then one can proceed to prove by induction on b, for any fixed a,
that a+ b = b+ a and a · b = b · a. �

5.17. Theorem. For every ordinal number a there exists a limit ordinal
ordinal number b such that a < b. Consequently, the class of limit ordinal
numbers is a proper class.

Proof. For any ordinal number a, a + ω is a limit ordinal number and
a < a+ ω. �
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5.18. Theorem. Let A be a proper class and R be a well ordering of A
such that every section with respect to R is a set. Then there exists a unique
isomorphism of On onto A with respect to ∈On, R.

Proof. For every ordinal number a define F ’a ∈ A by transfinite induction
as follows: F ’a is the least element x of A with respect to R such that 〈F ’b, x〉 ∈
R and F ’b 6= x for all b ∈ a. It is easy to see that F is the only isomorphism. �

The function W with domain On is defined by transfinite induction as
follows: W’0 = 0; if a = b + 1, then W’a = P(W’b); if a is a nonzero limit
ordinal, then W’a =

⋃

(W’’a).

5.19. Theorem. V is the union of the range of W.

Proof. Suppose, on the contrary, that there exists a set s not belonging
to the union of the range of W. Define a function F with domain On by
transfinite induction in this way: F ’0 = s; if a is an ordinal number with the
ordinal predecessor b and if F ’b has been defined and if F ’b is nonempty, let
F ’a be an arbitrary element of F ’b; in all other cases define F ’a arbitrarily. It
is easy to prove that the image of ω under F is a set contradicting (S4). �

We still did not use the axiom of choice anywhere. The following are
consequences of the axiom of choice.

5.20. Theorem. For every set s there exist an ordinal number a and a
bijection of a onto s.

Proof. Let A be a function as in (S6). Define a mapping F with domain
On by transfinite induction as follows: if b is an ordinal and F ’i has been
constructed for all i ∈ b, then if the set t = sr {F ’i : i ∈ b} is nonempty, put
F ’b = A’t, and in the opposite case put F ’b = s. We cannot have F ’b ∈ s
for all ordinal numbers b. So, let a be the minimal ordinal number such that
F ’b /∈ s; then the restriction of F to a is a bijection of a onto s. �

5.21. Theorem. Let R be an ordering on a set A satisfying the following
condition: whenever B is a subset of A such that R∩(B×B) is a well ordering
then B has an upper bound in A with respect to R. Then for every element
a ∈ A there exists an element b ∈ A such that 〈a, b〉 ∈ R and b is a maximal
element of A with respect to R.

Proof. Let us take an element z /∈ A. Let a ∈ A. By transfinite induction
we can define a function F with domain On in this way: F ′0 = a; if i is an
ordinal number and there exists an element x ∈ A such that 〈F ’j, x〉 ∈ R
and F ’j 6= x for all j < i, take one such element x and put F ’i = x; in all
other cases put F ’i = z. (We have used the axiom of choice.) We cannot have
F ’i ∈ A for all ordinal numbers i, since A is a set. Denote by k the least
ordinal number such that F ’k = z. It follows from the condition that k is not
a limit ordinal number. So, k = m + 1 for an ordinal number n. Clearly, we
can put b = F ’m. �
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By an inclusion-chain we mean any class A such that whenever x, y ∈ A
then either x ⊆ y or y ⊆ x.

5.22. Corollary. Let S be a set such that the union of every nonempty
inclusion-chain that is a subset of S belongs to S. Then for every a ∈ S there
exists an element b ∈ S such that a ⊆ b and b is a maximal element of S (i.e.,
b ⊆ c ∈ S implies c = b).

Theorem 5.21 and also its corollary 5.22 will be referred to as Zorn’s lemma.

6. Cardinal numbers

Two sets a, b are said to be equipotent if there exists a bijection of a onto b.
By a cardinal number we mean any ordinal number a such that there is no
ordinal number b < a equipotent with a.

It follows from 5.20 that for every set a there exists a unique cardinal
number equipotent with a. This cardinal number will be denoted by card(a);
it is called the cardinality of a. Clearly, two sets a and b are equipotent if and
only if card(a) = card(b).

6.1. Theorem. Let a and b be two sets. The following three conditions are
equivalent:

(1) card(a) ≤ card(b);
(2) there exists an injective mapping of a into b;
(3) either a = 0 or there exists a mapping of b onto a.

Proof. It is easy. �

6.2. Theorem. Every natural number is a cardinal number. Also, ω is a
cardinal number.

Proof. The first statement can be proved by induction, and it can be
proved by induction on a natural number n that n is not equipotent with ω. �

A set is said to be finite if its cardinality is a natural number. Clearly,
natural numbers are precisely the finite ordinal numbers; also, natural numbers
are precisely the finite cardinal numbers.

A set is said to be infinite if it is not finite; it is said to be countably
infinite if its cardinality is ω. A set is said to be countable if it is either finite
or countably infinite.

6.3. Theorem. A set A is infinite if and only if there exists a bijection of
A onto its proper subset.

Proof. It is easy. �

6.4. Theorem. Let a, b be two disjoint finite sets. Then card(a ∪ b) =
card(a) + card(b).

Let a, b be two finite sets. Then card(a× b) = card(a) · card(b).

Proof. It is easy. �
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6.5. Lemma. Every infinite cardinal number is a limit ordinal number.

Proof. It is easy. �

6.6. Lemma. Let a be an infinite set. Then a× a is equipotent with a.

Proof. Suppose, on the contrary, that there exists an infinite cardinal
number c such that the cardinal number d = card(c × c) is different from c,
and take the least cardinal number c with this property. Clearly, c < d. Define
a relation r on c × c in this way: 〈〈x, y〉, 〈u, v〉〉 ∈ r if and only if either
max(x, y) < max(u, v) or max(x, y) = max(u, v) and x < u or max(x, y) =
max(u, v), x = u and y ≤ v. One can easily check that r is a well ordering
on c × c. Consequently, by 5.8, there exists an ordinal number e and an
isomorphism f of c× c onto e with respect to r,∈=

a . We have c < d ≤ e. There
exist two elements x, y of c with f(〈x, y〉) = c. Put z = max(x, y) + 1. Clearly,
z is infinite and so z < c by 6.5. Hence card(z) < c and by the minimality of
c we get that z×z is equipotent with z. However, the range of the inverse of f
is contained in z × z, so that c ≤ card(z × z) and we get a contradiction. �

6.7. Theorem. Let a, b be two disjoint sets such that at least one of them
is infinite. Then card(a ∪ b) = max(card(a), card(b)).

Let a, b be two nonempty sets such that at least one of them is infinite.
Then card(a× b) = max(card(a), card(b)).

Proof. It follows easily from 6.6. �

6.8. Theorem. Let c be an infinite cardinal number. Let a be a set such
that card(a) ≤ c and card(b) ≤ c for any b ∈ a. Then card(

⋃

a) ≤ c.

Proof. It is sufficient to prove this result under the assumption that a is
nonempty and every element of a is nonempty. There exists a mapping f of c
onto a. Also, there exists a mapping g with domain c such that for every i ∈ c,
g’i is a mapping of c onto f ’i. For every 〈i, j〉 ∈ c × c put h’〈i, j〉 = (g’i)’j.
Then h is a mapping of c × c onto

⋃

a, so that card(
⋃

a) ≤ card(c × c) = c
(we have used 6.1 and 6.7). �

6.9. Theorem. The union of any set of cardinal numbers is a cardinal
number.

Proof. It is easy. �

6.10. Theorem. For any set a, card(a) < card(P(a)).

Proof. Clearly, card(a) ≤ card(P(a)). Suppose that there exists a bi-
jection of a onto P(a). Denote by B the set of all elements x ∈ a such that
x /∈ f ’x. There is an element b ∈ a with f ’b = B. Then neither b ∈ B nor
b /∈ B, a contradiction. �

6.11. Theorem. The class of cardinal numbers is a proper class.

Proof. It follows from 6.9 and 6.10. �
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It follows that also the class of infinite cardinal numbers is a proper class,
and hence there exists a unique isomorphism of On onto the class C of infinite
cardinal numbers with respect to ∈=

On and ∈=
On ∩(C × C). This bijection will

be denoted by ℵ. For an ordinal number a we write ℵa instead of ℵ’a. In
particular, ℵ0 = ω.

By a confinal subset of an ordinal number a we mean any subset s of a
such that

⋃

s = a. For an ordinal number a, the least cardinal number that
equipotent with a confinal subset of a is called the confinal of a.

Clearly, if b is the confinal of a then b ≤ a. The confinal of 0 is 0 and the
confinal of any non-limit ordinal number is 1.

6.12. Theorem. Let a be an ordinal number and b be its confinal. Then b
is the ordinal type of a confinal subset of a.

Proof. There is a bijection f of b onto a confinal subset of a. Let us
define a function g with domain b by transfinite induction as follows: for i ∈ b,
g’i is the least ordinal number k such that k > g’j and k > f ’j for all j < i.
It is easy to see that the range of g is a confinal subset of a, and i < j if and
only if g’i < g’j. �

Consequently, the confinal of a could have been also defined as the least
ordinal number that is the ordinal type of a confinal subset of a.

By a regular cardinal number we mean a cardinal number a such that the
confinal of a equals a. Clearly, ω is the least regular cardinal number.

6.13. Theorem. The confinal of any infinite limit ordinal number is a
regular cardinal number.

Proof. It is easy. �

6.14. Theorem. If a is an infinite limit ordinal number then the confinal
of ℵa is equal to the confinal of a.

Proof. It is easy. �

6.15. Theorem. For every ordinal number a, ℵa+1 is a regular cardinal
number.

Proof. Suppose, on the contrary, that ℵa+1 has a confinal subset s of
cardinality at most ℵa. Clearly, every element of s has cardinality at most ℵa.
By 6.8, card(

⋃

s) ≤ ℵa. But
⋃

s = ℵa+1 and we get a contradiction. �

6.16. Theorem. An infinite cardinal number c is regular if and only if
card(

⋃

s) < c for any set s such that card(s) < c and card(x) < c for all
x ∈ s.

Proof. Let c be regular. If s is as above, then there exists an infinite
cardinal number d < c such that card(s) ≤ d and card(x) ≤ d for all x ∈ s.
By 6.8, card(

⋃

s) ≤ d.
Let c be not regular. There exists a confinal subset s of c such that

card(s) < c. Then card(x) < c for all x ∈ s and
⋃

s = c. �
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Let C be a family of cardinal numbers, with domain I (so, I is a set). We
put

∑

C = card(
⋃

{C’i× {i} : i ∈ I}) and
∏

C = card(
∏

dC).
These cardinal numbers are called the sum and the product of the family C,
respectively.

For two cardinal numbers a, b the cardinal number card(ab) is also denoted
by ab. It should always follow from the context what does ab mean. Actually, it
can mean three different things: the cardinal number ab, the set of all mappings
of b into a, and if for example b = 2, the set of the ordered pairs of elements
of a. We are not going to distinguish between these objects by some weird
notation.

6.17. Theorem. (1) c0 = 0c = 1 for any cardinal number c; 0d = 0
for any cardinal number d 6= 0.

(2) If n,m are natural numbers then nm is a natural number.
(3) c < 2c = card(P(c)) for any cardinal number c.
(4) dn = d for any infinite cardinal number d and any natural number

n 6= 0.
(5) If d is an infinite cardinal number and 2 ≤ c ≤ d then cd = 2d.

Proof. The first four statements are easy. Let 2 ≤ c ≤ d where d is
infinite. Clearly, 2d ≤ cd. The set of all mappings of c into d is a subset of
P(c× d) where card(c× d) = max(c, d) = d, so that cd ≤ 2d. �

Comments

It may seem strange that natural numbers were used (a little bit) already
at the beginning of this chapter, while defined only later. Actually we did not
mean to define old objects that were in use already before. We should distin-
guish between numbers 0, 1, 2, etc., as parts of our human language in which
we can speak, among other things, about mathematics, and natural numbers
as mathematical objects. Mixing the two things would lead to paradoxes. In
fact, strictly speaking, in mathematics we do not define objects. We only in-
troduce new formulas, accept their abbreviations and help ourselves to deal
with them by imagining that they express some facts about some objects of
mathematics. There may be a philosophical discussion about the existence of
such mathematical objects, and we will not delve into such things. Anyway,
mathematical objects should be considered as standing at a completely differ-
ent level from that of metamathematics, which is a natural part of the human
language.

The same situation will repeat later. In chapter 5 we will define formulas,
variables, theories, proofs as mathematical objects. It is possible to imagine
that they are extensions of the metamathematical concepts introduced in this
present chapter, but it is better not to do so; they will have nothing in common
with the metamathematical formulas, etc., except that we chose to use the same
names in both cases.
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From now on we will be a little bit less strict. If f is a function and a is
an element in its domain, the value of f at a will not be denoted by f ′a but
by f(a), or sometimes also by fa. If f is a function and a is a subset of its
domain, the range of f � a will be also denoted by f(a), unless this would lead
to a misunderstanding. The class ArB will be sometimes denoted by A−B.
The empty set 0 will be sometimes denoted by ∅.

A few remarks should be made about various extensions of set theory.
As we have seen, axioms (C1) through (C9) provide the existence of the

class of all sets with a given property only in the case when the property can be
formulated in such a way that all quantifiers are restricted to sets. Imagine, for
example, that we need to denote by K the class of all algebras A such that the
variety generated by A has the amalgamation property (these notions will be
defined in later chapters). The existence of K does not follow from the axioms
of set theory immediately, since the property of A to be expressed needs to
mention the existence of that variety, which is not a set. We have to avoid any
mention of the variety generated by A. This can be done in this case, if we
take a look at the definition of the amalgamation property. Without knowing
what amalgamation property means, the introduction of the class K would be
illegal. So, one should be careful. Such inconveniencies could be avoided if we
added infinitely many axioms to the axioms of set theory: for each property,
without the restriction on quantifiers, the existence of the corresponding class.
We would obtain a larger system of axioms, perhaps a reasonable one, with
infinitely many axioms instead of finitely many. This system would not be
equivalent to its any finite subsystem. The resulting theory would be stronger.
We will not do it.

It has been found that the sentence 2ℵ0 = ℵ1, known as the continuum
hypothesis, is both consistent and also independent with the axioms of set
theory. This means that if we add either this sentence or its negation to the
axioms, the resulting theory is in both cases consistent under the assumption
that set theory is consistent. (Set theory is consistent most likely, but its
consistency cannot be proved by finite means.)

Sometimes it is convenient to work in set theory extended by the gen-
eralized continuum hypothesis, which states that 2ℵα = ℵα+1 for all ordinal
numbers α. This sentence is also both consistent and independent in the above
sense.

There is an even stronger consistent axiom, that of constructibility, which
has the generalized continuum hypothesis as its consequence.

A cardinal number κ is said to be strongly inaccessible if it is regular,
larger than ℵ0 and 2λ < κ for every cardinal number λ < κ. The existence of
a strongly inaccessible cardinal number implies the existence of a set U such
that all axioms of set theory translate to provable sentences if all variables are
let to run over subsets of U . However, the assumption of the existence would
be a too strong assumption.

We are going to work in set theory with axioms (C1)–(C9) and (S1)–S(6)
only.



CHAPTER 2

CATEGORIES

1. Basic definitions

We say that a category K is given if we are given

(1) a class Ko; elements of this class are called objects of K (or K-objects);
(2) a class Km; elements of this class are called morphisms of K;
(3) two mappings κ1, κ2 of Ko into Km; for a morphism a the objects

κ1(a) and κ2(a) are called the beginning and the end of a, respectively;
if κ1(a) = A and κ2(a) = B, we write a : A → B and say that a is a
morphism from A to B;

(4) a mapping, assigning to any pair a, b of morphisms with κ2(a) = κ1(b)
a morphism ba : κ1(a) → κ2(b) (instead of writing κ2(a) = κ1(b) we
can say that the product ba is defined);

(5) a mapping, assigning to any K-object A a K-morphism 1A : A → A
(called the identical morphism of A);

the following two conditions must be satisfied:

(1) if a : A → B, b : B → C and c : C → D then (cb)a = c(ba) (so this
morphism can be denoted by cba);

(2) if a : A→ B, then a1A = 1Ba = a.

For a given category K we define a category K∂ , called the dual of K,
in this way: K∂ has the same objects and the same morphisms as K; the
beginning of a morphism in K∂ is its end in K, and the end of a morphism
in K∂ is its beginning in K; the product ba of two morphisms in K∂ is the
product ab in K; 1A is the same in K∂ as in K. Clearly, (K∂)∂ = K for every
category K.

A morphism a : A → B is said to be an isomorphism if there exists a
morphism b : B → A with ba = 1A and ab = 1B . Clearly, the morphism b is
uniquely determined by a; it is called the inverse of a. Two objects A,B are
said to be isomorphic if there exists an isomorphism of A into B.

A morphism a : A → B is said to be a monomorphism if ab = ac implies
b = c (for any object C and any morphisms b : C → A and c : C → A).

A morphism a : A → B is said to be an epimorphism if it is a monomor-
phism in the dual category, i.e., if ba = ca implies b = c.

It is easy to see that the product of two monomorphisms (if defined) is
a monomorphism; if ba is a monomorphism, then a is a monomorphism. It
follows by duality that the product of two epimorphisms is an epimorphism

23
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and if ba is an epimorphism, then b is an epimorphism. Every isomorphism is
both a monomorphism and an epimorphism.

A category K is said to be small if its class of objects is a set. Of course,
in that case also the class of morphisms is a set.

A category K is said to be locally small if for every object A there exists
a set S of monomorphisms ending in A such that for every monomorphism
a ending in A there are a monomorphism b ∈ S and an isomorphism c with
a = bc. A category is said to be colocally small if its dual is locally small.

Let K be a category and L be a subclass of Ko. Then L defines in a natural
way a category, the objects of which are the elements of L and the morphisms
of which are the morphisms a of K such that both the beginning and the end
of a belongs to L. Such categories are called full subcategories of K; they can
be identified with subclasses of Ko.

By a functor of a category K into a category L we mean a mapping F
assigning to anyK-object an L-object and to any K-morphism an L-morphism,
such that the following three conditions are satisfied:

(1) if a : A→ B in K, then F (a) : F (A)→ F (B) in L;
(2) if a : A→ B and b : B → C in K, then F (ba) = F (b)F (a);
(3) for any K-object A, 1F (A) = F (1A).

Given two categories K and L and an L-object A, we define a functor
CA = CA,K,L of K into L in this way: CA(X) = A for every K-object X;
CA(a) = 1A for every K-morphism a. This functor is called the constant
functor of K onto the L-object A.

Let F,G be two functors of a category K into a category L. By a natural
transformation of F into G we mean a mapping µ, assigning to any K-object
A an L-morphism µA : F (A)→ G(A), such that for every a : A→ B in K we
have µBF (a) = G(a)µA.

2. Limits and colimits

By a diagram in a category K we mean a pair, consisting of a small category
D and a functor δ of D into K.

By a limit of a diagram D, δ in a category K we mean a K-object A
together with a natural transformation µ of the constant functor CA (of D
into K) into δ such that for any K-object A′ and any natural transformation
µ′ of CA′ into δ there exists a unique morphism a : A′ → A with µ′i = µia for
all D-objects i.

It is easy to see that the limit of a diagram D, δ in K (if it exists) is uniquely
determined up to isomorphism in the following sense: if A,µ and A′, µ′ are two
limits of D, δ in K, then there exists a unique isomorphism a of A into A′ such
that µi = µ′ia for all i.

It may be useful to remark that if A,µ is a limit of a diagram D, δ in K,
and if a, b are two morphisms of a K-object B into A, then a = b if and only
if µia = µib for all D-objects i.
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Let H be a family (over a set I) of objects of a category K. We can define
a diagram D, δ in K in this way: Do = I; D has only identical morphisms;
δ(i) = Hi. A limit of this diagram is called a product of the family H in the
kategory K. In other words, a product of H is a K-object A together with
a family µ of morphisms µi : A → Hi (i ∈ I) such that for any K-object A′

and any family µ′ of morphisms µ′i : A′ → Hi there exists a unique morphism
a : A′ → A with µ′i = µia for all i.

2.1. Theorem. Products in a category K are associative in the following
sense. Let A,µ be a product of a family H of K-objects over a set I; for every
i ∈ I let Ai, ν

(i) be a product of a family G(i) of K-objects over a set J (i).
Denote by J the disjoint union of the sets J (i) and define a family G of K-

objects by Gj = G
(i)
j , where i is the index such that j ∈ J (i). Then A, ν, where

νj = ν
(i)
j µi with j ∈ J (i), is a product of G in K.

Consequently, if every pair of K-objects has a product in K, then every
nonempty finite family of K-objects has a product in K.

Proof. It is easy. �

For a K-object A and a set I, by an I-power of A in K we mean a product
of the family H over I, defined by Hi = A for all i ∈ I.

Let a : A → C and b : B → C be two K-morphisms with the same end.
By a pullback of a, b we mean a K-object D together with two morphisms
c : D → A and d : D → B such that ac = bd and such that for any K-object
D′ and any morphisms c′ : D′ → A and d′ : D′ → A with ac′ = bd′ there exists
a unique morphism e : D′ → D with c′ = ce and d′ = de. Clearly, pullbacks
of a, b are essentially the limits of the diagram D, δ defined in this way: D
has three objects 1, 2, 3 and two morphisms p : 1 → 3, q : 2 → 3 except the
identical ones; δ(p) = a and δ(q) = b.

2.2. Theorem. Let D together with c : D → A and d : D → B be a
pullback of two morphisms a : A→ C and b : B → C in a category K. If a is
a monomorphism then d is a monomorphism.

Proof. It is easy. �

Let a : A → B and b : A → B be two K-morphisms with the same
beginning and the same end. By an equalizer of a, b we mean a K-object C
together with a morphism c : C → A such that ac = bc and such that for any
K-object C ′ and any morphism c′ : C ′toA with ac′ = bc′ there exists a unique
morphism d : C ′ → C with c′ = cd. Clearly, equalizers of a, b are essentially
the limits of the diagram D, δ defined in this way: D has two objects 1, 2 and
two morphisms p : 1→ 2 and q : 1→ 2 except the identical ones; δ(p) = a and
δ(q) = b.

2.3. Theorem. Let C together with c : C → A be an equalizer of a pair of
morphisms in a category K. Then c is a monomorphism.

Proof. It is easy. �
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By a final object of a category K we mean a K-object A such that for
every K-object B there exists precisely one morphism a : B → A. Clearly,
final objects of K are essentially the limits of the empty diagram in K.

By a colimit of a diagram D, δ in a category K we mean a limit of the
diagram D∂ , δ in the category K∂ . By a pushout of a pair of morphisms with
the same beginning in K we mean a pullback of these morphisms in K∂ . By a
coequalizer of a pair of morphisms with the same beginning and the same end
in K we mean an equalizer of these morphisms in K∂ . By an initial object of
a category K we mean a final object of K∂ , i.e., an object A such that for any
K-object B there exists precisely one morphism a : A→ B. If c, d is a pushout
of a, b and a is an epimorphism, then d is an epimorphism. Every coequalizer
is an epimorphism.

3. Complete and cocomplete categories

A category K is said to be complete if every diagram has a limit in K; it
is said to be cocomplete if every diagram has a colimit in K.

3.1. Theorem. The following are equivalent for a category K:

(1) K is complete;
(2) every family of K-objects has a product in K and every pair of mono-

morphisms of K with the same end has a pullback in K;
(3) every family of K-objects has a product in K and every pair of K-

morphisms with the same beginning and the same end has an equalizer
in K.

Proof. Of course, (1) implies (3). Let us prove that (3) implies (2). Let
a : A→ C and b : B → C be two morphisms. Let P together with p : P → A
and q : P → B be a product of the pair A,B. Let D together with d : D → P
be an equalizer of the pair ap, bq. One can easily check that D together with
pd, qd is a pullback of a, b in K.

It remains to prove that (2) implies (1). Let D, δ be a diagram in K.
Denote by I the set of D-objects and by J the set of D-morphisms. For a
morphism j ∈ J denote by α(j) the begining and by beta(j) the end of j.
Define a family of K-objects E over I by Ei = δ(i) for i ∈ I; define a family
F of K-objects over J by Fj = δ(β(j)) for j ∈ J . Let P together with p be
a product of E and let R together with r be a product of F in K. Since R is
a product, there exists a unique morphism h : P → R with pβ(j) = rjh for all
j ∈ J ; also, there exists a unique morphism k : P → R with δ(j)pα(j) = rjk
for all j ∈ J .

Let us prove that h and k are monomorphisms. Let ha = hb and kc = kd
for some morphisms a, b, c, d. In order to prove that a = b and c = d, it is
sufficient to prove that pia = pib and pic = pid for all i ∈ I. Where j = 1i, we
have

pia = pβ(j)a = rjha = rjhb = pβ(j)b = pib,

pic = δ(j)pα(j)c = rjkc = rjkd = δ(j)pα(j)d = pid.
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The pair h, k is a pair of monomorphisms with the same end R (and also
the same beginning P ). Let A together with h′, k′ be a pullback of this pair;
its existence follows from (2). For all i ∈ I we have

pih
′ = pβ(j)h

′ = rjhh
′ = rjkk

′ = δ(j)pα(j)k
′ = pik

′

(where again j = 1i), so that h′ = k′.
Let us define a natural transformation µ of the constant functor CA into δ

by µi = pih
′ = pik

′ for all i ∈ I. This is a natural transformation, since for a
D-morphism j : i1 → i2 we have

δ(j)µi1 = δ(j)pi1k
′ = δ(j)pα(j)k

′ = rjkk
′

= rjhh
′ = pβ(j)h

′ = pi2h
′ = µi2 .

We are going to show that A together with µ is a limit of D, δ in K. Let B
be a K-object and µ′ be a natural transformation of CB into δ. Since P is a
product, there exists a unique morphism v : B → P with µ′i = piv for all i ∈ I.
For j ∈ J we have

rjhv = pβ(j)v = µ′β(j) = δ(j)µ′α(j) = δ(j)pα(j)v = rjkv,

so that hv = kv. By the definition of pullback there exists a unique morphism
a : B → A with v = h′a, i.e., a unique morphism a : B → A such that
piv = pih

′a for all i ∈ I, i.e., µ′i = µia for all i ∈ I. �

3.2. Theorem. Let K be a category such that K is either complete and
locally small or cocomplete and colocally small. Then for every morphism a :
A → B of K there exist a K-object C, an epimorphism b : A → C and a
monomorphism c : C → B such that a = cb.

Proof. Since the assertion is self-dual, it is sufficient to prove the theorem
under the assumption that K is complete and locally small. There exists a
set Y0 of monomorphisms ending in B such that for every monomorphism m
ending in B there are a monomorphism m′ ∈ Y0 and an isomorphism h with
m = m′h. Denote by Y the set of the monomorphisms f ∈ Y0 for which
there exists a morphism f ′ with a = ff ′. Define a diagram D, δ in K in this
way: Do = Y ∪ {i0} where i0 is an element not belonging to Y ; except for the
identical morphisms, the category D contains a unique morphism pf : f → i0
for every f ∈ Y ; δ(pf ) = f . Let C together with µ be a limit of the diagram
D, δ in K. It is easy to see that the morphisms µf are monomorphisms. Put
c = µi0 , so that fµf = c for all f ∈ Y . Then c is a monomorphism, since it is
a product of two monomorphisms. For every f ∈ Y take a morphism f ′ with
a = ff ′. By the definition of a limit, there exists a morphism b : A→ C such
that f ′ = µfb for all f ∈ Y . For any f ∈ Y we have a = ff ′ = fµfb = cb.
So, it remains to prove that b is an epimorphism. Let ub = vb. Let E together
with e be an equalizer of the pair u, v, so that e is a monomorphism and ce is
a monomorphism ending in B. There exist a monomorphism f0 ∈ Y0 and an
isomorphism i such that f0 = cei. By the definition of equalizer there exists
a morphism ē : A → E with b = eē, so that a = ceē; we get f0 ∈ Y . We
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have ceiµf0
= f0µf0

= c = c1C ; since c is a monomorphism, it follows that
eiµf0

= 1C . Hence u = u1C = ueiµf0
= veiµf0

= v1C = v. �

4. Reflections

Let L be a full subcategory of a category K and let A be a K-object.
By a reflection of A in Lwe mean an L-object B together with a morphism
a : A → B such that for any L-object C and any morphism b : A → C there
exists a unique morphism c : B → C with b = ca. Clearly, a reflection of a
given object is unique up to isomorphism (if it exists) in the obvious sense. A
full subcategory L of K (or a subclass of Ko) is said to be reflective if every
K-object has a reflection in L.

4.1. Theorem. Let L be a reflective full subcategory of a category K such
that L is closed under isomorphisms (i.e., for any isomorphism a of K, the
beginning of a belongs to L if and only if the end of a belongs to L) and let
D, δ be a diagram in L.

(1) Let A,µ be a limit of D, δ in K. Then A ∈ L and A,µ is a limit of
D, δ in L.

(2) Let A,µ be a colimit of D, δ in K and let B together with a : A→ B
be a reflection of A in L. Then B together with ν, where νi = aµi for
all i ∈ Do, is a colimit of d, δ in L.

Consequently, if K is complete then L is complete; if K is cocomplete then L
is cocomplete.

Proof. (1) Let a : A → B be a reflection of A in L. For every i ∈ Do

there exists a unique morphism νi : B → δ(i) with µi = νia. For a D-morphism
e : i → j we have δ(e)νia = δ(e)µi = µj = νja; since a is a reflection, we get
δ(e)νi = νj, which shows that ν is a natural transformation. By the definition
of a limit there exists a unique morphism b : B → A such that νi = µib for
all i ∈ Do. For i ∈ Do we have µiba = νia = µi = µi1A, from which we get
ba = 1A. We have aba = a1A = a; from this we get ab = 1B , since according
to the definition of a reflection there is only one morphism c : B → B such
that a = ca, and both ab and 1B have this property. So, a is an isomorphism
and B ∈ l. The rest is clear.

(2) Clearly, ν is a natural transformation of δ into the constant functor CB .
let E be an L-object and κ be a natural transformation of δ into CE . Since
A,µ is a colimit, there exists a unique morphism b : A→ E such that κi = bµi

for all i ∈ Do. By the definition of a reflection there exists a unique morphism
c : B → D such that b = ca, i.e., a unique morphism such that bµi = caµi for
all i ∈ Do, i.e., κi = cνi. �



CHAPTER 3

STRUCTURES AND ALGEBRAS

1. Languages, structures, algebras, examples

By a language we mean a mapping σ, the domain of which is any set and
the range of which is a set of integers. By a symbol of σ (or σ-symbol) we mean
an element of the domain of σ. A σ-symbol s is said to be an operation symbol
if σ(s) ≥ 0; it is said to be a relation symbol if σ(s) < 0. For an operation
symbol s of σ, the number σ(s) is called its arity. For a relation symbol s, the
arity of s is the number −σ(s). Thus the arity of an operation symbol is a
nonnegative integer, while the arity of a relation symbol is a positive integer.
Operation symbols of arity 0 are called constants. Symbols of arity 1 are called
unary, and symbols of arity 2 are called binary. By a purely relational language
we mean a language without operation symbols. By an algebraic language, or
signature, we mean a language without relation symbols.

Let n be a positive integer. By a relation of arity n (or n-ary relation) on
a set A we mean a subset of An. Thus a unary (i.e., 1-ary) relation on A is a
subset of A. A binary (i.e., 2-ary) relation is a relation in the previous sense.
We often write a r b instead of 〈a, b〉 ∈ r for a binary relation r.

Let n be a nonnegative integer. By a partial operation of arity n (or
n-ary partial operation) on a set A we mean a mapping of a subset of An

into A; a partial operation is said to be an operation if the domain is the set
An. Thus nullary operations on A are in a natural one-to-one correspondence
with elements of A, and will be usually identified with them. Unary partial
operations on A are just mappings of a subset of A into A, and unary operations
are mappings of A into A. If f is a binary operation on A, we often write a f b
instead of f(a, b) = f ’〈a, b〉.

By a partial structure of a language σ (or just partial σ-structure) we mean
a pair 〈A, p〉 such that A is a nonempty set and p is a mapping, assigning to any
relation symbol R of σ a relation of the same arity on A and to any operation
symbol F of σ a partial operation of the same arity on A; if all the partial
operations are operations then 〈A, p〉 is said to be a structure. By a partial
algebra we mean a partial structure of an algebraic language. By an algebra we
mean a structure of an algebraic language. The set A is called the underlying
set of 〈A, p〉, and will be often identified with the structure. The relation,
or partial operation p(S) will be denoted by SA (or just by S, if there is no
confusion).

29
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By the cardinality of a partial structure we mean the cardinality of its
underlying set. Partial structures of cardinality 1 are called trivial ; nontrivial
partial structures are those of cardinality at least 2. A class of partial structures
is said to be nontrivial if it contains at least one nontrivial partial structure.

Let σ be a given language. Unless otherwise stated, all symbols and partial
structures will be symbols and partial structures of this one fixed language.

Observe that a subset of a language is a language. If τ ⊆ σ and A is a
partial σ-structure then the partial τ -structure B with the same underlying
set and SB = SA for all S ∈ Dom(τ) is called the reduct of A to τ , or the
underlying partial τ -structure of A. The reduct of A to the set of operation
symbols of σ is called the underlying partial algebra of A.

Algebras of the signature, containing just one binary operation symbol ·,
are called groupoids. For two elements a, b of a groupoid A, we usually write
ab instead of ·A(a, b). (If two groupoids are under consideration at a time and
there may be elements belonging to both of them, we should say something
like ‘ab = c in A’ instead of just ‘ab = c’.) In more complicated expressions, it
is necessary to use parentheses; in order to avoid writing too many of them, let
us make the following convention: a1a2 . . . an stands for ((a1a2) . . . )an, ab · cd
stands for (ab)(cd), ab(c · de)f stands for ((ab)(c(de)))f , etc. This convention
will be used also for arbitrary languages extending the signature of groupoids.

For every groupoid A we can define a groupoid B with the same underlying
set by ab = c in B if and only if ba = c in A. We call B the groupoid dual to A.

A groupoid A is said to be idempotent if it satisfies aa = a for all a ∈ A. It
is said to be commutative if it satisfies ab = ba for all a, b ∈ A. It is said to be
associative, or to be a semigroup, if it satisfies (ab)c = a(bc) for all a, b, c ∈ A.
By a semilattice we mean an idempotent commutative semigroup.

By an annihilating element (or zero element) of a groupoid A we mean
an element a such that ax = xa = a for all x ∈ A. By a unit element of a
groupoid A we mean an element a such that ax = xa = x for all x ∈ A. It
is easy to see that a groupoid contains at most one annihilating element and
also at most one unit element.

By a monoid we mean an algebra of the signature {·, 1} where · is a binary
operation symbol and 1 is a constant, such that its reduct to {·} is a semigroup
with unit element 1.

For every element a of a semigroup A and every positive integer k we define
the element ak of A as follows: a1 = a; ak+1 = aka. If A is a semigroup with
unit 1, this definition can be extended to all nonnegative integers k by a0 = 1.

Let A be a semigroup with unit 1 and let a ∈ A. An element b ∈ A is
called the inverse of a if ab = ba = 1. Clearly, every element of A has at most
one inverse.

By a cancellation groupoid we mean a groupoid A such that ab = ac implies
b = c and ba = ca implies b = c (for all a, b, c ∈ A). By a division groupoid we
mean a groupoid A such that for every pair a, b of elements of A there exist
elements c, d ∈ A such that ac = b and da = b.
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By a quasigroup we mean an algebra of the signature {·, /, \} such that

(a/b)b = a,
b(b\a) = a,
(ab)/b = a,
b\(ba) = a

for all a, b ∈ A.
It is easy to see that a quasigroup is uniquely determined by its groupoid

reduct. The groupoid reducts of quasigroups are precisely the cancellation
division groupoids.

By a loop we mean an algebra A of the signature {·, /, \, 1} such that the
reduct of A to {·, /, \} is a quasigroup and 1 is a unit of A.

By a group we mean an algebra A of the signature {·, ∗, 1}, where ∗ is a
unary operation symbol, such that the reduct of A to {·, 1} is a monoid and for
every a ∈ A, ∗a is the inverse of a. For every element a of a group A and every
integer k we define an element ak ∈ A as follows: if k ≥ 0, define it as above;
if k < 0, put ak = (∗a)−k. (Thus ∗a = a−1, which is a more usual notation.)

It is easy to see that a group is uniquely determined by its groupoid reduct.
The groupoid reducts of groups are precisely the division semigroups.

By an Abelian group we mean an algebra of the signature {+,−, 0}, where
+ is a binary, − is a unary operation symbol and 0 is a constant, such that

(a+ b) + c = a+ (b+ c),
a+ b = b+ a,
a+ 0 = a,
a+ (−a) = 0

for all a, b, c ∈ A. Clearly, there is essentially no difference between Abelian
groups and commutative groups. For two elements a, b of an Abelian group
we write a − b instead of a + (−b); for an integer k, the element ak of the
corresponding commutative group is denoted by ka.

By a ring we mean an algebra R of the signature {+, ·,−, 0, 1} such that
the reduct of R to {+,−, 0} is an Abelian group, the reduct of R to {·, 1} is a
monoid and

a(b+ c) = ab+ ac,
(b+ c)a = ba+ ca

for all a, b, c ∈ R. A ring R is said to be commutative if ab = ba for all a, b ∈ R.
By a division ring we mean a ringR such that every element a ∈ Rr{0} has

an inverse element (an element b with ab = ba = 1). A field is a commutative
division ring.

Let R be a ring. By an R-module we mean an algebra A of the signature
{+,−, 0} ∪R, where the elements of R are taken as unary operation symbols,
such that the reduct of A to {+,−, 0} is an Abelian group and

r(a+ b) = ra+ rb,
(r + s)a = ra+ sa,
(rs)a = r(sa),
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1a = a

for all r, s ∈ R and a, b ∈ A. If R is a field, then R-modules are called vector
spaces over R.

Structures of the language, containing just one relation symbol →, are
called graphs. For every graph A we can define a graph B with the same
underlying set by a → b in B if and only if b → a in A. We call B the graph
dual to A. A graph A is said to be reflexive if a → a for all a ∈ A. It is said
to be antireflexive if a 6→ a for all a ∈ A. It is said to be symmetric if a → b
implies b→ a. It is said to be antisymmetric if a→ b and b→ a imply a = b.
It is said to be transitive if a→ b and b→ c imply a→ c.

A quasiordered set is a reflexive, transitive graph. An ordered set is an
antisymmetric quasiordered set. If A is a quasiordered set then we write a ≤ b
instead of a→ b; we write a < b if a ≤ b and b � a.

Let A be an ordered set. For two elements a, b ∈ A such that a ≤ b, the set
{x ∈ A : a ≤ x ≤ b} is denoted by [a, b]; such subsets of A are called intervals.
An element a is said to be covered by an element b (and b is said to be a cover
of a) if a < b and there is no c ∈ A with a < c < b. Clearly, a finite ordered
set is uniquely determined by the set of its cover relations (the set of the pairs
〈a, b〉 such that a is covered by b).

By an atom of an ordered set with the least element o we mean any element
that covers o. Coatoms are defined dually.

Let A be an ordered set. An element c ∈ A is called the meet of two
elements a, b in A if c ≤ a, c ≤ b and d ≤ c for any element d ∈ A such
that d ≤ a and d ≤ b. The notion of the join of two elements in an ordered
set can be defined dually (i.e., the join of a, b in A is the meet of a, b in the
dual of A). Clearly, every pair of elements of A has at most one meet and at
most one join. By a meet-semilattice we mean an ordered set in which every
two elements have a meet. By a join-semilattice we mean a dual of a meet-
semilattice. By a lattice ordered set we mean an ordered set that is both a
meet- and a join-semilattice.

There is a natural one-to-one correspondence between semilattices and
meet-semilattices. For a given semilattice, the corresponding meet-semilattice
is defined by a ≤ b iff ab = a. Given a meet-semilattice, the corresponding
semilattice is defined by taking ab to be the meet of a, b. This makes it possible
to identify semilattices with semilattice-ordered sets. (Of course, dually, there
is also a one-to-one correspondence between semilattices and join-semilattices.)

By a lattice we mean an algebra of the signature, containing two binary
symbols ∧ and ∨ (meet and join), and satisfying

(a ∧ b) ∧ c = a ∧ (b ∧ c), (a ∨ b) ∨ c = a ∨ (b ∨ c),

a ∧ b = b ∧ a, a ∨ b = b ∨ a,

(a ∨ b) ∧ a = a, (a ∧ b) ∨ a = a

for all a, b, c.



2. HOMOMORPHISMS 33

Similarly as for semilattices, there is a natural one-to-one correspondence
between lattices and lattice-ordered sets; the two will be usually identified.

By a complete lattice we mean a lattice in which every subset has the meet.
(The meet

∧

S of a subset S is an element a such that a ≤ x for all x ∈ S,
and b ≤ a for any element b such that b ≤ x for all x ∈ S; the join

∨

S of S
is defined dually.) It is easy to see that in a complete lattice, every subset has
also the join.

By an ideal of a lattice A we mean a nonempty subset X of A such that
a ≤ b ∈ X implies a ∈ X and a, b ∈ X implies a ∨ b ∈ X. For every element
a ∈ L, the set {x ∈ A : x ≤ a} is an ideal, called the principal ideal of A
generated by a. Filters and principal filters are defined dually.

The intersection of any nonempty set of ideals of a lattice A is an ideal
if it is nonempty. Consequently, the set of all ideals of A, together with the
empty set, is a complete lattice with respect to inclusion; we call it the lattice
of ideals of A. Its subset consisting of the principal ideals of A is a sublattice
isomorphic to A. Similarly, the set of all filters of A is a complete lattice, called
the lattice of filters of A.

An element a of a complete lattice L is said to be compact if for any subset
S of L, a ≤

∨

S implies a ≤
∨

S′ for some finite subset S′ of S. By an algebraic
lattice we mean a complete lattice L such that every element of L is the join
of a set of compact elements of L.

2. Homomorphisms

Let A and B be two partial σ-structures. By a homomorphism of A into
B we mean a mapping h of A into B satisfying the following two conditions:

(1) whenever R is an n-ary relation symbol of σ then 〈a1, . . . , an〉 ∈ RA

implies 〈h(a1), . . . , h(an)〉 ∈ RB

(2) whenever F is an n-ary operation symbol of σ FA(a1, . . . , an) = a
implies FB(h(a1), . . . , h(an)) = h(a).

The second condition can be also stated as

h(FA(a1, . . . , an)) = FB(h(a1), . . . , h(an))

whenever the left side is defined.
If f is a homomorphism of A into B and g is a homomorphism of B into C,

then the composition gh is a homomorphism of A into C.
By an isomorphism of A onto B we mean a bijection h of A onto B such

that h is a homomorphism of A into B and the inverse h−1 is a homomorphism
of B into A. Clearly, if f is an isomorphism of A onto B, then f−1 is an
isomorphism of B onto A. We write A ' B if A,B are isomorphic, i.e., if there
exists an isomorphism of A onto B.

Observe that for a given signature σ, any two trivial σ-algebras are isomor-
phic. We also express this fact by saying that there is just one trivial σ-algebra
up to isomorphism.
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2.1. Theorem. Let A and B be two σ-algebras. A bijection of A onto B is
an isomorphism of A onto B if and only if it is a homomorphism of A into B.

Proof. It is easy. �

By an endomorphism of a partial structure A we mean a homomorphism
of A into A. By an automorphism of A we mean an isomorphism of A onto A.
For any partial structure A, idA is an automorphism of A.

The following observation is often used to prove that a given homomor-
phism is an isomorphism.

2.2. Theorem. A homomorphism f of A into B is an isomorphism of A
onto B if and only if there exists a homomorphism g of B into A such that
gf = idA and fg = idB.

Proof. It is easy. �

The set of endomorphisms of an algebra A is a monoid with respect to
composition. The set of automorphisms of A is a group with respect to com-
position. These are called the endomorphism monoid and automorphism group
of A.

Let K be a class of partial structures of a language σ and L be a class
of partial structures of a language τ . By an equivalence between K and L we
mean a bijection ε of K onto L such that for any A ∈ K, the partial structures
A and ε(A) have the same underlying sets and for any A,B ∈ K and any
mapping f of A into B, f is a homomorphism of A into B if and only if f is a
homomorphism of ε(A) into ε(B). We say that the two classes are equivalent
if there exists an equivalence between them.

It is easy to see that the class of groups is equivalent with the class of divi-
sion semigroups. (On the other hand, the class of quasigroups is not equivalent
with the class of cancellation division groupoids.)

3. Substructures

Let A be a partial σ-structure, and let S be a nonempty subset of A.
We can define a partial σ-structure B with the underlying set S as follows:
if R is an n-ary relation symbol of σ then RB = RA ∩ B

n; if F is an n-ary
operation symbol of σ then FB is the restriction of FA to the set of the n-tuples
〈a1, . . . , an〉 ∈ S

n such that the element FA(a1, . . . , an) is defined and belongs
to S. This partial structure is called the partial substructure of A determined
by S; it is denoted by A � S. The reduct of A � S to a sublanguage τ of σ is
denoted by A � S, τ . If σ is an algebraic language then partial substructures
are called partial subalgebras.

So, for a given partial structure A, every nonempty subset of A is the
underlying set of precisely one partial substructure of A. Observe that a partial
subalgebra of an algebra is not necessarily an algebra.

By a subuniverse of a partial σ-structure A we mean a subset S of A such
that FA(a1, . . . , an) ∈ S for any n-ary operation symbol F of σ and any n-tuple
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〈a1, . . . , an〉 ∈ S
n such that FA(a1, . . . , an) is defined. By a substructure of a

partial structure A we mean any partial substructure, the underlying set of
which is a subuniverse. A subalgebra of a partial algebra is not necessarily an
algebra. A subalgebra of an algebra is an algebra.

3.1. Theorem. Let A,B be two partial structures. Then B is a partial
substructure of A if and only if B ⊆ A, idB is a homomorphism of B into A
and idB is a homomorphism of C into B for any partial structure C with the
underlying set B such that idB is a homomorphism of C into A.

An algebra B is a subalgebra of an algebra A if and only if B ⊆ A and
idB is a homomorphism of B into A.

Proof. It is easy. �

Clearly, a subset S of a structure A is a subuniverse of A if and only if it is
either the underlying set of a substructure of A, or else σ contains no constants
and S is empty.

By an embedding of a partial structure A into a partial structure B we
mean an isomorphism of A onto a partial substructure of B. We say that A
can be embedded into B if there exists such an ambedding. Clearly, an algebra
A can be embedded into an algebra B if and only if there exists an injective
homomorphism of A into B.

Clearly, the intersection of any nonempty collection of subuniverses of a
partial structure A is a subuniverse of A. It follows that for every subset S of
A there exists the least subuniverse of A containing S; it is called the subuni-
verse of A generated by S, and is denoted by Sg(S). If Sg(S) is nonempty,
then the unique substructure of A with the underlying set Sg(S) is called the
substructure of A generated by S. If A = Sg(S), then S is said to be a gener-
ating subset of A (or a set of generators of A). A partial structure is said to
be finitely generated it is has a finite generating subset.

3.2. Theorem. Let f be a homomorphism of a partial structure A into a
partial structure B. Then for every subuniverse S of B, f−1’’S is a subuniverse
of A; if A is a structure then for every subuniverse S of A, f ’’S is a subuniverse
of B.

Proof. It is easy. �

3.3. Theorem. Let f, g be two homomorphisms of a partial structure A
into a partial structure B. Then {a ∈ A : f(a) = g(a)} is a subuniverse of A.
Consequently, if two homomorphisms f, g of A into B coincide on a generating
subset of A, then f = g.

Proof. It is easy. �

3.4. Theorem. Let S be a generating subset of a partial structure A. Then
card(A) ≤ max(ω, card(S), card(σ)).

Proof. Denote by k the maximum of the three cardinal numbers. Define
subsets S0 ⊆ S1 ⊆ . . . of A as follows: S0 = S; Si+1 is the set of the ele-
ments that either belong to Si or can be expressed as FA(a1, . . . , an) for an
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n-ary operation symbol F and an n-tuple a1, . . . , an of elements of Si. Clearly,
card(Si) ≤ k for all i and A is the union of this chain of subsets. �

The set of subuniverses of a given partial structure A is a complete lattice
with respect to inclusion. One can easily prove that a subuniverse of a partial
structure A is a compact element of the lattice of subuniverses of A if and
only if it is a finitely generated subuniverse of A. Consequently, the lattice of
subuniverses of A is an algebraic lattice.

4. Congruences

By a congruence of a partial structure A we mean an equivalence rela-
tion r on A such that for any n-ary operation symbol F , 〈a1, b1〉 ∈ r, . . . ,
〈an, bn〉 ∈ r imply 〈FA(a1, . . . , an), FA(b1, . . . , bn)〉 ∈ r whenever FA(a1, . . . ,
an) and FA(b1, . . . , bn) are both defined.

It is easy to see that the intersection of any nonempty set of congruences
of A is a congruence. Consequently, the set of congruences of A is a complete
lattice with respect to inclusion. The congruence lattice of A will be denoted
by Con(A).

For a partial structure A, idA is the least and A2 is the greatest congruence
of A. A partial structure is said to be simple if it has precisely two congruences
(so, it must be nontrivial and the two congruences are idA and A2).

For a binary relation r on A, the congruence of A generated by r (the
intersection of all congruences containing r) is denoted by CgA(r). For a pair
〈a, b〉 of elements of A we put CgA(a, b) = CgA({〈a, b〉}); these congruences
are called principal. By a finitely generated congruence of A we mean any
congruence of the form Cg(r), where r is a finite relation on A.

Let r be a congruence of a partial structure A. For a ∈ A, a/r is the block
of r containing a. We define a partial structure A/r (of the same language)
with the underlying set {a/r : a ∈ A} as follows: for an n-ary relation symbol
R, 〈b1, . . . , bn〉 ∈ RA/r if and only if there exist elements a1 ∈ b1, . . . , an ∈
bn with 〈a1, . . . , an〉 ∈ RA; for an n-ary operation symbol F and elements
b1, . . . , bn ∈ A/r, FA/r(b1, . . . , bn) is defined if and only if there exist elements
a1 ∈ b1, . . . , an ∈ bn such that FA(a1, . . . , an) is defined; in the positive case
we put FA/r(b1, . . . , bn) = FA(a1, . . . , an)/r. (It follows from the definition of
congruence that this definition is correct.) The partial structure A/r is called
the factor of A through r. Of course, any factor of a structure is a structure;
any factor of an algebra is an algebra.

Clearly, the mapping a → a/r is a homomorphism of A onto A/r. This
mapping is called the canonical homomorphism of A onto A/r; it is denoted
by πr.

4.1. Theorem. The kernel of any homomorphism of a partial structure A
into any partial structure is a congruence of A. Any congruence r of a partial
structure A is the kernel of the canonical homomorphism of A onto A/r.

Proof. It is evident. �
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4.2. Theorem. Let f be a homomorphism of an algebra A onto an alge-
bra B and let r be a congruence of A such that ker(f) ⊆ r. Then there exists
a unique mapping g of B into A/r, such that gf is the canonical homomor-
phism of A onto A/r. This mapping g is a homomorphism of B onto A/r.
If r = ker(f), then g is an isomorphism of B onto A/r. Consequently, every
homomorphic image of an algebra A is isomorphic to a factor of A.

Proof. It is easy. �

4.3. Theorem. Let r be a congruence of an algebra A. For any congruence
s of A/r define a congruence f(s) of A by 〈a, b〉 ∈ f(s) if and only if 〈a/r, b/r〉 ∈
s. Then f is an isomorphism of the congruence lattice of A/r onto the principal
filter of the congruence lattice of A generated by r. For any congruence s of
A/r, the algebras (A/r)/s and A/f(s) are isomorphic.

Proof. It follows from 4.2. �

If r and t are two congruences of an algebra A such that r ⊆ t, then the
congruence of A/r corresponding to t will be denoted by t/r. Thus 〈a/r, b/r〉 ∈
t/r if and only if 〈a, b〉 ∈ t.

4.4. Theorem. For any algebra A, Con(A) is a complete sublattice of the
lattice of equivalences on A.

Proof. For a nonempty set R of equivalences on A,
∧

R is the intersection
of R and

∨

R is the set of ordered pairs 〈a, b〉 for which there exists a finite
sequence a0, . . . , ak of elements of A with a0 = a, ak = b, such that for any
i ∈ {1, . . . , n} there is an si ∈ R with 〈ai−1, ai〉 ∈ si. It is not difficult to
prove that if R is a set of congruences, then both

∧

R and
∨

R are again
congruences. �

Clearly, finitely generated congruences of A are precisely the compact ele-
ments of the lattice Con(A). It follows that Con(A) is an algebraic lattice.

A congruence r of an algebra A is said to be fully invariant if 〈a, b〉 ∈ r
implies 〈f(a), f(b)〉 ∈ r for every endomorphism f of A. It is said to be
invariant if 〈a, b〉 ∈ r implies 〈f(a), f(b)〉 ∈ r for every automorphism f of A.

5. Direct and subdirect products

Let H be a family of sets over I, i.e., a mapping with domain I; for i ∈ I
write Hi = H(i). Recall that the direct product ΠH of H is the set of all
mappings f with domain I such that f(i) ∈ Hi for all i ∈ I. For i ∈ I, the
mapping f → f(i) of ΠH into Hi is called the i-th projection of ΠH to Hi.

Now let H be a family of partial σ-structures over a set I. We can define
a partial structure B with the underlying set ΠH in this way: if R is an n-ary
relation symbol then 〈f1, . . . , fn〉 ∈ RB if and only if 〈f1(i), . . . , fn(i)〉 ∈ RHi

for all i ∈ I; if F is an n-ary operation symbol then FB(f1, . . . , fn) = f if
and only if FHi

(f1(i), . . . , fn(i)) = f(i) for all i ∈ I. This partial structure is
called the direct product of the family H, and is also denoted by ΠH. So, the
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operations of the direct product are defined componentwise. Clearly, the i-th
projection is a homomorphism of ΠH onto Hi for any i ∈ I.

Observe that according to this definition, the direct product of the empty
family of partial structures is a one-element partial structure.

5.1. Theorem. Let H be a family of algebras over a set I. The direct
product of H is the unique algebra with the underlying set ΠH such that for
any i ∈ I, the i-th projection is a homomorphism of the algebra onto Hi.

Proof. It is easy. �

For a partial structure A and an arbitrary set I we denote by AI the direct
product of the family of partial structures, indexed by I, all the members of
which are equal to A. This partial structure is called the I-th direct power
of A.

It should be clear what we mean by the direct product A1 × · · · ×An of a
finite collection of partial structures A1, . . . , An.

An algebra is said to be directly indecomposable if it is not isomorphic to
the direct product of any two nontrivial algebras.

5.2. Theorem. An equivalence on an algebra A is a congruence of A if
and only if it is a subuniverse of the direct product A×A.

Proof. It is easy. �

Let H be a family of algebras of signature σ over a set I. By a subdirect
product of H we mean any subalgebra A of the direct product ΠH such that
for any i ∈ I, the restriction of the i-th projection to A maps A onto Hi.

5.3. Theorem. Let A be a subdirect product of a family H of algebras over
a set I. For every i ∈ I denote by ri the kernel of the restriction of the i-th
projection to A, so that ri is a congruence of A. Then

⋂

{ri : i ∈ I} = idA.
Conversely, let A be an arbitrary algebra and r be a family (over a set I)

of congruences of A such that
⋂

{ri : i ∈ I} = idA. Then A is isomorphic to a
subdirect product of the family of algebras A/ri (i ∈ I).

Proof. The first statement is clear. Let A and r be as in the second
statement. Define a family H over I by Hi = A/ri. For a ∈ A, let f(a) be the
element of ΠH such that f(a)(i) = a/ri for all i ∈ I. One can easily verify
that f is a homomorphism of A into the direct product ΠH, the range B of f
is a subdirect product of H and the kernel of f is equal to

⋂

{ri : i ∈ I} = idA,
so that f is an isomorphism of A onto B. �

With respect to this correspondence between subdirect decompositions of
a given algebra and families of congruences of the algebra with identical in-
tersection, we introduce the following definition: An algebra A is said to be
subdirectly irreducible if it is nontrivial and whenever idA is the intersection of
a nonempty family of congruences of A, then at least one of the congruences
equals idA.

Clearly, every simple algebra is subdirectly irreducible.
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The congruence lattice of a subdirectly irreducible algebra A contains pre-
cisely one atom; this atom is the intersection of all the congruences of A differ-
ent from idA. This unique atom is called the monolith of A. The monolith of
a subdirectly irreducible algebra A is contained in any congruence of A other
than idA.

5.4. Theorem. (Birkhoff [44]) Every algebra is isomorphic to a subdirect
product of a family of subdirectly irreducible algebras.

Proof. Let A be an algebra. Put I = {〈a, b〉 ∈ A2 : a 6= b}. It follows eas-
ily from Zorn’s lemma that for any 〈a, b〉 ∈ I there exists a maximal congruence
among the congruences r of A not containing 〈a, b〉. For each 〈a, b〉 ∈ I choose
one such maximal congruence and denote it by ri. It follows from the maximal
property of ri that the algebra A/ri is subdirectly irreducible. Clearly, the
intersection of this family of congruences equals idA, and so, according to 5.3,
A is isomorphic to a subdirect product of the family of algebras A/ri. �

6. ISP-closed classes

Let K be a class of partial structures of the given language. We denote
by H(K) the class of homomorphic images of elements of K, by S(K) the
class of substructures of elements of K, by P(K) the class of direct products
of arbitrary families of partial structures from K, and by I(K) the class of
partial structures isomorphic to a partial structure from K. Observe that if K
is a class of structures then all these classes are also classes of structures. A
class K is said to be closed under homomorphic images (or substructures, or
direct products, or isomorphisms) if H(K) ⊆ K (or S(K) ⊆ K, or P(K) ⊆ K,
or I(K) ⊆ K). K is said to be ISP-closed if it is closed under isomorphisms,
substructures and direct products; it is said to be HSP-closed if it is closed
under homomorphic images, substructures and direct products.

Observe that every ISP-closed class is nonempty. The class of one-element
structures with all relations nonempty is the least ISP-closed class. Of course,
the largest ISP-closed class is the class of all partial structures of the given
language.

6.1. Theorem. Let K be a class of partial structures of the given language.
Then

SH(K) ⊆ HS(K), PH(K) ⊆ HP(K), PS(K) ⊆ SP(K), PP(K) ⊆ IP(K).

Proof. It is easy. �

6.2. Theorem. Let K be a class of partial structures of the given signature.
Then ISP(K) is the least ISP-closed class containing K and HSP(K) is the
least HSP-closed class containing K.

Proof. It follows from 6.1. �

We call ISP(K) the ISP-closed class generated by K, and HSP(K) the
HSP-closed class generated by K.
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By a reflection of a partial structure A in a class K of partial structures
we mean its reflection in the sense of category theory, i.e., a partial structure
B ∈ K together with a homomorphism f of A into B, such that for any C ∈ K
and any homomorphism g of A into C there exists precisely one homomorphism
h of B into C with the property g = hf . Clearly, B is uniquely determined up
to isomorphism by A and K. We often neglect the homomorphism f and by a
reflection of A in K we mean just the partial structure B.

6.3. Theorem. Let K be an ISP-closed class of partial structures. Then
every partial structure A of the given language has a reflection in K. If f :
A→ B is a reflection of A in K, then f(A) is a generating subset of B.

Proof. Denote by Q the class of the ordered pairs 〈g,C〉 such that C ∈ K,
g is a homomorphism of A into C and g(A) is a generating subset of C. It
follows from 3.4 that there exists a subset I of Q such that for every 〈g,C〉 ∈ Q
there are a pair 〈g′, C ′〉 ∈ I and an isomorphism h of C onto C ′ with g′ = hg.
For i = 〈g,C〉 ∈ I put Hi = C, and denote by D the product of this family of
partial structures; denote by pi the i-th projection of D onto Di. There exists
a unique homomorphism f : A → D such that g = pif for all i = 〈g,C〉 ∈ I.
Denote by B the substructure of D generated by the range of f . Since K is
ISP-closed, B belongs to K. It is easy to check that f : A→ B is a reflection
of A in K. �

6.4. Theorem. Let A be an algebra and K be an ISP-closed class of alge-
bras. Then there exists the least congruence r of A with the property A/r ∈ K.
The algebra A/r, together with the canonical homomorphism of A onto A/r,
is a reflection of A in K.

Proof. Define r as the intersection of all the congruences s such that
A/s ∈ K. �

6.5. Theorem. Let S be a generating subset of a partial algebra A. The
class of the partial algebras B such that every mapping of S into B can be
extended to a homomorphism of A into B is a HSP-closed class.

Proof. It is easy to prove that the class is closed under subalgebras, ho-
momorphic images and direct products. �

7. Free partial structures

A partial structure A is called free over a set X in a class K of partial
structures (or also K-free over X), if A ∈ K, X is a generating subset of A and
for any B ∈ K, any mapping of X into B can be extended to a homomorphism
of A into B. (This extension is then unique due to 3.3).

A free partial structure over a set X in a given class K is uniquely deter-
mined up to isomorphism by the cardinality of X. If A is free over X in K
and B is free over Y in K and if there is a bijection f of X onto Y , then f can
be uniquely extended to an isomorphism of A onto B. (This follows from 2.2.)
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So, for every class K and every cardinal number κ there exists at most one
(up to isomorphism) free partial structure in K over a set of cardinality κ.

By a discrete partial structure we mean a partial structure A such that SA

is empty for any relation or operation symbol S. Clearly, a discrete partial
structure is uniquely determined by its underlying set.

7.1. Theorem. A partial structure is free in the class of all partial struc-
tures if and only if it is discrete. The discrete partial structure with the un-
derlying set X is free over X in the class of all partial structures of the given
language.

Proof. It is easy. �

7.2. Theorem. Let K and L be two nontrivial ISP-closed classes such
that L ⊆ K; let A be a free partial structure over X in the class K, and let
f : A→ B be a reflection of A in L. Then the restriction of f to X is injective
and B is free over f(X) in L.

Proof. It is easy. �

7.3. Theorem. Let K be a nontrivial ISP-closed class. Then for every
nonempty set X there exists a free partial structure over X in K.

Proof. It follows from 6.3, 7.1 and 7.2. �

8. The category of all partial structures of a given language

Every class K of partial structures (of a given language) can be considered
as (and identified with) a category in the following way: the objects of the
category are the elements of K; morphisms are triples 〈f,A,B〉 such that
A,B ∈ K and f is a homomorphism of A into B; A is the beginning and B is
the end of 〈f,A,B〉; 〈g,B,C〉〈f,A,B〉 = 〈gf,A,C〉; 1A = 〈idA, A,A〉.

The category of all partial structures of a given language σ will be denoted
by Qσ.

Let H be a family of partial structures over a set I. The direct product
of H, together with the projections, is a product of H in the category Qσ.
Under the assumption that I is nonempty, we are going to construct a co-
product of H in Qσ. Define a partial structure B as follows: its underlying
set is the set of the ordered pairs 〈i, a〉 where i ∈ I and a ∈ Hi; for an
n-ary operation symbol F , FB(〈i1, a1〉, . . . , 〈in, an〉) is defined if and only if
i1 = · · · = in = i and FHi

(a1, . . . , an) is defined for some i ∈ I, in which case
the defined element is 〈i, FHi

(a1, . . . , an)〉; in particular, FB is never defined
for a constant F ; for an n-ary relation symbol R, 〈〈i1, a1〉, . . . , 〈in, an〉〉 ∈ RB

if and only if i1 = · · · = in = i and 〈a1, . . . , an〉 ∈ RHi
for some i ∈ I. Denote

by r the least congruence of B containing all the pairs 〈〈i, FHi
〉, 〈j, FHj

〉〉 such
that F is a constant and FHi

and FHj
are both defined. Denote by A the

partial structure B/r, modified by defining FA = 〈i, FHi
〉/r for any constant

F such that FHi
is defined for at least one i ∈ I. For i ∈ I define a mapping
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µi of Hi into A by µi(a) = 〈i, a〉/r. One can easily check that A together with
µ is a coproduct of H in Qσ.

On the other hand, there is no coproduct of the empty family in Qσ, i.e.,
the category Qσ has no initial object. The reason is just formal: we did not
allow a partial structure to have the empty underlying set. In most situations
it would be inconvenient to have to consider empty partial structures, but there
are also situations, like here, where this lack causes a problem. For a category
K define a new category K+0 obtained from K by adding a new object (we
can call it the empty object and denote it by 0) in such a way that K is a full
subcategory of K+0, 0 is an initial object of K+0, and there is no morphism
of a K-object into 0.

8.1. Theorem. For a language σ, the category Q+0
σ is both complete and

cocomplete.

Proof. According to 2.3.1, it remains to prove that equalizers and co-
equalizers exist in Q+0

σ . Let A,B be two partial structures and f : A → B
and g : A→ B be two homomorphisms. Put S = {a ∈ A : f(a) = g(a)}. If S
is nonempty, then there is a unique substructure C of A with the underlying
set S, and C together with the identity is an equalizer of the pair f, g. If S is
empty, then 0 together with the unique morphism of 0 into A is an equalizer
of f, g.

Denote by r the congruence of B generated by the relation {〈f(a), g(a)〉 :
a ∈ A}. It is easy to see that B/r together with the canonical homomorphism
of B onto B/r is a coequalizer of the pair f, g. �

8.2. Theorem. A morphism f : A→ B of Qσ is a monomorphism if and
only if f is injective. A morphism f : A→ B of Qσ is an epimorphism if and
only if the range of f is a generating subset of B. Consequently, the category
Qσ is both locally and colocally small.

Proof. Both converse implications are easy. Let f : A → B be a mono-
morphism and suppose f(a) = f(b) for two distinct elements a, b of A. Denote
by C the discrete partial structure with the underlying set {a} (no partial
operations and no relations are defined in C), and define two homomorphisms
g, h of C into A by g(a) = a and h(a) = b. Then fg = fh, while g 6= h.

Now let f : A→ B be an epimorphism and suppose that the range of f is
not a generating subset of B, i.e., that there exists a proper substructure X
of B containing the range of f . Put Y = B r X. One can easily construct a
partial structure C with the underlying set X ∪ (Y ×{1})∪ (Y ×{2}) and two
distinct homomorphisms g, h : B → C such that gf = hf . �

9. ISP-closed classes as categories

By 6.3, every ISP-closed class of partial structures of a language σ is a
reflective subcategory of the category Qσ.

9.1. Theorem. Let K be an ISP-closed class of partial structures of a
language σ. The category K+0 is both complete and cocomplete.
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Proof. It follows from 2.4.1 and 8.1. �

9.2. Example. Consider the class K of partial algebras A of the signature
consisting of a binary symbol · and two unary symbols α, β, satisfying the
following conditions:

(1) the partial operations α and β are operations
(2) ab is defined in A if and only if α(a) = β(b)
(3) if ab is defined, then α(ab) = α(b) and β(ab) = β(a)
(4) α(β(a)) = β(a) for all a ∈ A
(5) β(α(a)) = α(a)
(6) (ab)c = a(bc) whenever α(a) = β(b) and α(b) = β(c)
(7) a · α(a) = a for all a ∈ A
(8) β(a) · a = a for all a ∈ A

For every nonempty small category D we can define a partial algebra A ∈ K
with the underlying set Dm as follows: α(a) is the identical morphism of
the beginning of a; β(a) is the identical morphism of the end of a; ab in
A is the same as ab in D. This mapping of the class of nonempty small
categories onto the class K is almost a bijection. Since functors between small
categories correspond precisely to homomorphisms between the corresponding
partial algebras, and since K is (obviously) an ISP-closed class, it follows that
the category of small categories and functors is both complete and cocomplete.

The proof of Theorem 9.1, based on 2.4.1, enables us to actually construct
a limit of a diagram in a given ISP-closed class K. In the case of colimits,
however, it is just existential. For the construction of a colimit in K, we need
to construct a colimit in the category Qσ (which may be easy; for example,
we have already given the construction of a coproduct) and then to take a
reflection in K, which may be a problem. So, the construction of a colimit is
a particular problem for a particular ISP-closed class. In order to be able to
construct colimits at least in the class of all structures of a given signature, we
need to have a construction of a reflection of an arbitrary partial structure in
this class. This can be done as follows.

Let A be a partial structure of a language σ. Define a chain B0 ⊆ B1 ⊆ . . .
in this way: B0 = A; Bi+1 is the union of Bi with the set of the finite sequences
(F, a1, . . . , an) such that F is an n-ary operation symbol of σ, a1, . . . , an are
elements of Bi and if a1, . . . , an ∈ B0 then the element FA(a1, . . . , an) is not
defined. Define a σ-structure B with the underlying set

⋃∞
i=0Bi in this way:

for an n-ary operation symbol F put FB(a1, . . . , an) = (F, a1, . . . , an) unless
FA(a1, . . . , an) is defined, in which case put FB(a1, . . . , an) = fA(a1, . . . , an);
for a relation symbol R put RB = RA. One can easily check that this struc-
ture B, together with the identical homomorphism of A into B, is a reflection
of A in the class of all σ-structures.
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10. Terms

Let X be a given set (disjoint with Dom(σ)). By a term (of the language
σ) over X we mean a finite sequence of elements of Dom(σ)∪X which can be
obtained in a finite number of steps using the following two rules:

(1) every element of X is a term over X;
(2) if F is an n-ary operation symbol of σ and t1, . . . , tn are terms over X,

then the composition of the n+1 sequences Ft1 . . . tn is a term over X.

If the set X is fixed, or clear from the context, then by a term we mean a
term over X.

By the length of a term t we mean the length of the finite sequence t. The
length of t will be denoted by λ(t). So, λ(x) = 1 for x ∈ X, and λ(Ft1 . . . tn) =
1 + λ(t1) + · · ·+ λ(tn). Clearly, λ(t) ≥ 1 for all t; we have λ(t) = 1 if and only
if either t ∈ X or t is a constant.

10.1. Lemma. If t is a term, then no proper beginning of the sequence t is
a term.

Proof. Suppose there are two terms t, u such that u is a proper beginning
of t, and let t be the shortest term for which such a proper beginning u exists.
Clearly, t /∈ X and t = Ft1 . . . tn for some operation symbol F of arity n ≥ 1
and some terms t1, . . . , tn. Also, u = Fu1 . . . un for some terms u1, . . . , un.
Since t 6= u, there exists an index i with ti 6= ui. Let i be the least index with
ti 6= ui. Then either ti is a proper beginning of ui or ui is a proper beginning
of ti. But both ti and ui are shorter than t, a contradiction by induction. �

The following lemma says that every term can be read in only one way.

10.2. Lemma. Let Ft1 . . . tn = Gu1 . . . um, where F is an operation symbol
of arity n, G is an operation symbol of arity m, and ti and uj are terms. Then
F = G, n = m, and t1 = u1, . . . , tn = un.

Proof. Clearly, F = G and hence n = m. Suppose there is an index i
with ti 6= ui, and let i be the least index with this property. Then clearly
either ti is a proper beginning of ui, or ui is a proper beginning of ti; we get a
contradiction by Lemma 10.1. �

Let X be arbitrary if σ contains constants, and nonempty if σ is without
constants. Then the set T of terms over X is nonempty, and we can define a
structure T with the underlying set T as follows: RT = 0 for every relation sym-
bol R; if F is an operation symbol of arity n then FT (t1, . . . , tn) = Ft1 . . . tn.
This structure is called the structure of σ-terms over X (the algebra of terms
over X, if σ is a signature); it will be denoted by TX,σ (or only TX).

Endomorphisms of the structure of terms are called its substitutions.
Let u, v be two terms. We write u ≤ v if there exists a substitution f such

that f(u) is a subterm of v. We write u ∼ v (and say that u, v are similar) if
u ≤ v and v ≤ u. We write u < v if u ≤ v and v � u.

For a term t we denote by S(t) the set of variables occurring in t.
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11. Absolutely free algebras

An algebra is said to be absolutely free over X if it is free over X in the
class of all algebras (of signature σ). An algebra is called absolutely free if it
is absolutely free over some set X.

11.1. Theorem. Let X be nonempty if σ is without constants. Then the
algebra TX of terms over X is an absolutely free algebra over X.

Proof. Clearly, TX is generated by X. Let A be an algebra and f be a
mapping of X into A. For t ∈ TX , define h(t) ∈ A by induction on λ(t) as
follows: h(t) = f(t) for t ∈ X; h(Ft1 . . . tn) = FA(h(t1), . . . , h(tn)). Clearly, h
is a homomorphism of TX into A extending f . �

It follows that an algebra is absolutely free if and only if it is isomorphic to
TX for some X. Clearly, the set X is uniquely determined: it consists of the
elements that cannot be expressed as FA(a1, . . . , an) for any operation symbol
F and any elements a1, . . . , an ∈ A.

11.2. Theorem. An algebra A is absolutely free over a set X if and only
if the following three conditions are satisfied:

(1) X is a set of generators of A;
(2) FA(a1, . . . , an) /∈ X for any F, a1, . . . , an;
(3) FA(a1, . . . , an) = GA(b1, . . . , bm) implies F = G and a1 = b1, . . . , an =

bn.

Proof. Clearly, the algebra of terms over X, and hence every absolutely
free algebra over X, has the three properties. Let (1), (2) and (3) be satisfied for
an algebra A. By 11.1, the identity on X can be extended to a homomorphism
h of TX into A. By (1), h is a homomorphism onto A. By (2) and (3), h is
injective. �

11.3. Theorem. An algebra A is absolutely free if and only if the following
two conditions are satisfied:

(1) FA(a1, . . . , an) = GA(b1, . . . , bm) implies F = G and a1 = b1, . . . , an =
bn;

(2) there is no infinite sequence a0, a1, . . . of elements of A such that
for any i = 0, 1, . . . , ai can be expressed as ai = FA(b1, . . . , bn) with
ai+1 ∈ {b1, . . . , bn}.

Proof. The direct implication is clear: in the algebra of terms, there is
no infinite sequence as in (2), since the term ai+1 would be shorter than ai

for any i. Conversely, let A be an algebra satisfying (1) and (2). Denote by
X the set of all the elements of A that cannot be expressed as FA(a1, . . . , an)
for any F and any elements a1, . . . , an. By 11.2, it is sufficient to show that
A is generated by X. Suppose, on the contrary, that there exists an element
a ∈ A r SgA(X). Let us define an infinite sequence a0, a1, . . . of elements
of A r SgA(X) as follows: a0 = a; if ai ∈ A r SgA(X) has been already
chosen, then ai = FA(b1, . . . , bn) for some F and b1, . . . , bn; we cannot have
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bj ∈ SgA(X) for all j, so take one index j with bj ∈ A r SgA(X) and put
ai+1 = bj . The infinite sequence a0, a1, . . . contradicts (2). �

11.4. Theorem. A subalgebra of an absolutely free algebra is absolutely
free. The direct product of a nonempty family of absolutely free algebras is
absolutely free.

Proof. It follows from 11.3. �

12. Representation of lattices by subuniverses and congruences

Recall that an element a of a complete lattice L is said to be compact if
for any subset S of L, a ≤

∨

S implies a ≤
∨

S′ for some finite subset S′ of S;
by an algebraic lattice we mean a complete lattice L such that every element
of L is the join of a set of compact elements of L.

12.1. Theorem. Let L be an algebraic lattice. The least element of L is
compact. The join of any two compact elements of L is compact. Consequently,
the set C of compact elements of L is a join-semilattice with a least element
(with respect to the order relation of L restricted to C; this join-semilattice will
be called the join-semilattice of compact elements of L).

Proof. It is easy. �

Let S be a join-semilattice with a least element o. By an ideal of S we
mean a subset I of S such that o ∈ I, x ≤ y ∈ I implies x ∈ I, and x, y ∈ I
implies x ∨ y ∈ I. Clearly, the set of ideals of a join-semilattice with a least
element is a complete lattice with respect to inclusion; it is called the lattice
of ideals of S.

12.2. Theorem. Every algebraic lattice L is isomorphic to the lattice of
ideals of some join-semilattice with a least element; namely, to the lattice of
ideals of the join-semilattice of its compact elements.

Proof. Denote the join-semilattice of compact elements of L by C, and
the lattice of ideals of C by K. For every a ∈ L put f(a) = {x ∈ C : x ≤ a},
so that f(a) ∈ K. For every I ∈ K denote by g(I) the join of I in L. It
is easy to check that f is an isomorphism of L onto K and g is the inverse
isomorphism. �

12.3. Theorem. For every algebraic lattice L there exists a σ-algebra A
(for some signature σ) such that L is isomorphic to the lattice of subuniverses
of A. The signature can be chosen in such a way that it contains only some
unary, one nullary and one binary operation symbols.

Proof. By 12.2, L is isomorphic to the lattice of ideals of a join-semilattice
C with a least element o. Let σ be the signature containing one constant 0,
one binary operation symbol ∨ and, for every pair a, b of elements of C such
that b < a, a unary operation symbol Fa,b. Denote by A the σ-algebra with
the underlying set C and operations defined in this way: 0A = o; ∨A = ∨C ;
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Fa,b(a) = b; Fa,b(x) = x whenever x 6= a. Clearly, a subset of A is a subuniverse
if and only if it is an ideal of C. �

12.4. Theorem. The following are equivalent for a lattice L:

(1) L is isomorphic to the lattice of subuniverses of some algebra of some
countable signature

(2) L is isomorphic to the lattice of subuniverses of some groupoid
(3) L is isomorphic to the lattice of subuniverses of some commutative

groupoid
(4) L is an algebraic lattice such that for every compact element a of L,

the set of the compact elements in the principal ideal generated by a
is countable

Proof. (4) implies (1): By 12.2, L is isomorphic to the lattice of ideals of
a join-semilattice C with a least element o such that the principal ideal of every
element of C is countable. For every p ∈ C let c(0), c(1), . . . be all elements
of that principal ideal. Let σ be the signature containing one constant 0, one
binary operation symbol ∨ and unary operation symbols F0, F1, . . . . Denote
by A the σ-algebra with the underlying set C and operations defined in this
way: 0A = o; ∨A = ∨C ; Fi(c) = c(i). Clearly, a subset of A is a subuniverse if
and only if it is an ideal of C.

(1) implies (2): It is sufficient to assume that L is isomorphic to the lattice
of subuniverses of an algebra A of a countable signature σ without constants.
Let F2, F3, F4, . . . be all the operation symbols of σ and n2, n3, n4, . . . be their
arities. Denote by G the groupoid of terms over the set A. For every t ∈ G
and every positive integer n define an element tn ∈ G by t1 = t and tn+1 = tnt.
Define a groupoid H with the underlying set G and the basic binary operation
◦ in this way:

(1) if a, b ∈ G and a 6= b then a2 ◦ b2 = ab
(2) if a ∈ A then a ◦ a = a2

(3) if a ∈ G r A and a1, . . . , ak are all the elements of A occurring in
the term a and arranged into this finite sequence in the order of their
first occurrences in A, then a ◦ a = a1, a1 ◦ a = a2, . . . , ak−1 ◦ a =
ak, ak ◦ a = aa

(4) if a = ((((a1a2)a3) . . . )ak)m where m ≥ 2, k = nm and a1, . . . , ak ∈ A
then a ◦ a1 = Fm(a1, . . . , ak)

(5) a ◦ b = a in all the remaining cases

For every subuniverse X of A denote by z(X) the subuniverse of G generated
by X. It is easy to see that z is an isomorphism of the lattice of subuniverses
of A onto the lattice of subuniverses of H.

(2) implies (3): Let A be a groupoid, with the basic binary operation
denoted by g(x, y). Denote by G the groupoid of terms over the set A; for
t ∈ G and n ≥ 1 define tn ∈ G as above. Let us take one fixed well ordering
of G. Define a groupoid H with the underlying set G and the basic binary
operation ◦ in this way:
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(1) if a ∈ A then a ◦ a = a2

(2) if a ∈ GrA and a1, . . . , an are all the elements of A occurring in the
term a and ordered into this finite sequence according to the fixed well
ordering of G, then a ◦ a = a1, a1 ◦ a = a ◦ a1 = a2, . . . , an−1 ◦ a =
a ◦ an−1 = an, an ◦ a = a ◦ an = a2

(3) if a ∈ G then a2 ◦ (a2)2 = (a2)2 ◦a2 = a3 and a2 ◦ ((a2)2)2 = ((a2)2)2 ◦
a2 = a4

(4) if a, b ∈ G then a2 ◦ b3 = b3 ◦ a2 = ab
(5) if a, b ∈ A then a2 ◦ b4 = b4 ◦ a2 = g(a, b)
(6) in all the remaining cases let a◦b be the minimum of a, b with respect

to the fixed well ordering

It is easy to see that H is a commutative groupoid and the mapping assigning to
any subuniverseX of A the subuniverse of G generated by X is an isomorphism
of the lattice of subuniverses of A onto the lattice of subuniverses of H.

(3) implies (4): This is clear. �

In the following we are going to prove a representation theorem for con-
gruence lattices.

Let C be a join-semilattice with a least element o. By a C-graph we will
mean an ordered pair 〈X,h〉 where X is a nonempty set and h is a mapping
of a set of precisely 2-element subsets of X into C (write h(x, y) = h({x, y}).
By a stable mapping of a C-graph 〈X,h〉 into a C-graph 〈X ′, h′〉 we will mean
a mapping f of X into X ′ such that whenever h(a, b) is defined then either
f(a) = f(b) of h′(f(a), f(b)) = h(a, b).

For every natural number n define a C-graph 〈An, hn〉 in this way: A0 =
{1, 2}; h0(1, 2) = h0(2, 1) = o; An+1 is the union of An with the set of all
ordered quintuples 〈a, b, p, q, i〉 such that a, b ∈ An, p, q ∈ C, i ∈ {1, 2, 3},
{a, b} ∈ Dom(hn) and hn(a, b) ≤ p ∨ q; let hn+1 be the extension of hn by

hn+1(a, 〈a, b, p, q, 1〉) = p,
hn+1(〈a, b, p, q, 1〉, 〈a, b, p, q, 2〉) = q,
hn+1(〈a, b, p, q, 2〉, 〈a, b, p, q, 3〉) = p,
hn+1(〈a, b, p, q, 3〉, b) = q.
Denote by A the union of the chain A0 ⊆ A1 ⊆ . . . and by H the union of

the chain h0 ⊆ h1 ⊆ . . . . Clearly, 〈A,H〉 is a C-graph.
Denote by S the set of stable mappings of 〈A,H〉 into itself. We can

consider A as an algebra of a signature consisting of unary operation symbols
only, such that the unary operations of A are precisely all the elements of S.
We are going to show that the congruence lattice of A is isomorphic to the
lattice of ideals of C.

Let {c, d} ∈ Dom(H) and let n be the least index with c, d ∈ An. We
define a mapping fc,d of An into itself as follows. If n = 0, let fc,d be the
identity on A0. If n > 0 then, for some a, b, p, q, {c, d} is one of the following
four unordered pairs:
{a, 〈a, b, p, q, 1〉},
{〈a, b, p, q, 1〉, 〈a, b, p, q, 2〉},
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{〈a, b, p, q, 2〉, 〈a, b, p, q, 3〉},
{〈a, b, p, q, 3〉, b}.

In the first case put fc,d(〈a, b, p, q, 1〉) = fc,d(〈a, b, p, q, 2〉) = 〈a, b, p, q, 1〉 and
fc,d(y) = a for all the other elements y ∈ An. In the second case put
fc,d(〈a, b, p, q, 2〉) = fc,d(〈a, b, p, q, 3〉) = 〈a, b, p, q, 2〉 and fc,d(y) = 〈a, b, p, q, 1〉
for all the other elements y ∈ An. In the third case put fc,d(〈a, b, p, q, 1〉) =
fc,d(〈a, b, p, q, 2〉) = 〈a, b, p, q, 2〉 and fc,d(y) = 〈a, b, p, q, 3〉 for all the other ele-
ments y ∈ An. In the fourth case put fc,d(〈a, b, p, q, 2〉) = fc,d(〈a, b, p, q, 3〉) =
〈a, b, p, q, 3〉 and fc,d(y) = b for all the other elements y ∈ An.

12.5. Lemma. Let {c, d} ∈ Dom(H) and let n be the least index with
c, d ∈ An. Then fc,d is a stable mapping of 〈An, hn〉 into itself. It maps An

onto the two-element set {c, d}. We have fc,d(c) = c and fc,d(d) = d.

Proof. It is easy. �

12.6. Lemma. Let n,m be two natural numbers. Every stable mapping of
〈An, hn〉 into 〈Am, hm〉 can be extended to a stable mapping of 〈A,H〉 into
itself.

Proof. Clearly, it is sufficient to prove that every stable mapping f of
〈An, hn〉 into 〈Am, hm〉 can be extended to a stable mapping g of 〈An+1, hn+1〉
into 〈Am+1, hm+1〉. For x ∈ An put g(x) = f(x). Let x ∈ An+1 rAn, so that
x = 〈a, b, p, q, i〉 for some a, b, p, q, 1. If f(a) = f(b), put g(x) = f(a). If f(a) 6=
f(b) then hn(a, b) = hm(f(a), f(b)) and thus 〈f(a), f(b), p, q, i〉 ∈ Am+1; put
g(x) = 〈f(a), f(b), p, q, i〉. Clearly, g is a stable mapping. �

12.7. Lemma. Let H(a, b) = H(c, d). Then there exists a stable mapping
f of 〈A,H〉 into itself such that f(a) = c and f(b) = d.

Proof. Let n be the least index such that a, b ∈ An and let m be the least
index such that c, d ∈ Am. Denote by g the mapping with domain {a, b}, such
that g(a) = c and g(b) = d. By 12.5, fa,b is a stable mapping of 〈An, hn〉 into
itself, with the range {a, b}. Consequently, the composition gfa,b is a stable
mapping of 〈An, hn〉 into 〈Am, hm〉; it sends a to c and b to d. The rest follows
from 12.6. �

12.8. Lemma. The range of H is equal to C.

Proof. Already the range of h1 is equal to C. �

For any ideal I of C define a binary relation F (I) on A as follows: 〈a, b〉 ∈
F (I) if and only if there exists a finite sequence e0, . . . , ek such that e0 = a,
ek = b and H(ei−1, ei) ∈ I for all i = 1, . . . , k. Clearly, F (I) is a congruence
of A.

For every congruence E of A define a subsetG(E) of C as follows: p ∈ G(E)
if and only if p = H(a, b) for some 〈a, b〉 ∈ E (such that {a, b} ∈ Dom(H)).

12.9. Lemma. Let E be a congruence of A. Then G(E) is an ideal of C.
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Proof. Let q, r ∈ G(E) and p ≤ q ∨ r. We must show that p ∈ G(E). We
have H(a1, b1) = q and H(a2, b2) = r for some 〈a1, b11〉 ∈ E and 〈a2, b2〉 ∈ E.
By 12.8 we have H(a, b) = p for some a, b. Put e0 = a, ei = 〈a, b, q, r, i〉 for
i = 1, 2, 3 and e4 = b. For every i = 1, 2, 3, 4 we have either H(ei−1, ei) = q or
H(ei−1, ei) = r, so that 〈ei−1, ei〉 ∈ E by 12.7, since E is a congruence. Hence
〈a, b〉 = 〈e0, e4〉 ∈ E and thus p ∈ G(E). �

12.10. Lemma. Let e0, . . . , ek be a finite sequence of elements of A such
that e0 = ek and {ei−1, ei} ∈ Dom(H) for all i = 1, . . . , k. Then H(e0, e1) ≤
H(e1, e2) ∨ · · · ∨H(ek−1, ek).

Proof. Suppose that e0, . . . , ek is a sequence of minimal length for which
the assertion fails. It is clear that k is not less than 3 and the elements e1, . . . , ek
are pairwise different. Let n be the least index such that the elements e0, . . . , ek
all belong to An. Clearly, n 6= 0. At least one of the elements e0, . . . , ek
does not belong to An−1; let us denote it by 〈a, b, p, q, i〉 and put c0 = a,
c1 = 〈a, b, p, q, 1〉, c2 = 〈a, b, p, q, 2〉, c3 = 〈a, b, p, q, 3〉, c4 = b. Clearly, either
c0, c1, c2, c3, c4 or c4, c3, c2, c1, c0 is a connected part of e0, e1, . . . , ek, e1, . . . , ek.
If either e0 or e1 is one of the elements c1, c2, c3 then H(e0, e1) is either p or q;
but each of p and q occurs twice among H(c0, c1),H(c1, c2),H(c2, c3),H(c3, c4)
and hence at least once among H(e1, e2),H(e2, e3), . . . ,H(ek−1, ek); hence the
join of these k − 1 elements is above both p and q and hence above H(e0, e1),
a contradiction. It remains to consider the case when c1, c2, c3 are all different
from e0, e1. Then either c0, c1, c2, c3, c4 or c4, c3, c2, c1, c0 is a connected part of
e1, . . . , ek. If we delete c1, c2, c3 in the first case or c3, c2, c1 in the second case
from e0, e1, . . . , ek, we get a shorter sequence again contradicting the assertion,
which gives us a contradiction with the minimality of k. �

12.11. Lemma. Let I be an ideal of C. Then G(F (I)) = I.

Proof. It follows from 12.8 that I ⊆ G(F (I)). Let p ∈ G(F (I)), so that
p = H(a, b) for some 〈a, b〉 ∈ F (I). There exists a finite sequence e0, . . . , ek
such that e0 = a, ek = b and H(ei−1, ei) ∈ I for all i = 1, . . . , k. It follows
from 12.10 that p ≤ H(e0, e1) ∨ · · · ∨H(ek−1, ek), so that p ∈ I. �

Let us say that a pair 〈a, b〉 ∈ A2 dominates over a pair 〈c, d〉 ∈ A2 if
there exist a finite sequence e0, . . . , ek of elements of A and a finite sequence
f1, . . . , fk of stable mappings of 〈A,H〉 into itself such that e0 = c, ek = d and
fi(a) = ei−1 and fi(b) = ei for all i = 1, . . . , k. Since the composition of two
stable mappings is stable, one can easily see that if 〈a, b〉 dominates over 〈c, d〉
and 〈c, d〉 dominates over 〈e, f〉 then 〈a, b〉 dominates over 〈e, f〉.

12.12. Lemma. For every c, d ∈ A there exists a finite sequence e0, . . . , ek of
elements of A such that e0 = c, ek = d and for every i = 1, . . . , k, {ei−1, ei} ∈
Dom(H) and 〈c, d〉 dominates over 〈ei−1, ei〉.

Proof. We are going to prove by induction on n that such a sequence
exists whenever c, d ∈ An. If {c, d} ∈ Dom(H) then everything is clear, since
the identity on A is stable. Let {c, d} /∈ Dom(H). Clearly, n 6= 0. Let us first
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construct a finite sequence c0, . . . , cr in this way: if c ∈ An−1, put r = 0, c0 = c;
let c /∈ An−1, so that c is a quintuple 〈a, b, p, q, j〉; in the case j = 1 put r = 1,
c0 = c, c1 = a; in the case j = 3 put r = 1, c0 = c, c1 = b; in the case j = 2
put r = 2, c0 = c, c1 = 〈a, b, p, q, 1〉, c2 = a. In each case, c0 = c, cr ∈ An−1,
{ci−1, ci} ∈ Dom(H) and 〈c, d〉 dominates over 〈ci−1, ci〉 for all i = 1, . . . , r. In
the case c ∈ An−1 it is clear; in the case j = 1 the mapping fa,c sends c to c and
d to a (since {c, d} /∈ Dom(H)) and fa,c can be extended to a stable mapping
of 〈A,H〉 into itself by 12.6; in the case j = 3 similarly fb,c sends c to c and
d to b; in the case j = 2 the mapping fe1,e2

sends c to c and d to e1 and the
mapping fe0,e1

sends c to e1 and d to a. Quite similarly we can construct a finite
sequence d0, . . . , ds such that d0 = d, ds ∈ An−1, {di−1, di} ∈ Dom(H) and
such that 〈c, d〉 dominates over 〈di−1, di〉 for all i = 1, . . . , s. By the induction
assumption applied to the elements cr, ds there exists a finite sequence b0, . . . , bt
such that b0 = cr, bt = ds, {bi−1, bi} ∈ Dom(H) and 〈cr, dd〉 dominates over
〈bi−1, bi〉 for all i = 1, . . . , t. Clearly 〈c, d〉 dominates over 〈cr, ds〉 and hence
also over each 〈bi−1, bi〉. Now the sequence c0, . . . , cr, b1, . . . , bt, ds−1, . . . , d0 can
be taken for e0, . . . , ek. �

12.13. Lemma. Let E be a congruence of A. Then F (G(E)) = E.

Proof. Let 〈a, b〉 ∈ F (G(E)). There exists a finite sequence e0, . . . , ek
such that e0 = a, ek = b and H(ei−1, ei) ∈ G(E) for all i = 1, . . . , k. For every
i = 1, . . . , k there exists a pair 〈ci, di〉 ∈ E such that H(ei−1, ei) = H(ci, di).
By 12.7 there exists a stable mapping fi of 〈A,H〉 into itself such that fi(ci) =
ei−1 and fi(di) = ei. Since E is a congruence, we get 〈ei−1, ei〉 ∈ E for all i,
so that also 〈a, b〉 = 〈e0, ek〉 ∈ E.

In order to prove the converse, let 〈a, b〉 ∈ E and a 6= b. By 12.12 there ex-
ists a finite sequence e0, . . . , ek such that e0 = a, ek = b, {ei−1, ei} ∈ Dom(H)
and 〈a, b〉 dominates over 〈ei−1, ei〉 for all i = 1, . . . , k. Since E is a congru-
ence and 〈a, b〉 ∈ E, also 〈ei−1, ei〉 ∈ E. Since, moreover, {ei−1, ei} belongs
to Dom(H), we have 〈ei−1, ei〉 ∈ F (G(E)). But then 〈a, b〉 = 〈e0, ek〉 ∈
F (G(E)). �

12.14. Theorem. Every algebraic lattice is isomorphic to the congruence
lattice of an algebra of a signature containing only unary operation symbols.

Proof. It follows from the above results. �

This result is due to Grätzer, Schmidt [63]; we have followed a more simple
proof given by Pudlák [76].

12.15. Lemma. Let A be a nonempty set and n be a positive integer. Denote
by G the groupoid with the underlying set An, with multiplication defined by
〈a1, . . . , an〉〈b1, . . . , bn〉 = 〈an, b1, . . . , bn−1〉. The congruences of G are precisely
all the relations r′ that can be obtained from an equivalence r on A in this way:
〈〈a1, . . . , an〉, 〈b1, . . . , bn〉〉 ∈ r

′ if and only if 〈ai, bi〉 ∈ r for all i = 1, . . . , n.

Proof. It is easy. �
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12.16. Theorem. For every algebra A of a finite signature σ there exists an
algebra B with one binary and one unary operation such that the congruence
lattice of B is isomorphic to the congruence lattice of A. One can require,
moreover, the following:

(1) A is a subset of B
(2) whenever r is a congruence of A and R is the congruence of B corre-

sponding to r under the isomorphism then r = R ∩ (A×A)
(3) if A is finite then B is finite
(4) if A is infinite then card(A) = card(B)

Proof. Let f1, . . . , fk be all the basic operations of A and let n1, . . . , nk

be their arities. Denote by n the maximum of the numbers k, n1, . . . , nk.
Let B be the algebra with one binary operation defined in the same way as
in 12.15 and one unary operation g defined in this way: g(〈a1, . . . , an〉) =
〈f1(a1, . . . , an1

), . . . , fk(a1, . . . , ank
), . . . , fk(a1, . . . , fnk

)〉. It is easy to check
that the lattices Con(A) and Con(B) are isomorphic. �



CHAPTER 4

LATTICES AND BOOLEAN ALGEBRAS

1. Modular and distributive lattices

A lattice L is said to be modular if a ≤ c implies (a∨ b)∧ c = a∨ (b∧ c) for
all a, b, c ∈ L; this condition is equivalent to a∧ (b∨ (a∧ c)) = (a∧ b)∨ (a∧ c)
for all a, b, c ∈ L.

The lattice with five elements 0, a, b, c, 1 and the only covering relations
0 < a < c < 1 and 0 < b < 1 will be denoted by N5. Clearly, N5 is non-
modular.

1.1. Theorem. A lattice is modular if and only if it does not contain a
sublattice isomorphic to N5.

Proof. The direct implication is clear. Now let A be a non-modular
lattice. There exist elements a, b, c ∈ L such that a ≤ c and (a ∨ b) ∧ c 6=
a∨ (b∧ c). Clearly, a < c and a∨ (b∧ c) < (a∨ b)∧ c. One can easily check that
the elements 0′ = b ∧ c, a′ = a ∨ (b ∧ c), b′ = b, c′ = (a ∨ b) ∧ c and 1′ = a ∨ b
constitute a sublattice of A isomorphic to N5. �

1.2. Corollary. The dual of a modular lattice is a modular lattice.

A lattice L is said to be distributive if it satisfies a∧(b∨c) = (a∧b)∨(a∧c)
for all a, b, c ∈ L. Clearly, every distributive lattice is modular.

1.3. Theorem. A lattice is distributive if and only if it satisfies a∨(b∧c) =
(a ∨ b) ∧ (a ∨ c) for all a, b, c ∈ L.

Proof. Direct implication: a∨ (b∧c) = a∨ ((c∧a)∨ (c∧b)) = a∨ (c∧ (a∨
b)) = ((a ∨ b) ∧ a) ∨ ((a ∨ b) ∧ c) = (a ∨ b) ∧ (a ∨ c). The converse implication
can be proved similarly. �

1.4. Corollary. The dual of a distributive lattice is a distributive lattice.

The lattice with five elements 0, a, b, c, 1 and the only covering relations
0 < a < 1, 0 < b < 1, 0 < c < 1 will be denoted by M5. Clearly, M5 is not
distributive.

1.5. Theorem. A lattice is distributive if and only if it contains no sub-
lattice isomorphic to either N5 or M5.

Proof. The direct implication is clear. For the converse, by 1.1 it is
sufficient to prove that if A is a modular but not distributive lattice then A
contains a sublattice isomorphic to M5. There are elements a, b, c ∈ L such

53
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that (a ∧ b) ∨ (a ∧ c) < a ∧ (b ∨ c). It is easy to check that the elements
0′ = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c), 1′ = (a ∨ b) ∧ (a ∨ c) ∧ (b ∨ c), a′ = (a ∧ 1′) ∨ 0′,
b′ = (b ∧ 1′) ∨ 0′ and c′ = (c ∧ 1′) ∨ 0′ constitute a sublattice isomorphic
to M5. �

By a prime filter of a lattice A we mean a filter U such that whenever
x, y ∈ A and x ∨ y ∈ U then either x ∈ U or y ∈ U . Prime ideals are defined
dually.

1.6. Theorem. Let a, b be two elements of a distributive lattice A such that
a � b. Then there exists a prime filter U of A such that a ∈ U and b /∈ U .

Proof. It follows easily from Zorn’s lemma that there exists a filter U
maximal among those filters that contain a and do not contain b. Suppose
that there are elements x, y /∈ U with x ∨ y ∈ U . By the maximality of U ,
the filter generated by U ∪ {x} contains b, i.e., there exists an element u ∈ U
with b ≥ x ∧ u. Similarly, there exists an element v ∈ U with b ≥ y ∧ v. Then
b ≥ (x∧u)∨(y∧v) = (x∨y)∧(u∨y)∧(x∨v)∧(u∨v) ∈ U , a contradiction. �

1.7. Theorem. A lattice is distributive if and only if it is isomorphic to a
sublattice of the lattice of all subsets of some set X.

Proof. Of course, the lattice of all subsets of X is distributive and a
sublattice of a distributive lattice is also distributive. Conversely, let A be a
distributive lattice. Denote by X the set of prime filters of A and define a
mapping f of A into the lattice of all subsets of X by f(a) = {U ∈ X : a ∈ U}.
One can easily check that f is a homomorphism; by 1.6, f is injective. �

1.8. Theorem. The two-element lattice is (up to isomorphism) the only
subdirectly irreducible distributive lattice.

Proof. It follows from 1.7, since the lattice of all subsets of X is isomor-
phic to a direct power of the two-element lattice. �

By a maximal filter of a lattice A we mean a filter U that is maximal among
the filters different from A. Maximal ideals are defined dually.

The least element of a lattice L is an element o such that o ≤ a for all
a ∈ L. The greatest element is defined dually. Let L be a lattice with the
least element o and the greatest element i. An element b ∈ A is said to be a
complement of an element a ∈ L if a∧ b = o and a∨ b = i. By a complemented
lattice we mean a lattice L with the least and the greatest elements, in which
every element has at least one complement; if, moreover, every element of L has
precisely one complement, we say that L is a uniquely complemented lattice.
By a relatively complemented lattice we mean a lattice, every interval of which
is complemented.

It follows from 1.5 that if A is a distributive lattice with the least and the
greatest elements then every element of A has at most one complement.

1.9. Theorem. Let A be a relatively complemented distributive lattice, F
be a nonempty filter of A and a be an element of A r F . Then there exists a
maximal filter U of A such that F ⊆ U , Ar U is a maximal ideal and a /∈ U .
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Proof. Let U be a filter maximal among those filters that contain F and
do not contain a (its existence follows from Zorn’s lemma). If x, y ∈ A r U
and x∨y ∈ U then it follows from the maximality of U that there are elements
u, v ∈ U with a ≥ x ∧ u and a ≥ y ∧ v, so that a ≥ (x ∧ u) ∨ (y ∧ v) =
(x ∨ y) ∧ (u ∨ y) ∧ (x ∨ v) ∧ (u ∨ v) ∈ U , a contradiction. Thus A r U is an
ideal. It remains to prove that U is a maximal filter (the maximality of the
ideal ArU will follow by duality). Let b ∈ ArU and c ∈ A. There exists an
element d ∈ U with d ≥ b. Denote by e the complement of b in the interval
[b∧c, d]. Since e∨b = d ∈ U and b /∈ U , we have e ∈ U . Then c ≥ b∧e, so that
c belongs to the filter generated by U ∪ {b}; but c was an arbitrary element
of A and thus the filter generated by U ∪ {b} (for an arbitrary b ∈ A r U)
equals A. �

2. Boolean algebras

By a Boolean algebra we mean an algebra A of the signature {∧,∨, ′, 0, 1}
such that the reduct of A to {∧,∨} is a distributive lattice with the least
element 0 and the greatest element 1 and such that for every a ∈ A, a′ is
the complement of a. One can easily prove that every Boolean algebra is
uniquely determined by its underlying lattice (its reduct to {∧,∨}) and that
such reducts are precisely the complemented distributive lattices; these lattices
are uniquely complemented. The class of Boolean algebras is equivalent with
the class of complemented distributive lattices. Complemented distributive
lattice are called Boolean lattices.

One can easily see that (a∨b)′ = a′∧b′ and (a∧b)′ = a′∨b′ for any elements
a, b of a Boolean algebra. (These are called DeMorgan’s Laws.) Clearly, every
Boolean algebra is a relatively complemented lattice.

For every set X we define a Boolean algebra A, called the Boolean algebra
of subsets of X, in this way: A is the set of all subsets of X; 0A = 0, 1A = X,
Y1 ∧ Y2 = Y1 ∩ Y2, Y1 ∨ Y2 = Y1 ∪ Y2 and Y ′ = X r Y for Y, Y1, Y2 ⊆ X. For
X = 1, this algebra is called the two-element Boolean algebra. It is easy to
see that the Boolean algebra of subsets of X is isomorphic to the direct power
BX , where B is the two-element Boolean algebra.

For a Boolean algebra A and an element a ∈ A we define an algebra A � a
of the same signature as follows: its underlying set is the interval [0, a] of A;
the operations corresponding to ∧,∨, 0 are defined in the same way as in A;
the constant 1 is interpreted by a; and the unary operation is the operation
x 7→ a ∧ x′.

2.1. Theorem. Let A be a Boolean algebra and a ∈ A. Then A � a is a
Boolean algebra. The mapping x 7→ a∧x is a homomorphism of A onto A � a.
The mapping x 7→ 〈a∧x, a′∧x〉 is an isomorphism of A onto (A � a)×(A � a′).

Proof. It is easy. �

2.2. Theorem. The two-element Boolean algebra is, up to isomorphism,
the only nontrivial directly indecomposable Boolean algebra.
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Proof. It follows from 2.1. �

2.3. Theorem. For every nonnegative integer n there exists, up to isomor-
phism, precisely one Boolean algebra of cardinality 2n, namely, the Boolean
algebra of subsets of an n-element set; and there are no other finite Boolean
algebras.

Proof. It follows from 2.2, since every finite algebra is isomorphic to a
direct product of directly indecomposable algebras. �

2.4. Theorem. Every Boolean algebra is isomorphic to a subdirect power
of the two-element Boolean algebra. Consequently, every Boolean algebra is
isomorphic to a subalgebra of the Boolean algebra of subsets of some set.

Proof. It follows from 2.2. �

2.5. Theorem. The congruence lattice of a Boolean algebra A is isomor-
phic to the lattice of ideals of A which is isomorphic to the lattice of filters of A.
For a congruence r, the corresponding ideal is the set {x ∈ A : 〈0, x〉 ∈ r}. For
an ideal I, the corresponding congruence r is defined by 〈x, y〉 ∈ r if and only
if (x ∧ y′) ∨ (x′ ∧ y) ∈ I. The filter corresponding to I is the set {x′ : x ∈ I}.

Proof. It is easy. �

Let X be a nonempty subset of a Boolean algebra A. The ideal generated
by X (the intersection of all ideals containing X) can be described as the set
of all the elements a for which there exist some elements x1, . . . , xn ∈ X (for
some n ≥ 1) with a ≤ x1 ∨ · · · ∨ xn. Similarly, the filter generated by X is the
set {a ∈ A : a ≥ x1 ∧ · · · ∧ xn for some x1, . . . , xn ∈ X}.

By an ultrafilter of a Boolean algebra A we mean a maximal filter of A.
By 1.9, if F is a filter of a Boolean algebra A and a ∈ A is an element not
belonging to F then there exists an ultrafilter U of A such that F ⊆ U and
a /∈ F .

2.6. Theorem. A filter F of a Boolean algebra A is an ultrafilter if and
only if for every a ∈ A, precisely one of the elements a and a′ belongs to F .

Proof. Let F be an ultrafilter. Let a ∈ A. If a, a′ both belong to F then
0 = a∧a′ ∈ F and hence F = A, a contradiction. Suppose that neither a nor a′

belongs to F . By the maximality of F , the filter generated by F ∪{a} equals A,
which means that 0 = f1 ∧ a for some f1 ∈ F . Similarly, the filter generated
by F ∪{a′} equals A and 0 = f2 ∧ a

′ for some f2 ∈ F . Put f = f1 ∧ f2, so that
f ∈ F . We have 0 = (f ∧ a)∨ (f ∧ a′) = f ∧ (a∨ a′) = f , a contradiction. The
converse implication is clear. �

Clearly, a principal filter of A is an ultrafilter if and only if it is generated
by an atom of A, i.e., by an element that is minimal among the elements of
Ar {0}. Every filter of a finite Boolean algebra is principal.
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3. Boolean rings

By a Boolean ring we mean a ring R satisfying aa = a for all a ∈ R.

3.1. Theorem. Every Boolean ring R is commutative and satisfies a+a =
0 for all a ∈ R. The class of Boolean algebras is equivalent with the class
of Boolean rings: given a Boolean algebra, the corresponding Boolean ring is
defined by

a+ b = (a ∧ b′) ∨ (a′ ∧ b),
ab = a ∧ b,
−a = a;

and given a Boolean ring, the corresponding Boolean algebra is defined by

a ∧ b = ab,
a ∨ b = a+ b+ ab,
a′ = 1 + a.

Proof. Let R be a Boolean ring. For a ∈ R we have a + a = (a + a)2 =
aa+aa+aa+aa = a+a+a+a, from which we get a+a = 0. For a, b ∈ R we
have a+ b = (a+ b)2 = aa+ab+ ba+ bb = a+ab+ ba+ bb, so that ab+ ba = 0
and hence ab = −ba = ba. One can easily check the rest. �

4. Boolean spaces

By a topology on a set A we mean a set T of subsets of A satisfying the
following three conditions:

(1) 0 ∈ T and A ∈ T
(2) if X,Y ∈ T then X ∩ Y ∈ T
(3) for every subset S of T ,

⋃

(S) ∈ T

By a topological space we mean an ordered pair 〈A,T 〉 such that T is a topology
on A. When there is no confusion, we often forget to mention T and say that
A is a topological space.

Let A = 〈A,T 〉 be a topological space. The elements of T are called open
subsets of A. By a closed subset of A we mean a subset X ⊆ A such that
A r X is open. Thus 0 and A are both open and closed; the intersection of
finitely many open subsets is open; the union of any set of open subsets is
open; the union of finitely many closed subsets is closed; the intersection of
any nonempty set of closed subsets is closed. By a clopen subset of A we mean
a subset that is both open and closed. Clearly, the set of clopen subsets of any
topological space is a Boolean algebra with respect to inclusion.

Let 〈A,T 〉 be a topological space. For a set X ⊆ A, the intersection
of all closed subsets containing X is called the closure of X and is denoted
by X̄ ; it is the smallest closed subset containing X. The union of all open
subsets contained in X is called the interior of X; it is the largest open subset
contained in X. A subset X of A is called dense if its closure is A. A subset
X of A is called nowhere-dense if the interior of the closure of X is empty.
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Let A = 〈A,T 〉 and B = 〈B,S〉 be two topological spaces. By a continuous
mapping of 〈A,T 〉 into 〈B,S〉 we mean a mapping f of A into B such that for
any open subset X of B, the set f−1’’X is open in A. By a homeomorphism
of 〈A,T 〉 onto 〈B,S〉 we mean a bijection f of A onto B such that f is a
continuous mapping of A into B and f−1 is a continuous mapping of B into A.

A topological space A is said to be a Hausdorff space if for any a, b ∈ A
with a 6= b there exist two open subsets X,Y such that a ∈ X, b ∈ Y and
X ∩ Y is empty.

A topological space A is said to be compact if for every nonempty set S of
closed subsets of A such that the intersection of S is empty there exists a finite
nonempty subset U of S such that the intersection of U is empty. Equivalently,
A is compact if and only if for every set S of open subsets of A with

⋃

(S) = A
there exists a finite subset U of S with

⋃

(U) = A.

4.1. Lemma. Let A be a compact Hausdorff space.

(1) For every open subset X of A and every element a ∈ X there exists an
open subset Y such that a ∈ Y ⊆ X and the closure of Y is contained
in X.

(2) If X is a union of countably many nowhere-dense subsets of A then
the interior of X is empty..

Proof. (1) For every b ∈ ArX choose two open subsets Mb and Nb such
that a ∈ Mb, b ∈ Nb and Mb ∩ Nb = 0. The set {A r X} ∪ {A r Nb : b ∈
ArX} is a set of closed subsets with empty intersection. It follows from the
compactness of A that there exist finitely many elements b1, . . . , bn ∈ A r X
with (ArX) ∩ (ArNb1)∩ · · · ∩ (ArNbn

) = 0, i.e., ArX ⊆ Nb1 ∪ · · · ∪Nbn
.

The set Y = Mb1 ∩ · · · ∩Mbn
is open and contains a; it is contained in the

closed subset Ar (Nb1 ∪ · · · ∪Nbn
) of X.

(2) Let X = X1 ∪X2 ∪ . . . where each Xi is nowhere-dense. Suppose that
there exists a nonempty open subset Y0 ⊆ X. Since X1 is nowhere-dense,
there exists an element a1 ∈ Y0 r X̄1; by (1) there exists an open subset Y1

such that a1 ∈ Y1 and Ȳ1 ⊆ Y0 r X̄1. Since X2 is nowhere-dense, there exists
an element a2 ∈ Y1 r X̄2; by (1) there exists an open subset Y2 such that
a2 ∈ Y2 and Ȳ2 ⊆ Y1 r X̄2. If we continue in this way, we find an infinite
sequence Y0, Y1, Y2, . . . of nonempty open subsets such that Ȳn ⊆ Ȳn−1 r X̄n.
In particular, Ȳn ⊆ Ȳn−1. By the compactness of A, the intersection of this
chain is nonempty. Take an element a of this intersection. Clearly, a does not
belong to any Xn and hence a /∈ X; but a ∈ Ȳ1 ⊆ Y0 ⊆ X, a contradiction. �

By a Boolean space we mean a compact Hausdorff space B such that every
open subset of B is a union of a set of clopen subsets of B.

Let A be a Boolean algebra. We denote by A∗ the set of ultrafilters of A.
For a ∈ A put Na = {U ∈ A∗ : a ∈ U}. Clearly, Na ∪ Nb = Na∧b, Na ∩Nb =
Na∨b and A∗rNa = Na′ . It follows that A∗ is a topological space with respect
to the topology defined in this way: a subset of A∗ is open if and only if it is a
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union
⋃

{Na : a ∈ S} for some subset S of A. We consider A∗ as a topological
space with respect to this topology.

For a topological space B denote by B∗ the Boolean algebra of clopen
subsets of B.

4.2. Theorem.

(1) Let A be a Boolean algebra. Then A∗ is a Boolean space; the sets Na,
with a ∈ A, are precisely all the clopen subsets of A∗; the mapping
a 7→ Na is an isomorphism of A onto A∗∗.

(2) Let B be a Boolean space. Then B∗ is a Boolean algebra and the
mapping x 7→ {X ∈ B∗ : x ∈ X} is a homeomorphism of B onto B∗∗.

Proof. It is easy. �

For a Boolean algebra A, the space A∗ is called the Boolean space of A.
The correspondence between Boolean algebras and Boolean spaces described
in 4.2 is called the Stone duality.

4.3. Theorem. Let A1, A2 be Boolean algebras and B1, B2 be Boolean
spaces.

(1) If f is a homomorphism of A1 into A2 then the mapping f∗ : A∗2 → A∗1
defined by f∗(U) = f−1(U) is a a continuous mapping; if f is injective
then f∗ is surjective and if f is surjective then f∗ is injective.

(2) If f is a continuous mapping of B1 into B2 then the mapping f∗ :
B∗2 → B∗1 defined by f∗(x) = f−1(x) is a homomorphism; if f is
injective then f∗ is surjective and if f is surjective then f∗ is injective.

Proof. It is easy. �

Under the Stone duality, elements of a Boolean algebra correspond to
clopen subsets; ideals correspond to open subsets and filters to closed sub-
sets; the direct product of two Boolean algebras A1, A2 corresponds to the
disjoint union of the Boolean spaces A∗1, A

∗
2 (where open sets are unions of an

open subset of A∗1 with an open subset of A∗2); the free product of two Boolean
algebras corresponds to the product of their Boolean spaces, with the product
topology defined in the obvious way.

4.4. Theorem. Let A be a Boolean algebra. Let a ∈ A, a 6= 0A and for
every positive integer n let En be a subset of A having the join an in A. Then
there exists an ultrafilter U of A such that a ∈ U and for all positive integers n,
if an ∈ U then U ∩ En is nonempty.

Proof. For every n denote by Yn the set of all U ∈ A∗ such that an ∈ U
and U is disjoint with En. Suppose that Yn has nonempty interior. Then
there exists an element b 6= 0A of A such that Nb ⊆ Yn. Then b ≤ an and
b ≤ x′ for all x ∈ En, so that x ≤ b′ for all x ∈ En and thus an ≤ b′; from
b ≤ an ≤ b′ and b 6= 0A we get a contradiction. This shows that for every n,
Yn is nowhere-dense. By 4.1, the union Y = Y1 ∪ Y2 ∪ . . . has empty interior,



60 4. LATTICES AND BOOLEAN ALGEBRAS

so that Na is not contained in Y . But this means the existence of an ultrafilter
with the desired property. �

5. Boolean products

For two mappings f, g with the same domain I, the set {i ∈ I : f(i) = g(i)}
will be denoted by e(f = g).

Let Ax (x ∈ X, X nonempty) be a family of σ-algebras. By a Boolean
product of this family we mean a subdirect product A such that there is a
Boolean space topology on X with the following two properties:

(1) for any a, b ∈ A, the set e(a = b) is clopen
(2) if a, b ∈ A and Y is a clopen subset of X then (a � Y )∪(b � (XrY )) ∈

A (the patchwork property)

This notion was introduced and studied in Foster [53] and [53a].

5.1. Theorem. Let A be a nontrivial algebra such that the set L of finitely
generated congruences of A is a distributive and relatively complemented sub-
lattice of Con(A) and r ◦ s = s ◦ r for all r, s ∈ L. Denote by M0 the set of
maximal congruences of A and put M = M0 ∪ {A

2}. Then A is isomorphic
to a Boolean product of the algebras A/r with r ∈ M . Consequently, A is
isomorphic to a subdirect product of its simple factors.

Proof. Denote by X0 the set of all maximal ideals of L and put X =
X0 ∪ {L}. Observe that the mapping I 7→

⋃

(I) is a bijection of X onto M .
For r ∈ L put Cr = {I ∈ X : r ∈ I} and Dr = X rCr = {I ∈ X : r /∈ I}. One
can easily check that for r, s ∈ L we have

Cr ∪ Cs = Cr∩s, Cr ∩ Cs = Cr∨r, Dr ∪Ds = Dr∨s, Dr ∩Ds = Dr∧s,
Cr ∪Ds = Cr−s, Cr ∩Ds = Ds−r

where r− s denotes the complement of s in the interval [idA, r ∨ s]. It follows
that the set of arbitrary unions of subsets of {Cr : r ∈ L} ∪ {Dr : r ∈ L} is a
topology on X. Clearly, the sets Cr and Dr (r ∈ L) are all clopen. If I, J ∈ X
and I 6= J then there exists an r such that either r ∈ I r J or r ∈ J r I; in
the first case I ∈ Cr and J ∈ Dr, while in the second case I ∈ Dr and J ∈ Cr;
since Cr,Dr are disjoint, we see that X is a Hausdorff space.

In order to prove that X is a Boolean space, it remains to show that X
is compact. Let X =

⋃

r∈K1
Cr ∪

⋃

s∈K2
Ds where K1,K2 are two subsets

of L. Since L ∈ X, K1 is nonempty. Take one fixed congruence t ∈ K1. For
r ∈ K1 define r′ ∈ L by Cr ∩ Dt = Dr′ (i.e., put r′ = t − r) and for s ∈ K2

define s′ ∈ L by Ds ∩Dt = Ds′ (i.e., put s′ = s ∧ t). We have Dt = X ∩Dt =
⋃

r∈K1
Dr′∪

⋃

s∈K2
Ds′ . The ideal generated by all r′ with r ∈ K1 and all s′ with

s ∈ K2 contains t, since otherwise (by 1.9) it would be contained in a maximal
ideal I such that t /∈ I, and we would have I ∈ Dt r (

⋃

r∈K1
Dr′ ∪

⋃

s∈K2
Ds′)

which is impossible. Hence t ⊆ r′1∨· · ·∨r
′
k ∨s

′
1∨· · ·∨s

′
m for some ri ∈ K1 and

sj ∈ K2. We get Dt ⊆ Dr′
1
∪ · · · ∪Dr′

k
∪Ds′

1
∪ · · · ∪Ds′m and X = Ct ∪Dt =

Ct ∪Dr′
1
∪ · · · ∪Dr′

k
∪Ds′

1
∪ · · · ∪Ds′m ⊆ Ct ∪Cr1

∪ · · · ∪Crk
∪Ds1

∪ · · · ∪Ds′m .
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It follows that the sets Cr and Dr with r ∈ L are the only clopen subsets
of X.

Define a mapping f of A into the direct product
∏

I∈X A/(
⋃

I) by f(a) =
a/(

⋃

I). Clearly, f is a homomorphism. If a, b are two distinct elements of
A then the filter {r ∈ L : 〈a, b〉 ∈ r} is contained in a maximal filter F and
I = Lr F is a maximal ideal; we have 〈a, b〉 /∈

⋃

I. Hence the intersection of
all congruences

⋃

I, with I ∈ X, is the identity and f is an isomorphism of A
onto a subdirect product of A/(

⋃

I) (I ∈ X).
For a, b ∈ A we have e(f(a) = f(b)) = CCg(a,b), a clopen set. It remains

to prove the patchwork property. Let a, b ∈ A and r ∈ L; we need to show
that (f(a) � Cr) ∪ (f(b) � Dr) ∈ f(A). Put s = Cg(a, b). We have r ∨ s =
r ∨ (s − r) = r ◦ (s − r) = (s − r) ◦ r, so that there is an element c ∈ A with
〈a, c〉 ∈ r and 〈c, b〉 ∈ s − r. We have e(f(a) = f(c)) ⊇ Cr and e(f(c) =
f(b)) ⊇ Cs−r = Cs ∪Dr ⊇ Dr, so that (f(a) � Cr) ∪ (f(b) � Dr) = f(c). �

Let A be an algebra and B be a Boolean algebra. Denote by A[B]∗ the set
of all continuous mappings of the Boolean space B∗ into the discrete topological
space A (discrete means that all subsets are open). Equivalently, f ∈ A[B]∗

if and only if f is a mapping of B∗ into A and f−1(a) is open for any a ∈ A;
actually, the set f−1(a) is clopen. It follows from the compactness of B∗ that
the range of any function f ∈ A[B]∗ is finite. Now it is easy to see that A[B]∗ is
a subuniverse of the direct power AB∗

; it is a subdirect power. The subalgebra
A[B]∗ of AB∗

is called the Boolean power of A by the Boolean algebra B.

5.2. Theorem. Let A be an algebra and B be a Boolean algebra. For a
subset S of AB∗

we have S = A[B]∗ if and only if the following three conditions
are satisfied:

(1) all constant maps of B∗ into A are in S
(2) for f, g ∈ S, the set e(f = g) is clopen
(3) for f, g ∈ S and Y a clopen subset of B∗, (f � Y )∪ (g � (B∗r Y ) ∈ S

Consequently, the Boolean power A[B]∗ is a Boolean product (of algebras equal
to A).

Proof. Let S = A[B]∗. (1) is clear. For f, g ∈ S, the set e(f = g) is the
union of the clopen sets f−1(a)∩g−1(a) with a ranging over A, and only finitely
many of these intersections are nonempty. For h = (f � Y )∪(g � (B∗rY ) where
f, g ∈ S and Y is clopen, we have h−1(a) = (f−1(a)∩Y )∪ (g−1(a)∩ (B∗rY ))
which is a clopen set.

Let the three conditions be satisfied. If f ∈ S then for any a ∈ A we have
f−1(a) = e(f = ca) where ca is the constant map with range {a}, so that
f−1(a) is clopen by (2) and f ∈ A[B]∗. If f ∈ A[B]∗ then it follows from (3)
that f =

⋃

a∈A(ca � e(f = ca)) ∈ S. �

5.3. Theorem. Let A,A1, A2 be σ-algebras and B1, B2 be Boolean algebras.

(1) Where B is the two-element Boolean algebra, we have A[Bn]∗ = An

(2) A[B1 ×B2]∗ ' A[B1]∗ ×A[B2]∗
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(3) (A1 ×A2)[B]∗ ' A1[B]∗ ×A2[B]∗

Proof. It is easy. �



CHAPTER 5

MODEL THEORY

1. Formulas

Let σ be a given language.
By a formula of the language σ we mean any word over the infinite alpha-

bet, consisting of countably many variables, the operation and relation symbols
of σ and the symbols ≈,¬,u,t,→,∀,∃, (, ), that can be obtained by finitely
many applications of the following rules:

(1) If u, v are two terms of (the underlying signature of) σ, then u ≈ v is
a formula (these can be identified with equations);

(2) If R is a relation symbol of arity n and t1, . . . , tn are terms, then
R(t1 . . . tn) is a formula (these are called atomic formulas);

(3) If f, g are two formulas and x is a variable, then

(¬f), (f u g), (f t g), (f → g), (∀xf), (∃xg)

are also formulas.

The symbols ¬,u,t,→,∀,∃ are called the negation, conjunction, disjunction,
implication, universal quantifier and existential quantifier, respectively. In
particular formulas, parentheses will be omitted at places where this does not
cause any confusion. We consider f ↔ g an abbreviation for (f → g)u(g → f).

Formulas considered here are objects of mathematics, while those in Chap-
ter 1 are at the level of metamathematics.

By an interpretation in a structure A we mean a homomorphism of the
algebra of terms into the underlying algebra of A. Given an interpretation
h in A, a variable x and an element a ∈ A, we denote by hx:a the unique
interpretation in A such that hx:a(x) = a and hx:a(y) = h(y) for all variables
y 6= x.

By induction on the length of a formula f , we define the meaning of the
phrase ‘f is satisfied in a structure A under an interpretation h’, as follows:

(1) An equation u ≈ v is satisfied in A under h if h(u) = h(v);
(2) An atomic formula R(t1 . . . tn) is satisfied in A under h if the n-tuple

(h(t1), . . . , h(tn)) belongs to RA;
(3) ¬f is satisfied in A under h if f is not satisfied in A under h;
(4) fug is satisfied in A under h if both f and g are satisfied in A under h;
(5) f t g is satisfied in A under h if at least one of the formulas, either f

or g, is satisfied in A under h;

63
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(6) f → g is satisfied in A under h if either f is not, or g is satisfied in A
under h;

(7) ∀xf is satisfied in A under h if for every element a ∈ A, f is satisfied
in A under hx:a;

(8) ∃xf is satisfied in A under h if there exists an element a ∈ A such
that f is satisfied in A under hx:a.

For any formula f we define a finite set of variables, called the free variables
in f , as follows:

(1) If f is either an equation or an atomic formula, then a variable is free
in f if and only if it occurs in f ;

(2) If f = ¬g, then a variable is free in f if and only if it is free in g;
(3) If f is either g1 u g2 or g1 t g2 or g1 → g2, then a variable is free in f

if and only if it is free in either g1 or g2;
(4) If f is either ∀xg or ∃xg, then a variable is free in f if and only if it

is free in g and different from x.

One can easily prove that if h1 and h2 are two interpretations in A such that
h1(x) = h2(x) for all variables x free in f , then f is satisfied in A under h1 if
and only if it is satisfied in A under h2.

We say that a formula is satisfied in A if it is satisfied in A under any
interpretation. By a tautology we mean any formula which is satisfied in all
structures (of the given language). Two formulas f, g are said to be equivalent
if f ↔ is a tautology.

Clearly, f tg is equivalent to ¬(¬f t¬g), f → g is equivalent to ¬(f u¬g),
and ∀xf is equivalent to ¬(∃x(¬f)). So, if we want to prove by induction
that all formulas have a given property, and if it is clear that the property is
preserved under equivalence of formulas, then it is sufficient to perform the
induction steps for ¬,u,∃ only.

By a sentence we mean a formula without free variables. The closure of a
formula f is the sentence ∀x1 . . . ∀xnf , where x1, . . . , xn are all the variables
free in f . Clearly, a formula is satisfied in A if and only if its closure is satisfied
in A.

For a formula f and a substitution s (i.e., an endomorphism of the structure
of terms) we define a formula s(f) as follows:

(1) If f is an equation u ≈ v, then s(f) is the equation s(u) ≈ s(v);
(2) If f is an atomic formula R(t1 . . . tn), then s(f) is the atomic formula

R(s(t1) . . . s(tn));
(3) If f is either ¬g or g1 u g2 or g1 t g2 or g1 → g2, then s(f) is either
¬s(g) or s(g1) u s(g2) or s(g1) t s(g2) or s(g1)→ s(g2), respectively;

(4) If f is either ∀xg or ∃xg, then s(f) is either ∀xs′(g) or ∃xs′(g), respec-
tively, where s′ is the substitution such that s′(x) = x and s′(y) = s(y)
for all variables y 6= x.

Also, we define what we mean by saying that a substitution is good for a
given formula:
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(1) If f is either an equation or an atomic formula, then every substitution
is good for f ;

(2) A substitution is good for ¬f if and only if it is good for f ;
(3) A substitution is good for f u g (or f t g, or f → g) if and only if it

is good for both f and g;
(4) A substitution s is good for ∀xf (or ∃xf) if and only if s′ is good for f

and x does not occur in s(y) for any variable y free in f , where s′ is
the substitution such that s′(x) = x and s′(y) = s(y) for all variables
y 6= x.

One can easily prove that if s is a substitution good for a formula f and if h
is an interpretation in A, then s(f) is satisfied in A under h if and only if f is
satisfied in A under hs.

Let f be a formula and x be a variable. Take the first variable y different
from x and not occurring in f . The substitution s, such that s(x) = y and
s(z) = z for all variables z 6= x, is good for f ; the formula ∀x∀y((f u s(f))→
x ≈ y) is denoted by ∃∗xf . The formula (∃xf) u (∃∗xf) is denoted by ∃!xf .

2. Theories

By a theory (of a given language) we mean an arbitrary set of formulas (of
the given language). These formulas are called axioms of the theory.

By a model of a theory T we mean any structure in which all the axioms of
T are satisfied. The class of all models of a theory T is denoted by Mod(T ).
A theory is said to be consistent if it has at least one model; in the opposite
case, it is called inconsistent.

By a consequence of a theory T we mean any formula which is satisfied in
all models of T . Instead of saying that f is a consequence of T , we also write
T ` f .

2.1. Theorem. The following are equivalent for a theory T :

(1) T is inconsistent;
(2) T ` f for every formula f ;
(3) There exists a formula f such that both T ` f and T ` ¬f .

Proof. It is easy. �

3. Ultraproducts

By a filter (or ultrafilter) over a set I we mean a filter (or ultrafilter, resp.)
of the Boolean algebra of all subsets of I.

Let H be a family of structures over a set I and let U be a filter over I.
Define a relation ∼ on the product ΠH in this way: f ∼ g if and only if
{i ∈ I : f(i) = g(i)} ∈ U . It is easy to see that ∼ is a congruence of ΠH;
it is called the congruence induced by U . Let us define a structure A with
the underlying set ΠH/∼ as follows: the operations are those of the structure
ΠH/∼; for a relation symbol R of arity n, let 〈f1/∼, . . . , fn/∼〉 ∈ RA if and
only if {i ∈ I : 〈f1(i), . . . , fn(i)〉 ∈ RHi

} ∈ U . The structure A is denoted by
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ΠUH and is called the reduced product of H through U ; if U is an ultrafilter
over I, it is called the ultraproduct of H through U . If Hi = A for all i ∈ I,
then ΠUH is called the ultrapower of A over U .

3.1. Lemma. Let H be a family of structures over a set I and let U be
an ultrafilter over I. For i ∈ I denote by pi the projection of ΠH onto Hi.
A formula f is satisfied in the ultraproduct ΠUH under an interpretation h if
and only if the set of the indexes i, such that f is satisfied in Hi under pih,
belongs to I.

Proof. It is easy by induction on the length of f . �

3.2. Theorem. Let H be a family of structures over a set I and let U be
an ultrafilter over I. A formula f is satisfied in the ultraproduct ΠUH if and
only if the set of the indexes i, such that f is satisfied in Hi, belongs to I.

Proof. It follows from 3.1; consider the closure of f . �

3.3. Theorem. Let H be a family of structures over a set I and let H be
the principal ultrafilter over I generated by {i0}, for an element i0 ∈ I. Then
ΠUH is isomorphic to Hi0. In particular, if I is finite, then every ultraproduct
of H is isomorphic to Hi for some i ∈ I.

Proof. It is easy. �

3.4. Theorem. Every structure A is isomorphic to a substructure of an
ultraproduct of its finitely generated substructures.

Proof. Denote by I the set of all nonempty finite subsets of A. For i ∈ I
denote by Ai the substructure of A generated by i and denote by Ji the set of
all j ∈ I for which i ⊆ j. Clearly, Ji ∩ Jj = Ji∪j for i, j ∈ I and so there exists
an ultrafilter U over I such that Ji ∈ U for all i ∈ I. Denote by B the product
of the family Ai (i ∈ I), by ∼ the congruence of B induced by U and by C the
ultraproduct B/∼. Define a mapping h of A into C as follows: if a ∈ A then
h(a) = g/ ∼ where g is any element of B such that g(i) = a whenever a ∈ i. It
is easy to check that h is an isomorphism of A onto a substructure of C. �

4. Elementary substructures and diagrams

By an elementary substructure of a structure A we mean a substructure B
such that for any formula f and any interpretation h in B, f is satisfied in A
under h if and only if f is satisfied in B under h. We also say that A is an
elementary extension of B.

For every positive integer n one can easily construct a formula which is
satisfied in a structure A if and only if card(A) = n. Consequently, a fi-
nite structure has no elementary substructure except itself, and also has no
elementary extension except itself.

By an elementary embedding of A into B we mean an isomorphism of A
onto an elementary substructure of B.
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4.1. Example. Let A be a structure and U be an ultrafilter over a non-
empty set I. We obtain an elementary embedding of A into its ultrapower over
I if we assign to any element a ∈ A the element p/∼, where p(i) = a for all
i ∈ I.

4.2. Lemma. Let f be a one-to-one mapping of a structure A into a struc-
ture B. Then f is an elementary embedding if and only if for any formula f
and any interpretation h in A, if f is satisfied in A under h then f is satisfied
in B under fh.

Proof. If f is not satisfied in A under h then ¬f is, so that ¬f is satisfied
in B under fh and f is not. �

4.3. Lemma. A substructure B of a structure A is an elementary substruc-
ture if and only if for any formula f , any variable x and any interpretation h
in B, if ∃xf is satisfied in A under h then there exists an element b ∈ B such
that f is satisfied in A under hx:b.

Proof. The direct implication is clear. For the converse, we are going to
prove by induction on the length of a formula f that for any interpretation
h in B, f is satisfied in A under h if and only if f is satisfied in B under h.
If f is an equation or an atomic formula, it follows from the fact that B is a
substructure. The steps corresponding to ¬ and u are clear, so it remains to
consider the step corresponding to ∃. If ∃xf is satisfied in A under h then,
according to the assumption, there exists an element b ∈ B such that f is
satisfied in A under hx:b, which means by the induction assumption that f is
satisfied in B under hx:b, i.e., ∃xf is satisfied in B under h. If ∃xf is satisfied
in B under h, then f is satisfied in B under hx:b for some b ∈ B, so that f is
satisfied in A under hx:b by the induction assumption. �

4.4. Theorem. Let A be a structure and S be an infinite subset of A such
that card(S) ≥ card(σ). Then A has an elementary substructure B such that
S ⊆ B and card(B) = card(S).

Proof. Let us take a well ordering of the set A. Define an infinite sequence
S0, S1, . . . of subsets of A as follows: S0 = S; Sn+1 is the set of the elements
b ∈ A for which there exist a formula f , a variable x and an interpretation h in
A mapping all variables into Sn, such that b is the least element (with respect
to the well ordering) with the property that f is satisfied in A under hx:b. The
union of this chain of subsets is a substructure of cardinality card(S), and 4.3
can be used to prove that this is an elementary substructure. �

4.5. Theorem. Let a structure A be the union of a set S of its substruc-
tures, such that if B,C ∈ S then either B is an elementary substructure of C or
C is an elementary substructure of B. Then A is an elementary substructure
of every B ∈ S.

Proof. It is easy to prove by induction on the length of a formula f that
if B ∈ S and h is an interpretation in B, then f is satisfied in B under h if
and only if it is satisfied in A under h. �
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Let A be a structure of a language σ. Denote by σ + A the language
obtained from σ by adding a new constant ca for any element a ∈ A, and let
A′ be the structure of the language σ+A obtained from A by adding (ca)A′ = a
for all a ∈ A. By the full diagram of A we mean the set of the sentences of
the language σ+A that are satisfied in A′. By the diagram of A we mean the
subset of the full diagram, consisting of the following sentences:

(1) whenever a, b are two different elements of A, then the formula ¬(ca ≈
cb) belongs to the diagram;

(2) whenever FA(a1, . . . , an) = a for an operation symbol F of σ, then
the formula F (ca1

, . . . , can) ≈ ca belongs to the diagram;
(3) whenever 〈a1, . . . , an〉 ∈ RA for a relation symbol R of σ, then the

formula R(ca1
, . . . , can) belongs to the diagram;

(4) whenever 〈a1, . . . , an〉 /∈ RA for a relation symbol R of σ, then the
formula ¬R(ca1

, . . . , can) belongs to the diagram.

4.6. Theorem. Let A be a structure. Models of the full diagram of A
are precisely the structures of the language σ + A that are isomorphic to an
elementary extension of A′. Models of the diagram of A are precisely the
structures of the language σ +A containing a substructure isomorphic to A′.

Proof. It is easy. �

5. Elementary equivalence

Two structures A and B (of the same language) are said to be elementarily
equivalent if any sentence is satisfied in A if and only if it is satisfied in B. (It
would be sufficient to say that whenever a sentence is satisfied in A, then it is
satisfied in B.)

Isomorphic structures are elementarily equivalent. An elementary sub-
structure of A is elementarily equivalent with A. Every ultrapower of A is
elementarily equivalent with A. If A,B are elementarily equivalent and A is
finite, then A,B are isomorphic.

5.1. Theorem. Two structures A and B are elementarily equivalent if and
only if A is isomorphic to an elementary substructure of an ultrapower of B.

Proof. We only need to prove the direct implication. If f is a sentence of
the language σ+A and d is a mapping of A into B, denote by f:d the sentence
of the language σ + B obtained from f by replacing all occurrences of ca, for
any a ∈ A, with cd(a). Denote by I the full diagram of A. Let f be a sentence
from I and let a1, . . . , an be all the elements of A such that ca occurs in f .
Take pairwise different variables x1, . . . , xn not occurring in f and denote by
f ′ the formula obtained from f by replacing cai

with xi. Then ∃x1 . . . ∃xnf
′ is

a sentence satisfied in A; since A,B are elementarily equivalent, this sentence
is satisfied in B, which means that there exists a mapping d of A into B such
that the sentence f:d belongs to the full diagram of B. For every sentence f ∈ I
take one such mapping d and denote it by df .
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For every f ∈ I denote by If the set of the sentences g ∈ I such that f:dg

belongs to the full diagram of B. Since f ∈ If , the set If is nonempty. Since
Ifug ⊆ If ∩ Ig, there exists an ultrafilter U over I such that If ∈ U for all
f ∈ I. Denote by C the ultrapower of B over U and define a mapping p of A
into BI by p(a)(f) = df (a) for a ∈ A and f ∈ I.

Let f be a formula satisfied in A under an interpretation h. In order
to prove that the mapping a 7→ p(a)/∼ is an elementary embedding of A
into C, it is sufficient to prove (acording to 4.2) that f is satisfied in C under
x 7→ ph(x)/∼. Denote by s the substitution such that s(x) = ch(x) for all
variables x. We have s(f) ∈ I, so that Is(f) ∈ U . This means that U contains
the set of the sentences g ∈ I for which s(f):dg

belongs to the full diagram
of B, i.e., U contains the set of the sentences g ∈ I such that f is satisfied in
B under dgh. Since dgh(x) = ph(x)(g), it follows by 3.1 that f is satisfied in
C under x 7→ ph(x)/∼. �

6. Compactness theorem and its consequences

6.1. Theorem. (Compactness theorem) A theory T is consistent if and
only if every finite subset of T is consistent.

Proof. The direct implication is clear. Let us prove the converse. Denote
by I the set of all finite subsets of T . For every S ∈ I take one model AS of S.
For S ∈ I denote by IS the set of the finite subsets H ∈ I such that every
formula from S is satisfied in AH . Since S ∈ IS , the sets IS are nonempty.
Moreover, we have IS1∪S2

⊆ IS1
∩ IS2

, and so there exists an ultrafilter U over
I such that IS ∈ U for all S ∈ I. Denote by A the ultraproduct of the family
AS (S ∈ I) through U . If f ∈ T , then I{f} ∈ U , so that U contains the set
of the subsets S ∈ I such that f is satisfied in AS ; hence by 3.2, f is satisfied
in A. This means that A is a model of T . �

6.2. Theorem. Let T be a theory and f be a formula. Then T ` f if and
only if there exists a finite subset T ′ of T such that T ′ ` f .

Proof. It follows from 6.1 and the obvious fact that if f is a sentence, then
f is not a consequence of T if and only if the theory T ∪{¬f} is consistent. �

6.3. Theorem. Let T be a theory such that for every positive integer n
there exists a model of T of cardinality ≥ n. Then for every infinite cardinal
number c ≥ card(T ) there exists a model of T of cardinality c.

Proof. Let C be a set of constants not belonging to the language σ, such
that card(C) = c. Denote by T ′ the theory obtained from T by extending
the language by the elements of C, and the axioms by the sentences ¬(a ≈ b)
for any pair a, b of distinct elements of C. It follows from the assumption
by 6.1 that T ′ is consistent. Let A′ be a model of T ′, and A be the structure
of the language σ obtained from A by forgetting the new constants. Clearly,
card(A) ≥ c and A is a model of T . By 4.4, A has an elementary substructure
of the cardinality c. �
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7. Syntactic approach

Where f, g are formulas, x, y are variables, u, v,w, t, ui, vi are terms, F is
an operation symbol of arity n ≥ 1 and R is a relation symbol of arity n, each
of the following formulas is called a logical axiom:

(a1) f → (g → f),
(a2) f → f ,
(a3) (f → g)→ ((f → (g → h))→ (f → h)),
(a4) (f → g)→ ((g → h)→ (f → h)),
(a5) (f → g)→ ((h→ k)→ (f u h→ g u k)),
(a6) (f → g)→ ((h→ k)→ (f t h→ g t k)),
(a7) (f → g)→ (¬g → ¬f),
(a8) (f u g)→ f ,
(a9) (f u g)→ g,

(a10) f → (g → (f u g)),
(a11) f u g → g u f ,
(a12) f t g → g t f ,
(a13) (f u g) u h↔ f u (g u h),
(a14) (f t g) t h↔ f t (g t h),
(a15) ((f u g) t f)↔ f ,
(a16) ((f t g) u f)↔ f ,
(a17) (f t g) u h↔ (f u h) t (g u h),
(a18) (f u ¬f)→ g,
(a19) f t ¬f ,
(a20) (f → g)↔ (¬f t g),
(a21) ((f ↔ g) u (h↔ k))→ ((f → h)↔ (g → k)),
(a22) (¬f → (g u ¬g))→ f ,
(a23) u ≈ u,
(a24) u ≈ v → v ≈ u,
(a25) (u ≈ v u v ≈ w)→ u ≈ w,
(a26) (u1 ≈ v1 u · · · u un ≈ vn)→ Fu1 . . . un ≈ Fv1 . . . vn,
(a27) (u1 ≈ v1 u · · · u un ≈ vn)→ (Ru1 . . . un ↔ Rv1 . . . vn),
(a28) (∀x(f → g))→ (f → ∀xg) where f is a sentence,
(a29) f [x : t]→ ∃xf where [x : t] is a substitution good for f ,
(a30) (∀x(f → g))→ ((∃xf)→ g) where x does not occur in g,
(a31) (∃xf)→ ∃yf [x : y] where y does not occur in f ,
(a32) (∀x(f ↔ g)) → ((∃xf) ↔ ∃yg[x : y]) where either y = x or y does

not occur in g,
(a33) (∀x(f ↔ g)) → ((∀xf) ↔ ∀yg[x : y]) where either y = x or y does

not occur in g,
(a34) ∀xf ↔ ¬∃¬f ,
(a35) (∀xf)→ f .

By a proof in a theory T we mean a finite sequence f1, . . . , fn of formulas
such that for every i = 1, . . . , n at least one of the following four cases takes
place:
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(b1) fi is a logical axiom;
(b2) fi ∈ T ;
(b3) there are indexes j, k ∈ {1, . . . , i − 1} such that fk is the formula

fj → fi;
(b4) there are an index j ∈ {1, . . . , i − 1} and a variable x such that fi is

the formula ∀xfj.

We say that a formula f is provable in T if it is the last member of a proof
in T .

Let us remark that the system of logical axioms, given by the list (a1)
through (a35), is not independent. It is a good excercise to delete a lot of the
items in such a way that provability remains unchanged.

7.1. Lemma. Let T be a theory, f be a sentence and g be a formula. Then
g is provable in T ∪ {f} if and only if f → g is provable in T .

Proof. Let g1, . . . , gn be a proof in T , where gn = g. Let us prove by
induction on i = 1, . . . , n that f → gi is provable in T . If gi is either a logical
axiom or an element of T , it follows from (a1) using (b3); for gi = f it follows
from (a2). If gk is the formula gj → gi for some j, k < i, apply (b3) twice on
an axiom of the form (a3). Let gi be the formula ∀xgj for some j < i. By
induction, f → gj is provable in T . By (b4), ∀x(f → gj) is provable in T . Now
(a28) and (b4) give f → gj .

Conversely, if f1, . . . , fm is a proof in T such that fm is the formula f → g,
then f1, . . . , fm, f, g is a proof in T ∪ {f} with the last member g. �

For every theory T define an algebra A of signature {∧,∨, ′, 0, 1} in this
way: The underlying set of A is the set of all formulas (of the given language);
f ∧ g = f u g; f ∨ g = f t g; f ′ = ¬f ; 0A is the formula ¬x ≈ x and 1A is
the formula x ≈ x (where x is a variable). Define a binary relation ∼ on A as
follows: f ∼ g if and only if both f → g and g → f are provable in T .

7.2. Lemma. The relation ∼ is a congruence of A and the factor A/∼ is a
Boolean algebra.

Proof. Clearly, the relation is symmetric. Its reflexivity and transitivity
follow from (a2) and (a4). Then it follows from (a5), (a6) and (a7) that ∼ is a
congruence. It follows from (a8), (a9) and (a10) that a formula fug is provable
in T if and only if both f and g are provable in T . In particular, we have f ∼ g
if and only if f ↔ g is provable in T . Now the axioms (a11) through (a19) are
transcripts of the defining equations for Boolean algebras. �

The Boolean algebra B = A/∼ is called the Lindenbaum algebra of the
theory T . It is easy to see that for two formulas f and g, f/∼ ≤ g/∼ if and
only if f → g is provable in T . A formula f is provable in T if and only if
f/∼ = 1B .

7.3. Lemma. Let T be a theory and A/∼ be the Lindenbaum algebra of T ;
let f be a formula and x be a variable. Then (∃xf)/∼ is the join of the elements
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(f [x : t])/∼ in A/∼, where t runs over the terms such that the substitution
[x : t] is good for f .

Proof. It follows from (a29) that (∃xf)/∼ is an upper bound of the set.
Let g/∼ be any upper bound of the set. Take a variable y such that y occurs
in neither f nor g. Since g/∼ is an upper bound, f [x : y]→ g is provable in T .
Now (b4) gives ∀y(f [x : y] → g) and (a30) gives (∃yf [x : y]) → g. From this,
using (a31), we get (∃xf)/∼ ≤ (∃yf [x : y])/∼ ≤ g/∼. �

By an adequate ultrafilter of the Lindenbaum algebra A/∼ we mean an
ultrafilter U such that for any (∃xf)/∼ ∈ U there exists a term t such that
[x : t] is good for f and (f [x : t])/∼ ∈ U .

Let T be a theory and U be an adequate ultrafilter of the corresponding
Lindenbaum algebra A/∼. Define a relation r on the algebra T of terms (over
the set of variables) by 〈u, v〉 ∈ r if and only if (u ≈ v)/∼ ∈ U . It follows
from (a23) through (a26) that r is a congruence of T . Define a structure C
as follows: its underlying algebra is the algebra T/r; for an n-ary relation
symbol R we have 〈u1/r, . . . , un/r〉 ∈ RC if and only if (Ru1 . . . un)/∼ ∈ U .
Correctness of this definition follows from (a27).

7.4. Lemma. Denote by H the canonical homomorphism t 7→ t/∼ of T

onto T/∼. A formula f is satisfied in C under the interpretation H if and
only if f/∼ ∈ U .

Proof. Let us fix an ordering x0, x1, . . . of the set of variables. For every
formula h and every positive integer n define a formula cn(h) in this way:
cn(h) = h for h atomic; cn(h1uh2) = cn(h1)ucn(h2); similarly for the symbols
t,¬ and →; if h = Qxh′ where Q is a quantifier, then cn(h) = Qxm(cn(h′)[x :
xm]) where m is the least index such that n ≤ m and xm does not occur in
cn(h′). Clearly, h is equivalent with cn(h). Using (a5), (a6), (a7), (a21), (a32)
and (a33) one can prove by induction for any formula h that h ↔ cn(h) is
provable in T .

We will prove the lemma by double induction: by induction on the number
d(f) of occurrences of ∀ in f , and for a given d(f) by induction on the number
of occurrences of u,t,¬,→,∃ in f . If none of these symbols occurs in f , then
f is atomic and the statement follows from the construction of C. If f is either
g u h or g t h or ¬g for some formulas g and h, the proof is easy: it only uses
the fact that U is an ultrafilter. If f is g → h, we can apply (a20). If f is
∀xg, use the double induction and apply (a34). It remains to consider the case
when f is ∃xg.

Let f be satisfied in C under H, so that there exists a term t such that g is
satisfied in C under Hx:t/r. Clearly, there exists an n such that the substitution
[x : t] is good for the formula ḡ = cn(g). Then ḡ[x : t] is satisfied in C under H.
By induction, (ḡ[x : t])/∼ ∈ U . By 7.3, (∃xḡ)/∼ ∈ U . Since g ↔ ḡ is provable
in T , we have g/∼ = ḡ/∼. Now f/∼ = (∃xḡ)/∼ ∈ U by (a31).

Conversely, let f/∼ ∈ U . Since U is adequate, there exists a term t such
that [x : t] is good for g and (g[x : t])/∼ ∈ U . By induction, g[x : t] is satisfied
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in C under H. From this is tollows that g is satisfied in C under Hx:t/r, so
that f is satisfied in C under H. �

7.5. Lemma. C is a model of T .

Proof. Let f ∈ T . It follows from (b4) that the closure g of f is provable
in T , so that g/∼ = 1A/∼ ∈ U . It follows by 7.4 that g is satisfied in C. But
then, f is satisfied in C. �

7.6. Theorem. Let T be a theory. A formula f is a consequence of T if
and only if it is provable in T .

Proof. Clearly, it is sufficient to consider the case when f is a sentence.
The direct implication is clear. Let f be a consequence of T . By 6.2 there
exists a finite subset T ′ of T such that f is a consequence of T ′. We can
consider T ′ as a theory of a finite sublanguage σ′ of σ. Suppose that f is not
provable in T . Then f is not provable in T ′. So, using (a22) it follows from 7.1
that no formula g u ¬g is provable in the theory T ′ ∪ {¬f}. This means that
the Lindenbaum algebra A/∼ of T ′ ∪ {¬f} has at least two elements. Since
this is a theory of a finite language, the Lindenbaum algebra is countable and
it follows from 4.4.4 that it has an adequate ultrafilter U . The corresponding
structure C is a model of T ′ ∪ {¬f} by 7.5; but it also satisfies f , and we get
a contradiction. �

8. Complete theories

A theory T is said to be complete if it is consistent and for every sentence
f of the language σ, either f or ¬f is a consequence of T .

8.1. Theorem. Let A be a structure. Then the set of all sentences that are
satisfied in A is a complete theory.

Proof. It is evident. �

8.2. Theorem. Every consistent theory is contained in a complete theory.

Proof. If T is a consistent theory, then T has a model A. According
to 8.1, the set of the sentences satisfied in A is a complete theory. �

Let c be a cardinal number. A theory T is said to be categorical in the
cardinality c if every two models of T of the cardinality c are isomorphic.

8.3. Theorem. Let T be a consistent theory and let T be categorical in
some infinite cardinality c ≥ card(σ). Then T is complete.

Proof. Suppose that there is a sentence f such that neither f nor ¬f is a
consequence of T . Then both T ∪{f} and T ∪{¬f} are consistent. According
to 6.3, each of these two theories has a model of cardinality c. Since T is
categorical in c, the two models are isomorphic, a contradiction. �
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8.4. Example. The theory of dense linearly ordered sets without extreme
elements is categorical in the countable cardinality. (A linearly ordered set A
is said to be dense if for every a, b ∈ A with a < b there exists an element c ∈ A
with a < c < b.) The theory of Boolean algebras without atoms is categorical
in the countable cardinality.

9. Axiomatizable classes

A class of structures is said to be axiomatizable if it is the class of all models
of some theory.

9.1. Theorem. A class of structures is axiomatizable if and only if it is
closed under ultraproducts, isomorphic images and elementary substructures.

Proof. The direct implication is clear. Let K be a class of structures
closed under ultraproducts, isomorphic images and elementary substructures.
It follows from 5.1 that K is closed under elementary equivalence. Denote by
T the set of the sentences that are satisfied in every structure from K. Since
K ⊆Mod(T ) is evident, it remains to prove Mod(T ) ⊆ K. Let A ∈Mod(T ).
Denote by I the set of the sentences satisfied in A. For every f ∈ I there exists
a structure Af ∈ K such that f is satisfied in Af . (In the opposite case ¬f
would be satisfied in every structure from K, so that ¬f ∈ T and ¬f would be
satisfied in A.) For every f ∈ I denote by If the set of all g ∈ I such that f
is satisfied in Ag. The set If is nonempty, since f ∈ If . Since Ifug ⊆ If ∩ Ig,
there exists an ultrafilter U over I such that If ∈ U for all f ∈ I. The
ultraproduct B of the family Af (f ∈ I) over U belongs to K, since K is
closed under ultraproducts. It remains to prove that the structures A and B
are elementarily equivalent, i.e., that every sentence f ∈ I is satisfied in B.
But this follows from the fact that the set of all g ∈ I such that f is satisfied
in Ag belongs to U . �

A class of structures is said to be finitely axiomatizable, or also elementary,
if it is the class of all models of a theory with finitely many axioms; in that
case, it is the class of all models of a theory with a single axiom.

9.2. Theorem. A class K of structures is finitely axiomatizable if and only
if both K and the complement of K in the class of all structures of the language
σ are axiomatizable.

Proof. If K is axiomatizable by a sentence f , then the complement is
axiomatizable by ¬f . Let T1 and T2 be two theories such that Mod(T1) = K
and Mod(T2) is the complement of K; we can assume that T1 and T2 are
sets of sentences. The theory T1 ∪ T2 is inconsistent, so that (according to
the Compactness theorem) it contains an inconsistent finite subset; in par-
ticular, there exists a finite subset {f1, . . . , fn} of T2 such that the theory
T1 ∪ {f1, . . . , fn} is inconsistent. Clearly, K is the class of all odels of the
sentence ¬(f1 u · · · u fn). �
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10. Universal classes

Let A be a structure of the language σ; let S be a nonempty finite subset
of A and τ be a finite sublanguage of σ. We denote by A � (S, τ) the reduct of
the partial structure A � S to τ .

Let A be a structure and K be a class of structures of language σ. We say
that A is locally embeddable into K if for every nonempty finite subset S of A
and every finite sublanguage τ of σ there exists a structure B ∈ K such that
A � (S, τ) is isomorphic to B � (S′, τ) for some subset S′ of B.

By a universal formula we mean a formula containing no quantifiers.

10.1. Theorem. The following are equivalent for a class K of structures
of the language σ:

(1) K is axiomatizable and closed under substructures;
(2) K is the class of all models of a theory, all the axioms of which are

universal formulas;
(3) every σ-structure that is locally embeddable into K belongs to K;
(4) K is closed under substructures, ultraproducts and isomorphic images.

Proof. The equivalence of (1) with (4) follows from 9.1.
(1) implies (2): Let K = Mod(T ) be closed under substructures. Denote

by Z the set of the universal formulas satisfied in all structures from K. It
is sufficient to prove that every structure A ∈ Mod(Z) is isomorphic to a
substructure of a structure belonging to K; according to 4.6, we need to prove
that the union of T with the diagram of A is a consistent theory of the language
σ + A. Suppose that this theory is inconsistent. According to 6.1, there
exists a finite subset {f1, . . . , fn} of the diagram of A such that the theory
T ∪ {f1, . . . , fn} is inconsistent. Put f = f1 u · · · u fn and let ca1

, . . . , cam

be all the constants occurring in f and not belonging to σ. Take pairwise
different variables x1, . . . , xm not occurring in f and denote by g the formula
obtained from f by replacing each cai

with xi. If the formula ∃x1 . . . ∃xmg is
satisfied in a structure B ∈ K, then g is satisfied in B under an interpretation
h and the structure C of the language σ+A, such that B is a reduct of C and
(cai

)C = h(xi) for all i, is a model of the inconsistent theory T ∪ {f}. Hence
¬∃x1 . . . ∃xmg is satisfied in every structure B ∈ K. But then the universal
formula ¬g is satisfied in every structure from K, so that it belongs to Z and
is satisfied in A, a contradiction.

(2) implies (3): Let K = Mod(T ) where T is a set of universal formulas,
and let A be locally embeddable into K. It is sufficient to prove that every
formula f is satisfied in A under an arbitrary interpretation h. Denote by S the
set of the elements h(t), where t runs over all subterms of f (it should be clear
what do we mean by a subterm of a formula), and denote by τ the sublanguage
of σ consisting of the symbols occurring in f . There exists a structure B ∈ K
such that A � (S, τ) is isomorphic to B � (S′, τ) for a subset S′ of B. Since f
is a universal formula satisfied in B, it is easy to see that f is satisfied in A
under h.
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(3) implies (1): Clearly, K is closed under substructures. We are going to
prove that K = Mod(T ), where T is the set of the universal formulas satisfied
in all structures from K. Let A ∈ Mod(T ). In order to prove A ∈ K, it is
enough to show that for any nonempty finite subset S = {a1, . . . , an} of A and
any finite sublanguage τ of σ, there is a structure B ∈ K such that A � (S, τ)
is isomorphic to B � (S′, τ) for a subset S′ of B. Suppose that there is no
such B in K. Denote by M the set of the formulas from the diagram of A
that do not contain other operation and relation symbols than those belonging
to τ ∪ {ca1

, . . . , can}. Take pairwise different variables x1, . . . , xn and denote
by f1, . . . , fm all the τ -formulas obtained from formulas belonging to M by
replacing the constants cai

with xi. Put f = f1 u · · · u fm. Clearly, the
sentence ∃x1 . . . ∃xnf is satisfied in a σ-structure B if and only if A � (S, τ) is
isomorphic to B � (S′, τ) for a subset S′ of B. So, this sentence is not satisfied
in any structure from K. But then the universal formula ¬f is satisfied in
all structures from K, so that it belongs to T and is satisfied in A. But f is
satisfied in A under an interpretation, a contradiction. �

A class of structures is said to be universal if it satisfies any of the equiv-
alent conditions of Theorem 10.1.

10.2. Theorem. Let K be a universal class of structures. A structure A
belongs to K if and only if every finitely generated substructure of A belongs
to K.

Proof. It is easy. �

11. Quasivarieties

By a quasiequation we mean a formula of the form (f1u· · ·ufn)→ f where
n ≥ 0 and f1, . . . , fn, f are atomic formulas. (For n = 0 the quasiequation is
just f .)

By a quasivariety we mean the class of all models of a theory, all the axioms
of which are quasiequations.

For a class K of structures denote by PR(K) the class of reduced products
and by PU (K) the class of ultraproducts of arbitrary families of structures
from K.

11.1. Theorem. The following are equivalent for a class K of structures
of the language σ:

(1) K is a quasivariety;
(2) K is axiomatizable and closed under substructures and direct products;
(3) K is closed under substructures, direct products and ultraproducts;
(4) K is closed under substructures and reduced products;
(5) K is universal and closed under direct products of finitely many struc-

tures;
(6) K is closed under products of finitely many algebras and every struc-

ture that is locally embeddable into K belongs to K.
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The class ISPPU (K) = ISPR(K) is the quasivariety generated by K.

Proof. The implications (1)→(2)→(3)→(5)↔(6) are clear or follow from
10.1. Let us prove that (5) implies (1). Denote by T the set of the universal
formulas satisfied in all structures from K, so that K = Mod(T ). Denote by
Y the set of the formulas of the form f1 t · · · t fn (n ≥ 1) belonging to T and
satisfying the following two conditions:

(i) there exists a number p ∈ {0, . . . , n} such that f1, . . . , fp are atomic
formulas and fp+1, . . . , fn are negations of atomic formulas;

(ii) if n ≥ 2 then the formula gi = f1 t · · · t fi−1t fi+1t · · · t fn does not
belong to T for any i ∈ {1, . . . , n}.

It is easy to prove by induction that every universal formula is equivalent to a
formula of this form, so that K = Mod(Y ).

Let f = f1t· · ·tfn ∈ Y , and let p and gi be as in (i) and (ii). Suppose p ≥ 2.
For every i = 1, . . . , p there exist a structure Ai ∈ K and an interpretation hi

in Ai such that gi is not satisfied in Ai under hi. Put A = A1 × · · · ×Ap and
define an interpretation h in A by h(t)(i) = hi(t). Since A ∈ K, f is satisfied
in A under h; hence there exists an i ∈ {1, . . . , n} such that fi is satisfied in
A under h. If i ≤ p, then fi is satisfied in Aj under hj for any j ∈ {1, . . . , p};
for j 6= i it follows that gj is satisfied in Aj under hj , but this contradicts the
choice of Aj. Hence i ≥ p+ 1. Since fi is a negation of an atomic formula and
fi is satisfied in A under h, there exists an index j ∈ {1, . . . , p} such that fi is
satisfied in Aj under hj ; but then gj is satisfied in Aj under hj, a contradiction.

We have proved p ≤ 1. We cannot have p = 0, since f is satisfied in the
product of the empty family of structures. Hence p = 1 and f is equivalent to
(f2 u · · · u fn)→ f1.

It remains to prove the last statement. Let us first prove that PRPR(K) ⊆
IPR(K). Let A ∈ PRPR(K). There exist a set J , a family Ij (j ∈ J) of
pairwise disjoint sets, structures Ai (i ∈ I =

⋃

{Ij : j ∈ J}), a filter U over
J and filters Uj over Ij such that A = Πj∈J((Πi∈Ij

Ai)/∼ Uj)/∼U (here ∼U

denotes the congruence induced by U). Denote by F the set of the subsets S
of I such that {j ∈ J : S ∩ Ij ∈ Uj} ∈ U . Clearly, F is a filter over I. Define
a mapping h of Πi∈IAi into A by h(a) = ba/∼U where ba(j) = (a � Ij)/∼Uj

for all j ∈ J . One can easily check that h is a surjective homomorphism, that
the kernel of h is the congruence ∼F and that the corresponding bijection of
(Πi∈IAi)/∼F onto A is an isomorphism.

Next let us prove that PR(K) ⊆ ISPPU (K). Let Ai (i ∈ I) be a family
of structures from K and F be a filter over I. Denote by J the set of all the
ultrafilters U over I such that F ⊆ U . Define a mapping h of (Πi∈IAi)/∼F

into ΠU∈J((Πi∈IAi)/∼U ) by h(a/∼F )(U) = a/∼U . Since (as it is easy to see)
F is the intersection of the ultrafilters from J , the mapping h is injective. One
can easily check that h is an isomorphism.

Clearly, PRS(K) ⊆ ISPR(K).
We have ISPR(K) ⊆ ISPPU (K) ⊆ ISPRPR(K) ⊆ ISPR(K), from which

it follows that ISPPU (K) = ISPR(K). The rest is clear. �
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11.2. Theorem. For a finite structure A, the quasivariety generated by A
equals ISP(A).

Proof. It follows from 11.1. �



CHAPTER 6

VARIETIES

1. Terms: Syntactic notions

The notion of a subterm of a term u can be defined by induction on λ(t) as
follows: if t ∈ X, then u is a subterm of t if and only if u = t; if t = Ft1 . . . tn,
then u is a subterm of t if and only if either u = t or u is a subterm of one
of the terms t1, . . . , tn. Clearly, every term has only finitely many subterms.
Instead of saying that u is a subterm of t, we will often write u ⊆ t; we hope
that this can cause no confusion.

The set of elements of X that occur in t (i.e., are subterms of t,) will be
denoted by S(t) and called the support of t. It is always a finite subset of X.

By an elementary address we mean an ordered pair 〈F, i〉 where F ∈ σ is
an operation symbol of a positive arity n and i ∈ {1, . . . , n}. By an address
we mean a finite (possibly empty) sequence of elementary addresses. Any two
addresses can be concatenated to form a new address. We say that an address
a is an initial segment of an address b, and that b is an extension of a, is b = ca
for some address c. Two addresses are said to be incomparable if neither is an
extension of the other.

Let a be an address. For some terms t, we are going to define a subterm
t[a] of t, called the subterm of t at address a, in the following way. If a = ∅,
then t[a] = t for any term t. If a = 〈F, i〉b for an elementary address 〈F, i〉
and some address b, then t[a] is defined if and only if t = Ft1 . . . tn for some
terms t1, . . . , tn and ti[b] is defined; if so, put t[a] = ti[b]. If t[a] = u, we say
that a is an occurrence of u in t; it is easy to prove that u is a subterm of t if
and only if it has at least one occurrence in t. For a given term t, the set of
occurrences of subterms in t will be denoted by O(t). This set is always finite;
its maximal elements (with respect to the ordering by extension) are just the
occurrences of elements of X and constants in t. We denote by OX(t) the set
of occurrences of elements of X in t. For two terms t and u, we denote by |t|u
the number of occurrences of u in t.

Let a be an occurrence of a subterm u in a term t, and let s be a term. Then
there is a unique term r such that r[a] = s and r[b] = t[b] for every address b
which is incomparable with a. This term r is called the term obtained from t
by replacing u with s at the address a. We denote r by t(a : u→ s).

A substitution can be most easily defined as an endomorphism of the term
algebra. If x1, . . . , xn are pairwise different elements of X and u1, . . . , un are
any terms, then we denote by [x1 : u1, . . . , xn : un] the substitution f with

79
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f(xi) = ui for i = 1, . . . , n and f(x) = x for x ∈ X r {x1, . . . , xn}; the term
f(t) will be then denoted by t[x1 : u1, . . . , xn : un].

Sometimes, a term t will be denoted by something like t(x1, . . . , xn). We
will mean that t is a term, x1, . . . , xn are pairwise different elements of X
and {x1, . . . , xn} ⊆ S(t). If this notation for t is used, then for any n-tuple
u1, . . . , un, t(u1, . . . , un) will stand for t[x1 : u1, . . . , xn : un].

By a substitution instance of a term u we mean any term f(u), where f is
a substitution.

It is easy to characterize automorphisms of the algebra TX : they are just
the extensions of a permutation of X to a substitution. (The proof is obvious.)

Given two terms u and v, we write u ≤ v if v = Lf(u) for a lift L and a
substitution f . This is a quasiordering on the set of terms. Two terms u, v are
called (literally) similar if u ≤ v and v ≤ u; we then write u ∼ v. Also, u ∼ v
if and only if v = α(u) for an automorphism α of the term algebra. Factored
through this equivalence, the set of terms becomes a partially ordered set every
principal ideal of which is finite. We write u < v if u ≤ v and v 6≤ u.

Two finite sequences u1, . . . , un and v1, . . . , vm of terms are called similar
if n = m and there exists an automorphism α of TX with α(ui) = vi for
i = 1, . . . , n.

1.1. Lemma. Two finite sequences u1, . . . , un and v1, . . . , vn of terms are
similar if and only if there exist substitutions f and g such that f(ui) = vi and
g(vi) = ui for i = 1, . . . , n.

Proof. It is easy. �

2. The Galois correspondence

In the following let X be a fixed countably infinite set; its elements will be
called variables. By a term we will mean a term over X. Let the signature σ
be fixed.

By an equation we will mean an ordered pair of terms. Sometimes an
equation 〈u, v〉 will be denoted by u ≈ v. The terms u and v are called the left
side and the right side of 〈u, v〉, respectively.

An equation 〈u, v〉 is said to be satisfied in an algebra A if f(u) = f(v) for
any homomorphism f of the term algebra into A.

For a class C of algebras, let Eq(C) denote the set of the equations that are
satisfied in every algebra from C. This set of equations is called the equational
theory of C. By an equational theory we mean a set of equations E such that
E = Eq(C) for a class of algebras C.

Let E be a set of equations. An algebra A is said to be a model of E if
every equation from E is satisfied in A. The class of all models of a set of
equations E is denoted by Mod(E). By a variety we will mean a class C such
that C = Mod(E) for a set of equations E.

The facts collected in the following theorem are often expressed by saying
that the operators Eq and Mod form a Galois correspondence between sets
of equations and classes of algebras.
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2.1. Theorem. Let E1, E2 and E be sets of equations and C1, C2 and C
be classes of algebras. Then:

(1) C1 ⊆ C2 implies Eq(C1) ⊇ Eq(C2);
(2) E1 ⊆ E2 implies Mod(E1) ⊇Mod(E2);
(3) C ⊆Mod(Eq(C));
(4) E ⊆ Eq(Mod(E));
(5) Eq(Mod(Eq(C))) = Eq(C);
(6) Mod(Eq(Mod(E))) = Mod(E).

Proof. It is easy. In fact, (5) and (6) are consequences of (1)–(4). �

2.2. Theorem. A set E of equations is an equational theory if and only
if it is a fully invariant congruence of the term algebra, i.e., a congruence
of the term algebra such that 〈u, v〉 ∈ E implies 〈f(u), f(v)〉 ∈ E for any
substitution f .

Proof. The direct implication is easy to prove. Let E be a fully invariant
congruence of the term algebra. Put A = TX/E and denote by p the canonical
projection of TX onto A. If h is a homomorphism of TX into A, then h = pf
for a substitution f ; if 〈u, v〉 ∈ E, then 〈f(u), f(v)〉 ∈ E, so that pf(u) = pf(v),
i.e., h(u) = h(v). We get A ∈Mod(E).

Let 〈u, v〉 ∈ Eq(Mod(E)). Since A ∈ Mod(E), 〈u, v〉 is satisfied in A.
Since p is a homomorphism of TX into A, by definition we get p(u) = p(v),
i.e., 〈u, v〉 ∈ E. Hence Eq(Mod(E)) ⊆ E. By Theorem 2.1 we get E =
Eq(Mod(E)) and E is an equational theory. �

2.3. Theorem. (Birkhoff [35]) A class of algebras is a variety if and only
if it is HSP-closed.

Proof. The direct implication is easy to prove. Let C be closed under ho-
momorphic images, subalgebras and direct products and letA ∈Mod(Eq(C)).
By Theorem 2.1 it is sufficient to prove A ∈ C.

Since C is closed under subalgebras and direct products, there exists a free
algebra B in C over the set A. Denote by T the algebra of terms over A, by
g the unique homomorphism of T onto B extending idA, and by h the unique
homomorphism of T onto A extending idA.

Let 〈a, b〉 ∈ ker(g), i.e., g(a) = g(b). Since X is infinite and there are only
finitely many elements of A occurring in either a or b, there are two terms
u, v over the set X such that the equation 〈u, v〉 behaves similarly as the pair
〈a, b〉 in the following sense: 〈u, v〉 is satisfied in an algebra U if and only if
s(a) = s(b) for every homomorphism s of T into U . If U ∈ C and s is a
homomorphism of T into U , then s = fg for a homomorphism f of B into U ,
so that s(a) = fg(a) = fg(b) = s(b). Consequently, 〈u, v〉 is satisfied in every
algebra U ∈ C, and we have 〈u, v〉 ∈ Eq(C). Since A ∈ Mod(Eq(C)), it
follows that 〈u, v〉 is satisfied in A. Hence h(a) = h(b).

We have proved that ker(g) ⊆ ker(h). But then A is a homomorphic
image of B. Since B ∈ C and C is closed under homomorphic images, we get
A ∈ C. �
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Although it is not legitimate to speak about lattices of proper classes,
the collection of varieties is a ‘lattice’ in a sense, according to Theorem 2.1.
It follows from Theorem 2.1 that the set of equational theories (of the given
signature σ) is a complete lattice with respect to inclusion, and that this lattice
is antiisomorphic to the ‘lattice’ of varieties. The lattice of equational theories
will be denoted by Lσ (or just L).

The least equational theory of signature σ will be denoted by idσ; it consists
of the equations 〈u, v〉 with u = v. The corresponding variety is the variety
of all σ-algebras. The largest equational theory of signature σ is the set T 2

σ

of all σ-equations. It will be called the trivial equational theory, because it
corresponds to the trivial variety of one-element algebras. Both idσ and T 2

σ

are called extreme.

3. Derivations, consequences and bases

Let E be a set of equations. The least equational theory containing E (its
existence being clear) will be denoted by Eq(E) and its elements will be called
consequences of E. We write E ` 〈u, v〉 if 〈u, v〉 is a consequence of E.

By a base for an equational theory E we mean any subset B of E such
that E = Eq(B); we also say that E is generated by B. An equational theory
is called finitely based if it has a finite base; it is called one-based if it has a
base consisting of a single equation.

Both extreme equational theories are one-based: 〈x, x〉 is a base for idσ,
and 〈x, y〉 is a base for T 2

σ , where x and y are two distinct variables.
An equation 〈r, s〉 is said to be an immediate consequence of an equation

〈u, v〉 if there exist a substitution f and an address a in r such that r[a] = f(u)
and s = r[a : f(u) → f(v)]. (Less formally: if s can be obtained from r by
replacing one occurrence of a subterm f(u), for a substitution f , with f(v).)

Let B be a set of equations. By a derivation based on B we mean a finite
sequence u0, . . . , uk (k ≥ 0) of terms such that for any i ∈ {1, . . . , k}, either
〈ui−1, ui〉 or 〈ui, ui−1〉 is an immediate consequence of an equation from B.
By a derivation of an equation 〈u, v〉 from B we mean a derivation u0, . . . , uk

based on B, such that u0 = u and uk = v.

3.1. Theorem. We have B ` 〈u, v〉 if and only if there exists a derivation
of 〈u, v〉 from B.

Proof. Denote by E the set of the equations 〈u, v〉 such that there exists
a derivation of 〈u, v〉 from B. Using 2.2, it is easy to see that E is an equational
theory, and that E is the least equational theory containing B. �

4. Term operations and polynomials

Let A be an algebra and k be a nonnegative integer, such that k > 0 if the

signature contains no constants. The direct product AAk

is called the algebra
of k-ary operations on A. (Its elements are just the k-ary operations on A.)
For i ∈ {1, . . . , k}, the k-ary operation ei on A, defined by ei(a1, . . . , ak) = ai,
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is called the i-th k-ary trivial operation on A. The subalgebra of the algebra
of k-ary operations on A generated by the set of k-ary trivial operations on A
is called the algebra of k-ary term operations of A, and its elements are called
the k-ary term operations of A.

Consider the term algebra T over a fixed generating set {x1, . . . , xk} of k
elements. The mapping xi → ei can be uniquely extended to a homomorphism
h of T onto the algebra of k-ary term operations of A. If h(t) = f , then we say
that f is the k-ary term operation of A represented by a term t; this operation
f is denoted by tA.

4.1. Theorem. Let A be an algebra and X be a subset of A. An element
a ∈ A belongs to Sg(X) if and only if there exists a k-ary term operation f of
A (for some k ≥ 0) such that a = f(a1, . . . , ak) for some a1, . . . , ak ∈ X.

Proof. It is easy. �

4.2. Theorem. Let A be a nontrivial algebra and let k be a nonnegative
integer, such that k > 0 if the signature contains no constants. Then the
algebra of k-ary term operations of A is a free algebra in HSP(A) over the
k-element set of the trivial k-ary operations on A.

Proof. Denote by V the class of all algebras B such that every mapping
of the set of trivial k-ary operations on A into B can be extended to a homo-

morphism of the algebra AAk

into B. It is easy to see that V is a variety, and
it remains to check that the algebra A belongs to V . Let f be a mapping of
the set of trivial k-ary operations {e1, . . . , ek} into A. For any k-ary operation

g on A put h(g) = g(f(e1), . . . , f(ek)). Then h is a homomorphism of AAk

into
A and h extends the mapping f . �

Let A be an algebra and h be an n-ary operation on A. We say that h
preserves subuniverses of A if for every subuniverse S of A and any elements
a1, . . . , an ∈ S, h(a1, . . . , an) ∈ S. We say that h preserves endomorphisms
of A if for every endomorphism f of A and any elements a1, . . . , an ∈ A,
f(h(a1, . . . , an)) = h(f(a1), . . . , f(an)). We say that h preserves congruences
of A if for every congruence r of A and any 〈a1, b1〉 ∈ r, . . . , 〈an, bn〉 ∈ r,
〈h(a1, . . . , an), h(b1, . . . , bn)〉 ∈ r.

4.3. Theorem. Every term operation of an algebra A preserves subuni-
verses, endomorphisms and congruences of A.

Proof. It is easy. �

An algebra A is said to be free in itself over a set S if S is a generating sub-
set of A and every mapping of S into A can be extended to an endomorphism
of A. (In other words, A is free in {A} over S.)

4.4. Theorem. Let A be an algebra free in itself over a set S and n be a
positive integer such that n ≤ card(S). Then an n-ary operation on A is a
term operation of A if and only if it preserves endomorphisms of A.
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Proof. The direct implication follows from 4.3. Let h be an n-ary oper-
ation of A preserving endomorphisms of A. Take pairwise different elements
x1, . . . , xn ∈ S. If U is a subuniverse of A and a1, . . . , an ∈ U , then we
can take an endomorphism f such that f(xi) = ai for all i and f(x) = a1

for x ∈ S r {x1, . . . , xn}; since the range of f is contained in U , we have
h(a1, . . . , an) = h(f(x1), . . . , f(xn)) = f(h(x1, . . . , xn)) ∈ U . So, the operation
h preserves subuniverses. Since h(x1, . . . , xn) belongs to the subuniverse gen-
erated by x1, . . . , xn, by 4.1 there exists an n-ary term operation g of A such
that h(x1, . . . , xn) = g(x1, . . . , xn). For any a1, . . . , an ∈ A we can define an
endomorphism f as above; then

h(a1, . . . , an) = h(f(x1), . . . , f(xn)) = f(h(x1, . . . , xn))

= f(g(x1, . . . , xn)) = g(f(x1), . . . , f(xn)) = g(a1, . . . , an),

so that h = g. �

Let k ≥ 1. By a k-ary polynomial of an algebra A we mean a k-ary
operation f on A for which there exist a number m ≥ k, an m-ary term
operation g of A and elements ck+1, . . . , cm ∈ A such that f(x1, . . . , xk) =
g(x1, . . . , xk, ck+1, . . . , cm) for all x1, . . . , xk ∈ A. One can easily prove that

the set of k-ary polynomials of A is just the subuniverse of AAk

generated by
the operations ei (as above) together with all constant k-ary operations on A.

By a elementary unary polynomial of A we mean a mapping f of A into A
for which there exist a term t(x1, . . . , xn) (n ≥ 1) with precisely one occurrence
of x1 and elements c2, . . . , cn ∈ A such that f(a) = tA(a, c2, . . . , cn) for all
a ∈ A.

4.5. Theorem. (Mal’cev [54]) Let A be an algebra and r be a nonempty
binary relation on A. Then CgA(r) is the transitive closure of the set of all
pairs of the form 〈f(a), f(b)〉 where f is an elementary unary polynomial of A
and 〈a, b〉 ∈ r ∪ r−1.

Proof. It is easy. �

An equivalent formulation is this: a pair 〈a, b〉 belongs to Cg(r) if and only
if there exists a finite sequence a0, a1, . . . , an such that a0 = a, an = b and such
that for every i = 1, . . . , n there are a unary polynomial pi of A and a pair
〈ci, di〉 ∈ r with {ai−1, ai} = {pi(ci), pi(di)}. Such a finite sequence a0, . . . , an

is called a Mal’cev chain from a to b with respect to r.
Two algebras (of possibly different signatures) are said to be term equiv-

alent if they have the same term operations of positive arities. They are said
to be polynomially equivalent if they have the same polynomials.

5. Locally finite and finitely generated varieties

An algebra A is said to be locally finite if every finitely generated subuni-
verse of A is finite. A class of algebras is said to be locally finite if it contains
only locally finite algebras.
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5.1. Theorem. A variety V is locally finite if and only if any free algebra
in V over a finite set is finite.

Proof. Every finitely generated algebra in V is a homomorphic image of
a free V -algebra over a finite set. �

A variety V is said to be finitely generated if V = HSP(A) for a finite
algebra A.

A variety generated by a finite set of finite algebras is finitely generated:
if it is generated by A1, . . . , Ak, then it is generated by A1 × · · · ×Ak.

5.2. Theorem. Every finitely generated variety is locally finite.

Proof. It follows from 4.2 and 5.1. �

6. Subdirectly irreducible algebras in varieties

Since every variety is generated (as a variety) by the class of its subdirectly
irreducible algebras, it is clear that subdirectly irreducible algebras must play
a very important role in the investigation of varieties.

A variety V is called residually small if there exists a cardinal number κ
such that |A| < κ for all subdirectly irreducible algebras of V . Equivalently
stated, a variety V is residually small if and only if there exists a set S such
that any subdirectly irreducible algebra from V belongs to S. A variety is
called residually large if it is not residually small. It is called residually finite
if all its subdirectly irreducible members are finite. It is called residually very
finite if there exists a positive integer n such that all its subdirectly irreducible
members have less than n elements.

6.1. Theorem. Let V be a locally finite variety containing at least one
infinite subdirectly irreducible algebra. Then, for any positive integer n, V
contains a finite subdirectly irreducible algebra of cardinality at least n.

Proof. Let A be an infinite subdirectly irreducible algebra in V . Denote
by K the class of finite subdirectly irreducible algebras from V and suppose
that the cardinalities of all algebras in K are bounded by some positive in-
teger n. According to 5.3.4, A can be embedded into an ultraproduct of its
finitely generated subalgebras; since V is locally finite, it means that A can be
embedded into an ultraproduct of its finite subalgebras. Each of these finite
subalgebras is isomorphic to a subdirect product of algebras from K. Hence
A ∈ ISPUSP(K). From this it follows by 5.11.1 that A ∈ ISPPU (K). But an
ultraproduct of algebras of cardinality at most n is of cardinality at most n, so
A can be embedded into a direct product of finite algebras, a contradiction. �

7. Minimal varieties

A variety W is said to cover a variety V if V is properly contained in W
and there is no variety properly contained in W and properly containing V . A
variety is said to be minimal if it covers the trivial variety.
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7.1. Theorem. Let V be a finitely based variety. Then for every variety
W , properly containing V , there exists a variety covering V and contained
in W .

Proof. Formulate this in terms of equational theories (the two lattices
are antiisomorphic) and use Zorn’s lemma. �

7.2. Corollary. For every nontrivial variety V there exists a minimal
variety contained in V .

7.3. Example. (1) The variety of groupoids satisfying xy ≈ x is minimal.
This follows from the description of the corresponding equational theory E.
We have 〈u, v〉 ∈ E if and only if the terms u, v have the same leftmost variable.

(2) Similarly, the variety of groupoids satisfying xy ≈ y is minimal.
(3) The variety of groupoids satisfying xy ≈ zu is minimal. The corre-

sponding equational theory E can be described as follows: 〈u, v〉 ∈ E if and
only if either u = v or neither u nor v is a variable.

(4) The variety of semilattices is minimal. The corresponding equational
theory E can be described as follows: 〈u, v〉 ∈ E if and only if S(u) = S(v).
(S(u) is the set of variables occurring in u.)

(5) For every prime number p, the variety of commutative semigroups
satisfying xpy ≈ yxp ≈ y (these are commutative groups satisfying xp = 1) is
minimal. The corresponding equational theory E can be described as follows:
〈u, v〉 ∈ E if and only if for every variable x, the number of occurrences of x
in u is congruent to the number of occurrences of x in v modulo p.

All these are examples of minimal varieties of semigroups. It can be proved
that there are no other minimal varieties of semigroups. This collection is
countably infinite.

7.4. Example. The variety of Boolean algebras is minimal. The variety
of distributive lattices is minimal. Since the two-element lattice belongs to
every nontrivial variety of lattices, the variety of distributive lattices is the
only minimal variety of lattices.

7.5. Theorem. There are 2ω minimal varieties of commutative groupoids.

Proof. Define terms t1, t2, . . . by t1 = xx · x and tn+1 = xx · tn. Denote
by t′n the term f(tn), where f is the substitution sending x to y. For every
infinite sequence e = (e1, e2, . . . ) of elements of {0, 1} denote by Ve the variety
of commutative groupoids satisfying

xx ≈ yy,

xtn ≈ x for all n with en = 0,

xtn ≈ yt
′
n for all n with en = 1.

Ve is nontrivial for any e, because it contains the infinite groupoid with under-
lying set {a0, a1, a2, . . . } and multiplication defined as follows: aiai = a0 for
all i; aia0 = a0ai = ai+1 for all i > 0; if i, j are two distinct positive integers
and k = min(i, j), then in the case e|i−j| = 0 put aiaj = ak, while in the case
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e|i−j| = 1 put aiaj = a0. According to 7.2, for every e there exists a minimal
variety Me contained in Ve. If e 6= f , then Ve ∩Vf is the trivial variety, so that
Me 6= Mf . �

7.6. Theorem. Every locally finite variety has only finitely many minimal
subvarieties.

Proof. Let V be a locally finite variety. Every minimal subvariety M
of V is uniquely determined by any of its nontrivial algebras; in particular,
it is uniquely determined by its two-generated free algebra. But the two-
generated free algebra of M is a homomorphic image of the two-generated free
algebra of V , and the two-generated free algebra of V has only finitely many
nonisomorphic homomorphic images (because it is finite). �

7.7. Theorem. For a signature containing at least one symbol of positive
arity, the lattice of varieties of that signature has no coatoms.

Proof. It is easy. �

8. Regular equations

An equation 〈u, v〉 is called regular if S(u) = S(v). An equational theory
is called regular if it contains regular equations only. Clearly, the set of all
regular equations is an equational theory; it is the largest regular equational
theory. In the signature of groupoids, this largest regular equational theory is
based on the three equations

(1) x(yz) ≈ (xy)z,
(2) xy ≈ yx,
(3) xx ≈ x

and the corresponding variety is the variety of semilattices.

8.1. Theorem. Let E be a nonregular equational theory and 〈u, v〉 be an
arbitrary nonregular equation from E. Denote by E0 the set of all regular
equations from E. Then E = Eq(E0 ∪ {〈u, v〉}).

Proof. (This theorem belongs to a Russian mathematician, whose name
is forgotten and the reference is lost. He proved it around 1950.) It is sufficient
to assume that there is a variable x ∈ S(u) r S(v). Let 〈s, t〉 be a nonregular
equation from E. We need to prove that 〈s, t〉 is a consequence of E0∪{〈u, v〉}.

Suppose first that σ contains no operation symbols of arity > 1. If there
is a variable y ∈ S(s), then the equation s ≈ s[y : u[x : y]] belongs to E0,
the equation s[y : u[x : y]] ≈ s[y : u[x : t]] is a consequence of 〈u, v〉 and the
equation s[y : u[x : t]] ≈ t belongs to E0, so that the equation s ≈ t is a
consequence of E0 ∪ {〈u, v〉}. If S(s) is empty, then S(t) is nonempty, so that,
according to the previous argument, t ≈ s is a consequence of E0 ∪ {〈u, v〉};
but s ≈ t is a consequence of t ≈ s.

Next consider the case when σ contains an at least binary operation symbol
F . Let a = a(x, z1, . . . , zn) and take two distinct variables y, z different from x.
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Put

b = u(y, x, . . . , x),

a = Fbx . . . x,

so that S(a) = {x, y} (let us write a = a(x, y)) and the nonregular equation
a ≈ a(x, z) is a consequence of E0 ∪ {〈u, v〉}. Put S(s) r S(t) = {x1, . . . , xm}
and S(t) r S(s) = {y1, . . . , yk}. If m ≥ 1, then the equation

s ≈ s[x1 : a(x1, x1), . . . , xm : a(xm, xm)]

belongs to E0, the equation

s[x1 : a(x1, x1), . . . , xm : a(xm, xm)] ≈ s[x1 : a(x1, t), . . . , xm : a(xm, t)]

is a consequence of a ≈ a(x, z), the equation

s[x1 : a(x1, t), . . . , xm : a(xm, t)] ≈ s[x1 : a(t, x1), . . . , xm : a(t, xm)]

belongs to E0, the equation

s[x1 : a(t, x1), . . . , xm : a(t, xm)] ≈ s[x1 : a(t, t), . . . , xm : a(t, t)]

is a consequence of a ≈ a(x, z) and the equation

s[x1 : a(t, t), . . . , xm : a(t, t)] ≈ t

belongs to E0. In total, zs ≈ t is a consequence of E0 ∪ {〈u, v〉}. If m = 0,
then k = 1 and we can proceed similarly. �

A variety is said to be regular if its equational theory is regular. By the
regularization of a variety V we mean the variety based on all regular equations
satisfied in V . It follows from 8.1 that the regularization of any non-regular
variety V is a cover of V in the lattice of varieties of σ-algebras.

In the following we are going to describe a general construction of algebras
in the regularization of a given variety of idempotent algebras. (An algebra is
said to be idempotent if it satisfies F (x, . . . , x) ≈ x for every symbol F of σ.)
We assume that σ is a signature without constants.

Let S be a join-semilattice, considered as a small category: its objects
are elements of S, and morphisms are pairs 〈s1, s2〉 ∈ S

2 such that s1 ≤ s2.
Let H be a functor of H into the category of σ-algebras. That means, for
every s ∈ S there is a σ-algebra H(s) and for every pair s1 ≤ s2 there is
a homomorphism hs1,s2

: Hs1
→ Hs2

such that Hs,s is the identity on H(s)
and whenever s1 ≤ s2 ≤ s3 then Hs1,s3

= Hs2,s3
Hs1,s2

. Suppose, moreover,
that the algebras H(s) (s ∈ S) are pairwise disjoint. Then we can define
a σ-algebra A with the underlying set

⋃

s∈S H(s) as follows: if F is an n-
ary operation symbol and ai ∈ H(si) for i = 1, . . . , n then FA(a1, . . . , an) =
FH(s)(Hs1,s(a1), . . . ,Hsn,s(an)) where s = s1 ∨ · · · ∨ sn. The algebra A defined
in this way is called the P lonka sum of the functor H (or just of the family of
algebras H(s), s ∈ S).

By a partition operation on a set A we mean a binary operation ◦ such
that



8. REGULAR EQUATIONS 89

(1) A is a left normal band with respect to ◦, i.e., an idempotent semi-
group such that x ◦ y ◦ z = x ◦ z ◦ y for all x, y, z ∈ A

(2) F (x1, . . . , xn) ◦ y = F (x1 ◦ y, . . . , xn ◦ y) and y ◦ F (x1, . . . , xn) =
y ◦x1 ◦ · · · ◦xn for any n-ary symbol F of σ and any x1, . . . , xn, y ∈ A

8.2. Theorem. Let σ be a signature without constants.
Let A be the P lonka sum of a functor H of a join-semilattice S into the

category of σ-algebras. Then the binary operation ◦ defined on A by a ◦ b =
Hs1,s1∨s2

(a) for a ∈ H(s1) and b ∈ H(s2), is a partition operation on A.
Conversely, let ◦ be a partition operation on a σ-algebra A. Define an

equivalence r on A by 〈a, b〉 ∈ r if and only if a ◦ b = a and b ◦ a = b, so that r
is a congruence of A all the blocks of which are subalgebras of A. Put S = A/r
and define a join-semilattice ordering ≤ on S by a/r ≤ b/r if b◦a = b. Then A
is the P lonka sum of the functor H of S into the category of σ-algebras defined
by H(a/r) = a/r and Ha/r,b/r(x) = x ◦ b whenever a/r ≤ b/r and x ∈ a/r.

Proof. Let A be the P lonka sum. It is easy to see that A is a left normal
band with respect to ◦. For xi ∈ H(si), y ∈ H(t) and s = s1 ∨ · · · ∨ sn we have

FA(x1, . . . , xn) ◦ y = FH(s)(Hs1,s(x1), . . . ,Hsn,s(xn)) ◦ y

= Hs,s∨t(FH(s)(Hs1,s(x1), . . . ,Hsn,s(xn))

= FH(s∨t)(Hs1,s∨t(x1), . . . ,Hsn,s∨t(xn))

and

FA(x1 ◦ y, . . . , xn ◦ y) = FA(Hs1,s1∨t(x1), . . . ,Hsn,sn∨t(xn))

= FH(s∨t)(Hs1,s∨t(x1), . . . ,Hsn,s∨t(xn)).

Similarly one can prove y ◦ F (x1, . . . , xn) = y ◦ x1 ◦ . . . xn.
Now let ◦ be a partition operation on A and let S and H be defined as

above. It is easy to see that ◦ is a congruence of the left normal band. It is
also a congruence of the σ-algebra A: if 〈ai, bi〉 ∈ r for i = 1, . . . , n then

F (a1, . . . , an)◦F (b1, . . . , bn) = F (a1, . . . , an) ◦ F (a1, . . . , an) ◦ b1 ◦ · · · ◦ bn

= F (a1, . . . , an) ◦ a1 ◦ · · · ◦ an ◦ b1 ◦ · · · ◦ bn

= F (a1, . . . , an) ◦ (a1 ◦ b1) ◦ · · · ◦ (an ◦ bn)

= F (a1, . . . , an) ◦ a1 ◦ · · · ◦ an

= F (a1, . . . , an) ◦ F (a1, . . . , an) = F (a1, . . . , an)

and similarly F (b1, . . . , bn) ◦ F (a1, . . . , an) = F (b1, . . . , bn). Clearly, S = A/r
is a join-semilattice with respect to ≤; we have a/r ∨ b/r = (a ◦ b)/r. One
can easily check that 〈F (a1, . . . , an), a1 ◦ · · · ◦ an〉 ∈ r, that the blocks of r
are subalgebras of A and that H is a correctly defined functor. Denote by
A∗ the P lonka sum. For a1, . . . , an we have (where a = a1 ◦ · · · ◦ an and
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s = a1/r ∨ · · · ∨ an/r = a/r)

FA∗(a1, . . . , an) = Fs(Ha1/r,s(a1), . . . ,Han/r,s(an))

= Fs(a1 ◦ a, . . . , an ◦ a)

= FA(a1, . . . , an) ◦ a = FA(a1, . . . , an).

Consequently, A∗ = A. �

8.3. Theorem. Let σ be a signature without constants, S be a nontrivial
join-semilattice, H be a functor of S into the category of σ-algebras and A be
its P lonka sum. An equation is satisfied in A if and only if it is regular and is
satisfied in all the algebras H(s), s ∈ S.

Proof. Let 〈u, v〉 be satisfied in A. There exist elements s, t ∈ S with
s < t. For a variable x ∈ S(u) let fx be the homomorphism of the term algebra
into A sending x to t and every other variable to s. We have fx(u) ∈ H(t), so
that fx(v) ∈ H(t) and consequently x ∈ S(v). Similarly S(v) ⊆ S(u), so that
〈u, v〉 is regular. Clearly, 〈u, v〉 is satisfied in all the subalgebras H(s) of A.

Conversely, let 〈u, v〉 be a regular equation satisfied in all H(s). Denote
by x1, . . . , xn the elements of S(u) = S(v). Let f be a homomorphism of the
term algebra into A. For i = 1, . . . , n denote by si the element of S with
f(xi) ∈ H(si). Put s = s1∨ · · · ∨ sn and define a homomorphism g of the term
algebra into H(s) by g(xi) = Hsi,sf(xi). Then f(u) = g(u), f(v) = g(v) and
g(u) = g(v), so that f(u) = f(v). �

8.4. Theorem. Let V be a non-regular variety of idempotent algebras of
a signature σ without constants and containing at least one at least binary
symbol; let W be the regularization of V . Then every algebra from W is a
P lonka sum of some algebras from V .

Proof. Let A ∈ W . There is an equation 〈u, v〉 satisfied in V such that
y ∈ S(u)rS(v) for some variable y; since σ contains an at least binary symbol,
we can also assume that y is not the only variable occurring in u. Take a
variable x 6= y and denote by w = w(x, y) the term obtained from u by the
substitution sending y to y and every other variable to x. Then w(x, y) ≈ x
is satisfied in V and hence w(x, y) represents a partition operation, which will
be denoted by ◦, on every algebra from V . The equations in the definition of
a partition operation were all regular. So, ◦ is a partition operation on every
algebra of W ; in particular, ◦ is a partition operation on A. By 8.2, A is
the P lonka sum of its subalgebras that are blocks of the congruence r (where
〈a, b〉 ∈ r means a ◦ b = a and b ◦ a = b) and satisfy w(x, y) ≈ x. Let 〈p, q〉
be an arbitrary equation satisfied in V . Put S(p) r S(q) = {x1, . . . , xn} and
S(q) r S(p) = {y1, . . . , ym}. The equation p ◦ y1 ◦ · · · ◦ ym ≈ q ◦ x1 ◦ · · · ◦ xn is
regular and satisfied in V , so that it is satisfied in W and consequently in A.
It follows that the blocks of r satisfy p ≈ q. Consequently, all these blocks
belong to V . �
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9. Poor signatures

A signature σ is called poor if it contains nothing else than at most one
unary operation symbol, and a set of constants.

9.1. Theorem. Let σ contain no other symbols than constants. Then Lσ

is isomorphic to the partition lattice of σ with a new largest element added.

Proof. In this case, the nontrivial equational theories are just the equiv-
alences on σ. �

9.2. Theorem. Let σ be a finite poor signature. Then every equational
theory of signature σ is finitely based.

Proof. It is sufficient to consider the case when σ actually contains a
unary symbol F . Let E be an equational theory. Let x and y be two distinct
variables.

If E contains the equation 〈F k(x), F k(y)〉 for some nonnegative integer k,
let k be the least such integer and put B1 = {〈F k(x), F k(y)〉}; otherwise, put
B1 = ∅.

If E contains the equation 〈Fn(x), Fm(x)〉 for some pair 〈n,m〉 of inte-
gers with 0 ≤ n < m, let 〈n,m〉 be the least such pair with respect to
the lexicographic ordering of ordered pairs of nonnegative integers, and put
B2 = {〈Fn(x), Fm(x)〉}; otherwise, put B2 = ∅.

Let c, d ∈ σ be two constants. If E contains the equation 〈F i(c), F j(d)〉 for
some pair 〈i, j〉 of nonnegative integers such that i < j if c = d, let 〈i, j〉 be the
least such pair in the lexicographic ordering and put Bc,d = {〈F i(c), F j(d)〉};
otherwise, put Bc,d = ∅.

It is not difficult to prove that the set B1 ∪ B2 ∪
⋃

c,dBc,d is a finite base
for E. �

9.3. Example. Let σ = {F} for a unary symbol F . The lattice Lσ, with
its least element removed, is isomorphic to the dual of the direct product of two
lattices: the lattice of nonnegative integers with respect to the usual ordering,
and the lattice of nonnegative integers with respect to the ordering given by the
divisibility relation on positive integers and setting 0 to be the least element.
Consequently, the lattice is countably infinite and distributive. For d > 0, the
equational theory corresponding to 〈n, d〉 is based on 〈Fn(x), Fn+d(x)〉. For
n = 0, the equational theory corresponding to 〈n, d〉 is based on 〈Fn(x), Fn(y)〉.
This can be also left to the reader as an easy excercise.

A complete description of the lattice Lσ for any poor signature σ is given
in J. Ježek [69]. It follows from the description that if σ = {F}∪C for a unary
symbol F and a set of constants C, then Lσ is distributive for |C| ≤ 1 and
nonmodular for |C| ≥ 2.

10. Equivalent varieties

10.1. Theorem. Let ε be an equivalence between two varieties of algebras
K and L. Then:
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(1) For A,B ∈ K, A is a subalgebra of B if and only if ε(A) is a subalgebra
of ε(B);

(2) For A ∈ K, a nonempty subset of A is a subuniverse of A if and only
if it is a subuniverse of ε(B);

(3) For a family H of algebras from K, ε(ΠH) = Πε(H).
(4) For A ∈ K, a subset of A × A is a congruence of A if and only if it

is a congruence of ε(A).
(5) For A ∈ K and a nonempty subset S of A, A is K-free over S if and

only if ε(A) is L-free over S.

Proof. (1) and (2) follow from 3.3.1. (3) follows from 3.5.1. (4) follows-
from 3.5.2, and (5) is clear. �

10.2. Theorem. Let A be an algebra of signature σ and B be an algebra
of signature τ with the same underlying set, such that the two algebras have
the same term operations of positive arities. Then the varieties HSP(A) and
HSP(B) are equivalent.

Proof. Put K = HSP(A) and L = HSP(B). For a nonempty set S and
integers 1 ≤ i ≤ n denote by ei,n,S the i-th trivial operation of arity n on S.
For any algebra C denote by Hn(A) the algebra of n-ary term operations of C.
For an algebra C ∈ K denote by ϕn,C the unique homomorphism of Hn(A)
into Hn(C) such that ϕn,C(ei,n,A) = ei,n,A for all i = 1, . . . , n; its existence
follows from 4.2. For C ∈ K define an algebra ε(C) of signature τ , with the
same underlying set, by Fε(C) = ϕn,C(FB) for any n-ary symbol F of τ .

For every algebra D ∈ L we can define homomorphisms ψn,D : Hn(B) →
Hn(D), and we can define a mapping ε′ of L into the class of algebra of
signature σ in a similar way. Clearly, ε(A) = B and ε′(B) = A.

Let n ≥ 1. One can easily see that the set of the n-ary term operations h
of A such that

f(ϕn,C(h)(a1, . . . , an)) = ϕn,D(h)(f(a1), . . . , f(an))

for every homomorphism f : C → D and every n-tuple a1, . . . , an of elements
of C, where C,D ∈ K, is a subuniverse of Hn(A) containing the trivial opera-
tions, so that it equals Hn(A). From this it follows that if f is a homomorphism
of an algebra C ∈ K into an algebra D ∈ K, then f is also a homomorphism
of ε(C) into ε(D). Similarly, the mapping ε′ preserves homomorphisms in the
same sense.

It follows from 3.3.1 and 3.5.1 that ε preserves subalgebras and products.
In particular, ε(Hn(A)) = Hn(B) for all n.

Let C ∈ K. If D is a finitely generated subalgebra of ε(C), then we
can take a positive integer n and a homomorphism of the free algebra Hn(A)
into C, mapping the generators of Hn(A) onto a generating subset of D. Then
f is a homomorphism of Hn(B) onto D, so that D ∈ L. Since every finitely
generated subalgebra of ε(C) belongs to L, we get ε(C) ∈ L. Hence ε is a
mapping of K into L. Similarly, ε′ is a mapping of L into K.
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Let C ∈ K; let F be an n-ary symbil of σ and a1, . . . , an be elements of C.
There is a homomorphism f : Hn(A) → C with f(ei) = ai for all i (here
ei = ei,n,A). Since f is also a homomorphism of Hn(A) = ε′ε(Hn(A)) into
ε′ε(C), we have

Fε′ε(C)(a1, . . . , an) = Fε′ε(C)(f(e1), . . . , f(en))

= f(FHn(A)(e1, . . . , en)) = FC(f(e1), . . . , f(en))

= FC(a1, . . . , an).

Hence ε′ε(C) = C. Similarly, εε′ is an identity on L. �

10.3. Theorem. Let K be a variety of algebras of signature σ and L be a
variety of algebras of signature τ . Let A ∈ K and B ∈ L be two algebras with
the same underlying sets, such that A is K-free and B is L-free over the same
infinite subset. Suppose that A and B have the same endomorphisms. Then
K and L are equivalent varieties.

Proof. It follows from 4.4 and 10.2. �

11. Independent varieties

Let V1, . . . , Vn (n ≥ 1) be varieties of σ-algebras. We say that V1, . . . , Vn

are independent if there exists a term t(x1, . . . , xn) such that for i = 1, . . . , n,
Vi satisfies t(x1, . . . , xn) ≈ xi.

11.1. Theorem. Let V1, . . . , Vn be varieties and V be the variety generated
by V1 ∪ · · · ∪ Vn. Then V1, . . . , Vn are independent if and only if the following
two conditions are satisfied:

(1) Every algebra in V is isomorphic to a product A1× · · ·×An for some
algebras Ai ∈ Vi

(2) If A = A1 × · · · × An and B = B1 × · · · × Bn where Ai, Bi ∈ Vi then
a mapping f : A→ B is a homomorphism if and only if there are ho-
momorphisms fi : Ai → Bi (i = 1, . . . , n) such that f(〈x1, . . . , xn〉) =
〈f1(x1), . . . , fn(xn)〉 for all 〈x1, . . . , xn〉 ∈ A

Proof. Let V1, . . . , Vn be independent with respect to a term t(x1, . . . , xn).
Claim 1. If Ai ∈ Vi and B is a subalgebra of A1 × · · · × An then B =

B1×· · ·×Bn for some subalgebras Bi of Ai. Denote by Bi the image of B under
the i-th projection. Clearly, B is contained in B1 × · · · ×Bn. If 〈b1, . . . , bn〉 ∈
B1× · · · ×Bn then for every i there exists an element 〈ci,1, . . . , ci,n〉 of B with
bi = ci,i; we have 〈b1, . . . , bn〉 = t(〈c1,1, . . . , c1,n〉, . . . , 〈cn,1, . . . , cn,n〉) ∈ B.

Claim 2. If Ai ∈ Vi and r is a congruence of A1 × · · · × An then there
exist congruences ri of Ai such that 〈〈x1, . . . , xn〉, 〈y1, . . . , yn〉〉 ∈ r if and only
if 〈xi, yi〉 ∈ ri for all i. This follows from Claim 1, since r can be viewed as a
subalgebra of A2

1 × · · · ×A
2
n.

It follows from these two claims that the class of the algebras isomorphic
to A1× · · · ×An for some Ai ∈ Vi is HSP-closed, so that it equals V . We have
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proved (1), and (2) is also a consequence of Claim 1 since a homomorphism of
A1×· · ·×An into B1×· · ·×Bn is a subalgebra of (B1×A1)×· · ·× (An×Bn).

Now suppose that (1) and (2) are satisfied. For i = 1, . . . , n let Ai be
a Vi-free algebra over {x1, . . . , xn}. (We can assume that all the varieties
are nontrivial; if some of them are trivial, just delete them.) It is easy to
check that the algebra A = A1 × · · · × An is generated by (and V -free over)
{〈x1, . . . , x1〉, . . . , 〈xn, . . . , xn〉}. Consequently, there exists a term t(x1, . . . , xn)
such that 〈x1, . . . , xn〉 = t(〈x1, . . . , x1〉, . . . , 〈xn, . . . , xn〉). Clearly, Vi satisfies
t(x1, . . . , xn) ≈ xi. �

11.2. Example. The variety V of rectangular bands, i.e., idempotent semi-
groups satisfying xyz ≈ xz, is generated by its two independent subvarieties:
the subvariety determined by xy ≈ x and the subvariety determined by xy ≈ y.
It follows that for every rectangular band A there exist two nonempty sets B,C
such that A is isomorphic to the rectangular band with the underlying set B×C
and multiplication 〈b1, c1〉〈b2, c2〉 = 〈b1, c2〉.

Let A be an algebra of signature σ and n be a positive integer. Let τ be
an extension of σ by two operation symbols: an n-ary symbol D and a unary
symbol U . We define a τ -algebra A[n] in this way: its reduct to σ is the algebra
An;

D(〈a1,1, . . . , a1,n〉, . . . , 〈an,1, . . . , an,n〉) = 〈a1,1, a2,2, . . . , an,n〉;
U(〈a1, . . . , an〉) = 〈a2, . . . , an, a1〉.

For a variety V of σ-algebras we denote by V [n] the class of the algebras A[n]

with A ∈ V .

11.3. Theorem. Let V be a variety of σ-algebras. Then V [n] is a variety. It
is generated by its subvarieties Vi (i = 1, . . . , n) determined by D(x1, . . . , xn) ≈
xi. The varieties V1, . . . , Vn are independent and each of them is equivalent
with V .

Proof. One can check that any homomorphism f : A1×· · ·×An → B1×
· · · ×Bn (for Ai, Bi ∈ V ) is of the form f(〈a1, . . . , an〉) = 〈f1(x1), . . . , fn(xn)〉
for some homomorphisms fi : Ai → Bi. Then it is easy to conclude that V [n]

is a variety. �

12. The existence of covers

12.1. Theorem. (Trakhtman [74]) Let A,B be two equational theories such
that A ⊂ B. Denote by S the set of the terms u for which there exists a term v
with 〈u, v〉 ∈ BrA. Suppose that there exists a term t ∈ S such that whenever
〈t, u〉 ∈ A and v < u then v /∈ S. Then there exists an equational theory
containing A and covered by B in the lattice of equational theories.

Proof. Let us take one term t as above. Denote by Q the set of the terms
u for which there exists a term v with u ∼ v and 〈t, v〉 ∈ A. Clearly, Q is the
set of the terms u for which there exists a term w with t ∼ w and 〈w, u〉 ∈ A.
The following facts are easy to see:
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(1) t ∈ Q and Q ⊆ S
(2) if u ∈ Q and u ∼ v then v ∈ Q
(3) if u ∈ Q and 〈u, v〉 ∈ A then v ∈ Q
(4) if u, v ∈ Q then there exists a term w with 〈u,w〉 ∈ A and v ∼ w
(5) if u ∈ S and f(u) ∈ Q for a substitution f then u ∼ f(u)

Define a binary relation L on the algebra of terms by 〈u, v〉 ∈ L if and
only if either 〈u, v〉 ∈ A or u, v /∈ Q and 〈u, v〉 ∈ B. Clearly, A ⊆ L ⊂
B. It is easy to check that L is an equivalence. Let us prove that L is a
congruence of the algebra of terms. Let F be an n-ary operation symbol in
the signature and let 〈ui, vi〉 ∈ L for i = 1, . . . , n. If 〈ui, vi〉 ∈ A for all i
then 〈F (u1, . . . , un), F (v1, . . . , vn)〉 ∈ A ⊆ L. Let 〈uj , vj〉 /∈ A for some j.
Then uj, vj ∈ S. Since uj < F (u1, . . . , un) and vj < F (v1, . . . , vn), we have
F (u1, . . . , un) /∈ Q and F (v1, . . . , vn) /∈ Q. Since 〈F (u1, . . . , un), F (v1, . . . , vn)〉
∈ B, we get 〈F (u1, . . . , un), F (v1, . . . , vn)〉 ∈ L.

Let us prove that L is fully invariant. Let 〈u, v〉 ∈ L and let f be a
substitution. Suppose 〈f(u), f(v)〉 /∈ L. We have 〈u, v〉 /∈ A, since in the
opposite case we would have 〈f(u), f(v)〉 ∈ A ⊆ L. Since 〈u, v〉 ∈ B, we
get u, v ∈ S. If u ∈ Q then 〈u, v〉 ∈ L implies 〈u, v〉 ∈ A, a contradiction.
Hence u /∈ Q and similarly v /∈ Q. By (5) we get f(u), f(v) /∈ Q. Since
〈f(u), f(v)〉 ∈ B, we get 〈f(u), f(v)〉 ∈ L.

We have proved that L is an equational theory. Let C be an equational
theory such that L ⊆ C ⊂ B. We are going to prove that if u /∈ Q and
v ∈ Q then 〈u, v〉 /∈ C. Suppose 〈u, v〉 ∈ C. Since C 6= B, there exists a pair
〈a, b〉 ∈ B r C. At least one of the terms a, b belongs to Q, since otherwise
we would have 〈a, b〉 ∈ L ⊆ C. We can suppose without loss of generality that
a ∈ Q. There exists a substitution f with 〈f(a), v〉 ∈ A. We have 〈u, f(a)〉 ∈ C
and 〈f(a), f(b)〉 ∈ B, so that 〈u, f(b)〉 ∈ B. If f(b) /∈ Q then 〈u, f(b)〉 ∈ L
and then 〈u, f(b)〉 ∈ C, so that 〈f(a), f(b)〉 ∈ C and consequently 〈a, b〉 ∈ C,
a contradiction. Hence f(b) ∈ Q. There exists a substitution g such that
〈g(v), f(b)〉 ∈ A. We have 〈g(u), g(v)〉 ∈ C; since

u C v A f(a) B f(b) A g(v) C g(u)

and u, g(u) /∈ Q, we get 〈u, g(u)〉 ∈ C. Hence

f(a) A v C u C g(u) C g(v) A f(b),

so that 〈a, b〉 ∈ C, a contradiction.
Again, let C be an equational theory with L ⊆ C ⊂ B. We are going

to prove that if u, v ∈ Q and 〈u, v〉 ∈ C then S(u) = S(v). Suppose, on the
contraty, that (for example) x ∈ S(v) r S(u) for a variable x. If we substite
w in v for x where w is an arbitrary term with w > x (such a term w exists
if the signature is nonempty; if it is empty, then everything is clear) we get a
term v′ such that 〈u, v′〉 ∈ C and v < v′, so that v′ /∈ Q, a contradiction.

Denote by R the set of the terms that are similar to t and contain the
same variables as t; so, R is finite. We are going to prove that if C,D are
two equational theories containing L, properly contained in B and coinciding
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on R × R then C = D. Let u, v be two terms. If u, v /∈ Q then 〈u, v〉 ∈ C
if and only if 〈u, v〉 ∈ B if and only if 〈u, v〉 ∈ D. If one of the terms u, v
belongs to and the other one does not belong to Q then 〈u, v〉 belongs to
neither C nor D. Let u, v ∈ Q. Since u, v contain the same variables, there
exist two automorphisms f, g of the algebra of terms such that f maps S(t)
onto itself, 〈g(t), u〉 ∈ A and 〈g(f(t)), v〉 ∈ A. We have 〈u, v〉 ∈ C if and only
if 〈t, f(t)〉 ∈ C and 〈u, v〉 ∈ D if and only if 〈t, f(t)〉 ∈ D. But t, f(t) ∈ R, so
that 〈t, f(t)〉 ∈ C if and only if 〈t, f(t)〉 ∈ D.

It follows that there are only finitely many equational theories C such that
L ⊆ C ⊂ B. Among them, there must be a maximal one. �

An equation 〈u, v〉 is said to be balanced if it satisfies the following two
conditions:

(1) for every variable x, the number of occurrences of x in u is the same
as the number of occurrences of x in v

(2) for every at most unary operation symbol F of σ, the number of
occurrences of F in u is the same as the number of occurrences of F
in v

Clearly, the set of balanced equations is an equational theory. An equational
theory is said to be balanced if it contains only balanced equations. A variety
is said to be balanced if its equational theory is balanced.

12.2. Theorem. Let K be a balanced variety and L be a proper subvariety
of K. Then L has a cover in the lattice of subvarieties of K.

Proof. Let A and B be the equational theories of K and L, respectively.
For every term u denote by nu the sum of the number of occurrences of variables
in u and the number of occurrences of at most unary operation symbols in u.
Let S be as in 12.1 and denote by n the minimum of the numbers nu for u ∈ S.
Let t ∈ S be a term such that nt = n and whenever t′ ∈ S and nt′ = n then
card(S(t′)) ≤ card(S(t)). Clearly, the assumptions of 12.1 are satisfied with
respect to this term t. �

12.3. Corollary. Every variety different from the variety of all σ-algebras
has a cover in the lattice of varieties of σ-algebras.



CHAPTER 7

MAL’CEV TYPE THEOREMS

1. Permutable congruences

The composition r ◦ s of two binary relations r, s is defined as follows:
〈a, b〉 ∈ r ◦ s iff there is an element c with 〈a, c〉 ∈ r and 〈c, b〉 ∈ s. If r, s are
two equivalences on a given set, then r ◦ s is not necessarily an equivalence.

1.1. Theorem. Let r, s be two equivalences on a set A such that r◦s = s◦r.
Then r ◦ s is an equivalence on A; it is just the join of r, s in the lattice of
equivalences on A.

Proof. It is easy. �

An algebra is said to have permutable congruences if r ◦ s = s ◦ r for any
pair r, s of congruences of A. A variety V is said to have permutable congru-
ences (or to be congruence permutable) if every algebra in V has permutable
congruences.

1.2. Theorem. Let A be an algebra with permutable congruences. Then
the congruence lattice of A is modular.

Proof. Let r, s, t be three congruences of A such that r ⊆ t. In order to
prove the modularity of Con(A), we need to show that (r∨ s)∧ t = r∨ (s∧ t).
It is sufficient to prove (r ∨ s) ∧ t ⊆ r ∨ (s ∧ t), since the converse inclusion is
true in any lattice. By 1.1, this translates to (r ◦ s) ∩ t ⊆ r ◦ (s ∩ t).

Let 〈a, b〉 ∈ (r ◦ s) ∩ t. We have 〈a, b〉 ∈ t, 〈a, c〉 ∈ r and 〈c, b〉 ∈ s for some
element c. Since r ⊆ t, we have 〈a, c〉 ∈ t. Hence 〈b, c〉 ∈ t by transitivity, and
we get 〈b, c〉 ∈ s ∩ t. Together with 〈a, c〉 ∈ r, this gives 〈a, b〉 ∈ r ◦ (s ∩ t). �

1.3. Lemma. Let V be a variety and F be a free algebra in V over a
finite set Y of variables; let x1, . . . , xk, y1, . . . , yk ∈ Y , where y1, . . . , yk are
pairwise different. Denote by h the homomorphism of TX onto F extending
the identity on X. Let u, v ∈ TX be two terms not containing any of the
variables y1, . . . , yk. If 〈h(u), h(v)〉 belongs to the congruence of F generated
by {〈x1, y1〉, . . . , 〈xk, yk〉}, then the equation 〈u, v〉 is satisfied in V .

Proof. Let A ∈ V and p : TX → A be a homomorphism. Since F
is free, there exists a homomorphism q : F → A such that p = qh. De-
note by f the endomorphism of TX such that f(yi) = xi and f(z) = z for
z ∈ X r {y1, . . . , yk}. Since u, v do not contain y1, . . . , yk, we have f(u) = u
and f(v) = v. Denote by g the endomorphism of F such that g(yi) = xi and

97
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g(z) = z for z ∈ X r {y1, . . . , yk}. We have hf = gh, since these two homo-
morphisms coincide on the generating subset X of TX . Since 〈h(u), h(v)〉 ∈
CgF{〈x1, y1〉, . . . , 〈xk, yk〉} ⊆ ker(g), we have gh(u) = gh(v). Hence

p(u) = pf(u) = qhf(u) = qgh(u) = qgh(v) = qhf(v) = pf(v) = p(v).

�

1.4. Theorem. (Mal’cev [54]) Let V be a variety. Then V is congruence
permutable if and only if there exists a term t = t(x, y, z) in three variables
x, y, z such that V satisfies

t(x, y, y) ≈ x and t(x, x, y) ≈ y.

A nontrivial variety is congruence permutable if and only if its free algebra of
rank 3 has permutable congruences.

Proof. Let V be a nontrivial congruence permutable variety. Denote by
F the free V -algebra over x, y, z, by T the algebra of terms over x, y, z and
by h the homomorphism of T onto F acting as the identity on x, y, z. Denote
by r the congruence of F generated by 〈x, y〉 and by s the congruence of F
generated by 〈y, z〉. Since 〈x, z〉 ∈ r ◦ s = s ◦ r, there is an element d ∈ F with
〈x, d〉 ∈ s and 〈d, y〉 ∈ r. Take an arbitrary term t ∈ T such that h(t) = d. We
have 〈h(t(x, y, y)), h(t)〉 ∈ s and 〈h(t), h(x)〉 ∈ s, so that 〈h((t(x, y, y)), h(x)〉 ∈
Cg(y, z). It follows by 1.3 that the equation t(x, y, y) ≈ x is satisfied in V .
Similarly, t(x, x, y) ≈ y is satisfied.

Conversely, suppose that there exists a term t with the property stated
above. Let A ∈ V , let r, s be two congruences of A and let 〈a, b〉 ∈ r ◦ s. In
order to prove r ◦ s ⊆ s ◦ r, we need to show that 〈a, b〉 ∈ s ◦ r. There is an
element c with 〈a, c〉 ∈ r and 〈c, b〉 ∈ s. Put d = t(a, c, b). Since 〈c, b〉 ∈ s,
we have 〈t(a, c, c), t(a, b, c)〉 ∈ s, i.e., 〈a, d〉 ∈ s. Since 〈b, a〉 ∈ r, we have
〈t(a, b, c), t(a, a, c)〉 ∈ r, i.e., 〈d, c〉 ∈ r. Hence 〈a, c〉 ∈ s ◦ r. �

Any term t, satisfying the equations in Theorem 1.4, is called a Mal’cev
term for the given variety V .

1.5. Example. For the variety of groups, xy−1z is a Mal’cev term.
For the variety of quasigroups, both (x/(y\y)) · (y\z) and ((xy)/x)\(xz)

are Mal’cev terms.

A binary relation r on an algebra A is said to have the substitution property
if 〈a1, b1〉 ∈ r, . . . , 〈an, bn〉 ∈ r imply 〈FA(a1, . . . , an), FA(b1, . . . , bn)〉 ∈ r for
any n-ary operation symbol F from the given signature.

1.6. Theorem. Let V be a congruence permutable variety and A ∈ V .
Then every reflexive relation r on A with the substitution property is a con-
gruence of A.

Proof. Let t be a Mal’cev term for V . If 〈a, b〉 ∈ r then

〈b, a〉 = 〈t(a, a, b), t(a, b, b)〉 ∈ r.
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If 〈a, b〉 ∈ r and 〈b, c〉 ∈ r then

〈a, c〉 = 〈t(a, b, b), t(b, b, c)〉 ∈ r.

�

1.7. Theorem. (Fleischer [55]) Let V be a congruence permutable variety,
A,B ∈ V and let a subalgebra C of A ×B be a subdirect product. Then there
exist an algebra D ∈ V , a homomorphism f of A onto D and a homomorphism
g of B onto D such that C = {〈a, b〉 : f(a) = g(b)}.

Proof. For c = 〈a, b〉 ∈ C put p(c) = a and q(c) = b, so that p is a
homomorphism of C onto A and q is a homomorphism of C onto B. Put α =
ker(p)∨ker(q) and D = C/α. There exist a unique homomorphism f of A onto
D and a unique homomorphism g of B onto D such that fp(c) = gq(c) = c/α
for all c ∈ C. For 〈a, b〉 ∈ C we have f(a) = fp(〈a, b〉) = gq(〈a, b〉) = g(b). Now
let a ∈ A and b ∈ B be such that f(a) = g(b). There are elements c1, c2 ∈ C
with p(c1) = a and q(c2) = b. Since 〈c1, c2〉 ∈ α = ker(p) ◦ ker(q), there is
an element c ∈ C with 〈c1, c〉 ∈ ker(p) and 〈c, c2〉 ∈ ker(q). Then p(c) = a,
q(c) = b and c = 〈a, b〉. �

1.8. Theorem. (Foster and Pixley [64],[64a]) Let V be a congruence per-
mutable variety, S1, . . . , Sn ∈ V be simple algebras and let a subalgebra A of
S1 × · · · × Sn be a subdirect product. Then A ' Si1 × · · · × Sik for some
1 ≤ i1 < · · · < ik ≤ n.

Proof. By induction on n. For n = 1 we have A = S1. Let n > 1.
Clearly, A is isomorphic to (and can be considered identical with) a subalgebra
of B × Sn where B is a subdirect product of S1, . . . , Sn−1. By 1.7 there exist
an algebra D ∈ V , a homomorphism f of B onto D and a homomorphism
g of Sn onto D such that A = {〈b, s〉 : f(b) = g(s)}. Since Sn is simple,
either g is an isomorphism or D is trivial. In the first case we have A =
{〈b, g−1f(b)〉} ' B and in the second case A = B × Sn. It remains to use the
induction assumption. �

For two relations r, s and a positive integer n we define a relation (r, s)n

as follows:

(r, s)1 = r, (r, s)2 = r ◦ r, (r, s)3 = r ◦ s ◦ r, (r, s)4 = r ◦ s ◦ r ◦ s, . . .

An algebra A is said to have n-permutable congruences if (r, s)n = (s, r)n

for any two congruences r, s of A. A variety V is said to have n-permutable
congruences if every algebra from V has n-permutable congruences. Clearly,
2-permutability means the same as permutability. For n < m, n-permutability
implies m-permutability.

1.9. Theorem. Let n ≥ 2. A variety V has n-permutable congruences if
and only if there are terms t0, . . . , tn in n+ 1 variables x1, . . . , xn+1 such that
t0 = x1, tn = xn+1 and the following equations are satisfied in V :

(1) ti−1(x, x, y, y, . . . ) ≈ ti(x, x, y, y, . . . ) for i even;
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(2) ti−1(x, y, y, z, z, . . . ) ≈ ti(x, y, y, z, z, . . . ) for i odd.

Proof. It is similar to the proof of 1.4. �

1.10. Theorem. An algebra A has 3-permutable congruences if and only
if the following is true: if f is a homomorphism of A onto an algebra B, then
for any congruence r of A, the relation f(r) = {〈f(a), f(b)〉 : 〈a, b〉 ∈ r} is a
congruence of B.

Proof. Let A have 3-permutable congruences, let f be a homomorphism
of A onto B and let r be a congruence of A. Clearly, f(r) is a congruence
if it is a transitive relation. Let 〈a, b〉 ∈ f(r) and 〈b, c〉 ∈ f(r). There exist
pairs 〈a1, b1〉 ∈ r and 〈b2, c2〉 ∈ r such that a = f(a1), b = f(b1) = f(b2) and
c = f(c2). We have 〈a1, c2〉 ∈ r ◦ker(f)◦ r = ker(f)◦ r ◦ker(f), so that there
exist elements d, e such that 〈a1, d〉 ∈ ker(f), 〈d, e〉 ∈ r and 〈e, c2〉 ∈ ker(f).
Since a = f(d), c = f(e) and 〈d, e〉 ∈ r, we get 〈a, c〉 ∈ f(r).

In order to prove the converse, let 〈a, b〉 ∈ r ◦ s ◦ r where r, s are two
congruences of A. There exist elements c, d such that 〈a, c〉 ∈ r, 〈c, d〉 ∈ s
and 〈d, b〉 ∈ r. Denote by g the canonical homomorphism of A onto A/s. We
have 〈g(a), g(c)〉 ∈ g(r) and 〈g(c), g(b)〉 = 〈g(d), g(b)〉 ∈ g(r). Since g(r) is
transitive, we get 〈g(a), g(b)〉 ∈ g(r), so that there exists a pair 〈a1, b1〉 ∈ r
with g(a) = g(a1) and g(b) = g(b1). Hence 〈a, b〉 ∈ s ◦ r ◦ s. �

2. Distributive congruences

A variety V is said to be congruence distributive if the congruence lattice
of any algebra in V is distributive.

2.1. Theorem. (Jónsson [67]) A variety V is congruence distributive if
and only if for some n ≥ 1 there are terms t0(x, y, z), . . . , tn(x, y, z) in three
variables x, y, z such that t0 = x, tn = z and the following equations are
satisfied in V :

(1) ti(x, y, x) ≈ x for all i;
(2) ti−1(x, x, y) ≈ ti(x, x, y) for i < n odd;
(3) ti−1(x, y, y) ≈ ti(x, y, y) for i < n even.

A nontrivial variety is congruence distributive if and only if its free algebra of
rank 3 has distributive congruence lattice.

Proof. Let V be congruence distributive. Denote by F the free V -algebra
over {x, y, z}, by T the algebra of terms over {x, y, z} and by h the homomor-
phism of T onto F acting as the identity on {x, y, z}. Put s = CgF (x, y),
t = CgF (y, z) and r = CgF (x, z). Since 〈x, z〉 ∈ r ∩ (s ∨ t) ⊆ (r ∩ s) ∨ (r ∩ t),
there exist elements d0, . . . , dn ∈ F such that d0 = x, dn = z, 〈di−1, di〉 ∈ r ∩ s
for i odd and 〈di−1, di〉 ∈ r ∩ t for i even. Take t0, . . . , tn in such a way that
h(ti) = di, t0 = x and tn = z. Applying 1.3, one can prove that the equations
are satisfied in V .

Conversely, suppose that there exist terms t0, . . . , tn as above. Let r, s, u
be three congruences of an algebra A ∈ V . For every m ≥ 1 put qm = (s, u)m.
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In order to prove r ∩ (s ∨ u) ⊆ (r ∩ s) ∨ (r ∩ u), it is sufficient to prove
r ∩ qm ⊆ (r ∩ s) ∨ (r ∩ u) by induction on m. This is evident for m = 1. Let
〈a, b〉 ∈ r ∩ qm+1. There exists an element c such that 〈a, b〉 ∈ r, 〈a, c〉 ∈ qm
and 〈c, b〉 ∈ q, where q is either s or u. For i = 0, . . . , n put di = ti(a, c, b).
Clearly, 〈a, di〉 ∈ r for all i. For i odd we have

〈di−1, ti−1(a, a, b)〉 ∈ q−1
m , ti−1(a, a, b) = ti(a, a, b),

〈ti(a, a, b), di〉 ∈ qm, 〈ti−1(a, a, b), a〉 ∈ r, 〈ti(a, a, b), a〉 ∈ r;

hence 〈di−1, di〉 ∈ (r ∩ q−1
m ) ◦ (r ∩ qm) ⊆ (r ∩ s) ∨ (r ∩ u), where we have used

the induction assumption. For i even we have evidently 〈di−1, di〉 ∈ q, so that
〈di−1, di〉 ∈ r ∩ q ⊆ (r ∩ s) ∨ (r ∩ u). �

Terms t0, . . . , tn, satisfying the equations in 2.1, are called Jónsson terms
for the given variety.

2.2. Example. For the variety of lattices, one can put n = 2, t0 = x,
t1 = (x∧ y)∨ (x∧ z)∨ (y ∧ z) and t2 = z. Consequently, the variety of lattices
is congruence distributive.

3. Modular congruences

A variety V is said to be congruence modular if the congruence lattice of
any algebra in V is modular. If a variety is either congruence permutable or
congruence distributive, then it is congruence modular.

3.1. Theorem. (Day [69]) A variety V is congruence modular if and only if
for some n ≥ 1 there are terms t0(x, y, z, u), . . . , tn(x, y, z, u) in four variables
x, y, z, u such that t0 = x, tn = u and the following equations are satisfied in V :

(1) ti(x, y, y, x) ≈ x for all i;
(2) ti−1(x, x, y, y) ≈ ti(x, x, y, y) for i odd;
(3) ti−1(x, y, y, z) ≈ ti(x, y, y, z) for i even.

Proof. Let V be congruence modular. Denote by F the free V -algebra
over {x, y, z, u}, by T the algebra of terms over {x, y, z, u} and by h the homo-
morphism of T onto F acting as the identity on {x, y, z, u}. Put p = CgF (y, z),
r = Cg({〈x, y〉, 〈z, u〉}) and s = Cg({〈x, u〉, 〈y, z〉}). By modularity we have
(p∨ r)∩ s ⊆ p∨ (r∩ s). Since 〈x, u〉 ∈ (p∨ r)∩ s, we get 〈x, u〉 ∈ p∨ (r∩ s) and
there exist elements d0, . . . , dn ∈ F such that d0 = x, dn = u, 〈di−1, di〉 ∈ r ∩ s
for i odd and 〈di−1, di〉 ∈ p for i even. Take t0, . . . , tn in such a way that
h(ti) = di, t0 = x and tn = u. By an easy application of 1.3, the equations are
satisfied in V .

Conversely, suppose that there exist terms t0, . . . , tn as above. Let p, r, s
be three congruences of an algebra A ∈ V such that p ⊆ s. In order to prove
(p ∨ r) ∩ s ⊆ p ∨ (r ∩ s), it is sufficient to prove s ∩ qm ⊆ p ∨ (r ∩ s) for all m,
where qm = (r, p)m. For m < 3 it is easy. Let m ≥ 3.

First suppose that m is odd. Let 〈a, b〉 ∈ s ∩ qm. There are elements c, d
such that 〈a, b〉 ∈ s, 〈a, c〉 ∈ qm−2, 〈c, d〉 ∈ p and 〈d, b〉 ∈ r. Put di = ti(a, c, d, b)
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for i = 0, . . . , n. We have 〈a, di〉 ∈ s for all i. For i odd we have

〈di−1, ti−1(a, a, b, b)〉 ∈ q−1
m−2, ti−1(a, a, b, b) = ti(a, a, b, b),

〈ti(a, a, b, b), di〉 ∈ qm−2, 〈ti−1(a, a, b, b), a〉 ∈ s, 〈ti(a, a, b, b), a〉 ∈ s;

hence 〈di−1, di〉 ∈ (s∩ q−1
m−2) ◦ (s∩ qm−2) ⊆ p∨ (r ∩ s) by induction. For i even

we have evidently 〈di−1, di〉 ∈ p ⊆ p ∨ (r ∩ s). Since d0 = a and dn = b, we get
〈a, b〉 ∈ p ∨ (r ∩ s).

Now let m be even. Let 〈a, b〉 ∈ s ∩ qm. There exists an element c such
that 〈a, b〉 ∈ s, 〈a, c〉 ∈ qm−1 and 〈c, b〉 ∈ p. Put di = ti(a, c, c, b). We have
〈a, di〉 ∈ s for all i. For i odd we have

〈di−1, ti−1(a, a, b, b)〉 ∈ q−1
m−1, ti−1(a, a, b, b) = ti(a, a, b, b),

〈ti(a, a, b, b), di〉 ∈ qm−1, 〈ti−1(a, a, b, b), a〉 ∈ s, 〈ti(a, a, b, b), a〉 ∈ s;

hence 〈di−1, di〉 ∈ (s∩ q−1
m−1) ◦ (s∩ qm−1) ⊆ p∨ (r ∩ s) by induction. For i even

clearly di−1 = di. We get 〈a, b〉 ∈ p ∨ (r ∩ s). �

Terms t0, . . . , tn, satisfying the equations in 3.1, are called Day terms for
the given variety.

The following result belongs to Gumm [83]; we present a more simple proof
due to W. Taylor.

3.2. Theorem. A variety V is congruence modular if and only if for some
m ≥ 1 there are terms p(x, y, z) and q1(x, y, z), . . . , qm(x, y, z) in three variables
x, y, z (called Gumm terms) such that the following equations are satisfied in V :

(1) p(x, z, z) ≈ x
(2) p(x, x, z) ≈ q1(x, x, z)
(3) qi(x, y, x) ≈ x for all i
(4) qm ≈ z
(5) qi(x, z, z) ≈ qi+1(x, z, z) for i odd
(6) qi(x, x, z) ≈ qi+1(x, x, z) for i even

A nontrivial variety is congruence modlar if and only if its free algebra of rank
3 has modular congruence lattice.

Proof. From Gumm terms we can produce Day terms as follows:

t0 = t1 = x
t2(x, y, z, u) = p(x, y, z)
t3(x, y, z, u) = q1(x, y, u)
t4(x, y, z, u) = q1(x, z, u)
t4i+1(x, y, z, u) = q2i(x, z, u)
t4i+2(x, y, z, u) = q2i(x, y, u)
t4i+3(x, y, z, u) = q2i+1(x, y, u)
t4i+4(x, y, z, u) = q2i+1)x, z, u)

Conversely, let t0, . . . , tn be Day terms. One can assume that n is odd (we
can add the term u if necessary). Define the following terms:



3. MODULAR CONGRUENCES 103

si(x, y, z) =











x for i = 0

ti(si−1, y, z, si−1) for i > 0 even

ti(si−1, z, y, si−1) for i > 0 odd

ri(x, y, z) =











x for i = 0

ti(ti−1(x, x, x, z), x, y, ti−1(x, x, x, z)) for i > 0 even

ti(ti−1(x, x, z, z), z, y, ti−1(x, x, z, z)) for i > 0 odd

vj
i,i(x, y, z) =

{

tj(ri(x, z, z), ri, ti(x, x, y, z), ti(x, x, z, z)) for i even

tj(ri(x, x, z), ri, ti(x, x, y, z), ti(x, x, x, z)) for i odd

vj
i,k(x, y, z) =

{

tk(vj
i,k−1, x, z, v

j
i,k−1) for k > i even

tk(vj
i,k−1, z, x, v

j
i,k−1) for k > i odd

wj
i = vj

i,n

Now define Gumm terms: p = sn and q1, . . . , qm are the terms

w0
0, w

1
0, . . . , w

n
0 , w

1
1, . . . , w

n
1 , . . . , w

1
n, . . . , w

n
n

(so that m = n2 + n+ 1).
Claim 1. p(x, x, z) = x. (Let us write equations with the equality sign.)

Indeed, one can check easily by induction on i that si(x, z, z) = x.
Claim 2. si(x, x, z) = v0

0,i. By induction on i. For i = 0, both sides are x.

For i even, si(x, x, z) = ti(si−1(x, x, z), x, z, si−1(x, x, z)) =
ti(v

0
0,i−1, x, z, v

0
0,i−1) = v0

0,i. For i odd, the proof is similar.

Claim 3. p(x, x, z) = w0
0 = w0

0(x, x, z). By Claim 2 we have p(x, x, z) =
sn(x, x, z) = v0

0,n = w0
0. Also, observe that w0

0 does not contain y.

Claim 4. wj
i (x, y, x) = x. It is easy to check that ri(x, y, x) = ti(x, x, y, x)

and then vj
i,k(x, y, x) = x by induction on k ≥ i.

Claim 5. wn
n = z. This is obvious.

Claim 6. vn
i−1,i = v0

i,i for 0 < i ≤ n. For i even we have vn
i−1,i =

ti(v
n
i−1,i−1, x, z, v

n
i−1,i−1) = ti(ti−1(x, x, x, z), x, z, ti−1(x, x, x, z)) and v0

i,i =

ri(x, z, z) equals the same. For i odd the proof is similar.
Claim 7. vn

i−1,k = vn
i,k for 0 < i ≤ k ≤ n. Let us prove it by in-

duction on k. For k = i, use Claim 6. Let k > i. If k is even then
vn
i−1,k = tk(vn

i−1,k−1, x, z, v
n
i−1,k−1) = tk(v0

i,k−1, x, z, v
0
i,k−1) = v0

i,k. If k is odd

then vn
i−1,k = tk(vn

i−1,k−1, z, x, v
n
i−1,k−1) = tk(v0

i,k−1, z, x, v
0
i,k−1) = v0

i,k.

Claim 8. wn
i−1 = w0

i . This is Claim 7 with k = n.
Claim 9. ri(x, x, z) = ti(x, x, x, z) for i even. We have ri(x, x, z) =

ti(ti−1(x, x, x, z), x, x, ti−1(x, x, x, z)) = ti−1(x, x, x, z) = ti(x, x, x, z) by the
Day equations.

Claim 10. ri(x, z, z) = ti(x, x, z, z) for i odd. We have ri(x, z, z) =
ti(ti−1(x, x, z, z), z, z, ti−1(x, x, z, z)) = ti−1(x, x, z, z) = ti(x, x, z, z) by the
Day equations.
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Claim 11. vj
i,i(x, x, z) = vj+1

i,i (x, x, z) for i + j odd. If i is odd and j

is even then vj
i,i(x, x, z) = tj(ri(x, x, z), ri(x, x, z), ti(x, x, x, z), ti(x, x, x, z)) =

tj+1(ri(x, x, z), ri(x, x, z), ti(x, x, x, z), ti(x, x, x, z)) = vj+1
i,i (x, x, z). If i is even

and j is odd, vj
i,i(x, x, z) = tj(ri(x, z, z), ri(x, x, z), ti(x, x, x, z), ti(x, x, z, z)) =

tj(ri(x, z, z), ri(x, x, z), ri(x, x, z), ti−1(x, x, z, z)) = tj+1(ri(x, z, z), ri(x, x, z),

ri(x, x, z), ti(x, x, z, z)) = vj+1
i,i (x, x, z) (we have used Claim 9 and several times

Day’s equations).

Claim 12. vj
i,i(x, z, z) = vj+1

i,i (x, z, z) for i + j even. Using Claim 10, the
proof is similar to that of Claim 11.

Claim 13. wj
i (x, x, z) = wj+1

i (x, x, z) for i+j odd. Let us prove vj
i,k(x, x, z)

= vj+1
i,k (x, x, z) by induction on k ≥ i. For k = i, this is Claim 11. Let

k > i. If k is even then vj
i,k(x, x, z) = tk(vj

i,k−1(x, x, z), x, z, vj
i,k−1(x, x, z)) =

tk(vj+1
i,k−1(x, x, z), x, z, vj+1

i,k−1(x, x, z)) = vj+1
i,k (x, x, z). For k odd, the proof is

similar.
Claim 14. wj

i (x, z, z) = wj+1
i (x, z, z) for i + j even. The proof is similar

to that of Claim 13.
Equation (1) follows from Claim 1, equation (2) from Claim 3, equations

(3) from Claim 4, equation (4) from Claim 5 and the equations (5) and (6)
from Claims 8, 13 and 14. �

Let a subalgebra B of a product A = A1 × · · · × An be a subdirect prod-
uct. For any congruences ri ∈ Con(A) (1 ≤ i ≤ n), the set of the pairs
〈〈a1, . . . , an〉, 〈b1, . . . , bn〉〉 such that 〈ai, bi〉 ∈ ri for all i, is (clearly) a congru-
ence of A and its intersection with B ×B is a congruence of B. Congruences
obtained in this way will be called product congruences. The subdirect product
B will be called skew free if it has no other congruences.

A set S of algebras of the given signature is said to be totally skew free if
B is skew free whenever B is a subdirect product of a finite family of algebras
from S.

3.3. Lemma. Let a subalgebra B of A1 × · · · × An be a subdirect product.
Then B is skew free if and only if for any congruence r of B, r = (r ∨ s1) ∩
· · · ∩ (r ∨ sn), where si = (ker(pi)) ∩ B

2 and pi is the i-th projection of the
product onto Ai.

Proof. It is easy. �

3.4. Lemma. Let L be a modular lattice and a, b ∈ L be elements such that
c = (c ∨ a) ∧ (c ∨ b) for all c ≥ a ∧ b. Then c = (c ∨ (a ∧ d)) ∧ (c ∨ (b ∧ d)) for
all c, d ∈ L with a ∧ b ∧ d ≤ c ≤ d.

Proof. We have c = c∨ (a ∧ b∧ d) = (c∨ (a∧ b))∧ d = (c∨ (a∧ b)∨ a)∧
(c ∨ (a ∧ b) ∨ b) ∧ d = (c ∨ a) ∧ (c ∨ b) ∧ d = (c ∨ (a ∧ d)) ∧ (c ∨ (b ∧ d)). �
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3.5. Lemma. Let L be a modular lattice and a1, . . . , an ∈ L be elements
such that c = (c∨ai)∧ (c∨aj) whenever i, j ∈ {1, . . . , n} and c ≥ ai∧aj. Then
c = (c ∨ a1) ∧ · · · ∧ (c ∨ an) whenever c ≥ a1 ∧ · · · ∧ an.

Proof. By induction on n. For n ≤ 2 there is nothing to prove. Let
n ≥ 3. If c is an element such that (a1 ∧ ai) ∧ (a1 ∧ aj) ≤ c ≤ a1 then, by 3.4,
c = (c∨(a1∧ai))∧(c∨(a1∧aj)) = (c∨ai)∧(c∨aj). Hence in the sublattice ↓ a1

of L, the n− 1 elements a1 ∧ a2, . . . , a1 ∧ an satisfy the induction hypothesis.
By induction we get that c ≥ a1 ∧ · · · ∧ an implies

c ∧ a1 = ((c ∧ a1) ∨ (a1 ∧ a2)) ∧ · · · ∧ ((c ∧ a1) ∨ (a1 ∧ an))

= (c ∨ (a1 ∧ a2)) ∧ a1 ∧ · · · ∧ (c ∨ (a1 ∧ an)) ∧ a1

= a1 ∧ (c ∨ (a1 ∧ a2)) ∧ · · · ∧ (c ∨ (a1 ∧ an)).

We have c ∨ (a1 ∧ ai) ≥ a1 ∧ ai, so that c ∨ (a1 ∧ ai) = ((c ∨ (a1 ∧ ai)) ∨ a1) ∧
((c ∨ (a1 ∧ ai)) ∨ ai) = (c ∨ a1) ∧ (c ∨ ai). Thus

c = c ∨ (c ∧ a1) = c ∨ (a1 ∧ (c ∨ a1) ∧ (c ∨ a2) ∧ · · · ∧ (c ∨ a1) ∧ (c ∨ an))

= c ∨ (a1 ∧ (c ∨ a2) ∧ · · · ∧ (c ∨ an))

= (c ∨ a1) ∧ (c ∨ a2) ∧ · · · ∧ (c ∨ an)

by modularity. �

3.6. Theorem. Let V be a congruence modular variety and let S be a subset
of V such that B is skew free whenever B is a subdirect product of a pair of
algebras from S. Then S is totally skew free.

Proof. Let A1, . . . , An ∈ S and let a subalgebra B of A1 × · · · × An

be a subdirect product. For i = 1, . . . , n put si = (ker(pi)) ∩ B
2 where pi

is the i-th projection. For i 6= j, the algebra B/(si ∩ sj) is isomorphic to
a subdirect product of the pair Ai, Aj . By the assumption applied to this
algebra and using 3.3, for every congruence r of B with si ∩ sj ⊆ r we have
r = (r ∨ si) ∩ (r ∨ sj). By 3.5 it follows that r = (r ∨ s1) ∩ (r ∨ sn) for any
congruence r of B. Consequently, by 3.3, B is skew free. �

3.7. Theorem. Let V be a congruence distributive variety. Then every
subset of V is totally skew free.

Proof. It follows from 3.3. �

4. Chinese remainder theorem

By a congruence block of an algebra A we mean a subset of A which is a
block of a congruence of A.

4.1. Theorem. The following three conditions are equivalent for an alge-
bra A:

(1) The intersection of a finite system of pairwise non-disjoint congruence
blocks of A has a nonempty intersection;
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(2) The intersection of any triple of pairwise non-disjoint congruence blo-
cks of A has a nonempty intersection;

(3) r ∩ (s ◦ u) ⊆ (r ∩ s) ◦ (r ∩ u) for any three congruences of A.

Proof. Evidently, (1) implies (2). (2) implies (1): Let us prove by induc-
tion on n ≥ 1 that if S1, . . . , Sn are pairwise non-disjoint congruence blocks
of A, then S1 ∩ · · · ∩ Sn is nonempty. This is evident for n = 1. Let n ≥ 2.
It follows from (2) that the congruence blocks S1 ∩ S2, S3, . . . , Sn are pairwise
disjoint. By induction, their intersection is nonempty. But their intersection
is S1 ∩ · · · ∩ Sn.

(2) implies (3): Let 〈a, b〉 ∈ r∩ (s ◦u). There exists an element c such that
〈a, b〉 ∈ r, 〈a, c〉 ∈ s and 〈c, b〉 ∈ u. Put S1 = a/r, S2 = c/s and S3 = b/u.
We have a ∈ S1 ∩ S2, c ∈ S2 ∩ S3 and b ∈ S1 ∩ S3. Consequently, there exists
an element d ∈ S1 ∩ S2 ∩ S3. Since 〈a, d〉 ∈ r ∩ s and 〈d, b〉 ∈ r ∩ u, we get
〈a, b〉 ∈ (r ∩ s) ◦ (r ∩ u).

(3) implies (2): Let S1 be a block of a congruence r, S2 be a block of s
and S3 be a block of u; let a ∈ S1 ∩ S2, b ∈ S2 ∩ S3 and c ∈ S1 ∩ S3. We have
〈a, c〉 ∈ r ∩ (s ◦ u) ⊆ (r ∩ s) ◦ (r ∩ u), so that there exists an element d such
that 〈a, d〉 ∈ r ∩ s and 〈d, c〉 ∈ r ∩ u. Clearly, d ∈ S1 ∩ S2 ∩ S3. �

An algebra A is said to satisfy the Chinese remainder theorem if it satisfies
the three equivalent conditions of 4.1. A variety V is said to satisfy the Chinese
remainder theorem if every algebra in V does.

4.2. Example. The ring of integers satisfies the Chinese remainder theo-
rem. This number theoretic result was proved in old China.

By a ternary majority term for a variety V we mean a term t in three
variables x, y, z such that V satisfies the equations

t(x, x, y) ≈ x, t(x, y, x) ≈ x, t(y, x, x) ≈ x.

4.3. Theorem. A variety V satisfies the Chinese remainder theorem if and
only if there exists a ternary majority term for V .

Proof. Let V satisfy the Chinese remainder theorem. Denote by F the
free V -algebra over x, y, z, by T the algebra of terms over x, y, z and by h
the homomorphism of T onto F acting as the identity on x, y, z. Put r =
CgF (x, z), s = CgF (x, y) and u = CgF (y, v). We have 〈x, z〉 ∈ r ∩ (s ◦ u) ⊆
(r ∩ s) ◦ (r ∩ u), so that there exists an element d ∈ F with 〈x, d〉 ∈ r ∩ s and
〈d, z〉 ∈ r ∩ u. Using 1.3 we can see that any term t ∈ T such that h(t) = d is
a ternary majority term for V .

Conversely, let t be a ternary majority term for V . Let A ∈ V and 〈a, b〉 ∈
r ∩ (s ◦ u), where r, s, u are three congruences of A. There exists an element
c such that 〈a, b〉 ∈ r, 〈a, c〉 ∈ s and 〈c, b〉 ∈ u. Put d = t(a, b, c). We have
〈a, d〉 ∈ r ∩ s and 〈d, b〉 ∈ r ∩ u, so that 〈a, b〉 ∈ (r ∩ s) ◦ (r ∩ u). �

4.4. Theorem. An algebra with permutable congruences has distributive
congruences if and only if it satisfies the Chinese remainder theorem. A variety
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with a ternary majority term (i,e., a variety satisfying the Chinese remainder
theorem) is congruence distributive.

Proof. It follows from the above results. �

Example 2.2 actually shows that the variety of lattices satisfies the Chinese
remainder theorem.

5. Arithmetical varieties

A variety is said to be arithmetical if it is both congruence permutable and
congruence distributive.

5.1. Theorem. The following three conditions are equivalent for a vari-
ety V :

(1) V is arithmetical;
(2) V has both a Mal’cev term and a ternary majority term;
(3) there exists a term p in three variables x, y, z such that V satisfies

p(x, y, y) ≈ x, p(x, x, y) ≈ y, p(x, y, x) ≈ x.

Proof. The equivalence of the first two conditions follows from 4.3 and 4.4.
(2) implies (3): If t is a Mal’cev term and M is a ternary majority term

for V , put p = M(x, t(x, y, z), z).
(3) implies (2): p is a Mal’cev term, and p(x, p(x, y, z), z) is a ternary

majority term for V . �

5.2. Example. The variety of Boolean algebras is an arithmetical variety.

5.3. Theorem. (Baker and Pixley [75]) Let V be an arithmetical vari-
ety and A ∈ V be a finite algebra. An n-ary operation f on A (where n ≥
1) is a term operation of A if and only if it preserves subalgebras of A2

(i.e., whenever S is a subalgebra of A2 and 〈a1, b1〉, . . . , 〈an, bn〉 ∈ S then
〈f(a1, . . . , an), f(b1, . . . , bn)〉 ∈ S).

Proof. The direct implication is clear. If S is a subalgebra of A then
{〈a, a〉 : a ∈ S} is a subalgebra of A2. From this it follows that f also pre-
serves subalgebras of A. We are going to prove by induction on k that for every
k-element subset U of An there exists an n-ary term operation of A coinciding
with f on U . For k = 1 it follows from the fact that f preserves subalgebras
of A; for k = 2 from the fact that f preserves subalgebras of A2. Let k ≥ 3.
Take three distinct elements u1, u2, u3 of U . By the induction assumption there
exist three term operations g1, g2, g3 of A such that gi(u) = f(u) for all u ∈
U r {ui} (i = 1, 2, 3). Where M is the ternary majority term for V , the term
operation g(x1, . . . , xn) = M(g1(x1, . . . , xn), g2(x1, . . . , xn), g3(x1, . . . , xn)) co-
incides with f on U . �
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6. Congruence regular varieties

An algebra A is said to be congruence regular if any two congruences of A
with a common block are equal. A variety is said to be congruence regular if
all its algebras are.

6.1. Lemma. An algebra A is congruence regular if and only if for every
triple a, b, c of elements of A there exists a subset S of A such that 〈a, b〉 belongs
to the congruence generated by S × S and 〈c, d〉 ∈ CgA(a, b) for all d ∈ S.

Proof. Let A be congruence regular and a, b, c ∈ A. Put S = c/r, where
r = CgA(a, b). The congruence generated by S × S has a common block S
with r and hence equals r, so that it contains 〈a, b〉. Of course, 〈c, d〉 ∈ r for
all d ∈ S.

In order to prove the converse, let r, s be two congruences of A with a
common block C. It is sufficient to prove that 〈a, b〉 ∈ r implies 〈a, b〉 ∈ s.
Take an element c ∈ C. There exists a subset S for the triple a, b, c as above.
Since 〈c, d〉 ∈ CgA(a, b) ⊆ r for all d ∈ S, we have S ⊆ C. Hence 〈a, b〉 ∈
CgA(S × S) ⊆ CgA(C × C) ⊆ s. �

6.2. Theorem. A variety V is congruence regular if and only if for some
n ≥ 1 there are terms t1, . . . , tn, u1, . . . , un in three variables x, y, z and terms
v1, . . . , vn in four variables x, y, z, u such that the following equations are sat-
isfied in V :

(1) ti(x, x, z) ≈ z for all i;
(2) ui(x, x, z) ≈ z for all i;
(3) v1(x, y, z, t1) ≈ x;
(4) vi−1(x, y, z, ui−1) ≈ vi(x, y, z, ti) for i = 2, . . . , n;
(5) vn(x, y, z, un) ≈ y.

Proof. Let V be congruence regular. Denote by F the free V -algebra over
{x, y, z}, by T the algebra of terms over {x, y, z} and by f the homomorphism
of T onto F acting as the identity on {x, y, z}. By 6.1 there exists a subset S
of F such that 〈x, y〉 ∈ CgF (S×S) and 〈z, a〉 ∈ CgF (x, y) for all a ∈ S. Since
〈x, y〉 ∈ CgF (S × S), there exist unary polynomials f1, . . . , fn of F and pairs
〈a1, b1〉, . . . , 〈an, bn〉 ∈ S × S for some n ≥ 1 such that

x = f1(a1), f1(b1) = f2(a2), . . . , fn−1(bn−1) = fn(an), fn(bn) = y.

There exist ternary terms t1, . . . , tn, u1, . . . , un such that a1 = f(t1), . . . , an =
f(tn), b1 = f(u1), . . . , bn = f(un). Denote by g the endomorphism of F with
g(x) = x, g(y) = x and g(z) = z. For all i we have 〈z, ai〉 ∈ ker(g), so that

f(z) = z = g(z) = g(ai) = g(f(ti)) = f(ti(x, x, z)).

From this we get (1), and (2) can be proved similarly. For every i = 1, . . . , n
there exist a positive integer ki, a term si in variables x1, . . . , xki

and elements
ai,2, . . . , ai,ki

∈ F such that fi(a) = sF
i (a, ai,2, . . . , ai,ki

) for all a ∈ F . We
have ai,2 = f(wi,2), . . . , ai,ki

= f(wi,ki
) for some terms wi,2, . . . , wi,ki

∈ T . Put
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vi = si(u,wi,2, . . . , wi,ki
), so that vi is a term in variables x, y, z, u. We have

f(v1(x, y, z, t1)) = f(s1(t1, w1,2, . . . , w1,k1
)) = sF

1 (f(t1), f(w1,2), . . . , f(w1,k1
)

= sF
1 (a1, . . . , a1,2, . . . , a1,k1

) = f1(a1) = x = f(x),

so that V satisfies (3). One can prove (4) and (5) similarly.
In order to prove the converse, let A ∈ V and a, b, c ∈ A. For i = 1, . . . , n

put ai = tFi (a, b, c) and bi = uF
i (a, b, c). Put S = {a1, . . . , an, b1, . . . , bn}. If r

is a congruence containing 〈a, b〉, then 〈c, ai〉 = 〈tFi (a, a, c), tFi (a, b, c)〉 ∈ r and
similarly 〈c, bi〉 ∈ r for all i. If R is a congruence containing S × S, then

a = vF
1 (a, b, c, a1) R vF

1 (a, b, c, b1) = vF
2 (a, b, c, a2) R vF

2 (a, b, c, b2) = . . .

= vF
n−1(a, b, c, an−1) R vF

n−1(a, b, c, bn−1)

= vF
n (a, b, c, an) R vF

n (a, b, c, bn) = b.

Now we are able to apply 6.1. �

6.3. Example. The variety of quasigroups is congruence regular: put n =
1, t1 = y(x\z), u1 = z, v1 = (y(x\z))/(x\u).

7. Congruence distributive varieties

7.1. Theorem. (Jónsson [67]) Let K be a class of algebras such that the
variety HSP(K) is congruence distributive. Then every subdirectly irreducible
algebra from HSP(K) is a homomorphic image of a subalgebra of an ultra-
product of a family of algebras from K.

Proof. Let B be a subdirectly irreducible algebra from HSP(K). There
exist a family H of algebras from K (denote its domain by I) and a subalgebra
A of ΠH such that B ' A/r for a congruence r of A. For every subset J of I
define a congruence sJ of A in this way: 〈f, g〉 ∈ sJ if and only if f(i) = g(i)
for all i ∈ J . Put D = {J ⊆ I : sJ ⊆ r}. We have I ∈ D, and J ∈ D implies
J ′ ∈ D for all J ⊆ J ′ ⊆ I. It follows from Zorn’s lemma that there is a filter
F of subsets of I which is maximal among the filters contained in D. We are
going to prove that F is an ultrafilter.

Suppose, on the contrary, that there exists a subset J of I such that neither
J nor Ir J belongs to F . It follows from the maximality of F that there exist
two subsets L1, L2 ∈ F with J∩L1 /∈ D and (IrJ)∩L2 /∈ D. Put M = L1∩L2,
so that M ∈ F . Then M is the disjoint union of two subsets X,Y not belonging
to D: put X = J ∩M and Y = (I r J) ∩M . Since M ∈ D, we have

r = r ∨ sM = r ∨ (sX ∩ sY ) = (r ∨ sX) ∩ (r ∨ sY )

by the congruence distributivity. But A/r is subdirectly irreducible, and it
follows that either r = r ∨ sX or r = r ∨ sY , i.e., either X ∈ D or Y ∈ D, a
contradiction.

So, F is an ultrafilter. The corresponding ultraproduct of H is the factor
of ΠH through the congruence R defined as follows: 〈f, g〉 ∈ R if and only if
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{i : f(i) = g(i)} ∈ F . Since F ⊆ D, we have R ∩ (A× A) ⊆ r, and hence A/r
is a homomorphic image of the ultraproduct. �

7.2. Theorem. Let K be a finite set of finite algebras such that HSP(K)
is a congruence distributive variety. Then every subdirectly irreducible algebra
from HSP(K) belongs to HS(K).

Proof. It follows from 7.1, as any ultraproduct of any family of algebras
from K is isomorphic to an algebra from K. �

7.3. Theorem. Let V be a congruence distributive variety and A,B ∈ V
be two algebras such that A is finite, B is subdirectly irreducible, card(A) ≤
card(B) and A 6' B. Then there is an equation that is satisfied in A but not
satisfied in B.

Proof. It follows from 7.2. �

8. Congruence meet-semidistributive varieties

A lattice is said to be meet-semidistributive if it satisfies the quasiequation
x ∧ y = x ∧ z → x ∧ y = x ∧ (y ∨ z). A variety V is said to be congruence
meet-semidistributive if the congruence lattice of any algebra from V is meet-
semidistributive.

Let α, β, γ be three congruences of an algebra A. Define congruences βn and
γn for n ≥ 0 in this way: β0 = β, γ0 = γ, βn+1 = β∨(α∩γn), γn+1 = γ∨(α∩βn).
Clearly, the congruences βn constitute a chain and so their union β∞ is also a
congruence. Similarly, the union of the chain of congruences γn is a congruence
γ∞. It is easy to see that α ∩ β∞ = α ∩ γ∞ and if β′, γ′ are two congruences
such that β ⊆ β′, γ ⊆ γ′ and α ∩ β′ = α ∩ γ′ then β∞ ⊆ β

′ and γ∞ ⊆ γ
′.

8.1. Theorem. (Willard [00]) The following are equivalent for a nontrivial
variety V :

(1) V is congruence meet-semidistributive;
(2) in the V -free algebra over {x, y, z} we have 〈x, z〉 ∈ βn for some n,

where α = Cg(x, z), β = Cg(x, y) and γ = Cg(y, z);
(3) there exist a finite set E and ternary terms se, te (e ∈ E) such that

the equations se(x, y, x) ≈ te(x, y, x) are satisfied in V for all e ∈ E,
and for any algebra A ∈ V and any elements a, b ∈ A, a = b if and
only if se(a, a, b) = te(a, a, b)↔ se(a, b, b) = te(a, b, b) for all e ∈ E;

(4) for any algebra A ∈ V and any finite sequence a0, a1, . . . , an of el-
ements of A such that a0 6= an there exists an i < n such that
Cg(a0, an) ∩Cg(ai, ai+1) 6= idA;

Proof. (1) implies (2): 〈x, z〉 ∈ α∩(β◦γ) ⊆ α∩(β∨γ) ⊆ α∩(β∞∨γ∞) =
α ∩ β∞ and thus 〈x, z〉 ∈ βn for some n.

(2) implies (3): Let us define by induction on k = 0, . . . , n a finite set Ek of
finite sequences with k members of positive integers, and for every e ∈ Ek a pair
of ternary terms se, te with 〈se, te〉 ∈ α∩βn−k if k is even while 〈se, te〉 ∈ α∩γn−k

if k is odd. Let E0 contain a single element, the empty sequence, and put s∅ = x
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and t∅ = z (so that 〈s∅, t∅〉 ∈ α∩ βn). Now assume that Ek and se, te (e ∈ Ek)
are already defined for some k < n. Take any e ∈ Ek. If k is even then
〈se, te〉 ∈ βn−k = β ∨ (α ∩ γn−k−1), so that there exists a finite sequence of
ternary terms se1, te1, . . . , sem, tem such that 〈se, se1〉 ∈ β, 〈sei, tei〉 ∈ α∩γn−k−1

for 1 ≤ i ≤ m, 〈tei, se(i+1)〉 ∈ β for 1 ≤ i < m and 〈tem, te〉 ∈ β; add the
sequences e1, . . . , em to Ek+1. If k is odd, do the same with β replaced by γ
and concersely.

Put E = E0 ∪ · · · ∪ En. The set E can be imagined as a rooted tree,
with the root ∅ and leaves the sequences from E that cannot be extended to
longer sequences in E. Clearly, we have 〈se, te〉 ∈ α for all e ∈ E, so that the
equation se(x, y, x) ≈ te(x, y, x) is satisfied in V . For any leaf e ∈ Ek we have
〈se, te〉 ∈ β if k is even, while 〈se, te〉 ∈ γ if k is odd. Observe that if u, v are
ternary terms such that 〈u, v〉 ∈ β then u(x, x, y) ≈ v(x, x, y) is satisfied in V ,
and if 〈u, v〉 ∈ γ then u(x, y, y) ≈ v(x, y, y) is satisfied in V .

Let A ∈ V , a, b ∈ A and let se(a, a, b) = te(a, a, b)↔ se(a, b, b) = te(a, b, b)
for all e ∈ E. We will prove by induction on n− k that se(a, a, b) = te(a, a, b)
and se(a, b, b) = te(a, b, b). If e is a leaf then 〈se, te〉 belongs to either β or γ,
so that we have one of the two equalities and then by the assumption we
have both. Let e ∈ Ek be not a leaf, so that e can be continued to some e1,
. . . , em in Ek+1 obtained in the above described way. If k is even, each two
neighbors in the sequence se(a, a, b), se1(a, a, b), te1(a, a, b), . . . , sem(a, a, b),
tem(a, a, b), te(a, a, b) are equal because in each case we can either use the
induction hypothesis or the pair of the terms belongs to β; thus se(a, a, b) =
te(a, a, b) and then se(a, b, b) = te(a, b, b) follows by the assumption. If k is
odd, we can similarly prove se(a, b, b) = te(a, b, b) and then obtain se(a, a, b) =
te(a, a, b) by the assumption.

(3) implies (4): Put a = a0 and b = an. Since a 6= b, there exists an
e ∈ E such that either se(a, a, b) = te(a, a, b) but se(a, b, b) 6= te(a, b, b),
or conversely; assume this first case. Clearly, there exists an i < n such
that se(a, ai, b) = te(a, ai, b) while se(a, ai+1, b) 6= te(a, ai+1, b). Put c =
se(a, ai+1, b) and d = te(a, ai+1, b), so that c 6= d. Put u = se(a, ai, b) =
te(a, ai, b) and v = se(a, ai+1, a) = te(a, ai+1, a). The polynomial f1(x) =
se(a, x, b) maps {ai, ai+1} onto {c, u} and the polynomial f2(x) = te(a, x, b)
maps {ai, ai+1} onto {u, d}, so that 〈c, d〉 ∈ Cg(ai, ai+1). The polynomial
g1(x) = se(a, ai+1, x) maps {a, b} onto {c, v} and the polynomial g2(x) =
te(a, ai+1, x) maps {a, b} onto {v, d}, so that 〈c, d〉 ∈ Cg(a, b). Thus 〈c, d〉 ∈
Cg(a0, b0) ∩Cg(ai, ai+1).

(4) implies (1): It is sufficient to prove that if A ∈ V and α, β, γ are
congruences of A with α ∩ β = α ∩ γ = idA then α ∩ (β ∨ γ) = idA. Suppose
α ∩ (β ∨ γ) 6= idA. There are elements a = a0, a1, . . . , an = b with a 6= b,
〈a, b〉 ∈ α and 〈ai, ai+1〉 ∈ β ∪ γ for i < n. By (4) there is an i < n with
Cg(a, b) ∩Cg(ai, ai+1) 6= idA. But then either α ∩ β 6= idA or α ∩ γ 6= idA, a
contradiction. �
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If condition (3) in 8.1 is satisfied then we also say that V is a meet-
semidistributive variety with respect to the Willard terms se, te (e ∈ E).

8.2. Example. The variety of semilattices is a meet-semidistributive vari-
ety. For the Willard terms we can take s1 = xy, t1 = xyz, s2 = xyz, t2 = yz.



CHAPTER 8

PROPERTIES OF VARIETIES

1. Amalgamation properties

By an idempotent of an algebra A we mean an element a ∈ A such that
{a} is a subuniverse of A.

1.1. Theorem. The following are equivalent for a variety V :

(1) For every subset S of V there exists an algebra A ∈ V such that every
algebra from S is isomorphic to a subalgebra of A.

(2) For every pair A,B ∈ V there exists an algebra C ∈ V such that both
A and B can be embedded into C.

(3) Every algebra from V can be embedded into an algebra in V with an
idempotent.

(4) Whenever H is a family of V -algebras over a set I and an algebra
A ∈ V , together with a family of homomorphisms fi : Hi → A (i ∈ I),
is a coproduct of H in V , then fi is injective for every i ∈ I.

Proof. Clearly, (4) implies (1), (1) implies (2) and (2) implies (3). It
remains to prove that (3) implies (4). Let H be a family of V -algebras over a
set I and A together with fi : Hi → A be a coproduct in V . For every i ∈ I, Hi

is a subalgebra of an algebra Ci ∈ V such that Ci contains an idempotent ei.
Denote by D the product of the family Ci (i ∈ I). For i ∈ I and a ∈ Hi

denote by gi(a) the element p ∈ D with p(i) = a and p(j) = ej for j ∈ I r {i}.
Clearly, gi : Hi → D is an embedding. Since A is a coproduct, there exists a
homomorphism q : A → D with gi = qfi for all i ∈ I. Since gi is injective, it
follows that fi is injective. �

A variety is said to be extensive if it satisfies the equivalent conditions of
Theorem 1.1.

A class V of algebras is said to have the amalgamation property if for any
algebras A,B,C ∈ V and any embeddings f : A → B and g : A → C there
exists an algebra D ∈ V and two embeddings p : B → D and q : C → D such
that pf = qg. Clearly, this is equivalent to saying that the pushout of f, g in
the category V consists of injective homomorphisms. Also, if V is closed under
isomorphic algebras then V has the amalgamation property if and only if for
every A,B,C ∈ V such that A is a subalgebra of B, A is a subalgebra of C
and A = B ∩ C there exist an algebra D ∈ K, an injective homomorphism
f of B into D and an injective homomorphism g of C into D such that f, g
coincide on A.

113
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It is not difficult to prove that if a variety V has the amalgamation property,
then for every algebra A ∈ V and for every family of injective homomorphisms
fi : A→ Bi (i ∈ I) of A into algebras Bi ∈ V , the pushout in the category V
of this family of embeddings consists of injective homomorphisms.

A class V of algebras is said to have the strong amalgamation property if for
any three algebras A,B,C ∈ V such that A is a subalgebra of both B and C,
there exists an algebra D ∈ V such that both B and C are subalgebras of D.
Clearly, this is equivalent to saying that if the pair f : B → E, g : C → E
is a pushout of the pair idA : A → B, idA : A → C, then f, g are injective
homomorphisms and f(B)∩g(C) = f(A). Also, if V is closed under isomorphic
algebras then V has the strong amalgamation property if and only if for every
A,B,C ∈ V such that A is a subalgebra of B, A is a subalgebra of C and
A = B∩C there exists an algebra D ∈ K such that B,C are subalgebras of D.

Of course, the strong amalgamation property implies the amalgamation
property. The variety of distributive lattices is an example of a variety with the
amalgamation property which does not have the strong amalgamation prop-
erty.

1.2. Theorem. The variety of all algebras of a given signature has the
strong amalgamation property.

Proof. It is not difficult to give a construction of a pushout of two injective
homomorphisms with the same beginning in the category of all pre-algebras.
Its reflection in the variety of all algebras is a pushout in this category. We
have given a construction of this reflection in the remark following 3.9.2. �

Let V be a variety. It is easy to see that a morphism of the category V is a
monomorphism of this category if and only if it is an injective homomorphism.
Also, it is easy to see that if f : A→ B is a homomorphism of A onto B, where
A,B ∈ V , then f is an epimorphism of the category V . A variety V is said to
have epimorphisms onto if every epimorphism f : A → B of the category V
has the property f(A) = B.

1.3. Example. Let A be the semigroup of integers and B be the semi-
group of rational numbers (both with respect to the multiplication of rational
numbers). We are going to show that the homomorphism idA : A → B is
an epimorphism of the category of semigroups. Let S be a semigroup and
f : B → C, g : B → C be two homomorphisms coinciding on A. For any two
integers a, b with a 6= 0 we have

f(
1

a
) = f(

1

a
)g(a)g(

1

a
) = f(

1

a
)f(a)g(

1

a
) = g(

1

a
),

so that

f(
b

a
) = f(b)f(

1

a
) = g(b)g(

1

a
) = g(

b

a
),

and we get f = g. So, the variety of semigroups, and also the variety of rings,
do not have epimorphisms onto.
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Let F be an algebra and X be a subset of A. By an F,X-situation we
mean a sixtuple I, J,B,C, r, s such that I ⊆ X, J ⊆ X, I ∩ J is nonempty,
I ∪ J = X, B is the subalgebra of F generated by I, C is the subalgebra of
F generated by J , r is a congruence of B, s is a congruence of C and r, s
coincide on B ∩ C. By a solution of an F,X-situation I, J,B,C, r, s we mean
a congruence t of F such that t∩B2 = r and t∩C2 = s. By a strong solution
of I, J,B,C, r, s we mean a solution t such that if b ∈ B, c ∈ C and 〈b, c〉 ∈ t
then there exists an element a ∈ B ∩ C with 〈b, a〉 ∈ r and 〈a, c〉 ∈ s.

1.4. Theorem. Let K be a nontrivial variety. The following four condi-
tions are equivalent:

(1) K has the amalgamation property
(2) the class of finitely generated algebras from K has the amalgamation

property
(3) whenever F is a K-free algebra over a set X then every F,X-situation

has a solution
(4) whenever F is a K-free algebra over a finite set X then every F,X-

situation has a solution

Also, the following four conditions are equivalent:

(1’) K has the strong amalgamation property
(2’) the class of finitely generated algebras from K has the strong amalga-

mation property
(3’) whenever F is a K-free algebra over a set X then every F,X-situation

has a strong solution
(4’) whenever F is a K-free algebra over a finite set X then every F,X-

situation has a strong solution

Proof. We prove the equivalence of the first four conditions and indicate
only how to modify the proof to obtain the equivalence of the second four
conditions. (1) implies (2) clearly.

Let us prove that (2) implies (4). Let I, J,B,C, r, s be an F,X-situation.
Put A = B∩C, so that (as it is easy to see) A is the subalgebra of F generated
by I ∩J . Put z = r∩A2 = s∩A2. Denote by pr the canonical homomorphism
of B onto B/r and by ps the canonical homomorphism of C onto C/s. Since
z = ker(pridA), there exists an injective homomorphism f of A/z into B/r
such that the restriction of pr to A equals fpz. Similarly, there exists an
injective homomorphism g of A/z into C/s such that the restriction of ps to A
equals gpz. By the amalgamation property for finitely generated algebras from
K there exist an algebra D ∈ K, an injective homomorphism f ′ of B/r into D
and an injective homomorphism g′ of C/s into D such that f ′f = g′g. Since F
is K-free, there exists a homomorphism h of F into D with h(x) = f ′(pr(x))
for all x ∈ I and h(x) = g′(ps(x)) for all x ∈ J . (For x ∈ I ∩ J we have
f ′(pr(x)) = f ′(f(pz(x))) = g′(g(pz(x))) = g′(ps(x)).) Clearly, the restriction
of h to B equals f ′pr and the restriction of h to C equals g′ps. Put t = ker(h).
Since f ′ and g′ are injective, t extends both r ans s. It is easy to verify that if
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the range of f ′f is the intersection of the ranges of f ′ and g′ then the solution
t is strong.

Let us prove that (4) implies (3). Let I, J,B,C, r, s be an F,X-situation.
For every finite subset Y of X such that Y ∩ I ∩ J is nonempty denote by
FY the subalgebra of F generated by Y ; put IY = I ∩ Y , JY = J ∩ Y ,
BY = B∩FY , CY = C∩FY , rY = r∩B2

Y and sY = s∩C2
Y . By (4), the FY , Y -

situation IY , JY , BY , CY , rY , sY has at least one solution. Denote by tY the
intersection of all solutions of this FY , Y -situation, so that tY is a congruence
of FY extending both rY and sY . If Y1 ⊆ Y2 then the restriction of tY2

to FY1

is a congruence of FY1
extending both rY1

and sY1
, so that tY1

is contained
in the restriction of tY2

to FY1
which is contained in tY2

. The union t of the
up-directed system of all these tY is a congruence of F . Let us prove that it
extends r. Let a, b ∈ B. There exists a set Y such that a, b ∈ BY . If 〈a, b〉 ∈ r
then 〈a, b〉 ∈ rY , so that 〈a, b〉 ∈ tY and 〈a, b〉 ∈ t. If 〈a, b〉 ∈ t then there exists
a set Z such that 〈a, b〉 ∈ tZ ; put M = Z ∪ Y ; clearly, 〈a, b〉 ∈ tM , so that
〈a, b〉 ∈ rM and thus 〈a, b〉 ∈ r. Similarly, t extends s. It is easy to check that
if the solutions tY are strong then t is strong.

It remains to prove that (3) implies (1). Let A,B,C ∈ K be such that A
is a subalgebra of B, A is a subalgebra of C and A = B ∩C. Denote by X the
union of the sets B,C and let F be a K-free algebra over X; denote by B′ the
subalgebra of F generated by B and by C ′ the subalgebra of F generated by C.
Since F is K-free, the identity on B can be extended to a homomorphism h
of B′ into B and the identity on C can be extended to a homomorphism k
of C ′ into C. The F,X-situation B,C,B′, C ′,ker(h),ker(k) has a solution r.
Denote by pr the canonical homomorphism of F onto F/r, by f the restriction
of pr to B and by g the restriction of pr to C. It is easy to see that f is an
injective homomorphism of B into F/r, g is an injective homomorphism of C
into F/r and that f, g, pr coincide on A. If, moreover, r is a strong solution
then the range of the restriction of f to A is the intersection of the ranges of
f and g. �

1.5. Theorem. Let V be a variety. Consider the following three conditions:

(1) V has the strong amalgamation property.
(2) Every monomorphism of the category V is an equalizer of a pair of

V -morphisms.
(3) V has epimorphisms onto.

We have (1)⇒ (2)⇒ (3).

Proof. (1) implies (2): Let f : A→ B be a monomorphism of V , i.e., an
injective homomorphism. Let the pair g : B → C, h : B → C be a pushout of
the pair f : A→ B, f : A → B. We have gf = hf ; it follows from the strong
amalgamation property that f(A) = {b ∈ B : g(b) = h(b). Consequently, f is
an equalizer of g, h.

(2) implies (3): Let f : A→ B be an epimorphism of the category V . De-
note by C the subalgebra of B with the underlying set f(A). The monomor-
phism idC : C → B is an equalizer of a pair of morphisms g : B → D,
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h : B → D. We have gidC = hidC , so that gf = gidCf = hidCf = hf . Since
f is an epimorphism, we get g = h. But then, C = B. �

2. Discriminator varieties and primal algebras

The discriminator function on a set A is the ternary operation d on A
defined by

d(x, y, z) =

{

x if x 6= y

z if x = y.

The switching function on A is the quaternary operation s on A defined by

s(x, y, z, u) =

{

z if x = y

u if x 6= y.

It is easy to check that

s(x, y, z, u) = d(d(x, y, z), d(x, y, u), u) and d(x, y, z) = s(x, y, z, x).

A ternary term t is said to be a discriminator term for a class K of algebras if
for any A ∈ K, tA is the discriminator function on A. Similarly, a quaternary
term is said to be a switching term for K if it represents the switching function
on any algebra from K. It follows that K has a discriminator term if and only
if it has a switching term.

An algebra is said to be quasiprimal if it is finite and has a discriminator
term. A variety V is said to be a discriminator variety if there exists a term t
such that V is generated by all its algebras for which t is a discriminator term.
We also say that V is a discriminator variety with respect to t.

2.1. Theorem. Let V = HSP(K) where K is a class of algebras such
that there exists a term t(x, y, z) serving as a discriminator term for all al-
gebras in K. Then V is an arithmetical variety; a nontrivial algebra A ∈ V
is subdirectly irreducible if and only if it is simple if and only if t serves as a
discriminator term for A if and only if A ∈ ISPU (K).

Proof. A discriminator term satisfies the equations 7.5.1, so the variety
generated by K is arithmetical. If an algebra A has a discriminator term
then the switching function s is a term operation of A and for any elements
x, y, z, u ∈ A with x 6= y we have 〈z, u〉 = 〈s(x, x, z, u), s(x, y, z, u)〉 ∈ Cg(x, y),
so that A is simple. Clearly, the class of algebras for which t is a discriminator
term is closed under ultraproducts and subalgebras. So, all the algebras in
SPU (K) are simple. By 7.7.1, all subdirectly irreducible algebras from V
belong to HSPU (K); a homomorphic image of a simple algebra A is either
trivial or isomorphic to A. �

2.2. Theorem. (Pixley [71]) A finite algebra A is quasiprimal if and only if
it generates an arithmetical variety and every subalgebra of A is either simple
or trivial.
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Proof. The direct implication follows from 2.1. In order to prove the
converse, by 7.5.3 it is sufficient to show that the discriminator function d on
A preserves subalgebras of A2. Let C be a subalgebra of A2. Denote by A1

and A2 the image of C under the first and the second projection, respectively,
so that A1 and A2 are subalgebras of A and C ⊆ A1 × A2 is a subdirect
product. By 7.1.7 there exist an algebra D ∈ HSP(A), a homomorphism f
of A1 onto D and a homomorphism g of A2 onto D such that C = {〈x, y〉 :
f(x) = g(y)}. Since subalgebras of A are either simple or trivial, either f, g are
isomorphisms or D is trivial. In the first case we have C = {〈x, h(x)〉 : x ∈ A1}
where h is the isomorphism g−1f of A1 onto A2, and in the second case C =
A1 × A2. Let 〈a, a′〉, 〈b, b′〉, 〈c, c′〉 be three elements of C. If C = {〈x, h(x)〉 :
x ∈ A1} then a = b if and only if a′ = b′, so that d(〈a, a′〉, 〈b, b′〉, 〈c, c′〉) =
〈d(a, b, c), d(a′ , b′, c′)〉 is either 〈a, a′〉 ∈ C (if a 6= b) or 〈c, c′〉 ∈ C (if a = b). If
C = A1 ×A2 then d(〈a, a′〉, 〈b, b′〉, 〈c, c′〉) ∈ C is obvious. �

2.3. Theorem. (McKenzie [75]) Let V be a variety and t be a ternary term.
(1) V is a discriminator variety with respect to t if and only if it satisfies

the following equations:

(a) t(x, y, y) = x, t(x, y, x) = x, t(x, x, y) = y,
(b) t(x, t(x, y, z), y) = y,
(c) t(x, y, F (z1, . . . , zn)) = t(x, y, F (t(x, y, z1), . . . , t(x, y, zn))) for any n-

ary F in the signature.

(2) If V is a discriminator variety with respect to t then for any algebra A ∈
V and any elements a, b, c, d of A, 〈c, d〉 ∈ Cg(a, b) if and only if t(a, b, c) =
t(a, b, d).

Proof. It is easy to check that if V is a discriminator variety with respect
to t then the equations (a), (b) and (c) are satisfied in all algebras of the class
generating V as a variety and thus in all algebras of V .

Let V be a variety satisfying the equations (a), (b) and c. For an algebra
A ∈ V and elements a, b ∈ A define a binary relation γ(a, b) on A by 〈x, y〉 ∈
γ(a, b) if and only if t(a, b, x) = t(a, b, y). Then γ(a, b) is clearly an equivalence
and it follows from (c) that it is a congruence of A. By (a) we have 〈a, b〉 ∈
γ(a, b), so that Cg(a, b) ⊆ γ(a, b). Let 〈c, d〉 ∈ γ(a, b). Then 〈t(a, b, c), c〉 =
〈t(a, b, c), t(a, a, c)〉 ∈ Cg(a, b), 〈t(a, b, d), d〉 = 〈t(a, b, d), t(a, a, d)〉 ∈ Cg(a, b)
by (a) and t(a, b, c) = t(a, b, d), so that 〈c, d〉 ∈ Cg(a, b). Thus γ(a, b) =
Cg(a, b) and we have proved (2).

It remains to prove that if V satisfies (a), (b) and (c) then t is a discrim-
inator function on any subdirectly irreducible algebra A in V (since the class
of subdirectly irreducible algebras generates V ). For this, by (a), it is suffi-
cient to prove that if c, d ∈ A and c 6= d then t(c, d, x) = c for all x ∈ A.
There exist two distinct elements a, b ∈ A such that Cg(a, b) is the monolith
of A. If t(a, b, x) 6= a for some element x ∈ A then 〈a, b〉 ∈ Cg(a, t(a, b, x))
which means t(a, t(a, b, x), a) = t(a, t(a, b, x), b); but t(a, t(a, b, x), a) = a and
t(a, t(a, b, x), b) = b by (a) and (c), a contradiction. Consequently, t(a, b, x) = a
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for all x ∈ a. Thus Cg(a, b) = A2 and then also Cg(c, d) = A2 whenever c 6= d.
We get t(c, d, x) = c for all x ∈ A. �

An algebra is said to be primal if it is finite and every n-ary operation
on A, for any n ≥ 1, is a term operation of A.

2.4. Theorem. (Foster and Pixley [64],[64a]) A finite algebra A is primal
if and only if it is quasiprimal, has no proper subalgebras and has no automor-
phisms except identity.

Proof. The direct implication is clear. In order to prove the converse,
follow the proof of 2.2 and observe that A1 = A2 = A and h = idA. �

2.5. Example. (1) The two-element Boolean algebra is primal.
(2) For every prime number p, the finite field of integers modulo p is primal.

For the discriminator term we can take d(x, y, z) = x(x − y)p−1 + z(1 − (x −
y)p−1).

(3) For every n ≥ 2, the n-element Post algebra is the algebra of the
signature of Boolean algebras, with the underlying set {0, 1, . . . , n − 1} and
operations defined in this way: it is a lattice with respect to the ordering
0 < n − 1 < n − 2 < · · · < 2 < 1; 0′ = 1, 1′ = 2, . . . , (n − 1)′ = 0.
This is a primal algebra. For the discriminator term we can take d(x, y, z) =
(g(x, y) ∧ x) ∨ (g(g(x, y), 1) ∧ z) where g(x, y) = (

∧

1≤i<n(
∧

1≤j≤n(xj ∨ yj))i)′

and xi means i applications of ′ to x. (Observe that
∧

1≤j≤n(xj ∨ yj) = 0 if

and only if x = y; (
∧

1≤i<n x
i)′ is 0 for x = 0 and 1 for x 6= 0; and g(x, y) is 0

for x = y and 1 for x 6= y).

2.6. Theorem. (Foster [53a]) Let A be a primal algebra. Then the variety
generated by A is just the class of algebras isomorphic to a Boolean power of A.

Proof. By 2.1 it is sufficient to prove that every subdirect power of A is
isomorphic to a Boolean power of A. Let a nontrivial subalgebra C of AI be
a subdirect power of A. Clearly, for any a ∈ A the constant mapping ca ∈ A

I

with value a belongs to C. The switching function s on A is a term operation
of A. For f, g, p, r ∈ C we have e(f = g) ∪ e(p = r) = e(s(f, g, p, r) = p),
e(f = g) ∩ e(p = r) = e(s(f, g, p, f) = s(f, g, r, g)) and I r e(f = g) =
e(s(f, g, ca, cb) = cb) where a, b are two distinct elements of A. Consequently,
the set B of all subsets e(f = g) of I with f, g ∈ C is a subalgebra of the
Boolean algebra of all subsets of I. Put X = B∗. For f ∈ C and U ∈ X,
I is the disjoint union of its finitely many subsets f−1(a) with a ∈ A, so there
exists precisely one a ∈ A with f−1(a) ∈ U ; denote this a by H(f, U). Define
a mapping h of C into AX by h(f)(U) = H(f, U). Clearly, all constants of
AX are in h(C). For f, g ∈ C we have e(h(f) = h(g)) = {U ∈ X : H(f, U) =
H(g, U)} = {U ∈ X : f−1(a) ∈ U and g−1(a) ∈ U for some a ∈ A} = {U ∈
X : e(f = g) ∈ U}, which is a clopen set. Thus the sets e(f = g) with f, g ∈ C
are precisely all the clopen subsets of X. For f, g ∈ C and a clopen subset
N = {U ∈ X : e(p = r)} of X put q = (f � e(p = r)) ∪ (g � (I r e(p = r))).
Since q = s(p, r, f, g), we have q ∈ C; since e(h(q) = h(f)) = {U ∈ X : e(q =
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f) ∈ U} ⊇ {U ∈ X : e(p = r) ∈ U} = N and e(h(q) = h(g)) = {U ∈
X : e(q = g) ∈ U} ⊇ {U ∈ X : I r e(p = r) ∈ U} = X r N , we have
h(q) = (h(f) � N) ∪ (h(g) � (X rN)). This proves h(C) = A[B]∗. Clearly, h
is a bijection and it is not difficult to check that h is a homomorphism. �

Let A be an algebra and B1, B2 be two Boolean algebras. For any homo-
morphism h : B1 → B2 we get a homomorphism h̄ : A[B1]∗ → A[B2]∗ if we put
(for any f ∈ A[B1]∗) h̄(f) = fh∗ where h∗ is the continuous mapping of B∗2 into
B∗1 corresponding to h (see 4.4.3). It can be proved that if A is a nontrivial pri-
mal algebra then every homomorphism of A[B1]∗ into A[B2]∗ can be obtained
from a homomorphism of B1 into B2 in this way, and A[B1]∗ ' A[B2]∗ if and
only if B1 ' B2.

2.7. Theorem. Let V = HSP(K) be a discriminator variety and t(x, y, z)
be a discriminator term for all algebras in K. Then every algebra from V
is isomorphic to a Boolean product of algebras that either belong to K or are
trivial.

Proof. Let A be a nontrivial algebra from V . By 2.1, A is isomorphic
to a subdirect product of a family of simple algebras Si ∈ SPU (K) (i ∈ I);
we can assume that A is equal to the subdirect product. Denote by s the
switching term for algebras in K (and thus for all algebras in SPU (K)). For
x, y, z, u ∈ A we have Cg(x, y) = {〈z, u〉 : e(x = y) ⊆ e(z = u)}, be-
cause the right side is easily seen to be a congruence containing 〈x, y〉 and
if e(x = y) ⊆ e(z = u) then 〈z, u〉 = 〈s(x, x, z, u), s(x, y, z, u)〉. We have
Cg(x, y) ∨ Cg(z, u) = Cg(t(x, y, z), t(y, x, u)), since (as it is easy to check)
e(t(x, y, z) = t(y, x, u)) = e(x = y) ∩ e(z = u). Also, Cg(x, y) ∩ Cg(z, u) =
Cg(s(x, y, z, u), z) since e(s(x, y, z, u) = z) = e(x = y) ∪ e(z = u). Hence
the set L of finitely generated congruences of A (equal to the set of principal
congruences of A) is a sublattice of Con(A). The lattice is distributive and the
congruences permute, since V is an arithmetical variety. In order to prove that
it is relatively complemented, it is sufficient to show that Cg(s(z, u, x, y), y)
is a complement of Cg(z, u) in the interval [idA,Cg(x, y) ∨ Cg(z, u)]. We
have Cg(z, u) ∩Cg(s(z, u, x, y), y) = Cg(s(z, u, s(z, u, x, y), y), s(z, u, x, y)) =
idA, since (as it is easy to check) s(z, u, s(z, u, x, y), y) = s(z, u, x, y). We
have Cg(z, u) ∨ Cg(s(z, u, x, y), y) = Cg(t(z, u, s(z, u, x, y)), t(u, z, y)) since
e(t(z, u, s(z, u, x, y)) = t(u, z, y)) = e(x = y) ∩ e(z = u). Now we can
use 4.5.1. �

Let A be an algebra of signature σ. Denote by σ + A the extension of σ
by constants Ca, one constant for each element a of A. We denote by A+A the
algebra of signature σ + A such that A is a reduct of A+A and each constant
Ca is interpreted by the element a in A+A.

An algebra A is called functionally complete if A+A is a primal algebra,
i.e., if every operation on the set A of positive arity is a polynomial of A.
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2.8. Theorem. (Werner [74]) Let A be a nontrivial algebra generating a
congruence permutable variety. Then A is functionally complete if and only if
Con(A2) is the four-element Boolean lattice.

Proof. Put B = A+A and denote by 2 the two-element lattice. Let
A be functionally complete, so that B is primal. Since B generates a con-
gruence distributive variety, it follows from 7.3.7 that congruences of B2 are
precisely the product congruences. Since B is simple, Con(B2) ' 22. Clearly,
Con(A2) = Con(B2).

Conversely, let Con(A2) ' 22. Then also Con(B2) ' 22. The algebra B is
simple, because otherwise B2 would have product congruences other than the
obvious four ones. Clearly, B has no proper subalgebras and no non-identical
automorphisms. It follows from 7.1.7 that the only subalgebras of B2 that are
subdirect products are A2 and D, where D is the subalgebra with underlying
set idA. Since Con(B2) ' 22, the only congruences of B2 are the four product
congruences. Since D ' B, D has only two congruences and these are again
the product congruences. By 7.3.6 it follows that {B} is totally skew free, so
that Con(Bn) ' 2n for all n.

Denote by F the free algebra in HSP(B) over {x, y, z}. By 6.4.2 we have
F ∈ ISP(B) and F is isomorphic to a subalgebra of Bk for some positive inte-
ger k. Since B has no proper subalgebras, this subalgebra is a subdirect power
of B. By 7.1.8 it follows that F ' Bn for some n. Consequently, Con(F ) ' 2n

and hence the lattice Con(F ) is distributive. By 7.2.1 the variety HSP(B)
is congruence distributive; since it is also congruence permutable, it is arith-
metical. By 2.2 and 2.4 it follows that B is primal, i.e., A is functionally
complete. �

3. Dual discriminator varieties

The dual discriminator function on a set A is the ternary operation D on
A defined by

D(x, y, z) =

{

x if x = y

z if x 6= y.

A ternary term t is said to be a dual discriminator term for a class K of
algebras if for any A ∈ K, tA is the dual discriminator function on A. A variety
V is said to be a dual discriminator variety if there exists a term t such that
V is generated by all its algebras for which t is a dual discriminator term. We
also say that V is a dual discriminator variety with respect to t. The following
results belong to Fried and Pixley [79].

3.1. Theorem. Let d be the discriminator and D be the dual discriminator
function on a set A. Then D(x, y, z) = d(x, d(x, y, z), z) for all x, y, z ∈ A.
Consequently, every discriminator variety is a dual discriminator variety.

Proof. It is obvious. �
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3.2. Example. The term (x∧y)∨(y∧z)∨(x∧z) is a dual discriminator term
for the two-element lattice. Consequently, the variety of distributive lattices is
a dual discriminator variety. It is not a discriminator variety.

3.3. Theorem. Let V = HSP(K) where K is a class of algebras such
that there exists a term t(x, y, z) serving as a dual discriminator term for all
algebras in K. Then V is a congruence distributive variety; a nontrivial algebra
A ∈ V is subdirectly irreducible if and only if it is simple if and only if t serves
as a dual discriminator term for A if and only if A ∈ ISPU (K). A dual
discriminator variety is a discriminator variety if and only if it is congruence
permutable.

Proof. It is easy to check that the dual discriminator term is a ternary
majority term, so that the variety V is congruence distributive (and satis-
fies the Chinese remainder theorem) by 7.4.4. If an algebra A has a dual
discriminator term t then for any elements a, b, c ∈ A with a 6= b we have
〈a, c〉 = 〈t(a, a, c), t(a, b, c)〉 ∈ Cg(a, b), so that A is simple. Clearly, the class
of algebras for which t is a dual discriminator term is closed under ultraprod-
ucts and subalgebras. So, all the algebras in ISPU (K) are simple. By 7.7.1, all
subdirectly irreducible algebras from V belong to HSPU (K); a homomorphic
image of a simple algebra A is either trivial or isomorphic to A. �

3.4. Theorem. Let A be a finite algebra with |A| ≥ 3. Then A is function-
ally complete if and only if the dual discriminator function on A is a polynomial
of A.

Proof. The direct implication is obvious. Let the dual discriminator func-
tion on A be a polynomial of A. There exists a ternary term t of the signature
σ+A (σ being the signature of A) such that the corresponding term operation
on the algebra B = A+A is the dual discriminator function.

Denote by D the subalgebra of B2 with the underlying set idA. Let S
be an arbitrary subalgebra of A. Clearly, D ⊆ S. Let S 6= D, so that
〈a, b〉 ∈ S for two elements a, b with a 6= b. For all elements a ∈ A we
have 〈a, c〉 = 〈t(a, a, c), t(a, b, c)〉 = t(〈a, a〉, 〈a, b〉, 〈c, c〉) ∈ S. Consequently,
for all elements c, d ∈ A with c 6= a we have 〈d, c〉 = 〈t(c, a, d), t(c, c, d)〉 =
t(〈c, c〉, 〈a, c〉, 〈d, d〉) ∈ S. Since |A| ≥ 3, it follows that all elements of A2

belong to S. Thus B2 has only two subalgebras, D and B2. Clearly, both of
them are closed under any operation on B, so that any operation on B is a
polynomial of B according to 7.5.3. This means that the algebra B is primal
and hence A is functionally complete. �

3.5. Example. The assumption |A| ≥ 3 in 3.4 is essential: according to 3.2,
the two-element lattice has the dual discriminator term but it is not function-
ally complete (since every polynomial of a lattice is order preserving).

3.6. Theorem. Let V be a variety and t be a ternary term.
(1) V is a dual discriminator variety with respect to t if and only if it

satisfies the following equations:
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(a) t(x, y, y) = y, t(x, y, x) = x, t(x, x, y) = x,
(b) t(x, y, t(x, y, z)) = t(x, y, z,
(c) t(z, t(x, y, z), t(x, y, u)) = t(x, y, z),
(d) t(x, y, F (z1, . . . , zn)) = t(x, y, F (t(x, y, z1), . . . , t(x, y, zn))) for any n-

ary F in the signature.

(2) If V is a dual discriminator variety with respect to t then for any algebra
A ∈ V and any elements a, b, c, d of A the following are true:

(i) 〈c, d〉 ∈ Cg(a, b) if and only if t(c, d, x) = t(c, d, t(a, b, x)) for all x ∈
A;

(ii) Cg(a, b) ∩Cg(c, d) = Cg(t(a, b, c), t(a, b, d)),
(iii) Cg(a, b) has a complement r in the lattice Con(A); we have 〈x, y〉 ∈ r

if and only if t(a, b, x) = t(a, b, y).

Proof. It is easy to check that if V is a dual discriminator variety with
respect to t then the equations (a), (b), (c) and (d) are satisfied in all algebras
of the class generating V as a variety and thus in all algebras of V .

Let V be a variety satisfying the equations (a), (b), (c) and d. By (a), V is
congruence distributive. For an algebra A ∈ V and elements a, b ∈ A define a
binary relation γ(a, b) on A by 〈x, y〉 ∈ γ(a, b) if and only if t(a, b, x) = t(a, b, y).
(In the same way as in the proof of 2.3; but now γ(a, b) is not Cg(a, b).) Clearly,
γ(a, b) is an equivalence and it follows from (d) that it is a congruence of A.
By (b) we have 〈t(a, b, c), c〉 ∈ γ(a, b) for all a, b, c ∈ A.

Claim. γ(z, t(x, y, z) 6= idA whenever x 6= y. By (c) we have t(z, t(x, y, z),
t(x, y, u)) = t(z, t(x, y, z), t(x, y, z)) and thus 〈t(x, y, z), t(x, y, u)〉 ∈ γ(z, t(x,
y, z)) for all x, y, z, u ∈ A. If γ(z, t(x, y, z)) = idA then t(x, y, z) = t(x, y, u)
for all u, so that x = t(x, y, x) = t(x, y, y) = y.

Let us prove (ii). Denote by R the set of the congruences r of A such that
A/r is subdirectly irreducible and Cg(t(a, b, c), t(a, b, d)) ⊆ r. Let r ∈ R. Since
t is a dual discriminator function on A/r and t(a/r, b/r, c/r) = t(a/r, b/r, d/r),
we have either a/r = b/r or c/r = d/r. Thus for any r ∈ R, either 〈a, b〉 ∈
r or 〈c, d〉 ∈ r. By 3.5.4, Cg(t(a, b, c), t(a, b, d)) is the intersection of the
congruences r ∈ R. But every r ∈ R is above either Cg(a, b) or Cg(c, d).
Thus Cg(a, b) ∩Cg(c, d) = Cg(t(a, b, c), t(a, b, d)).

Let us prove (iii). For all c, d ∈ A we have 〈c, t(a, b, c)〉 ∈ γ(a, b), 〈t(a, b, c),
t(a, a, c)〉 ∈ Cg(a, b), t(a, a, c) = a = t(a, a, d), 〈t(a, a, d), t(a, b, d)〉 ∈ Cg(a, b)
and 〈t(a, b, d), d〉 ∈ γ(a, b), so that 〈c, d〉 ∈ Cg(a, b)∨γ(a, b) and thus Cg(a, b)∨
γ(a, b) = A2. If 〈c, d〉 ∈ Cg(a, b) ∩ γ(a, b) then 〈c, d〉 ∈ Cg(a, b) ∩Cg(c, d) =
Cg(t(a, b, c), t(a, b, d)) by (ii); but t(a, b, c) = t(a, b, d) and so c = d. We get
Cg(a, b) ∩ γ(a, b) = idA.

Let us prove (i). By (iii) we have 〈c, d〉 ∈ Cg(a, b) if and only if Cg(c, d) ⊆
Cg(a, b) if and only if γ(a, b) ⊆ γ(c, d) (since the congruence lattice is dis-
tributive). If 〈c, d〉 ∈ Cg(a, b) then γ(a, b) ⊆ γ(c, d); we have t(a, b, x) =
t(a, b, t(a, b, x)) by (b) and so t(c, d, x) = t(c, d, t(a, b, x)) for all x ∈ A. Con-
versely, let t(c, d, x) = t(c, d, t(a, b, x)) for all x ∈ A. Then for all x, y ∈ A
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t(a, b, x) = t(a, b, y) implies t(c, d, x) = t(c, d, y), i.e., 〈x, y〉 ∈ γ(a, b) implies
〈x, y〉 ∈ γ(c, d), so that γ(a, b) ⊆ γ(c, d) and hence 〈c, d〉 ∈ Cg(a, b).

It remains to prove that if V satisfies (a), (b), (c) and (d) then t is a
dual discriminator function on any subdirectly irreducible algebra A in V .
For this, by (a), it is sufficient to prove that if c, d ∈ A and c 6= d then
t(c, d, x) = c for all x ∈ A. By the Claim it is sufficient to prove that if c 6= d
then γ(c, d) = idA. Suppose γ(c, d) 6= idA. There exist two distinct elements
a, b ∈ A such that Cg(a, b) is the monolith of A. We have 〈a, b〉 ∈ γ(c, d),
so that t(c, d, a) = t(c, d, b). Put e = t(c, d, a) = t(c, d, b). By the Claim we
have γ(a, e) = γ(a, t(c, d, a)) 6= idA and γ(b, e) = γ(b, t(c, d, b)) 6= idA. Hence
〈a, b〉 ∈ γ(a, e) ∩ γ(b, e), so that a = t(a, e, a) = t(a, e, b) and b = t(b, e, b) =
t(b, e, a). Since a 6= b, either e 6= a or e 6= b. If e 6= a then taking x = a, y = e,
z = b in the Claim yields γ(b, a) = γ(b, t(a, e, b)) 6= idA; hence 〈a, b〉 ∈ γ(b, a)
which implies a = t(b, a, a) = t(b, a, b) = b, a contradiction. If e 6= b then taking
x = b, y = e, z = a in the Claim gives γ(a, b) = γ(a, t(b, e, a)) 6= idA which
implies 〈a, b〉 ∈ γ(a, b) and thus a = t(a, b, a) = t(a, b, b) = b, a contradiction
again. Thus γ(c, d) = idA. �

4. Bounded varieties

An equational theory E is said to be bounded if there is a finite set of
terms S such that every term is E-equivalent to a term similar to a term in S.
(Recall that two terms u, v are similar if v = h(u) for an automorphism h of
the algebra of terms.) A variety is said to be bounded if the corresponding
equational theory is bounded.

4.1. Theorem. The set of bounded varieties of signature σ is an ideal in
the lattice of all varieties of σ-algebras. The following are true for any bounded
variety V :

(1) V has only finitely many subvarieties
(2) V is finitely generated
(3) If the signature is finite then V is finitely based

Proof. Clearly, a subvariety of a bounded variety is itself bounded. Let
V be the join of two bounded varieties V1 and V2. There are two finite sets S1

and S2 of terms such that every term is V1-equivalent with a term similar to
a term from S1 and also V2-equivalent with a term similar to a term from V2.
For each pair 〈u, v〉 ∈ S1 × S2 select, if possible, a term t that is equivalent
modulo V1 with a term similar to a term from S1 and equivalent modulo V2

with a term similar to a term from S2. Denote by S the set of all terms t
selected in this way. Then S is a finite set witnessing the boundedness of V .

Let V be a bounded variety and S be a finite set of terms such that every
term is V -equivalent with a term similar to a term from S.

(1) Denote by x1, . . . , xk all the variables occurring in some term from S;
take pairwise distinct variables y1, . . . , yk not belonging to {x1, . . . , xk} and de-
note by S′ the (finite) set of terms that are similar to a term from S and contain
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no other variables than those belonging to {x1, . . . , xn, y1, . . . , yn}. Clearly,
every equation is equivalent modulo V to an equation from S′ × S′. Conse-
quently, every subvariety of V is based (modulo V ) on a subset of S′ × S′.

(2) It is easy to see that V is locally finite. For every proper subvariety W
of V there exists a finitely generated, and thus finite, algebra in V rW ; select
one and denote it by AW . Clearly, V is generated by the direct product of the
finite algebras AW with W running over all proper subvarieties of V ; by (1),
this is a direct product of finitely many finite algebras.

(3) There exist positive integers c and d such that every operation symbol
of σ is of arity at most c and every term is V -equivalent with a term of length
at most d. Take cd pairwise distinct variables x1, . . . , xcd. Denote by E the
set of equations satisfied in V , both sides of which are of length at most cd
and contain no other variables than x1, . . . , xcd. Then E is finite and we claim
that V is based on E. We only need to prove that for every term s of length
greater than cd there exists a shorter term t such that 〈s, t〉 is a consequence
of E. Evidently, s has a subterm u such that its length k satisfies d < k ≤ cd.
Then there is a term v of length at most d such that 〈u, v〉 is satisfied in V .
Now 〈u, v〉 is a consequence of E and then also 〈s, t〉 is a consequence of E,
where t is obtained from s by replacing one occurrence of u by v; the term t is
shorter than s. �

The notion of an address (a finite sequence of elementary addresses) and
the related notation introduced in Chapter 6 shoud be recalled. By a direction
we mean an infinite sequence (indexed by nonnegative integers) of elementary
addresses. Addresses and directions can be concatenated: for an address e =
a0 . . . ak−1 and a direction d = b0b1 . . . , ed is the direction a0 . . . ak−1b0b1 . . . .

For an address e and a natural number n, we define an address en by
induction as follows: e0 is the empty address; en+1 = een. For a nonempty
address e, the unique direction that extends en for every natural number n is
denoted by eω. A direction h is said to be eventually periodic if h = efω for
some addresses e and f ; it is said to be periodic if h = fω.

Let t be a term and h be a direction. We say that h is traversible in the
direction h if t[e] is a variable for some initial segment e of h. This e, if it
exists, is unique and will be denoted by τt[h]; we also denote t[e] as t[h].

By a coherent triple we mean a triple 〈J,m, d〉 where J is a finite set of
directions, m is a mapping of J into the set of nonnegative integers and d is
a mapping of J into the set of positive integers, such that the following three
conditions are satisfied:

(1) Whenever eh ∈ J then h ∈ J
(2) If h ∈ J then h = efω for some e, f such that e is of length m(h) and

f is of length d(h)
(3) If h = ah′ ∈ J where a is an elementary address then m(h) ≤ m(h′)+1

and d(h′) is a multiple of d(h)
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For every coherent triple 〈J,m, d〉 we denote by Θ(J,m, d) the set of equa-
tions defined by 〈u, v〉 ∈ Θ(J,m, d) if and only if the following two conditions
are satisfied:

(1) For every h ∈ J , u is traversible in the direction h if and only if v is
traversible in the direction h

(2) If h ∈ J and u, v are traversible in the direction h then u[h] = v[h]
and either u = v or else λ(τu(h)) ≡ λ(τv(h)) mod d(h) and both
m(h) ≤ λ(τu(h)) and m(h) ≤ λ(τv(h))

Observe that if the signature contains only one operation symbol which is of
positive arity, then the first condition is always satisfied because then every
term is traversible in every direction.

4.2. Theorem. Θ(J,m, d) is an equational theory for every coherent triple
〈J,m, d〉.

Proof. Put Θ = Θ(J,m, d). Evidently, Θ is an equivalence on the set of
terms.

In order to prove that Θ is a congruence, let F be an n-ary operation symbol
and 〈u1, v1〉, . . . , 〈un, vn〉 ∈ Θ; put u = F (u1, . . . , un) and v = F (v1, . . . , vn).
Let h ∈ J . We have h = 〈G, i〉h′ for an elementary address 〈G, i〉 and a
direction h′ ∈ J . If G 6= F then neither u nor v is traversible in the direction h.
Let G = F . Since 〈ui, vi〉 ∈ Θ, ui is traversible in the direction h′ if and only if
vi is traversible in the direction h′, and in the positive case ui[h

′] = vi[h
′] and

the rest of (2) is satisfied. Since τu(h) = 〈F, i〉τui
(h′) and τv(h) = 〈F, i〉τvi

(h′),
it is easy to check that 〈u, v〉 ∈ Θ.

It remains to prove that Θ is fully invariant. Let 〈u, v〉 ∈ Θ and let f be an
endomorphism of the algebra of terms; we need to show that 〈f(u), f(v)〉 ∈ Θ.
Let h ∈ J . If u and v are not traversible in the direction h then also f(u) and
f(v) are not traversible. Let u and v be traversible. Then u[h] = v[h] = x,
where x is a variable. Now f(s) is traversible in the direction h if and only
if f(x) is traversible in the direction k, where h = τu(h)k. Since 〈J,m, d〉 is
a coherent triple, it follows that k = k′, where h = τv(h)k′. Thus f(u) is
traversible in the direction h if and only if f(v) is, and in the positive case
f(u)[h] = f(v)[h]. The rest is easy to check. �

The variety corresponding to the equational theory Θ(J,m, d), for a co-
herent triple 〈J,m, d〉, will be denoted by Ξ(J,m, d). Such varieties are called
zigzag varieties.

A coherent triple 〈J,m, d〉 is said to be tight if m(h) = m(h′) for any two
directions h, h′ ∈ J with a common initial segment of length m(h). Let us
define an ordering on the set of tight coherent triples by 〈J,m, d〉 ≤ 〈J ′,m′, d′〉
if and only if J ⊆ J ′ and whenever h ∈ J then m(h) ≤ m′(h) and d′(h) is
a multiple of d(h). It is not difficult to prove that the set of tight coherent
triples is a meet-complete lattice (a lattice that would be complete if the largest
element were added) with respect to this ordering.
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4.3. Theorem. Ξ is an isomorphism of the lattice of tight coherent triples
onto the lattice of zigzag varieties of the given signature. (Zigzag varieties of
the given signature form a lattice with respect to inclusion, although it is not
a sublattice of the lattice of all varieties.) In particular, every zigzag varietiy
can be uniquely expressed as Ξ(J,m, d) for a tight coherent triple 〈J,m, d〉.

Proof. It is easy. �

4.4. Theorem. Every zigzag variety is bounded.

Proof. Let 〈J,m, d〉 be a tight coherent triple. Denote by U the set of
all operation symbols that occur in elementary addresses on the directions
belonging to J , so that U is finite. Denote by k the maximum of the numbers
m(h) (h ∈ J) and by p the least common multiple of the numbers d(h) (h ∈ J).
Let J ′ be the set of the directions h′ containing no other operation symbols
than those in U , and such that h′ = efω where λ(e) = k and λ(f) = p.
Put m′(h′) = k and d′(h′) = p for all h ∈ J ′. Then 〈J ′,m′, d′〉 is a tight
coherent triple and 〈J,m, d〉 ≤ 〈J ′,m′, d′〉, so that Ξ(J,m, d) ⊆ Ξ(J ′,m′, d′).
It is not difficult to see that every term is equivalent modulo Θ(J ′,m′, d′) with
a term t such that every address that is an occurrence of a subterm in t is
of length less than k + 2p and t contains no operation symbols other than
those in U (supplemented by an arbitrary fixed symbol not in U , if there
are such symbols). There are only finitely many such terms up to similarity.
Consequently, Ξ(J ′,m′, d′) is bounded; and then also Ξ(J,m, d) is bounded. �





CHAPTER 9

COMMUTATOR THEORY AND ABELIAN

ALGEBRAS

1. Commutator in general algebras

Let α, β, δ be three congruences of an algebra A. We say that α centralizes
β modulo δ, and write C(α, β; δ), if

t(a, c1, . . . , cn) δ t(a, d1, . . . , dn)←→ t(b, c1, . . . , cn) δ t(b, d1, . . . , dn)

for any n ≥ 0, any (n + 1)-ary term operation t of A and any 〈a, b〉 ∈ α and
〈c1, d1〉, . . . , 〈cn, dn〉 ∈ β.

Clearly, this condition is equivalent to

p(a1, . . . , am, c1, . . . , cn) δ p(a1, . . . , am, d1, . . . , dn) −→

p(b1, . . . , bm, c1, . . . , cn) δ p(b1, . . . , bm, d1, . . . , dn)

for any n,m ≥ 0, any (n + m)-ary polynomial p of A and any 〈ai, bi〉 ∈ α,
〈ci, di〉 ∈ β.

1.1. Theorem. The following are true for congruences α, β, γ, δ, αi , βi, δi
of any algebra A:

(1) If C(α, β; δ) then C(α0, β0; δ) for any α0 ⊆ α and β0 ⊆ β.
(2) If C(αi, β; δ) for all i ∈ I, then C(

∨

i∈I αi, β; δ).
(3) If C(α, β; δi) for all i ∈ I, then C(α, β;

⋂

i∈I δi).
(4) If γ ⊆ α ∩ β ∩ δ, then C(α, β; δ) in A if and only if C(α/γ, β/γ; δ/γ)

in A/γ.

Proof. It is easy. �

It follows from 1.1(3) that for any two congruences α, β of an algebra A
there exists a least congruence δ of A with the property C(α, β; δ). This least
congruence δ is called the commutator of α, β; it is denoted by [α, β].

1.2. Theorem. The following are true for congruences α, β of any alge-
bra A:

(1) [α, β] ⊆ α ∩ β.
(2) If α1 ⊆ α2 and β1 ⊆ β2, then [α1, β1] ⊆ [α2, β2].

Proof. It is easy. �

1.3. Example. Let G be a group and α, β be two congruences of G; let
H,K be the corresponding normal subgroups. Then [α, β] is the congruence

129
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of G corresponding to the commutator [H,K] (the subgroup generated by the
elements h−1k−1hk with h ∈ H and k ∈ K).

Let R be a ring and α, β be two congruences of R; let I, J be the corre-
sponding ideals. Then [α, β] is the congruence of R corresponding to the ideal
generated by IJ + JI.

Let A be an algebra. The center of A is the binary relation R on A defined
as follows. An ordered pair 〈a, b〉 belongs to the center of A if and only if
for every n ≥ 0, every (n + 1)-ary term operation t of A and any elements
c1, . . . , cn, d1, . . . , dn ∈ A,

t(a, c1, . . . , cn) = t(a, d1, . . . , dn)←→ t(b, c1, . . . , cn) = t(b, d1, . . . , dn).

It is not difficult to prove that the center of any algebra A is a congruence
of A.

An algebra A is said to be Abelian if its center is the all-relation A2.
Equivalently, an algebra A is Abelian if and only if [A2, A2] = idA.

A congruence α of an algebra A is said to be Abelian if [α,α] = idA, i.e.,
if C(α,α; idA). So, an algebra A is Abelian if and only if A2 is an Abelian
congruence of A.

Let α, β be two congruences of an algebra A. We say that β is Abelian over
α if α ⊆ β and C(β, β;α) (i.e., β/α is an Abelian congruence of A/α).

1.4. Theorem. An algebra A is Abelian if and only if idA is a block of a
congruence of A×A.

Proof. Clearly, idA is a block of a congruence of A × A if and only if
it is a block of the congruence of A × A generated by idA. By 6.4.5, this is
equivalent to saying that for every unary polynomial

f(x) = tA×A(x, 〈c1, d1〉, . . . , 〈cn, dn〉)

of A×A (where t is a term in variables x, x1, . . . , xn for some n ≥ 0), f(〈a, a〉) ∈
idA for some a ∈ A implies f(〈b, b〉) ∈ idA for all b ∈ A. If we reformulate
this using tA instead of tA×A, we obtain the implication in the definition of an
Abelian algebra. �

By an Abelian variety we mean a variety, all the algebras of which are
Abelian.

Let α, β be two congruences of an algebra A. We say that β is strongly
Abelian over α if α if α ⊆ β and

p(a, c1, . . . , cn)
α
≡ p(b, d1, . . . , dn)→ p(a, e1, . . . , en)

α
≡ p(b, e1, . . . , en)

whenever p is an (n + 1)-ary polynomial p of A, a
β
≡ b and ci

β
≡ di

β
≡ ei for

i = 1, . . . , n.
We say that β is a strongly Abelian congruence of A if β is strongly Abelian

over idA. An algebra A is said to be strongly Abelian if A × A is a strongly
Abelian congruence.

1.5. Proposition. Let α ⊆ β be two congruences of an algebra A.
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(1) If β is strongly Abelian over α then β is Abelian over α
(2) If γ is a congruence of A and γ ⊆ α then β is (strongly) Abelian over

α if and only if β/γ is (strongly) Abelian over α/γ

Proof. It is easy. �

2. Commutator theory in congruence modular varieties

Throughout this section let V be a congruence modular variety and let
d0, . . . , dN be Day terms for V .

For an algebra A ∈ V and two congruences α, β ∈ Con(A) we denote by
M(α, β) the set of the 2× 2-matrices

(

t(a1, . . . , am, c1, . . . , cn) t(a1
1, . . . , am, d1, . . . , dn)

t(b1, . . . , bm, c1, . . . , cn) t(b11, . . . , bm, d1, . . . , dn)

)

where n,m ≥ 0, t is an (n + m)-ary term operation of A, 〈ai, bi〉 ∈ α for
i = 1, . . . ,m and 〈cj , dj〉 ∈ β for j = 1, . . . , n. So, α centralizes β modulo δ if

and only if for every

(

a b
c d

)

∈M(α, β), 〈a, b〉 ∈ δ implies 〈c, d〉 ∈ δ.

We denote by X(α, β) the set of the ordered pairs 〈di(a, b, d, c), di(a, a, c, c)〉

where

(

a b
c d

)

∈M(α, β) and i ≤ N .

2.1. Lemma. Let A ∈ V , γ ∈ Con(A) and a, b, c, d ∈ A be elements such
that 〈b, d〉 ∈ γ. Then 〈a, c〉 ∈ γ if and only if 〈di(a, a, c, c), di(a, b, d, c)〉 ∈ γ for
all i ≤ N .

Proof. If 〈a, c〉 ∈ γ, then di(a, a, c, c) γ di(a, a, a, a) = a and di(a, b, d, c)
γ di(a, b, b, a) = a. Conversely, let ui = di(a, b, d, c), vi = di(a, a, c, c) and
assume that 〈ui, vi〉 ∈ γ for all i. Since u0 = a and uN = c, it is enough to
prove 〈ui−1, ui〉 ∈ γ for i = 1, . . . ,N . For i odd we have ui−1 γ vi−1 = vi γ ui.
For i even we have ui−1 γ di−1(a, b, b, c) = di(a, b, b, c) γ ui. �

2.2. Lemma. Let A ∈ V . The following conditions are equivalent for
α, β, δ ∈ Con(A):

(1) X(α, β) ⊆ δ;
(2) X(β, α) ⊆ δ;
(3) C(α, β; δ);
(4) C(β, α; δ);
(5) [α, β] ⊆ δ.

Proof. It is enough to prove (3) ⇒ (1) ⇒ (4), since then we obtain
(4) ⇒ (2) ⇒ (3) by interchanging α and β, and the equivalence with (5)
follows easily.
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(3) ⇒ (1): Let C(α, β; δ). Let

(

a b
c d

)

∈M(α, β) be given by t as above.

Let k ≤ N and put u = dk(a, a, c, c) and v = dk(a, b, d, c). We have

u = dk(t(ai, cj), t(aicj), t(bi, cj), t(bi, cj)),

v = dk(t(ai, cj), t(ai, dj), t(bi, dj), t(bi, cj)).

If we replace the second occurrences of ai by bi and the second occurrences of bi

with ai, we obtain equal elements; denote the element by w. Now

(

u v
w w

)

∈

M(α, β), so 〈u, v〉 ∈ δ.

(1) ⇒ (4): Let

(

a b
c d

)

∈ M(β, α) and 〈a, b〉 ∈ δ. We need to prove

〈d, c〉 ∈ δ; since 〈b, a〉 ∈ δ, according to 2.1 this is equivalent to

〈di(a, a, b, b), di(a, c, d, b)〉 ∈ δ.

But these pairs belong to X(α, β) ⊆ δ, since

(

a c
b d

)

∈M(α, β). �

2.3. Theorem. Let α, β, βi be congruences of an algebra A in a congruence
modular variety. Then:

(1) [α, β] = [β, α] = Cg(X(α, β)) ⊆ α ∩ β.
(2) [α,

∨

i∈I βi] =
∨

i∈I [α, βi].

Proof. (1) follows from 2.2. Put β =
∨

i∈I βi and δ =
∨

i∈I [α, βi]. We
have δ ⊆ [α, β] by monotonicity (1.2(2). It remains to prove that C(β, α; δ).

We have C(βi, α; δ). Let

(

u r
v s

)

∈M(β, α), i.e.,

(

u v
r s

)

∈M(α, β), and let

〈u, r〉 ∈ δ. Clearly, there exist finite sequences x0, . . . , xk, z0, . . . , zk such that
(

x0 xk

z0 zk

)

=

(

u v
r s

)

and

(

xj−1 xj

zj−1 zj

)

for j = 1, . . . , k with the same term

operations as for

(

u v
r s

)

. Thus inductively 〈xj , zj〉 ∈ δ. Hence 〈v, s〉 ∈ δ. �

It follows that for an algebra A in a congruence modular variety and for any
two congruences α, β of A there exists a largest congruence γ with [β, γ] ⊆ α.
This largest congruence γ is denoted by α : β.

2.4. Theorem. Let A,B be two algebras in a congruence modular variety
and f be a homomorphism of A onto B, with kernel r.

(1) If α, β are two congruences of A with α, β ⊇ r, then [f(α), f(β)] =
f([α, β] ∨ r).

(2) For any α, β ∈ Con(A) we have [α, β] ∨ r = f−1[f(α ∨ r), f(β ∨ r)].

Proof. (1) f maps the generating relation X(α, β)∨ r of [α, β]∨ r onto a
generating relation of [f(α), f(β)].

(2) This follows from (1) and from [α, β] ∨ r = [α ∨ r, β ∨ r]∨ r, which is a
consequence of 2.3(2). �
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2.5. Theorem. Let A be an algebra in a congruence modular variety and
B be a subalgebra of A; let α, β ∈ Con(A). Then [α|B , β|B ] ⊆ [α, β]|B .

Proof. Since C(α, β; [α, β]), we have C(α|B , β|B ; [α, β]|B). �

2.6. Theorem. Let A = Πi∈IAi where Ai are algebras in a congruence
modular variety. For αi ∈ Con(Ai) (i ∈ I) denote by Πi∈Iαi the congruence
α of A defined by 〈f, g〉 ∈ α if and only if 〈f(i), g(i)〉 ∈ αi for all i ∈ I.
Define a congruence λ of A by 〈f, g〉 ∈ λ if and only if f(i) = g(i) for all
but finitely many i ∈ I. Then (αi)i∈I 7→ λ ∩ Πi∈Iαi is an embedding of the
lattice Πi∈ICon(Ai) into the lattice Con(A). For two families of congruences
αi, βi ∈ Con(Ai) we have

[Πi∈Iαi,Πi∈Iβi] ⊆ Πi∈I [αi, βi],

[λ ∩Πi∈Iαi, λ ∩Πi∈Iβi] = λ ∩Πi∈I [αi, βi].

Proof. It is easy to see that the mapping is a lattice embedding. Put
α = [λ ∩Παi, λ ∩Πβi], β = λ ∩ Π[αi, βi]. Let pi : A → Ai be the projections.
For i ∈ I put γi =

⋂

j 6=iKer(pj). For γ ∈ Con(Ai) put γ∗ = p−1
i (γ) ∈

Con(A). Clearly, λ ∩ Παi = λ ∩
⋂

α∗i . We have α = [λ ∩
⋂

α∗i , λ ∩
⋂

β∗i ] and

β = λ∩
⋂

[αi, βi]
∗ = λ∩

⋂

([p−1
i αi, p

−1
i βi]∨ker(pi)) = λ∩

⋂

([α∗i , β
∗
i ]∨ker(pi)),

because [αi, βi]
∗ = p−1

i [αi, βi] = [p−1
i αi, p

−1
i βi] ∨ ker(pi) by Theorem 2.4. By

monotonicity, α ⊆ β. Similarly, [Παi,Πβi] ⊆ Π[αi, βi].
It remains to prove β ⊆ α. Easily, λ ∩

⋂

i α
∗
i =

∨

i(α
∗
i ∩ γi). Hence β =

λ∩
⋂

[αi, βi]
∗ =

∨

i([αi, βi]
∗∩ γi) =

∨

(([α∗i , β
∗
i ]∨ker(pi))∩ γi). By modularity,

α∗i = (α∗i ∩ γi) ∨ ker(pi). Hence [α∗i , β
∗
i ] ∨ ker(pi) = [α∗i ∩ γi) ∨ ker(pi), (β

∗
i ∩

γi) ∨ ker(pi)] = [α∗i ∩ γi, β
∗
i ∩ γi] ∨ ker(pi). Hence ([α∗i , β

∗
i ] ∨ ker(pi)) ∩ γi =

([α∗i ∩ γi, β
∗
i ∩ γi] ∨ ker(pi)) ∩ γi = [α∗i ∩ γi, β

∗
i ∩ γi] (the last by modularity).

Since γi ⊆ λ, we get β ⊆ α. �

2.7. Theorem. The class of Abelian algebras in a congruence modular
variety V is a subvariety of V .

Proof. It follows from the above theorems. �

For a more detailed exposition of commutator theory in congruence mod-
ular varieties see Freese, McKenzie [87].

3. Abelian and Hamiltonian varieties

An algebra A is said to be Hamiltonian if every subalgebra of A is a block
of a congruence of A. A variety V is said to be Hamiltonian if every algebra
from V is Hamiltonian.

3.1. Theorem. (Klukovits [75])

(1) An algebra A is Hamiltonian if and only if for any term t(x, y1, . . . , yn)
of its signature and any elements a, b, c1, . . . , cn ∈ A there is a ternary
term s(x, y, z) such that s(a, b, t(a, c1, . . . , cn)) = t(b, c1, . . . , cn).
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(2) A variety V is Hamiltonian if and only if for any term t(x, y1, . . . , yn)
of its signature there exists a ternary term s(x, y, z) such that
s(x, y, t(x, z1, . . . , zn)) ≈ t(y, z1, . . . , zn) is satisfied in V .

Proof. Let A be Hamiltonian and t, a, b, c1, . . . , cn be given. Denote by
B the subalgebra of A generated by {a, b, t(a, c1, . . . , cn)}. Then B is a block
of a congruence r of A. Since 〈t(a, c1, . . . , cn), t(b, c1, . . . , cn)〉 ∈ r, we have
t(b, c1, . . . , cn) ∈ B and hence t(b, c1, . . . , cn) = s(a, b, t(a, c1, . . . , cn)) for a
ternary term s.

Conversely, let A be an algebra such that s exists for any t and any
a, b, c1, . . . , cn ∈ A. Let B be a subalgebra of A. Denote by r the con-
gruence generated by B2 and suppose that B is not a block of r, so that
〈a, b〉 ∈ r for some a ∈ B and some b ∈ A − B. There exists a Mal’cev
chain from a to b with respect to B2 and at least one link in that chain
must consist of a pair of elements, one from B and the other from A − B.
Thus there exist elements b1, b2 ∈ B and a unary polynomial f of A such
that f(b1) ∈ B and f(b2) ∈ A − B. We have f(x) = t(x, c1, . . . , cn) for
some term t(x, y1, . . . , yn) and some elements c1, . . . , cn ∈ A. Where s is the
ternary term the existence of which is guaranteed by our assumption, we have
f(b2) = t(b2, c1, . . . , cn) = s(b1, b2, t(b1, c1, . . . , cn)) ∈ B, a contradiction.

(2) follows easily from (1) if we consider the free algebra in V over n + 2
generators. �

3.2. Theorem. Every Hamiltonian variety is Abelian.

Proof. It follows from 1.4. �

3.3. Example. The eight-element group of quaternions is Hamiltonian.
Thus not every Hamiltonian algebra is Abelian. From 1.4 it follows only that
if A2 is Hamiltonian then A is Abelian.

We are going to prove that a locally finite Abelian variety is Hamiltonian.
First we need to introduce some terminology.

Two n-ary polynomials p and q of an algebra A are said to be twins if there
is a term t(x1, . . . , xn, y1, . . . , ym) for some m and elements ci, di of A such that
p(a1, . . . , an) = t(a1, . . . , an, c1, . . . , cm) and q(a1, . . . , an) = t(a1, . . . , an, d1,
. . . , dm) for all a1, . . . , an ∈ A. If, moreover, β is a congruence of A and
〈ci, di〉 ∈ β for all i then p, q are said to be r-twins.

Clearly, if p, q are twin polynomials of an Abelian algebra A, then ker(p) =
ker(q).

For an algebra A and a subset S of A, the subsets p(Sn) = {p(s1, . . . , sn) :
si ∈ S for all i} for n-ary polynomials p of A (n ≥ 1 arbitrary) are called
neighborhoods of S. If p, q are two n-ary twin polynomials of A then p(Sn),
q(Sn) are called twin neighborhoods of S.

3.4. Lemma. If S is a finite subset of an Abelian algebra A and p, q are
n-ary twin polynomials of A then |p(Sn)| = |q(Sn)|.
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Proof. We have |p(Sn)| = |Sn/(ker(p) ∩ Sn)| = |Sn/(ker(q) ∩ Sn)| =
|q(Sn)|. �

3.5. Lemma. Let A be an Abelian algebra, S be a finite subset of A, p be an
n-ary polynomial of A such that T = p(Sn) is a maximal neighborhood of S and
T is finite, and let q be a β-twin of p where β = CgA(S2). Then q(Sn) = T .

Proof. We have p(x1, . . . , xn) = t(x1, . . . , xn, c1, . . . , cm) and q(x1, . . . ,
xn) = t(x1, . . . , xn, d1, . . . , dm) for an (n + m)-ary term t and some pairs
〈ci, di〉 ∈ β. Put pi(x1, . . . , xn) = t(x1, . . . , xn, d1, . . . , di, ci+1, . . . , cm) for
i = 0, . . . ,m, so that p0 = p and pm = q. It is sufficient to prove that
pi−1(Sn) = T implies pi(S

n) = T . We have pi−1(x1, . . . , xn) = f(x1, . . . , xn, c)
and q(x1, . . . , xn) = f(x1, . . . , xn, d) for an (n + 1)-ary polynomial f and a
pair 〈c, d〉 ∈ β. There exists a Mal’cev chain a0, . . . , ak from c to d, where
〈ai−1, ai〉 = 〈gi(ri), gi(si)〉 for some unary polynomial gi and elements ri, si ∈
S. Put hi(x1, . . . , xn, y) = f(x1, . . . , xn, gi(y)). Thus h1(x1, . . . , xn, r1) =
f(x1, . . . , xn, c) = p(x1, . . . , xn) and hence h1(Sn, r1) = p(Sn) = T . (By
hi(S

n, r) we mean the set of the elements hi(s1, . . . , sn, r) with s1, . . . , sn

running over all n-tuples of elements of S.) We will be done if we prove
hi(S

n, s) = T for all i and all s ∈ S.
Let us prove that if hi(S

n, r) = T for some r ∈ S then hi(S
n, s) = T for all

s ∈ S. We have T ⊆ hi(S
n+1), so that by the maximality of T , hi(S

n+1) = T .
Let s ∈ S. Then hi(S

n, s) ⊆ T ; but hi(x1, . . . , xn, r) and hi(x1, . . . , xn, s)
are twins, so that |hi(S

n, s)| = |hi(S
n, r)| = |T | according to 3.4; we get

hi(S
n, s) = T .

In particular, h1(Sn, s) = T for all s ∈ S. Let us continue by induction
on i. Let hi−1(Sn, s) = T for all s. Then hi−1(Sn, si−1) = T ; but hi(S

n, ri) =
hi−1(Sn, si) = T and by the above claim we get hi(S

n, s) = T for all s ∈ S. �

3.6. Lemma. Let A be an algebra generating an Abelian variety, S be a
finite subset of A, β = CgA(S2) and T be a maximal neighborhood of S; let T
be finite. If T ′ is a twin neighborhood of S lying in the same block of β as T ,
then T ′ = T .

Proof. We have T = p(Sn) and T ′ = q(Sn) for some n-ary twin poly-
nomials p, q of A; p(x1, . . . , xn) = t(x1, . . . , xn, c1, . . . , cm) and q(x1, . . . , xn) =
t(x1, . . . , xn, d1, . . . , dm) for a term t and elements ci, di. Suppose T 6= T ′. Then
p(s1, . . . , sn) 6= q(s1, . . . , sn) for some elements si ∈ S. Put 0p = p(s1, . . . , sn)
and 0q = q(s1, . . . , sn). We have 〈0p, 0q〉 ∈ β. Put k = |T | and let u1, . . . , uk be
all elements of T . For each i = 1, . . . , k there is some αi = (αi,1, . . . , αi,n)
with p(αi) = ui. Put vj = (α1,j , . . . , αk,j) for j = 1, . . . , n. Thus vj is
the j-th column in the matrix with rows α1, . . . , αk. For every a ∈ A de-
note by â the sequence (a, a, . . . , a) of length k, so that â ∈ Ak. Denote
by C the subalgebra of Ak generated by {v1, . . . , vn} ∪ {â : a ∈ A}. For
e = (e1, . . . , em) ∈ Am put Ve = t(v1, . . . , vn, ê1, . . . , êm) (computed in the
algebra C), so that Vc1,...,cm = (u1, . . . , uk) and Vd1,...,dm

is some k-tuple of

elements of T ′. Put δ = Cg(0̂p, 0̂q).
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Let us prove that if w = (w1, . . . , wk) ∈ C satisfies 〈w, Vc1,...,cm〉 ∈ δ then
{w1, . . . , wk} = T , i.e., w1, . . . , wk is a permutation of u1, . . . , uk. There is
a Mal’cev chain from w to Vc1,...,cm. Thus to prove the claim, it is sufficient

to prove that for any unary polynomial f of C, if f(0̂p) is a permutation

of u1, . . . , uk then f(0̂q) is. There are a term g(x, y1, . . . , ym′) and elements
γ1, . . . , γm′ of C with f(x) = g(x, γ1, . . . , γm′). Each γi belongs to C, so we may
assume that f(x) = g(x, v1, . . . , vn, â1, . . . , âM ) for some M and a1, . . . , aM ∈
A. Put h(x, y1, . . . , yn) = g(x, y1, . . . , yn, a1, . . . , aM ), so that h is a polynomial
of A. We have f(0̂p) = h(0̂p, v1, . . . , vn) and f(0̂q) = h(0̂q , v1, . . . , vn). The
polynomials h(0p, y1, . . . , yn) and h(0q, y1, . . . , yn) are β-twins, since 〈0p, 0q〉 ∈
β. We have T = {h(0p, α1,1, . . . , α1,n), . . . , h(0p, αk,1, . . . , αk,n)} ⊆ h(0p, S

n).
By the maximality of T we get h(0p, S

n) = T and thus, by 3.5, h(0q , S
n) =

T . Hence {h(0q, α1,1, . . . , α1,n), . . . , h(0q , αk,1, . . . , αk,n)} ⊆ T . These elements
must be pairwise distinct since if h(0q, αi,1, . . . αi,n) = h(0q, αj,1, . . . , αj,n) then
the Abelian property of A implies h(0p, αi,1, . . . αi,n) = h(0p, αj,1, . . . , αj,n) and

hence i = j. Thus f(0̂q) is a permutation of u1, . . . , uk.

We have 〈t(ŝ1, . . . , ŝn, ĉ1, . . . , ĉm), t(ŝ1, . . . , ŝn, d̂1, . . . , d̂m)〉 = 〈0p, 0q〉 ∈ δ

and so, since C/δ is Abelian, 〈t(v1, . . . , vn, ĉ1, . . . , ĉm), t(v1, . . . , vn, d̂1, . . . , d̂m)〉
∈ δ. The first member of this pair is the k-tuple u1, . . . , uk and the second is
a k-tuple of some elements of T ′; by the above claim we get T ′ = T . �

3.7. Lemma. Let A be an algebra generating an Abelian variety and B be
a finite subalgebra of A. Then B is a block of some congruence of A.

Proof. Put N = |B| and β = CgA(B2). Let us first prove that every
neighborhood of B has at most N elements. Let T = p(Bn) for an n-ary
polynomial p of A, where p(x1, . . . , xn) = t(x1, . . . , xn, a1, . . . , am) for a term
t and elements ai ∈ A. Take any m-tuple b1, . . . , bm of elements of B. Then
q(x1, . . . , xn) = t(x1, . . . , xn, b1, . . . , bm) is twin with p and |p(Bn)| = q(Bn)|
according to 3.4. Since B is a subalgebra and q is a polynomial of B, we have
q(Bn) ⊆ B and thus |q(Bn)| ≤ N .

Suppose that B is not a block of β. Then there exist elements a ∈ A− B
and b ∈ B with 〈a, b〉 ∈ β. There exists a Mal’cev chain from a to b with
respect to β and at least one link in that chain must yield a pair b1, b2 ∈ B
with f(b1) /∈ B and f(b2) ∈ B for a unary polynomial f of A. Now f(B) is
a neighborhood of B; since by the above claim there is a bound on the sizes
of neighborhoods of B, f(B) is contained in a maximal neighborhood T of
B. Both T ∩ B and T ∩ (A − B) are nonempty. Form a twin polynomial g
of f by taking the constants in B, and set T ′ = g(B). Since g is a unary
polynomial of B, we have T ′ ⊆ B and since T ∩B is nonempty, it follows that
T, T ′ are contained in the same block of β. But then T ′ = T by 3.6. We get a
contradiction with T ∩ (A−B) 6= ∅. �

3.8. Theorem. (Kiss and Valeriote [93]) Every locally finite Abelian variety
is Hamiltonian.

Proof. It follows easily from 3.8 and 3.1. �



CHAPTER 10

FINITELY BASED VARIETIES

1. A sufficient condition for a finite base

1.1. Theorem. (Birkhoff [35]) Let the signature σ be finite. Let E be
an equational theory which has a base consisting of equations in n variables
x1, . . . , xn. If the free algebra over x1, . . . , xn in the variety determined by E
is finite, then E is finitely based.

Proof. Let Tn be the subalgebra of the term algebra generated by x1, . . . ,
xn, let B be a free algebra over x1, . . . , xn in the variety V corresponding
to E, and let h be the homomorphism of Tn onto B extending the identity
on x1, . . . , xn. For every element b ∈ B let us take one element b∗ ∈ Tn

with h(b∗) = b, in such a way that if b ∈ {x1, . . . , xn}, then b∗ = b. Denote
by Q the set of the equations 〈F (b∗1, . . . , b

∗
k), b∗〉 where F is any operation

symbol of σ, k is the arity of F , b1, . . . , bk is any k-tuple of elements of B, and
b = FB(b1, . . . , bk). Since both σ and B are finite, the set Q is finite. It is easy
to see that Q ⊆ E.

Let A be any model of Q. In order to prove that A is a model of E, it is
sufficient to take any equation 〈u, v〉 ∈ E such that u ∈ Tn and v ∈ Tn, and
to prove that f(u) = f(v) for any homomorphism f of Tn into A. Define a
mapping g of B into A by g(b) = f(b∗). Then g is a homomorphism of B into A,
since if FB(b1, . . . , bk) = b, then FA(g(b1), . . . , g(bk)) = FA(f(b∗1), . . . , f(b∗k)) =
f(F (b∗1, . . . , b

∗
k)) = f(b∗) = g(b). For any i we have gh(xi) = g(xi) = f(x∗i ) =

f(xi), so gh = f . Consequently, f(u) = gh(u) = gh(v) = f(v).
Since any model of Q is a model of E, the set Q is a finite base for E. �

2. Definable principal congruences

We say that a variety V has definable principal congruences if there exists
a formula ϕ(x, y, z, u) (with no other free variables than x, y, z, u) such that
for any algebra A ∈ V and any quadruple a, b, c, d of elements of A, 〈a, b〉 ∈
Cg(c, d) if and only if ϕ(a, b, c, d) in A. (By this we mean that φ is satisfied in
A under the interpretation sending x to a, y to b, z to c and u to d.)

By a principal congruence formula we mean a formula ψ(x, y, z, u) obtained
in the following way. Take a finite sequence ti(v1, . . . , vk) (n ≥ 0, 0 ≤ i ≤ n)
of terms in some variables v1, . . . , vk different from x, y, z, u; denote by χ the
conjunction of the equations

x = t0(w0, v2, . . . , vk),
ti−1(w′i−1, v2, . . . , vk) = ti(wi, v2, . . . , vk) for i = 1, . . . , n,

137
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tn(w′n, v2, . . . , vk) = y

where {wi, w
′
i} = {z, u} for all i; and let ψ be the formula (∃v2) . . . (∃vk)ψ.

2.1. Lemma. Let A be an algebra and a, b, c, d be elements of A. Then
〈a, b〉 ∈ Cg(c, d) if and only if ψ(a, b, c, d) for at least one principal congruence
formula ψ(x, y, z, u).

Proof. It follows from 6.4.5. �

2.2. Lemma. A variety has definable principal congruences if and only if
there is a finite set S of principal congruence formulas in four free variables
x, y, z, u such that for any algebra A ∈ V and any quadruple a, b, c, d of elements
of A, 〈a, b〉 ∈ Cg(c, d) if and only if ψ(a, b, c, d) in A for at least one ψ ∈ S.

Proof. Clearly, it is sufficient to prove the direct implication. Let a va-
riety V of signature σ have definable principal congruences with respect to a
formula ϕ(x, y, z, u). Denote by σ′ the signature obtained from σ by extending
it with four new constants Ca, Cb, Cc, Cd. Denote by S1 the set of all prin-
cipal congruence formulas of signature σ in the variables x, y, z, u and by S2

the set of σ′-sentences ¬ψ(Ca, Cd, Cb, Cd) with ψ(x, y, z, u) ∈ S1. The theory
E∪{ϕ(Ca, Cb, Cc, Cd)}∪S2 is inconsistent, so that by 5.6.1 there exists a finite
subset S of S2 such that E ∪ {ϕ(Ca, Cb, Cc, Cd)} ∪ S is inconsistent. But that
means that for any algebra A ∈ V and any quadruple a, b, c, d of elements of A,
〈a, b〉 ∈ Cg(c, d) if and only if ψ(a, b, c, d) in A for at least one ψ ∈ S. �

2.3. Theorem. (McKenzie [78]) Let V be a locally finite and residually very
finite variety of finite signature; let V have definable principal congruences.
Then V is finitely based.

Proof. Let V have definable principal congruences with respect to a for-
mula ϕ(x, y, z, u) which can be chosen, according to 2.2, as the disjunction
of finitely many principal congruence formulas. Let Ψ1 be a sentence that is
satisfied in an (arbitrary) algebra A of the given signature if and only if for
any c, d ∈ A, CgA(c, d) is just the set of all 〈a, b〉 ∈ A2 for which ϕ(a, b, c, d) is
satisfied in A. For example, Ψ1 can be the universal closure of the conjunction
of the following formulas:
ϕ(z, u, z, u),
ϕ(x, x, z, u),
ϕ(x, y, z, u)→ ϕ(y, x, z, u),
(ϕ(x, y, z, u)&ϕ(y,w, z, u)) → ϕ(x,w, z, u),
(ϕ(x1, y1, z, u)& . . .&ϕ(xn, yn, z, u)) → ϕ(F (x1, . . . , xn), F (y1, . . . , yn, z, u))

for any operation symbol F in σ of arity n > 0.
Thus a σ-algebra A satisfies Ψ1 if and only if for all a, b, c, d ∈ A, 〈a, b〉 ∈

CgA if and only if ϕ(a, b, c, d) in A. Let Ψ2 be a sentence expressing the fact
that an algebra is a subdirectly irreducible algebra in V . (There are, up to
isomorphism, only finitely many such algebras in V and all of them are finite,
so the existence of such a Ψ2 should be clear.) Let Ψ3 be a sentence expressing
the fact that an algebra satisfies Ψ1 and that if it is subdirectly irreducible,
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then it is a subdirectly irreducible algebra in V . For example, we could take
the sentence

Ψ1&(∃x)(∃y)(x 6= y&(∀z)(∀u)(z 6= u→ ϕ(x, y, z, u))) → Ψ2.

Then Ψ3 is a consequence of E, where E is the equational theory of V . By 5.6.2
there exists a finite subsetE0 of E such that Ψ3 is a consequence of E0. Thus all
subdirectly irreducible algebras in the variety based on E0 satisfy Ψ2, so that
they belong all to V . Since a variety is uniquely determined by its subdirectly
irreducible members, it follows that E0 is a finite base for V . �

3. Jónsson’s finite basis theorem

Recall that a class of algebras is elementary if it is axiomatizable by a
single sentence (which is the same like to be axiomatizable by finitely many
sentences). If K is elementary then both K and its complement are closed
under ultraproducts.

3.1. Theorem. (Jónsson [95]) Let V be a variety. If there exist an elemen-
tary class K and an axiomatizable class L such that V ⊆ K, every subdirectly
irreducible algebra from K belongs to L and V ∩ L is elementary, then V is
finitely based.

Proof. Suppose that V is not finitely based. Since V is contained in an
elementary class, the signature is finite. Denote by I the set of positive integers.
For every i ∈ I take an algebra Ai ∈ K − V satisfying all the equations 〈u, v〉
such that both u and v are terms of length at most n. Let U be an ultrafilter
over I containing all complements of finite subsets of I. The ultraproduct A of
the family Ai (i ∈ I) over U belongs to V . Each algebra Ai has a homomorphic
image Bi such that Bi is subdirectly irreducible and Bi /∈ V . The ultraproduct
B of the family Bi (i ∈ I) over U is a homomorphic image of A and thus B ∈ V .
We have B ∈ K and since K is elementary, {i ∈ I : Bi ∈ K} ∈ U . For i ∈ U
we have Bi ∈ K and so, since Bi is subdirectly irreducible, Bi ∈ L. Thus
B ∈ V ∩L. But V ∩L is elementary and B is an ultraproduct of algebras not
belonging to V ∩ L; we get a contradiction. �

An algebra A is said to be finitely subdirectly irreducible if for any a, b, c, d ∈
A with a 6= b and c 6= d, Cg(a, b) ∩Cg(c, d) 6= idA.

3.2. Lemma. Let V be a residually very finite variety. Then every finitely
subdirectly irreducible algebra in V is subdirectly irreducible.

Proof. There exists a positive integer n such that every subdirectly ir-
reducible algebra in V has cardinality less than n. Suppose that there exists
a finitely subdirectly irreducible algebra A ∈ V which is not subdirectly irre-
ducible. Clearly, A is infinite. Take n pairwise different elements a1, . . . , an ∈
A. Since A is finitely subdirectly irreducible, the intersection r of the principal
congruences Cg(ai, aj) (1 ≤ i < j ≤ n) is a nontrivial congruence. There
exist elements a, b with 〈a, b〉 ∈ r and a 6= b. There exists a maximal con-
gruence s of A with the property 〈a, b〉 /∈ s. The factor A/s is a subdirectly
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irreducible algebra belonging to V . It has at least n pairwise different elements
ai/s (i = 1, . . . , n), a contradiction. �

3.3. Theorem. Let V be a residually very finite variety of a finite signature.
Let V ⊆ H where H is an elementary class for which there exists a formula
M(x, y, z, u) with four free variables such that whenever A ∈ H and a, b, c, d ∈
A then M(a, b, c, d) in A if and only if Cg(a, b) ∩Cg(c, d) 6= idA. Then V is
finitely based.

Proof. By 3.2, every finitely subdirectly irreducible algebra A in V is
subdirectly irreducible. Denote by L the class of subdirectly irreducible alge-
bras in V and denote by K the class of the algebras A ∈ H such that A is not
finitely subdirectly irreducible, unless A is a subdirectly irreducible algebra
from V . Thus V ⊆ K. It follows from the assumptions that both K and L are
elementary. Consequently, V is finitely based by 3.1. �

4. Meet-semidistributive varieties

The aim of this section is to prove the finite basis theorem for congruence
meet-semidistributive varieties.

For every set A denote by A(2) the set of all precisely two-element subsets
of A.

We will later make use of Ramsey’s theorem, which will now be explained.
Define positive integers R(i, j) by induction for any integers i, j ≥ 2 as follows:
f(i, 2) = f(2, i) = i for all i ≥ 2; f(i, j) = f(i−1, j) +f(i, j−1) for i, j ≥ 3. It
is not difficult to prove that for any set A of cardinality R(i, j) and any subset

S of A(2) one of the following two cases takes place: either there exists a subset
B of A with |B| = i and B(2) ∩S = ∅, or else there exists a subset C of A such

that |C| = j and C(2) ⊆ S. In particular, for any set A of cardinality R(i, i)

and any subset S of A(2) there exists a subset B of A with |B| = i such that
either B(2) ⊆ S or B(2) ∩ S = ∅.

In the following let V be a congruence meet-semidistributive variety of
finite signature with Willard terms se, te (e ∈ E). For an algebra A ∈ V denote
by U the set of those unary polynomials of A that can be expressed either as
F (c1, . . . , ci−1, x, ci+1, . . . , cn) for an n-ary operation symbol F in the signature,
some i ∈ {1, . . . , n} and elements cj ∈ A, or as one of se(x, c, d), se(c, x, d),
se(c, d, x), te(x, c, d), te(c, x, d), te(c, d, x) for some e ∈ E and c, d ∈ A. For
k ≥ 0 denote by Uk the set of the unary polynomials of A that can be expressed
as a composition of at most k polynomials from U . (Thus U0 = {idA}.) For

two elements {a, b} and {c, d} of A(2) write

(1) {a, b} →k {c, d} if {f(a), f(b)} = {c, d} for some f ∈ Uk,
(2) {a, b} ⇒k,n {c, d} if there exists a sequence c0, . . . , cn from c to d such

that for every i < n either ci = ci+1 or {a, b} →k {ci, ci+1},
(3) {a, b} ⇒k {c, d} if {a, b} ⇒k,n {c, d} for some n.

Thus 〈c, d〉 ∈ Cg(a, b) if and only if {a, b} ⇒k {c, d} for some k.
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Observe that {a, b} ⇒k,n {c, d} ⇒l,m {r, s} implies {a, b} ⇒k+l,nm {r, s}.
Also, if {a, b} →k+l {c, d} then {a, b} →k {r, s} →l {c, d} for some {r, s}.

For a mapping f of A into A, f{a, b} will stand for {f(a), f(b)}. By
a sequence from a to b we will mean a finite sequence S = (a0, . . . , an) of
elements of A such that a0 = a and an = b; let fS stand for (f(a0), . . . , f(an)).
By a link in S we will mean any pair {ai, ai+1} with i < n and ai 6= ai+1. Put
S← = (an, . . . , a1, a0). If S is a sequence from a to b and T is a sequence from
b to c, denote by ST the sequence from a to c obtained by concatenation.

4.1. Lemma. Let A ∈ V , {a, b} ∈ A(2) and let S be a sequence of elements

of A from a to b. Then there exist a {c, d} ∈ A(2) and a link {x, y} in S such
that {x, y} ⇒1,2 {c, d} and {a, b} ⇒1,2 {c, d}.

Proof. Four unary polynomials from U2 witnessing these facts were con-
structed in the proof of implication (3)⇒ (4) of Theorem 7.8.1. �

4.2. Lemma. Let A ∈ V , {a, b} ∈ A(2) and let S1, . . . , Sn be sequences of

elements of A from a to b. Then there exist a {c, d} ∈ A(2) and, for each i =
1, . . . , n, a link {xi, yi} in Si such that {a, b} ⇒n,2n {c, d} and {xi, yi} ⇒n,2n

{c, d} for all i.

Proof. By induction on n. For n = 1 the claim is 4.1. Let n > 1.
By the induction hypothesis applied to S1, . . . , Sn−1 there exist a {u, v} and,
for each i < n, a link {xi, yi} in Si such that {a, b} ⇒n−1,2n−1 {u, v} and
{xi, yi} ⇒n−1,2n−1 {u, v} for all i < n. There exists a sequence u0, . . . , um from

u to v for some m ≤ 2n−1 such that {a, b} →n−1 {uj , uj+1} for all j < m. (The
use of the braces also means that uj 6= uj+1.) We have {uj , uj+1} = fj{a, b}
for some fj ∈ Un−1. For j < m put Tj = fjSn if 〈fj(a), fj(b)〉 = 〈uj , uj+1〉,
while Tj = fjS

←
n if 〈fj(a), fj(b)〉 = 〈uj+1, uj〉. Denote by T the sequence

T0 . . . Tm−1, so that T is a sequence from u to v. By 4.1 there exist a {c, d}
and a link {x, y} in T such that {x, y} ⇒1,2 {c, d} and {u, v} ⇒1,2 {c, d}. This
{x, y} is a link in Tj for some j < m, so that there exists a link in Sn, which
we denote by {xn, yn}, such that {x, y} = fj{xn, yn}. We have
{xi, yi} ⇒n−1,2n−1 {u, v} ⇒1,2 {c, d} and so {xi, yi} ⇒n,2n {c, d} for i < n,
{xn, yn} →n−1 {x, y} ⇒1,2 {c, d} and so {xn, yn} ⇒n,2n {c, d},
{a, b} ⇒n−1,2n−1 {u, v} ⇒1,2 {c, d} and so {a, b} ⇒n,2n {c, d}. �

4.3. Lemma. Let A ∈ V , {a1, b1}, . . . , {an, bn}, {u, v} ∈ A
(2) and let {ai, bi}

⇒k {u, v} for i = 1, . . . , n. Then there exist {c, d} ∈ A(2) and {xi, yi} ∈ A
(2)

for 1 ≤ i ≤ n such that {u, v} ⇒n,2n {c, d} and {ai, bi} →k {xi, yi} ⇒n,2n {c, d}
for all i. In particular, {ai, bi} ⇒k+n,2n {c, d} for all i.

Proof. For every i = 1, . . . , n there exists a sequence Si from u to v such
that {ai, bi} →k {x, y} for any link {x, y} in Si. Apply 4.2 to {u, v} and
S1, . . . , Sn. �

For an integer m ≥ 2 put M = R(m + 1,m + 1), D = 3 + (M + 1)M ,
L = (m+ 1)m/2 and C = (3+DM)L. (It would be more appropriate to write
M = M(m), D = D(m), L = L(m), C = C(m).)
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4.4. Lemma. Let A ∈ V and let m ≥ 2. Then one of the following two
cases takes place:

(1) there exist {a, b} ∈ A(2) and a subset S of A with |S| = m + 1 such

that {x, y} ⇒DM+L,2L {a, b} for all {x, y} ∈ S(2);

(2) for all {a, b}, {c, d} ∈ A(2) with Cg(a, b)∩Cg(c, d) 6= idA there exists

a {u, v} ∈ A(2) such that {a, b} ⇒DM+2,4 {u, v} and {c, d} ⇒DM+2,4

{u, v}.

Proof. Let us say that two elements {a, b}, {c, d} of A(2) are n-bounded

if there exist {r, s}, {r′, s′}, {u, v} ∈ A(2) such that {a, b} →n {r, s} ⇒2,4 {u, v}
and {c, d} →n {r

′, s′} ⇒2,4 {u, v}. If {a, b}, {c, d} are DM -bounded when-
ever Cg(a, b) ∩ Cg(cd) 6= idA, then case (2) takes place. Let there exist

{a, b}, {c, d} ∈ A(2) with Cg(a, b) ∩Cg(c, d) 6= idA such that {a, b}, {c, d} are
not DM -bounded. It follows from 4.3 that they are n-bounded for some n.
We have n > DM . Put t = n − DM , so that there exist elements az

j , b
z
j for

z ∈ {1, 2} and j ∈ {0, . . . ,M} with {a, b} →t {a
1
0, b

1
0}, {c, d} →t {a

2
0, b

2
0} and

{az
0, b

z
0} →D {a

z
1, b

z
1} →D · · · →D {a

z
M , b

z
M} ⇒2,4 {u, v}

for z ∈ {1, 2}. Then

{az
0, b

z
0} →Dj {a

z
j , b

z
j} →D(M−j) {a

z
M , b

z
M}

for all z and j. For each z, j choose f z
j ∈ UD(M−j) witnessing {az

j , b
z
j} →D(M−j)

{az
M , b

z
M}. We can assume that f z

j (az
j ) = az

M and f z
j (bzj ) = bzM (if this is not the

case, switch the two elements). Since {az
M , b

z
M} ⇒2,4 {u, v}, there are elements

u = uz
0, uz

1, uz
2, uz

3, uz
4 = v and polynomials gz

0 , gz
1 , gz

2 , gz
3 from U2 such that

{uz
k, u

z
k+1} = gz

k{a
z
M , bzM} for k < 4.

For 0 ≤ i < j ≤ M , z ∈ {1, 2} and 0 ≤ k < 4 denote by Rz
i,j the

sequence f z
j (az

j , a
z
i , b

z
i , b

z
j ) from az

M to bzM and by Sz
i,j,k the sequence from uz

k

to uz
k+1 obtained by applying gz

k to either Rz
i,j or its inverse. Put Si,j =

Sz
i,j,0S

z
i,j,1S

z
i,j,2S

z
i,j,3. Thus Sz

i,j is a sequence from u to v and for every link

{x, y} of Si,j one of the following three cases takes place:

(i) {az
i , a

z
j} →D(M−j)+2 {x, y} (and az

i 6= az
j ),

(ii) {bzi , b
z
j} →D(M−j)+2 {x, y} (and bzi 6= bzj ),

(iii) {az
i , b

z
i } →D(M−j)+2 {x, y}.

We have obtained (M+1)M sequences from u to v. By 4.2 there exist {u′, v′} ∈
A(2) and links {xz

i,j, y
z
i,j} in Sz

i,j such that {xz
i,j , y

z
i,j} ⇒(M+1)M,Q {u

′, v′} where

Q = 2(M+1)M .
Suppose that for some i, j the link {xz

i,j , y
z
i,j} satisfies (iii). Then

{az
0, b

z
0} →Di {a

z
i , b

z
i } →D(M−j)+2 {x

z
i,j, y

z
i,j} ⇒(M+1)M {u

′, v′}

and hence {az
0, b

z
0} ⇒DM−1 {u

′, v′} because Di+D(M − j) + 2 + (M + 1)M ≤
DM − 1. Thus if there is a link {x1

i,j , y
1
i,j} satisfying (iii) and also a link

{x2
i′,j′ , y

2
i′,j′} satisfying (iii), {a1

0, b
1
0}, {a

2
0, b

2
0} would be (DM − 1)-bounded

by 4.3, a contradiction with n < DM . So, there exists a z ∈ {1, 2} such that
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no link {xz
i,j, y

z
i,j} satisfies (iii); let us take this z. Thus for all i, j, {xz

i,j, y
z
i,j}

satisfies either (i) or (ii). By the definition of M , it follows from Ramsey’s
theorem that there is a subset J of {1, . . . ,M} with |J | = m + 1 such that
either {xz

i,j , y
z
i,j} satisfies (i) for all i, j ∈ J with i < j or {xz

i,j , y
z
i,j} satisfies

(ii) for all i, j ∈ J with i < j. We can assume without loss of generality that
the first case takes place. If i, j ∈ J and i < j then {az

i , a
z
j} →D(M−j)+2

{xz
i,j, y

z
i,j} ⇒(M+1)M,Q {u

′, v′} and thus {az
i , a

z
j} ⇒DM {u

′, v′}. By 4.3 there

exists a {c, d} with {ai, aj} ⇒DM+L,2L {c, d} for all i, j ∈ J with i < j. Thus
(1) takes place. �

Since the signature σ is finite, it is clear that for any k, n there exists a
formula φk,n(x, y, z, u) which defines the relation {x, y} ⇒k,n {z, u} on any σ-
algebra. Consequently, for any m ≥ 2 there is a sentence Φm which is satisfied
in a σ-algebra A if and only if there exist {a, b} ∈ A(2) and a subset S of A

with |S| = m + 1 such that {x, y} ⇒C,2L {a, b} for all {x, y} ∈ S(2). Observe
that DM + L ≤ C, so that if an algebra satisfies 4.4(1) then it also satisfies
Φm.

4.5. Lemma. Let A ∈ V be subdirectly irreducible; let |A| > m ≥ 2. Then
A satisfies Φm.

Proof. Suppose that A does not satisfy Φm, so that it also does not satisfy
4.4(1) and consequently it satisfies 4.4(2). Since, moreover, A is subdirectly

irreducible, for any {a, b}, {c, d} ∈ A(2) there exists a {u, v} ∈ A(2) such that
{a, b} ⇒DM+2,4 {u, v} and {c, d} ⇒DM+2,4 {u, v}. It follows by induction on

k that for any subset S of A(2) with |S| ≤ 2k there exists a {u, v} ∈ A(2) with

{a, b} ⇒DM+2,k {u, v} for all {a, b} ∈ S. Let S = B(2) where B is a subset
of A with |B| = m + 1, so that |S| = L. We get {a, b} ⇒(DM+2)L {u, v} for
all a, b ∈ B with a 6= b. By 4.3 there exist two different elements u′, v′ in A
such that {a, b} ⇒L+(DM+2)L,2L {u′, v′} for all {a, b} ∈ B with a 6= b. Here

L+ (DM + 2)L = C and we get Φm in A. �

4.6. Theorem. (Willard [00]) Let V be a congruence meet-semidistributive,
residually very finite variety of a finite signature. Then V is finitely based.

Proof. There exists a positive integer m such that every subdirectly ir-
reducible algebra in V has cardinality less than m. By 7.8.1 there exists a
finite collection se, te of Willard terms for V . Define M,D,L,C as above. Let
V ∗ be the elementary class defined by the formulas 7.8.1(3) for Willard terms,
so that V ⊆ V ∗. V satisfies ¬Φm, since any model of Φm has a subdirectly
irreducible homomorphic image with more than m elements. There is a for-
mula µ(x, y, z, u) which is satisfied by a quadruple a, b, c, d of elements of any
algebra A ∈ V ∗ if and only if a 6= b, c 6= b and there exist u, v ∈ A with u 6= v,
{a, b} ⇒DM+2,4 {u, v} and {c, d} ⇒DM+2,4 {u, v}. Let H be the class of all
algebras A ∈ V ∗ satisfying ¬Φm, so that H is elementary and V ⊆ H. By 4.4,
the relation Cg(x, y)∩Cg(z, u) 6= id is defined in algebras from H by µ. Now
we can apply Theorem 3.2. �
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4.7. Theorem. (Baker [77]) A finitely generated, congruence distributive
variety of finite signature is finitely based.

Proof. It follows from 4.6 and 7.7.2. �

Comments

McKenzie [70] proved that every finite lattice is finitely based. This result
was generalized by Baker [77] to finite algebras in any congruence distributive
variety of finite signature. A shorter and more elegant proof to Baker’s the-
orem was obtained by Jónsson [79]. Working more with the original Baker’s
techniques, the result was further extended by Willard [00] to congruence meet-
semidistributive varieties as presented here in Theorem 4.6.

Another extension of Baker’s theorem was given by McKenzie [87]: Every
finitely generated, congruence modular and residually small variety of finite
signature is finitely based.

Every finite group is finitely based according to Oates and Powell [64].
Bryant [82] gives an example of a finite pointed group which is not finitely
based, destroying any hope that the finite basis theorem for finite groups could
have a generalization in the setting of universal algebra.



CHAPTER 11

NONFINITELY BASED VARIETIES

1. Inherently nonfinitely based varieties

Given a variety V and a nonnegative integer N , we denote by V (N) the
variety based on the equations in no more than N variables that are satisfied
in V . As it is easy to see, an algebra belongs to V (N) if and only if every its
N -generated subalgebra belongs to V . (By an N -generated algebra we mean
an algebra having a set of generators of cardinality at most N .) As it is easy

to see, V is the intersection of the chain of varieties V (0) ⊇ V (1) ⊇ . . . , and if
V is finitely based then V = V (N) for some N .

Recall that an algebra is locally finite if its every finitely generated subal-
gebra is finite, and a variety is locally finite if its every algebra is locally finite.
Clearly, a variety is locally finite if and only if all its finitely generated free
algebras are finite. The following easy observation will be useful: The variety
generated by an algebra A is locally finite if and only if A is locally finite and
for each N ≥ 0 there is a finite upper bound for the sizes of the N -generated
subalgebras of A.

A variety V is said to be inherently nonfinitely based if it is locally finite
and every locally finite variety containing V is nonfinitely based. An algebra is
said to be inherently nonfinitely based if it generates an inherently nonfinitely
based variety.

1.1. Theorem. (McNulty [85]) Let σ be finite. For a locally finite vari-
ety V , the following three conditions are equivalent:

(1) V is inherently nonfinitely based;

(2) V (N) is not locally finite for any N ;
(3) for infinitely many positive integers N , there is an algebra BN such

that BN is not locally finite and every N -generated subalgebra of BN

belongs to V .

Proof. (1) implies (2) by 1.1, and (2) implies (3) clearly. Let (3) be
satisfied and suppose that there is a finitely based, locally finite variety W ⊇ V .
Since the equational theory of W has a base consisting of equations in no more
than N variables, we have W = W (i) for all i ≥ N . By (3), there is an i ≥ N

such that V (i) is not locally finite, so that V (i) is not contained in W . But
V (i) ⊆W (i) = W , a contradiction. �

145
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2. The shift-automorphism method

The aim of this section is to prove the following theorem, belonging to
Baker, McNulty and Werner [89]. An element o of an algebra A is called a zero
of A if FA(a1, . . . , an) = o, whenever F ∈ σ and o appears among a1, . . . , an.
By a unary polynomial of A we mean a mapping of the form a 7→ t(a, c1, . . . , cr)
for a term t(x, x1, . . . , xr) in r+1 variables and an r-tuple c1, . . . , cr of elements
of A. (As it is easy to guess, by t(a, c1, . . . , cr) we mean the image of t under
the homomorphism of the term algebra into A sending x to a and xi to ci.)

2.1. Theorem. Let σ be finite. Let A be an infinite, locally finite algebra
with zero o and an automorphism α such that the following three conditions
are satisfied:

(1) {o} is the only orbit of α that is finite;
(2) for every F ∈ σ, the set {〈a1, . . . , an, an+1〉 : FA(a1, . . . , an) = an+1 6=

o} (where n is the arity of F ) is partitioned by α into finitely many
orbits;

(3) α(a) = p(a) 6= a for an element a and a unary polynomial function p
of A.

Then A is inherently nonfinitely based.

The proof will be divided into several lemmas.

2.2. Lemma. For the proof of 2.1, it is sufficient to assume that the number
of orbits of α is finite.

Proof. If the number is infinite, denote by A′ the subset of A consist-
ing of o and the elements that are members of 〈a1, . . . , an, an+1〉 for some
FA(a1, . . . , an) = an+1 6= o. Then A′ is an underlying set of a subalgebra A′

of A, the restriction of α to A′ is an automorphism of A′ with finitely many
orbits and A′ together with this restriction of α satisfy all the three conditions
of 2.1. It remains to show that if A′ generates a locally finite variety, then the
same is true for A. But if bN is an upper bound for the sizes of N -generated
subalgebras of A′, then it is easy to see that bN +N + 1 is an upper bound for
the sizes of N -generated subalgebras of A. �

So, from now on we assume that the number of orbits of α is finite; the
number will be denoted by m. In particular, A is countable. It is possible to
fix an enumeration . . . , e−2, e−1, e0, e1, e2, . . . of A r {o} in such a way that
α(ei) = ei+m for all i.

Two elements of Ar{o} will be called operationally related if they are both
members of some 〈a1, . . . , an, an+1〉 with FA(a1, . . . , an) = an+1 6= o (for some
F ∈ σ). Denote byM the maximal possible distance between two operationally
related elements of Ar {o}; the distance of ei and ej is the number |i− j|.

Let N be a positive integer such that N ≥ n whenever n is the arity of
a symbol from σ. By Theorem 1.1, we will be done with the proof of 2.1 if
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we construct an algebra BN such that BN is not locally finite and every N -
generated subalgebra of BN belongs to the variety V generated by A; we also
need to show that V is locally finite.

2.3. Lemma. There is a positive integer w such that whenever S is a sub-
algebra of A generated by a subset Y of A r {o}, then the following are true:
if r is such that r ≤ i for all ei ∈ Y , then r − w ≤ i for all ei ∈ S; and if s is
such that i ≤ s for all ei ∈ Y , then i ≤ s+ w for all ei ∈ S.

Proof. Consider first the case X = {er, . . . , er+M−1} for some integer r.
The subalgebra generated by X is finite; moreover, up to the automorphisms
of A there are only finitely many possibilities for the subalgebra generated by
such an X. Hence there is a w satisfying the claim for all such sets X. Now
let X be arbitrary and r ≤ i for all ei ∈ X. Clearly, the subalgebra generated
by X is contained in the subalgebra generated by the set {er, er+1, . . . } and,
as it is easy to see, every element ei of this subalgebra with i < r is contained
in the subalgebra generated by {er, er+1, . . . , er+M−1}, so that i ≥ r−w. The
proof is similar for the indexes on the right. �

2.4. Lemma. For the proof of 2.1, it is sufficient to assume that m >
N(M + 2w).

Proof. The automorphism α can be replaced with αk for any k ≥ 1, and
taking k sufficiently large, the number m increases beyond any bound. It is
only necessary to show that if a was such that α(a) = p(a) 6= a for a unary
polynomial p, then αk(a) = q(a) for a unary polynomial q. As it is easy to see,

αk(a) = (αk−1pα−(k−1)) . . . (α2pα−2)(αpα−1)p(a).

Since the composition of polynomials is a polynomial, we see that it is sufficient
to prove that γpγ−1 is a polynomial for any automorphism γ of A. However,
if p(x) = t(x, c1, . . . , cr), then γpγ−1(x) = t(x, γ(c1), . . . , γ(cr)). �

2.5. Lemma. Let S be a subalgebra of A generated by the union of N (or
less) orbits of α. Then there is a subalgebra S0 of A such that the sets αk(S0)
(for various integers k) are pairwise disjoint, S is their union and no element
of S0 is operationally related to any element of αk(S0) with k 6= 0.

Proof. By 2.4, we continue to work under the assumption m > N(M +
2w). Denote by Y the union of the N (or fewer) orbits of α, so that S is
generated by Y . By the assumption on m, there are two elements ei, ej of Y
with j > i+M + 2w such that ek /∈ Y for all i < k < j. Denote by Y0 the set
of the elements ek with j ≤ k ≤ i + m, and by S0 the subalgebra generated
by Y0. As it is easy to check, this subalgebra S0 serves the purpose. �

Let us define an algebra B in the following way. Its elements are 0 and the
ordered pairs 〈a, i〉 where a ∈ A = {o} and i is an integer. The operations are
defined in such a way that

FB(〈a1, i1〉, . . . , 〈an, in)〉 = 〈FA(a1, . . . , an),max(i1, . . . , in)〉
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if FA(a1, . . . , an) 6= o; in all other cases, the value of FB is 0.
We also define an automorphism β of B by β(0) = 0 and β(〈a, i〉) =

〈α(a), i− 1〉. The equivalence on B, corresponding to the partition into orbits
of β, will be denoted by ∼.

2.6. Lemma. B ∈ V .

Proof. The mapping h : B → AZ (where Z denotes the set of integers)
defined by h(〈a, i〉)(j) = o for j < i, h(〈a, i〉)(j) = a for j ≥ i, and h(0)(j) = o
for all j, is an embedding of B into a direct power of A. �

2.7. Lemma. The equivalence ∼ is almost a congruence of B, in the fol-
lowing sense. If F ∈ σ is n-ary and 〈a1, i1〉 ∼ 〈b1, j1〉, . . . , 〈an, in〉 ∼ 〈bn, jn〉,
then

FB(〈a1, i1〉, . . . , 〈an, in〉) ∼ FB(〈b1, j1〉, . . . , 〈bn, jn〉)

whenever both elements

FB(〈a1, i1〉, . . . , 〈an, in〉) and FB(〈b1, j1〉, . . . , 〈bn, jn〉)

are different from 0.

Proof. By the choice of N we have N ≥ n. By the definition of ∼,
〈b1, j1〉 = βk1(〈a1, i1〉), . . . , 〈bn, jn〉 = βkn(〈an, in〉) for some integers k1, . . . , kn.
Clearly, we will be done if we show that k1 = · · · = kn. Denote by S the sub-
algebra of A generated by the α-orbits of a1, . . . , an. Since n ≤ N , there exists
a subalgebra S0 as in 2.5. Since each two members of a1, . . . , an are opera-
tionally related, there exists an r such that {a1, . . . , an} ⊆ αr(S0). Similarly,
there exists an s with {b1, . . . , bn} ⊆ αs(S0). Since each α-orbit intersects S0

in at most one point, we get k1 = s− r, . . . , kn = s− r. �

We denote by BN the factor of B through ∼, with operations defined in
the following way:

FBN
(〈a1, i1〉/ ∼, . . . , 〈an, in〉/ ∼) = FB(〈a1, i1〉, . . . , 〈an, in〉)/ ∼

whenever FB(〈a1, i1〉, . . . , 〈an, in〉) 6= 0; in all other cases, the value of FBN

is 0/ ∼. By 2.6, this definition is correct.

2.8. Lemma. The algebra BN is not locally finite.

Proof. There exist an element a, a term t and elements c1, . . . , cr with
α(a) = t(a, c1, . . . , cr) 6= a. Let us prove by induction on k that the elements
〈a, 0〉/ ∼, 〈c1, 0〉/ ∼, . . . , 〈cr, 0〉/ ∼ generate 〈αk(a), 0〉/ ∼. Since

t(〈a, k〉, 〈c1, 0〉, . . . , 〈cr, 0〉) = 〈α(a), k〉

in B, we have

t(〈αk(a), 0〉/ ∼, 〈c1, 0〉/ ∼, . . . , 〈cr, 0〉/ ∼) =

t(〈a, k〉/ ∼, 〈c1, 0〉/ ∼, . . . , 〈cr, 0〉/ ∼) =

〈α(a), k〉/ ∼ = 〈αk+1(a), 0〉/ ∼

in BN . �
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2.9. Lemma. Every N -generated subalgebra of BN is isomorphic to a sub-
algebra of B, and hence belongs to V .

Proof. Let N (or fewer) elements of BN other than 0/ ∼ be given, and
denote by U the union of all these blocks of ∼. The projection of U onto Ar{o}
is the union of at most N orbits of α, so it generates a subalgebra S for which
S0 as in 2.5 exists. Then R = {0} ∪ ((S0 r {o}) × Z) is a subalgebra of B. It
is easy to see that the restriction of ∼ on R is the identity and the mapping
x 7→ x/ ∼ is an isomorphism of R onto the original subalgebra of BN . �

2.10. Lemma. The N -generated subalgebras of A are bounded in size.

Proof. The generators are contained in N or fewer orbits of α. These
orbits generate a subalgebra S for which S0 as in 2.5 exists. Now S0 has at
most m elements, and the generators are contained in the union of at most
N sets of the form αk(S0) for some integers k; the union is a subalgebra of
cardinality at most Nm. �

The proof of Theorem 2.1 is now finished.

3. Applications

The following theorem summarizes the case where Theorem 2.1 can be ap-
plied with only one infinite orbit of α to prove that a finite algebra is inherently
nonfinitely based. By a Z-sequence we mean a sequence of elements indexed by
arbitrary integers. For a Z-sequence s and an integer k we define a Z-sequence
sk by sk

i = si−k. Such sequences sk, for various integers k, are called translates
of s. If A is an algebra and F ∈ σ, then for any Z-sequences s1, . . . , sn of
elements of A, F (s1, . . . , sn) is the Z-sequence defined componentwise, i.e., the
sequence computed from s1, . . . , sn in the direct power AZ .

3.1. Theorem. Let A be a finite algebra of a finite signature σ, with a zero
element o. Suppose that a sequence s = . . . e−1e0e1 . . . (indexed by integers) of
elements of Ar {o} can be found with the following properties:

(1) any fundamental operation of σ applied to translates of s yields either
a translate of s or a sequence containing o;

(2) there are only finitely many situations F (sk1 , . . . , skn) = sk where
F ∈ σ and ki = 0 for some i;

(3) there is at least one situation F (sk1, . . . , skn) = s1 where F ∈ σ and
ki = 0 for some i such that FA actually depends on the i-th argument.

Then A is inherently nonfinitely based.

Proof. Denote by B the subalgebra of AZ generated by the translates
of s. By (1), every element of B is either a translate of s or a Z-sequence con-
taining o. Denote by R the equivalence on B with all blocks singletons except
one, consisting of the Z-sequences containing o. Clearly, R is a congruence
of B. Since B/R belongs to the variety generated by A, it is sufficient to prove
that B/R is inherently nonfinitely based. The mapping sk 7→ sk+1 induces
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an automorphism of B/R with a single orbit other than {o}, and it is easy to
verify the conditions of Theorem 2.1. �

Let G be an unoriented graph, possibly with loops but without multiple
edges. The graph algebra of G is the groupoid with the underlying set G∪{o}
(where o is an element not belonging to G) and multiplication defined by ab = a
if a and b are joined by an edge, and ab = o otherwise.

3.2. Theorem. The graph algebra of any of the four graphs M,T,L3, P4

described in the following is inherently nonfinitely based:

(1) M has two vertices a, b and two edges {a, b}, {b, b};
(2) T has three vertices a, b, c and three edges {a, b}, {b, c}, {c, a};
(3) L3 has three vertices a, b, c and five edges {a, b}, {b, c}, {a, a}, {b, b},
{c, c};

(4) P4 has four vertices a, b, c, d and three edges {a, b}, {b, c}, {c, d}.

Proof. Theorem 3.1 can be applied with respect to the Z-sequences

. . . bbbbababbabbbabbbba . . . ,
. . . abababcababab . . . ,

. . . aaabccc . . . ,
. . . ababcdcd . . . ,

respectively. �

It has been proved in Baker, McNulty and Werner [87] that the graph
algebra of a given finite graph G is finitely based if and only if it does not
contain an induced subgraph isomorphic to any of the four graphs listed in 3.2.

The graph algebra of the first of these four graphs is the Murskĭı’s groupoid,
the first algebra found to be inherently nonfinitely based in Murskij [65]. Here
is its multiplication table:

o a b

o o o o
a o o a
b o b b

3.3. Theorem. (Ježek [85a]) Each of the three idempotent groupoids with
the following multiplication tables is inherently nonfinitely based.

a b c

a a b b
b b b c
c b c c

a b c

a a c b
b c b c
c b c c

a b c

a a b b
b c b c
c b c c

Proof. Let G be any of these three groupoids. It is easy to verify that in
each of the three cases, the subgroupoid of G×G generated by 〈a, c〉 and 〈c, a〉



4. THE SYNTACTIC METHOD 151

maps homomorphically onto the four-element groupoid A with multiplication
table

o a b c

o o o o o
a o a c o
b o c b o
c o o o c

So, it is sufficient to prove that A is inherently nonfinitely based. Denote
by B the subalgebra of AZ generated by the translates of s = . . . cccaaa . . .
and t = . . . cccbaaa . . . . We have st = . . . ccccaaa . . . , a translate of s. Except
for the translates of s and t, all the other elements of B are Z-sequences
containing o. The proof, based on Theorem 2.1, can be finished similarly as
in the case of Theorem 3.1; in the present case, the automorphism has two
infinite orbits. �

4. The syntactic method

The following result can also be obtained as an application of the shift-
automorphism method, but we prefer to present a more syntactical proof, one
close to the original proof given in Perkins [84]. By a unit element of a groupoid
we mean an element e such that xe = ex = x for all elements x of the groupoid.
By an absorption equation we mean an equation 〈u, v〉 such that u 6= v and
either u or v is a variable.

4.1. Theorem. Let A be a finite groupoid with zero o and unit e. Sup-
pose that A is not commutative, is not associative and does not satisfy any
absorption equation. Then A is inherently nonfinitely based.

Proof. Let V be a locally finite variety containing A. Denote by E0 the
equational theory of A and by E the equational theory of V . For a finite
sequence x1, . . . , xk of variables, denote by x1 . . . xk the term ((x1x2)x3) . . . xk.
Denote by H the set of the terms x1 . . . xk, where k ≥ 1 and x1, . . . , xk are
pairwise different variables. It is not difficult to verify that if 〈u, v〉 ∈ E0 and
u ∈ H, then u = v.

Now suppose that E has a finite baseB, and let q be a positive integer larger
than the cardinality of S(u), for any 〈u, v〉 ∈ B ∪ B−1. For any i ≥ 1 denote
by ti the term which is the product of the first i variables in the sequence
x1, . . . , xq, x1, . . . , xq, x1, . . . , xq, . . . . Since E0 is the equational theory of a
locally finite variety, there exist two indexes i < j such that 〈ti, tj〉 ∈ E0.
There exists a derivation u0, . . . , uk of 〈ti, tj〉 based on B. However, one can
easily see that whenever u is a term such that f(u) ⊆ ti for a substitution f ,
then u ∈ H; consequently, u0 = u1 = · · · = uk and we get a contradiction with
ti 6= tj. �
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Comments

It has been proved in Lyndon [51] that every two-element algebra of finite
signature is finitely based. A more simple proof is given in Berman [80].

Murskij [75] proves that a random finite groupoid is finitely based in the
following sense: if n(k) is the number of groupoids with a fixed underlying set
of k elements and m(k) is the number of groupoids with the same underlying

set that are finitely based then limn→∞
m(k)
n(k) = 1.



CHAPTER 12

ALGORITHMS IN UNIVERSAL ALGEBRA

1. Turing machines

Many problems in mathematics can be reformulated in the following way:
Given a finite alphabet A, the question is to find a partial function f , enjoying
a particular property, from the set A∗ of words over A into A∗. A proof of
the existence of f is not satisfactory in many cases: the proof may not give us
any way how to actually compute f(w), given a word w in the domain of f .
We need a set of rules, on the basis of which it would be possible to construct
a machine accepting as an input arbitrary words w ∈ A∗, producing f(w) in
a finite number of steps for any word w belonging to the domain of f , and
perhaps working forever for the other words w. Such a set of rules is called an
algorithm (over A).

This informal definition may be sufficient if we investigate algorithms from
the positive point of view. But we need a mathematically adequate definition
if we want to prove that a particular problem has no algorithmic solution. The
notion of a Turing machine will serve the purpose.

Let A be a finite alphabet. Let Q be a finite set disjoint with A and
containing two distinguished elements I and H. Let L,R and O be three
symbols not belonging to A ∪ Q; put A′ = A ∪ {O}. By a Turing machine
over A, with states in Q, we mean a mapping T of (Q r {H}) × A′ into
Q × (A′ ∪ {L,R}). The elements of Q are called the states of T ; I is the
initial state, and H is the halting state. The symbol O is called the empty
symbol. The quadruples 〈s, a, s′, e〉 such that T (〈s, a〉) = 〈s′, e〉 are called the
instructions of T .

By a configuration for T we mean a word w over A′ ∪ Q which can be
written as w = usav for a state s, a symbol a ∈ A′ and two words u, v over A′;
the state s is called the state of the configuration w. By a halting configuration
we mean a configuration, the state of which is the halting state.

Given a non-halting configuration w = usav for T , we define a new config-
uration w′, called the configuration next to w and denoted by T [w], as follows:

(1) If T (〈s, a〉) = 〈s′, b〉 for a symbol b ∈ A′, put w′ = us′bv.
(2) If T (〈s, a〉) = 〈s′,L〉 and u is empty, put w′ = s′Oav.
(3) If T (〈s, a〉) = 〈s′,L〉 and u = ūb for some b ∈ A′, put w′ = ūs′bav.
(4) If T (〈s, a〉) = 〈s′,R〉 and v is empty, put w′ = uas′O.
(5) If T (〈s, a〉) = 〈s′,R〉 and v is nonempty, put w′ = uas′v.

153
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Given an arbitrary configuration w for T , we define a sequence (either finite
or infinite) of configurations T 0[w], T 1[w], . . . as follows: T 0[w] = w; if T i[w]
is a non-halting configuration, then T i+1[w] = T [T i[w]]; otherwise, if T i[w] is
halting, then it is the last member of the sequence. If this sequence is finite,
with the last member v, we say that T halts from w (at v).

Given a Turing machine T over A, we can define a partial function f
from A∗ into A∗ (a unary partial operation on A∗) as follows. Let u ∈ A∗.
Put w = IOu, so that w is a configuration for T . If T halts from w at a
configuration v, let f(u) be the word obtained from v by deleting the symbols
not belonging to A; if T does not halt from w, let f(u) be undefined. We say
that f is the partial function realized by T . A partial function from A∗ to A∗

is said to be computable if it is realized by some Turing machine.
More generally, an n-ary partial operation f on A∗ is said to be computable

if there exists a Turing machine T over A such that f(u1, . . . , un) = u if and
only if T halts from the configuration IOu1 . . .Oun at a configuration v and u
is obtained from v by deleting the symbols not belonging to A.

It is clear that every computable function can be computed by an algorithm
in the intuitive sense. We subscribe to the Church-Turing Thesis, according
to which the functions that can be computed via any mechanical process,
are exactly the functions computable in the above sense. We will use this
thesis in two ways: We claim that a function is computable if we have an
algorithm computing it in an intuitive sense. Also, we claim that a function is
not computable by any means if it is not computable according to the above
definition.

A subset S of A∗ is said to be recursive if there exists an algorithm deciding
for every word w ∈ A∗ whether w ∈ S. In other words, S is recursive if its
characteristic function is computable; the characteristic function of S assigns
a specified nonempty word to every word from S, and assigns the empty word
to the words not in S.

A subset of A∗ is said to be recursively enumerable if it is the range of a
computable function. It is easy to see that a subset S of A∗ is recursive if and
only if both S and A∗ r S are recursively enumerable.

So far we considered only algorithms, operating with words over a finite
alphabet. But it should be clear that the set A∗ can be replaced by any set
of objects constructible in the sense that they can be coded by words. For
example, we could take the set of all matrices with rational coefficients, the
set ot integers, the set of Turing machines over a given finite alphabet with
states from a given set of constructible objects, or the set of all finite algebras
of a given finite signature, with the underlying sets contained in the set of
nonnegative integers.

1.1. Theorem. Let A be a nonempty finite alphabet. There exists a com-
putable binary partial operation h on A∗ such that for every computable partial
function g from A∗ into A∗ there exists a word u ∈ A∗ with this property: an
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arbitrary word v ∈ A∗ belongs to the domain of g if and only if 〈u, v〉 belongs
to the domain of h, and g(u) = h(u, v) if it does.

Proof. Arrange into an infinite sequence T0, T1, . . . all Turing machines
over A in some standard, ‘computable’ way. Similarly, arrange into an infinite
sequence w0, w1, . . . all words over A. The algorithm realizing h can be defined
in the following way. Let u, v be two words over A. Find the index i such that
u = wi. Try to compute g(v), where g is the partial function realized by Ti. If
the computation halts, output h(u, v) = g(v). �

1.2. Theorem. Let A be a nonempty finite alphabet. There exists a com-
putable partial function f from A∗ into A∗ such that the range of f consists of
just two words and f cannot be extended to a computable, everywhere defined
function.

Proof. Take a symbol a ∈ A, and define a mapping p of A∗ into A∗ as
follows: p(w) is the empty word for any nonempty word w, and p(w) = a for
w empty. Thus p(w) 6= w for all words w. Let h be a computable binary
partial operation with the property stated in 1.1. Define f(w) = p(h(w,w))
for all the words w such that f(w,w) is defined; for the other words w let
f(w) be undefined. Clearly, f is computable and the range of f consists of
just two words. Suppose that f can be extended to a computable, everywhere
defined function g. There exists a word u such that g(v) = h(u, v) for all v.
In particular, g(u) = h(u, u) and hence g(u) = f(u) = p(h(u, u)) 6= h(u, u) =
g(u), a contradiction. �

1.3. Theorem. There exists a Turing machine T over a one-element al-
phabet such that the set of the configurations for T from which T halts is not
recursive.

Proof. It follows from 1.2. �

2. Word problems

Let V be a variety of a finite signature σ. An algebra A ∈ V is said to
be finitely presented (with respect to V ) if there exist a positive integer n and
a binary relation r in the algebra Tn of terms over {x1, . . . , xn} such that A
is isomorphic to the factor Tn/R, where R is the congruence of Tn generated
by the the equations in variables x1, . . . , xn that belong either to r or to the
equational theory of V ; we say that the pair, consisting of the number n and
the relation r, is a finite presentation of A (in V ).

We say that a finitely presented algebra in V , given by its finite presentation
(n, r), has solvable word problem if there is an algorithm deciding for every
〈u, v〉 ∈ Tn×Tn whether 〈u, v〉 belongs to the congruence of Tn generated by
the equations in variables x1, . . . , xn that belong either to r or to the equational
theory of V . We say that a variety V has solvable word problem if every finitely
presented algebra in V has solvable word problem. We say that a variety V
has globally solvable word problem if there exists an algorithm, deciding for
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any positive integer n, any finite relation r in Tn and any 〈u, v〉 ∈ Tn × Tn

whether 〈u, v〉 belongs to the congruence of Tn generated by the equations in
variables x1, . . . , xn that belong either to r or to the equational theory of V .
Clearly, global solvability of the word problem implies solvability.

2.1. Theorem. Let V be a variety of algebras of a finite signature and let
A ∈ V . The following three conditions are equivalent:

(1) A is finitely presented in V ;
(2) A is a reflection of a finite partial algebra in V ;
(3) There exists a finite nonempty subset S0 of A such that for every

subset S containing S0, A together with idS is a reflection of A � S
in V .

Proof. (1) implies (3): Let (n, r) be a finite presentation of A in V , where
r = {〈u1, v1〉, . . . , 〈uk, vk〉}. Denote by R the congruence of Tn generated by
the equations in x1, . . . , xn that belong either to r or to the equational theory
of V . We can assume that A = Tn/R. Denote by S0 the finite subset of A
consisting of the elements t/R where t ∈ Tn is either an element of {x1, . . . , xn}
or a subterm of at least one of the terms u1, . . . , uk, v1, . . . , vk. One can easily
see that for every S0 ⊆ S ⊆ A, idS : A � S → A is a reflection of A � S in V .

It remains to prove that (2) implies (1). Let f : Q → A be a reflection
of a finite partial algebra Q in V . Denote by a1, . . . , an the elements of Q
and denote by r the set of the pairs 〈F (xi1 , . . . , xim), xim+1

〉 where F is a
symbol of arity m in the signature, i1, . . . , im+1 are elements of {1, . . . , n}, and
FQ(ai1 , . . . , aim) = aim+1

. It is easy to see that (n, r) is a finite presentation of
A in V . �

Let V be a variety of a finite signature. We say that the embedding problem
for V is solvable if there exists an algorithm, deciding for every finite partial
algebra of the given signature whether it can be embedded into an algebra
from V .

2.2. Theorem. A variety V of a finite signature has globally solvable word
problem if and only if it has solvable embedding problem.

Proof. Assume that V has globally solvable word problem. Let Q be a
finite partial algebra. Denote by a1, . . . , an the elements of Q and define a
finite relation r on Tn in the same way as in the proof of (2) → (1) in 2.1.
Denote by R the congruence of Tn generated by the equations in x1, . . . , xn

that belong either to r or to the equational theory of V . Put f(ai) = xi/R
for all i; one can easily see that f : Q → Tn/R is a reflection of Q in V , and
f is injective if and only if Q can be embedded into an algebra from V . Now
(n, r) is a finite presentation for Tn/R, f is injective if and only if 〈xi, xj〉 ∈ R
implies i = j, and we are able to decide this question.

Conversely, assume that V has solvable embedding problem. Let n be
a positive integer and r = {〈u1, v1〉, . . . , 〈un, vn〉} be a finite relation on Tn.
Let u, v ∈ Tn. We need to find a way how to decide whether 〈u, v〉 belongs
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to the congruence R generated by the equations in x1, . . . , xn that belong
either to r or to the equational theory of V . Denote by Y the set of the
terms that either belong to {x1, . . . , xn} or are subterms of one of the terms
u, v, u1, . . . , un, v1, . . . , vn. Denote by r̄ the congruence of the partial algebra
Tn � Y generated by r; denote by Q the factor, and by q the corresponding
canonical homomorphism onto Q. We are going to prove that 〈u, v〉 does not
belong to R if and only if there exists a homomorphism g of Q onto a partial
algebra Q′ such that g(u/R) 6= g(v/R) and Q′ can be embedded into an algebra
from V . This will give us the desired algorithm.

Let 〈u, v〉 /∈ R. Since R ∩ (Y × Y ) is a congruence of Tn � Y and r ⊆ R ∩
(Y ×Y ), we have r̄ ⊆ R∩(Y ×Y ). It follows that there exists a homomorphism
g : Q→ Tn/R such that gq(t) = t/R for all t ∈ Y . We can put Q′ = (Tn/R) �

S, where S is the range of g; the partial algebra Q′ can be embedded into the
algebra Tn/R ∈ V .

Conversely, let g and Q′ be as above and let f be an embedding of Q′

into an algebra B ∈ V . There exists a unique homomorphism h : Tn → B
such that h(xi) = fgq(xi) for all i. The composition fgq is the restriction
of h to Y , since both these homomorphisms of Tn � Y into B coincide on a
generating subset. From this we get r ⊆ ker(h). Since Tn/ker(h) ∈ V , we get
R ⊆ ker(h). Now h(u) = fgq(u) 6= fgq(v) = h(v) and hence 〈u, v〉 /∈ R. �

2.3. Example. Clearly, the variety of all algebras of a given finite signature
has globally solvable word problem.

A finite partial groupoid A can be embedded into a commutative groupoid
if and only if ab = ba for any pair a, b of elements of A such that both ab and ba
are defined. We can see that the variety of commutative groupoids has solvable
embedding problem. Consequently, it has globally solvable word problem.

Similarly, the variety of idempotent groupoids and also the variety of com-
mutative idempotent groupoids has globally solvable word problem.

3. The finite embedding property

A variety V is said to have the finite embedding property if for every algebra
A ∈ V and every finite subset S of A, the partial algebra A � S can be
embedded into a finite algebra in V .

Next we give two equivalent formulations for this property. An algebra A
is said to be residually finite if for every pair a, b of different elements of A
there exists a congruence r of A such that 〈a, b〉 /∈ r and A/r is finite.

3.1. Theorem. The following three conditions are equivalent for a variety
V of a finite signature:

(1) V has the finite embedding property;
(2) For every finitely presented algebra A ∈ V and every finite subset S

of A, the partial algebra A � S can be embedded into a finite algebra
in V ;

(3) Every finitely presented algebra in V is residually finite.
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Proof. Obviously, (1) implies (2). (2) implies (3): Let A be a finitely
presented algebra in V and let a, b be two different elements of A. According
to 2.1, there exists a finite subset S of A such that a, b ∈ S and idS : A � S → A
is a reflection of A � S in V . By (2) there exists a finite algebra B ∈ V and an
injective homomorphism f : A � S → B. By the definition of reflection, there
exists a homomorphism g : A→ B such that f ⊆ g. We can put r = ker(g).

(3) implies (2): For every pair a, b of different elements of S take a con-
gruence ra,b of A such that 〈a, b〉 /∈ ra,b and A/ra,b is finite. Denote by B the
product of all the algebras A/ra,b obtained in this way, so that B is a finite
algebra in V . For h ∈ A let f(h) be the element of B with f(h)(a, b) = h/ra,b

for all a, b. Then f is a homomorphism of A into B and the restriction of f to
S is an injective homomorphism of A � S into B.

(2) implies (1): Let A ∈ V and let S be a finite subset of A. There exists
a reflection f : A � S → B of A � S in V . By the definition of reflection there
exists a homomorphism g : B → A such that idS = gf . Consequently, f is
injective. By 2.1, B is finitely presented in V and so, by (2), there exists a
finite algebra C ∈ V and an injective homomorphism h : B � Y → C, where Y
is the range of f . The composition hf is an injective homomorphism of A � S
into C. �

3.2. Theorem. Let V be a finitely based variety of a finite signature with
the finite embedding property. Then V has globally solvable word problem.

Proof. Let B be a finite base for the equations of V . Let n be a positive
integer, r be a finite relation on Tn and let u, v ∈ Tn. We need to decide
whether 〈u, v〉 belongs to the congruence R of Tn generated by the equations
in x1, . . . , xn that belong either to r or to the equational theory of V .

Denote by U the least relation on the algebra T of terms with the following
three properties:

(1) r ⊆ U ;
(2) If 〈t1, t2〉 ∈ B then 〈f(t1), f(t2)〉 ∈ U for every substitution f ;
(3) If 〈t1, t2〉 ∈ U then 〈L(t1), L(t2)〉 ∈ U for every lift L.

Clearly, U is a recursive set of equations.
By an admissible sequence we mean (just for the purpose of this proof)

a finite nonempty sequence t1, . . . , tm of terms such that for any i = 2, . . . ,m
either ti−1 = ti or 〈ti−1, ti〉 ∈ U or 〈ti, ti−1〉 ∈ U . Clearly, the set of admissible
sequences is a recursive set of finite sequences of terms.

Denote by s1 the set of the ordered pairs 〈t1, t2〉 such that t1 is the first and
t2 is the last member of an admissible sequence, and put s2 = s1 ∩ (Tn×Tn).
We are going to prove that s2 = R. Clearly, s2 is a congruence of T and
T/s1 ∈ V . Hence s2 is a congruence of T and T/s2 ∈ V . Since r ⊆ s2, we get
R ⊆ s2. There exists a homomorphism f : T→ Tn/R such that f(xi) = xi/R
for i = 1, . . . , n. Clearly, R = ker(f) ∩ (Tn × Tn). Since r ⊆ ker(f) and
T/ker(f) ∈ V , we have U ⊆ ker(f), so that s1 ⊆ ker(f) and then s2 ⊆ R.

We have proved that 〈u, v〉 belongs to R if and only if u is the first and v
is the last member of an admissible sequence.
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Similarly as in the proof of the converse implication in 2.2 one can construct
a finite partial algebra Q and its congruence r̄ with this property: If P1, . . . , Pk

are (up to isomorphism) all the finite partial algebras P for which there exists
a homomorphism g of Q onto P with g(u/r̄) 6= g(v/r̄), then 〈u, v〉 /∈ R if and
only if at least one of the partial algebras Pi can be embedded into an algebra
from V . It follows from the finite embedding property that 〈u, v〉 /∈ R if and
only if at least one of the partial algebras P1, . . . , Pk can be embedded into a
finite algebra from V .

We have obtained two different characterizations of the relation R. The
desired algorithm can be constructed by their combination. Let p1, p2, . . .
be a standard ordering of all finite sequences of terms and let A1, A2, . . . be
a standard ordering of all finite algebras of the given signature. For every
i = 1, 2, . . . we can answer the following two questions: (i) Is pi an admissible
sequence and are u the first and v the last members of this sequence? (ii) Is
Ai ∈ V (this can be verified, since V is finitely based) and can one of the partial
algebras P1, . . . , Pk be embedded into Ai? After a finite number of steps we
must obtain a positive answer. If the positive answer is obtained for pi, the
pair 〈u, v〉 belongs to R, while a positive answer for Ai means that 〈u, v〉 does
not belong to R. �

3.3. Example. Theorem 3.2 can be used to show that the variety of lattices,
the variety of Abelian groups, the variety of quasigroups and the variety of
loops have globally solvable word problem.

4. Unsolvability of the word problem for semigroups

Let T be a Turing machine over a finite nonempty alphabet A, with the set
of states Q. Denote by P the semigroup of nonempty words over A∪{O,L,R},
and define five finite relations r1, . . . , r5 in P :

r1 is the set of the pairs 〈qa, pb〉 where T (〈q, a〉) = 〈p, b〉 and b ∈ A ∪ {O};
r2 is the set of the pairs 〈bqa, pba〉 where T (〈q, a〉) = 〈p,L〉 and b ∈ A∪{O};
r3 is the set of the pairs 〈qab, apb〉 where T (〈q, a〉) = 〈p,R〉 and b ∈ A∪{O};
r4 = {〈L,LO〉};
r5 = {〈OR,R〉}.
Denote by r the union of these five relations and by R the congruence of

P generated by r.

4.1. Lemma. If w and w′ are two configurations such that T [w] = w′, then
〈LwR,Lw′R〉 ∈ R.

Proof. It is easy. �

By an inessential extension of a word w ∈ P we mean any word OkwOm,
where k,m are nonnegative integers.

4.2. Lemma. Let w be a halting and w′ be a non-halting configuration
for T . Then 〈LwR,Lw′R〉 ∈ R if and only if there exists a finite sequence
w1, . . . , wn of configurations such that w1 is an inessential extension of w, wn

is an inessential extension of w′ and wi = T [wi−1] for all i = 2, . . . , n.
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Proof. The converse follows from 4.1. It remains to prove the direct
implication. For i = 1, . . . , 5 denote by r̄i the set of the ordered pairs 〈s, t〉 ∈
P × P such that 〈s, t〉 = 〈us0v, ut0v〉 for some 〈s0, t0〉 ∈ ri and some words
u, v. Put r̄ = r̄1 ∪ r̄2 ∪ r̄3 ∪ r̄4 ∪ r̄5. By an admissible sequence we mean (just
for the purpose of this proof) a finite sequence u1, . . . , um of words from P
such that u1 = LwR, um = Lw′R and for any i=2, . . . ,m, either 〈ui−1, ui〉 ∈ r̄
or 〈ui, ui−1〉 ∈ r̄. It is easy to see that there exists at least one admissible
sequence. Also, it is easy to see that if u1, . . . , um is an admissible sequence
then ui = LūiR for a word ūi not containing L,R and containing precisely
one occurrence of a state of T . However, ūi is not necessarily a configuration,
as the state can be the last symbol in ūi.

Let u1, . . . , uk be a minimal admissible sequence. Suppose that for some
i we have 〈ui−1, ui〉 /∈ r̄4 and 〈ui, ui+1〉 ∈ r̄4. The pair 〈ui, ui−1〉 does not
belong to r̄4 (then we would have ui−1 = ui+1). One can easily see that the
sequence u1, . . . , ui−1,LOūi−1R, ui+1, . . . , uk is also admissible, of the same
length as u1, . . . , uk. So, we can assume that in u1, . . . , uk, all applications of
〈L,LO〉 come at the beginning; similarly we can assume that the applications
of 〈LO,L〉 come at the end, all applications of 〈R,OR〉 come at the beginning
and all applications of 〈OR,R〉 come at the end. Let uc, . . . , ud be the middle,
the more interesting part of u1, . . . , uk: for i = c + 1, . . . , d we have either
〈ui−1, ui〉 ∈ r̄1 ∪ r̄2 ∪ r̄3 or 〈ui, ui−1〉 ∈ r̄1 ∪ r̄2 ∪ r̄3.

Suppose that there exists an index i with 〈ui, ui−1〉 ∈ r̄1 ∪ r̄2 ∪ r̄3; let i be
the maximal such index. Clearly, the halting state does not occur in ui. But
it occurs in uk, and hence in ud. We get i < d and 〈ui, ui+1〉 ∈ r̄1 ∪ r̄2 ∪ r̄3.
But then ui−1 = ui+1, a contradiction with the minimality of k.

Put n = d−c+1 and define w1, . . . , wn by uc = Lw1R, uc+1 = Lw2R, . . . ,
ud = LwnR. Clearly, w1 is an inessential extension of w, wn is an inessential
extension of w′ and it should be now evident that wi = T [wi−1] for i = 2, . . . , n.

�

4.3. Lemma. There exists a Turing machine T such that the finitely pre-
sented semigroup P/R has unsolvable word problem.

Proof. This follows from 1.3 and 4.2. �

4.4. Theorem. There exists a two-generated finitely presented semigroup
with unsolvable word problem.

Proof. By 4.3 there exist a finite nonempty alphabet B = {a1, . . . , an}
and a finite relation r on the semigroup P of nonempty words over B such
that the congruence R of P generated by r is not a recursive set. Denote
by U the semigroup of nonempty words over a two-element alphabet {a, b}.
For every i = 1, . . . , n put wi = abai+1bi+1, and define an injective mapping
u 7→ ū of P into U as follows: if u = ai1 . . . aim , then ū = wi1 . . . wim. Put
s = {〈ū, v̄〉 : 〈u, v〉 ∈ r}, so that s is a finite relation on U . Denote by S the
congruence of U generated by s.
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Denote by S1 the set of the pairs 〈pūq, pv̄q〉 where 〈u, v〉 ∈ r and p, q are
words over {a, b}.

Suppose 〈ū, w〉 ∈ S1 for a word u = ai1 . . . aim ∈ P and a word w ∈ U . We
have ū = pū0q and w = pv̄0q for a pair 〈u0, v0〉 ∈ r and some words p, q over
{a, b}. One can easily see that there exist indexes j, k (0 ≤ j ≤ k ≤ m) such
that p = wi1 . . . wij , ū0 = wij+1

. . . wik and q = wik+1
. . . wim . We get w = v̄,

where ai1 . . . aijv0aik+1
. . . aim , and 〈u, v〉 ∈ R.

Quite similarly, if 〈w, v̄〉 ∈ S1 for a word w ∈ U and a word v ∈ P , then
there is a word u ∈ P such that w = ū and 〈u, v〉 ∈ R.

Define a relation S2 on U as follows: 〈u, v〉 ∈ S2 if and only if there exists
a finite sequence u1, . . . , um such that u = u1, v = um and for all i = 2, . . . ,m,
either 〈ui−1, ui〉 ∈ S1 or 〈ui, ui−1〉 ∈ S1. It follows that 〈ū, v̄〉 ∈ S2 implies
〈u, v〉 ∈ R. Evidently, S2 is a congruence of U and hence S ⊆ S2.

Let u, v ∈ P . We have proved that 〈ū, v̄〉 ∈ S implies 〈u, v〉 ∈ R. Con-
versely, it is easy to see that 〈u, v〉 ∈ R implies 〈ū, v̄〉 ∈ S. So, if we could decide
whether 〈ū, v̄〉 ∈ S, then we would be also able to decide whether 〈u, v〉 ∈ R.
The semigroup U/S has undecidable word problem. �

5. An undecidable equational theory

5.1. Theorem. There exists an undecidable, finitely based equational theory
of the signature consisting of two unary symbols.

Proof. Denote the two unary symbols by F and G. By 4.4 there exists a
finite relation r on the semigroup P of nonempty words over {F,G} such that
the congruence R of P generated by r is not a recursive set. Let E be the
equational theory based on the equations 〈ux, vx〉 where 〈u, v〉 ∈ r and x is a
variable. One can easily see that an equation 〈t1, t2〉 belongs to E if and only
if either t1 = t2 or 〈t1, t2〉 = 〈ux, vx〉 for a variable x and a pair 〈u, v〉 ∈ R.
Consequently, E is not a recursive set. �

Comments

The results on word problems and the finite embedding property are due
to T. Evans.

We did not include the most important and sophisticated result in this
direction, that of McKenzie [96], [96a] and [96b]: There is no algorithm deciding
for any finite algebra of finite signature whether it is finitely based. This has
been accomplished by assigning a finite algebra A(T ) of a finite signature to
any Turing machine T in such a way that A(T ) is finitely based if and only if T
halts. At the same time, McKenzie proves that there is no algorithm deciding
for any finite algebra A of finite signature whether the variety generated by A
is residually finite.





CHAPTER 13

TERM REWRITE SYSTEMS

A broadly discussed question of equational logic is to find ways to decide
which equations are consequences of a given finite set of equations, that is, to
establish decidability of a given finitely based equational theory. This question
is undecidable in general, so attention has been focused on special cases, as
general as possible, for which there is hope of finding an algorithm. Evans [51]
and Knuth and Bendix [70] introduced the technique of term rewriting, which
has been further developed in a large number of papers; see Dershowitz and
Jouannaud [90] for an overview and for an extensive bibliography. We are
going to explain in this chapter the basics of term rewriting and present an
alternative but closely related technique, that of perfect bases, introduced in
Ježek and McNulty [95b].

By a normal form function for an equational theory E we mean a mapping
ν of the set of terms into itself, satisfying the following three conditions:

(nf1) u ≈ v ∈ E if and only if ν(u) = ν(v);
(nf2) t ≈ ν(t) ∈ E for all terms t;
(nf3) ν(ν(t)) = ν(t) for all terms t.

An equational theory E is decidable if and only if it has a computable normal
form function.

1. Unification

By a unifier of a finite collection t1, . . . , tk of terms we mean a substitution
f with f(t1) = · · · = f(tk). By a minimal unifier of t1, . . . , tk we mean a unifier
f such that for any other unifier g of t1, . . . , tk there exists a substitution h
with g = hf . Easily, the term f(t1) = · · · = f(tk) is uniquely determined by
t1, . . . , tk up to similarity; it will also be called the unifier of t1, . . . , tk (from
the context it will be always clear if the unifier is a term, or a substitution).

1.1. Theorem. If a finite collection of terms has a unifier, then it has
a minimal one. There is an algorithm accepting any finite k-tuple t1, . . . , tk
of terms as an input and outputting either a minimal unifier f of t1, . . . , tk
or else the information that the k-tuple has no unifier. If f is output and
u = f(t1) = · · · = f(tk), where k ≥ 1, then S(u) ⊆ S(t1) ∪ · · · ∪ S(tk) and
f(x) = x for any x ∈ X r (S(t1) ∪ · · · ∪ S(tk)).

Proof. Clearly, it suffices to prove the theorem for k = 2.

163
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Denote by S the set of the terms that are subterms of either t1 or t2, and
by ≡ the smallest equivalence on S such that t1 ≡ t2 and

F (u1, . . . , un) ≡ F (v1, . . . , vn)⇒ ui ≡ vi for all i.

Define a binary relation r on S by 〈u, v〉 ∈ r if and only if there are terms u′,
v′ with u ≡ u′ and v ≡ v′, such that u′ is a proper subterm of v′. Denote by R
the transitive closure of r.

If there exists a substitution f with f(t1) = f(t2), then clearly f(u) = f(v)
whenever u ≡ v and, consequently, the following two conditions are satisfied:

(1) if F (u1, . . . , un) ≡ G(v1, . . . , vm), then F = G;
(2) there is no term u with 〈u, u〉 ∈ R.

Conversely, we will show that if these two conditions are satisfied, then the
pair t1, t2 has a minimal unifier and we are going to construct it.

Let (1) and (2) be satisfied. Then R is an irreflexive, antisymmetric and
transitive relation, i.e., a strict order on S. Define a sequence M0,M1, . . .
of pairwise disjoint subsets of S recursively in this way: Mi is the set of the
elements of S r (M0 ∪ · · · ∪Mi−1) that are minimal with respect to R. For
every term u ∈ S there is precisely one index i with u ∈ Mi; this i will be
called (locally in this proof) the rank of u. Clearly, u ≡ v implies that the
terms u and v have the same rank.

For every term u ∈ S, we will define a term f(u) by induction on the rank
of u.

Let u be of rank 0, so that u is either an element of X or a constant. If
there is a constant c with u ≡ c, then c is also of rank 0, and c is unique; put
f(u) = c in that case. If there is no such c, then u ≡ v implies that v is an
element of X, and of rank 0; with respect to a fixed well ordering of X, take
the first element x of X with u ≡ x and put f(u) = x.

Now let u be of rank i + 1, and suppose that f(v) has been defined for
all terms v of ranks at most i in such a way that f(v) = f(v′) whenever
v ≡ v′. Since u is not of rank 0, even if it is an element of X, we have
u ≡ F (v1, . . . , vn) for a symbol F of arity n ≥ 0 and some terms v1, . . . , vn

of ranks ≤ i. The symbol F is uniquely determined by u, and the terms
vj are determined uniquely up to ≡. So, it makes sense to define f(u) =
F (f(v1), . . . , f(vn)) and it is clear that if u ≡ u′, then f(u) = f(u′).

In particular, we have f(t1) = f(t2). Put, moreover, f(x) = x for any
x ∈ X r (S(t1) ∪ S(t2)). It is not difficult to see that f can be uniquely
extended to a substitution, and this extension is a minimal unifier of the pair
t1, t2. �

By a unifying k-tuple for a finite collection t1, . . . , tk of terms we mean a
k-tuple f1, . . . , fk of substitutions with f1(t1) = · · · = fk(tk). By a minimal
unifying k-tuple for t1, . . . , tk we mean a unifying k-tuple f1, . . . , fk such that
for any other unifying k-tuple g1, . . . , gk for t1, . . . , tk there exists a substitution
h with g1 = hf1, . . . , gk = hfk. Easily, the term f1(t1) = · · · = fk(tk) is
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uniquely determined by t1, . . . , tk up to similarity; it will be called the multi-
unifier of t1, . . . , tk.

1.2. Theorem. Let X be infinite. If a finite collection of terms has a uni-
fying k-tuple, then it has a minimal one. There is an algorithm accepting any
finite k-tuple t1, . . . , tk of terms as an input and outputting either a minimal
unifying k-tuple f1, . . . , fk of t1, . . . , tk or else the information that the terms
have no unifying k-tuple.

Proof. Clearly, any of the terms t1, . . . , tk can be replaced with a similar
term without affecting the result. So, since X is infinite, we can assume that
the sets S(t1), . . . ,S(tk) are pairwise disjoint. Under this assumption, the
existence of a (minimal) unifying k-tuple is equivalent to that of the existence
of a (minimal) unifier, so Theorem 1.1 can be applied. �

1.3. Example. If the set X is finite, then the minimal unifying pair for
a given pair of terms need not exist even if there are some unifying pairs.
Consider, for example, the pair (xy)z, x(yz) of terms over the set X = {x, y, z}.
This pair has a has a unifying pair, but no minimal one over X.

2. Convergent graphs

Let 〈G,→〉 be a (directed) graph. (I.e., G is a nonempty set and → is a
relation on G.) A finite nonempty sequence a0, . . . , ak of vertices (i.e., elements
of G) is called a directed path if ai → ai+1 for all i ∈ {0, . . . , k− 1}; it is called
an undirected path if, for all i, either ai → ai+1 or ai+1 → ai. In both cases we
say that the path starts at a0 and terminates at ak, or that the path is from
a0 to ak. Two vertices a, b are called connected if there exists an undirected
path starting at a and terminating at b.

A vertex a ∈ G is called terminal if there is no vertex b with a → b.
The graph 〈G,→〉 is called finitely terminating if there is no infinite sequence
a0, a1, . . . of vertices with ai → ai+1 for all i ≥ 0. Clearly, a finitely terminating
graph contains no cycles (and, in particular, no loops). If the graph is finitely
terminating, then for every vertex a there exists a directed path starting at a
and terminating at a terminal vertex.

The graph 〈G,→〉 is called confluent if for any triple of vertices a, b, c such
that there are two directed paths, one from a to b and the other from a to c,
there exists a fourth vertex d, a directed path from b to d, and a directed path
from c to d.

The graph 〈G,→〉 is called convergent if it is both finitely terminating and
confluent.

2.1. Theorem. Let 〈G,→〉 be a convergent directed graph. Then every
vertex of G is connected to precisely one terminal vertex of G.

Proof. Since the graph is finitely terminating, every vertex is connected
to at least one terminal vertex (via a directed path). In order to prove the
uniqueness, it remains to show that two different terminal vertices cannot
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be connected. Suppose there exists an undirected path a0, . . . , ak such that
a0 6= ak and both a0 and ak are terminal, and choose one for which the set
{i ∈ {1, . . . , k−1} : ai → ai−1 and ai → ai+1} has the least possible cardinality.
The elements of this set of indices will be called peaks. Since both a0 and ak

are terminal, we have a1 → a0 and ak−1 → ak; from this one can easily see
that there is at least one peak. Denote by i the first peak, so that ai → ai−1 →
· · · → a0. Let j be the largest index with ai → ai+1 → · · · → aj , so that either
j = k or aj+1 → aj. By the confluency, there exist a vertex d, a directed path
from a0 to d and a directed path c0, . . . , cn from aj to d. Since a0 is terminal,
we have d = a0. But then it is easy to see that cn, . . . , c0, aj+1, . . . , ak is
an undirected path from a0 to ak which has a smaller number of peaks than
a0, . . . , ak, a contradiction. �

A directed graph 〈G,→〉 is called locally confluent if for any triple of ver-
tices a, b, c with a → b and a → c, there exists a fourth vertex d, a directed
path from b to d, and a directed path from c to d.

2.2. Theorem. Let 〈G,→〉 be a finitely terminating and locally confluent
directed graph. Then 〈G,→〉 is confluent.

Proof. Let a, b, c be three vertices such that there are a directed path
from a to b and a directed path from a to c, and suppose that there is no
vertex d with a directed path from b to d and a directed path from c to d.
Since the graph is finitely terminating, there exist a directed path from b to
a terminal vertex b′ and a directed path from c to a terminal vertex c′; we
have b′ 6= c′. Denote by P the set of the vertices e for which there exist two
different terminal vertices f and g, a directed path from e to f and a directed
path from e to g. We have seen that the set P is nonempty. Since the graph
is finitely terminating, there exists a vertex e ∈ P such that whenever e→ e′,
then e′ /∈ P . For such a vertex e, let e = f0, . . . , fk and e = g0, . . . , gl be
two directed paths with fk 6= gl and both fk and gl terminal. By the local
confluency, there exist a vertex h, a directed path from f1 to h and a directed
path from g1 to h. Since the graph is finitely terminating, there is a directed
path from h to a terminal vertex h′. Now f1 /∈ P and there are two directed
paths from f1 to two terminal vertices, from which we get fk = h′. Quite
similarly, g1 /∈ P implies gl = h′. Hence fk = gl, a contradiction. �

3. Term rewrite systems

Let B be a set of equations. In order to stress their asymmetric character,
the equations from B are called rewrite rules, and the set B is called a term
rewrite system.

Let us define a directed graph 〈G,→〉 in the following way: G is the set of
all terms; u→ v if and only if the equation 〈u, v〉 is an immediate consequence
of an equation from B. This directed graph will be called associated with B.
If u→ v, we also say that u can be rewritten (with respect to B) in one step
to v. If there exists a directed path from u to v, we say that u can be rewritten
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to v (with respect to B). Of course, two terms u, v are connected if and only
if there exists a derivation of 〈u, v〉 from B, i.e., if 〈u, v〉 ∈ Eq(B). A term u is
called terminal (with respect to B) if it is a terminal vertex in the associated
graph.

The set of equations B is called finitely terminating, or (locally) confluent if
the associated graph is finitely terminating, or (locally) confluent, respectively.
Finitely terminating confluent term rewrite systems are called convergent.

By a critical pair for B we mean a pair of terms that can be obtained in
the following way. Let 〈u1, v1〉 ∈ B, 〈u2, v2〉 ∈ B, let a be an occurrence of a
subterm w /∈ X in u1 having a common substitution instance with u2, and let
f, g be a minimal unifying pair for w, u2. Then a is (clearly) also an occurrence
of f(w) = g(u2) in f(u1), and 〈f(v1), f(u1)[a : f(w)→ g(v2)]〉 is a critical pair
for B.

Clearly, if 〈u, v〉 is a critical pair for B, then 〈u, v〉 ∈ Eq(B). In the above
notation, we have f(u1)→ f(v1) and f(u1)→ f(u1)[a : f(w)→ g(v2)].

The set B is said to have confluent critical pairs if for each pair 〈u, v〉
critical for B, there exists a term t such that both u and v can be rewritten to
t with respect to B.

3.1. Theorem. A set of equations is locally confluent if and only if it has
confluent critical pairs.

Proof. The direct implication is clear. Let B have confluent critical pairs
and let p, q, r be three terms with p → q and p → r, so that 〈p, q〉 is an
immediate consequence of an equation 〈u1, v1〉 ∈ B and 〈p, r〉 is an immediate
consequence of an equation 〈u2, v2〉 ∈ B. There exists an address a1 in p such
that p[a1] = f(u1) for a substitution f and p[a1 : f(u1)→ f(v1)] = q. Similarly,
there exists an address a2 in p such that p[a2] = g(u2) for a substitution g and
p[a2 : g(u2) → g(v2)] = r. If the two addresses a1 and a2 are incomparable,
then we can put s = q[a2 : g(u2)→ g(v2)] = r[a1 : f(u1)→ f(v1)] and we have
q → s and r → s. Now, without loss of generality, we can assume that a2 is
an extension of a1, so that g(u2) is a subterm of f(u1).

Consider first the case when there are two addresses a, b such that a2 =
a1ab and u1[a] ∈ X. Put x = u1[a]. We can define a substitution h by
h(x) = f(x)[b : g(u2) → g(v2)] and h(y) = y for all y ∈ X r {x}. Put
s = p[a1 : f(u1) → h(v1)]. Clearly, q can be rewritten to s (the number of
steps is |v1|x), and also r can be rewritten to s (the number of steps is |u1|x).

It remains to consider the case when a2 = a1a for an address a and a is
an occurrence of a subterm w /∈ X in u1. We have f(w) = p[a2] = g(u2). Let
f0, g0 be a minimal unifying pair for f, g, so that f = hf0 and g = hg0 for a
substitution h. Then 〈f0(v1), f0(u1)[a : f0(w) → g0(v2)]〉 is a critical pair and
there exists a term s such that both members of the pair can be rewritten to s.
Clearly, both f(v1) and f(u1)[a : g(u2) → g(v2)] can be rewritten to h(s). It
follows easily that both q and r can be rewritten to the same term. �
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4. Well quasiorders

Let ≤ be a quasiorder on a set A, i.e., a reflexive and transitive relation.
For two elements a, b ∈ A we write a < b if a ≤ b and b 6≤ a. We write a ≡ b
if a ≤ b and b ≤ a. (If the quasiorder is denoted by ≤′, or ≤i, etc., then the
derived relations will be denoted by <′, ≡′, <i, ≡i, etc., respectedly.)

4.1. Lemma. The following conditions are equivalent for a quasiorder ≤
on a set A:

(1) for any infinite sequence a0, a1, . . . of elements of A there exist two
indexes i, j with i < j and ai ≤ aj ;

(2) there are no infinite antichains (i.e., infinite subsets S of A such that
a 6≤ b whenever a, b are two distinct elements of S) and no infinite
descending chains (i.e., infinite sequences a0, a1, . . . of elements of A
such that aj < ai whenever i < j);

(3) every infinite sequence a0, a1, . . . of elements of A has an infinite non-
decreasing subsequence (i.e., there exist indexes i0 < i1 < . . . with
ai0 ≤ ai1 ≤ . . . ).

Proof. (1) → (2) and (3) → (1) are clear. It remains to prove (2) → (3).
This is clear if there exists an index k such that ak ≡ ai for infinitely many
indexes i. So, we can assume that for any k there are only finitely many such
indexes i.

Since there are no infinite descending chains, every nonempty subset of A
contains a minimal element, i.e., an element a such that there is no element b
in the subset with b < a.

Let I−1 be the set of nonnegative integers. By induction on j ≥ 0 we are
going to define an index ij and an infinite set of indexes Ij with ij < m and
aij < am for all m ∈ Ij. Suppose that i0, . . . , ij−1 and Ij−1 have been already
defined. The set Q = {am : m ∈ Ij−1} contains at least one minimal element;
according to the above assumption, and since there are no infinite antichains,
there are only finitely many elements m ∈ Ij−1 such that am is a minimal
element of Q. Now for every m ∈ Ij−1 there exists an m0 ∈ Ij−1 such that
am0
≤ am and am0

is a minimal element of Q. Since Ij−1 is infinite, it follows
that there is an m0 ∈ Ij−1 such that am0

is a minimal element of Q and there
are infinitely many elements m ∈ Ij−1 with am0

< am. Take one such m0 and
denote it by ij ; put Ij = {m ∈ Ij−1 : aij < am and ij < m}.

Now it is easy to see that i0 < i1 < . . . and ai0 < ai1 < . . . . �

A quasiorder ≤ on A is called a well quasiorder if it satisfies one of the
three equivalent conditions of Lemma 4.1.

The following observation is easy to prove: Any quasiorder on a set A
which extends a well quasiorder on A, is itself a well quasiorder.

By a bad sequence for a quasiorder ≤ on A we mean an infinite sequence
a0, a1, . . . of elements of A such that ai 6≤ aj whenever i < j. So, ≤ is a well
quasiorder if and only if there is no bad sequence for ≤.
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4.2. Lemma. Let ≤ be a quasiorder on A, with respect to which there are
no infinite descending chains. If ≤ is not a well quasiorder, then there exists
a bad sequence a0, a1, . . . for ≤ such that the set {a ∈ A : a < ai for some i}
is well quasiordered by ≤.

Proof. Since there are no infinite descending chains, every nonempty sub-
set of A contains a minimal element, i.e., an element a such that there is no
element b in the subset with b < a. Let us define elements ai ∈ A by induc-
tion on i = 0, 1, . . . as follows. Suppose that a0, . . . , ai−1 are already defined.
Denote by Xi the set of the elements a for which there exists a bad sequence
b0, b1, . . . with b0 = a0, . . . , bi−1 = ai−1, bi = a; if Xi is nonempty, let ai be a
minimal element of Xi. By induction, it is easy to see that all the sets Xi are
nonempty, so that ai is defined for any i. Clearly, the sequence a0, a1, . . . is
bad.

Let B = {a ∈ A : a < ai for some i}. Suppose that there is a bad sequence
c0, c1, . . . of elements of B. Denote by n the least number such that ci < an

for some i. Denote by m the least number such that cm < an. It is easy to see
that the sequence a0, . . . , an−1, cm, cm+1, . . . is a bad sequence contradicting
the minimality of the element bn. �

4.3. Lemma. Let ≤1 be a well quasiorder on A1 and ≤2 be a well quasiorder
on A2. Then the relation ≤ on A1 × A2, defined by 〈a, b〉 ≤ 〈c, d〉 if and only
if a ≤1 c and b ≤2 d, is also a well quasiorder.

Proof. It follows easily from condition (3) of Lemma 4.1. �

Let ≤ be a quasiorder on A. Denote by B the set of all finite sequences
of elements of A, and define a binary relation ≤∗ on B by 〈a1, . . . , an〉 ≤

∗

〈b1, . . . , bm〉 if and only if n ≤ m and there are indexes 1 ≤ i1 < i2 < · · · <
in ≤ m with a1 ≤ bi1 , . . . , an ≤ bin . Clearly, ≤∗ is a quasiorder on B; it is
called the sequence quasiorder (with respect to ≤).

4.4. Lemma. Let ≤ be a well quasiorder on a set A. Then the sequence
quasiorder ≤∗ on the set B of finite sequences of elements of A is also a well
quasiorder.

Proof. It is easy to see that there are no infinite strictly decreasing se-
quences with respect to ≤∗. Suppose that ≤∗ is not a well quasiorder, so that,
by Lemma 4.2, there is a bad sequence α0, α1, . . . of elements of B for which
the set C = {α ∈ B : α <∗ αi for some i} is well quasiordered by ≤∗. Clearly,
we can suppose that each αi is a nonempty sequence; write αi = aiβi. Then
βi <

∗ αi and the set {βi : i ≥ 0} is well quasiordered by ≤∗. By Lemma 4.3,
the set A×{βi : i ≥ 0} is well quasiordered by the quasiorder obtained from ≤
and ≤∗, and the sequence 〈a0, β0〉, 〈a1, β1〉, . . . of its elements cannot be bad.
Consequently, ai ≤ aj and βi ≤

∗ βj for some i < j. But then clearly αi ≤
∗ αj ,

a contradiction. �
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If ≤ is a quasiorder on a set A, then for two finite sequences 〈a1, . . . , an〉
and 〈b1, . . . , bm〉 of elements of A we write 〈a1, . . . , an〉 ≤ 〈b1, . . . , bm〉 (lexico-
graphically) if one of the following two cases takes place: either n ≤ m and
ai ≡ bi for all i ≤ n, or else there is an index k ≤ min(n,m) such that ak < bk
and ai ≡ bi for all i < k. Clearly, this is a quasiorder on the set of finite
sequences of elements of A. However, it is not a well quasiorder whenever the
set A contains two elements incomparable with respect to ≤.

5. Well quasiorders on the set of terms

For a term t, we define an element o1(t) ∈ X ∪ σ and a finite sequence
of terms o2(t) in this way: if t ∈ X, then o1(t) = t and o2(t) is empty; if
t = Ft1 . . . tn, then o1(t) = F and o2(t) = 〈t1, . . . , tn〉.

Let Y be a subset of X and ≤◦ be a quasiorder on the set Y ∪ σ. Then
we can define a quasiorder ≤ on the set of terms over Y inductively as follows:
u ≤ v if and only if either

(1) o1(u) ≤◦ o1(v) and o2(u) ≤∗ o2(v), or
(2) v = Fv1 . . . vn, and u ≤ vi for some i.

It is easy to see that ≤ is a quasiorder; it is called the term quasiorderterm
quasiorder over ≤◦.

5.1. Lemma. Let ≤◦ be a well quasiorder on the set Y ∪ σ, where Y ⊆ X.
Then the term quasiorder ≤ over ≤◦ is a well quasiorder on the set of terms
over Y .

Proof. Clearly, u ≤ v implies λ(u) ≤ λ(v). Easily, there are no infinite
descending chains with respect to ≤. Suppose that ≤ is not a well quasiorder.
By Lemma 4.2 there is a bad sequence t0, t1, . . . of terms such that the set
B = {t : t < ti for some i} is well quasiordered by ≤. Observe that for each ti,
the sequence o2(ti) is a finite sequence of elements of B. By Lemma 4.3, the
sequence 〈o1(t0), o2(t0)〉, 〈o1(t1), o2(t1)〉, . . . cannot be bad with respect to the
product quasiorder of ≤◦ and ≤∗. Consequently, for some i < j we have
o1(ti) ≤◦ o1(tj) and o2(ti) ≤

∗ o2(tj). But then ti ≤ tj, a contradiction. �

5.2. Corollary. Let ≤ be a quasiorder on the set of terms over a set
Y ⊆ X. If there exists a well quasiorder ≤◦ on Y ∪ σ such that ≤ extends the
term quasiorder over ≤◦, then ≤ is a well quasiorder.

A term rewrite system B is said to be compatible with a quasiorder ≤ on
the set of terms over a set Y ⊆ X if S(u) ∪ S(v) ⊆ Y for any 〈u, v〉 ∈ B,
and f(v) < f(u) for any 〈u, v〉 ∈ B and any substitution f over Y . (By
a substitution over Y we mean one that maps the set of terms over Y into
itself.)

By a simplification quasiorder on the set of terms over a set Y ⊆ X we
mean a quasiorder ≤ satisfying the following two conditions:

(1) Fu1 . . . un ≤ Fv1 . . . vn whenever ui ≤ vi for all i;
(2) u ≤ v whenever u is a subterm of v.
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Of course, condition (1) is equivalent to

u ≤ v implies Fu1 . . . ui−1u ui+1 . . . un ≤ Fu1 . . . ui−1v ui+1 . . . un.

A quasiorder satisfying (1) is said to be monotone; in literature, such a quasi-
order is also often called a quasiorder respecting replacement. Condition (2) is
called the subterm property ; it is equivalent to

ui ≤ Fu1 . . . un for all i.

5.3. Theorem. Let σ be finite. Let a term rewrite system B be compatible
with a simplification quasiorder ≤ on the set of terms over a finite subset Y
of X. Then B is finitely terminating.

Proof. The set σ ∪ Y is finite, so the identity on this set is a well qua-
siorder. Since ≤ is a simplification quasiorder, it is easy to see that it is an
extension of the term quasiorder over the identity on σ ∪ Y . By Lemma 5.1,
≤ is a well quasiorder.

Suppose that B is not finitely terminating, so that there exists an infinite
directed path u0 → u1 → u2 → . . . in the associated graph. Since for any
substitution f also f(u0) → f(u1) → f(u2) → . . . is an infinite path, we may
assume that all the terms ui are terms over Y . Denote by P the set of terms
that are initial terms of an infinite directed path, all the members of which are
terms over Y . So, P is nonempty.

Let us prove by induction on the length of t that if t ∈ P , then t > t′ for
some t′ ∈ P . If t ∈ Y , it follows easily from the definition of compatibility. So,
let t = Ft1 . . . tn. Let t = u0 → u1 → u2 → . . . be an infinite directed path,
the existence of which follows from t ∈ P . For every i there are an equation
〈pi, qi〉 ∈ B and a substitution fi such that ui+1 results from ui by replacing an
occurrence of a subterm fi(pi) with fi(qi). Now if fi(pi) is a proper subterm
of ui for all i, then one can easily see that tj ∈ P for at least one number
j ∈ {1, . . . , n}, by induction tj > t′j for some t′j ∈ P , and t ≥ tj > t′j . So, we

can assume that fi(pi) = ui for at least one index i. Then also fi(qi) = ui+1.
By the definition of compatibility, fi(qi) < fi(pi), i.e., ui+1 < ui. Since ≤ is a
monotone quasiorder, we have t = u0 ≥ u1 ≥ · · · ≥ ui > ui+1 ∈ P , so we can
take t′ = ui+1.

From this it follows that there is an infinite decreasing sequence of terms
with respect to ≤, a contradiction, since ≤ is a well quasiorder. �

5.4. Theorem. Let σ be finite and Y be a finite subset of X. Let ≤ be
a recursive quasiorder on the set of terms over Y such that u < v implies
f(u) < f(v) for all substitutions f over Y . Then there is an algorithm for
testing finite term rewrite systems for compatibility with ≤.

Proof. It is clear. �

6. The Knuth-Bendix algorithm

Let σ be finite, Y be a finite subset of X and ≤ be a recursive simplification
quasiorder on the set of terms over Y such that u < v implies f(u) < f(v)



172 13. TERM REWRITE SYSTEMS

for all substitutions f over Y . The following algorithm, called the Knuth-
Bendix algorithm with respect to ≤, can be used to modify a finite term rewrite
system B over Y . For some inputs, the algorithm never terminates; for other
ones it halts with failure; if halting with success, the algorithm outputs a
convergent term rewrite system for the equational theory based on the original
term rewrite system B. Here is the algorithm:

Step 1: Modify B by replacing any equation 〈u, v〉 such that u < v,
with the equation 〈v, u〉; if for some equation 〈u, v〉 ∈ B neither u < v
nor v > u takes place, halt with failure.

Step 2: Denote by C the set of the critical pairs 〈u, v〉 for B that are not
confluent (i.e., the terms u and v cannot be rewritten to a common
term with respect to B); in each class of similar such critical pairs
take one representant, so that C is finite. If C is empty, halt with
success. Otherwise, replace B with B ∪ C and go to Step 1.

In order to be able to apply the Knuth-Bendix algorithm together with
theorems 5.3 and 5.4, it is necessary to have a class of simplification quasiorders
≤ at hand, such that u < v implies f(u) < f(v) for all substitutions f over a
given finite set of variables.

7. The Knuth-Bendix quasiorder

Let σ be finite and let Y be a finite subset of X; let ≤◦ be a quasiorder
on Y ∪ σ; let ≤′ be any quasiorder on the set of terms over Y . Let us define
inductively a binary relation ≤ on the set of terms over Y by u ≤ v if and only
if one of the following (mutually exclusive) cases takes place:

(1) u <′ v;
(2) u ≡′ v and o1(u) <◦ o1(v);
(3) u ≡′ v, o1(u) ≡◦ o1(v) and o2(u) ≤ o2(v) (lexicographically).

It is not difficult to prove that ≤ is a quasiorder contained in ≤′; it is called
the Knuth-Bendix quasiorder obtained from ≤◦ and ≤′.

A quasiorder ≤ on a set of terms is said to be stable for variables if S(u) ⊆
S(v), whenever u ≤ v.

7.1. Lemma. Let ≤ be the Knuth-Bendix quasiorder obtained from ≤◦ and
from a simplification quasiorder ≤′ such that Ft1 . . . tn ≡

′ ti can hold only
when F is unary and F ≥◦ s for all s ∈ Y ∪ σ. Then:

(1) ≤ is a simplification quasiorder, and u < v whenever u is a proper
subterm of v;

(2) if either ≤0 or ≤′ is an order, then ≤ is an order;
(3) if ≤′ is stable for variables and both ≤′ and <′ are fully invariant,

then ≤ is stable for variables and both ≤ and < are fully invariant.

Proof. (1) The monotonicity of ≤ is clear. Let us prove by induction
on Ft1 . . . tn that Ft1 . . . tn ≡ ti can never happen. Suppose Ft1 . . . tn ≡ ti.
Then F is unary, and maximal with respect to ≤◦. Clearly, F ≡◦ o1(t1) and
t1 ≡ o2(t1) (lexicographically). This is possible only if o2(t1) is of length 1,
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t1 = Gu1 for some unary symbol G and some u1, and t1 ≡ u1; we get a
contradiction by induction.

Let us prove ti ≤ Ft1 . . . tn by induction on Ft1 . . . tn. If ti <
′ Ft1 . . . tn,

we are done. Otherwise, F is unary and a largest element of Y ∪ σ, i = 1, and
t1 ≡

′ Ft1. If o1(t1) <◦ F , we are done. Otherwise, o1(t1) ≡◦ F . By induction,
every member of o2(t1) is ≤ t1; as we have seen above, the first member cannot
be ≡ t1. Hence o2(t1) ≤ t1 (lexicographically), and we get t1 ≤ Ft1.

(2) is easy. It remains to prove (3). Since ≤ is contained in ≤′, the
quasiorder ≤ is stable for variables. We are going to prove by induction on
the complexity of u, v that if u ≤ v then f(u) ≤ f(v), and if u < v then
f(u) < f(v), for any substitution f over Y . If u <′ v, it is clear. So, let u ≡′ v.
If both o1(u) and o1(v) belong to σ, the proof is easy (by induction in the
case (3) for u ≤ v).

Let u ∈ Y . Since ≤ is stable for variables, u occurs in v and f(u) is a
subterm of f(v), so that f(u) ≤ f(v) by the subterm property; if u < v, then
u is a proper subterm of v and f(u) < f(v) by (1).

Now suppose that u /∈ Y and v ∈ Y . Then v is the only variable that
can occur in u. If v does occur in u, then we can write u = Fu1 . . . un and v
occurs in some ui, so that v ≤ ui < u ≤ v, a contradiction. Hence u contains
no variables. Now u ≡′ v and the full invariancy of ≤′ imply that all terms
over Y are equivalent with respect to ≡′, a contradiction, since ≤′ is stable for
variables. �

Let Y be a finite subset of X. By a weighting function (over Y ) we shall
mean a mapping of Y ∪ σ into the set of nonnegative real numbers. Every
weighting function α over Y can be extended to the set of all terms over Y , if
we define α(t) to be the sum of all α(s), where s runs over all occurrences of
variables and operation symbols in t. (Or inductively: α(Ft1 . . . tn) = α(F ) +
α(t1) + · · ·+ α(tn).)

Let σ be finite and Y be a finite subset of X; let ≤◦ be a quasiorder on
Y ∪ σ, and α be a weighting function. Let us define a quasiorder ≤′ on the
set of terms over Y by u ≤′ v if and only if either α(u) < α(v) and |u|x ≤ |v|x
for all x ∈ Y (where |t|x is the number of occurrences of x in t), or else
α(u) = α(v) and |u|x = |v|x for all x ∈ Y . (It is easy to see that ≤′ is a
quasiorder.) The Knuth-Bendix quasiorder obtained from ≤◦ and ≤′ will be
called the Knuth-Bendix quasiorder obtained from ≤◦ and α.

7.2. Theorem. (Knuth, Bendix [70]) Let σ be finite and Y be a finite subset
of Y ; let ≤◦ be a quasiorder on Y ∪ σ and α be a weighting function over Y
such that the following three conditions are satisfied:

(1) α(s) > 0 whenever s is a constant or a variable;
(2) if α(F ) = 0 for a unary operation symbol F , then F ≥◦ s for all

s ∈ Y ∪ σ;
(3) if x ∈ Y , then α(x) = α(y) for all y ∈ Y and α(x) ≤ α(c) for every

constant c ∈ σ.
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Then the Knuth-Bendix quasiorder ≤ obtained from ≤◦ and α is a fully in-
variant simplification quasiorder; < is also fully invariant, and ≤ is stable for
variables.

Proof. In order to be able to apply Lemma 7.1, we must show that ≤′

(as defined above) is a simplification quasiorder, Ft1 . . . tn ≡
′ ti can hold only

when n = 1 and F ≥◦ s for all s ∈ Y ∪ σ, ≤′ is stable for variables and both
≤′ and <′ are fully invariant.

The monotonicity of ≤′ is clear. Let us prove ti ≤
′ Ft1 . . . tn. We have

α(ti) ≤ α(Ft1 . . . tn) and everything is clear if this inequality is sharp. So, let
α(ti) = α(Ft1 . . . tn). By (1) we get n = 1; but then, |t1|x = |Ft1|x for all x.

Let Ft1 . . . tn ≡
′ ti. Clearly, α(F ) = 0 and, by (1), n = 1. By (2), F ≥◦ s

for all s ∈ Y ∪ σ.
Since u ≤′ v implies |u|x ≤ |v|x for all x ∈ Y , ≤′ is stable for variables.
It is easy to see that for any term t, α(f(t)) = α(t)+

∑

{α(f(t[e]))−α(t[e]) :
e ∈ OX(t)}. It follows from (3) that α(f(x)) − α(x) ≥ 0 for all x ∈ Y . From
this it follows easily that both ≤′ and <′ are fully invariant. �

7.3. Example. Let σ = {·,−1, e} where · is binary, −1 is unary, and e is a
constant; let Y = {x, y, z}. Define ≤◦ by x ≡◦ y ≡◦ z ≡◦ e <◦ · <◦

−1, and
α by α(·) = α(−1) = 0 and α(x) = α(y) = α(z) = α(e) = 1. Using the above
results, one can see that the set consisting of the ten equations

ex ≈ x, x−1x ≈ e, (xy)z ≈ x(yz), x−1(xy) ≈ y, xe ≈ x,
e−1 ≈ e, (x−1)−1 ≈ x, xx−1 ≈ e, x(x−1y) ≈ y, (xy)−1 ≈ y−1x−1

is a convergent base for group theory.

8. Perfect bases

Recall that for a pair u, v of terms, u ≤ v means that a substitution instance
of u is a subterm of v. If u � v, we say that v avoids u.

Let P be a set of equations. We denote by AP the set of all terms t such
that whenever u ≈ u′ ∈ P , then u � t. So AP consists of all those terms that
avoid the left sides of equations in P .

P is said to be pre-perfect if the following conditions are satisfied:

(pp1) if u ≈ u′ ∈ P , v ≈ v′ ∈ P and 〈u, u′〉 6= 〈v, v′〉, then u � v;
(pp2) if u ≈ u′ ∈ P , v ≈ v′ ∈ P and f(u) = g(v) for two substitutions f, g

such that every proper subterm of f(u) belongs to AP , then f(u′) =
g(v′);

(pp3) if u ≈ u′ ∈ P and f is a substitution such that every proper subterm
of f(u) belongs to AP , then f(u′) ∈ AP .

If P is a pre-perfect set of equations, then we can define a mapping νP of
the set of terms into AP as follows:
νP (x) = x for any variable x;
νP (F (t1, . . . , tn)) = F (νP (t1), . . . , νP (tn)) if the last term belongs to AP ,
νP (F (t1, . . . , tn)) = f(u′) if F (νP (t1), . . . , νP (tn)) = f(u) for a substitution f

and an equation u ≈ u′ ∈ P .
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In fact, the three conditions above are just a formulation of the correctness of
this definition plus a little bit more.

If P is a pre-perfect set of equations, we can consider the set AP to be an
algebra of the given signature by setting FAP

(t1, . . . , tn) = νP (F (t1, . . . , tn)),
where n is the arity of F .

8.1. Lemma. Let P be a pre-perfect set of equations. Then:

(1) If u ≈ u′ ∈ P , then u is not a variable, u′ = νP (u) and S(u′) ⊆ S(u);
(2) νP is a homomorphism of the term algebra onto AP .

Proof. (1) Let u ≈ u′ ∈ P . By (pp1), every proper subterm of u belongs
to AP , so that condition (pp3) with respect to the identical substitution says
that u′ ∈ AP . In particular, AP is nonempty; but then u cannot be a variable.
It is easy to see that u′ = νP (u). Suppose that there is a variable y ∈ S(u′)−
S(u). Let f be the identical substitution, and g be the substitution with
g(x) = x for any variable x 6= y, and g(y) = x. We have f(u) = g(u) = u but
f(u′) 6= g(u′), a contradiction with (pp2).

(2) We need to prove νPF (t1, . . . , tn) = FA(νP (t1), . . . , νP (tn)), i.e., we
need to prove νPF (t1, . . . , tn) = νPF (νP (t1), . . . , νP (tn)). If F (νP (t1), . . . ,
νP (tn)) ∈ AP , then both sides are equal to this term. If, on the contrary, this
term is of the form f(u) for a substitution f and an equation u ≈ u′ ∈ P , then
both sides are equal to f(u′) according to the definition of νP . �

By a perfect base we mean a pre-perfect set P of equations such that the
algebra AP satisfies all the equations from P . A subset P of an equational
theory E is a perfect base for E if and only if it is pre-perfect and the algebra
AP satisfies all the equations from E.

8.2. Theorem. Let P be a perfect base for E. Then:

(1) νP is a normal form function for E;
(2) AP is the free E-algebra over the set of variables;
(3) E is decidable if P is recursive, with recursive domain.

Proof. (nf2) is easy by induction on the complexity of t, and (nf3) is clear.
By 8.1, νP is a homomorphism of the term algebra onto AP . So, if u ≈ v ∈ E,
then νP (u) = νP (v), because AP satisfies all the equations from E. The
converse follows from (nf2), so we have both implications of (nf1). It follows
that AP is isomorphic to the factor of the term algebra through E, and hence
AP is the free E-algebra over the set of variables. (3) follows from (1). �

8.3. Example. Examples will be given for the signature of groupoids. The
set P consisting of the two equations

xx · yy ≈ xx, (xx · x) · yy ≈ ((xx · x)x)x

will serve as an example of a finite perfect base, the equational theory of
which has no (either finite or infinite) finitely terminating and confluent base.
Denote by E the equational theory based on P and by ◦ the multiplication
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of the groupoid AP . Based on the following observation, one can easily check
that P is perfect: if a ∈ AP , then

a ◦ a =

{

a if a is a square (i.e., a = tt for a term t),

aa if a is not a square.

In each case, a ◦ a is a square.
Suppose that there is a finitely terminating and confluent base Q for E.

It is easy to see that if t is a term with t ≈ xx ∈ E, then t contains xx as a
subterm and so, because of the finite termination, xx cannot be Q-rewritten
to t. It follows that xx is in Q-canonical form and the term xx · yy can be
Q-rewritten in finitely many steps to xx. Denote by w the Q-canonical form of
(xx ·x) ·yy. We have w 6= (xx ·x) ·yy, since ((xx ·x)x)x cannot be Q-rewritten
to (xx · x) · yy, due to finite termination. So we have that (xx · x) · yy, as well
as xx ·yy, can be Q-rewritten. This implies that w avoids both (xx ·x) ·yy and
xx · yy, because w cannot be Q-rewritten, being itself in Q-canonincal form.
But then w ∈ AP and hence w = ((xx · x)x)x, since P is perfect. This means
that (xx · x) · yy can be Q-rewritten in finitely many steps to ((xx · x)x)x.
Consequently, the term ((xx ·xx) ·xx) ·xx can be Q-rewritten in finitely many
steps to (((xx · xx) · xx) · xx) · xx, clearly a contradiction.

So there are equational theories with finite perfect bases but without any
convergent term rewriting system. On the other hand, the equational theory
of semigroups serves as an example of an equational theory with a convergent
term rewriting system but with no perfect base.

8.4. Lemma. The set of the finite pre-perfect sets of equations is recursive.

Proof. Condition (pp1) is easy to verify, and we can also easily verify that
u ≈ u′ ∈ P implies S(u′) ⊆ S(u), which is necessary according to 8.1. Under
this assumption, conditions (pp2) and (pp3) can be equivalently reformulated
in the following way:

(pp2′) if u ≈ u′ ∈ P , v ≈ v′ ∈ P and f and g is the minimal unifying pair
for u and v, then, in case that every proper subterm of f(u) belongs
to AP , f(u′) = g(v′);

(pp3′) if u ≈ u′ ∈ P , v ≈ v′ ∈ P , s ⊆ u′ and f and g is the minimal unifying
pair for s and v, then f(u) contains a proper subterm not in AP .

The equivalence of (pp2) with (pp2′) is easy, and clearly (pp3) implies
(pp3′). It remains to prove that (pp3′) implies (pp3). Let u ≈ u′ ∈ P and
let f be a substitution such that every proper subterm of f(u) belongs to AP .
Suppose f(u′) /∈ AP , i.e., g(v) ⊆ f(u′) for a substitution g and an equation
v ≈ v′ ∈ P . If x ∈ S(u′), then x ∈ S(u′) ⊆ S(u), f(x) is a proper subterm of
f(u) and so, by our assumption, g(v) cannot be a subterm of f(x). The only
other possibility for g(v) to be a subterm of f(u′) is, that g(v) = f(s) for a
subterm s of u′. Let f0, g0 be the minimal unifying pair for s and v, so that
f = hf0 and g = hg0 for some h. By (pp3′), f0(u) contains a proper subterm
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not in AP . But then clearly f(u) = hf0(u) also contains a proper subterm not
in AP , a contradiction. �

Let P be a finite pre-perfect set and let a ≈ b be an equation from P .
We want to decide if the algebra AP satisfies a ≈ b. For this purpose we
shall construct a finite set of substitutions which will serve as a test set. By a
permissible substitution we shall mean one which maps variables into AP . All
our testing substitutions will be permissible. Observe that if gh is a permissible
substitution, then h is also permissible, because the complement of AP is closed
under any substitution.

By induction on the complexity of a term t, we are first going to define
a finite set U(t) of permissible substitutions with the following property: if
f = gh where f is a permissible substitution, and f and h expand precisely
the same substitutions from U(t), then νP f(t) = gνPh(t).

If t is a variable, let U(t) consist of a single substitution, the identical one.
For f = gh as above, clearly both νP f(t) and gνPh(t) are equal f(t).

Now let t = F (t1, . . . , tn). Put U0 = U(t1) ∪ · · · ∪ U(tn). Consider an
arbitrary nonempty subset S of U0 which has a common expansion, and let fS

be the minimal common expansion of S. For any u ≈ u′ ∈ P such that the
terms F (νP fS(t1), . . . , νP fS(tn)) and u have a unifying pair, let gS,u and lS,u

be the minimal unifying pair for these terms; so,

gS,uF (νP fS(t1), . . . , νpfS(tn)) = lS,u(u).

We define U(t) to be the set of the permissible substitutions that either belong
to U0 or are fS for some S or are gS,ufS for some S, u.

We must prove that U(t) has the property stated above. Let f = gh where
f is a permissible substitution, and f and h expand the same substitutions from
U(t). Denote by S the set of the substitutions from U0 that can be expanded
to f (and to h). Then h = kfS for some k, and all the three substitutions, f, h
and fS, expand the same substitutions from U0. For any i = 1, . . . , n, U(ti) is
a subset of U0, so the three substitutions also expand the same substitutions
from U(ti) and, by induction,

νP f(ti) = gkνP fS(ti) and νPh(ti) = kνP fS(ti).

Let us consider two cases.
The first case is when gS,u exists for some u ≈ u′ ∈ P and f expands

gS,ufS . Then also h expands the substitution and we can write h = pgS,ufS ;
in fact, we can suppose that k = pgS,u. Since f = gkfS = gpgS,ufS , we have

F (νP f(t1), . . . , νP f(tn)) = gpgS,uF (νP fS(t1), . . . , νP fS(tn)) = gplS,u(u),

so that νP f(t) = gplS,u(u′) by the definition of νP . Quite similarly, νPh(t) =
plS,u(u′) and we get νP f(t) = gνPh(t) as desired.

The second case is when f (and h, as well) does not expand any gS,ufS .
Then gk does not expand any gS,u. By the defining property of gS,u this means
that there is no substitution l with gkF (νP fS(t1), . . . , νP fS(tn)) = l(u) for any
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u ≈ u′ ∈ P . Hence the term

gkF (νP fS(t1), . . . , νP fS(tn)) =F (gkνP fS(t1), . . . , gkνP fS(tn))

=F (νP f(t1), . . . , νP f(tn))

belongs to AP , so that, by the definition of νP ,

νPf(t) = F (νP f(t1), . . . , νP f(tn)) = gkF (νP fS(t1), . . . , νP fS(tn)).

Quite similarly νPh(t) = kF (νP fS(t1), . . . , νP fS(tn)), and we get νP f(t) =
gνPh(t) as desired.

This finishes the construction of U(t) together with the proof that it has
the desired property.

Clearly, it is possible to construct a finite set V of permissible substitutions
such that V contains both U(a) and U(b) and the minimal common expansion
of any subset of V belongs to V , under the assumption that it exists and is
permissible. These will be our testing substitutions. If a ≈ b is satisfied in
AP , then νP f(a) = νP f(b) for any f ∈ V , since νP f is a homomorphism of
the term algebra into AP . Conversely, suppose that νPf(a) = νPf(b) for all
f ∈ V , which can be tested in finite time. We shall show that then a ≈ b is
satisfied in AP , i.e., that h(a) = h(b) for any homomorphism h of the term
algebra into AP ; one can assume that h(x) = x for any variable x not in
S(a) ∪ S(b). Denote by e the substitution coinciding with h on the variables,
so that h = νP e. There is a substitution f ∈ V such that e = gf for some g,
and e and f expand the same substitutions from V . We have h(a) = νP e(a) =
gνP f(a) = gνP f(b) = νP e(b) = h(b).

Together with 8.4, this proves the following:

8.5. Theorem. The set of the finite sets P of equations that are a perfect
base for the equational theory based on P , is recursive.

8.6. Example. In order to describe the equational theory based on xy·zx ≈
x, one can try to prove that this single-equation base is already perfect. The
test, as described above, fails and provides two more equations that should be
added to a perfect base, namely, x(y · zx) ≈ xz and (xy · z)y ≈ xy. Now the
three equations together can be tested to a success; the three-element set of
equations is a perfect base for the equational theory.

As demonstrated by this example, if the perfection test fails for a given
finite pre-perfect base P0, there is still a possibility to modify P0 to obtain
another finite base P1 for the same equational theory E, which would be either
perfect itself or just the next member of a sequence P0, P1, . . . of finite pre-
perfect bases for E constructed each from the last one in the same way, the last
member of which is perfect. If Pi has already been constructed, a good candi-
date for Pi+1 is the union of Pi with the set of the equations νPi

f(a) ≈ νPi
f(b)

such that a ≈ b ∈ P0, f is a substitution from the finite set V constructed
as above, and νPi

f(a) 6= νPi
f(b). These added equations seem to play a role

similar to one played by critical pairs in the Knuth-Bendix algorithm. It may
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be necessary, however, to replace some of the added equations u ≈ v with their
inverses v ≈ u, and to delete some of the equations or in some cases to modify
the set in other ways to obtain again a pre-perfect set of equations; if some old
equations had to be deleted, one must then check that the new set is again a
base for E, which can be done by verifying that νPi+1

(a) = νPi+1
(b) for any

a ≈ b ∈ P0. Clearly, this process of constructing the sequence P0, P1, . . . may
stop with failure, if we are not able to modify one of its members to become
a pre-perfect base for E. However, it works well for many equational theories.
If the sequence can be constructed, it has the property that APi+1

is a proper
subset of APi

for any i. It is natural to ask whether it can be constructed to
successfully terminate always when there exists some finite perfect base Q for
E such that AQ ⊆ AP0

. We do not know the answer to this question, and
feel that it deserves a deeper study. The most usual application of the process
described (in not very precise terms) above leads either to success, when the
sequence can be constructed, is finite, and its last member is a finite perfect
base, or to the proof that no perfect base exists (for example, one may find
that a nontrivial permutational identity would have to be added), or does not
terminate, producing an infinite sequence of finite pre-perfect bases for E. In
the last case, it may happen that each Pi is a subset of Pi+1, but the union
of all these bases still is not a perfect base; we then need to ‘construct’ a new
infinite sequence of pre-perfect bases, starting with this infinite union.

8.7. Example. The equational theory based on x(y ·zx) ≈ x has an infinite
perfect base consisting of the equations

(yn(yn−1(. . . (y2 · y1x))))(zm(zm−1(. . . (z2 · z1x)))) ≈ yn(yn−1(. . . (y2 · y1x)))

where n,m ≥ 0 and n−m− 1 is divisible by 3. The proof is quite easy.
The equational theory based on y(x · xy) ≈ x has an infinite perfect base

consisting of the equations xx · x ≈ x and rese ≈ te, where e runs over all
finite sequences of elements of {0, 1} and the terms re, se and te are defined
inductively as follows:

r∅ = y, s∅ = x · xy, t∅ = x,

re0 = se, se0 = rete, te0 = re,

re1 = se · sere, se1 = te, te1 = re.

The proof is not so easy as in the previous case.

A set P of equations is said be nonoverlapping if the following are true:

(no1) if u ≈ u′ ∈ P , then S(u′) ⊆ S(u);
(no2) if u ≈ u′ ∈ P , v ≈ v′ ∈ P , s ⊆ v′, and u and s have a unifying pair,

then s is a variable and s 6= v′;
(no3) if u ≈ u′ ∈ P , v ≈ v′ ∈ P , s ⊆ v, and u and s have a unifying pair,

then either s is a variable or both s = u = v and u′ = v′.

8.8. Theorem. Let P be a nonoverlapping set of equations. Then P is a
perfect base for an equational theory.
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Proof. If u ≈ u′ ∈ P , then u and u′ do not have a unifying pair, according
to (no2); in particular, u is not a variable. Conditions (pp1) and (pp2) are
evidently satisfied, and instead of (pp3) it is easier to verify the condition
(pp3′) formulated in the proof of 8.4. So, P is pre-perfect.

In order to prove that the algebra AP satisfies all the equations from P ,
we must show that h(a) = h(b) for any equation a ≈ b ∈ P and any homomor-
phism h of the term algebra into AP . Denote by f the endomorphism of the
term algebra which coincides with h on the set of variables.

Let us prove by induction on the complexity of t that if t is either a subterm
of b or a proper subterm of a, then h(t) = f(t). If t is a variable, this follows
from the definition of f . Let t = F (t1, . . . , tn). We have

f(t) = F (f(t1), . . . , f(tn)),
h(t) = FA(h(t1), . . . , h(tn)) = FA(f(t1), . . . , f(tn))

= νP (F (f(t1), . . . , f(tn))) = νP (f(t))

and thus it remains to show that f(t) belongs to AP . Suppose, on the contrary,
that g(u) is a subterm of f(t) for some substitution g and an equation u ≈ u′ ∈
P . For any variable x, g(u) cannot be a subterm of f(x), because f(x) ∈ AP .
So, g(u) = f(s) for a subterm s of t which is not a variable. This means that
u, s have a unifying pair, a contradiction with (no2) and (no3).

In particular, h(b) = f(b). On the other hand, if a = F (a1, . . . , an),

h(a) = FA(h(a1), . . . , h(an)) = FA(f(a1), . . . , f(an))

which is easily seen to be equal f(b) by comparing the definitions. �

An equational theory E is said to be term finite if every term is E-
equivalent to finitely many terms only. In order to prove that the equational
theory based on a given set of equations is term finite, we need to describe the
equational theory. For that, one can use either the technique of term rewriting
or that of perfect bases. In this case the second turns out to be more useful.

8.9. Example. Consider the equational theory E based on x(x(xx)) ≈
(xx)x. This equation gives both a convergent term rewrite system and a perfect
base for E. In both cases, the corresponding normal form function computes
the shortest term that is E-equivalent with a given term. However, in order
to prove that E is term finite, we would rather need to have a normal form
function computing the longest term that is E-equivalent with a given term.
We need to consider a different base for E, that one consisting of the equation
(xx)x ≈ x(x(xx)). In this case, we also obtain a convergent term rewrite
system, but for the proof of its finite termination we would need to know that
E is term finite; the direct proof of finite termination could be quite hard. On
the other hand, we immediately see that this second base is also perfect; from
this it follows that E is term finite.

A quasiordering v on the set of terms is said to be fully compatible if
F (a1, . . . , an) v F (b1, . . . , bn) whenever ai v bi for all i, and a v b implies
f(a) v f(b) for any substitution f . A quasiordering v such that the set
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{u : u v a} is finite for any a, is called downward finite. A natural example
of a fully compatible, downward finite quasiordering on the set of terms is the
following: u v v if and only if every variable, and also every operation symbol,
has at least as many occurrences in v as in u.

8.10. Theorem. Let an equational theory E have a nonoverlapping base
P , such that there is a fully compatible, downward finite quasiordering v on
the set of terms with u v u′ whenever u ≈ u′ ∈ P . Then E is term finite.

Proof. By 8.8, P is a perfect base and thus νP is a normal form function
for E. We have t v νP (t) for any term t; this can be proved easily by induction
on the complexity of t. Since every term u with u ≈ t ∈ E satisfies νP (u) =
νP (t), for a given term t the set of all such terms u is contained in the principal
ideal of νP (t), which is a finite set. �

8.11. Example. The equation ((xx · yy)x)x ≈ xx is a nonoverlapping
base for an equational theory E1. Similarly, the equation (xx · x)(y · yy) ≈
(x(xx · x))(y · yy) is a nonoverlapping base for an equational theory E2. While
E1 is not term finite, E2 is term finite, which follows from 8.10, using the
quasiordering described immediately preceding that theorem.





CHAPTER 14

MINIMAL SETS

1. Operations depending on a variable

An operation f(x1, . . . , xn) on a set A is said to depend on the variable xi if
there exist elements a1, . . . , an and a′i of A such that

f(a1, . . . , an) 6= f(a1, . . . , ai−1, a
′
i, ai+1, . . . , an).

1.1. Theorem. Let A be an algebra and f be an n-ary polynomial of A
depending on k variables (k ≥ 1). Then for any positive integer m ≤ k, A has
an m-ary polynomial depending on all its variables.

Proof. If we replace any variable in f on which f does not depend with
a constant, we obtain a k-ary polynomial depending on all its variables. So, it
remains to prove that if f is an n-ary polynomial depending on all its variables
and n > 1, then A has an (n − 1)-ary polynomial depending on all its vari-
ables. For every a ∈ A and every i ∈ {1, . . . , n} denote by D(a, i) the set of all
j ∈ {1, . . . , n} r {i} such that the polynomial f(x1, . . . , xi−1, a, xi+1, . . . , xn)
depends on xj. Let us fix a pair a, i for which the set D(a, i) is of max-
imal possible cardinality. It is enough to prove that j ∈ D(a, i) for any
j ∈ {1, . . . , n}r {i}. Suppose, on the contrary, that there is a j 6= i such that
j /∈ D(a, i). Since f depends on i, there exists an element b with i ∈ D(b, j).
Since j /∈ D(a, i), it is easy to see that D(a, i) ⊆ D(b, j). But also i ∈ D(b, j),
hence |D(b, j)| > |D(A, i)|, a contradiction. �

Let A be an algebra and α be a congruence of A. For every polynomial f
of A (or, more generally, for any α-preserving n-ary operation on A) we define
an operation fα on A/α by

fα(a1/α, . . . , an/α) = f(a1, . . . , an)/α.

1.2. Lemma. Let A be an algebra and α be a congruence of A. The poly-
nomials of A/α are precisely the operations fα, where f is a polynomial of A.

Proof. Denote by H the set of the α-preserving operations f on A such
that fα is a polynomial of A/α, and by K the set of the operations fα for
a polynomial f of A. It is easy to see that H is a clone containing all the
constant and all the basic operations of A. Also, it is easy to see that K is a
clone containing all the constant and all the basic operations of A/α. �

183
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1.3. Lemma. Let A be a finite set. There exists a positive integer n such
that fn = f2n for all mappings f of A into A.

Proof. Put m = card(A). For every f ∈ AA and every a ∈ A there is a
repetition in the sequence a, f(a), . . . , fm(a), i.e., there exist integers 0 ≤ u <
m and 1 ≤ v ≤ m such that fu(a) = fu+v(a); then f c+u(a) = f c+u+dv(a) for
all nonnegative integers c, d. Now if we take n = m!, it follows that fm(a) =
f2m(a) for all f ∈ AA and all a ∈ A. �

2. Minimal algebras

By a minimal algebra we mean a non-trivial finite algebra A such that
every unary polynomial of A is either constant or else a permutation of A.

2.1. Theorem. (Pálfy [84]) Let A be a minimal algebra with at least three
elements, having a polynomial that depends on more than one variable. Then
A is polynomially equivalent with a vector space over a finite field.

Proof. By Theorem 1.1, A has a binary polynomial depending on both
its variables. Put N = |A|.

Claim 1. For a binary polynomial f of A and a quadruple of elements
a, b, c, d ∈ A, f(a, c) = f(a, d) implies f(b, c) = f(b, d). Suppose f(b, c) 6=
f(b, d). For each k ≥ 0 define a binary polynomial f [k](x, y) of A in this

way: f [0](x, y) = y; f [k+1](x, y) = f(x, f [k](x, y)). Put g(x, y) = f [N !](x, y).
Then g is a binary polynomial of A, and it is easy to see that g(x, g(x, y)) =
g(x, y) for all x, y ∈ A. Since f(b, c) 6= f(b, d), the unary polynomial h(y) =
f(b, y) is not constant, and hence h is a permutation of A. We have hN !(y) =
g(b, y) = g(b, g(b, y)) = h2(N !)(y) for all y. Since h is a permutation, this
implies hN !(y) = y for all y ∈ A. So, g(b, y) = y for all y ∈ A. Since
g(a, c) = g(a, d), the mapping y → g(a, y) is constant; denote the element
by e. Since g(a, e) = e = g(b, e), we have g(x, e) = e for all x ∈ A.

For each element p ∈ A we have g(p, y) = g(p, g(p, y)), so g(p, y) is either
a constant or the identity.

Take an element p ∈ Ar {a, b}. (This is possible, because |A| ≥ 3.) Also,
take an element q ∈ A r {e}. We have g(a, q) = e and g(b, q) = q, so g(x, q)
is a permutation and g(p, q) 6= e. Since g(p, e) = e, we get g(p, y) = y for all
y ∈ A. In particular, g(p, q) = q. But also g(b, q) = q, a contradiction, since
p 6= b.

Claim 2. If f(a1, . . . , an, an+1) = f(a1, . . . , an, bn+1) for an (n+1)-ary poly-
nomial f of A and elements a1, . . . , an+1, b1, . . . , bn+1 ∈ A, then f(b1, . . . , bn,
an+1) = f(b1, . . . , bn, bn+1). This follows easily from Claim 1.

Claim 3. If f is a binary polynomial of A depending on both its variables,
then A is a quasigroup with respect to f . This also follows easily from Claim 1.

It follows that A has a ternary Mal’cev polynomial δ. Let us fix an element
0 ∈ A. Put x+ y = δ(x, 0, y) and −x = δ(0, x, 0).

Claim 4. A is an Abelian group with respect to +,−, 0. Put

p1(x, y, z, u) = δ(δ(x, 0, u), 0, δ(y, u, z)),
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p2(x, y) = δ(x, y, δ(y, x, 0)),
p3(x, y, z) = δ(z, 0, δ(x, z, y)).

We have (a + b) + c = p1(a, b, c, b) and a + (b + c) = p1(a, b, c, 0). So,
by Claim 2, in order to prove (a + b) + c = a + (b + c), it suffices to prove
p1(0, b, 0, b) = p1(0, b, 0, 0). Both sides equal b.

We have a+ (−a) = p2(a, 0) and 0 = p2(a, a). So, by Claim 1, in order to
prove a+ (−a) = 0, it suffices to prove p2(0, 0) = p2(0, a). Both sides equal 0.

We have a + b = p3(a, b, 0) and b + a = p3(a, b, b). So, by Claim 2, in
order to prove a + b = b + a, it suffices to prove p3(0, 0, 0) = p3(0, 0, b). But
p3(0, 0, b) = b+ (−b) = 0 = p3(0, 0, 0).

Clearly, a+ 0 = a.
Claim 5. If f is an n-ary polynomial of A, then

f(x1, . . . , xn) =

n
∑

i=1

fi(xi)− (n− 1)f(0, . . . , 0)

where fi(xi) = f(0, . . . , 0, xi, 0, . . . , 0) (xi sitting at the i-th place). We will
prove the claim by induction on n. It is clear for n = 1. For n = 2 we need to
prove f(x, y) = f(x, 0)+f(0, y)−f(0, 0), i.e., f(x, y)−f(0, y) = f(x, 0)−f(0, 0).
Put g(x, y, z) = f(x, z) − f(y, z). So, we need to prove g(x, 0, y) = g(x, 0, 0).
By Claim 2 it is sufficient to prove g(0, 0, y) = g(0, 0, 0), but this is clear.

Now let n ≥ 3. The induction assumption applied to the (n − 1)-ary
polynomial f(x1, . . . , xn−1, xn), where xn is fixed, yields

f(x1, . . . ,xn−1, xn) = f(x1, 0, . . . , 0, xn) + . . .

+ f(0, . . . , 0, xn−1, xn)− (n− 2)f(0, . . . , 0, xn).

The desired conclusion follows by several applications of the binary case. The
proof of Claim 5 is thus finished.

Denote by F the set of all unary polynomials p of A such that p(0) = 0. For
each p ∈ F , according to Claim 5 we have p(x+y) = p(x)+p(y), so that p is an
endomorphism of the group (A,+,−, 0). Since F is closed under composition
and addition, it is a subring of the endomorphism ring of (A,+,−, 0). If p ∈ F
and p is not identically zero, then p is a permutation and so pk is the identity
for some k ≥ 1. Hence F is a finite division ring, and thus a field. Clearly, A
is a vector space over F with respect to its polynomials +,−, 0 and px = p(x).

On the other hand, according to Claim 5, every n-ary polynomial f of A can
be expressed as f(x1, . . . , xn) = p1x1+· · ·+pnxn+c where pi(x) = fi(x)−fi(0)
and c = f(0, . . . , 0). �

2.2. Theorem. There are precisely seven clones on the two-element set
{0, 1} that contain all constants. They are generated, respectively, by the fol-
lowing sets of operations (together with the constants):

E0 = ∅, E1 = {′}, E2 = {+}, E3 = {∨,∧,′ },

E4 = {∨,∧}, E5 = {∨}, E6 = {∧}
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where ′ is the only non-identical permutation on {0, 1}, + is addition modulo 2
and ∨ and ∧ are the binary operations of maximum and minimum, respectively.

Proof. It is easy to see that the seven clones are pairwise distinct. Now
let C be a clone on {0, 1} containing all constants. If C contains only essentially
unary operations, then it is easy to see that C is generated by either E0 or E1

(and the constants). Next we assume that C contains an operation depending
on at least two variables, so that, according to Theorem 1.1, C contains a
binary operation f depending on both its variables.

Consider first the case when all binary operations in C satisfy Claim 1
in the proof of Theorem 2.1. Then every binary operation is either x + y or
(x+ y)′. If f(x, y) = (x+ y)′, then x′ = f(0, x) and x+ y = (f(x, y))′. So, we
can assume that f(x, y) = x+y. Proceeding similarly as in the Claims 2 and 5
of the proof of Theorem 2.1, we see that C coincides with the clone generated
by +.

In the remaining case, we can assume that the table of f has a constant
row and a non-constant row.

Suppose that C contains an operation g(x1, . . . , xn) that is not order-
preserving. There are two n-tuples a1, . . . , an and b1, . . . , bn of elements of
{0, 1} such that ai ≤ bi for all i but g(a1, . . . , an) > g(b1, . . . , bn). Denote by
I the set of all i such that ai = 0 and bi = 1, and define a unary operation h
by h(x) = g(y1, . . . , yn) where yi = x for i ∈ I and yi = ai for i /∈ I. Clearly,
h ∈ C and h(x) = x′. Now it is easy to see that C contains either ∨ or ∧, so
that it contains E3 and C is the clone of all operations on {0, 1}.

It remains to consider the case when the table of f has a constant row and a
non-constant row, and all the operations in C are order-preserving. Clearly, f
is either ∨ or ∧. Without loss of generality, we can assume that f(x, y) = x∧y.
If C also contains x∨y, then it is easy to see that it coincides with the clone of
all order-preserving operations on {0, 1} and is generated by E4. Let this be not
the case. We are going to finish the proof by showing that every non-constant
operation h(x1, . . . , xn) of C belongs to the clone generated by ∧. For every
subset I of {1, . . . , n} denote by aI the n-tuple a1, . . . , an where ai = 1 for i ∈ I
and ai = 0 for i /∈ I. Suppose that there are two incomparable minimal subsets
I, J with h(aI) = h(aJ ) = 1. Then x∨ y can be derived from h(x1, . . . , xn) by
substituting x for xi whenver i ∈ I r J , y for xi whenever i ∈ J r I, 0 for xi

whenever i /∈ I∪J , and 1 for xi whenever i ∈ I∩J . But this is a contradiction,
since x ∨ y does not belong to C. Hence there is a unique minimal subset I
with h(aI) = 1. Then it is easy to see that h(x1, . . . , xn) =

∧

i∈I xi and hence
h belongs to the clone generated by ∧. �

A finite, non-trivial algebra A is said to be

- a minimal algebra of type 1 (or of unary type) if it is polynomially
equivalent to (A,G) for a subgroup G of the symmetric group on A,

- a minimal algebra of type 2 (or of affine type) if it is polynomially
equivalent to a vector space,
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- a minimal algebra of type 3 (or of Boolean type) if it is polynomially
equivalent to a two-element Boolean algebra,

- a minimal algebra of type 4 (or of lattice type) if it is polynomially
equivalent to a two-element lattice,

- a minimal algebra of type 5 (or of semilattice type) if it is polynomially
equivalent to a two-element semilattice.

2.3. Theorem. A finite algebra is minimal if and only if it is a minimal
algebra of one of the five types 1, . . . , 5.

Proof. It follows from the last two theorems. �

3. Minimal subsets

In this section we explain foundations of tame congruence theory, developed
in Hobby, McKenzie [88]. The theory is much more extensive than presented
here and serves also as a basis for the most modern applications of universal
algebra.

3.1. Theorem. Let A be a finite algebra and 〈α, β〉 be a prime quotient in
the congruence lattice of A. The following two conditions are equivalent for a
subset U of A:

(1) U is a minimal subset of A with the property U = f(A) for a unary
polynomial f of A such that f(β) 6⊆ α;

(2) U is a minimal subset of A such that α ∩U2 6= β ∩U2 and U = e(A)
for an idempotent unary polynomial e of A.

Proof. Clearly, it is sufficient to prove that if U is as in (1), then U = e(A)
for an idempotent unary polynomial e of A. Denote by K the set of all unary
polynomials f of A with f(A) ⊆ U . Clearly, f ∈ K implies fg ∈ K for
any unary polynomial g. Denote by α′ the set of all 〈x, y〉 ∈ β such that
〈f(x), f(y)〉 ∈ α for all f ∈ K. It is easy to see that α′ is a congruence and
α ⊆ α′ ⊆ β. Since U satisfies (1), we have U = h(A) for a unary polynomial h
with h(β) 6⊆ α. Hence α′ 6= β, and we get α′ = α.

There exists a pair 〈x, y〉 ∈ β such that 〈h(x), h(y)〉 /∈ α. Suppose 〈fg(x),
fg(y)〉 ∈ α for all f, g ∈ K. By two applications of α′ = α we get 〈x, y〉 ∈ α
and hence 〈h(x), h(y)〉 ∈ α, a contradiction. This shows that there are two
unary polynomials f, g ∈ K with 〈fg(x), fg(y)〉 /∈ α. By the minimal property
of U , fg(A) = U and g(A) = U . Hence f(U) = U . There is a positive integer
k with fk = f2k (e.g., k = N !, where N = |A|). Put e = fk, so that e is
an idempotent unary polynomial. Since f(U) = U , we have e(U) = U . Since
e ∈ K, this implies e(A) = U . �

For a finite algebra A and a prime quotient 〈α, β〉 in the congruence lattice
of A, by an (α, β)-minimal subset of A we mean any subset U satisfying the
two equivalent conditions of Theorem 3.1.
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3.2. Lemma. Let U be an (α, β)-minimal subset of A. Then β is the tran-
sitive closure of the relation α ∪ R, where R is the set of all 〈g(x), g(y)〉 such
that 〈x, y〉 ∈ β ∩ U2 and g is a unary polynomial of A.

Proof. It is easy to see that the transitive closure β′ of α ∪ R is a con-
gruence of A and α ⊆ β′ ⊆ β. Moreover, β′ 6= α. �

Two subsets U, V of an algebra A are said to be polynomially isomorphic
(in A) if there are unary polynomials f, g of A such that f(U) = V , g(V ) = U ,
gf |U = idU and fg|V = idV . We then write U ' V (if A is not clear from
the context, we should write U 'A V ). We write f : U ' V if there is a g
satisfying the above conditions.

3.3. Theorem. Any two (α, β)-minimal subsets of a finite algebra A are
polynomially isomorphic in A.

Proof. Let U, V be two (α, β)-minimal subsets of A. There is an idem-
potent unary polynomial p of A with U = p(A). Denote by R the set of all
〈q(x), q(y)〉 where q is a unary polynomial and 〈x, y〉 ∈ β∩V 2. By Lemma 3.2,
β is the transitive closure of α ∪ R. If R ⊆ p−1(α), then it follows that
β ⊆ p−1(α), a contradiction. Hence there is an ordered pair in R not be-
longing to p−1(α), i.e., there are an ordered pair 〈a, b〉 ∈ β ∩ V 2 and a unary
polynomial q such that 〈pq(a), pq(b)〉 /∈ α.

There is an idempotent unary polynomial e with V = e(A). Put h = pqe.
We have h(A) ⊆ U and h(β) 6⊆ α (since 〈h(a), h(b)〉 /∈ α). By the minimality
of U , h(A) = U . Since h = he, we have h(V ) = h(A) = U .

Similarly, there is a unary polynomial f with f(U) = f(A) = V . Now hf |U
is a permutation of U , so there exists a positive integer k with (hf)k|U = idU .
Put g = (hf)k−1h. Then f(U) = V , g(V ) = U , gf |U = idU and fg|V =
idV . �

3.4. Theorem. Let 〈α, β〉 be a prime quotient in the congruence lattice of
a finite algebra A. The following are true:

(1) For every (α, β)-minimal subset U of A and every 〈x, y〉 ∈ βrα there
is a unary polynomial f of A with f(A) = U and 〈f(x), f(y)〉 /∈ α.

(2) If U is an (α, β)-minimal subset of A and f is a unary polynomial
such that f(β ∩ U2) 6⊆ α, then f(U) is a minimal subset of A and
f : U ' f(U).

(3) For every unary polynomial f of A such that f(β) 6⊆ α, there is an
(α, β)-minimal subset U of A with f : U ' f(U).

Proof. (1) There is a unary idempotent polynomial e with U = e(A).
Denote by α′ the set of all 〈p, q〉 ∈ β such that 〈eg(p), eg(q)〉 ∈ α for all unary
polynomials g of A. It is easy to see that α′ is a congruence and α ⊆ α′ ⊂
β, so that α′ = α. Since 〈x, y〉 /∈ α′, there is a unary polynomial g with
〈eg(x), eg(y)〉 /∈ α. Put f = eg. We have f(A) = U by the minimality of U .

(2) Take an idempotent unary polynomial e with e(A) = U , and a pair
〈a, b〉 ∈ β ∩ U2 with 〈f(a), f(b)〉 /∈ α. By (1) there is a unary polynomial g
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with g(A) = U and 〈gf(a), gf(b)〉 /∈ α. Since 〈gfe(a), gfe(b)〉 /∈ α, we have
gf(U) = gfe(A) = U by the minimality of U . Since gf |U is a permutation
of U , we have (gf)k|U = idU for some positive integer k. Then (gf)k−1g is the
inverse of f |U , so f : U ' f(U) and this implies that f(U) is a minimal subset.

(3) Take an (α, β)-minimal subset V . Proceeding similarly as at the be-
ginning of the proof of Theorem 3.3, there are an ordered pair 〈a, b〉 ∈ β ∩ V 2

and a unary polynomial q with 〈fq(a), fq(b)〉 /∈ α. Hence 〈q(a), q(b)〉 /∈ α and
so q(β ∩ V 2) 6⊆ α. By (2), the subset U = q(V ) is (α, β)-minimal in A. �

Let U be an (α, β)-minimal subset of A. By an (α, β)-trace in U we mean
any block of β∩U2 that is not a block of α∩U2. The union of all (α, β)-traces
in U is called the body of U and the complement U rB, where B is the body,
is called the tail of U . By an (α, β)-trace in A we mean any subset that is an
(α, β)-trace in some (α, β)-minimal subset of A.

3.5. Theorem. Let U be an (α, β)-minimal subset of A and N be an (α, β)-
trace in U . Then (A|N )/(α ∩N2) is a minimal algebra.

Proof. Let h be a non-constant unary polynomial of (A|N )/(α ∩ N2).
According to Lemma 1.2, there is a unary polynomial g of A|N with h = gα∩N2 .
Hence there is a unary polynomial f of A such that f(N) ⊆ N and g is the
restriction of f . Since h is non-constant, there are two elements x, y ∈ N
with h(x/(α ∩ N2)) 6= h(y/(α ∩ N2)), i.e., 〈g(x), g(y)〉 /∈ α ∩ N2. Since N is
contained in a block of β, 〈x, y〉 ∈ β and 〈f(x), f(y)〉 /∈ α. By Theorem 3.4(2),
the restriction of f to U is injective. Consequently, g is injective. But then, g
is a permutation of N and h is a permutation of N/(α ∩N2). �

The type of the minimal algebra (A|N )/(α∩N2) will be called the type of
the (α, β)-trace N .

3.6. Proposition. Let U be an (α, β)-minimal subset of A and N be an
(α, β)-trace of type 5 in U . Then N is the only (α, β)-trace in U and there
exist an element 1 ∈ N and a binary polynomial p of A with the following
properties:

(1) The two blocks of α contained in N are {1} and O = N r {1}
(2) Both U and N are closed under p and N/α is a two-element semilat-

tice with neutral element {1} with respect to the restriction of pα

(3) p(x, 1) = p(1, x) = p(x, x) = x for all x ∈ U
(4) 〈p(x, u), x〉 ∈ α and 〈p(u, x), x〉 ∈ α for all x ∈ U r {1} and u ∈ O
(5) p(x, p(x, y)) = p(x, y) for all x, y ∈ U

Proof. Since N is of type 1, there is a binary polynomial g of A such that
U and N are closed under g and N/α is a two-element semilattice with respect
to the restriction of gα. Denote by I the neutral and by O the annihilating
element of this semilattice. So, I and O are the two blocks of α contained in
N and we have g(I × I) ⊆ I and g(I × O) ∪ g(O × I) ∪ g(O × O) ⊆ O. Put
d(x) = g(x, x). Since d is a unary polynomial mapping I into I and O into O,
d is a permutation of U . Take k > 1 with dk(x) = x for all x ∈ U and put
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h(x, y) = dk−1g(x, y). Then h has the same properties as g and, moreover,

h(x, x) = x for all x ∈ U . Put h[0](x, y) = x and h[i+1](x, y) = h(h[i](x, y), y).

By 1.3 there exists an m > 0 such that h[2m] = h[m]; put f(x, y) = h[m](x, y).
Then f is a binary polynomial with the same properties as g and h and,
moreover, f(f(x, y), y) = f(x, y). For z ∈ I the polynomial r(x) = f(x, z)
is a permutation on U , since 〈r(z), r(u)〉 /∈ β for u ∈ O. But rr(x) = r(x),
so r is the identity and we get f(x, z) = x for all x ∈ U and z ∈ I. By
an iteration of the second variable in f(x, y) we can obtain, similarly as f
was obtained from h by iterating the first variable, a binary polynomial p
such that p(x, p(x, y)) = p(x, y). For x ∈ U and z ∈ I we have evidently
p(x, z) = p(x, x) = x; we also have p(z, x) = x (by the same argument that
was used to prove f(x, z) = x). For z1, z2 ∈ I we get z1 = p(z1, z2) = z2. Thus
I = {1} for an element 1.

Suppose that U contains an (α, β)-trace K different from N . Since f(x, x)
= x = f(x, 1) and 1 ∈ N , it follows that f(K × K) ∪ f(K × N) = K.
Take an element u ∈ O. Since f(u, u) = f(1, u), we have f(x, u) = f(y, u)
whenever x, y ∈ U and (x, y) ∈ β. In particular, f(x, 0) = f(y, 0) for all
x, y ∈ K. Consequently, there is an element a ∈ K with f(a, u) 6= a. Hence
f(a, u) 6= f(a, 1). Put s(x) = f(a, x). Then s is a permutation of U . Since
a ∈ K, we have p(K ∪N) ⊆ K. But |K ∪N | > |K|, a contradiction.

It remains to prove (4). Let x ∈ U r {1} and u ∈ O. If x ∈ O then both
p(x, u) and p(u, x) are in O. Let x /∈ O, so that x ∈ U rN and (since N is the
only trace in U) x/α = x/β. We have 〈p(x, u), p(x, 1)〉 ∈ β, i.e., 〈p(x, u), x)〉 ∈
β and thus 〈p(x, u), x〉 ∈ α. We can get 〈p(u, x), x〉 ∈ α similarly. �

3.7. Proposition. Let U be an (α, β)-minimal subset of A and N be an
(α, β)-trace of type either 3 or 4 in U . Then N is the only (α, β)-trace in U
and there exist two elements 0, 1 ∈ N and two binary polynomials p, q of A
with the following properties:

(1) N = {0, 1}
(2) Both U and N are closed under p and q and N/α is a two-element

lattice with respect to the restriction of pα and qα
(3) p(x, 1) = p(1, x) = p(x, x) = x = q(x, x) = q(x, 0) = q(0, x) for all

x ∈ U
(4) 〈p(x, 0), x〉 ∈ α, 〈p(0, x), x〉 ∈ α, 〈q(x, 1), x〉 ∈ α and 〈q(1, x), x〉 ∈ α

for all x ∈ U rN
(5) p(x, p(x, y)) = p(x, y) and q(x, q(x, y)) = q(x, y) for all x, y ∈ U

Proof. There are two polynomials g1 and g2 under which N/α is a two-
element lattice. Now repeat the proof of 3.6 for each of them. �

Under the assumptions of 3.6, p is called a pseudo-meet operation of U
(with respect to α, β). Under the assumptions of 3.7, p, q are called pseudo-
meet and pseudo-join operations of U , respectively.

It follows that if an (α, β)-minimal subset of a finite algebra A contains
two distinct (α, β)-traces, then all its (α, β)-traces are of type 1 or 2.
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3.8. Lemma. Let 〈α, β〉 be a prime quotient in the congruence lattice of a
finite algebra A and let γ be a congruence with γ ⊆ α, so that 〈α/γ, β/γ〉 is
a prime quotient in the congruence lattice of A/γ. The (α/γ, β/γ)-minimal
subsets of A/γ are just the sets U/γ, where U is an (α, β)-minimal subset
of A. Moreover, for an (α, β)-minimal subset U , the (α/γ, β/γ)-traces in U/γ
are just the sets N/γ, where N is an (α, β)-trace in U , and the corresponding
traces are of the same types.

Proof. Let U be an (α, β)-minimal subset. There is an idempotent unary
polynomial e of A with U = e(A). Clearly, eγ (see 1.2) is an idempotent
polynomial of A/γ, eγ(A/γ) = U/γ and eγ(β/γ) 6⊆ α/γ. Let fγ (where f is a
unary polynomial of A) be a unary polynomial of A/γ such that fγ(A/γ) ⊆
U/γ and fγ(β/γ) 6⊆ α/γ. We have fγ = eγfγ = (ef)γ and ef(β) 6⊆ α, so that
ef(A) = U . But then, fγ(A/γ) = (ef)γ(A/γ) = U/γ. We see that U/γ is an
(α/γ, β/γ)-minimal subset of A/γ.

Now let W be an (α/γ, β/γ)-minimal subset of A/γ. Take an arbitrary
(α, β)-minimal subset U of A. Then U/γ is (α/γ, β/γ)-minimal in A/γ. By
Theorem 3.3 there is a unary polynomial fγ of A/γ with fγ : U/γ 'W (and f is
a polynomial of A). Since fγ(β/γ)∩(U/γ)2 6⊆ α/γ, we have f(β)∩U2 6⊆ α. By
Theorem 3.4(2) it follows that f(U) is an (α, β)-minimal subset of A. Clearly,
W = f(U)/γ.

The traces part can be proved easily. �

3.9. Lemma. Let U be an (α, β)-minimal subset of a finite algebra A. Then
(β ∩U2)/(α∩U2) is an Abelian congruence of U/(α∩U2) if and only if every
(α, β)-trace in U is of type either 1 or 2.

Proof. Clearly, it is sufficient to prove the statement under the assump-
tions α = idA and U = A.

Let β be an Abelian congruence of U and N be an (idU , β)-trace. If f
is an n-ary polynomial of U such that f(Nn) ⊆ N , then the condition in the
above recalled definition of Abelian congruence is true for all u, v, xi, yi ∈ N ,
which means that the induced algebra N is Abelian. Consequently, N is of
type either 1 or 2.

Now let β be not Abelian. Take n minimal such that for an n-ary polyno-
mial f of U , there are pairs 〈u, v〉 ∈ β and 〈xi, yi〉 ∈ β (i = 2, . . . , n) with

f(u, x2, . . . , xn) = f(u, y2, . . . , yn) and f(v, x2, . . . , xn) 6= f(v, y2, . . . , yn).

Clearly, n > 1, u 6= v and xi 6= yi for all i. Put N1 = u/β, Ni = xi/β
(i = 2, . . . , n) and K = f(u, x2, . . . , xn)/β. Then N1, . . . ,Nn are traces, and
f(N1 × · · · ×Nn) ⊆ K.

It follows from the minimality of n that for each j = 1, . . . , n there are
elements c1, . . . , cj−1, cj+1, . . . , cn such that the unary polynomial

hj(x) = f(c1, . . . , cj−1, x, cj+1, . . . , cn)

is not constant on Nj . Let us fix one such unary polynomial hj for each j.
Since U is (idU , β)-minimal, it follows that hj is a permutation of U . Then
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also the inverse h−1
j is a polynomial of U . Now hj must permute the blocks

of β, and so hj(Nj) = K. Put

g(z1, . . . , zn) = f(h−1
1 (z1), . . . , h−1

n (zn)),

so that g is a polynomial of U . Clearly, g(Kn) = K. We have

g(h1(u), h2(x2), . . . , hn(xn)) = g(h1(u), h2(y2), . . . , hn(yn))

while

g(h1(v), h2(x2), . . . , hn(xn)) = g(h1(v), h2(y2), . . . , hn(yn)).

Thus the induced algebra U |K is not Abelian, and the type of the trace K is
neither 1 nor 2. �

3.10. Proposition. Let U be an (α, β)-minimal subset of A and N be an
(α, β)-trace of type 2 in U ; denote by B the body of U . Then all (α, β)-traces
of A are polynomially isomorphic in A (and so of type 2) and there exists a
ternary polynomial d of A with the following properties:

(1) U is closed under d and d(x, x, x) = x for all x ∈ U
(2) d(x, x, y) = y = d(y, x, x) for all x ∈ B and y ∈ U
(3) for any a, b ∈ B, the unary polynomials d(x, a, b), d(a, x, b) and

d(a, b, x) are permutations of U
(4) B is closed under d

Moreover, every ternary polynomial d satisfying (1) and (2) also satisfies (3)
and (4).

Proof. Let N be an (α, β)-trace in U . Since (A|N )/(α ∩N2) is a vector
space, there exists a ternary polynomial f of A such that U and N are closed
under f and fα(x/α, y/α, z/α) = x/α− y/α+ z/α for all x, y, z ∈ N . Denote
by Φ the set of all ternary polynomials f with this property (so that Φ is
nonempty) and put

Φ1 = {f ∈ Φ : f(x, x, x) = x for all x ∈ U},
Φ2 = {f ∈ Φ1 : f(x, x, y) = y for x ∈ B and y ∈ U},
Φ3 = {f ∈ Φ2 : f(y, x, x) = y for x ∈ B and y ∈ U}.

Claim 1. If f ∈ Φ then (restrictions of ) the unary polynomials f(x, a, b),
f(a, x, b) and f(a, b, x) are permutations of U for any a, b ∈ N . This follows
easily from the minimality of U .

Claim 2. Φ1 is nonempty. Take f ∈ Φ and put p(x) = f(x, x, x). Then
p is a permutation of U , since p(N) is not contained in a block of α. Clearly,
the ternary polynomial p−1f(x, y, z) belongs to Φ1.

Claim 3. If f ∈ Φ1 and a ∈ B then (restrictions of ) f(x, a, a) and f(a, a, x)
are permutations of U . As the two cases are symmetric, we will give the proof
only for f(x, a, a). If a ∈ B, it follows from Claim 1. Let a ∈ N ′ where
N ′ is a trace in U different from (and thus disjoint with) N . For y, z fixed
put ry,z(x) = f(x, y, z). By 1.3 there exists a positive integer n such that
rn
y,z = r2n

y,z for all y, z. So, the ternary polynomial g(x, y, z) = rn
y,z(x) satisfies

g(g(x, y, z), y, z) = g(x, y, z). For b, c ∈ N the unary polynomial g(x, b, c) is
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a permutation of U , since f is; hence g(x, b, c) = x for x ∈ U and b, c ∈ N .
Also, clearly g(x, x, x) = x. Thus g(N ′ × N × N) ∪ g(N ′ × N ′ × N ′) ⊆ N ′,
since N and N ′ are blocks of β. For a′ ∈ N ′ the unary polynomial G(x) =
g(a′, x, x) satisfies G(N ∪ N ′) ⊆ N ′, so that G is not a permutation of U
and hence G(β ∩ (U2)) ⊆ α. Hence for all a′ ∈ N ′ and v ∈ N ′ we have
〈g(a′, v, v), g(a′ , a′, a′)〉 ∈ α, i.e., 〈g(a′, v, v), a′〉 ∈ α. Take a′ ∈ N ′ such that
〈a′, a〉 /∈ α. We have 〈g(a′, a, a), g(a, a, a)〉 = 〈a′, a〉 /∈ α, so that g(x, a, a) must
be a permutation of U and thus f(x, a, a) is a permutation of U .

Claim 4. Φ2 is nonempty. Take f ∈ Φ1. Put rx(y) = f(x, x, y) and take
n > 1 such that rn

x = r2n
x for all x, so that the binary polynomial u(x, y) =

rn
x(y) satisfies u(x, u(x, y)) = u(x, y). Put f ′(x, y, z) = rn−1

x (f(x, y, z)). For
x, y, z ∈ N we get

y/α = r2x(y)/α = · · · = rn−1
x (y)/α

by computing it in the vector space, so that 〈f ′(x, y, z), f(x, y, z)〉 ∈ α. Thus
f ′ ∈ Φ. Clearly f ′(x, x, x) = x for all x ∈ U , so that f ′ ∈ Φ1. We have
f ′(x, x, y) = u(x, y) for all x, y ∈ U . Let x ∈ B. By Claim 3, rx is a permuta-
tion of U and so u(x, y) = y for all y. Thus f ′(x, x, y) = y and f ′ ∈ Φ2.

Claim 5. Φ3 is nonempty. Take f ∈ Φ2. Put ry(x) = f(x, y, y) and take
n > 1 such that rn

y = r2n
y for all y, so that the binary polynomial v(x, y) = rn

y (x)

satisfies v(v(x, y), y) = v(x, y). Put f ′(x, y, z) = rn−1
z (f(x, y, z)). Similarly as

in Claim 4, f ′ ∈ Φ1 and f ′(y, x, x) = y for all x ∈ B and y ∈ U . Let x ∈ B.
We have f ′(x, x, y) = rn−1

y (f(x, x, y)) = y, since f(x, x, y) = y. Thus f ′ ∈ Φ3.
We have proved the existence of a ternary polynomial d with properties

(1) and (2). Let a, b ∈ B, so that a ∈ N0 and b ∈ N1 where N0,N1 are (not
necessarily distinct) (α, β)-traces contained in U . Define unary polynomials
f0, f1, f2 by f0(x) = d(x, a, b), f1(x) = d(a, x, b) and f2(x) = d(a, b, x). Clearly,
for i = 1, 2, 3, either fi is a permutation of U or fi(β ∩U

2) ⊆ α and these two
possibilitites exclude each other.

Claim 6. Either fi are permutations of U for all i = 0, 1, 2 or fi(β ∩
U2) ⊆ α for all i = 1, 2, 3. Assume that f0 is a permutation of U . Then
〈x, y〉 ∈ α if and only if 〈f0(x), f0(y)〉 ∈ α for all x, y ∈ U . Take u ∈ N0 with
〈u, a〉 /∈ α. Then 〈f0(a), f0(u)〉 /∈ α, i.e., 〈d(u, u, b), d(u, a, b)〉 = 〈b, d(u, a, b)〉 =
〈d(a, a, b), d(u, a, b)〉 /∈ α. By 3.9, β ∩ U2 is Abelian over α ∩ U2, so it follows
that 〈d(a, u, b), d(a, a, b)〉 /∈ α, i.e., 〈f1(u), f1(a)〉 /∈ α and f1 is a permutation
of U . All the steps were reversible, so f0 is a permutation of U if and only if
f1 is a permutation of U . Quite similarly, f1 is a permutation of U if and only
if f2 is a permutation of U .

Now suppose that f0, f1, f2 all fail to be a permutation of U . Put w(x) =
d(a, d(a, x, b), x). If x ∈ N0 then 〈d(a, x, b), b〉 = 〈f1(x), f1(a)〉 ∈ α and so
〈w(x), f2(x)〉 ∈ α. It means that all elements of w(N0) are congruent modulo
α and thus w is not a permutation of U and (w(N1))2 ⊆ α. For x ∈ N1 we have
〈d(a, x, b), a〉 = 〈f1(x), f1(b)〉 ∈ α and so 〈w(x), x〉 = 〈w(x), d(a, a, x)〉 ∈ α.
Thus, for x, y ∈ N1, x ≡ w(x) ≡ w(y) ≡ y modulo α. But N1 is a trace and
we get a contradiction.
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We have proved (3). If a, b ∈ B then the polynomial f2(x) = d(a, b, x)
is a permutation of U , so it maps traces onto traces and B onto itself. We
have proved (4). It remains to prove that any two (α, β)-traces N0,N1 of A
are polynomially isomorphic. By 3.3 it is sufficient to assume that they are
contained in the same (α, β)-minimal set U . Take a ∈ N0 and b ∈ N1. Since
f2(b) = a and f−1

2 is a polynomial, we have f2(N1) = N0 and f−1
2 : N0 '

N1. �

Under the assumptions of 3.10, d is called a pseudo-Mal’cev operation of U
(with respect to α, β).

It follows from the above results that for any finite algebra A and any
prime quotient 〈α, β〉 in the congruence lattice of A, all (α, β)-traces of A are
of the same type. This type is called the type of the prime quotient 〈α, β〉.

3.11. Lemma. Let 〈α, β〉 be a prime quotient in the congruence lattice of a
finite algebra A. Then β is the transitive closure of α ∪R, where

R = ∪{N2 : N is an (α, β)-trace in A}.

Proof. Take any (α, β)-minimal set U . Denote by P the set of the ordered
pairs 〈g(x), g(y)〉 such that 〈x, y〉 ∈ β ∩ U2 and g is a unary polynomial of A.
By Lemma 3.2, β is the transitive closure of α ∪ P . So, it is enough to show
that α ∪ P ⊆ α ∪ R. Let 〈x, y〉 ∈ β ∩ U2 and g be a unary polynomial with
〈g(x), g(y)〉 /∈ α. Then 〈x, y〉 /∈ α and the set N = (x/β) ∩ U is an (α, β)-
trace in U containing both x and y. By Theorem 3.4(2), g(U) is a minimal
subset of A and g : U ' g(U). Hence g(N) is an (α, β)-trace, and we get
〈g(x), g(y)〉 ∈ R. �

3.12. Theorem. A prime quotient 〈α, β〉 in the congruence lattice of a
finite algebra A is of unary type if and only if β is strongly Abelian over α.

Proof. By 9.1.5 and 3.8 it is sufficient to consider the case when α = idA.
If β is strongly Abelian over idA then it follows from 3.6, 3.7 and 3.10 that
〈idA, β〉 cannot be of any of the types 2 through 5, so that it is of type 1. Let
〈idA, β〉 be of type 1.

Claim 1. If N , N0 and N1 are (idA, β)-traces of A and f is a binary
polynomial such that f(N0×N1) ⊆ N , then f � (N0×N1) depends on at most
one variable. Suppose that it depends on both variables, so that f(a1, b) 6=
f(a2, b) and f(c, d1) 6= f(c, d2) for some a1, a2, c ∈ N0 and b, d1, d2 ∈ N1. Put
g0(x) = f(x, b) and g1(x) = f(c, x). It follows from 3.4(2) that gi : Ni ' N
(i = 0, 1), so that there are unary polynomials h0, h1 with gihi � N = idN and
higi � Ni = idNi

(i = 0, 1). Put p(x, y) = f(h0(x), h1(y)). Then p restricted to
N is a polynomial of the minimal algebra A � N of type 1, so that p � (N ×N)
depends on at most one variable which clearly gives a contradiction.

Claim 2. If N is an (idA, β)-trace, T0, T1 are blocks of β and f is a binary
polynomial such that f(T0×T1) ⊆ N , then f � (T0×T1) depends on at most one
variable. Suppose, on the contrary, that there are elements a ∈ T0 and b ∈ T1

such that f(x, b) is non-constant on T0 and f(a, y) is non-constant on T1. By
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an easy application of 3.11, there are (idA, β)-traces N0 ⊆ T0 and N1 ⊆ T1

such that f(x, b) is non-constant on N0 and f(a, x) is non-constant on N1. Let
y be an arbitrary element of T1. By 3.11 there are elements b0, . . . , bk and
(idA, β)-traces M0, . . . ,Mk such that b0 = b, bk = y and {bi, bi+1} ⊆ Mi for
i < k. It is easy to prove by induction on i that f(x, b) = f(x, bi) for all
x ∈ N0. In particular, f(x, b) = f(x, y) for all x ∈ N0. Hence f(a, b) = f(a, y)
for all y ∈ T1, a contradiction.

Claim 3. If N is an (idA, β)-trace, p is an n-ary polynomial of A and
f(T1×· · ·×Tn) ⊆ N where Ti are blocks of β then f � (T1×· · ·×Tn) depends on
at most one variable. This follows easily from Claim 2 by induction, using 1.1.

Let f be an (n + 1)-ary polynomial of A and c0
β
≡ d0, ci

β
≡ di

β
≡ ei

(i = 1, . . . , n) be elements such that f(c0, e1, . . . , en) 6= f(d0, e1, . . . , en). We
must prove f(c0, . . . , cn) 6= f(d0, . . . , dn). Put Ti = ci/β. By 3.4(1) there exist
an (idA, β)-minimal set U and a unary polynomial h such that h(A) = U and
hf(c0, e1, . . . , en) 6= hf(c0, e1, . . . , en). Let N be the (idA, β)-trace containing
hf(c0, e1, . . . , en). Clearly, hf(T0×· · ·×Tn) ⊆ N . By Claim 3, hf � (T0×· · ·×
Tn) depends on at most one variable; but it depends on the first variable, so it
does not depend on the other ones. Hence hf(c0, . . . , cn) = hf(c0, e1, . . . , en)
and hf(d0, . . . , dn) = hf(d0, e1, . . . , en). It follows that hf(c0, . . . , cn) 6= hf(d0,
. . . , dn) and consequently f(c0, . . . , cn) 6= f(d0, . . . , dn). �

3.13. Theorem. A prime quotient 〈α, β〉 in the congruence lattice of a
finite algebra A is of affine type if and only if β is Abelian but not strongly
Abelian over α.

Proof. It is sufficient to consider the case when α = idA. If β is Abelian
but not strongly Abelian over idA then it follows from 3.6 and 3.7 that 〈idA, β〉
cannot be of any of the types 3 through 5 and it follows from 3.12 that it cannot
be of type 1, so that it is of type 2. Let 〈idA, β〉 be of type 2. By 3.12, β is
not strongly Abelian. It remains to prove that β is Abelian. Suppose, on the
contrary, that there exist an (n + 1)-ary polynomial f and pairs 〈a, b〉 ∈ β,
〈ci, di〉 ∈ β (i = 1, . . . , n) such that f(a, c1, . . . , cn) = f(a, d1, . . . , dn) but
f(b, c1, . . . , cn) 6= f(b, d1, . . . , dn). It follows from 3.11 that there exists such
a situation with {a, b} contained in one (idA, β)-trace N ; denote by U the
(idA, β)-minimal set with N ⊆ U .

We can assume that f(An+1) ⊆ U and that there is an (idA, β)-trace N ′ ⊆
U such that the elements f(a, c1, . . . , cn), f(b, c1, . . . , cn) and f(b, d1, . . . , dn) all
belong to N ′. Indeed, by 3.4(1) there is a unary polynomial h with h(A) = U
and hf(b, c1, . . . , cn) 6= hf(b, d1, . . . , dn); we could replace f by hf .

Also, we can assume that N ′ = N . Indeed, by 3.10 N,N ′ are polynomially
equivalent, so that there is a unary polynomial g such that g(U) ⊆ U and a
restriction of g is a bijection of N ′ onto N ; we could replace f by gf .

For i = 1, . . . , n put Ti = ci/β. Clearly, f(N ×T1×· · ·×Tn) ⊆ N . By 3.11
for every i = 1, . . . , n there are (idA, β)-traces Ni,0, . . . ,Ni,ki

⊆ Ti such that
ci ∈ Ni,0, di ∈ Ni,ki

and Ni,j ∩Ni,j+1 6= ∅ for 0 ≤ j < ki. We can assume that
k1 = · · · = kn; denote this number by k. By 3.10 Ni,j = gi,j(N) bijectively for
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some unary polynomials gi,j (i = 1, . . . , n and j = 0, . . . , k). For j = 0, . . . , k
put fj(x, x1, . . . , xn) = f(x, g1,j(x1), . . . , gn,j(xn)), so that fj is an (n+ 1)-ary
polynomial of A and fj(N

n+1) ⊆ N . Now A|N is a vector space over a finite
field F , so there exist elements ri,j ∈ F and ej ∈ N such that

fj(x0, . . . , xn) = r0,jx0 + · · ·+ rn,jxn + ej

for all x0, . . . , xn ∈ N .
Let 0 ≤ j < k. For i = 1, . . . , n there are elements ui, vi ∈ N with gi,j(ui) =

gi,j+1(vi). For all x ∈ N we have fj(x, u1, . . . , un) = fj+1(x, v1, . . . , vn), i.e.,

r0,jx+ r1,ju1 + · · ·+ rn,jun + ej = r0,j+1x+ r1,j+1v1 + · · ·+ rn,j+1vn + ej+1

from which we get r0,j = r0,j+1.
Consequently, r0,0 = r0,k. For i = 1, . . . , n take elements c′i, d

′
i ∈ N with

gi,0(c′i) = ci and gi,k(d′i) = di. We have

f0(a, c′1, . . . , c
′
n) = f(a, c1, . . . , cn) = f(a, d1, . . . , dn) = fk(a, d′1, . . . , d

′
n),

i.e.,

r0,0a+ r1,0c
′
1 + · · ·+ rn,0c

′
n + e0 = r0,0a+ r1,kd

′
1 + · · ·+ rn,kd

′
n + ek.

This remains valid if a is replaced by b and from that we get f(b, c1, . . . , cn) =
f(b, d1, . . . , dn). �



CHAPTER 15

THE LATTICE OF EQUATIONAL THEORIES

1. Intervals in the lattice

1.1. Lemma. A lattice is isomorphic to an interval in the lattice of equa-
tional theories of groupoids if and only if it is an algebraic lattice containing
at most countably many compact elements.

Proof. An equational theory is a compact element in the lattice of all
equational theories if and only if it is finitely based. Thus the lattice of equa-
tional theories of groupoids (or of algebras of any fixed at most countable
signature) has at most countably many compact elements. Every interval of
an algebraic lattice with countably many elements is itself an algebraic lattice
with countably many elements. We have obtained the direct implication.

Conversely, let L be an algebraic lattice with at most countably many
compact elements. According to Theorem 3.12.14, L is isomorphic to the
congruence lattice of an algebra with only unary operations. The proof of that
theorem yields a countable algebra if there are only countably many compact
elements in L. It is also easy to see that it is sufficient to take only countably
many unary operations. Thus we may assume that L is isomorphic to the
congruence lattice of an algebra A with the underlying A = ω−{0} (the set of
positive integers), and with unary operations fi (i ∈ A). Clearly, we can also
assume that fi = idA for all even numbers i ∈ A.

Let X be an infinite countable set of variables and T be the groupoid of
terms over X. For any term t and any finite sequence z = 〈x1, . . . , xn〉 (n ≥ 0)
of variables define two terms tαz and tβz in this way: if n = 0 then tαz = tβz =
t; if t ≥ 1 then tαz = (tα〈x1, . . . , xn−1〉)xn and tβz = xn(tβ〈x1, . . . , xn−1〉).

Let x be a variable and s = 〈z1, . . . , zk〉 be a finite sequence of finite
sequences of variables. We put h(xx, s) = ((((xx)αz1)βz2)αz3) . . . εzk where
ε = α if k is odd and ε = β if k is even. By a defining pair for a term t
we mean a pair x, 〈z1, . . . , zk〉 such that x is a variable, 〈z1, . . . , zk〉 is a finite
sequence of finite sequences of variables, t = h(xx, 〈z1, . . . , zk〉), k ≥ 2, k is
even, z1, . . . , zk−1 are nonempty, and z2 is nonempty. Of course, every term
has at most one defining pair.

If x, 〈〈x1,1, . . . , x1,n1
〉, . . . , 〈xk,1, . . . , xk,nk

〉〉 is a defining pair for a term t,
then we define a positive integer p(t) as follows: if nk 6= 0 then p(t) =
fnk−1

(fnk−3
(. . . (fn3

(n1)))); if nk = 0 then p(t) = fnk−3
(fnk−5

(. . . (fn3
(n1)))).

The finite sequence 〈x, . . . , x〉 with imembers will be denoted by 〈x, . . . , x〉i.
If x ∈ X and n ∈ A, we put hn(x) = x((x)α〈x, . . . , x〉n). Clearly, p(hn(x)) = n.
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Denote by U the set of all terms that have a subterm ab.cd for some terms
a, b, c, d. If t has a defining pair then evidently t /∈ U .

For every congruence r of A define a binary relation r∗ on T as follows. For
two terms u, v let 〈u, v〉 ∈ r∗ if and only if either u = v or {u, v} ⊆ U or the
following holds: S(u) = S(v); u has a defining pair x, 〈z1, . . . , zk〉 and v has a
defining pair y, 〈z′1, . . . , z

′
m〉; zk, z

′
m are either both empty or both nonempty;

if they are empty, then zk−1 = z′m−1; finally, 〈p(u), p(v)〉 ∈ r.
Evidently, r∗ is an equivalence. Let us prove that it is a congruence

of T . Let 〈u, v〉 ∈ r∗ where u 6= v and let w be a term. If w /∈ X then
uw, vw,wu,wv ∈ U , so that 〈uw, vw〉 ∈ r∗ and 〈wu,wv〉 ∈ r∗. Let w ∈ X.
Then 〈uw, vw〉 ∈ r∗ is easy; 〈wu,wv〉 ∈ r∗ is easy if zk, z

′
m are nonempty; if

zk, z
′
m are empty then 〈wu,wv〉 ∈ r∗ follows from the fact that r is a congruence

of A.
Let us prove that r∗ is a fully invariant congruence of T . Let 〈u, v〉 ∈ r∗

and let g be an endomorphism of T . If g(S(u)) ⊆ X, then 〈g(u), g(v)〉 ∈ r∗

follows immediately from the definition of r∗; in the opposite case evidently
g(u), g(v) ∈ U , so that 〈g(u), g(v)〉 ∈ r∗ as well.

It is easy to see that 〈n,m〉 ∈ r if and only if 〈hn(x), hm(x)〉 ∈ r∗ for some
(or any) variable x. If r1, r2 are two congruences of A, then r1 ⊆ r2 if and only
if r∗1 ⊆ r

∗
2. Denote by I the least and by J the largest congruence of A. Let S

be an arbitrary fully invariant congruence of T such that I∗ ⊆ S ⊆ J∗. Define
a binary relation R on A by 〈n,m〉 ∈ R if and only if 〈hn(x), hm(x)〉 ∈ S for
some (and consequently any) variable x. We are going to prove that R is a
congruence of A and S = R∗.

Evidently, R is an equivalence. Let 〈n,m〉 ∈ R and let i ∈ A. Since 〈hn(x),
hm(x)〉 ∈ S and S is a congruence, we have 〈x(hn(x)α〈x, . . . , x〉i), x(hm(x)
α〈x, . . . , x〉i) ∈ S. The first member of this pair is congruent modulo I∗ (and
consequently modulo S) with hfi(n)(x) and the second member with hfi(m)(x).
Thus 〈fi(n), fi(m)〉 ∈ R.

Let us prove R∗ ⊆ S. Let 〈u, v〉 ∈ R∗. If either u = v or u, v ∈ U
then 〈u, v〉 ∈ S is clear. In the remaining case we have 〈p(u), p(v)〉 ∈ R, so
that 〈hp(u)(x), hp(v)(x)〉 ∈ S. Denote by y1, . . . , yq the variables contained in
S(u). Put u′ = y1(y2(. . . (yq(hp(u)(x))))) and v′ = y1(y2(. . . (yq(hp(v)(x))))).
Since S is a congruence, we have 〈u′, v′〉 ∈ S. If the last sequence of vari-
ables in the defining pair for u is nonempty, then 〈u, u′〉 ∈ I∗ ⊆ S and
〈v, v′〉 ∈ I∗ ⊆ S, so that 〈u, v〉 ∈ S. If the last sequence is empty, denote
by 〈x1, . . . , xc〉 the last nonempty sequence. Since S is a congruence, we have
〈((u′x1) . . . )xc, ((v

′x1) . . . )xc〉 ∈ S. The first member of this pair is congruent
modulo I∗ with u and the second member with v, so that 〈u, v〉 ∈ S again.

Let us prove S ⊆ R∗. Let 〈u, v〉 ∈ S. Then 〈u, v〉 ∈ J∗. If u = v, then
〈u, v〉 ∈ R∗ evidently. If u, v ∈ U , then 〈u, v〉 ∈ I∗ ⊆ R∗. Let u have a defining
pair x, 〈〈x1,1, . . . , x1,n1

〉, . . . , 〈xk,1, . . . , xk,nk
〉〉 and let y, 〈〈y1,1, . . . , y1,m1

〉, . . . ,
〈yd,1, . . . , yd,md

〉〉 be a defining pair for v. Denote by g the endomorphism
of T sending every variable to x. Since S is fully invariant, 〈g(u), g(v)〉 ∈
S. If nk 6= 0, then 〈g(u), hp(u)(x)〉 ∈ I∗ ⊆ S and similarly for v, so that
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〈hp(u)(x), hp(v)(x)〉 ∈ S, i.e., 〈p(u), p(v)〉 ∈ R; by the definition of R∗ this means
that 〈u, v〉 ∈ R∗. If nk = 0, then 〈g(u), hp(u)α〈x, . . . , x〉j〉 ∈ I

∗ ⊆ S where j =
nk−1 = md−1 and similarly for v. Put i = j if j is even and i = j+1 if j is odd.
Since S is a congruence, we have 〈x(hp(u)α〈x, . . . , x〉i), x(hp(v)α〈x, . . . , x〉i)〉 ∈
S. The first member of this pair is congruent modulo I∗ with hfi(p(u))(x) and
the second member with hfi(p(v))(x). Since fi = idA, we get 〈hp(u)(x), hp(v)(x)〉
∈ S, so that 〈p(u), p(v)〉 ∈ R. By the definition of R∗ this means that 〈u, v〉 ∈
R∗ again.

Thus the interval determined by I∗ and J∗ in the lattice of equational
theories of groupoids is isomorphic to the congruence lattice of A, which is
isomorphic to the given lattice L. �

We have actually proved that every algebraic lattice with at most countably
many compact elements is isomorphic to a principal ideal in the lattice of
equational theories of groupoids satisfying (xy · zu)v = v(xy · zu) = xy · zu.

1.2. Lemma. A lattice is isomorphic to an interval in the lattice of equa-
tional theories of algebras with two unary operations if and only if it is an
algebraic lattice containing at most countably many compact elements.

Proof. Denote the two unary operation symbols by F and G. Let T
be the algebra of terms over X. Take an algebra A with unary operations
f1, f2, . . . similarly as in the proof of 1.1. Let U denote the set of the terms
h1h2 . . . hn(x) such that x ∈ X, hi ∈ {F,G} for all i and there exists an
i ∈ {2, . . . , n − 1} with hi−1 = hi = F . For every congruence r of A de-
fine a fully invariant congruence r∗ of T as follows. For two terms u, v let
〈u, v〉 ∈ r∗ if and only if either u = v or u, v ∈ U or there exist positive inte-
gers c, d, n1, . . . , nc,m1, . . . ,md, a nonnegative integer k and a variable x with
u = GkFGncFGnc−1 . . . FGn1FF (x), v = GkFGmdFGmd−1 . . . FGm1FF (x)
and 〈fncfnc−1

. . . fn2
(n1), fmd

fmd−1
. . . fm2

(m1)〉 ∈ r. The proof can be com-
pleted similarly as the proof of 1.1. �

1.3. Theorem. Let σ be a rich signature containing at most countably
many operation symbols. A lattice is isomorphic to an interval in the lattice of
equational theories of signature σ if and only if it is an algebraic lattice with
at most countably many compact elements.

Proof. It follows from 1.1 and 1.2. �

2. Zipper theorem

2.1. Lemma. Let E be an equational theory. The lattice of all equational
theories of the given signature that extend E is isomorphic to the congruence
lattice of an algebra A of a signature containing a binary operation symbol
G (and perhaps some other operation symbols) such that, with respect to G,
A contains a left zero (an element o and a left unit u (i.e., G(o, a) = 0 and
G(u, a) = a for all a ∈ A).
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Proof. Denote by x0, x1, . . . the free generators of the algebra T of terms.
Fort, u, v ∈ T denote by t[u, v] the term f(t) where f is the substitution with
f(x0) = u, f(x1) = v and f(y) = y for all the other variables y. Let A
be the algebra T with the following additional operations: all substitutions,
considered as unary operations, and the binary operation G(x, y) = x[x, y].
Clearly, congruences of A are just the equational theories. The element x0

is a zero element and the element x1 is the unit of this algebra. The lattice
of equational theories extending E is isomorphic to the congruence lattice of
A/E. �

2.2. Theorem. (Lampe [86]) Let L be a lattice isomorphic to the lattice of
all equational theories extending a given equational theory of some signature;
denote by 1L the largest element of L. If a, b and ai (i ∈ I, I being a nonempty
set) are elements of L such that

∨

{ai : i ∈ I} = 1L and ai ∧ a = b for all i ∈ I
then a = b.

Proof. According to 2.1, it is sufficient to assume that L is the congru-
ence lattice of an algebra with a binary operation G, such that A contains
a left zero 0 and a left unit u. We have 1L = A2. Since 〈o, u〉 ∈ A2 =
∨

{ai : i ∈ I}, for some positive integer n there are elements c0, . . . , cn of
A and elements i1, . . . , in of I such that c0 = o, cn = u and 〈cj−1, cj〉 ∈
aij for j = 1, . . . , n. We are going to prove a ⊆ b. Let 〈x, y〉 ∈ a. We
are going to prove by induction on j = 0, . . . , n that 〈G(cj , x), G(cj , y)〉 ∈
b. For j = 0 we have G(c0, x) = o = G(c0, y). Let j > 0. We have
〈G(cj , x), G(cj−1, x)〉 ∈ aj, 〈G(cj−1, x), G(cj−1, y)〉 ∈ b ⊆ aj by the induction
assumption and 〈G(cj−1, y), G(cj , y)〉 ∈ aj, so that 〈G(cj , x), G(cj , y)〉 ∈ aj ;
but this pair also belongs to a and so it belongs to ai ∩ a = b. We are done
with the induction. In particular, 〈G(cn, x), G(cn, y)〉 ∈ b, i.e., 〈x, y〉 ∈ b. We
have proved a ⊆ b and we get a = b. �

2.3. Corollary. The lattice M5 is not isomorphic to the lattice of all
equational theories extending E, for any equational theory E.



CHAPTER 16

MISCELLANEOUS

1. Clones: The Galois correspondence

Let a nonempty set A be given.We denote by OA the set of all operations
of arbitrary positive arities on A. For a positive integer n, the set of n-ary

operations on A is denoted by O
(n)
A ; for a set F of operations on A we put

F (n) = F ∩O
(n)
A .

The expression ai, . . . , aj will be abbreviated as aj
i .

For integers n ≥ 1 and i ∈ {1, . . . , n}, the i-th n-ary projection on A
is the operation en,i defined by en,i(a

n
1 ) = ai for all an

1 ∈ A. If f is an
n-ary operation and g1, . . . , gn are k-ary operations on A, we define a k-
ary operation f(g1, . . . , gn) on A, called the superposition of f, g1, . . . , gn, by
f(g1, . . . , gn)(ak

1) = f(g1(ak
1), . . . , gn(ak

1)). By a clone on A we mean a set of
operations containing all the projections and closed under superposition.

The intersection of an arbitrary set of clones on A is again a clone. From
this it follows that for an arbitrary subset F of OA there exists a least clone
containing F ; it will be denoted by [F ]; instead of [{f1, f2, . . . }] we write simply
[f1, f2, . . . ]. Further, it follows that the set of clones on A is a complete lattice
with respect to inclusion. Its greatest element is the clone OA, and its least
element is the clone JA of all projections on A. The clone JA is called trivial,
while any other clone is called nontrivial.

1.1. Theorem. The lattice of clones on A is an algebraic lattice; a clone
C is a compact element of this lattice if and only if it is a finitely generated
clone.

Proof. It is evident. �

We fix an infinite countable set of variables X={x1, x2, . . . }. For every
operation f on A we fix an operation symbol f̄ of the same arity. We denote
by WA (or just W ) the set of terms over X of the signature consisting of the
symbols f̄ with f ∈ OA. For a given set F of operations on A we denote by
W (F ) the subset of W consisting of the terms t such that whenever f̄ occurs
in t then f belongs to F . By an at most n-ary term we mean a term containing
no other variables than x1, . . . , xn. For an at most n-ary term t we define an
n-ary operation [t]n as follows: if t = xi then [t]n = en,i; if t = f̄(tm1 ) then
[t]n(an

1 ) = f([t1]n(an
1 ), . . . , [tm]n(an

1 )).
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1.2. Theorem. For a set F of operations on A, the clone generated by F
consists exactly of the operations [t]n with n running over the positive integers
and t running over the at most n-ary terms from W (F ).

Proof. It is easy. �

We define three unary operations ζ, τ , ∆ and one binary operation ◦ on
OA as follows:

for f ∈ O
(1)
A , ζf = τf = ∆f = f ;

for f ∈ O
(n)
A with n ≥ 2, ζf = g ∈ O

(n)
A where g(an

1 ) = f(an
2 , a1);

for f ∈ O
(n)
A with n ≥ 2, τf = g ∈ O

(n)
A where g(an

1 ) = f(a2, a1, a
n
3 );

for f ∈ O
(n)
A with n ≥ 2, ∆f = g ∈ O

(n−1)
A where g(an−1

1 ) = f(a1, a
n−1
1 );

for f ∈ O
(n)
A and g ∈ O

(m)
A , f ◦ g = h ∈ O

(n+m−1)
A where h(an+m−1

1 ) =

f(g(am
1 ), an+m−1

m+1 ).

1.3. Theorem. The following are equivalent for a set C of operations on
A:

(1) C is a clone;
(2) C contains e2,1 and is closed under ζ, τ , ∆ and ◦;
(3) [t]n ∈ C for any n ≥ 1 and any at most n-ary term t ∈W (C).

Proof. (1) → (2) and (3) → (1) are evident. Let (2) be satisfied. Since
e1,1 = ∆e2,1, e2,2 = τe2,1, en,i = e2,1 ◦ en−1,i if i ≤ n − 1 and en,n =
e2,2 ◦ en−1,1, C contains all projections. Let us prove by induction on the
length of an n-ary term t ∈ W (C) that [t]n belongs to C. If t is a vari-
able then [t]n is a projection. Let t = f̄(tm1 ). By induction, the opera-
tions [t1]n, . . . , [tm]n belong to C; we have f ∈ C and so the mn-ary oper-
ation g(amn

1 ) = f([t1]n(an
1 ), . . . , [tm]n(amn

(m−1)n+1)) belongs to C, since it can

be expressed as ζ(ζ(. . . (ζ(ζf ◦ [tm]n) ◦ [tm−1]n) . . . ) ◦ [t2]n) ◦ [t1]n. Now, in
order to prove that [t]n belongs to C, it is evidently enough to show that
if h is a k-ary operation belonging to C and 1 ≤ i < j ≤ k then the

operation h′(ak−1
1 ) = h(aj−1

1 , ai, a
k−1
j ) belongs to C; but this is clear from

h′ = ζi−1∆(τζ)j−iζ l−j+1h. �

We denote by RA the set of all relations on A; for n ≥ 1, R
(n)
A denotes the

set of n-ary relations on A.
Let f be an n-ary operation and r be an m-ary relation on A. We say

that f preserves r if the following is true: if (a1,m
1,1 ) ∈ r, . . . , (an,m

n,1 ) ∈ r then

(f(an,1
1,1 ), . . . , f(an,m

1,m )) ∈ r. For a set R of relations on A we denote by P(R)
the set of the operations preserving all the relations from R; this set is a clone
and its elements are called polymorphisms of R. For a set F of operations on
A we denote by I(F ) the set of the relations preserved by all the operations
from F ; the elements of I(F ) are called the invariants of F .

1.4. Theorem. The mappings P and I define a Galois correspondence
between the subsets of OA and the subsets of RA.
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Proof. It is evident. �

For a clone C on A and a finite relation r = {(ak,1
1,1), . . . , (ak,n

1,n)} on A put

ΓC(r) = {(f(a1,n
1,1 ), . . . , f(ak,n

k,1 )); f ∈ C(n)}.

1.5. Lemma. Let r be a finite k-ary relation on A and C be a clone on A.
Then ΓC(r) is the least invariant of C containing r.

Proof. It is easy. �

1.6. Lemma. Let f be an n-ary operation on A, C be a clone on A and

U be a finite subset of A. Let (a1,n
1,1 ), . . . , (ak,n

k,1 ) be all the n-tuples of elements

of U and denote by r the k-ary relation {(ak,1
1,1), . . . , (ak,n

1,n)}. Then f preserves

ΓC(r) if and only if it coincides with an operation from C on U .

Proof. It is easy. �

If the set A is finite, of cardinality k, then for any positive integer n we fix

an ordering (a1,n
1,1 ), . . . , (akn,n

kn,1 ) of all the n-tuples of elements of A and denote

by χn the kn-ary relation {(akn,1
1,1 ), . . . , (akn,n

1,n )}.

1.7. Lemma. Let A be finite; let C be a clone on A and n be a positive
integer. An n-ary operation belongs to C if and only if it preserves ΓC(χn).

Proof. It follows from 1.6. �

Let C be a clone on A. We say that an operation g ∈ O
(n)
A can be inter-

polated by operations from C if for every finite subset S of A there exists an
operation f ∈ C such that f |S = g|S . The clone C is called locally closed if it
contains every operation that can be interpolated by operations from C.

1.8. Theorem. The sets of the form P(R), for a set R of relations on A,
are exactly the locally closed clones on A.

Proof. It is easy to see that P(R) is always a locally closed clone. Let C
be a locally closed clone on A. It follows from 1.5 and 1.6 that an operation
belongs to C if and only if it preserves all the relations ΓC(r), for r running
over all finite relations on A. �

1.9. Corollary. In the case when A is finite, the sets of operations closed
in the Galois correspondence P - I are exactly the clones.

For a positive integer n and an equivalence e on the set {1, . . . , n} we
denote by δn,e the n-ary relation on A defined by (a1, . . . , an) ∈ δn,e if and
only if ai = aj for all (i, j) ∈ e. The relations obtained in this way are called
diagonal.

For every relation r on A we fix a relation symbol r̄ of the same arity. By
a formula over A we mean a formula of the language consisting of the symbols
r̄ with r ∈ RA. By an at most n-ary formula we mean a formula whose every
free variable belongs to {x1, . . . , xn}. For an at most n-ary formula f we define
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an n-ary relation [f ]n on A as follows: (an
1 ) ∈ [f ]n if and only if (an

1 ) satisfies
f . By a {&,∃}-formula we mean a formula not containing ¬,∨,→,∀. By a
formula in R, for a set R of relations on A, we mean a formula f such that
whenever r̄ occurs in f then r ∈ R.

By a relation system on A we mean a set R of relations (of arbitrary
arities) on A such that [f ]n ∈ R for any positive integer n and any at most
n-ary {&,∃}-formula f in R.

1.10. Theorem. The set of relation systems on A is an algebraic lattice;
its least element is the relation system of the diagonal relations and its greatest
element is the relation system RA. For any set F of operations on A, the set
I(F ) is a relation system.

Proof. It is easy. �

We define three unary operations ζ, τ , ∆ and one binary operation ◦ on
RA as follows:

for r ∈ R
(1)
A , ζr = τr = ∆r = r;

for r ∈ R
(n)
A with n ≥ 2, ζr = s ∈ R

(n)
A where (an

1 ) ∈ s if and only if
(an

2 , a1) ∈ r;

for r ∈ R
(n)
A with n ≥ 2, τr = s ∈ R

(n)
A where (an

1 ) ∈ s if and only if
(a2, a1, a

n
3 ) ∈ r;

for r ∈ R
(n)
A with n ≥ 2, ∆r = s ∈ R

(n−1)
A where (an−1

1 ) ∈ s if and only if

(a1, a
n−1
1 ) ∈ r;

for r ∈ R
(n)
A and s ∈ R

(m)
A , r ◦ s = t ∈ R

(n+m−2)
A where (an+m−2

1 ) ∈ t

if and only if there exists an u with (an−1
1 , u) ∈ r and (u, an+m−2

n ) ∈ s; if
n = m = 1, put r ◦ s = ∅.

1.11. Theorem. Let the set A be finite. Then a set R of relations on A is
a relation system if and only if it is closed with respect to ζ, τ,∆ and contains
the diagonal relation δ3,e where e is the equivalence on {1, 2, 3} identifying 2
with 3.

Proof. Excercise. �

1.12. Lemma. Let C be a clone on a finite set A. The relation system I(C)
is generated by the relations ΓC(χt) (t = 1, 2, . . . ).

Proof. Let r ∈ I(C) be m-ary; denote the elements of r by (am,1
1,1 ), . . . ,

(am,t
1,t ) and the elements of χt by (bk

t,1
1,1 ), . . . , (bk

t,t
1,t ). For every i ∈ {1, . . . ,m}

denote by h(i) the number with (ai,t
i,1) = (b

h(i),t
h(i),1). It is easy to prove that an

m-tuple (am
1 ) belongs to r if and only if there exist elements y1, . . . , ykt such

that (ykt

1 ) ∈ ΓC(χt) and a1 = yh(1), . . . , am = yh(m). Hence r belongs to the
relation system generated by ΓC(χt). �

1.13. Theorem. Let Q be a set of relations on a finite set A. Then Q is
a relation system if and only if Q = I(F ) for some set of operations F .
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Proof. Let Q be a relation system and put F = P(Q); we have to prove
Q = I(F ). By 1.12 it suffices to show ΓF (χt) ∈ Q for any t ≥ 1. Denote by
γ the intersection of all kt-ary relations from Q containing χt; we have γ ∈ Q.
Evidently, ΓF (χt) ⊆ γ. It is enough to prove ΓF (χt) = γ. Suppose, on the

contrary, that ΓF (χt) ⊂ γ; fix a sequence (ukt

1 ) ∈ γ r ΓF (χt). Denote the

elements of χt by (bk
t,1

1,1 ), . . . , (bk
t,t

1,t ) and define a t-ary operation f by f(bi,ti,1) =

ui for all i ∈ {1, . . . , kt}. By 1.5 we have f /∈ F = P(Q), so that there

exists an m ≥ 1 and a relation % ∈ Q(m) which is not preserved by f . There
exist (am,1

1,1 ), . . . , (am,t
1,t ) in % such that (f(a1,t

1,1), . . . , f(am,t
m,1)) /∈ %. For every j ∈

{1, . . . ,m} denote by h(j) the number from {1, . . . , kt} with (aj,t
j,1) = (b

h(j),t
h(j),1).

Denote by e the least equivalence on {1, . . . , kt +m} such that (h(j), kt +j) ∈ e
for any j ∈ {1, . . . ,m}. Put %′ = (γ × %) ∩ δkt+m,e. Define a kt-ary relation %′′

by (zkt

1 ) ∈ %′′ if and only if there exist y1, . . . , ym with (zkt

1 , y
m
1 ) ∈ %′. Evidently,

%′′ ∈ Q. Since (bk
t,1

1,1 , a
m,1
1,1 ) ∈ %′, . . . , (bk

t,t
1,t , a

m,t
1,t ) ∈ %′, we have χt ⊆ %′′. Hence

γ ⊆ %′′. From this we get (ukt

1 ) ∈ %′′, i.e., (ukt

1 , a
m
1 ) ∈ %′ for some (am

1 ) ∈ %.

We have (am
1 ) = (u

h(m)
h(1) ) = (f(b

h(1),t
h(1),1), . . . , f(b

h(m),t
h(m),1)) = (f(a1,t

1,1), . . . , f(am,t
m,1)),

a contradiction, since this sequence does not belong to %. �

An operation f ∈ O
(n)
A is said to depend essentially on the i-th variable

(i ∈ {1, . . . , n}) if there exist elements an
1 , b, c ∈ A such that f(ai−1

1 , b, an
i+1) 6=

f(ai−1
1 , c, an

i+1). An operation which depends on at most one variable is called
essentially unary.

1.14. Theorem. The clone O
(1)
A generated by the unary operations on A

consists exactly of the essentially unary operations. The lattice of subclones
of this clone is isomorphic to the lattice of submonoids of the transformation

monoid of A; the mapping C → C∩O
(1)
A establishes the isomorphism; inversely,

the clone generated by a transformation monoid M consists of the operations
f such that there exist an i ∈ {1, . . . , n} (n being the arity of f) and a g ∈M
with f(an

1 ) = g(ai) for all an
1 ∈ A.

Similarly, the lattice of subclones of the clone generated by the permutations
of A is isomorphic to the lattice of subgroups of the permutation group of A.

Proof. It is evident. �

1.15. Lemma. Let A be a finite set of at least three elements and f ∈ O
(n)
A

be an operation depending on at least two variables and taking m dif and only
iferent values, where m ≥ 3. Then:

(1) There are subsets K1, . . . ,Kn of A of cardinalities ≤ 2 such that f
restricted to K1 × · · · × Kn takes at least three dif and only iferent
values.

(2) There are subsets K ′1, . . . ,K
′
n of A of cardinalities ≤ m− 1 such that

f restricted to K ′1 × · · · ×K
′
n takes all the m values.
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Proof. (1) We can assume that f depends essentially on the first place.
Suppose that there are no such sets K1, . . . ,Kn.

Let (an
1 ) and (bn1 ) be two n-tuples such that ai = bi for all i 6= 1 and

f(an
1 ) 6= f(bn1 ). If, for some n-tuple (cn1 ), either f(a1, c

n
2 ) or f(b1, c

n
2 ) does not

belong to {f(an
1 ), f(bn1 )}, we can put K1 = {a1, b1},K2 = {a2, c2}, . . . ,Kn =

{an, cn}. So, we have proved that if f(an
1 ) 6= f(bn1 ) and ai = bi for all i 6= 1

then, for any n-tuple (cn1 ), the elements f(a1, c
n
2 ) and f(b1, c

n
2 ) both belong to

{f(an
1 ), f(bn1 )}.

Let (an
1 ), (bn1 ) be two n-tuples such that f(an

1 ) 6= f(bn1 ) and ai = bi for
i 6= 1. There exists an n-tuple (cn1 ) such that the elements f(an

1 ), f(bn1 ), f(cn1 )
are pairwise distinct. The element f(a1, c

n
2 ) equals either f(an

1 ) or f(bn1 ). If it
were equal to f(bn1 ), we could put Ki = {ai, ci} for all i, a contradiction. Hence
f(a1, c

n
1 ) = f(an

1 ). Since f(cn1 ) 6= f(an
1 ), we get f(a1, d

n
2 ) ∈ {f(an

1 ), f(bn1 )} for
any dn

2 ; however, we have f(a1, d
n
2 ) ∈ {f(an

1 ), f(bn1 )} and thus f(a1, d
n
2 ) = f(an

1 )
for any dn

2 . We have proved that if ai = bi for all i 6= 1 and f(an
1 ) 6= f(bn1 ) then

f(a1, d
n
2 ) = f(an

1 ) and f(b1, d
n
2 ) = f(bn1 ) for all dn

2 ∈ A. From this it follows
that f depends on the first variable only, a contradiction.

(2) Let K1, . . . ,Kn be as in (1); let a, b, c be three dif and only iferent values

of f on K1× · · · ×Kn; let f(a1,n
1,1 ), . . . , f(am−3,n

m−3,1 ) be the remaining values of f .

We can put K ′i = Ki ∪ {a1,i, . . . , am−3,i}. �

Define two relations π4 and ν on A as follows:
π4 is the set of the quadruples (a, b, c, d) such that either a = b or c = d.
If A has at least three elements, put ν = {(a, b); a 6= b}; if A has only two

elements, put ν = {(a, b, c, d, e, f); (a, b, c, d) ∈ π4&e 6= f}.

1.16. Theorem. The clone of essentially unary operations is equal to
P(π4). The clone generated by the permutations of A is equal to P(ν).

Proof. Denote the first clone by C and the second by D. Clearly, C ⊆
P(π4). Let f ∈ P(π4) be n-ary and suppose that f depends essentially on two
dif and only iferent variables, the i-th and the j-th. We have f(an

1 ) 6= f(bn1 )
and f(cn1 ) 6= f(dn

1 ) for four n-tuples such that if k 6= i then ak = bk and if
k 6= j then ck = dk. For every k ∈ {1, . . . , n} we have (ak, bk, ck, dk) ∈ π4 and
so (f(an

1 ), f(bn1 ), f(cn1 ), f(dn
1 )) ∈ π4, a contradiction.

Let A contain at least three elements. Clearly, D ⊆ P(ν). Let f ∈ P(ν)
be n-ary. Evidently, it is sufficient to prove f ∈ C. Suppose, on the contrary,
that f depends essentially on two dif and only iferent variables. Denote by k
the cardinality of A. Evidently, f takes k dif and only iferent values on the
n-tuples (c, . . . , c) with c ∈ A. By 1.15 there exists an n-tuple (cn1 ) such that
f takes all the k values on the set M = {(an

1 ); ai 6= ci for all i}. There is an
n-tuple (an

1 ) ∈ M with f(an
1 ) = f(cn1 ). We have (a1, c1) ∈ ν, . . . , (an, cn) ∈ ν

but (f(an
1 ), f(cn1 )) /∈ ν, a contradiction. �

We define a binary operation ∨ and a unary operation ¬ on RA as follows:
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If r ∈ R
(n)
A and s ∈ R

(m)
A are nonempty then r ∨ s ∈ R

(N)
A where N =

max(n,m) and (aN
1 ) ∈ r ∨ s if and only if either (an

1 ) ∈ r or (am
1 ) ∈ s; put

r ∨ ∅ = ∅ ∨ r = r for all r.
If r ∈ R

(n)
A is nonempty then let ¬r be the complement of r in R

(n)
A ; put

¬∅ = ∅.

1.17. Theorem. Let R be a set of relations on a finite set A. Then R =
I(F ) for a set of unary operations F if and only if R is a relation system
closed for ∨ if and only if [f ]n ∈ R for any n ≥ 1 and any {&,∨,∃}-formula
f in R. Further, R = I(F ) for a set of permutations F if and only if R is a
relation system closed for ∨ and ¬ if and only if [f ]n ∈ R for any n ≥ 1 and
any formula f in R.

Proof. It is easy. �

1.18. Theorem. Let k = card(A) be finite and let C be a clone on A

generated by its n-ary operations. Then there are at most 2kkn

clones covered
by C in the lattice of clones on A.

Proof. Let H be a clone covered by C and let C be generated by n-
ary operations f1, . . . , fs. If it were f1, . . . , fs ∈ PΓH(χn) then by 1.7 we
would have f1, . . . , fs ∈ H, so that C ⊆ H, a contradiction. Hence H ⊆
C ∩ PΓC(χn) ⊂ C; since H is covered by C, we get H = C ∩ PΓC(χn). From
this it follows that H is uniquely determined by a kn-ary relation. The number

of kn-ary relations on A is 2kkn

. �

1.19. Corollary. The following are equivalent for a clone C on a finite
set A:

(1) C is finitely generated;
(2) C is not the union of an increasing infinite chain of its subclones;
(3) the lattice of subclones of C is coatomic and contains a finite number

of coatoms only. �

1.20. Theorem. Let R be a relation system on a finite set A of cardinality
k. If R is finitely generated then R is one-generated. If R is generated by
a relation r containing n tuples then there are at most kkn

relation systems
covered by R in the lattice of relation systems on A.

Proof. If R is generated by r1, . . . , rs and r1, . . . , rs are nonempty then R
is generated by the relation r1 × · · · × rs. Let R be generated by r and denote
by n the number of the tuples in r; let n ≥ 1. Let S be a relation system
covered by R. We have P(n)R ⊆ P(n)S. In the case of equality 1.5 would yield
ΓPS(r) = ΓPR(r) = r, so that r ∈ IP(S) = S and consequently R ⊆ S, a

contradiction. Hence we can take an operation f ∈ P(n)(S) r P(n)(R). We
have S ⊆ R ∩ I(fS) ⊂ R and so S = R ∩ I(fS), since S is covered by R.
Hence S is uniquely determined by an n-ary operation. The number of n-ary
operations on A is kkn

. �
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1.21. Corollary. The following are equivalent for a relation system R on
a finite set A:

(1) R is finitely generated;
(2) R is not the union of an increasing infinite chain of its relation sub-

systems;
(3) the lattice of relation subsystems of C is coatomic and contains a finite

number of coatoms only. �

1.22. Theorem. The clone of all operations on a finite set A is finitely
generated. The following are some examples of finite generating systems of
operations for O{1,...,k}:

(1) {min,max, ck1 , j
k
1 } where min and max are binary and ci, ji are unary

operations defined by ci(x) = i for all x, ji(x) = k for x = i and
ji(x) = 1 for x 6= i;

(2) {min, g} where g is the unary operation defined by g(1) = 2, g(2) =
3, . . . , g(k) = 1;

(3) {h} where h is the binary operation defined by h(x, y) = 1 for x =
y = k and h(x, y) = min(x, y) + 1 otherwise;

(4) {f, g, c1, . . . , ck, d1, . . . , dk} where, for some pair e, o of distinct ele-
ments of A, f, g are two binary operations satisfying f(x, e) = x,
f(x, o) = o, g(o, x) = g(x, o) = x, ci are the constants and di are the
unary operations defined by di(ai) = e and di(aj) = o for i 6= j;

(5) {f, h} where, for an element o ∈ A, f is an arbitrary binary operation
such that a restriction of f is a group operation on Ar{o}, f(x, o) =
f(o, x) = o for all x and h is a cyclic permutation of A.

Proof. (1) We shall prove by induction on n that an arbitrary n-ary
operation h on A belongs to the clone generated by {min,max, ck1 , j

k
1 }. For

n = 1 we have

f(x) = max(min(j1(x), cf(1)(x)), . . . ,min(jk(x), cf(k)(x))).

For n ≥ 2 we have

f(xn
1 ) = max(min(j1(xn), f(xn−1

1 , 1)), . . . ,min(jk(xn), f(xn−1
1 , k))).

(2) We have c1(x) = min(g(x), g2(x), . . . , gk(x)), ci(x) = gi(c1(x)), ji(x) =
gk−1(min(c2(x), gk−i(x))). Put fs,i(x) = gk−1(min(ji(x), cg(s)(x))), so that
fs,i(x) = s if x = i and fs,i(x) = k if x 6= i. Put h(x) = min(fk,1(x), fk−1,2(x),
. . . , f1,k(x)) = k − 1− x. We have max(x, y) = h(min(h(x), h(y))) and we can
use (1).

(3) This follows from (2), since g(x) = h(x, x) and min(x, y) = gk−1h(x, y).
(4) Write ∧ instead of f and ∨ instead of g. If h is an n-ary operation then

h(xn
1 ) =

∨

(an
1
)∈An

(ch(an
1
)(x1) ∧ da1

(x1) ∧ · · · ∧ dan(xn))

with the bracketings and with the order of the n-tuples (an
1 ) arbitrary.
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(5) For i = 0, . . . , k − 1 put ai = hi(o), so that A = {ak−1
0 } and a0 = o.

Denote by s the number from {1, . . . , k − 1} such that as is the unit of the
group (A r {o}, f); put e = as. Define ci and di as in (4) and write xy
instead of f(x, y). We have co(x) = xh(x) . . . hk−1(x), cai

(x) = hi(co(x)),
dai

(x) = hs(hk−s(co(x))(hk−i(x))k−1). Put g(x, y) = hk−s(hs(x)hs(y)). We
can apply (4). �

1.23. Theorem. Let A be a finite set with k elements, k ≥ 2. The relation
system RA is finitely generated; if k = 2 then it is generated by the set of its
ternary relations; if k ≥ 3 then it is generated by the two binary relations %
and ν where (x, y) ∈ % if and only if x ≤ y and (x, y) ∈ ν if and only if x 6= y.

Proof. Let k ≥ 3 and let f be an n-ary operation preserving both % and
ν; it is enough to prove that f is a projection. By 1.16, there exist an i and
a permutation g of A such that f(xn

1 ) = g(xi). Since f preserves %, we get
g = e1,1. �

1.24. Theorem. Let A be a finite set of cardinality k ≥ 3. Then the lattice
of clones on A is uncountable; it contains a subposet isomorphic to the lattice
of all subsets of an infinite countable set.

Proof. Let a, b, c be three distinct elements of A. Put N = {2, 3, 4, . . . }.
For every n ∈ N define an n-ary operation gn on A as follows: gn(xn

1 ) = a
if there exists an i such that xi = a and x1 = . . . xi−1 = xi+1 = . . . xn = b;
gn(xn

1 ) = c in all other cases. For every I ⊆ N denote by CI the clone generated
by {gn;n ∈ I}. It is easy to prove that I ⊆ I ′ if and only if CI ⊆ CI′ . �

2. Categorical embeddings

A relation r on a set A is said to be rigid if there is no mapping f of A
into itself, except idA, such that whenever 〈x, y〉 ∈ r then 〈f(x), f(y)〉 ∈ r.

2.1. Theorem. (Vopěnka, Pultr, Hedrĺın [65]) For every set A there exists
a rigid, antireflexive relation r on A such that r is contained in a well ordering
of A.

Proof. If A is finite then we can take r = s r ida where s is any well
ordering of A.

Let A be infinite. Put k = card(A) and denote by D the set of all ordinal
numbers that are less or equal k+ 1. Since card(A) = card(D), it is sufficient
to prove that a rigid relation r, satisfying the above formulated requirements,
exists on D.

Denote by D0 the set of all the limit ordinal numbers from D that are the
union of a countable set of smaller ordinal numbers; denote by D1 the set of
all the other limit ordinal numbers from D; and denote by D2 the set of the
non-limit ordinal numbers from D. (We have 0 ∈ D1.) For every a ∈ D0 there
exists, and we will fix one, non-decreasing sequence a′2, a

′
3, a
′
4, . . . such that

a = (a′2 + 2) ∪ (a′3 + 3) ∪ (a′4 + 4) ∪ . . . ; put ai = a′i + i, so that a is the union
of the increasing sequence a2, a3, a4, . . . . Define a relation r on D in this way:
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(1) 〈0, 2〉 ∈ r
(2) 〈a, a+ 1〉 ∈ r for all a ∈ D r {k + 1}
(3) if b ∈ D1 then 〈a, b〉 ∈ r if and only if a ∈ b and a is a limit ordinal

number
(4) if a ∈ D0 then 〈c, a〉 ∈ r if and only if c = an for some n ≥ 2
(5) 〈a, k + 1〉 ∈ r if and only if either a = k or a ∈ D2 and a 6= k + 1

It remains to show that r is rigid; the other requirements are clearly satisfied.
Let f be a mapping of D into D such that 〈a, b〉 ∈ r implies 〈f(a), f(b)〉 ∈ r.

Claim 1. If a, b ∈ D and a ∈ b then f(a) ∈ f(d). Suppose that this is
not true and take the least ordinal number b ∈ D for which there exists an
a ∈ b with f(a) ≥ f(b). If b ∈ D1 then, where c is the union of all a + n for
n ∈ ω, c is a limit ordinal number such that a ∈ c ∈ b; by the minimality of
b we have f(a) ∈ f(c); by (3) we have 〈c, b〉 ∈ r, so that 〈f(c), f(b)〉 ∈ r and
thus f(a) ∈ f(c) ∈ f(b), hence f(a) ∈ f(b), a contradiction. If b ∈ D0 then
a ∈ bn ∈ b for some n ≥ 2; by the minimality of b we have f(a) ∈ f(bn); by (4)
we have 〈bn, b〉 ∈ r, so that 〈f(bn), f(b)〉 ∈ r and hence f(a) ∈ f(bn) ∈ f(b), a
contradiction. Finally, if b ∈ D2 then there exists a c such that b = c+ 1, and
we have a ≤ c ∈ b; then f(a) ≤ f(c) by the minimality of b; by (2) we have
〈c, b〉 ∈ r, so that 〈f(c), f(b)〉 ∈ r and thus f(a) ≤ f(c) ∈ f(b), a contradiction
again.

Claim 2. a ≤ f(a) for all a ∈ D. Suppose that this is not true and let a
be the least ordinal number from D such that f(a) ∈ a. By Claim 1 we have
f(f(a)) ∈ f(a), a contradiction with the minimality of a.

In particular, f(k + 1) = k + 1 and f(k) = f(k).
Claim 3. f(a) ∈ D2 for all a ∈ D2. For a = k + 1 we have it, so let

a 6= k + 1. Then 〈a, k + 1〉 ∈ r and hence 〈f(a), k + 1〉 ∈ r. Now f(a) ∈ D2

follows from (5).
Claim 4. f(n) = n for all natural numbers n. Since f is injective, we have

f(2) 6= k + 1. If f(2) 6= 2 then it follows from the definition of r and from
〈f(0), f(2)〉 ∈ r and 〈f(1), f(2)〉 ∈ r that f(0) + 1 = f(2) = f(1) + 1, so that
f(0) = f(1), which is not possible. Hence f(2) = 2. Then Also f(0) = 0
and f(1) = 1. Let f(n) = n where n > 1. We have 〈n, n + 1〉 ∈ r, so that
〈f(n), f(n+ 1)〉 ∈ r. Since f(n+ 1) 6= k+ 1 and 2 ∈ f(n+ 1), by Claim 3 and
from the definition of r we get f(n+ 1) = f(n) + 1 = n+ 1.

Claim 5. If a+n ∈ D where n is a natural number then f(a+n) = f(a)+n.
For a finite it follows from Claim 4. For a = k and for a = k+ 1 it is clear. Let
a be infinite and a < k. Clearly, it is sufficient to prove f(a + 1) = f(a) + 1.
We have 〈a, a + 1〉 ∈ r and hence 〈f(a), f(a + 1) ∈ r. By Claim 3 we have
f(a+1) ∈ D2; since f(a+1) is neither 2 nor k+1, it follows from the definition
of r that f(a+ 1) = f(a) + 1.

Claim 6. If a ∈ D is a limit ordinal number then f(a) is also a limit
ordinal number. This is clear for a = 0. Let a 6= 0. Clearly, either 〈0, a〉 ∈ r or
there exist infinitely many ordinal numbers c such that 〈c, a〉 ∈ r. So, either
〈0, f(a)〉 ∈ r (and certainly f(a) 6= 1 and f(a) 6= 2) or there exist infinitely



2. CATEGORICAL EMBEDDINGS 211

many ordinal numbers d such that 〈d, f(a)〉 ∈ r; in both cases it is clear that
f(a) is a limit ordinal number.

Claim 7. If a ∈ D0 and b = f(a) then b ∈ D0 and bn = f(an) for all
natural numbers n ≥ 2. Since 〈an, a〉 ∈ r, we have 〈f(an), f(a)〉 ∈ r; by
Claim 5 we have 〈f(a′n) + n, b〉 ∈ r.If b ∈ D1 then f(a′n) + n is a limit ordinal
number, a contradiction. By Claim 6 we get b ∈ D0. Let n ≥ 2 be a natural
number. Since 〈f(a′n) + n, b〉 ∈ r, there exists a natural number k ≥ 2 such
that f(a′n)+n = b′k +k. Since f(a′n) and b′k are limit ordinal numbers, we have
n = k and hence f(an) = bn.

Suppose f(a) 6= a for some a ∈ D. Then a ∈ f(a). By Claim 1 we have
fn(a) ∈ fn+1(a) for all natural numbers n. Let b be the union of all the
ordinal numbers fn(a), so that b ∈ D0. Suppose b ∈ f(b). Put c = f(b), so
that c ∈ D0. There exists a natural number n ≥ 2 such that b ∈ cn ∈ c.
Also, there exists a natural number i ≥ 2 such that bn ∈ f

i(a) ∈ b. We have
cn = f(bn) ∈ f(f i(a)) = f i+1(a) ∈ b, a contradiction. Hence f(b) = b. By
Claim 7 we get f(bn) = bn for all n ≥ 2. There exists an n ≥ 2 such that
a ∈ bn ∈ b. Then f(a) ∈ f(bn) ∈ b; from this we get f2(a) ∈ f(bn) = bn ∈ b,
and so on. Hence b ≤ bn ∈ b, a contradiction. �

2.2. Lemma. For every nonempty set A there exist two unary operations
f, g on A such that the algebra with these two operations has no nonidentical
endomorphism.

Proof. If A = {a1, . . . , an} is finite, one can put f(ai) = ai+1 for i < n,
f(an) = an, g(a1) = a1 and g(ai) = ai−1 for i > 1. Let A be infinite. By 2.2
there exists a rigid relation r on A. Denote by B the disjoint union A∪r∪{0, 1}
and define two binary operations f, g on B in this way:

(1) for a ∈ A put f(a) = 0 and g(a) = 1
(2) for 〈a, b〉 ∈ r put f(〈a, b〉) = a and g(〈a, b〉) = b
(3) put f(0) = f(1) = 1 and g(0) = g(1) = 0

Consider B as an algebra with respect to these two unary operations. Since
card(A) = card(B), it is sufficient to prove that the algebra B has no non-
identical endomorphism. Let h be an endomorphism of B. Since g(h(0)) =
h(g(0)) = h(0), we have h(0) = 0. Since f(h(1)) = h(f(1)) = h(1), we
have h(1) = 1. If a ∈ A then f(h(a)) = h(f(a)) = h(0) = 0, so that
h(a) ∈ A. If 〈a, b〉 ∈ r then f(h(〈a, b〉)) = h(f(〈a, b〉)) = h(a) ∈ A and
g(h(〈a, b〉)) = h(g(〈a, b〉)) = h(b), so that 〈h(a), h(b)〉 ∈ r and h(〈a, b〉) =
〈h(a), h(b)〉. Since r is rigid, it follows that h restricted to A is the identity.
Then also h(〈a, b〉) = 〈h(a), h(b)〉 = 〈a, b〉 for all 〈a, b〉 ∈ r. We have proved
that h(x) = x for all x ∈ B. �

Let K be a class of algebras of a signature σ and L be a class of algebras
of a signature τ . We can consider K and L as categories. A functor J of K
into L is said to be a categorical embedding if it is injective on objects (i.e.,
J(A) = J(B) implies A = B for A,B ∈ K) and for every homomorphism
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g of J(A) into J(B) (where A,B ∈ K) there exists precisely one homomor-
phism f of A into B with J(〈f,A,B〉) = g (more precisely, we should write
J(〈f,A,B〉) = 〈g, J(A), J(B)〉; if there is no confusion, we will write J(f)
instead of J(〈f,A,B〉).

Clearly, if there are a categorical embedding of K into L and a categorical
embedding of L into M then there is also a categorical embedding of K into M .

2.3. Lemma. Let σ, τ be two signatures such that there is an injective map-
ping z of Dom(σ) into Dom(τ) with τ(z(F )) ≥ σ(F ) for all F ∈ Dom(σ)
and such that if σ is without constants then τ is without constants. Then there
is a categorical embedding of the class of all σ-algebras into the class of all
τ -algebras.

Proof. For every σ-algebra A let J(A) be the τ -algebra with the under-
lying set A defined in this way: if G is an m-ary operation symbol of τ and
G = z(F ) for some n-ary operation symbol F of σ then for a1, . . . , am ∈ A put
GJ(A)(a1, . . . , am) = FA(a1, . . . , an); if G is not in the range of z and m > 0,
put GJ(A)(a1, . . . , am) = a1; if a constant G of τ is not in the range of z, put
GJ(A) = FA where F is a fixed constant of σ. For a homomorphism f of A
into B, where A,B ∈ K, put J(f) = f . �

2.4. Lemma. For every signature σ there exists a signature τ containing
only unary operation symbols, such that there is a categorical embedding of the
class of all σ-algebras into the class of all τ -algebras.

Proof. It follows from 2.3 that it is sufficient to consider the case when
σ is nonempty and contains no constants. Denote by τ the signature with
domain {〈F, i〉 : F ∈ Dom(σ), 0 ≤ i ≤ σ(F )}, where each symbol has arity 1.
For every σ-algebra A define a τ -algebra J(A) in this way: the underlying set
of J(A) is the union of A∪{u, v} (u, v are two different elements not belonging
to A) with the set of all finite sequences 〈F, a1, . . . , aσ(F )〉 where F ∈ Dom(σ)
and ai ∈ A for all i; the unary operations are defined by

(1) 〈F, 0〉J(A)(a) = u for a ∈ A
(2) 〈F, 0〉J(A)(u) = 〈F, 0〉J(A)(v) = v
(3) 〈F, 0〉J(A)(〈F, a1, . . . , an〉) = FA(a1, . . . , an)
(4) 〈F, 0〉J(A)(〈G, a1, . . . , an〉) = u for G 6= F
(5) 〈F, i〉J(A)(a) = v for i ≥ 1 and a ∈ A
(6) 〈F, i〉J(A)(u) = 〈F, i〉J(A)(v) = u for i ≥ 1
(7) 〈F, i〉J(A)(〈F, a1, . . . , an〉) = ai for i ≥ 1
(8) 〈F, i〉J(A)(〈G, a1, . . . , an〉) = a1 for i ≥ 1 and G 6= F

For every mapping f of a σ-algebra A into a σ-algebra B define a mapping
J(f) of J(A) into J(B) in this way:

(1) J(f)(a) = f(a) for a ∈ A
(2) J(f)(〈F, a1, . . . , an〉) = 〈F, f(a1), . . . , f(an)〉
(3) J(f)(u) = u and J(f)(v) = v
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One can easily check that if f is a homomorphism of A into B then J(f)
is a homomorphism of J(A) into J(B). It remains to show that for every
homomorphism g of J(A) into J(B) there exists a homomorphism f of A into
B with g = J(f). Let us fix a symbol S of σ. Since g(v) = g(〈S, 0〉J(A)(v)) =
〈S, 0〉J(B)(g(v)), we have g(v) = v. Since g(u) = g(〈S, 1〉J(A)(u)) = 〈S, 1〉J(B)

(g(u)), we have g(u) = u. Let a ∈ A. Since 〈S, 1〉J(B)(g(a)) = g(〈S, 1〉J(A)(a))
= g(v) = v, we have g(a) ∈ B. Denote by f the restriction of g to A, so that
f is a mapping of A into B.

We are going to prove that g = J(f). Let F be an n-ary operation sym-
bol of σ. Since 〈F, 0〉J(B)(g(〈F, a1, . . . , an〉)) = g(〈F, 0〉J(A)(〈F, a1, . . . , an〉)) =
g(FA(a1, . . . , an)) ∈ B, we have g(〈F, a1, . . . , an〉) = 〈F, b1, . . . , bn〉 for some
b1, . . . , bn ∈ B. For i = 1, . . . , n we have bi = 〈F, i〉J(B)(〈F, b1, . . . , bn〉) =
〈F, i〉J(B)(g(〈F, a1, . . . , an〉)) = g(〈F, i〉J(A)(〈F, a1, . . . , an〉)) = g(ai) = f(ai).
Hence g(〈F, a1, . . . , an〉) = 〈F, f(a1), . . . , f(an)〉.

It remains to prove that f is a homomorphism of A into B. Let F be an n-
ary operation symbol of σ and let a1, . . . , an ∈ A. We have f(FA(a1, . . . , an)) =
g(FA(a1, . . . , an)) = g(〈F, 0〉J(A)(〈F, a1, . . . , an〉)) = 〈F, 0〉J(B)(g(〈F, a1, . . . , an

〉)) = 〈F, 0〉J(B)(〈F, f(a1), . . . , f(an)〉) = FB(f(a1), . . . , f(an)). �

2.5. Lemma. Let σ be a signature containing only unary operation symbols
and let τ be the signature containing just one ternary operation symbol S.
There exists a categorical embedding of the class of all σ-algebras into the class
of all τ -algebras.

Proof. Put T = Dom(σ). By 2.2 there exist two mappings p, q of T
into T such that whenever f is a mapping of T into T satisfying fp = pf and
fq = qf then f = idT . For every σ-algebra A define a τ -algebra J(A) in this
way: its underlying set is the disjoint union A ∪ T ∪ (A × T ) ∪ {u, v} where
u, v are two distinct elements;

(1) if x, y, z ∈ J(A) and either x = y = z = u or at most one of x, y, z
equals u then SJ(A)(x, y, z) = v, with the exception SJ(A)(v, v, v) = u;
moreover, SJ(A)(v, u, u) = SJ(A)(u, v, u) = SJ(A)(u, u, v) = v

(2) for a ∈ A and F ∈ T put SJ(A)(〈a, F 〉, u, u) = 〈FA(a), F 〉,
SJ(A)(u, 〈a, F 〉, u) = F , SJ(A)(u, u, 〈a, F 〉) = a

(3) for a ∈ A put SJ(A)(a, u, u) = SJ(A)(u, a, u) = SJ(A)(u, u, a) = u
(4) for F ∈ T put SJ(A)(F, u, u) = p(F ), SJ(A)(u, F, u) = q(F ),

SJ(A)(u, u, F ) = v

For every mapping f of a σ-algebra A into a σ-algebra B define a mapping
J(f) of J(A) into J(B) by

(1) J(f)(a) = f(a) for a ∈ A
(2) J(f)(〈a, F 〉) = 〈f(a), F 〉 for a ∈ A and F ∈ T
(3) J(f)(x) = x for x ∈ T ∪ {u, v}

It is easy to check that if f is a homomorphism of A into B then J(f) is a
homomorphism of J(A) into J(B). Clearly, we will be done if we show that
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for any two σ-algebras A and B and any homomorphism g of J(A) into J(B)
there exists a homomorphism f of A into B with g = J(f).

We have g(u) = g(SJ(A)(v, v, v)) = SJ(B)(g(v), g(v), g(v)) which is either
u or v. Also, g(v) = g(SJ(A)(u, u, u)) = SJ(B)(g(u), g(u), g(u)) which is either
v or u according to whether g(u) = u or g(v) = v. If g(u) = v then g(v) =
g(SJ(A)(u, v, v)) = SJ(B)(g(u), g(v), g(v)) = SJ(B)(v, u, u) = v, a contradiction.
Hence g(u) = u and g(v) = v.

Let a ∈ A. We have u = g(u) = g(SJ(A)(a, u, u)) = SJ(B)(g(a), g(u), g(u))
= SJ(B)(g(a), u, u) which is possible only if g(a) ∈ B. Denote by f the restric-
tion of g to A, so that f is a mapping of A into B.

Let a ∈ A and F ∈ T . We have SJ(B)(u, u, g(〈a, F 〉)) = SJ(B)(g(u), g(u),
g(〈a, F 〉)) = g(SJ(A)(u, u, 〈a, F 〉)) = g(a) = f(a) ∈ B which is possible only if
g(〈a, F 〉) = 〈b,G〉 for some b ∈ B and G ∈ T .

Let us choose an element a ∈ A. If F ∈ T then g(F ) = g(SJ(A)(u, 〈a, F 〉, u))
= SJ(B)(g(u), g(〈a, F 〉), g(u)) = SJ(B)(u, g(〈a, F 〉), u) ∈ T . Denote by h the
restriction of g to T , so that h is a mapping of T into itself. For F ∈ T we have
h(p(F )) = g(SJ(A)(F, u, u)) = SJ(B)(g(F ), g(u), g(u)) = SJ(B)(h(F ), u, u) =
p(h(F )) and similarly h(q(F )) = g(q(F )) = g(SJ(A)(u, F, u)) = SJ(B)(g(u),
g(F ), g(u)) = SJ(B)(u, h(F ), u) = q(h(F )); by the choice of p, q we get h = idT .
Hence g(F ) = F for all F ∈ T .

Let a ∈ A and F ∈ T , so that g(〈a, F 〉) = 〈b,G〉 for some b ∈ B and
G ∈ T . We have G = SJ(B)(u, 〈b,G〉, u) = SJ(B)(g(u), g(〈a, F 〉), g(u)) =
g(SJ(A)(u, 〈a, F 〉, u)) = g(F ) = F ; also, b = SJ(B)(u, u, 〈b,G〉) = SJ(B)(g(u),
g(u), g(〈a, F 〉)) = g(SJ(A)(u, u, 〈a, F 〉)) = g(a) = f(a). Hence g(〈a, F 〉) =
〈f(a), F 〉.

We have proved g = J(f) and it remains to prove that f is a homomorphism
of A into B. Let a ∈ A and F ∈ T . We have 〈f(FA(a)), F 〉 = g(〈FA(a), F 〉) =
g(SJ(A)(〈a, F 〉, u, u)) = SJ(B)(g(〈a, F 〉), g(u), g(u)) = SJ(B)(〈f(a), F 〉, u, u) =
〈FB(f(a)), F 〉, so that f(FA(a)) = FB(f(a)). �

2.6. Lemma. Let σ be the signature containing just one ternary operation
symbol S and τ be the signature containing just two unary operation symbols
f,G. There exists a categorical embedding of the class of all σ-algebras into
the class of all τ -algebras.

Proof. For every σ-algebra A define a τ -algebra J(A) in this way: the
underlying set of J(A) is the disjoint union (A×A×A×{0, 1})∪ (A×{2, 3});

(1) FJ(A)(〈a, b, c, 0〉) = 〈b, c, a, 1〉
(2) FJ(A)(〈a, b, c, 1〉) = 〈a, b, c, 0〉
(3) FJ(A)(〈a, 2〉) = FJ(A)(〈a, 3〉) = 〈a, 2〉
(4) GJ(A)(〈a, b, c, 0〉) = 〈a, 2〉
(5) GJ(A)(〈a, b, c, 1〉) = 〈SA(a, b, c), 3〉
(6) GJ(A)(〈a, 2〉) = GJ(A)(〈a, 3〉) = 〈a, 3〉

If A,B are two σ-algebras then for any mapping f of A into B we define a
mapping J(f) of J(A) into J(B) in this way:
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(1) J(f)(〈a, b, c, i〉) = 〈f(a), f(b), f(c), i〉
(2) J(f)(〈a, j〉 = 〈f(a), j〉

It is easy to check that if f is a homomorphism of A into B then J(f) is a
homomorphism of J(A) into J(B). Let A,B be two σ-algebras and g be a
homomorphism of J(A) into J(B). It remains to show that g = J(f) for a
homomorphism f of A into B.

If a ∈ A then g(〈a, 3〉 = g(GJ(B)(〈a, 3〉)) = GJ(B)(g(〈a, 3〉)), so that
g(〈a, 3〉) = 〈b, 3〉 for an element b ∈ B, since only elements of B × {3}
can be fixed points of GJ(B). So, we can define a mapping f of A into B
by g(〈a, 3〉) = 〈f(a), 3〉. For a ∈ A we have g(〈a, 2〉) = g(FJ(A)(〈a, 3〉)) =
FJ(B)(g(〈a, 3〉)) = FJ(B)(〈f(a), 3〉) = 〈f(a), 2〉.

Let a, b, c ∈ A. We have GJ(B)(g(〈a, b, c, 0〉)) = g(GJ(A)(〈a, b, c, 0〉)) =
g(〈a, 2〉) = 〈f(a), 2〉, so that g(〈a, b, c, 0〉) = 〈a′, b′, c′, 0〉 for some a′, b′, c′ ∈
B. We have g(〈a, b, c, 1〉) = g(F 5

J(A)(〈a, b, c, 0〉)) = F 5
J(B)(g(〈a, b, c, 0〉)) =

F 5
J(B)(〈a

′, b′, c′, 0〉) = 〈a′, b′, c′, 1〉. Also, 〈a′, 2〉 = GJ(B)(〈a
′, b′, c′, 0〉) = GJ(B)(

g(〈a, b, c, 0〉)) = g(GJ(A)(〈a, b, c, 0〉)) = g(〈a, 2〉) = 〈f(a), 2〉, so that a′ = f(a);

we have 〈b′, 2〉 = GJ(B)(F
2
J(B)(〈a

′, b′, c′, 0〉)) = GJ(B)(F
2
J(B)(g(〈a, b, c, 0〉))) =

g(GJ(A)(F
2
J(A)(〈a, b, c, 0〉))) = g(〈b, 2〉) = 〈f(b), 2〉, so that b′ = f(b); we have

〈c′, 2〉 = GJ(B)(F
4
J(B)(〈a

′, b′, c′, 0〉)) = GJ(B)(F
4
J(B)(g(〈a, b, c, 0〉))) = g(GJ(A)(

F 4
J(A)(〈a, b, c, 0〉))) = g(〈c, 2〉) = 〈f(c), 2〉, so that c′ = f(c). Hence g(〈a, b, c, 0〉)

= 〈f(a), f(b), f(c), 0〉. Then also g(〈a, b, c, 1〉) = 〈f(a), f(b), f(c), 1〉. We have
proved g = J(f).

It remains to prove that f is a homomorphism of A into B. Let a, b, c ∈
A. We have 〈f(SA(a, b, c)), 3〉 = g(〈SA(a, b, c), 3〉) = g(GJ(A)(〈a, b, c, 1〉)) =
GJ(B)(g(〈a, b, c, 1〉)) = GJ(B)(〈f(a), f(b), f(c), 1〉) = 〈SB(f(a), f(b), f(c)), 3〉,
so that f(SA(a, b, c)) = SB(f(a), f(b), f(c)). �

2.7. Lemma. Let σ be the signature containing just two unary operation
symbols F,G and τ be the signature containing F,G and, moreover, one con-
stant 0. There exists a categorical embedding of the class of all σ-algebras into
the class of all τ -algebras.

Proof. For every set A take an element uA not belonging to A and put
A′ = A ∪ {uA}. For every σ-algebra A define a τ -algebra J(A) with the
underlying set (A′×A′×{0, 1})∪(A′×{2, 3})∪{v} (where v is a fixed element
that is not an ordered pair);

(1) 0J(A) = v

(2) FJ(A)(〈x, y, 0〉) = 〈y, x, 1〉 for x, y ∈ A′

(3) FJ(A)(〈x, y, 1〉) = 〈x, y, 0〉 for x, y ∈ A′

(4) FJ(A)(〈a, 2〉) = FJ(A)(〈a, 3〉) = 〈a, 2〉 for a ∈ A
(5) FJ(A)(〈uA, 2〉) = FJ(A)(〈uA, 3〉) = v
(6) FJ(A)(v) = 〈uA, 2〉
(7) GJ(A)(v) = v

(8) GJ(A)(〈x, 2〉) = 〈x, 3〉 for x ∈ A′
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(9) GJ(A)(〈x, 3〉) = v for x ∈ A′

(10) GJ(A)(〈x, y, 0〉) = 〈x, 2〉 for x, y ∈ A′

(11) GJ(A)(〈a, uA, 1〉) = 〈FA(a), 3〉 for a ∈ A
(12) GJ(A)(〈uA, a, 1〉) = 〈GA(a), 3〉 for a ∈ A
(13) GJ(A)(〈x, y, 1〉) = v in all other cases

If A,B are two σ-algebras then for every mapping f of A into B we define a
mapping f ′ of A′ into B′ by f ′(a) = f(a) for a ∈ A and f ′(uA) = uB ; we define
a mapping J(f) of J(A) into J(B) by

(1) J(f)(〈x, y, i〉) = 〈f ′(x), f ′(y), i〉
(2) J(f)(〈x, j〉) = 〈f ′(x), j〉
(3) J(f)(v) = v

It is easy to check that if f is a homomorphism of A into B then J(f) is a
homomorphism of J(A) into J(B). Let A,B be two σ-algebras and g be a
homomorphism of J(A) into J(B). It remains to show that g = J(f) for some
homomorphism f of A into B.

Clearly, g(v) = v.
We have g(〈uA, 2〉) = g(FJ(A)(v)) = FJ(B)(g(v)) = FJ(B)(g(〈a, 2〉)) and

hence g(〈uA, 3〉) = g(GJ(A)(〈uA, 2〉)) = GJ(B)(g(〈uA, 2〉)) = GJ(B)(〈uB , 2〉) =
〈uB , 3〉.

For a ∈ A we have g(〈a, 2〉) = g(FJ(A)(〈a, 2〉)) = FJ(B)(g(〈a, 2〉)), from
which clearly g(〈a, 2〉) = 〈b, 2〉 for some b ∈ B. We can define a mapping f of
A into B by g(〈a, 2〉) = 〈f(a), 2〉.

For a ∈ A we have g(〈a, 3〉) = g(GJ(A)(〈a, 2〉)) = GJ(B)(g(〈a, 2〉)) =
GJ(B)(〈f(a), 2〉) = 〈f(a), 3〉.

If x, y ∈ A′ then GJ(B)(g(〈x, y, 0〉)) = g(GJ(A)(〈x, y, 0〉)) = g(〈x, 2〉) =
〈f ′(x), 2〉, hence g(〈x, y, 0〉) = 〈x′, y′, 0〉 for some x′, y′ ∈ B′. We have 〈x′, 2〉 =
GJ(B)(〈x

′, y′, 0〉) = GJ(B)(g(〈x, y, 0〉)) = g(GJ(A)(〈x, y, 0〉)) = g(〈x, 2〉) =

〈f ′(x), 2〉 and 〈y′, 2〉 = GJ(B)(F
2
J(B)(〈x

′, y′, 0〉)) = GJ(B)(F
2
J(B)(g(〈x, y, 0〉))) =

g(GJ(A)(F
2
J(A)(〈x, y, 0〉))) = g(〈y, 2〉) = 〈f ′(y), 2〉; hence g(〈x, y, 0〉) = 〈f ′(x),

f ′(y), 0〉. Also, g(〈x, y, 1〉) = g(F 3
J(A)(〈x, y, 0〉)) = F 3

J(B)(g(〈x, y, 0〉)) = F 3
J(B)(

〈f ′(x), f ′(y), 0〉) = 〈f ′(x), f ′(y), 1〉.
We have proved g = J(f). It remains to show that f is a homomor-

phism of A into B. Let a ∈ A. We have 〈f(FA(a)), 3〉 = g(〈FA(a), 3〉) =
g(GJ(A)(〈a, uA, 1〉)) = GJ(B)(g(〈a, uA, 1〉)) = GJ(B)(〈f(a), uB , 1〉) =
〈FB(f(a)), 3〉, so that f(FA(a)) = FB(f(a)). Similarly 〈f(GA(a)), 3〉 =
g(〈GA(a), 3〉) = g(GJ(A)(〈uA, a, 1〉)) = GJ(B)(g(〈uA, a, 1〉)) =
GJ(B)(〈uB , f(a), 1〉) = 〈GB(f(a)), 3〉, so that f(GA(a)) = GB(f(a)). �

2.8. Lemma. Let σ be the signature containing just two unary operation
symbols F,G. There exists a categorical embedding of the class of all σ-algebras
into the class of all groupoids.

Proof. For every σ-algebra A define a groupoid J(A) with the underlying
set A ∪ {p, q} (where p, q are two distinct elements not in A) in this way:
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(1) a · p = FA(a) for a ∈ A
(2) p · a = GA(a) for a ∈ A
(3) q · q = p
(4) x · y = q in all other cases

If A,B are two σ-algebras then for every mapping f of A into B we define a
mapping J(f) of J(A) into J(B) by

(1) J(f)(a) = f(a) for a ∈ A
(2) J(f)(p) = p and J(f)(q) = q

It is easy to check that if f is a homomorphism of A into B then J(f) is a
homomorphism of J(A) into J(B). Let A,B be two σ-algebras and g be a
homomorphism of J(A) into J(B). We need to show that g = J(f) for a
homomorphism f of A into B.

Since for every b ∈ B we have b · b ∈ {p, q} and since p · p = q and q · q = p,
it is clear that g maps {p, q} onto itselt. Hence g(q) = g(p ·q) = g(p) ·g(q) = q;
then also g(p) = p.

Let a ∈ A. If g(a) = q then q = g(q) = g(a · q) = g(a) · g(q) = q · q = p,
a contradiction. If g(a) = p then q = p · p = g(p) · g(a) = g(p · a) 6= q, a
contradiction. Hence g(a) ∈ B. Denote by f the restriction of g to A, so that
f is a mapping of A into B and g = J(f).

It remains to prove that f is a homomorphism of A into B. For a ∈ A we
have f(FA(a)) = g(FA(a)) = g(a · p) = g(a) · g(p) = f(a) · p = FB(f(a)) and
similarly f(GA(a)) = g(GA(a)) = g(GA(a)) = g(p ·a) = g(p) · g(a) = p · f(a) =
GB(f(a)). �

2.9. Lemma. Let σ be the signature containing just two unary operation
symbols; let τ be the signature containing one binary operation symbol and one
constant. There exists a categorical embedding of the class of all σ-algebras
into the class of all τ -algebras.

Proof. The proof of 2.8 can be repeated with the only modification that
the constant should be interpreted by the element p. �

2.10. Theorem. (Hedrĺın, Pultr [66]) Let σ be any signature and τ be a
large signature. There exists a categorical embedding of the class of all σ-
algebras into the class of all τ -algebras.

Proof. It follows from the above lemmas. �

2.11. Corollary. Every monoid is isomorphic to the endomorphism mo-
noid of a groupoid. Every group is isomorphic to the automorphism group of
a groupoid.





OPEN PROBLEMS

Problem 1. Is every finite lattice isomorphic to the congruence lattice of
a finite algebra?

Problem 2. Characterize those lattices (or at least those finite lattices)
that are isomorphic to the lattice of all subvarieties of some variety.

(See 15.2.1.)

Problem 3. Let A be a finite algebra of a finite signature and V be the
variety generated by A; let V be residually very finite. Must V be finitely based?

Problem 4. Is there an algorithm deciding for every finite algebra A of a
finite signature whether the quasivariety generated by A is finitely axiomatiz-
able?

Problem 5. Characterize the varieties V such that whenever V is properly
contained in a variety W then there is a subvariety of W that covers V .

Clearly, every finitely based variety has this property. It follows from
Theorem 6.12.2 that also every balanced variety has this property. However,
not every variety has this property.

Problem 6. Let V be a locally finite variety of a finite signature. We say
that V is finitely based at finite level if there exists a finitely based variety W
such that V and W have the same finite algebras. Is it true that V is finitely
based whenever it is finitely based at finite level?

This problem is due to S. Eilenberg and M.P. Schützenberger [76]. In 1993,
R. Cacioppo proved that if V is finitely generated and finitely based at finite
level but not finitely based then V is inherently nonfinitely based.

Problem 7. Find an algorithm (or prove that no such algorithm exists)
deciding for any equation 〈u, v〉 of a given signature whether the variety V
based on 〈u, v〉 has an upper semicomplement in the lattice of all varieties
(i.e., whether V ∨W = U for some variety W ⊂ U , where U is the variety of
all algebras).

Problem 8. Characterize the equations 〈u, v〉 such that the variety based
on 〈u, v〉 is a meet-irreducible element of the lattice of all varieties of the given
signature.

A conjecture is that (if the signature contains at least one operation symbol
of positive arity) this is the case if and only if 〈u, v〉 is regular and the terms u, v
are either incomparable or one can be obtained from the other by a permutation
of variables of prime power order. For details see Ježek [83].
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Problem 9. Can one effectively construct, for any nonempty finite set B
of nontrivial equations of a finite signature, another finite set B′ of equations
such that the variety VB based on B is covered by the variety VB′ based on B′?

By Ježek and McNulty [95a], one can effectively construct a finite set B′′

of equations such that VB is properly contained in VB′′ and the number of
varieties between these two varieties is finite and can be effectively estimated
by an upper bound. However, this still does not yield positive solution to our
problem.

Problem 10. Is the equational theory based on any finite number of equa-
tions of the form 〈F (t1, . . . , tn), t1〉 (ti are any terms) always decidable?

Problem 11. Is there an algorithm deciding for any equation 〈u, v〉 in a
single variable, such that the two terms u and v are incomparable, whether the
equational theory based on 〈u, v〉 is term finite? Is the answer always yes?
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discrete, 41
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division ring, 31
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elementary class, 74
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elementary polynomial, 84
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embedding problem, 156
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structure, 29

subalgebra, 35

subdirect, 38
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support, 79
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theory, 65
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traversible, 125
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universal class, 76
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word problem, 155
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