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Abstract 

Halting the loss of biodiversity is one of our century's greatest challenges. In Southeast Asia, 

the biodiversity crisis is driven by unprecedented rates of forest clearance and degradation. 

Here, conservation efforts face the inherent complexity of trying to protect species in 

landscapes that also support human livelihoods. Most of our understanding of how bats are 

affected by land-use change in the tropics is limited to those species which can be monitored 

using live-trapping techniques. However, acoustic monitoring is an important survey method 

for monitoring the whole bat community in other regions of the world. In this thesis, advanced 

technological and statistical approaches are used to investigate how tropical bats respond to 

land-use change in Borneo. Specifically, the thesis explores the application of acoustic 

monitoring for bats in this region.   

In the first chapter, I outline how conservation zoning can be effective at protecting tropical 

bat diversity. To do so, I use a combination of live-trapping and acoustic monitoring to assess 

bat diversity and activity within The Crocker Range Biosphere Reserve compared to the 

surrounding agriculture. This includes demonstrating how acoustic data can be used to analyse 

differences in bat activity between habitats, even if it is not possible to classify calls to 

sonotype/species. Namely, this research highlights the importance of strict protective zones 

for conserving forest specialist species.  

Next, I refine the bat call classification process by using acoustic data manually classified to 

sonotype/species to assess the value of conservation set-asides. These data were combined 

with forest structural metrics measured using airborne LiDAR to assess the effectiveness of 

riparian reserves (areas of native forest along waterways) for conserving bats in oil-palm 

landscapes. Using Bayesian occupancy modelling, I demonstrate how - unlike other 

components of tropical biodiversity - forest quality is more important than riparian reserve 

width for maintaining suitable habitat for bats. This provides important evidence for designing 

effective conservation policies for tropical mammals.    

The lack of reference call libraries and automated classification tools in Southeast Asia 

impedes ongoing acoustic monitoring for bats in this region. Acoustic monitoring generates 

large datasets - often approaching the scale of big data - which requires time and expertise to 

manually process. These costs limit the application of bioacoustics as a feasible method for 

monitoring bats in tropical regions, not least in Southeast Asia - thus, limiting our 

understanding of how bat communities persist in human-modified landscapes. Therefore, for 

the third data chapter, I focus on developing a semi-automated framework for classifying bat 

calls in Southeast Asia when reference libraries may be limited. As proof of concept, this 
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framework is then used to develop a classifier for the bats of Borneo using reference calls for 

52% of all 81 known echolocating species on the island. This classifier was developed using 

free software to ensure the same framework could be applied to other regions of Southeast 

Asia.   

Last, I apply the newly-developed classifier to examine patterns of bat activity in response to 

habitat disturbance at the Stability of Altered Forest Ecosystems Project in Sabah. The data 

used in this assessment represented a seven-fold increase in the number of recording hours 

compared to the combined effort of the previous studies. This acoustic dataset is combined 

with forest structural metrics measured using airborne LiDAR to assess responses across a 

gradient of habitat disturbance - comprising old-growth forest, logged forest, and monoculture 

tree plantations. In this chapter, I demonstrate how logged forests can provide important 

habitat for bats in human-modified landscapes, maintaining acoustic diversity and activity of 

many common species, particularly when compared to tree plantations. However, I also 

demonstrate how old-growth forest remains important for conserving forest specialist species.    

Collectively, in this thesis, I document how bats can benefit from conservation initiatives that 

protect landscape features within human-modified landscapes. Crucially however, I also 

demonstrate that as disturbance intensity increases, less resilient species are lost from human-

modified landscapes. Whilst I provide important empirical contributions for understanding bat 

responses to disturbance, there remain substantial questions about how best to conserve these 

species and promote sustainable land use. The pipeline and classifier provided in this thesis 

will help improve accessibility for future acoustic studies to address these questions in Borneo 

and other areas of Southeast Asia. Therefore, the findings and resources presented here are an 

important step towards evidence-based land management for conserving Southeast Asian bats 

in human-modified landscapes.        

 

Keywords: Chiroptera; Acoustic Monitoring; Land-use change; Machine Learning; 

Disturbance gradients; Borneo; Oil palm; Selective Logging; Tropical forests. 
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Chapter 1 Introduction 

1.1  General background 

Humans have modified three-quarters of the world’s land area (Luyssaert et al. 2014; Arneth et al. 

2019). As well as providing food and shelter for growing populations, adapting the environment has 

been important for developing social security and cultural identities. Currently, agriculture, 

urbanisation, forestry, and wildfires are the main drivers of land-use change (Curtis et al. 2018). 

However, land-use change has had profound implications for biodiversity (Bradshaw, Sodhi and Brook 

2009; Cowie, Bouchet and Fontaine 2022), ecosystem functioning (Cardinale et al. 2006), and the 

global climate (Coe et al. 2013; Schulte to Bühne et al. 2021). The associated habitat loss and 

disturbance have fuelled the current biodiversity crisis which many describe as the start of the Sixth 

Mass Extinction (Ceballos, Ehrlich and Dirzo 2017; Giam 2017; Cowie, Bouchet and Fontaine 2022). 

The number of species threatened with extinction is forecast to continue rising over the next 50 years, 

particularly in the most biodiverse but often economically poor regions (Newbold et al. 2015; Ceballos, 

Ehrlich and Dirzo 2017; Tilman et al. 2017). Therefore, we need to act urgently to address the 

underlying causes of anthropogenic disturbance and reinforce current conservation policies to safeguard 

global biodiversity (Tilman et al. 2017).   

 

1.2  Forest loss and disturbance 

1.2.1  Deforestation related threats to tropical ecosystems 

Forests cover around 31% of the world’s land area (over four billion hectares; FAO & UNEP, 2020). 

They are important reservoirs of biodiversity (Mora et al. 2011; Giam et al. 2012), regulate global 

climate (Coe et al. 2013), water quality (Mello et al. 2018), and support the livelihoods of a quarter of 

the people on the planet (Newton et al. 2020). However, in the last 30 years alone, there has been a 

global net loss of forest the size of Libya (178 million hectares; FAO & UNEP, 2020). Agricultural land 

now constitutes a greater area of land than forests (FAO 2021). Deforestation has a cascade of 

environmental impacts, including a reduction in global carbon sequestration and extensive declines in 

habitat availability for tens of thousands of species (Raven 1988; Malhi et al. 2008; Coe et al. 2013).  

However, forest clearance is not the only way the value of forests for biodiversity and climate regulation 

is diminished. Forest disturbance or degradation impacts a vastly greater area than forest clearance. 

Grantham et al. (2020) found that only 25.9% of remaining global forests were free of any 

anthropogenic modification and almost 60% had suffered significant modification. Forest degradation 
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results in a loss of forest ecological integrity and produces more carbon dioxide than highway vehicles 

annually (2.1 billion tons; Pearson et al., 2017; Grantham et al., 2020). As degradation impacts habitat 

suitability, it leads to changes in the composition of ecological communities and causes localised 

species extinctions (Laurance et al. 2018; Grantham et al. 2020). Ninety-five percent of annual 

deforestation occurs in the tropics (Ritchie 2021). Tropical forests represent 10% of the world’s land - 

a third of all forests - but support two-thirds of global terrestrial diversity (Raven 1988; Giam et al. 

2012; Giam 2017). Current deforestation rates are expected to exceed Wright's (2010) predictions of 

36% loss of remaining tropical forest by 2050 (Hansen et al. 2013) and intrinsically this will have far-

reaching consequences, not only for tropical species but biodiversity worldwide. It is estimated over 

80% of eukaryotic species remain undiscovered (7.4-10 million) and the vast majority of these occur in 

tropical forests (Mora et al. 2011; Giam et al. 2012). Therefore, many species reliant on tropical forests 

are likely to go extinct before ever being documented (Giam et al. 2012; Cowie, Bouchet and Fontaine 

2022).  

1.2.2  Drivers of tropical forest loss 

Conversion of forest to agriculture and pasture remains the dominant driver of land-use change in the 

tropics (Song et al. 2018). However, the rates of forest clearance and their drivers vary between 

continents. The highest mean rates of forest clearance occur in Latin America (Hansen et al. 2013; 

Malhi et al. 2014; Rosa et al. 2016). In 2020, the Brazilian Amazon, the world’s largest tropical forest, 

suffered the highest rates of deforestation for a decade (Silva Junior et al. 2021). Approximately 70% 

of this deforestation can be attributed to cattle ranching (Malhi et al. 2008; Aleixandre-Benavent et al. 

2018). Increasing global demand for soy is further fueling forest loss in regions such as Mato Grosso, 

Brazil (Silva and Lima 2018). Whilst forest is not generally cleared for soybean plantations,  displacing 

cattle ranches indirectly instigates further deforestation elsewhere (Barona et al. 2010). 

Unlike Mesoamerica and South Asia, much of the Southeast Asian tropical forest estate was largely 

intact until the 1970s (Ghazoul and Sheil 2010). However, as international demand rapidly accelerated, 

Malaysia, Indonesia, and to a smaller extent Thailand became the epicentre of global oil palm 

production. Asia now has the highest relative rates of forest clearance predominantly in Malaysia and 

Indonesia (Hansen et al. 2013; Malhi et al. 2014; Rosa et al. 2016). Between 2005-2015, this equated 

to a forest loss rate of approximately 8 million ha yr−1 (Estoque et al. 2019). Over the last two decades 

alone, oil palm production has increased by 260 % (FAO 2018). There is also growing concern about 

the environmental costs of additional large-scale monocultures, including coconut (Cocos nucifera) 

which is predominantly produced in the Philippines and Indonesia (Magrach and Sanz 2020; Meijaard 

et al. 2020). Africa, meanwhile, has deforestation rates that are less than half those observed in Asia 

and are primarily the result of smallholder clearance (Malhi et al. 2014; Leblois, Damette and 
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Wolfersberger 2017). Hence drivers of deforestation differ between regions and this should be an 

important consideration when establishing conservation policies.  

1.3  Mechanisms for biodiversity loss & change 

1.3.1  Mechanisms for change 

There are multiple mechanisms through which species are affected by land-use change such as forest 

loss and disturbance. These principally affect habitat quantity, suitability, and/or connectivity for 

various species. The impact of land-use change on biodiversity may be immediate (e.g., localised 

extinctions occurring quickly once habitat is lost) or delayed (e.g., where remaining habitat cannot 

support populations long-term; Hylander and Ehrlén, 2013). Numerous, multifaceted mechanisms 

contribute to the overall impact on species, including fragmentation (reduced patch size, isolation, edge 

effects), resource reduction, biotic homogenization, increased risk of invasion, predation, hunting, 

parasites/disease, and genetic drift (Holl, Luong and Brancalion 2022; Fahrig 2017; Ewers et al. 2011). 

For example, habitat configuration has been shown to influence dung beetle β-diversity as communities 

in core forest differ are distinct from communities in edge-affected forest (Filgueiras et al. 2016).  

1.3.2  Habitat quantity 

Forest loss inevitably results in less habitat available for species, as many are unable to adapt to 

modified ecological conditions (Laurance et al. 2018). However, deforestation is rarely uniform across 

a landscape and often leads to a patchwork of forest patches isolated in agricultural landscapes (Curran, 

2004). Patch size is an important determinant in the ability of the remaining habitat to support 

biodiversity (Ewers and Didham 2006), particularly for species that have large home ranges, which are 

highly specialised, or occupy higher trophic levels. The average patch size for tropical rainforest is 4.33 

km2 (FAO & UNEP 2020). For context, the home ranges of sambar deer (Rusa unicolor) and their 

predator the Malayan tiger (Panthera tigris jacksoni) are estimated between 2.4–11.8 km2 and over 70 

km2 respectively (Chatterjee et al. 2014; Lazarus et al. 2021). As well as the initial loss of resources 

caused by loss of habitat, fragmentation also results in crowding effects whereby more individuals 

occupy a smaller space and are reliant on the resources it contains (Ewers and Didham 2006). If a patch 

does not have adequate resource availability, then it cannot support viable populations long-term, 

leading to the defaunation of these remaining forests.   

1.3.3  Habitat suitability 

The quality of the habitat in remaining forest patches is not uniform. The margins of these artificially 

created fragments are subjected to biotic and abiotic changes which exceed the natural intrinsic variation 

in conditions (Laurance et al. 2018). These edge effects deteriorate a habitat’s suitability for many 

forest-dependent species. They include a myriad of effects from changes to soil moisture content and 
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increased exposure to wind, to elevated tree mortality and increased disease risk  (Laurance et al. 2018). 

Edge effects are thought to impact approximately 85% of global vertebrate species (Haddad et al. 

2015) and half of tropical forest is predicted to become forest edge by the end of this century (Fischer 

et al. 2021).  

Logging also impacts the quality of forest, both at its edge and interior (Asner et al. 2009; Costantini, 

Edwards and Simons 2016). Selective logging impacts a quarter of the world’s tropical forests which 

alters forest structure, localised microclimatic conditions, and can disrupt ecosystem functioning (Asner 

et al. 2009; Blaser et al. 2011; Costantini, Edwards and Simons 2016). In Borneo, species declines in 

response to logging have been reported for multiple taxa including mammals, birds, and butterflies 

(Cleary et al. 2009; Hamer et al. 2014; Chapman et al. 2018). However, these impacts are less severe 

than other forms of anthropogenic disturbance to tropical forests (Bicknell et al. 2014; Edwards, Tobias, 

et al. 2014). Therefore, many argue logging concessions provide a financial incentive for preserving 

large areas of forest that may otherwise be at risk from clearing (Meijaard and Sheil 2007; Putz et al. 

2012).   

Species’ responses to logging - as with disturbance more broadly - are strongly influenced by life-

history traits and niche breadths (Cleary et al. 2009; Hamer et al. 2014). Species dependent on old-

growth tree species for foraging or roosting (e.g., cavity roosting bats; Struebig et al., 2013) experience 

the greatest population declines in response to logging as these trees are preferential for harvesting 

(Edwards, Tobias, et al. 2014; Costantini, Edwards and Simons 2016). Species with narrow ecological 

niches or large-bodied/long-lived species with low fecundity are also more vulnerable (Edwards, 

Tobias, et al. 2014; Costantini, Edwards and Simons 2016). Different feeding guilds have varying 

sensitivities to disturbances such as logging. Insectivorous and animalivorous species are thought to be 

particularly sensitive to disturbance (Edwards, Tobias, et al. 2014; Brändel et al. 2020). However, there 

is often interspecific variation in response within broad feeding guilds (Cleary et al. 2007; Brändel et 

al. 2020). For example, in Central Kalimantan, understory insectivorous birds increased in abundance 

within logging concessions at the expense of terrestrial insectivores and hornbills (Bucerotidae spp.; 

Cleary et al., 2007). Therefore, pooling species into broad feeding guilds may mask species-specific 

responses (Hamer et al. 2014). Importantly, hornbills are key seed dispersers but are highly sensitive to 

logging disturbance. These shifts in community assemblage disrupt ecosystem functioning within and 

neighbouring logging concessions (Edwards, Tobias, et al. 2014). Therefore, this recognition of 

conservation value should not be interpreted as impunity for all remaining primary forest to be made 

available for timber harvesting (Meijaard and Sheil 2007).  

1.3.4  Connectivity 

Ensuring connectivity between remaining habitat patches can alleviate some of these impacts of habitat 

loss and disturbance by facilitating dispersal and greater access to resources (Kupfer, Malanson and 
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Franklin 2006). Matrix composition is important in determining the isolation of a forest fragment by 

acting as a filter for species movements. Low contrast matrices (such as mature secondary forest) 

facilitate higher connectivity than high contrast matrices (such as plantations) by reducing the gradient 

of change (Ricketts 2001). However, connectivity is not only related to the physical distance between 

patches (structural connectivity) but also a species’ ecological tolerance and dispersal ability within the 

surrounding matrix (the functional connectivity; Crooks and Sanjayan, 2006). A prime example of this 

are understory passerines. Despite their capacity for flight, the increased light associated with 

agriculture acts as a barrier between forest patches for many species (Sodhi et al. 2011; Hamer et al. 

2014). Tropical forest specialists typically lack the ecological flexibility necessary to cross high-

contrast matrices, even for short distances. In contrast, generalist species have a much greater capacity 

which can lead to a higher prevalence of invasive species in fragmented forests (Laurance et al. 2018).  

1.3.5  The feedback loop of forest loss 

The effects of land-use change are not isolated to a specific location at a specific time. Rather, they 

contribute to a feedback loop that threatens the ecological integrity of global forests and the global 

climate (Runyan, D’Odorico and Lawrence 2012; Coe et al. 2013; Schulte to Bühne et al. 2021). 

Increased access (e.g., road infrastructure), increased risk of fire, and more extreme weather conditions 

all resulting from the initial disturbance lead to a legacy of future forest loss. Therefore, protecting the 

integrity of tropical forests is of urgent, global socio-ecological importance.  

1.4  Management & monitoring 

1.4.1  The need for monitoring 

There is growing resistance against traditional conservation strategies, such as strictly protected areas 

or fortress conservation, which evict people entirely from large areas of high conservation value (Rai 

et al. 2021). These methods in isolation cannot halt biodiversity loss (Mora and Sale 2011; Balmford 

2021) and they have severe consequences for those reliant on resources in these areas (Rai et al. 2021). 

Around 70% of protected areas in the tropics are currently occupied by human communities (Terbough, 

2022). Therefore, there is an ever-growing acknowledgement of the need to balance sustainable 

resource use and conservation to achieve greater conservation success and better societal outcomes. 

Environmental certification schemes aim to minimise the environmental impacts of crops, such as oil 

palm (Murphy, Goggin and Paterson 2021). Whilst these initiatives demonstrate a positive commitment 

to addressing conservation issues, it is unclear how effective these schemes are for protecting 

biodiversity (Koh and Wilcove 2008; Edwards et al. 2010). As such, it is vital to monitor the 

implementation and effectiveness of conservation initiatives (Salafsky et al. 2019). However, there is 

often a mismatch between the optimum timelines of research and the time available for practitioners to 

act on imminent and escalated threats to biodiversity (Grantham et al. 2009; Cardinale et al. 2012; 



6 

 

Jarvis et al. 2020). This means there is often incomplete baseline knowledge about species, community 

dynamics, or the knock-on effects of implementing specific conservation actions (Grantham et al. 

2009). This can result in ineffective conservation strategies. Conservation funding is limited and failed 

conservation actions have real consequences for the wildlife they aim to protect. Therefore, dynamic, 

responsive research and revisions of conservation actions are necessary to meet conservation goals.  

1.4.2  The potential for acoustic monitoring 

Despite the importance of evidence-based management, it is not possible to monitor every species. As 

well as limited time and funding, there are many additional constraints to carrying out ecological 

monitoring (Gardner et al., 2008). Where a species occurs is the most fundamental data used to aid 

conservation but accurate species distribution data is still missing for most taxa (Fisher-Phelps et al. 

2017). Of the 141,601 extant species included on the IUCN Red List of Threatened Species, over 14% 

are classified as data deficient and this only represents a fraction of understudied species (IUCN 2022). 

A lack of existing ecological knowledge, along with differences in societal preferences (Troudet et al. 

2017), accessibility between regions (Reddy and Davalos 2003; Fisher-Phelps et al. 2017), and the 

relative difficulty or cost of sampling methods (Pawar 2003) results in spatial and taxonomic bias across 

monitoring efforts. This highlights the need for alternative, cost-effective, and scalable methods for 

ecological monitoring (Cardinale et al. 2012; Gibb et al. 2019).  

Recent technological advances have dramatically increased the potential applications for bioacoustic 

monitoring. By monitoring environmental and biotic sound, bioacoustic monitoring provides a non-

invasive technique for monitoring individuals, populations, and ecosystem health (Browning et al. 

2017; Gibb et al. 2019; Chhaya et al. 2021). Bioacoustic monitoring is currently used to achieve many 

conservation goals such as monitoring how species respond to land-use change, mapping biodiversity, 

monitoring poaching pressure, and can be utilised for a broad range of taxa (Wrege et al. 2017; Gibb et 

al. 2019; Sugai et al. 2019). It is also used as a complementary tool alongside camera trap and live-

trapping survey methods (Buxton et al. 2018; Appel et al. 2021). For example, it can be used to monitor 

how hunting pressure (acoustic detections of gunshots) affects animal behaviour (e.g., avoidance 

behaviour detected using camera traps; Buxton et al., 2018).   

Bioacoustic data is generally matched to known reference sound data to determine which species made 

a vocalization. But where this is not possible, acoustic indices also provide a way to characterise 

ecological communities and soundscapes (the acoustic environment). This approach can describe a 

range of characteristics for acoustic communities or soundscapes, such as the amplitude, evenness, 

richness, or heterogeneity, which in turn can be used to monitor responses to environmental change 

(Sueur et al. 2014). It can reliably be used as a proxy for monitoring non-soniferous species (such as 

Nicrophorine burying beetles; Dodgin, Hall and Howard, 2020) and to rapidly assess how habitats are 

affected by land-use change or the impact of conservation actions. An intermediary approach is the 
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targeted monitoring of acoustic bioindicators. This approach relies on knowing how a specific species 

or component of the soundscape responds to a set of environmental conditions. A bioindicator can 

therefore be used to assess the condition of an ecosystem without monitoring each component 

independently (Holt and Miller 2010). For example, four species of bush bird are effective bioindicators 

of mining disturbance in Australia (Read, Parkhurst and Delean 2015). This provides a cost-effective, 

passive method to easily monitor mining disturbance over large spatial scales without recording all 

species’ responses. However only specific species/acoustic signals can be used as bioindicators, and 

these will vary between spatial context and the conservation question (Carignan and Villard 2002; Rice 

and Rochet 2005; Russo and Jones 2015).  

1.5  Potential applications for acoustics & tropical bats 

Automated or semi-automated classifiers are increasingly used to alleviate the time requirements of 

manually classifying animal vocalisations (Valletta et al. 2017; Kwok 2019; Tabak et al. 2021). As 

such, open-source and commercial tools are being developed to expand the capacity to monitor bats 

more extensively (Bas, Bas and Julien 2017; SonoBat-4 2017). This reduces the demand for experts and 

increases local capacity to conduct acoustic surveys. These data produced can be used to estimate 

species occupancy and monitor spatial and temporal changes to community composition and activity 

(Browning et al. 2017; Gibb et al. 2019; Sugai et al. 2019), which in turn can be used as a proxy for 

other metrics of biodiversity (Browning et al. 2017; Doohan et al. 2019). Classifying calls in this way 

is useful to assess the impact of specific threats or conservation actions or forecast how bats are likely 

to be affected by climate change. Therefore, it can be used to inform conservation policy and practice.  

Most modern classifiers are developed using machine learning techniques. Machine learning is a branch 

of artificial intelligence that develops problem-solving tools without the need to explicitly program the 

solution (Bianco et al. 2019). Several different models can be used to achieve this (Figure 1.1). In 

supervised machine learning, the model uses a labelled dataset to learn which set of parameters best 

distinguishes between species. For identifying bat calls, this labelled dataset can either be D-

dimensional vectors of call parameters or, increasingly, graphical representations of calls (e.g. 

spectrographs; Frick, 2013; Bas, Bas and Julien, 2017; Kobayashi et al., 2021). Supervised machine 

learning includes techniques such as neural networks, random forests, and support vector analysis, and 

is the dominant model used for call recognition in bioacoustics (Bianco et al. 2019). In many machine 

learning applications, this is not appropriate either due to a lack of data (e.g., lack of reference calls for 

rare species) or where there are no prior hypotheses regarding the underlying patterns in these data (e.g., 

delineating the taxonomy between species; Derkarabetian et al., 2019). Unsupervised machine learning 

provides an alternative approach by identifying structure within unlabeled datasets (e.g., a set of bat 

calls where the species identification is unknown) and organizing these data based on inherent 

similarity. Unsupervised machine learning techniques (e.g., k-means clustering) have been used to 
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classify animal vocalizations for gibbons and dolphins but have not been widely applied to other areas 

of acoustic monitoring (Frasier et al. 2017; Clink and Klinck 2021). The application of other machine 

learning models for acoustic monitoring, such as semi-supervised machine learning (which uses a 

combination of labelled and unlabelled training data) and reinforcement learning, has rarely been tested. 

As such, almost all bioacoustic classifiers are built using supervised machine learning models (Bianco 

et al. 2019).    
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Figure 1.1 The different pipelines for supervised and unsupervised machine learning. 
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Whilst automated classifiers provide a quick and repeatable method for analysing acoustic data, they 

are not without criticism. The accuracy of many classifiers is not effectively tested, particularly for 

closed-source algorithms in commercial tools (Gibb et al. 2019), and poor or inconsistent accuracy is a 

significant limitation of automated classifiers. The training data used will ultimately dictate the quality 

of any classifier. If a classifier is trained on a very narrow pool of calls (e.g., from the same individual, 

in the same location, or in an unnatural setting) then the tool will not encompass all the natural variation 

in call characteristics or recording conditions, making species identification unreliable. This has the 

potential to misinform conservation actions and policies.   

One proposed solution is the use of semi-automated classifiers. This approach automatically classifies 

calls to species, but the operator then manually verifies a subset of these calls based on a predefined set 

of conditions (e.g., a species where the classifier is known to perform poorly or for species of high 

conservation concern; see López-Baucells et al., 2019 for an example). This reduces the volume of calls 

to be processed but integrates quality control into the identification process. As outlined by Kwok 

(2019), so long as an operator is aware of a classifier’s accuracy, they can take steps to mitigate bias 

and interpret the results appropriately. These “human-in-the-loop” systems have been shown to help 

mitigate the inherent bias in machine learning outputs across many computing applications (Wu et al. 

2022). That being said, by reintroducing a manual verification step, the potential for operator bias is 

reintroduced (Jennings, Parsons and Pocock 2008). The expertise of the operator is a consistent factor 

affecting species identification across all acoustic studies (Jennings, Parsons and Pocock 2008). 

However, Lundberg et al. (2021) demonstrated how pairing automated tools with manual confirmation 

as part of a citizen science project can provide high-quality results comparable to manual validation by 

experts. An alternative option, depending on the research question, is to trade specificity for better 

accuracy. The hurdle for many bat classifiers is interspecific overlap in call characteristics which can 

result in inflated detections (e.g., false positives) or missed detections (e.g., false negatives) for species’ 

(Russo, Ancillotto and Jones 2018). However, this overlap in call similarity can be used as an advantage 

to train classifiers that recognise different call groups. Recently, Roemer, Julien and Bas (2021) used 

this approach to develop a universal tool for classifying bat calls globally into one of eight sonotypes - 

indicative of different ecological niches. Whilst it is not appropriate for species-specific monitoring, 

this tool can be used to quickly monitor changes to acoustic bat communities over time. It is therefore 

important to identify what is required of automated classifiers versus their idealised application. 

Combining all these advantages - low-cost detectors, citizen science, semi-automated classifiers, and 

scall indicator groups - dramatically expedites the large-scale, long-term potential for acoustic 

monitoring so long as the limitations of these techniques are acknowledged. Therefore, classifiers 

should not be perceived as perfect tools which determine species identification with absolute certainty, 

but rather as optimization tools that require careful assessment and interpretation.  
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1.6  Bat responses to land-use change 

Most research studying how tropical bats respond to land-use change is concentrated in the neotropics. 

Here, a large proportion of the bat community can be sampled using mist-netting and thus does not rely 

on acoustic monitoring (Meyer, Struebig and Willig 2016). As such, phyllostomids dominate the 

literature in terms of what is known about how tropical bats respond to forest disturbance. However, 

the assemblage structures between the neo- and palaeotropics are very different. Palaeotropical bat 

faunas have much higher numbers of insectivorous species and fewer frugivorous/nectarivorous species 

compared to those found in neotropical forests (Francis 1990). In Borneo, insectivorous species 

represent over 80% of the bat community and most species are poorly sampled using live-trapping 

methods (Kingston 2013; Phillipps and Phillipps 2016). Therefore, studies focused on phyllostomid 

species are unlikely to be indicative of bat responses in Southeast Asia or Africa. Even when excluding 

this geographic bias, few generalizations can be concluded about how tropical bats respond to 

disturbance. What we do know is that bat responses are highly species and ensemble specific (Meyer, 

Struebig and Willig 2016). Functional traits, such as diet, wing morphology, home range size, roost 

preference, dispersal ability, and stratum preference, all affect a species’ sensitivity to patch size, 

isolation, and edge effects (Struebig et al. 2013; Farneda et al. 2015; Meyer, Struebig and Willig 2016; 

Núñez et al. 2019).  

1.6.1  Why landscape context matters for bats 

Bats exhibit a broad range of dispersal abilities. Consequently, landscape composition can be more 

important for bats compared to many other taxa (Meyer, Struebig and Willig 2016). Dispersal ability is 

governed by mobility (e.g., wing morphology and echolocation type) but also by external pressures, 

such as light sensitivity and vulnerability to predators (Kingston, Francis, et al. 2003; Azam et al. 2016). 

A combination of these factors means that even though bats have the ability to fly, forest interior 

specialists typically have a low dispersal ability in human-modified habitats. Hence, the contrast of the 

surrounding matrix compared to forest plays a significant role in governing the relative importance of 

different components of the landscape configuration, e.g., isolation versus fragment area. Where there 

is a high-contrast matrix (e.g., intensive agriculture; Meyer and Kalko, 2008), isolation is the most 

important determinant for species richness and composition. However, in landscapes with low matrix 

contrast (e.g., between forest and rubber plantations; Struebig et al., 2008), patch size may be more 

significant. Therefore, more studies are recognizing the need for matrix-inclusive approaches when 

evaluating bat responses (Kupfer, Malanson and Franklin 2006; Meyer, Struebig and Willig 2016). This 

includes assessing responses along a gradient of varying habitat quality (e.g., from old-growth forest, 

logged forest, regenerating forest, to agriculture). Some studies have found that measures of forest 

quality (e.g., canopy height) are better predictors of assemblage level responses (e.g., changes to 

community composition) compared to measures of landscape configuration (Meyer and Kalko 2008; 
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Henry, Cosson and Pons 2010). However, this is not consistent across all landscapes (see Meyer, 

Struebig and Willig, 2016) and will vary between different spatial scales for different species (Pinto 

and Keitt 2008; Henry, Cosson and Pons 2010; Klingbeil and Willig 2010) and in relation to other 

landscape features, such as the proximity to water bodies (Pinto and Keitt 2008; Torrent et al. 2018).  

There can also be spatiotemporal variation in the relative importance of different landscape 

characteristics. These can relate to differences in food availability, dietary flexibility, and different 

energy requirements across the year (e.g. for reproduction; Klingbeil and Willig, 2010; Ferreira et al., 

2017).  

1.6.2  Bat responses to logging in the tropics 

There is considerable bias concerning which aspects of land-use change are assessed in the relevant bat 

literature. Meyer, Struebig and Willig (2016) found there were comparatively few studies assessing 

how tropical bats respond to logging or agroforestry compared to other aspects of habitat modification. 

To date, these studies reveal idiosyncratic responses to different logging regimes for different bat 

ensembles (Clarke, Rostant and Racey 2005; Presley et al. 2008; Castro-Arellano et al. 2009; Bicknell, 

Struebig and Davies 2015; Castro et al. 2021). For example, two logging-effect studies using mist-net 

captures in South America (Trinidad and Brazil) showed that gleaning insectivores and animalivores 

were negatively impacted by logging disturbance, whereas frugivorous and nectarivorous bats benefited 

from the increased foraging opportunities in new forest gaps (Clarke, Rostant and Racey 2005; Presley 

et al. 2008). Therefore, the impacts of logging are better captured by monitoring changes to community 

composition rather than changes in species richness. In Guyana, Bicknell, Struebig and Davies (2015) 

showed that phyllostomid bats benefit from low-intensity harvest techniques, such as reduced impact 

logging. However, even under reduced impact guidelines, logging has been shown to affect the 

behaviour, physiology, and resource availability of other bat species in both the neotropics (Brazil; 

Castro et al., 2021) and palaeotropics (Borneo; Seltmann et al., 2017; Hemprich-Bennett et al., 2021). 

Therefore, whilst these guidelines may protect generalist bat species, logging can lead to local 

extinctions of rare, forest specialists (Presley et al. 2008). Again, how logging sites are embedded in 

the wider landscape context will ultimately moderate their ability to support bat populations (Presley et 

al. 2008).  

The most comprehensive study investigating how logging impacts palaeotropical insectivorous bat 

communities was conducted in Sabah, Borneo. Struebig et al. (2013) investigated how different logging 

regimes impacted forest bats using harp-trapping, a technique that more reliably samples these taxa in 

Southeast Asia than the mist nets commonly applied in other regions (Francis 1989; Kingston 2013). 

The results of this study mirror those in the neotropics with no consistent association between species 

richness and logging disturbance, but distinct alterations in the species composition between old-growth 

and logged forest. Although more reliable than mist-netting, harp trapping is still limited by a low 
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detection probability for many aerial-insectivorous species (Kingston 2013). The inclusion of species 

that have previously been under-sampled in both the neotropics and palaeotropics may fundamentally 

affect our understanding of the relative impacts of different logging regimes.        

1.6.3  The value of tree plantations for bats 

Forest clearance for large-scale tree plantations, such as oil palm or rubber, has a much greater impact 

on tropical diversity than logging (Gibson et al. 2011). Despite being one of the main drivers of forest 

clearance in Southeast Asia, there are few studies assessing how oil palm or other types of tree 

plantation impact bats. Those that have been conducted have again been constrained to studying bats 

that can be well sampled using mist-nets. In the case of Southeast Asia, this is predominantly 

frugivorous pteropodids. Palm height and crop density are negatively correlated with pteropodid species 

richness in Peninsular Malaysia (Azhar et al. 2015). Overall bat abundance has been shown to increase 

in certain oil palm plantations (Danielsen and Heegaard 1995; Shafie et al. 2011). However, it is heavily 

dominated by common species, such as Cynopterus spp., which are typically associated with 

disturbance (Danielsen and Heegaard 1995; Shafie et al. 2011). In Borneo, Fukuda et al. (2009) found 

that oil palm was a poor habitat substitute for most frugivorous and insectivorous bats. Therefore, it is 

vital to assess differences in community composition between habitats, not just overall abundance. 

Pteropodids differ from Yangchiroptera in almost all the functional traits known to influence a species’ 

sensitivity to disturbance (e.g., dispersal ability, diet, roost preference). Therefore, their responses are 

very unlikely to reflect those of the complete bat assemblage.   

Most studies assessing the value of agroforestry for bats have focused on shade-grown coffee (Coffea 

arabica, Coffea canephora) and cacao (Theobroma cacao) plantations which are common in many 

tropical countries (Meyer, Struebig and Willig 2016). These plantations are thought to provide a low-

contrast matrix between forest fragments due to their structural similarity with natural forest. At low 

intensities, coffee has been shown to support phyllostomid species richness and forest insectivore 

activity (Pineda et al. 2005; Williams-Guillén and Perfecto 2011). Similarly, structurally-complex 

shade cacao plantations have been shown to support high levels of bat diversity, including gleaning 

animalivores (Pardini et al. 2009; Meyer, Struebig and Willig 2016). However, there are shifts in 

community composition and the availability of food resources across all guilds as management intensity 

increases (Pineda et al. 2005; Williams-Guillén and Perfecto 2011). Landscape context remains an 

important factor influencing bat species richness in coffee or cacao plantations (Numa, Verdú and 

Sánchez-Palomino 2005; Faria and Baumgarten 2007). In Brazil, cacao plantations that were isolated 

(> 1 km) from remanent forest were dominated by a limited number of generalist species (Faria and 

Baumgarten 2007). This reinforces the importance of considering connectivity and source-sink 

dynamics within human-modified landscapes even in low-contrast matrices.  
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1.7  Bats & their role as acoustic bioindicators 

1.7.1  Potential bioindicators for forest disturbance 

Alongside birds, bats are recognised as the best acoustic bioindicators for monitoring land management 

practices (Doohan et al. 2019). Bats have historically and continue to be the most popular candidates 

for acoustic monitoring as they are difficult to survey via traditional techniques due to their nocturnal 

behaviour but they have ‘acoustically active’ lifestyles (Browning et al. 2017; Sugai et al. 2019). 

Acoustic monitoring of bats has been used effectively to monitor river quality, forest disturbance, 

urbanisation, bioaccumulation, and climate change (Russo et al. 2021).  

Bats constitute at least 1,446 species -  approximately a quarter of mammal diversity and represent a 

broad range of physiological and ecological diversity (Burgin et al. 2018; Simmons and Cirranello 

2021a). They provide ecosystem services to forest health and regeneration, such as seed dispersal, 

pollination, and nutrient cycling, as well as to agriculture and human health through pest predation 

(Kunz et al. 2011; Ramírez-Fráncel et al. 2022). A global review by Ramírez-Fráncel et al. (2022) 

found bats consumed over 752 insect species and contributed to the reproduction of at least 549 plant 

species, including many commercial species (e.g., agave, durian, mango, and shea trees; Ghanem and 

Voigt, 2012). For example, in Thailand, the wrinkle-lipped free-tailed bat (Chaerephon plicatus) 

consumes 20,000 metric tonnes of insects per year including many rice pests such as planthoppers 

(Sogatella spp.; Leelapaibul, Bumrungsri and Pattanawiboon, 2005). As such, bats were historically 

revered in many cultures as symbols of good fortune, predominantly across the Asia-Pacific region 

(Rocha, López-Baucells and Fernández-Llamazares 2021).  

Despite their importance, 80% of bat populations are declining globally and bats are often excluded 

from studies on tropical forest mammals (Welch and Beaulieu 2018). According to the IUCN (2022), 

almost 1,000 bat species need conservation action or research attention, and much less is known about 

the population status of bat species compared to other mammals and birds (Frick, Kingston and Flanders 

2020). Southeast Asia is a global hotspot for bat diversity with at least 388 species (Simmons & 

Cirranello, 2021). However, almost a quarter of Southeast Asia’s bats are predicted to be extirpated by 

the end of the century due to deforestation (Lane, Kingston and Lee 2006). Land-use change and the 

associated habitat loss and disturbance are frequently cited as the primary threat to bats in Southeast 

Asia (Kingston 2013; IUCN 2022).  

1.7.2  Southeast Asian bat community structure 

Several eco-morphological factors influence a bat species’ tolerance to disturbance, including diet, 

morphology, foraging style, and roosting ecology (Farneda et al. 2015; Sagot and Chaverri 2015; 

Meyer, Struebig and Willig 2016; Núñez et al. 2019). Traits are not independent as they evolve 



15 

 

concurrently to maximise a species’ suitability to a specific ecological niche. Insectivory is the 

dominant diet for bats worldwide (Neuweiler 2000) and Kingston (2013) described three main guild 

types for insectivorous bat species in Southeast Asia depending on where they forage: forest interior 

insectivores, edge and gap insectivores, and open-space insectivores. Bats that forage 

stationary/fluttering insects from the forest interior (forest interior insectivores) typically have broad, 

short wings (low-aspect-ratio and low wing loading; body mass (kg)/wing area (m2); Norberg, Rayner 

and Lighthill, 1987; Neuweiler, 2000). This grants them high manoeuvrability in cluttered forest 

environments. They typically roost in trees or other foliage in small groups or harems (although not 

exclusively; Kunz, 1982). Within this guild, there are several echolocation call strategies to detect prey 

that may otherwise be camouflaged by the echoes from background vegetation (Arlettaz, Jones and 

Racey 2001), but most use echolocation calls characterised as low-intensity, high frequency, with high 

repetition rates. In Southeast Asia, this includes members of the Rhinolophidae, Hipposideridae, 

Murininae, and Kerivoulinae (Liu et al. 2008; Hughes et al. 2011; McArthur and Khan 2021).  

Open-space insectivores hawk airborne insects during flight. Their prey is more widely dispersed than 

insects found within cluttered forest environments, and therefore, they need an increased range of prey 

detection and energy-efficient flight. Consequently, they have narrow, long wings (high-aspect-ratio 

and high wing-loading; Norberg, Rayner and Lighthill, 1987; Neuweiler, 2000) and use narrowband, 

low-frequency, high-intensity calls (Denzinger and Schnitzler 2013). In Southeast Asia, this includes 

the families Molossidae and Emballonuridae (Kingston, Jones, et al. 2003; Hughes et al. 2011). Bats 

that forage along the forest edge or in forest gaps (edge and gap insectivores) need to balance the 

requirements of foraging in cluttered environments (e.g., the ability to decipher background echoes 

from prey) against the requirements of navigating more open spaces. To do this, many species have 

high call plasticity which enables them to adjust their call to meet different environmental requirements. 

This may involve adjusting parameters such as call bandwidth, peak frequency, or call shape (Kalko 

and Schnitzler 1993; Schnitzler, Moss and Denzinger 2003). They can also take advantage of 

anthropogenic resources. For example, using buildings for roosting (e.g., the Black-bearded tomb bat; 

Taphozous melanopogon; Phillipps and Philipps 2016). 

However, there are exceptions to these broad feeding guilds. In Southeast Asia, the Malayan slit-faced 

bat (Nycteris tragata) and Lesser false vampire bat (Megaderma spasma) are both forest interior 

insectivores, but they often rely on hearing to detect their prey (Denzinger and Schnitzler 2013). As 

such, they have enhanced auditory adaptions (e.g., elongated ears) and use echolocation calls more 

commonly resembling the phyllostomid bats in the American tropics (Hughes et al. 2011; Yoh, Syme, 

et al. 2020). These two species have been known to hunt animal prey, such as fish, amphibians, and 

small mammals (Phillipps and Phillipps 2016). As such, they closely resemble neotropical 

animalivorous bat species such as the big-eared woolly bat (Chrotopterus auritus). Nectarivorous and 

frugivorous are less reliant on echolocation to locate food resources and instead often use smell and 
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vision (Raghuram et al. 2011; Denzinger and Schnitzler 2013). These include members of the families 

Pteropodidae (exclusively in the palaeotropics) and Phyllostomidae (exclusively in the neotropics). 

1.7.3  Limitations of acoustic monitoring in the tropics 

In temperate regions, acoustic monitoring is applied extensively in bat research. However, there are 

substantial difficulties when trying to implement similar initiatives in many tropical countries; both in 

the field and when processing these data (Meyer 2015; Meyer, Struebig and Willig 2016; Fisher-Phelps 

et al. 2017). Arguably the greatest limitation to using acoustic monitoring is the lack of call libraries 

and the taxonomic uncertainty for bat species in many tropical regions (Russo and Voigt 2016; Gibb et 

al. 2019). Our understanding of bat echolocation is not geographically homogenous and reference calls 

for many tropical bat species’ calls are not well documented, particularly across Asia and Central Africa 

(Walters et al. 2013).   

The initial costs of establishing a local reference call library are high (Kershenbaum et al. 2016). It 

requires intensive surveying efforts across numerous sites using multiple complementary methods 

(including live capture to confirm species identification in hand). Inherently areas of high species 

diversity also require more survey effort to effectively sample the whole community than areas with 

lower diversity. This is compounded by the general practical difficulties of conducting fieldwork in 

remote areas which may be hard to access (e.g., no transport infrastructure), politically challenging, or 

hazardous. Like much ecological research, bat studies in Southeast Asia are spatially biased toward 

protected areas that often have greater accessibility for research (Fisher-Phelps et al. 2017). Therefore, 

data demonstrating the distribution and habitat use of species more broadly is limited. Even when 

reference calls and spatial data have been collected, there are considerable differences between the in-

country and regional infrastructure for disseminating such data for others to use (Fisher-Phelps et al. 

2017; Stephenson et al. 2017).  

There are two additional shortfalls when using acoustic monitoring to monitor bats: overlap in call 

characteristics and the time required to process large volumes of acoustic data (Russo, Ancillotto and 

Jones 2018; Gibb et al. 2019; Russo et al. 2021). Storing and processing the datasets produced by 

acoustic monitoring has formidable logistical and analytical challenges (Gibb et al. 2019). Acoustic 

datasets often approach the scale of big data (multi-gigabyte to petabyte) and recording in ultrasound 

(full spectrum with sampling rates often >200 kHz) creates additional storage requirements (Gibb et al. 

2019; Sugai et al. 2019). Therefore, the time and expertise required to manually process such large 

datasets can be a significant barrier for those wanting to use acoustic monitoring (Browning et al. 2017). 

Additionally, identifying bat calls can be more difficult compared to other taxa. The calls used to 

monitor most taxonomic groups are calls used for communication. These can be acoustically simple 

(e.g., amphibians) or complex (e.g., bird song), but their structure must be stable as they provide signals 

to conspecifics (e.g., territorial calls, mating calls). Therefore, such calls should exhibit limited 
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variability between individuals. In contrast, bat echolocation calls are primarily used to interpret their 

environment as a form of “self-communication” (Simmons et al., 1977). Therefore, echolocating bats 

adjust their call structure in response to different habitat and behavioural requirements (Kalko and 

Schnitzler 1993). Moreover, as calls are not primarily for intraspecific communication, overlap in call 

structure in species-rich assemblages is common which can limit our capacity to differentiate between 

species. Interspecific variability is also subject to phylogenetic constraints, and relationships with 

morphology (e.g., body mass is negatively correlated with call frequency; Jones, 1999), and species can 

exhibit geographical variability in call frequency across their range, between sexes, or age classes 

(Pham et al. 2021; Russo, Ancillotto and Jones 2018; Walters et al. 2013). Therefore, bats exhibit 

individual and species-specific call plasticity whilst interspecific variation remains constrained in 

complex systems. This can limit our ability to distinguish between species calls, even between common 

species in well-studied regions if there is substantial call overlap (Montauban et al., 2021). As such, 

these limitations have hampered the application of acoustic monitoring for bats in the tropics and their 

use as bioindicators in these regions (Russo et al. 2021).   

1.8  Thesis structure 

Our understanding of how bats respond to land-use change has been limited to species that we can 

capture in the forest understory using harp traps or mist nets. There remains very limited information 

regarding how the vast majority of bats in Southeast Asia are responding to land-cover change. 

Therefore, this thesis used acoustic monitoring as a complementary method to assess how the bat 

community is responding to land-use change in Southeast Asia. Specifically, the research assessed the 

effectiveness of different landscape management strategies for protecting bats in anthropogenic 

landscapes. This includes the effectiveness of protective zoning (Chapter 2), retaining riparian buffers 

in plantations (Chapter 3), and the impacts of logging on bat communities (Chapter 5). To do this, the 

thesis focused on case studies from two sites in Sabah Borneo (Figure 1.2): Crocker Range Biosphere 

Reserve (Chapter 2) and the Stability of Altered Forest Ecosystems Project (Chapters 3 and 5), as 

well as incorporating acoustic data from additional sites across Borneo (Chapter 4).  
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Figure 1.2 Map of study locations included in this thesis 

The location of the two main study sites in Sabah in relation to other states - Crocker Range Biosphere 

Reserve (Chapter 2) and the Stability of Altered Forest Ecosystems Project (SAFE; Chapters 3 and 

5) - and the sampling locations for the reference calls used in Chapter 4. 

 

  



19 

 

The thesis is structured into three parts. The first investigates how bats respond to land-use change using 

acoustic monitoring techniques, but without access to automated identification tools (Chapters 2 and 

3).  

Chapter 2 assesses the effectiveness of land-use management strategies for protecting bat activity and 

diversity in the Crocker Range Biosphere Reserve, Sabah, using both live-capture and acoustic methods. 

In this chapter, principal component analysis is used to assess differences in acoustic composition 

between several conservation zones in the reserve, rather than identifying calls into biologically 

meaningful groups. This chapter has been published as the following:  

Yoh, N., et al. (2020). Bat Ensembles Differ in Response to Use Zones in A Tropical Biosphere 

Reserve. Diversity, 12(2). doi: 10.3390/d12020060 

Chapter 3 uses an acoustic monitoring dataset from a landscape in the Tawau district, Sabah, to help 

determine the value of protected riparian buffers for bats in agricultural areas. In this chapter, bat calls 

are manually identified to call type or species enabling a more refined analysis of bat activity between 

protected areas and plantations. This chapter has been published as the following: 

Yoh*, N., Mullin*, K., et al. (2020). Riparian reserves promote insectivorous bat activity in oil 

palm dominated landscapes. Frontiers in Forests and Global Change, 3. doi: 

10.3389/ffgc.2020.00073  *contributed equally 

The second part (Chapter 4), outlines a machine learning pipeline to help analyse large acoustic 

datasets in Southeast Asia, such as those provided in Chapters 2 and 3. The application of this pipeline 

is then demonstrated by developing a semi-automated tool for classifying bat calls in Borneo (Chapter 

4). This chapter has been published as the following: 

Yoh, N., et al. (2022). A machine learning framework to classify Southeast Asian echolocating 

bats. Ecological Indicators, 136. doi: 10.1016/j.ecolind.2022.108696 

Finally, the third section of the thesis (Chapter 5) reexamines how bats respond to land-use change 

with the additional aid of the semi-automated identification tool. This research investigates how 

echolocating bats are affected by habitat disturbance over a land-use gradient from old-growth forest 

through to logged forests and tree plantations. The chapter is based on another acoustic monitoring 

campaign at the Stability of Altered Forest Ecosystems Project in Tawau district, Sabah. This chapter 

is currently under peer review with the Journal of Applied Ecology. 

Each of the chapters was written as independent studies and Chapters 2-4 have been subject to peer 

review prior to publication. The requirements of reviewers in this process led to differences in the 

naming conventions between different call groups. These are outlined in Table 1.1.  
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Table 1.1 Naming conventions for each of the Borneo bat call groups defined in the thesis 

Naming conventions for each of the Borneo bat call groups defined in the thesis, their corresponding foraging guild, and their assigned group as described by 

the universal classifier presented in Roemer, Julien and Bas (2021). 

Family Genus/species Foraging Guild Chap. 3 Chap. 4  Chap. 5 Roemer et al. 

(2021) 

 

Emballonuridae        
Taphozous spp. Open space FMqCF FMqCF Edge/open space hawking bats FMd-QCF  
Saccolaimus saccolaimus Open space FMqCF FMqCF Edge/open space hawking bats FMd-QCF 

 Emballonura spp. Forest edges FMqCF qCF Emballonura alecto/monticola QCF-FMd 

Nycteridae        
Nycteris tragata Forest interior MHFM FM Whispering bats FMd 

Megadermatidae        
Megaderma spasma Forest interior MHFM FM Whispering bats FMd 

Rhinolophidae        
Rhinolophus spp. Forest interior/edge CF CF Rhinolophoidea bats FMu-CF-FMd 

Hipposideridae       

Hipposideros spp. Forest interior CF CF Rhinolophoidea bats CF-FMd 

Coelops spp. Forest interior CF CF Rhinolophoidea bats CF-FMd 

Miniopteridae        
Miniopterus spp. Open space FMqCF FMqCF Edge/open space hawking bats FMd-QCF 

Vespertilionidae       

  Kerivoulinae       

 Kerivoula spp. Forest interior FMb FM Whispering bats FMd 

  Phoniscus spp. Forest interior FMb FM Whispering bats FMd 

 Murininae       

 Murina spp. Forest interior FMb FM Whispering bats FMd 

  Harpiocephalus harpia Forest interior FMb FM Whispering bats FMd 
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Vespertilioninae       

 Pipistrellus spp. Edge/open space FMqCF FMqCF Edge/open space hawking bats FMd-QCF 

  Falsistrellus spp. Edge/open space FMqCF FMqCF Edge/open space hawking bats FMd-QCF 

  Arielulus spp. Edge/open space FMqCF FMqCF Edge/open space hawking bats FMd-QCF 

  Hypsugo kitcheneri Edge/open space FMqCF FMqCF Edge/open space hawking bats FMd-QCF 

  Tylonycteris spp. Forest edges FMqCF FMqCF Edge/open space hawking bats FMd-QCF 

  Glischropus tylopus Forest edges FMqCF FMqCF Edge/open space hawking bats FMd-QCF 

  Philetor brachypterus Edge/open space FMqCF FMqCF Edge/open space hawking bats FMd-QCF 

  Scotophilus collinus  Edge/open space FMqCF FMqCF Edge/open space hawking bats FMd-QCF 

  Hesperoptenus spp. Edge/open space FMqCF FMqCF Edge/open space hawking bats FMd-QCF 

  Myotis spp. Forest edges FMb FMqCF Edge/open space hawking bats FMd-QCF 

Molossidae        
Mops mops Open space   FMqCF FMqCF Edge/open space hawking bats FMd-QCF 

  Chaerephon spp. Open space  FMqCF FMqCF Edge/open space hawking bats FMd-QCF 

Acronyms: constant frequency (CF), frequency modulating quasi-constant frequency (FMqCF), quasi-constant frequency (qCF), broad-band frequency modulated 

(FMb), frequency modulated (FM), multi-harmonic frequency modulated (MHFM), frequency modulated upwards sweeping (FMu), and frequency modulated 

downwards sweeping (FMd).  
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2.1  Abstract 

Biosphere reserves, designated under The United Nations Education, Scientific and Cultural 

Organization’s (UNESCO) Man and Biosphere Programme, aim to sustainably integrate 

protected areas into the biological and economic landscape around them by buffering strictly 

protected habitats with zones of limited use. However, the effectiveness of biosphere reserves 

and the contribution of the different zones of use to protection is poorly known. We assessed 

the diversity and activity of bats in the Crocker Range Biosphere Reserve (CRBR) in Sabah, 

Malaysia, using harp traps, mist nets and acoustic surveys in each zone—core, buffer, 

transition and in agricultural plots outside of the reserve. We captured 30 species, bringing the 

known bat fauna of CRBR to 50 species, half of Borneo’s bat species. The reserve is therefore 

an area of high bat diversity compared to other areas within the Heart of Borneo initiative. 

Species composition and acoustic activity varied among zones and by foraging ensemble, with 

the core and buffer showing particular importance for conserving forest-dependent 

insectivorous bats. In contrast, forest-interior species declined within the transition and 

extralimital agriculture indicating a negative response to land-use change for this ensemble. 

Frugivorous bats were found in all zones but were the most abundant and most species-rich 

ensemble within agricultural sites. Although sampling was limited, bat diversity and activity 

was low in the transition zone compared to other zones, indicating potential for management 

practices that increase food availability and enhance biodiversity value. We conclude that the 

inner zones of the CRBR are important for supporting bat diversity, but the value of the 

transition zone can be improved. Evaluations such as this are important to ensure protected 

area schemes are functioning effectively. We conclude that collectively UNESCO Biosphere 

zones can provide valuable habitat for conserving bat diversity in the Southeast Asian tropics. 

 

Keywords: Man and Biosphere; Crocker Range; Chiroptera; bat diversity; land-use change; 

foraging ensembles 
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2.2  Introduction 

Tropical forests represent ~10% of total land cover yet support approximately two-thirds of 

global terrestrial diversity (Giam 2017; Raven 1988). Tragically, this diversity is under threat 

from the conversion of forests to agriculture and pasture, which remains the dominant driver 

of land-use change in the tropics today (Song et al. 2018). This has instigated an increase in 

the extent and quantity of protected areas in the tropics to conserve remaining biodiversity 

(Jenkins and Joppa 2009; DeFries et al. 2007). However, human activity at the periphery of a 

protected area can affect its functionality for conserving biodiversity (DeFries et al. 2007). 

This is a growing concern for tropical forest protected areas, which are becoming increasingly 

isolated within agricultural landscapes (Curran et al. 2004). Moreover, protected areas 

themselves are not void of anthropogenic activity as ~70% of protected areas in the tropics 

are occupied by human communities (Terborgh and Peres 2002). For these and additional 

reasons (Hill and Curran 2003), the success of a protected area is considered dependent on its 

integration into the wider landscape (Laurance et al. 2012).  

Biosphere reserves promote the integration and management of protected areas in a landscape 

context by buffering strictly protected habitats with zones of limited use. They are designated 

by The United Nations Education, Scientific and Cultural Organization (UNESCO), as part of 

the Man and Biosphere (MAB) Programme, launched in 1971 (Ishwaran, Persic and Tri 2008). 

The programme currently lists 669 reserves, including 701 sites, across 124 countries (Reed 

2019; UNESCO 2017). Biosphere reserves are comprised of three functional zones: the core 

area(s), the buffer zone, and the transition area, ranging in their accessibility for human land-

use (Reed 2019; UNESCO 2014). The core area is strictly protected, limiting human 

disturbance to an ecosystem. Its primary function is to conserve biodiversity and protect 

ecosystem services. Limited low-impact human activities, such as non-destructive research 

and environmental education, are permitted where they complement conservation goals. The 

buffer zone surrounds or adjoins the core area, providing an intermediary buffer between the 

core and transition zone. The buffer permits greater human use, including activities such as 

environmental education, recreation, ecotourism, and applied research, that are compatible 

with sound ecological practices. At the landscape level, buffers help maintain connectivity for 

biodiversity components residing in core areas. The primary function of the transition zone is 

for sustainable development. Development may include agriculture, settlements, and other 

developments that improve an area’s resources. Stakeholders in such development should 

include local communities, non-governmental organisations, and management agencies. 

Activities in this zone must be socioculturally and ecologically sustainable. The functions of 

these zones are designed to be complementary with goals to maintain anthropogenic, 
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biological and cultural diversity (Reed 2019; UNESCO 2017). Currently, the Southeast Asia 

Biosphere Reserve Network (SeaBRnet) consists of 35 reserves governing > 30 mn hectares 

(UNESCO 2019).  

With over 1400 species distributed globally, bats make up the second largest mammalian order 

and provide key ecosystem services as seed dispersers, pollinators, and as agents of pest 

suppression (Kunz et al. 2011). Many economically valued crops, such as durian in Southeast 

Asia (Sheherazade, Ober and Tsang 2019) and agave in the Americas (Fleming and Holland 

2018), are primarily pollinated by bats. Additionally, they can serve as bioindicators of 

ecosystem health due to their sensitivity to changes in the environment, climate change, water 

loss, and noise pollution (Jones et al. 2009). Unfortunately, bats are proving highly vulnerable 

to human activities (Voigt and Kingston 2016; Frick, Kingston and Flanders 2020), with 21% 

of species assessed as threatened (EX, CR, EN, VU) or nearly so (NT) by the IUCN (IUCN 

2019) and, globally, four out of five bat populations are declining (Welch and Beaulieu 2018). 

Bat diversity peaks in tropical regions, particularly tropical rainforests (Kingston, Francis, et 

al. 2003), but these habitats are rapidly being degraded and converted to other land-uses, with 

negative consequences for bat populations worldwide (Frick, Kingston and Flanders 2020; 

García-Morales, Badano and Moreno 2013; Meyer, Struebig and Willig 2016). Southeast 

Asian tropical forests suffered the highest rates of deforestation amongst all tropical regions 

during the 1990s (Miettinen, Shi and Liew 2011), and only half of Borneo’s forest cover 

remains as a result of agriculture, intensive logging, and palm and pulp plantations (Fitzherbert 

et al. 2008; Struebig et al. 2012; Gaveau et al. 2013). Bats make up 40% of the island’s 

terrestrial mammal diversity (Payne 2000), and approximately one-third of the 98 species are 

dependent on large tracts of unmodified forests (Phillipps and Phillipps 2016). Forest 

conversion to agriculture in Singapore resulted in bat extinction rates estimated to range from 

33–72%, depending on the group, and it is estimated that if current deforestation rates persist 

across Southeast Asia, as many as 40% of species may be lost from the region by the end of 

the century (Lane, Kingston and Lee 2006).  

Bats do not respond uniformly to land-use change and their response varies between foraging 

ensembles and species. Old-World bats can be divided into four broad foraging ensembles. 

Plant-visiting bats, members of the family Pteropodidae, are primarily frugivorous, with a few 

species specialised for nectarivory. All of the other eight families found on Borneo are 

insectivorous and fall into one of three foraging ensembles, based on where they forage 

relative to background vegetation: (1) “open space bats” forage in the open spaces above 

forests or cleared/agricultural land; (2) “edge or gap” bats hunt insects along the edge of 

vegetation stands or in small clearings within forest or over water; and (3) “forest interior 
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bats” are able to detect and pursue prey within the vegetatively cluttered habitats of the forest 

(Kingston 2013). Each ensemble is associated with a combination of wing and echolocation 

traits that maximise performance in their preferred foraging habitat, but greatly constrain 

performance in other habitats (Kingston 2013; Norberg, Rayner and Lighthill 1987; Schnitzler 

and Denzinger 2011; Schmieder et al. 2012; Senawi and Kingston 2019), therefore resulting 

in differences amongst responses to land-use change. 

Forest interior bats are proving particularly susceptible to forest loss and degradation 

(Kingston 2013; Norberg, Rayner and Lighthill 1987; Schnitzler and Denzinger 2011; 

Schmieder et al. 2012; Senawi and Kingston 2019; Struebig et al. 2008). Foraging in the 

vegetatively complex forest interior requires slow, manoeuvrable flight (Senawi and Kingston 

2019) and clutter-tolerant echolocation, but these adaptations compromise performance in the 

more open habitats that result from land-use change. Slow flight can be energetically costly, 

and clutter-tolerant echolocation often has a limited range. Moreover, many species rely on 

roosts that are only available in numbers able to support populations in relatively unmodified 

forest (e.g., hollows in large standing or fallen trees). Reduction in native forest cover has 

particularly impacted bats found in the families Hipposideridae, Rhinolophidae, 

Megadermatidae, Nycteridae, as well as the Kerivoulinae and Murininae subfamilies of the 

Vespertilionidae (Kingston, Francis, et al. 2003; Kingston 2013; Huang et al. 2014).  

Although the MAB Programme has been in operation for nearly 50 years, the effectiveness of 

biosphere reserves in protecting bat diversity is poorly documented, particularly in the wet 

tropics where bat diversity is greatest. Studies in tropical dry forests and grasslands of South 

Africa and Mexico suggest that, although core zones protect more species, buffers support a 

significant proportion of core diversity (Taylor et al. 2013; Linden et al. 2014; López-

González et al. 2015; Weier et al. 2017), but forests in these habitats are less structurally 

complex and support fewer species than tropical rainforest. Crocker Range Biosphere Reserve 

(CRBR) was established as a UNESCO site under the MAB Programme in Sabah, Malaysia 

Borneo in 2014. It consists mainly of hill and lower montane tropical forests, and, as home to 

approximately 101 mammal, 259 bird, 47 reptile, 63 amphibian, and over 300 plant species, 

the reserve and its surroundings are considered a refuge for much of Borneo’s biodiversity 

(UNESCO 2014; Yasuma et al. 2003; Das 2006), including bats. The last inventory of bat 

diversity in Crocker Range was conducted in 1999 (Yasuma et al. 2003; Tuen, Rahman and 

Salleh 2002), prior to the Range’s entry into the MAB Programme. Forty-one species were 

reported from the survey and the prior literature (Tuen, Rahman and Salleh 2002), representing 

at least 40% of Borneo’s total bat diversity and indicating the importance of CRBR to regional 

bat conservation.  
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The goal of this study was to determine the effectiveness of CRBR in protecting bat diversity. 

Specifically, we evaluated how diversity and activity vary among the biosphere zones and 

foraging ensembles, and contrast with neighbouring extralimital agriculture. Using a mix of 

harp traps, mist nets and acoustic surveys, we surveyed bats in each zone and the surrounding 

extralimital agriculture. We added eight confirmed species to the known bat fauna for CRBR 

and conclude that CRBR is an effective reserve, protecting half of Borneo’s bat diversity. 

Species composition and activity varied among zones, with the core and buffer particularly 

important for conserving forest-interior insectivores. 

 

2.3  Materials and methods  

2.3.1  Study Sites 

Bat surveys were conducted in the CRBR, also known as Crocker Range Park, from 19–22 

July 2017, 24 June–26 July 2018 and 14 June–18 July 2019. CRBR comprises more than 

350,000 hectares of forested area, ranging from lowland to montane forest up to 2350m a.s.l. 

(Kitayama 1992). The reserve is characterised by three different protection zones: the core 

zone, the buffer zone, and the transition zone (Reed 2019) (Figure 2.1). The buffer and 

transition zone of CRBR is occupied by approximately 400 communities surrounded by 

natural hills with lower montane forest, secondary forest and mixed agriculture such as oil 

palm, rubber, paddy field, and commercial crops (UNESCO 2017). Live trapping and acoustic 

surveys were conducted at 17 sites covering different protection zones within the reserve, and 

eight sites within the extralimital zone on the northeast edge of the reserve. 

Survey sites in the northeast corner of CRBR were accessed from Mahua Substation and 

Malungung Control Post in 2017 and 2018, and through Inobong Substation in the northwest 

edge of the reserve in 2019. Most of the natural vegetation where bats were sampled from the 

three distinct protection zones is hill dipterocarp forest, occurring between 500m a.s.l. to about 

1000m a.s.l. The average temperature is between 24–27◦C, and the average annual 

precipitation is between 1880–2621mm (Weatherbase 2019). The extralimital zones are 

mostly agriculture plots, with associated commercial crops including banana (Musa spp.), 

rambutan (Nephelium lappaceum), soursop (Annona spp.), mango (Mangifera spp.), rubber 

trees (Hevea brasiliensis), oil palm (Elaeis guineensis), and durian (Durio spp.). Full details 

of each site are given in Supplementary Table S2.1.
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Figure 2.1 Map of study area in 

CRBR, Sabah, Malaysia 

 

a) Location of the CRBR showing 

the distribution of the MAB zones 

green-core, blue-buffer, yellow-

transition. Inset illustrates the 

location of Sabah on Borneo. b) 

Area of sampling sites, containing 

trapping and acoustic transect 

locations L – live trapping sites, A – 

acoustic sites, C – Core, B- Buffer, 

T- transition, E- extralimital 

agriculture. 
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2.3.2  Species Capture and Identification 

Bats were captured at each site using four-bank harp traps (Francis 1989) positioned across 

trails or small streams. Ground polyester mist nets (9m; 36mm mesh size; four shelves) and 

double stacked nets (eight shelves) were positioned across established trails, at forest edges, 

and across small ponds and streams. Mist nets were checked every 15-30 minutes from 18:00 

to 23:00 hours, or until bat activity declined. Meanwhile, harp traps were checked several 

times in the evening, and once after times of peak activity in the morning. Bat sampling was 

avoided during periods of heavy rain. Hand nets were used occasionally ad-hoc to capture low 

flying bats in open areas and bats at roosts. 

Captured bats were identified following Phillipps and Phillipps (2016), Kingston, Lim, and 

Akbar (2006), and Payne, Francis, and Phillipps (1985). Forearm length (mm) and body mass 

(g) were recorded for each individual. Juveniles were distinguished from adults by examining 

the epiphyseal fusion of phalanges (Anthony 1988). The reproductive status of females was 

determined by examining the mammary glands and the surrounding area, and was categorised 

as non-reproductive, pregnant, lactating and post-lactating (Anthony 1988). Each captured 

individual was released at the point of capture within six hours. Occasional voucher specimens 

were collected to confirm the identification of uncertain records and were deposited at the 

Institute of Tropical Biology and Conservation, Universiti Malaysia Sabah.  

The procedures followed animal care and use guidelines of Texas Tech University's 

Institutional Animal Care and Use Committee and was approved as protocol 17026-07 

category C. This project was also approved Sabah Biodiversity Council and conducted under 

access license JKM/MBS .1000-2/2 JLD.6 (53). 

2.3.3  Acoustic Sampling and Analysis 

Anabat Walkabout Bat Detectors v1.2 (Broken-Brow and Thompson 2017) with model-

specific microphone adapters were used to record bat activity along 2-km transects. The 

adapters improve directionality and the quality of recordings in tropical environments where 

there are high volumes of insect noise and where bat species produce echolocation calls at 

high frequencies (< 150kHz). Transects consisted of six sample points situated 200m apart to 

ensure independence. Where possible, acoustic transects intersected live-capture sites 

however this was not possible for all locations (Figure 2.1). The detectors were programmed 

to record continuously for ten minutes at each point; each of which was sampled twice per 

survey. Detectors recorded activity in real-time with a full spectrum resolution of 16-bit and 

a sampling rate of 500kHz. Files were recorded in 15-second sections. Where possible surveys 

were conducted in the evening, commencing at 18:30 and concluding before 21:00. However, 
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if this was not possible due to weather restrictions dawn surveys were conducted in the 

extralimital agriculture (43% surveys), commencing at 05:00.  

For sites A.E.1:5, A.T.1:2, and A.B.1:2, two surveyors simultaneously started at sample point 

one and sample point six and recorded along the transect in alternate directions such that each 

point was surveyed twice per night. These sites were surveyed once each. Surveys at sites 

A.T.3:5, A.B.3:4, A.C.1:2 commenced from one starting point (either sample point one or 

sample point six) and surveyors retraced their steps for the second sample of the night. 

Consequently, the recording period for these sites was longer. Transects A.T.3:5, A.B.3, and 

A.C.1 were repeated three times, and A.C.2 and A.B.4 twice for replication. This equates to 

five surveys in extralimital agriculture, fourteen in the transition zone, seven in the buffer 

zone, and five in the core zone. As there was a significant relationship between bat activity 

and time of surveying (Supplementary Figure S2.1, Table S2.2), only recordings from the first 

sample of each point were used to compare activity between the different zones to minimise 

temporal bias.  

The number of pulses (e.g., individual vocalisations) was used as a sample unit for calculating 

bat activity. Fifteen-second recordings were filtered using Kaleidoscope V5.1 (Wildlife 

Acoustics Inc, USA) for those with two or more search-phase pulses. Once filtered, Anabat 

Insight (Broken-Brow 2018) was used to automatically extract call characteristics and 

calculate total activity per sample point, between 15kHz–500kHz with a smoothness five. Call 

characteristics included: characteristic frequency (Fc), characteristic slope (Sc), duration 

(Dur), maximum frequency (Fmax), minimum frequency (Fmin), mean frequency (Fmean), 

time between calls (TBC), frequency of knee (Fk), time from the start of the call to the knee 

(Tk), average call smoothness (Quality), the slope of the first five points in a pulse (S1), and 

time from start to the characteristic component (Tc). These data were then cleaned of any 

pulses with a peak frequency (Fmean) < 20kHz to remove false positives/noise, which 

removed 44,657 records. Species identification was not conducted for this study and therefore 

activity represents total bat activity for all species. As bats produce a series of pulses in quick 

succession when approaching their prey, feeding activity may artificially inflate activity. 

2.3.4  Statistical Analysis 

To compare acoustic activity, activity per transect was calculated as the sum of activity per 

corresponding sample point per night divided by sampling effort (minutes of recording). A 

Kruskal–Wallis H test was then conducted to determine if there was a difference in bat activity 

between the different zones and the extralimital agriculture. Pairwise comparisons were also 

conducted between the mean bat activity of each zone and extralimital agriculture using 
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nonparametric, bootstrapped 95% confidence intervals. Principal component analysis (PCA) 

in R (packages "stats v3.6.1" and "factoextra v1.0.5") (R Core Team 2017) was also employed 

to investigate the similarity between the call structure of the acoustic activity observed 

between the different zones. In order to assess survey completeness and compare species 

richness of sites, rarefaction analyses for each site were done based on sampling effort in 

iNEXT v2.0.19 (Chao et al. 2014; Hsieh, Ma and Chao 2016). We performed separate 

analyses for individuals captured in harp traps and mist nets. Species richness was rarefied by 

sample units and then rescaled to individuals. For harp traps, sample units were one harp trap 

night and for mist nets, sample units were one mist net meter/hour. 

 

2.4  Results 

2.4.1  Bat Assemblage 

A total of 260 individuals of 30 species were captured belonging to 5 families (Tables 2.1 and 

2.2, Figure 2.2). An additional species, Hipposideros doriae/Coelops robinsoni, was identified 

acoustically, bringing the total to 31 species. Crocker Range was last surveyed for bats in 1999 

(Tuen, Rahman and Salleh 2002). That preliminary study used mist-nets, harp traps, and 

museum inventories to document 41 bat species from the area. Comparing species inventories, 

our study recorded nine new species in CRBR (Cynopterus minutus, Rousettus 

amplexicaudatus, Hipposideros ridleyi, Hypsugo cf kitcheneri, Kerivoula intermedia, 

Phoniscus atrox, Tylonycteris pachypus, Nycteris tragata and H. doriae/C. robinsoni), 

bringing the new total to 50 species for CRBR. 
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Figure 2.2 Photographic portraits of the 30 species captured in CRBR 

New locality records in CRBR are indicated by green star. (1) Balionycteris maculate, (2) 

Cynopterus brachyotis, (3) Cynopterus minutus, (4) Eonycteris major, (5) Megaerops 

ecuadatus, (6) Macroglossus minimus, (7) Rousettus amplexicaudatus, (8) Penthetor lucasi, 

(9) Rhinolophus acuminatus, (10) Rhinolophus borneensis, (11) Rhinolophus luctus, (12) 

Rhinolophus sedulus, (13) Rhinolophus trifoliatus, (14) Hipposideros cervinus, (15) 

Hipposideros diadema, (16) Hipposideros dyacorum, (17) Hipposideros galeritus, (18) 

Hipposideros ridleyi, (19) Nycteris tragata, (20) Hypsugo cf kitcheneri, (21) Kerivoula 

hardwickii, (22) Kerivoula intermedia, (23) Kerivoula papiliosa, (24) Kerivoula pellucida, 

(25) Phoniscus atrox, (26) Murina suilla, (27) Glyschropus tylopus, (28) Tylonycterus 

pachypus, (29) Tylonycterus robustula, (30) Pipistrellus javanicus. 
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Table 2.1 Number of individual captures of bat species across the four zones of CRBR and the surrounding agriculture 

Number of individual captures (from harp traps; HT, mist nets; MN and stacked nets; SN) of 30 bat species grouped into four zones and surrounding agriculture 

(see Figure 2.1). Effort is determined by the number of hours actively trapping. Mist nets and stack net hours are calculated by multiplying the net meter length 

with active netting hours (m x hr). * Indicates new species record in CRBR. ** Additional captures made with hand nets, X – identified from acoustic transect. 

Foraging Ensemble (FE) is coded as P – plant visiting, O – open-space insectivore, E – edge or gap insectivore, F – forest interior insectivore. 

 

FE 

Core Buffer Transition Extralimital 
Grand 

Total 

 HT MN/SN 
Total 

captures 
HT MN/SN 

Total 

captures 
HT MN/SN 

Total 

captures 
HT MN/SN 

Total 

captures 
Captures 

Effort (Hours)  699 1,569  248 1,307  100 258  332 1,291   

Individual trap sites  56 26  23 19  8 10  20 27   

Pteropodidae               

Balionycteris maculata P 1 3 4  2 2   0  3 3 9 

Cynopterus brachyotis P  10 10  8 8  7 7  3 3 28 

*Cynopterus minutus P  7 7   0   0  5 5 12 

Eonycteris major P   0  1 1   0  2 2 3 

Megaerops ecuadatus P 2 2 4   0   0   0 4 

Macroglossus minimus P 1 1 2  8 8   0  29 29 39 

Penthetor lucasi P   0  1 1   0  1 1 2 

*Rousettus P   0   0   0  1 1 1 
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amplexicaudatus 

Hipposideridae               

Coelops robinsoni F   X   0   0     

Hipposideros cervinus  F 9  9   0   0   0 9 

Hipposideros diadema F/E   0  1 1      0 1 

Hipposideros dyacorum F 1  1   0   0   0 1 

Hipposideros galeritus F   0 1  1   0   0 1 

*Hipposideros ridleyi F   0 2  2   0   0 2 

Rhinolophidae               

Rhinolophus acuminatus F   0   0 1  1   0 1 

Rhinolophus borneensis F   0   0 4  4   0 4 

Rhinolophus luctus F/E   0   0   0  1 1 1 

Rhinolophus sedulus F 1  1 1  1   0  1 1 3 

Rhinolophus trifoliatus F 9 1 10 1  1   0  1 1 12 

Vespertilionidae               

Glischropus tylopus E 6 3 11**  24 24  3 3  4 4 42 

*Hypsugo cf kitcheneri E   0   0   1**   0 1 

*Kerivoula intermedia F   0 4  4   0   0 0 

Kerivoula papillosa F   0 1  1 3  3   0 4 

Kerivoula pellucida F   0   0   0 1  1 1 

Kerivoula hardwickii F 15  15 1  1   0 2  2 18 
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Murina suilla F   0 1  1   0   0 1 

Pipistrellus javanicus E   0  1 1   0   0 1 

*Phoniscus atrox F 1  1   0   0   0 1 

*Tylonycteris pachypus E  6 6  2 2   0   0 8 

Tylonycteris robustula E 10 10 20 2 23 25   0   0 45 

Nycteridae               

*Nycteris tragata F 1  1   0   0   0 1 

Total Captures  59 43 102 14 67 85 9 3 19 3 51 54 260 

Species Richness  12 9 16 9 9 18 3 2 6 2 11 13 31 
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Table 2.2 Morphological data for 30 bat species from CRBR 

Morphological data for 30 bat species from CRBR. (Mean + SD); Smallest value in data set, Min.; Largest value in data set, Max.; M, male; F, female, n = 

number of individuals.   

Taxa 

Measurements  

Forearm length (mm)  Body mass (g)  

M F  M  F  

 Mean + SD No. Mean + SD No.  Mean + SD No. Mean + SD No. 

Pteropodidae          

 Balionycteris 

maculata 

- 0 41.59 + 2.28 

(36.9 – 44.6) 

9  - 0 14.89 + 3.16 

(9.25 – 19) 

9 

 Cynopterus 

brachyotis 

58.79 + 3.14 

(54.3 – 66.1) 

12 59.07 + 2.49 

(53.6 – 64.7)  

15  28.93 + 4.36 

(20 – 38.1) 

13 31.67 + 5.92 

(25 – 44) 

15 

 Cynopterus 

minutus 

57. 35 + 0.56 

(56.7 – 58.1) 

6 56.73 + 1.34 

(54. 1 – 57.7) 

6  24.33 + 2.07 

(22 – 28) 

6 29.33 + 6.35 

(19 – 37) 

6 

 Eonycteris 

major 

84.8 + 3.25 

(82.5 – 87.1) 

2 76.5 1  120 1 77 1 

 Megaerops 

ecuadatus 

53.4  1 52.23 + 1.05 

(51.2 – 53.3) 

3  23 1 25.33 + 4.16 

(22 – 30) 

3 

 Macroglossus 

minimus 

40.51 + 1.63 

(37.9 – 44.3) 

15 40.56 + 1.36 

(38.1 – 43.7) 

20  16.99 + 2.99 

(10 –20.5) 

15 17.49 + 3.31 

(12.25 – 24) 

19 
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 Penthetor 

lucasi 

60.2 1 60.5  1  36  1 42 1 

 Rousettus 

amplexicaudatus 

- 0 68.4 1  - 0 44 1 

Hipposideridae          

 Hipposideros 

cervinus 

50.1 + 1.05 

(49.1 – 51.2) 

3 51.93 + 1.19 

(50 – 53.7) 

6  10.5 + 0.87 

(10 – 11.5) 

3 11.16 + 1.21 

(9.5 – 12.5) 

6 

 Hipposideros 

diadema 

- 0 88.7 1  - 0 51 1 

 Hipposideros 

dyacorum 

42.3  1 - 0  7 1 - 0 

 Hipposideros 

galeritus 

49.7  1 - 0  9.5 1 49.7 

 

1 

 Hipposideros 

ridleyi 

49.2  1 48  1  8.25  1 9.25 1 

Rhinolophidae          

 Rhinolophus 

acuminatus 

- 0 49.4  1  - 0 14.25 1 

 Rhinolophus 

borneensis 

40.25 + 0.07 

(40.2 – 40.3) 

2 43.95 + 0.5 

(43.6 – 44.3) 

2  9.5  2 8.88 + 0.53 

(8.5 – 9.25) 

2 

 Rhinolophus 

luctus 

64 1 - 0  29  2 - 0 

 Rhinolophus 

sedulus 

- 0 46.97 + 6.7 

(42.1 – 54.6) 

3  - 0 14.33 + 5.77 

(11 – 21) 

3 
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 Rhinolophus 

trifoliatus 

52.61 + 2.3 

(48.7 – 54.9) 

7 53.16 + 1.87 

(49.9 – 54.6) 

5  14.61 + 1.98 

(12.5– 7.25) 

5 16.65 + 1.90 

(14.25 – 19) 

7 

Nycteridae          

 Nycteris  

tragata 
- 0 51.6 1  

- 0 17.5 1 

Vespertilionidae          

 Glischropus  

tylopus 

30.44 + 0.84 

(28.7 – 31.9) 
20 

30.70 + 2.2 

(22.2 – 33.3) 
22  

4.44 + 0.43 

(3 – 5) 

20 4.46 + 0.72 

(3.4 – 6.5) 

22 

 Hypsugo cf. 

kitcheneri 
35 1 - 0  

5.75 1 35 1 

 Kerivoula 

intermedia 

28.75 + 0.31 

(28.4 – 29.1) 
4 - 0  

2.88 + 0.14 

(2.75 – 3) 

4 28.75 + 0.31 

(28.4 – 29.1) 

4 

 Kerivoula 

papillosa 

38.4 + 8.1 

(29.1 – 43.9) 
3 37.1 1  

8.75 + 3.46 

(4.75–10.75) 

3 6 1 

 Kerivoula 

pellucida 
- 0 31.1  1  

5.5 1 - 0 

 Kerivoula 

hardwickii 

31.95 + 1.09 

(30.1 – 33.5) 

13 33.12 + 1.18 

(31.5 – 34.8)  

5  3.56 + 0.41 

(2.5 – 4) 

12 4.65 + 0.34 

(4.25 – 5) 

5 

 Murina suilla - 0 31.4 1  - 0 4.75 1 

 Pipistrellus 

javanicus 

- 0 34.3 1  - 0 6 1 

 Phoniscus 

atrox 

33.9 1 - 0  4.5  1 - 0 
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 Tylonycteris 

pachypus 

25.36 + 0.98 

(24.3 – 26.4) 

5 25.63 + 0.97 

(24.8 – 26.7) 

3  3.35 + 0.42 

(2.75 – 3.7) 

5 3.33 + 0.58 

(3 – 4) 

3 

 Tylonycteris 

robustula 

28.96 + 2.41 

(25.4 – 38.6) 

22 28.19 + 3.15 

(18.3 – 38.3) 

23  7.39 + 1.24 

(4.25 – 10) 

22 6.80 + 1.0 

(4 – 9.5) 

23 
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More species were recorded in the forested zones of core (16 species) and buffer (18 species) 

than in the transition (6 species) and extralimital (13 species) zones (Table 2.1). Estimated 

species richness based on harp traps was similarly greater in the forested zones (Figure 2.3), 

but rarefaction curves from mist net captures suggest greatest richness in extralimital 

agriculture, although there were no significant differences among core, buffer or extralimital 

agriculture (Figure 2.3b). Capture effort was low in the transition zone, but both richness 

curves appeared to level off at low values (< 4 species).
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Figure 2.3 Rarefaction curves for species captured in harp traps and mist nets 

Species richness was rarefied by (a) harp trap nights or (b) mist net meter/hour and rescaled to individuals for the four zones of the CRBR, Borneo, Malaysia. 

Colours and symbols indicate different MAB zones. Interpolated lines are the rarefaction curves and extrapolated lines are estimates for double the reference 

sample size. Shaded areas are the 95% confidence intervals for each curve. 
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Thirteen of the 23 species captured in core and buffer zones were exclusively captured in those 

zones. All 5 species of Hipposideros were caught exclusively in core and buffer zones. 

Cynopterus brachyotis and Glischropus tylopus were found in all four zones. Rhinolophus 

trifoliatus, Macroglossus minimus, Rhinolophus sedulous, and Kerivoula hardwickii were 

found in every zone except for the transition zone. Rousettus amplexicaudatus, Kerivoula 

pellucida and Rhinolophus luctus were captured only in the transition zone. 

T. robustula and G. tylopus were the most abundant species, representing a third of overall 

captures (n = 87). In the buffer zone, they represented 58% of captures, largely because of the 

success of a single mist net placed over a small shallow pond (site L.B.2). In the core (L.C.1) 

mist nets placed near bamboo stands captured large numbers of individuals leaving roosts.  

T. robustula was not captured in transition and extralimital agriculture, and only three 

individuals of G. tylopus were captured in the transitional zone and only four in extralimital 

agriculture.  

A single individual of Hypsugo kitcheneri (Thomas, 1915), one of the Borneo endemic bat 

species, was captured from the hostel at Mahua Substation. This species has been recorded 

from several localities in Borneo. The holotype of H. kitcheneri was collected from Buntok, 

Barito River in South Kalimantan (Francis and Hill 1986). Subsequently, one specimen was 

collected from Laham, East Kalimantan, and two specimens were collected from Sandakan, 

Sabah. However, the specimens from Sandakan have not been found since collection (Francis 

and Hill 1986; Medway and Harrisson 1963; Wilson and Mittermeier 2013).  The specimen 

from this survey was deposited at the Institute of Tropical Biology and Conservation, 

Universiti Malaysia Sabah. 

2.4.2  Acoustic Surveys 

In total, 339,422 pulses were extracted from the recordings between 2018–2019. Of these 

208,523 were recorded during the first sample of each point. Peak frequencies of pulses ranged 

20–217kHz. The minimum acoustic threshold post-filtering was 20kHz. Acoustic activity was 

significantly different across the four habitat types (H = 15.093, df = 3, p-value = 0.002; Figure 

2.4). Acoustic activity was lowest in the core zone but comparable across the buffer zone, 

transition zone, and extralimital agriculture. This is supported by the pairwise comparisons 

(Supplementary Figure S2.1). 
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Figure 2.4 Violin plots demonstrating the variation in acoustic bat activity recorded within the 

four zones of the CRBR, Malaysia 

Colours and symbols indicate different MAB zones. N = total number of pulses recorded per 

zone. 

2.4.2.1 Call structure 

Although there was overlap in the structure of the acoustic activity recorded across zones, 

there were identifiable differences in call duration, start and maximum frequency, and 

curvature of calls between zones (Figure 2.5). Longer calls were observed in the extralimital 

agriculture as identified by the PCA, scoring high values on PCA2. PCA loading contributions 

for PCA2 were dominated by curvature and call duration (ms) whereas PC1 was dominated 

by Fmax (kHz) and Fstart (kHz) (Supplementary Figure S2.3). The range of call curvature 

was greatest in the extralimital zone and lowest in the core zone. Calls in the core zone were 

typically short and high frequency. There was substantial variability in call structure in the 

buffer zone, where the greatest range of call duration and peak frequencies were recorded. 

However, whereas there were three distinct peaks in peak frequency recorded in extralimital 

agriculture (~20kHz, ~40kHz, and ~55kHz), a singular peak concentrated at ~55kHz was 

recorded in the buffer zone. Call structure in the transition zone reflects that of the buffer zone 

but demonstrates lower variability in call duration and higher variability in peak frequency. It 

also demonstrates a peak in peak frequency at ~55kHz, as well as another at ~20kHz. Using 

corresponding peaks across zones, the acoustic surveys suggest certain species are more active 

in the transition than in forest zones.
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Figure 2.5 Differences in call structure 

between the acoustic bat activity 

recorded across the four zones of the 

CRBR, Borneo, Malaysia 

 

a) Density plots showing the 

variability of call duration (ms) within 

each zone; b) scatterplot showing the 

relationship between two call 

variables within each zone; c) density 

plots showing variability in peak 

frequency (kHz) within each zone; 

and d) principal component analysis 

of call structure observed in each zone 

using six call characteristics, where 

"Fstart kHz", "Fmax kHz" and 

"Curvature" were the most heavily 

weighted components considering 

both dimensions.    
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2.5  Discussion 

CRBR helps support bat diversity, with more than half of Borneo’s bat species now reported 

for the reserve. Notably, 16 of the 28 species captured in the CRBR in this study were not 

recorded in neighbouring extralimital agriculture. On a wider scale, the CRBR represents an 

area of relatively high value for bats compared to other protected areas within the Heart of 

Borneo (HoB) initiative (Struebig et al. 2010). 

Species composition and activity varied among MAB zones with the core and buffer 

particularly important for conserving forest-interior insectivores. Thirteen species were 

captured exclusively in the core and buffer zone, including all species of Hipposideridae. The 

highest species richness for both edge/gap insectivores and forest interior insectivores was 

recorded in the buffer zone, however six forest interior species were only recorded in the core 

zone. Similarly, acoustic activity in the core zone was dominated by short (< 3ms), high-

frequency calls typical of forest interior species of Vespertilionidae (subfamilies Kerivoulinae 

and Murininae) and Hipposideridae (Schmieder et al. 2012; Kingston et al. 1999; Kingston et 

al. 2000). In contrast, the peak of activity observed at ~55kHz within the buffer, transition, 

and agriculture is indicative of several edge-foraging species of Vespertilionidae, 

including Myotis muricola and T. pachypus (Hughes et al. 2011; Collen 2012). This is likely 

to be T. pachypus, an edge/gap insectivore with intermediate length calls (e.g., 3-10ms), which 

was captured abundantly across our study and was observed roosting in the core zone. 

Acoustic activity in the transition zone and agriculture was dominated by long calls with a low 

peak frequency of 20kHz, characteristic of open-space aerial foragers. This is likely to 

represent molossid species, such as Mops mops (peak frequency 18.5-23.3kHz; Kingston et 

al. 2003). However, in the agricultural sites, calls exhibited increased curvature and a greater 

range of low and mid-range peak frequencies, suggesting that diversity of open-space aerial 

foragers was greater in agriculture than the transition. The peak in activity of long calls at  

30-40kHz is likely to represent molossids (such as Chaerephon plicatus), or emballonurids 

(such as Saccolaimus saccolaimus; Hughes et al. 2011; Kusuminda and Yapa 2017).  

The decrease in forest-interior species within the transition and extralimital agriculture reflects 

previous studies that indicate this ensemble responds negatively to land-use change (Kingston 

2013; Meyer, Struebig and Willig 2016). This includes species such as the Gilded Tube-nosed 

bat (Murina rozendaali) which is listed as Vulnerable by the IUCN and their populations 

continue to decline due to habitat loss and disturbance (IUCN 2022). Vegetation simplification 

is a consequence of agricultural intensification (Huang et al. 2019; Wordley et al. 2017) and 

ecomorphological traits characteristic of forest-dependent species (Kingston et al. 2003) are a 
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limitation to forest ensembles persisting in these simplified, open spaces. Mechanisms for this 

decline in bats include reduced roost availability for plant-roosting species (Huang et al. 2019; 

Cortés-Delgado and Sosa 2014; Struebig et al. 2013), degraded roost quality (Phommexay et 

al. 2011), and reduced foraging success. If a species cannot persist in a matrix, connectivity 

between forest fragments is also greatly reduced (Meyer 2015). More research to better 

understand how we can conserve these forest-dependant species has been one of the four main 

research priorities for the Southeast Asian Bat Conservation Research Unit over the last 

decade (Kingston 2010a). Promisingly, our research shows that the core and buffer biosphere 

zones can help provide habitat refugees for these species. 

Bats of the plant-visiting family Pteropodidae were captured in all four zones but dominated 

captures in the extralimital agriculture. Unlike forest-dependent insectivores, the plant-visiting 

pteropodids can travel larger distances (Start 1975; Wordley et al. 2018) as well as exploit the 

abundance of plant food resources available in the transition zone and extralimital agriculture 

(Furey, Mackie and Racey 2010; Acharya et al. 2015). This may explain the higher diversity 

and abundance of these species observed outside of the reserve in our study. Cave-roosting 

insectivores are also considered more tolerant of anthropogenic disturbance than forest-

dependent species (Kingston et al. 2003; Kingston 2013; Struebig et al. 2013). Their low 

abundance across our study reflects the lack of available cave systems nearby rather than 

portraying a true response to disturbance.  

Our findings support previous studies that the core and buffer zones are the most important 

zones for conserving bats in biosphere reserves (Taylor et al. 2013; López-González et al. 

2015). However, our study differed from previous studies as species richness was comparable 

in the buffer and core (Taylor et al. 2013; López-González et al. 2015). In both Vhembe 

Biosphere Reserve in South Africa and La Michilía Biosphere Reserve in Mexico, more 

species were found in the core than buffer (Linden et al. 2014; López-González et al. 2015; 

Weier et al. 2017). The core zone has also been shown to provide important resources for 

species persisting across multiple zones. In Calakmul Biosphere reserve, Mexico, Sturnira 

lilium is a common species in the buffer and core but is reliant on primary forest in the core 

zone for roosting (Evelyn and Stiles 2003). We observed bamboo bats (Tylonycteris spp.) 

roosting within the core but foraging across multiple zones. Therefore, the core zone may 

provide roosting opportunities that help support greater populations of plant-roosting species 

in neighbouring MAB zones than may otherwise be possible. There may also be greater 

atmospheric attenuation in the core zone as a result of thicker vegetation. This reduces the 

distance at which calls can be detected. Therefore, the effective sampling size is likely to be 

lower in the core than the buffer resulting in the potential for artificially lower rates of activity.  
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Zoning provided by biosphere reserves has proved relevant to the conservation of other 

mammals, although the value of the core zone compared to the buffer zone differs across 

species. Similar to bats, forest-dependent species, including Sun bear (Helarctos malayanus), 

Clouded leopard (Neofelis diardi), and Marbled cat (Pardofelis marmorata) were only found 

in the core zone of Giam Siak Kecil-Bukit Batu Biosphere Reserve, Indonesia, whereas the 

generalist Palm civet (Paradoxurus hermaphroditus) was only found in the buffer zone 

(Motoko et al. 2012). Elsewhere, there appears to be no effect of the management zones on 

mammal richness and distribution in the reserve (e.g., Licona et al. 2011; Woldegeorgis and 

Wube 2012), or even greater species richness outside the reserve (Tabeni, Spirito and Ojeda 

2013), but studies providing robust comparison across zones and extralimital habitats remain 

few. 

Land-use change is the primary threat to bats in Southeast Asia (Kingston 2013), but our 

results support previous studies that show that ensembles are not equally affected by 

disturbance. Ecological characteristics such as roost type, foraging ensemble, and body size 

differentially confer vulnerability or resilience (Meyer, Struebig and Willig 2016). For 

example, different roost ensembles are affected by different drivers of disturbance. Foliage 

roosting species are affected by a reduction in roosting opportunities whereas cave-dwelling 

species are affected by both disturbance at the roost and greater commuter costs as foraging 

habitats are fragmented (Struebig et al. 2008; Nurul-Ain, Rosli and Kingston 2017). Body 

mass is positively correlated with resilience to disturbance whereas smaller species that emit 

higher peak frequencies responded negatively (Huang et al. 2019; Phelps et al. 2018). Mean 

body mass of the species recorded in our study was twice as high in the extralimital agriculture 

(26.44g) than in the core zone (13.11g; Table 2.2) however this does not consider the relative 

abundance of each species.  

Insectivores are also known to exhibit a higher sensitivity to disturbance than herbivorous 

species (Boyles and Storm 2007). Our results highlighted a compositional shift from a 

dominant insectivorous bat assemblage in the core to one dominated by frugivorous species 

in extralimital agriculture. This may be the result of reduced prey availability, as land-use 

change alters insect communities (Ewers et al. 2015) and reduces insect biomass with 

consequences for bat diversity and activity (e.g., Phommexay et al. 2011). However, this 

compositional shift in the bat fauna was not observed within the transition zone. The transition 

zone sites were floristically less diverse than those in extralimital agricultural (see site 

descriptions) and predominantly comprised rubber and oil palm, therefore we suspect they did 

not provide abundant fruit resources necessary to support more frugivorous species. Along a 

disturbance gradient from primary forest to oil palm in lowland Borneo, capture rates were 
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lowest in oil palm (Fukuda et al. 2009).  This suggests the potential to improve the biodiversity 

value of transition habitats of CRBR, perhaps by implementing agroforestry crop systems that 

increase fruit and nectar resources. More diverse agroforestry, as well as an increase in patches 

of native vegetation, would also increase vegetative complexity and hence insect diversity and 

abundance important for edge and open space insectivorous bats.  

Our results should be considered in the light of some limitations, particularly that sampling 

was not even across the reserve or the wider landscape. Differences in sampling effort relate 

to differing trap efforts between the different zones, access, and sampling efficiency between 

habitats. Whilst we were not able to ensure equal trap effort across zones, the species 

accumulation curves suggest inadequate sampling was limited to the transition zone for mist-

netting and harp-trapping and the buffer zone for harp trapping. Therefore, it is possible that 

our results underestimate the overall diversity and abundance of bats utilizing the transition 

zone, and the diversity and abundance of forest-interior insectivores in the buffer zone. Our 

sampling was also restricted due to difficult terrain, and greater access was available at higher 

elevations. Elevation is known to negatively correlate with bat species richness (Cisneros et 

al. 2014), therefore it may have contributed to non-uniform capture rates across sites at 

differing elevations, rather than the effect being solely driven by land-use change. As our 

sampling was restricted to the wet season, seasonality may also have had a negative effect on 

capture rates (Meyer 2015). Future survey efforts should aim to isolate these surveying co-

variates as random effects. Within the MAB zones, there is geographic variability in land-use 

practices and compliance with UNESCO legislation. Whilst we aimed to include a diversity 

of these practices in our study (e.g., oil palm, rubber, agriculture in transition zone), we did 

not investigate how specific practices, or how landscape-scale characteristics more broadly 

differed in their importance for protecting bat species within the reserve. Finally, the buffer 

zone is not continuous in CRBR, and in some areas the core abuts the transition zone. The 

buffer zone is designed as a low-contrast intermediary zone between the core and transition 

zones, thereby limiting edge effects related to the boundary between these two zones 

(Ishwaran, Persic and Tri 2008; Reed 2019). We therefore predict that the species richness 

and abundance of bat species would be lower where the core zone neighbours the transition 

zone directly, due to greater disturbance. However, in our study we did not compare areas of 

the MAB reserve with and without this buffer, thus future research is needed to validate 

whether the zone is fulfilling this role. 

Trap efficacy and call detectability are also dependent on ensemble and habitat structure 

(Kingston 2013; Meyer 2015). As expected within our study, higher species richness was 

observed using harp traps compared to mist-nets within the core and buffer zones (e.g., 
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forested zones) and higher species richness using mist-nets in extralimital agriculture (e.g., 

open spaces). Live trapping is also considered to be less effective in open spaces such as 

transition and agriculture, where bats are less likely to encounter a trap. High-frequency calls 

are more easily attenuated by the atmosphere than low-frequency calls, and the quantity of 

environmental clutter negatively correlates with the range of call detectability (Meyer 2015). 

For both these reasons, forest-interior insectivores such as K. hardwickii are more difficult to 

detect acoustically than edge/open space insectivores, and this is likely to explain why the 

acoustic activity was higher in all zones compared to core forest. By using live trapping and 

acoustic sampling as complementary techniques, we aimed to limit these biases. It is difficult 

to extrapolate robust conclusions from the acoustic data as it is not possible to calculate 

abundance or differentiate between species. Manual identification of calls within this study 

was not possible, due to time constraints and the lack of a call library. Further development of 

automated or semi-automated classifiers for the region will improve the capacity of acoustic 

sampling for monitoring bat populations within Southeast Asia. Despite this, the acoustic data 

aided in identifying areas where activity was inadequately represented by live-captures. 

There were several unexpected findings within our study. Three species, Kervioula papillosa, 

Rhinolophus borneensis, and Rhinolophus acuminatus, were all recorded in transition despite 

being characteried as forest-specialists. However, all these records were from only one site 

(5◦47’53.20”, 116◦24017.93”), which is uncharacteristic of the transition zone as it is densely 

forested and neighbours the core forest directly. Therefore, we do not believe these records 

are representative of wider transition zone. Similarly, Rousettus amplexicaudatus, a cave-

roosting species (Phillipps and Phillipps 2016), was captured within extralimital agriculture. 

However, as we only caught one individual and the species is capable of commuting 50 km 

nightly to find fruit resources (IUCN 2019), it is likely to be a transient individual rather than 

being locally common, as it is elsewhere in Sabah (Phillipps and Phillipps 2016). 

Although we added eight species to the list for CRBR, we did not catch 20 species previously 

reported (Tuen, Rahman and Salleh 2002). This is most likely a consequence of our limited 

sampling effort and the survey methods used. Many of the species absent from our list are 

difficult to capture in nets or harp traps unless they are positioned close to a roost or established 

flyway (e.g., Pipistrellus spp., Taphozous longimanus, Saccolaimus saccolaimus). These 

species might ultimately be identified in the acoustic recordings, subject to further 

development of call classifiers and library development in the region. However, it is worth 

noting that several species that we did not catch commonly roost in large caves (e.g., 

Miniopterus spp., S. saccolaimus, T. longimanus, Eonycteris spelaea) or large tree hollows 

(e.g., Dyacopterus spadiceus, Cheiromeles torquatus), suggesting that disturbance at caves 
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and land-use change may play a role. In a similar vein, some species are known to be declining 

(C. torquatus, P. vampyrus) (IUCN 2019) and may have been lost from the landscape. 

2.6  Conclusions  

In summary, the results of this study demonstrate that MAB programmes can be effective at 

promoting diversity in cooperation with human activity. The buffer zone provided adequate 

habitat for several forest-dependent and threatened species but not all. Therefore, it remains 

pivotal to ensure areas of primary forest are preserved. Nonetheless, buffer zones do help 

alleviate the effects of land-use change by reducing the contrast between protected areas and 

agriculture for many species. Our study did not demonstrate any additional conservation value 

of the transition zone compared to neighbouring agriculture, suggesting potential for 

agroforestry interventions that enhance vegetative complexity and retain patches of natural 

forest to improve the biodiversity value of the transition zone. Evaluations such as this are 

important to ensure protected area schemes are functioning effectively. We conclude that 

collectively UNESCO Biosphere zones can provide valuable habitat for conserving bat 

diversity in the Southeast Asian tropics. 
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2.8  Supplementary information 

Table S2.1 Detailed site description for sampling localities within CRBR 

Site description, GPS coordinates, the abbreviations used to identify them in figure 2.1, their zones and sampling duration.  

 
Zone Localities Latitude Longitude Description Trapping Duration 

C
o

re
 

L.C.1 05°50.293 116°08.834 

Mostly covered by lower montane and mixed dipterocarp 

forest, occurring at about 500 m asl. It is the start/end point of 

the Salt Trail, connecting the substation with Malungung 

Control Post in the north-east edge of CRBR. 

19 nights L.C.2 05°50.856 116°08.527 

L.C.3 05°51.426 116°08.404 

A.C.1 05°51.313 116°08.347 

The transect is along a ridge system on the Bansandon trail 

covered with mature trees with closed canopy and open 

understorey. There are clumps of bamboos along the transect.  

3.5 night 

A.C.2 05°51.116 116°08.230 

The transect is along a ridge system on the Salt trail covered 

with mature trees with closed canopy and open understorey. 

There are clumps of bamboos along the transect. 

3.5 nights 
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B
u

ff
er

 

L.B.1 05°42'7.14" 116°20'7.05" 

The trapping site consists of contrasting vegetation on the lower 

and upper portions of the hill. The lower portion of the hill is 

mostly covered by oil palm (Elaeis guineensis), durian (Durio 

spp.) and rambutan (Nephelium lappaceum). Meanwhile, the 

upper portion of the hill is an old growth forest. Trapping site 

occurs below 950m asl. 

3 nights 

L.B.2 05°39'36.99" 116°15'2.80" 

The trapping site is the start/end point of the Salt Trail that 

extends for 34km, connecting the control post with Inobong 

Substation in the north-west edge of CRBR. Covered by hill 

dipterocarp forest occurring below 900 m asl. 

10 nights 

A.B.1 05°47'53.20" 116°24'17.93" 

Transect is along a gravel road surrounded by oil palm 

plantation (Elaeis guineensis), mixed fruit orchard, secondary 

forest and an old growth forest at the top of the hill.  

1 night 

A.B.2 05°39'36.99" 116°15'2.80" 
Transect is on a terraced hill along a paved road. It is 

surrounded by forest edges with patches of agricultural plots.  
1 night 

A.B.3 
  

05°51'18.95" 
116° 8'11.68" 

Transect is on a paved road with patches of open space, but 

mostly covered with dense vegetation on both sides. There are 

street lightings along the transect.  

3.5 night 

A.B.4 
  

05°49'55.78" 
116° 8'39.83" 

Transect is along a main road surrounded by sparse secondary 

vegetation and plantation, mostly open space. This transect 

leads to the main entrance of the park.  

2 night 

T
ra

n
si

t

io
n

 

L.T.1 05°47.841’ 116°24.439’ 
Trapping site is covered by hill dipterocarp forest occurring 

below 1000m a.s.l.  
4 nights 

https://en.wikipedia.org/wiki/Elaeis_guineensis
https://en.wikipedia.org/wiki/Elaeis_guineensis
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L.T.2 05°32'36.88" 116°15'14.61" 
Trapping site is a clear-cut area with small forest fragment at 

the bottom of the hill. 
1 night 

A.T.1 05°47.841’  116°24.439’  
Transect is around Mahua substation facilities surrounded by 

forest edges and a flowing river.  
1 night 

A.T.2 05°32'36.88" 116°15'14.61" 

Transect is along forest edges and a flowing river on one side. 

Land-use change presence around the park boundary, mostly 

for agriculture. 

1 night 

A.T.3 

  

05°51'47.89"

N 

116° 7'50.43" 

Transect begins from the entrance to the park along wide road 

which is paved and unpaved along the route. There are several 

residential properties, areas of young forest with a low canopy, 

and areas of clearing.  

3 nights 

A.T.4 05°52'26.52" 116° 7'42.66" 

Transect is along a wide, dirt road surrounded by secondary 

forest with a low canopy, residential properties, agriculture, 

and oil palm small holdings. 

3 nights 

A.T.5 
  

05°49'19.55" 
116° 8'16.05" 

Transect is along a dirt road surrounded by secondary forest 

with sparse vegetation and open canopy, which leads to a 

rubber plantation. There is a human settlement nearby.  

3 nights 

E
x
tr

a
li

m
it

a
l L.E.1 05°45'57.45 116°28'11.40" 

Trapping site is covered with abandoned rubber plantation, 

with some banana plants with thick undergrowth. This site 

occurs around 900 m a.s.l. 

3 nights 

L.E.2 05°42'34.29" 116°24'28.98" 

Trapping site is a secondary forest with patches of abandoned 

rubber plantation (Hevea brasiliensis) and mixed fruit 

plantation such as banana (Musa spp.), rambutan (Nephelium 

5 nights 
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lappaceum), soursop (Annona spp.) and mango (Mangifera 

spp.). This site occurs below 700m asl.  

L.E.3 05°33'5.41" 116°17'25.27" 
Trapping area was coved by monoculture rubber plantation 

occurring around 700 m asl. 
1 night 

A.E.1 05°45'57.45 116°28'11.40" 

Transect is along a gravel road surrounded by human 

settlement, abandoned rubber plantation (Hevea brasiliensis) 

and patches of secondary forest. Presence of street lighting 

along the transect.  

1 night 

A.E.2 05°45'57.45 116°28'11.40" 
Transect is along a gravel road surrounded by secondary forest 

on both sides.  
1 night 

A.E.3 05°42'34.29" 116°24'28.98" 

Transect is along a paved road surrounded by human settlement 

and agriculture plots such as rubber plantation (Hevea 

brasiliensis), banana (Musa spp.) orchard, mango (Mangifera 

spp.) orchard and patches of rich fields. 

1 night 

A.E.4 05°42'34.29" 116°24'28.98" 1 night 

A.E.5 05°42'34.29" 116°24'28.98" 1 night 
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Table S2.2 Relationship between bat activity and survey time 

The corresponding R² values for linear regression models for the relationship between bat 

activity and time of surveying. Models were conducted per CRBR zone and extralimital 

agriculture, as well as for all activity recorded. 

 

  Adjusted R-squared df p value   

Core 0.019 193 0.030 .  

Buffer 0.014 267 0.031 . 

Transition 0.007 197 0.127   

Extralimital agriculture -0.006 84 0.462   

          

Total activity 0.374 745 5.93E-08 *** 

*Significance values where '.' <0.05 '*' <0.01 '**' <0.001 '***' <0.0005  

  



56 

 

 

 

Figure S2.1 Results of the pairwise comparison of mean bat activity 

Results of the pairwise comparison of mean bat activity recorded within the four zones of the 

CRBR, Borneo, Malaysia, with bootstrapped (nonparametric) 95% confidence intervals. ** < 

0.01 
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Figure S2.2 Scatterplot of temporal variation in bat activity 

Acoustic bat activity recorded within the four zones of the CRBR, Borneo, Malaysia. Colors indicate different MAB zones. 
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Figure S2.3 The relative importance of acoustic variables 

Plot highlighting the relative importance of acoustic variables used for dividing calls along PCA 1 (Dim-1) and PCA 2 (Dim-2). The greater the contribution, 

the greater the importance.
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Figure S2.4 Sonogram of high frequency Hipposideros species 

Sonogram of high frequency Hipposideros species, suspected to be Hipposideros doriae, with corresponding power spectrum. Call was recorded within the 

core zone of CRBR, Borneo, Malaysia, June 2019. 
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3.1  Abstract 

The expansion of oil palm agriculture has contributed to biodiversity loss in Southeast Asia 

and elsewhere in the tropics. Riparian reserves (areas of native forest along waterways) have 

the potential to maintain forest biodiversity and associated ecological processes within these 

agricultural landscapes. Using acoustic sampling, we investigated the value of riparian 

reserves for insectivorous bats in oil palm plantations in Sabah, Malaysian Borneo. We 

compared general bat activity, foraging activity, and species occupancy between riparian areas 

in forest and riparian reserves in oil palm plantations. Overall bat activity varied little between 

riparian reserves in oil palm and riparian forest. Rather, activity was greatest in areas with a 

high forest canopy, irrespective of how much forest was available within or outside the 

riparian reserve. Bat foraging activity, as well as the occupancy of two species, was greatest 

in the forest sites, and while bats were detected in the oil palm riparian reserves, both foraging 

and occupancy were more associated with topographic ruggedness than forest amount or 

height. Our results indicate that habitat structure within riparian reserves may be more 

important than reserve size for supporting insectivorous bat diversity within oil palm 

landscapes. These findings provide important insights into the extent of the ecological benefits 

provided by conservation set-asides in forest-agricultural landscapes in the tropics. 

 

Keywords: Chiroptera; Southeast Asia; palm oil; riparian buffer; acoustic monitoring; habitat 

fragmentation, land-use change, biodiversity 
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3.2  Introduction 

The intensification and expansion of agriculture are major causes of tropical biodiversity 

declines (Phalan et al. 2013). Since the tropics support large numbers of species and some of 

the world’s last pristine habitats, the ongoing biodiversity crisis occurs disproportionately in 

these regions (Rosa et al. 2016; Sodhi, Brook and Bradshaw 2013). Here industrial commodity 

crops, including but not limited to oil palm (Elaeis guineensis), are becoming widespread. In 

the last decade palm oil production has more than doubled and demand is likely to rise, due to 

both its status as the world’s primary and cheapest vegetable oil and its use as a biofuel 

feedstock (Meijaard et al. 2018). Southeast Asia dominates as the epicentre of oil palm 

production, with Indonesia and Malaysia being the leading producers (Meijaard et al. 2018). 

Seventeen percent of Malaysian plantations are thought to have needed forest clearing (Pirker 

et al. 2016). With oil palm plantations being a poor biodiversity substitute for native forest 

habitat (Fitzherbert et al. 2008), this raises concerns about the environmental sustainability of 

the crop, and the associated negative impacts agricultural expansion is having on tropical 

biodiversity. 

One way to mitigate biodiversity losses in oil palm is to maximise natural habitat within estates 

by retaining habitat remnants as conservation set-asides (Meijaard et al. 2018). Protected 

forest patches are promoted within the Roundtable on Sustainable Palm Oil certification 

standard (RSPO 2018), and while these improve prospects for terrestrial mammals, patches 

are rarely large enough to sustain viable populations individually (N J Deere et al. 2020). 

Therefore, improving habitat area and connectivity between these patches is paramount, and 

will be particularly important for species with limited dispersal capabilities that are unable to 

traverse large expanses of open, agricultural land (Carroll et al. 2004).  

Protecting riparian reserves (areas of native vegetation alongside rivers) is one potential way 

to help join up forest patches in tropical agriculture, but to date, they have been poorly studied 

in the context of oil palm (Luke et al. 2019). Riparian reserves (also known as buffers) are 

typically protected to maintain hydrology (Tabacchi et al. 2000) and nutrient regulation 

(Naiman, Decamps and McClain 2010), which can lead to potential co-benefits for 

biodiversity (Mitchell et al. 2018). Many tropical countries therefore protect riparian areas in 

some form, but there is a weak evidence-base supporting the size, or width, of the protection 

zone (Luke et al. 2019). Further evidence is considered a high priority within the oil palm 

research community (Padfield et al. 2019).  
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To date, bats have been poorly studied in the context of oil palm in part because they are 

difficult to capture and study in open habitats. However, bats make ideal indicator taxa since 

they are globally distributed, taxonomically stable, and can be monitored regularly to 

determine population trends if acoustic data are used (Jones et al. 2009). In addition, as 

primary invertebrate predators, bats are potentially important indicators of invertebrate 

abundance and their responses to environmental change. Bats comprise around a third of 

Southeast Asia’s mammal diversity (Kingston 2010), and the conservation status of 17% of 

these species is currently unknown (IUCN 2019). The main threats to Asia’s bats mirror those 

listed for other taxa; namely, deforestation, habitat fragmentation, and disturbance, and 22% 

are assessed as threatened (IUCN 2019). If these threats continue, Southeast Asia is projected 

to lose 40% of its bat species by the end of the century (Lane, Kingston and Lee 2006). 

In palaeotropical forests, high bat diversity is associated with structurally complex, highly 

heterogeneous and lesser disturbed forest habitats (Struebig et al. 2013). Diversity and 

population viability are also greatest in larger forest patches (Struebig et al. 2008; Struebig et 

al. 2011). However, habitat disturbance and fragmentation affect bat species in different ways, 

with those in the families Hipposideridae and Rhinolophidae, and vespertilionid subfamilies 

Kerivoulinae and Murininae, being most affected (Struebig et al. 2008). The high sensitivity 

of these taxa is thought to be due to adaptations in wing morphology and echolocation call 

design that restrict their movements and foraging capabilities in more open habitats (Kingston, 

Jones, et al. 2003). Nevertheless, recapture distances and radiotracking studies confirm that 

some hipposiderid and rhinolophid species can commute several kilometres in a single night 

(Struebig et al. 2008), demonstrating that there is also substantial variation in species 

responses within these groups. In contrast, recapture and radiotracking studies of Kerivoula 

species rarely exceed 1km, and declines in abundance tend to be associated with the loss of 

tree cavities in disturbed forests since many of these species use tree features for roosting 

(Struebig et al. 2013). Other sub-components of insectivorous bat assemblages, such as those 

that forage in forest edges or open spaces outside or above the forest, may be able to adapt to 

disturbed habitats, and are frequently detected in farmland (Kingston, Francis, et al. 2003).  

The importance of riparian reserves for bats has not been explicitly studied in the Southeast 

Asian tropics. However, in other parts of the world bats are known to benefit from protected 

waterways in agricultural areas. In the neotropics, for example, bats use riparian reserves as 

stepping stones between larger patches of vegetation (Peña-Cuéllar et al. 2015), and in Britain, 

reserves are known to be used for foraging due to the large number of insects supported by 

rivers (Vaughan, Jones and Harris 1996). In Mexico, riparian reserves were found to host a 

higher abundance and diversity of bats compared to other landscape features (Galindo-
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González and Sosa 2003). Additionally, a study in Swaziland found that as well as high 

abundance and diversity there was also higher activity and species richness in riparian reserves 

compared to the surrounding savannah landscape (Monadjem and Reside 2008).  

Here we investigate the use of riparian areas by palaeotropical bats in order to determine the 

optimum habitat features to support their conservation in Southeast Asian agricultural 

landscapes. We base our study in a region with widespread oil palm agriculture (Sabah, 

Malaysian Borneo), and use acoustic survey techniques as an alternative to traditional capture 

methods, which are known to poorly sample many insectivorous species, particularly in more 

open habitats. Specifically, we investigate how (i) total bat activity, and (ii) foraging activity 

varies between the riparian areas in forest and riparian reserves in oil palm, for all species and 

between call-types. We then identify the structural characteristics important for (iii) predicting 

bat activity and (iv) species-specific occurrence for a subset of taxa.  

 

3.3  Materials and methods 

3.3.1  Study Area 

Research was conducted in and around the Stability of Altered Forest Ecosystems Project1 

within the Kalabakan Forest Reserve of Sabah, Borneo. The SAFE Project is a landscape 

experiment tracking changes to biodiversity and ecosystem functioning as logged mixed-

dipterocarp forest is converted to plantation. Forest across the landscape has been logged 

multiple times since the 1970s, and during the fieldwork the remaining core areas of forest 

were being salvage-logged in preparation for additional plantation. 

 

 

1 (www.safeproject.net) 
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Figure 3.1 Location of the 15 rivers sampled for bats via acoustic monitoring in the Stability 

of Altered Forest Ecosystems (SAFE) landscape of Sabah, Malaysian Borneo 

Each site comprised eight recording points, which were sampled multiple times. Forested area 

in grey (derived from Hansen et al., 2013 data for 2014); oil palm estates in white. Lines 

denote the river courses. 

 

We sampled 15 riparian areas, comprising eight forested rivers in the SAFE project area, and 

seven riparian reserves in the surrounding oil palm estates, which were planted between 2000 

and 2015 (Figure 3.1, Table S3.1). Forest sites were protected from further logging, but many 

remained highly disturbed from previous logging events. In Malaysia, riparian protection 

policies vary by state, with the prescribed reserve width in farmland depending on the size of 

the river and landscape context. In Sabah, companies are required to protect between 5 and 

100m, with many reserves in oil palm being at least 20m wide from each riverbank (Luke et 

al. 2019). Therefore, the width of the riparian reserves in the oil palm varied substantially 

between and also within rivers, ranging from 0m (i.e., completely devoid of forest vegetation) 

in river ROP2, to >200m in parts of R14 and R16 - considering both riverbanks. All rivers 

were sampled at least twice (Table 3.1).
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Table 3.1 Bat activity and foraging activity alongside rivers sampled at the SAFE project Sabah 

Bat activity and foraging activity alongside rivers sampled at the SAFE project Sabah. Activity is partitioned into call-type and visit (1-4). 

River Total bat activity Total foraging activity CF activity FMqCF activity FMb activity 

  1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Forested rivers                     
R0 56 65 11 - 6 8 1 - 14 4 1 - 42 60 7 - 0 1 3 - 

R30 44 52 120 25 2 19 7 1 25 6 76 2 16 44 40 19 2 1 3 4 

R15 153 155 46 216 15 38 0 23 38 49 2 166 114 98 41 50 0 8 3 0 

R30N 198 115 111 141 15 10 6 1 53 63 43 28 145 52 66 87 0 0 2 23 

R60 70 118 124 63 5 23 4 0 - - - - 63 102 73 57 0 11 7 2 

R120 65 157 291 192 4 19 17 9 - - - - 29 77 171 144 0 5 16 6 

RVJR 78 74 - - 4 11 - - 4 11 - - 28 62 - - 1 2 - - 

RLFE 29 73 52 - 0 6 2 - 0 4 0 - 23 65 48 - 6 4 3 - 

                      
Oil palm riparian reserves                     
RR2  55 44 - - 10 2 - - 19 17 - - 31 17 - - 5 10 - - 

RR3  207 94 - - 31 3 - - 14 13 - - 191 77 - - 2 4 - - 

RR7  125 120 182 - 10 4 7 14 0 1 16 22 99 98 135 244 23 20 25 20 

RR12  123 90 237 - 21 16 9 - 21 16 9 - 108 79 150 - 0 3 0 - 

RR14  107 73 - - 27 1 - - 27 1 - - 92 69 - - 1 0 - - 

RR16  44 49 269 - 4 8 19 - 4 8 19 - 16 24 199 - 2 4 6 - 

ROP2 95 85 - - 3 9 - - 3 9 - - 83 41 - - 1 2 - - 
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3.3.2  Acoustic Sampling 

We implemented acoustic surveys along each river and the associated riparian forest/reserve 

using a walking-point-transect design. At each site, we recorded bats at eight sampling points 

positioned approximately 200m apart along a 2km stretch of river. Surveys were undertaken 

in the early evening during peak bat activity, commencing just before sunset (18:01-18:23, 

according to standardised times in Kota Kinabalu2). As heavy rainfall has implications for bat 

activity as well as the viability of recording equipment, we restricted surveys to rain-free 

nights, the number of nights abandoned due to rain was more than double that of the sample 

size achieved. At each point, we recorded bat activity for 10 minutes (80 minutes of recording 

per night), using a full-spectrum EM3+ ultrasonic recorder (Wildlife Acoustics Inc.). The 

detector was set to record intermittently, with sounds >18 db and >18 kHz triggering a 

recording. The sampling rate was set at 384 kHz, thus allowing frequencies up to 192 kHz to 

be recorded. The maximum duration of recordings was set at 10 seconds. We considered one 

trigger to be a bat pass of the microphone and used this as an index of bat activity. Triggers 

and associated data were stored on SDHC memory cards as raw WAV files. 

The EM3+ microphone is omnidirectional, with optimal recordings ±30° vertically and 60° 

horizontally to the unit. As with all acoustic devices, the detection zone of the microphone 

varied for different species, depending on sound attenuation and vegetation clutter around the 

river. For this reason, we broke up the 10 minutes of recording into three components at each 

point: four minutes in the centre of the river, and 3 on each riverbank approximately 5m from 

the river edge. This minimised bias to species utilising merely the river, whilst also 

maximising detection of those bats in vegetation nearby. All rivers were sampled on at least 

two occasions, visiting sites sequentially from one end of the river to the other. Five rivers had 

four visits, five had three visits and five had two visits, with surveys spanning across 2014 and 

2015. All visits used the same sampling points, and all recordings were processed following 

the same method. When logistically possible we sampled the rivers starting at the opposite 

end of the transect on the second sample in order to control for differing levels of bat activity 

over the period of the evening. For example, we expected higher bat activity earlier in the 

evening, around and just after dusk, with declining activity as the evening progressed. 

 

 

2 https://www.timeanddate.com/astronomy/malaysia/kota-kinabalu 
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3.3.3  Processing Acoustic Data 

Data from each night were processed using the SonoBat SM2 Batch Attributer (Wildlife 

Acoustics PLC.) and then scrubbed using the SonoBat Batch Scrubber V5.2 to remove noise 

files. The remaining 16,530 files were processed using SonoBat 3.2p Batch Processor, and 

each sound file was manually inspected, then accepted or rejected as a genuine bat trigger. An 

independent trigger file was accepted as a genuine bat call if there was a minimum of three 

pulses (e.g. three individual vocalisations). To quantify bat activity at each river we used the 

number of genuine bat microphone triggers, noting that this could represent a single bat 

responsible for multiple triggers. During processing, we identified feeding buzzes through 

visual interpretation of the call and from playback. Feeding buzzes are a rapid increase in 

pulse rate as a bat closes on insect prey. 

We used SonoBat call analysis software to automatically extract the following call parameters: 

pulse duration, and the highest frequency and the lowest frequency of the dominant harmonic. 

All calls were manually inspected alongside the call parameters to classify them into four call-

types: constant frequency (CF; e.g. Rhinolophidae and Hipposideridae), frequency modulating 

quasi-constant frequency (FMqCF; e.g. Molossidae and several Vespertilioninae genre such 

as the bamboo bats, Tylonycteris), broad-band frequency modulating (FMb; e.g., Kerivoulinae 

and Murininae), and multi-harmonic frequency modulating (MHFM; e.g. Megaderma spasma 

and Nycteris tragata). Species utilizing CF, FMb, or MHFM calls are known to forage in 

cluttered narrow-spaces; CF species use flutter detection to find prey, whereas species using 

FMb and MHFM  are active and passive gleaners respectively (Denzinger and Schnitzler 

2013; Table S3.2). These three call types are therefore characteristic of species widely 

regarded as forest interior insectivores. On the other hand, species using FMqCF calls are 

characterised by aerial hawking to capture prey and are more commonly associated with forest 

edge and open spaces (Denzinger and Schnitzler 2013).  

It was not possible to identify most calls to the species-level due to insufficient local 

knowledge of the echolocation calls for many species. However, horseshoe and leaf-nosed 

bats (Rhinolophidae and Hipposideridae respectively, and all CF species) could be confidently 

identified using the species-specific peak parameters of their constant frequency tone (Table 

3.2). These call parameters were taken from a library of recordings from bats recorded in the 

landscape or elsewhere in northern Borneo. Analysis was therefore restricted to the level of 

call-type for most bats, with the addition of species-based analysis for CF bats. 
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Table 3.2 Call parameters of constant frequency bats 

Call parameters of constant frequency (CF) bats identified in this study along with their 

activity in the riparian reserves. 

Species Low freq. 

(kHz)a 

High freq. 

(kHz)b 

Forest  

activityc 

Oil 

palm  

activityc 

Rhinolophus acuminatus 85 89 2 6 

Rhinolophus borneensis 79 84 14 1 

Rhinolophus sedulus 59 62 64 3 

Rhinolophus trifoliatus d 47 52 777 291 

Hipposideros cervinus 115 126 4 9 

Hipposideros galeritus 108 114 13 14 

Hipposideros ridleyi 61 63 11 1 

a Lowest frequency of the dominant harmonic; b Highest frequency of dominant harmonic;    

c Number of genuine bat microphone triggers in riparian reserves. d It is possible that the call 

frequency range for R. trifoliatus overlaps with that of R. francisii, a recently named species in 

Sabah. Since the latter species is very rare and not known from the site, we assign all calls to 

R.trifoliatus. 

 

3.3.4  Environmental Characteristics of Riparian Sites 

Potential covariates were extracted at each point on every river, providing eight data points 

per river, i.e. 128 over the landscape. Riparian reserve width (m), applicable to only sites in 

the oil palm, was estimated at each point from LiDAR imagery at 5m resolution (described in 

Swinfield et al. 2020). The width of the river channel, measured in the field using a laser 

rangefinder (Leica Rangemaster CRF 1000), was subtracted from this estimate to determine 

the actual land surface within the reserve. The covariate used, RiparianWidth, is the mean 

width on a single side of the river, since this is typically referenced in environmental policy 

documents.  

Previous research in the project area highlighted forest structural and landscape characteristics 

as important predictors of bat community composition (Struebig et al. 2013), and so two 

additional covariates were also extracted from each sample point. Average topographic 
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ruggedness (Topography; 0-1) was measured within 50m of each point using Shuttle Radar 

Topography Mission data, according to Wilson et al. (2007). Mean canopy height 

(CanopyHeight: m), also sourced from the LiDAR data, was used as a proxy for forest quality. 

Taller forests in the landscape tend to have more trees, higher biomass, and greater vertical 

and horizontal complexity, all measures of forest structure and quality that are highly 

correlated (Deere et al. 2020). Both variables were extracted to points at a spatial scale of 50 

m as this matched those used for a study on birds at the site (Mitchell et al. 2018) as we 

assumed bats and birds would be using the landscape in similar ways. 

3.3.5  Statistical Analysis 

For each point, we summed total activity or foraging activity for all call data combined, as 

well as grouping by call-type. Due to the unequal sample effort between rivers (Table 3.1) and 

high numbers of zeros in the dataset (which could not be remedied via zero-inflation models), 

this was calculated as a mean value across visits for each sampling point, e.g. sum of total bat 

passes recorded at the point per night divided by the number of nights recorded. We then 

applied generalized linear mixed effect models (GLMMs) with Poisson error distributions to 

explore the potential determinants of bat activity across sites. In addition, for a subset of CF 

bats that could be identified to species level, we applied hierarchical Bayesian multi-species 

occupancy modelling to determine whether there were patterns in species occurrence between 

rivers. Occupancy modelling was better suited to species-level analyses given the propensity 

for zero counts. 

3.3.5.1 Activity 

We first applied GLMMs to determine whether bat activity differed between forest and oil 

palm sites, and whether this was associated with the covariates. We then performed a second 

analysis using the subset of the data from oil palm riparian reserves to determine whether the 

width of the reserve influenced bat activity relative to the other covariates. Both analyses were 

conducted for all bat activity, CF calls, and FMqCF calls, totalling six GLMMs (Table S3.3). 

We did not work with data for the other call types due to insufficient numbers of bat passes. 

In order to avoid collinearity in the GLMMs, we only included non-correlated variables (rs 

<0.5). The final fixed covariates were HabitatType (‘forest’ vs. ‘oil palm’, categorical with 

two levels), TimeafterSunset (continuous), Topography (continuous), CanopyHeight 

(continuous) and RiparianWidth (continuous). To incorporate the dependency among 

observations of the same river, we used River-ID as a random intercept. HabitatType was used 

only in the first GLMM to assess covariates across sites collectively [Equation (1:3)]. As 
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RiparianWidth is only applicable to oil palm reserves, we only included this covariate in the 

models focusing on those reserves [Equation (4:7)] (Table S3.3). 

We used the package “lme4” (Bates et al. 2015) in the software R to fit the models in Equation 

(1:7) (Table S3.3) using a Nelder-Mead optimizer from the package “optimx” (Nash 2014). 

We checked dispersion using the package “blmeco” (Korner-Nievergelt et al. 2015; 

overdispersion < 0.75; > 1.4; Table S4). We centred and standardised covariates prior to 

analysis. We then undertook likelihood ratio tests to determine which covariates from the top 

five models were statistically important (Table S3.5). Considering the results of the likelihood 

ratio tests, the best fit model was chosen for each call group to analyse the relationship between 

activity including all covariates identified as significant (Table S3.3; Table S3.5). We then 

used the package “multcomp” (Hothorn, Bretz and Westfall 2008) to perform a multiple 

comparison test on these final models. 

Data were too zero-inflated to explore foraging activity using feeding buzzes further using 

GLMMs. Therefore, we used the non-parametric Mann-Whitney U test to compare foraging 

activity between the forest and oil palm, as these data were not normally distributed (riparian 

forests: W = 0.843, p < 0.001). Foraging activity was examined as a proportion of total activity 

at any given point.  

3.3.5.2 Occupancy 

We used hierarchical Bayesian multi-species occupancy models adapted from Deere et al. 

(2017) to investigate species-specific occurrences in relation to environmental conditions, 

while accounting for imperfect detection (MacKenzie et al. 2002). This was only possible for 

seven species that could be identified from the acoustic data. Our framework linked 

occurrence and detection models for individual species via a hierarchical component that 

modelled regression coefficients as realisations from a common community‐level distribution 

using hyper-parameters, which assume species respond to environmental conditions in a 

similar way. Since some species (e.g. Rhinolophus trifoliatus) were much more abundant than 

rare or elusive species (e.g. Hipposideros ridleyi), their occupancy estimates can be used to 

improve the estimation precision of the latter where detection records are limited (Pacifici et 

al. 2014). 

We modelled the occurrence of species i at site j using the binary variable, zi,j, where 1 

indicates species presence and 0 denotes species absence. The occurrence state was specified 

as the outcome of a Bernoulli process, zi,j ~ Bern(ψi,j), where ψi,j represents the latent 

occupancy state. The true occurrence state is imperfectly observed so we incorporated a 

second Bernoulli process, xi,j,k ~ Bern(pi,j,k *zi,j), where xi,j,k represents the observed detection 
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histories, and pi,j,k is the detection probability of species i, at site j for temporal replicate k. 

Within this framework, detection probability is conditional on species presence (zi,j = 1), 

therefore it is not possible to estimate detection probability at a site where a species is absent 

(zi,j = 0). Our approach assumes abundance of a species does not affect the probability of 

detection (Royle and Dorazio 2008). To conduct the analysis, we specified models of the form: 

Model 1 𝑙𝑜𝑔𝑖𝑡(𝜓𝑖,𝑗) = 𝜇𝑖𝑅𝑖𝑣𝑒𝑟𝑗 +  𝛼1,𝑖 +  𝛼2,𝑖𝐻𝑎𝑏𝑖𝑡𝑎𝑡𝑇𝑦𝑝𝑒𝑗

+ 𝛼3,𝑖𝐶𝑎𝑛𝑜𝑝𝑦𝐻𝑒𝑖𝑔ℎ𝑡𝑗 + 𝛼4,𝑖𝑇𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑗  

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖,𝑗,𝑘) = 𝜐𝑖𝑇𝑖𝑚𝑒𝑎𝑓𝑡𝑒𝑟𝑆𝑢𝑛𝑠𝑒𝑡𝑗  

Model 2 𝑙𝑜𝑔𝑖𝑡(𝜓𝑖,𝑗) = 𝜇𝑖𝑅𝑖𝑣𝑒𝑟𝑗 +  𝛼1,𝑖 +  𝛼2,𝑖𝐻𝑎𝑏𝑖𝑡𝑎𝑡𝑇𝑦𝑝𝑒𝑗  

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖,𝑗,𝑘) = 𝜐𝑖𝑇𝑖𝑚𝑒𝑎𝑓𝑡𝑒𝑟𝑆𝑢𝑛𝑠𝑒𝑡𝑗  

Model 3 𝑙𝑜𝑔𝑖𝑡(𝜓𝑖,𝑗) = 𝜇𝑖𝑅𝑖𝑣𝑒𝑟𝑗 + 𝛼1,𝑖 + 𝛼2,𝑖𝐶𝑎𝑛𝑜𝑝𝑦𝐻𝑒𝑖𝑔ℎ𝑡𝑗  

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖,𝑗,𝑘) = 𝜐𝑖𝑇𝑖𝑚𝑒𝑎𝑓𝑡𝑒𝑟𝑆𝑢𝑛𝑠𝑒𝑡𝑗  

Model 4 𝑙𝑜𝑔𝑖𝑡(𝜓𝑖,𝑗) = 𝜇𝑖𝑅𝑖𝑣𝑒𝑟𝑗 +  𝛼1,𝑖 +  𝛼2,𝑖𝑇𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑗  

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖,𝑗,𝑘) = 𝜐𝑖𝑇𝑖𝑚𝑒𝑎𝑓𝑡𝑒𝑟𝑆𝑢𝑛𝑠𝑒𝑡𝑗  

Model 5 𝑙𝑜𝑔𝑖𝑡(𝜓𝑖,𝑗) = 𝜇𝑖𝑅𝑖𝑣𝑒𝑟𝑗 + 𝛼1,𝑖 + 𝛼2,𝑖𝐶𝑎𝑛𝑜𝑝𝑦𝐻𝑒𝑖𝑔ℎ𝑡𝑗

+ 𝛼3,𝑖𝑇𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑗  

      𝑙𝑜𝑔𝑖𝑡(𝑝𝑖,𝑗,𝑘) = 𝜐𝑖𝑇𝑖𝑚𝑒𝑎𝑓𝑡𝑒𝑟𝑆𝑢𝑛𝑠𝑒𝑡𝑗  

Occupancy and detection probabilities were modelled with intercepts on the logit scale, 

specific for each species. Five models were used to compare the fit of singular habitat 

characteristics in explaining species occurrence [Models 2, 3 & 4], against cumulative habitat 

characteristics [Models 1 & 5]. Covariate selection was partially informed by the results of 

the GLMM (Table S3.4). Covariates were centred and standardised prior to analysis to place 

them on a comparable scale and improve model convergence.  

Models were specified using uninformative priors for intercept, variance, and slope 

parameters. We specified River as a random spatial effect for each species specifically. For 

each model we ran three parallel MCMC chains for 100,000 iterations each, discarding the 

first half during the burn-in process and thinning posterior samples by 50. The Gelman-Ruben 

statistic was assessed to ensure convergence (<1.1 for all parameters; Gelman and Hill 2007). 

Widely applicable AIC was subsequently calculated for each model, following Gelman, 
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Hwang, and Vehtari (2013), and used for model selection [Model 5] (< 2 ΔAIC; Table S3.6). 

This model was then used to describe occupancy and detectability. 

3.4  Results 

Over 49 survey nights, we recorded 24,228 sound files, which were manually identified as 

5,696 genuine bat triggers. Bats with frequency modulating quasi-constant frequency calls 

(FMqCF) were the most active amongst the community, constituting 70 % of total activity 

recorded. Seven CF taxa were identified and constituted 23.7 % of all calls (Table 3.1). The 

remaining call-types (FMb and MHFM) comprised 6.3 % of activity, and so are not explored 

further due to insufficient data.  

3.4.1  Activity 

3.4.1.1 Total activity and foraging activity between habitat types 

We found no significant between activity in forest and oil palm rivers. This includes total 

activity, CF activity, and FMqCF activity (Figure 3.2a-c). Similarly, there was no overall 

difference in the proportion of foraging activity for activity overall (W = 442, p = 0.964) or 

for FMqCF species (W =465.5, p = 0.763; Figure 3.2d-f). However, the foraging activity of 

CF species (expressed as a proportion of total activity at a given point) was significantly 

greater alongside the forest rivers than the rivers in the oil palm (W = 345, p = 0.017).  
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Figure 3.2 Bat activity and foraging activity between rivers and habitats 

Violin plots and boxplots demonstrating variation in bat activity (A-C) and foraging activity 

(D-F) between rivers in contiguous forest versus those in oil palm for all species recorded in 

the study. Activity is represented as total activity (A, D), FMqCF activity (B, E), and CF 

activity (C, F). Points represent bat activity per sampling point (Forest = 72 points across 9 

sites; Oil palm = 56 points across 7 sites), and are jittered to improve the presentation of the 

data distribution.    
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3.4.1.2 Total activity in relation to habitat covariates 

Considering all study sites and total activity assessed together, the GLMMs revealed bats to 

be more active at sites with a higher forest canopy (Figure 3.3-3.4; Table S3.7), a pattern that 

was also evident for the activity of FMqCF-calling bats, but not for CF-calling bats when 

assessed separately (Table S3.5). Detection was negatively affected by time-of-recording, 

with greater activity detected closer to sunset for CF bats, FMqCF bats, and all call groups 

combined. Habitat type (i.e. forest vs. oil palm) was not identified as an important factor 

driving activity for any call group. 
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Figure 3.3 The relationship between bat activity and significant habitat covariates in oil palm 

The relationship between bat activity (per sample point) and significant habitat covariates as determined by GLMM analysis for for (A) total activity, (B) CF species, 

and (C) FMqCF species. Shading represents 95% confidence interval. 
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Figure 3.4 The relationship between bat activity and significant habitat covariates within both forest and oil palm  

The relationship between bat activity (per sample point) and significant habitat covariates as determined by GLMM analysis for (A) total activity, (B) CF species, and 

(C) FMqCF species. Shading represents 95% confidence interval. 
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When the GLMMs were repeated for the oil palm subset of these data to explore the role of 

riparian reserve width, bats were again shown to be more active in oil palm reserves with a 

higher forest canopy, but also those with greater topographic ruggedness. Different habitat 

covariates were identified to be important for different call groups in oil palm reserves (Figure 

3.3-3.4; Table S3.7). However, activity appeared independent of the width of oil palm reserves 

for all call groups assessed (Table S3.5). 

3.4.2  Site occupancy 

Occupancy modelling revealed a significant response to the covariates for five of the seven 

taxa that could be identified to the species level (Figure 3.5). Two species, Hipposideros 

cervinus and H. galeritus, had a greater occupancy probability at sites that were more rugged 

topographically. The detectability of H. cervinus, as well as three Rhinolophus species, also 

declined as time progressed after sunset. The other species exhibited no clear occupancy 

pattern across the wider landscape or in relation to the covariates investigated.   

 

Figure 3.5 Caterpillar plots of the output from the hierarchical Bayesian multi-species 

occupancy model 

Caterpillar plots of the output from the hierarchical Bayesian multi-species occupancy model 

[4] (including 95% Bayesian credible interval). Graphs show species‐specific baseline 

occupancy estimates for environmental covariates (A) Topography, and detection covariate 

TimeafterSunset. Significant associations are highlighted in blue. 
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3.5  Discussion 

We demonstrate that riparian reserves in oil palm plantations support comparable levels of 

insectivorous bat activity to riparian areas in neighbouring continuous forest. However, our 

results demonstrate variation in the importance of specific habitat covariates for different 

groups of bats, as defined by their echolocation call type. The timing of the survey was an 

important predictor in all of our analyses. In addition, bat activity was driven by canopy height 

(i.e. a measure of forest quality), and appeared especially important for bats using FMqCF 

calls. Topography also had an important influence on activity of bats using CF calls in the oil 

palm riparian reserves. We also note lower foraging activity recorded in oil palm compared to 

forested riparian sites for CF species. Overall, our analyses reveal that topography and forest 

quality may be more important than the width of the riparian reserve in driving bat activity 

alongside rivers in oil palm reserves. These findings support a previous study of captured bats 

that demonstrated the role of canopy height in structuring the bat community of disturbed 

tropical forest (Struebig et al. 2013). 

3.5.1  Bat Activity in Riparian Reserves 

Bats characterised by FMqCF calls are suited to forest edges and more open habitats, and were 

the most active group across all study sites, indicating that these bats are quite tolerant to 

extensive habitat disturbance. Indeed, Struebig et al. (2013) studied changes in bat 

assemblages across a forest disturbance gradient and found that 85% of edge/open species 

were captured in repeatedly logged forest. Elsewhere in the tropics, Meyer, Schwarz, and Fahr 

(2004) also found that FMqCF bats are more abundant/active in open, partially cluttered 

habitat, such as that typical of heavily logged forest. We also found that CF bats, those using 

flutter detection and often perceived to be specialists of cluttered forest environments, were 

also at high densities in riparian reserves in oil palm compared to the rivers in continuous 

forest sites. It is possible that CF activity in riparian reserves is inflated as bats use these 

landscape features to commute to other sites while avoiding the agricultural land. Differences 

in foraging activity between the habitat types support this assertion, but we require further 

recordings in adjacent oil palm estates to be more certain. Forests that are repeatedly logged 

also tend to comprise fewer and smaller trees with scarcer roosting opportunities in tree 

cavities (Struebig et al. 2013); making it more likely that tree-roosting CF bats (e.g. R. sedulus, 

H. ridleyi; Table S3.2) are ‘passing through’ rather than resident in riparian reserves. In theory, 

the low wing loading and aspect ratios typical of CF bats make flying long distances 

energetically expensive (Kingston, Jones, et al. 2003), although some cave-roosting CF taxa 

(e.g. H. cervinus) have narrower wings and have been recaptured in forest fragments 10-12 
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km from continuous forest sites (Struebig et al. 2008).  Therefore, landscape connectivity may 

also have a role to play in the long-term effectiveness of riparian reserves for these species. 

 

3.5.2  Foraging Activity in Riparian Reserves 

There was high variability in foraging activity across riparian reserves as well as between 

forest and oil palm (Figure 3.2; Table 3.1). Importantly, we found that constant-frequency 

(CF) foraging activity was greater in forest than in oil palm. Oil palm plantations typically 

have negative consequences on invertebrates (Turner and Foster 2009), including the 

reduction in moth diversity (VunKhen 2006), Diptera and Hemiptera (Edwards, Magrach, et 

al. 2014), which are known to be prey for insectivorous bats in Sabah (Hemprich-Bennett et 

al. 2021). Therefore, while CF bat species may be commuting through oil palm plantations, 

our results suggest these habitats do not provide adequate food resources to support 

Rhinolophid and Hipposiderid bat species. Previous studies in this landscape indicate that 

riparian reserve assemblages of some invertebrate groups, namely ants and dung beetles, are 

somewhat similar to those in nearby forest provided riparian reserves are sufficiently wide 

(Luke et al. 2019). It is therefore feasible that the prey-base in riparian reserves may be 

sufficient to support some bat species at least, particularly those using FMqCF calls.  

 

3.5.3  Importance of Habitat Structure 

Changes to different structural components of riparian reserve habitats have differing 

implications for bat species. The long CF component of Rhinolophid and Hipposiderid bats 

generates a continuous input of environmental information (Russo, Ancillotto and Jones 

2018). Consequently, these taxa are able to navigate more cluttered environments of lower 

canopy forests (Monadjem and Reside 2008), and therefore may be less affected by canopy 

height than bats using other call types. On the other hand, FMqCF bats are restricted to less 

cluttered environments; predominantly foraging along the edge, in gaps, or above forest 

(Altringham 1996; Table S3.2). Monadjem and Reside (2008) found the inverse relationship 

between canopy height and FMqCF bats in Acacia-dominated savanna in Swaziland, where 

higher activity was recorded in riparian reserves with lower canopies. This may be due to 

differences in structural complexity between savannah and rainforest. However, Monadjem & 

Reside (2008) also proposed that, unlike birds, bats discriminate between microhabitats rather 

than larger-scale habitat features. Topographic complexity and canopy height are known to 

predict the variation in local microclimate within the SAFE project (Jucker, Hardwick, et al. 

2018), e.g. taller canopies reduce diurnal variation in microclimate. This could benefit aerial 
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invertebrates for which abundance positively correlates with canopy height in repeatedly 

logged forest in Malaysia (Akutsu, Khen and Toda 2007). Species, such as the Lesser bamboo 

bat (Tylonycteris pachypus), which utilise quasi-constant frequency (FMqCF) calls may adjust 

the relative dominance of each component on environmental demand, e.g. reduce the FM 

component and increase the CF component in open spaces (Kalko and Schnitzler 1993; 

Altringham 1996). This adaptability allows bats that employ this echolocation technique to 

exploit multiple habitat types, thereby reducing their susceptibility to disturbance. As bat 

activity is correlated with prey availability (Kusch et al. 2004; Müller et al. 2012), higher prey 

abundance in higher canopy forest may be indirectly driving the increase in FMqCF bat 

activity observed within our study. However, it was not possible to test this hypothesis in our 

study.  

Areas with higher topographic ruggedness are more difficult to access for logging. As such, it 

is likely that rugged areas provide an indirect benefit to wildlife by providing a refuge for 

species that require mature forest, rather than directly affecting their survival. Although 

riparian reserve width did not directly affect bat activity or species occurrence at river sites, 

forest extent can be important for maintaining a taller forest canopy. Edge effects can lead to 

increased mortality of mature trees, which in turn leads to a decrease in canopy height 

(Laurance et al. 2018). Therefore, riparian reserves should still be as wide as possible to reduce 

the long-term risk from edge-effects. The minimum 40m width threshold on each riverbank 

recommended for birds may be appropriate in this regard, because reserves of this size also 

represent greater tree biomass and higher forest canopies (Mitchell et al. 2018). This seems 

all the more important when considering that bat activity was highest in the most 

topographically-rugged oil palm reserve sites, which were typically rocky and steep terrain, 

prone to tree falls and landslides. 

 

3.5.4  Detection 

Both the GLMM and occupancy analysis highlighted the importance of considering the 

influence of time in acoustic survey designs. The emergence time and hours of peak activity 

vary between bat species and different foraging guilds (Jones and Rydell 1994). Our study 

confirms sampling effort may not be comparable if surveys are not controlled for temporal 

variation. Different call-types are also not sampled equally using acoustic monitoring due to 

the differences in intensity of their echolocation calls (Hayes 2000). For example, species 

utilising FMqCF calls, which are high intensity, were recorded abundantly, but other call-

types may not have been detected as easily. Forest-dwelling species recorded by capture 
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surveys in the forest, such as Megaderma spasma and Nycteris tragata have low intensity 

(MHFM) calls, whilst Vespertilionidae (Kerivoula and Myotis spp.) have low to intermediate 

intensity calls (FMb) (Waters and Jones 1995). More cluttered environments also reduce the 

detection distance for echolocation calls (Russo, Ancillotto and Jones 2018). Therefore, both 

their call-type and their preferred habitat are likely to contribute to these species being under-

represented in our sampling. While this somewhat contravenes a key assumption of the 

occupancy models applied here (i.e., that detection is not influenced by abundance), we note 

that the conclusions of these models supported those of the GLMMs, and so we consider the 

outcome robust. Live trapping could be used to complement acoustic sampling to better 

represent these species, although we maintain that this remains logistically prohibitive in many 

tropical landscapes, particularly in and around rivers.  

 

3.6  Conclusions  

There is growing recognition that riparian reserves have a positive role to play in biodiversity 

conservation within tropical agricultural landscapes, but the evidence base remains weak 

(Luke et al. 2019). Our study confirms that these reserves in oil palm support comparable 

levels of bat activity to otherwise forested river sites. As palm oil production continues to rise, 

it is important to use evidence-based decision-making to inform more sustainable practices. 

With this in mind, our study highlights the importance of considering simple measures of 

habitat structure in the design of riparian reserves since taller vegetation supported higher 

levels of activity. If reflective of other taxa, this indicates that the designation and protection 

of riparian reserves should continue to be promoted on biodiversity grounds, with the onus on 

taller, more structurally complex forest, being retained alongside rivers within plantations.  
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3.8  Supplementary information 

Table S3.1 Habitat characteristics of riparian sites 

Site description, habitat characteristics of riparian sites within 50 m (± standard deviation) 

River 

Canopy height 

(m) 

Reserve width 

(m) 

Topography 

 (m) 

Forested rivers       
  

0 36.248 (±3.113) - 6.307 (±1.545) 

5 30.532 (±2.167) - 7.158 (±1.115) 

15 22.816 (±7.076) - 6.120 (±1.201) 

30 30.229 (±3.758) - 5.016 (±0.857) 

60 29.465 (±4.913) - 4.217 (±1.365) 

120 23.406 (±2.486) - 3.058 (±1.582) 

RVJR 38.596 (±6.477) - 4.671 (±1.887) 

RLFE 34.356 (±3.296) - 4.826(±2.175) 

        
  

Oil palm riparian reserves       
  

RR2  15.765 (±4.344) 20.19 (±16.80) 3.530 (±1.557) 

RR3  24.023 (±3.619) 61.88 (±18.34) 3.424 (±1.427) 

RR7  28.762 (±2.819) 48.06 (±8.37)  2.543 (±0.805) 

RR12  23.230 (±4.705) 42.69 (±21.16) 3.898 (±0.869) 

RR14  31.370 (±13.349) 64.63 (±26.64) 3.044 (±1.265) 

RR16  22.110 (±3.984) 74.88 (±41.39) 3.719 (±1.539) 

OP2 15.606 (± 1.744)  0 (±0) 2.769 (±0.706) 
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Table S3.2 Roost preference and foraging guild for insectivorous bat species present in Borneo 

Roost preference and foraging guild for insectivorous bat species present in Borneo. Call types represent the four call types used in the study: constant frequency 

(CF), frequency modulating quasi-constant frequency or quasi-constant frequency (FMqCF), broad-band frequency modulating (FMb), and multi-harmonic 

frequency modulating (MHFM). Species utilizing CF, FMb, or MHFM calls are classified as narrow-space foragers. 

Family Species Primary roost types Foraging Guild Call type 

Emballonuridae Taphozous melanopogon Caves, man-made structures Open space FMqCF 

Taphozous longimanus Caves, man-made structures Open space FMqCF 

Taphozous theobaldi Caves, man-made structures Open space FMqCF 

Saccolaimus saccolaimus Caves, man-made structures Open space FMqCF 

Emballonura monticola Rock crevices, fallen trees, man-made 

structures 

Edges  FMqCF 

Emballonura alecto Rock crevices, fallen trees, man-made 

structures 

Edges FMqCF 

Nycteridae      
Nycteris tragata Tree hollows, fallen trees Narrow space (forest interior) MHFM 

     

Megadermatidae      
Megaderma spasma Tree hollows, fallen trees, caves Narrow space (forest interior) MHFM 

     

Rhinolophidae Rhinolophus luctus Tree hollows, fallen trees, caves Narrow space (forest interior) CF 

Rhinolophus sedulus Tree hollows, fallen trees Narrow space (forest interior) CF 

Rhinolophus trifoliatus Foliage Narrow space (forest interior) CF 

Rhinolophus francisi Unknown, but likely trees Narrow space (forest interior) CF 

Rhinolophus philippinensis  Caves Narrow space (forest interior) CF 

Rhinolophus creaghi Caves Narrow space (forest interior) CF 
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Rhinolophus acuminatus Caves Narrow space (forest interior) CF 

Rhinolophus arcuatus Caves Narrow space (forest interior) CF 

Rhinolophus affinis Caves Narrow space (forest interior) CF 

Rhinolophus pusillus Caves Narrow space (forest interior) CF 

Rhinolophus borneensis Caves, tree hollows Narrow space (forest interior) CF 

     

Hipposideridae Hipposideros diadema Caves Narrow space (forest interior) CF 

Hipposideros galeritus Caves, rock crevices Narrow space (forest interior) CF 

Hipposideros cineraceus Caves Narrow space (forest interior) CF 

Hipposideros bicolor  Caves Narrow space (forest interior) CF 

Hipposideros ridleyi Tree hollows, fallen trees Narrow space (forest interior) CF 

Hipposideros doriae Tree hollows, fallen trees Narrow space (forest interior) CF 

Hipposideros coxi Caves Narrow space (forest interior) CF 

Hipposideros larvatus Caves Narrow space (forest interior) CF 

Hipposideros cervinus Caves, rock crevices Narrow space (forest interior) CF 

Hipposideros dyacorum Caves, tree hollows Narrow space (forest interior) CF 

Hipposideros ater  Caves Narrow space (forest interior) CF 

Coelops robinsoni Caves, tree hollows Narrow space (forest interior) CF 

     

Miniopteridae      
Miniopterus magnater Caves Open space FMqCF 

  Miniopterus schreibersii Caves Open space FMqCF 

Miniopterus pusillus Caves Open space FMqCF 

Miniopterus medius Caves Open space FMqCF 

Miniopterus australis Caves Open space FMqCF 

Miniopterus paululus  Caves Open space FMqCF 
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Vespertilionidae     

  Kerivoulinae     

 Kerivoula intermedia Foliage Narrow space (forest interior) FMb 

  Kerivoula minuta Foliage Narrow space (forest interior) FMb 

  Kerivoula hardwickii Foliage Narrow space (forest interior) FMb 

  Kerivoula lenis Foliage Narrow space (forest interior) FMb 

  Kerivoula whiteheadi Foliage Narrow space (forest interior) FMb 

  Kerivoula pellucida Foliage Narrow space (forest interior) FMb 

  Kerivoula papiliosa Foliage Narrow space (forest interior) FMb 

  Phoniscus jagorii Foliage Narrow space (forest interior) FMb 

  Phoniscus atrox Foliage Narrow space (forest interior) FMb 

 Murininae     

 Murina rozendaali Foliage Narrow space (forest interior) FMb 

  Murina suilla Foliage Narrow space (forest interior) FMb 

  Murina aenea Foliage Narrow space (forest interior) FMb 

  Murina peninsularis Foliage Narrow space (forest interior) FMb 

  Harpiocephalus harpia Foliage Narrow space (forest interior) FMb 

Vespertilioninae     

 Pipistrellus javanicus Man-made structures, caves Open space / edge FMqCF 

  Pipistrellus tenuis  Man-made structures, caves Open space / edge FMqCF 

  Falsistrellus petersi Man-made structures, caves Open space / edge FMqCF 

  Pipistrellus stenopterus Man-made structures, caves Open space / edge FMqCF 

  Arielulus cuprosus Man-made structures, caves Open space / edge FMqCF 

  Pipistrellus ceylonicus Man-made structures, caves Open space / edge FMqCF 

  Hypsugo kitcheneri Man-made structures, caves Open space / edge FMqCF 
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  Hypsugo vordermanni Man-made structures, caves Open space / edge FMqCF 

  Hypsugo imbricatus Man-made structures, caves Open space / edge FMqCF 

  Tylonycteris pachypus Bamboo Edge FMqCF 

  Tylonycteris robustula Bamboo Edge FMqCF 

  Glischropus tylopus Bamboo Edge FMqCF 

  Philetor brachypterus Man-made structures, caves Open space / edge FMqCF 

  Scotophilus collinus  Man-made structures, caves Open space / edge FMqCF 

  Hesperoptenus doriae Man-made structures, caves Open space / edge FMqCF 

  Hesperoptenus blanfordi Man-made structures, caves Open space / edge FMqCF 

  Hesperoptenus tomesi Man-made structures, caves Open space / edge FMqCF 

  Myotis ater Caves Edge FMb 

  Myotis horsfieldii Man-made structures, caves, foliage Edge FMb 

  Myotis muricola Caves, foliage Edge FMb 

  Myotis ridleyi Foliage Edge FMb 

  Myotis gomantongensis Caves Edge FMb 

   Myotis adversus Caves Edge FMb 
 

Myotis borneensis Caves Edge FMb 

   Myotis hasseltii Caves Edge FMb 

  Myotis siligorensis Caves Edge FMb 
 

Myotis macrotarsus Caves Edge FMb 

     

Molossidae      
Mops Mops Caves, tree hollows Open/edge space   FMqCF 

  Chaerephon plicatus Caves Open/edge space   FMqCF 

  Cheiromeles torquatus Caves Open/edge space   FMqCF 
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Table S3.3 Equations used for the final Generalised linear mixed effect models 

Equations used for the final Generalised linear mixed effect models for total activity (all call groups, 

CF, and FMqCF) in both habitats (eqn 1:3) and in oil palm reserves (eqn 4:7) compared for best fit - 

where NCallsij is the jth observation in Riveri, and i=1,...,8, and Riveri is the random intercept, which 

is assumed to be normally distributed with mean 0 and variance σ2. 

  

 

NCalls𝑖𝑗~Poisson(μ𝑖𝑗) 

μ𝑖𝑗 = 𝑇𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑖𝑗 + 𝐶𝑎𝑛𝑜𝑝𝑦𝐻𝑒𝑖𝑔ℎ𝑡𝑖𝑗 + 𝑇𝑖𝑚𝑒𝑎𝑓𝑡𝑒𝑟𝑆𝑢𝑛𝑠𝑒𝑡𝑖𝑗 + 𝐻𝑎𝑏𝑖𝑡𝑎𝑡𝑇𝑦𝑝𝑒𝑖𝑗 + 𝑅𝑖𝑣𝑒𝑟𝑖  

𝑅𝑖𝑣𝑒𝑟𝑖~𝑁(0, σ2) (eqn 1) 
   

NCalls𝑖𝑗~Poisson(μ𝑖𝑗) 

μ𝑖𝑗 = 𝐶𝑎𝑛𝑜𝑝𝑦𝐻𝑒𝑖𝑔ℎ𝑡𝑖𝑗 + 𝑇𝑖𝑚𝑒𝑎𝑓𝑡𝑒𝑟𝑆𝑢𝑛𝑠𝑒𝑡𝑖𝑗 + 𝑅𝑖𝑣𝑒𝑟𝑖                        
𝑅𝑖𝑣𝑒𝑟𝑖~𝑁(0, σ2) (eqn 2) 

   

NCalls𝑖𝑗~Poisson(μ𝑖𝑗) 

μ𝑖𝑗 = 𝑇𝑖𝑚𝑒𝑎𝑓𝑡𝑒𝑟𝑆𝑢𝑛𝑠𝑒𝑡𝑖𝑗 + 𝑅𝑖𝑣𝑒𝑟𝑖  

𝑅𝑖𝑣𝑒𝑟𝑖~𝑁(0, σ2) (eqn 3) 
  
NCalls𝑖𝑗~Poisson(μ𝑖𝑗)  

μ𝑖𝑗 = 𝑇𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑖𝑗 + 𝐶𝑎𝑛𝑜𝑝𝑦𝐻𝑒𝑖𝑔ℎ𝑡𝑖𝑗 + 𝑇𝑖𝑚𝑒𝑎𝑓𝑡𝑒𝑟𝑆𝑢𝑛𝑠𝑒𝑡𝑖𝑗 + 𝑅𝑖𝑝𝑎𝑟𝑖𝑎𝑛𝑊𝑖𝑑𝑡ℎ𝑖𝑗 + 𝑅𝑖𝑣𝑒𝑟𝑖 

𝑅𝑖𝑣𝑒𝑟𝑖~𝑁(0, σ2) (eqn 4) 
  
NCalls𝑖𝑗~Poisson(μ𝑖𝑗)  

μ𝑖𝑗 = 𝑇𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑖𝑗 + 𝐶𝑎𝑛𝑜𝑝𝑦𝐻𝑒𝑖𝑔ℎ𝑡𝑖𝑗 + 𝑇𝑖𝑚𝑒𝑎𝑓𝑡𝑒𝑟𝑆𝑢𝑛𝑠𝑒𝑡𝑖𝑗 + 𝑅𝑖𝑣𝑒𝑟𝑖 

𝑅𝑖𝑣𝑒𝑟𝑖~𝑁(0, σ2) (eqn 5) 
  

NCalls𝑖𝑗~Poisson(μ𝑖𝑗) 

μ𝑖𝑗 = 𝑇𝑜𝑝𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑖𝑗 + 𝑇𝑖𝑚𝑒𝑎𝑓𝑡𝑒𝑟𝑆𝑢𝑛𝑠𝑒𝑡𝑖𝑗 + 𝑅𝑖𝑣𝑒𝑟𝑖  

𝑅𝑖𝑣𝑒𝑟𝑖~𝑁(0, σ2) (eqn 6) 

   

NCalls𝑖𝑗~Poisson(μ𝑖𝑗) 

μ𝑖𝑗 = 𝐶𝑎𝑛𝑜𝑝𝑦𝐻𝑒𝑖𝑔ℎ𝑡𝑖𝑗 + 𝑇𝑖𝑚𝑒𝑎𝑓𝑡𝑒𝑟𝑆𝑢𝑛𝑠𝑒𝑡𝑖𝑗  + 𝑅𝑖𝑣𝑒𝑟𝑖  

𝑅𝑖𝑣𝑒𝑟𝑖~𝑁(0, σ2) (eqn 7) 
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Table S3.4 GLMM model comparisons for each group 

GLMM model comparisons for each group. The top five models are presented based on AIC & BIC 

using all covariates listed in Equation (1) for both habitats and Equation (6) for oil palm exclusively.  

Species  Model AIC BIC Loglik Deviance df disp. 

Forest & Oil Palm       

All CH+Time 7005.3 7026.8 -3498.6 6997.3 1599 1.295 

 Rug+CH+Time 7005.3 7032.2 -3497.7 6995.3 1598 1.294 

 Rug+CH+Time+Hab 7006.6 7038.9 -3497.3 6994.6 1597 1.294 

 CH+Time+Hab 7007.3 7033.9 -3498.5 6997.0 1598 1.295 

 Rug+Time 7036.0 7057.5 -3514.0 7028.0 1599 1.302 

        

CF  Time 1700.0 1711.9 -847.0 1694.0 383 1.287 

 Time+Hab 1701.3 1717.1 -846.6 1693.3 382 1.287 

 Rug+Time+Hab 1701.3 1723.0 -846.6 1693.2 381 1.287 

 Rug+Time 1702.0 1717.8 -847.0 1694.0 382 1.287 

 CH+Time 1702.0 1717.9 -847.0 1694.0 382 1.287 

        

FM CH+Time+Hab 4572.3 4596.9 -2281.1 4562.3 1023 1.291 

 CH+Time 4572.5 4592.3 -2282.3 4564.5 1024 1.291 

 Rug+CH+Time+Hab 4573.4 4603.1 -2280.7 4561.4 1022 1.291 

 Rug+CH+Time 4574.1 4598.8 -2282.1 4564.1 1023 1.291 

 Time 4611.6 4626.4 -2302.8 4605.6 1025 1.308 

        

Oil Palm exclusively       

All CH+Time+Rip 3252.8 3275.9 -1621.4 3242.8 748 1.284 

 Rug+CH+Time+Rip 3254.2 3282.0 -1621.1 3242.2 747 1.283 

 Rug+CH 3256.7 3275.2 -1624.3 3248.7 749 1.286 

 Rug+CH+Rip 3258.4 3281.6 -1624.2 3248.4 748 1.286 
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 CH+Time 3260.5 3279.0 -1626.2 3252.5 749 1.289 

        

CF Rug+Time+CH 525.8 540.2 -257.9 515.8 126 1.147 

 Rug+Time 526.1 537.6 -259.1 518.1 127 1.155 

 Rug+Time+Rip 526.6 540.9 -258.3 516.6 126 1.147 

 Rug+Time+CH+Rip 527.8 545.0 -257.9 515.8 125 1.145 

 Rug 531.9 540.5 -263.0 525.9 128 1.190 

        

FMqCF Rug+CH+Time+Rip 2315.1 2340.5 -1151.6 2303.1 499 1.332 

 Rug+CH+Rip 2315.9 2337.0 -1153.0 2305.9 500 1.334 

 Rug+CH+Time 2316.8 2337.9 -1153.4 2306.8 500 1.336 

 CH+Rug 2317.4 2334.3 -1154.7 2309.4 501 1.338 

 CH+ Time 2318.4 2335.3 -1155.2 2310.4 501 1.339 

Rug = Topography; CH =CanopyHeight; Time = TimeafterSunset; Rip =RiparianWidth; Hab 

=HabitatType; CF = constant frequency call type; FMqCF = frequency modulated quasi-constant 

frequency call type 
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Table S3.5 Likelihood ratio results for comparisons between top GLMM models for each group 

Likelihood ratio results for comparisons between top GLMM models for each group. Significant P-

values indicate the inclusion of the covariate had a significant impact on the model. 

 Covariate  Chi-Squ DF P value  

Forest & Oil Palm      

All calls HabitatType 0.7328 1 0.3920  

 Topography 2.3826 1 0.1227  

 CanopyHeight 33.346 1 <0.001 *** 

 TimeafterSunset 108.23 1 <0.001 *** 

      

Constant frequency (CF) calls HabitatType 0.741 1 0.3894  

 Topography 0.000 1 0.9960  

 CanopyHeight 0.015 1 0.9015  

 TimeafterSunset 72.537 

 

1 <0.001 *** 

Frequency-modulated quasi-

constant frequency (FMqCF) 

calls 

HabitatType 2.663 1 0.1027  

 Topography 0.824 1 0.3641  

 CanopyHeight 43.087 1 <0.001 *** 

 TimeafterSunset 47.798 1 <0.001 *** 

      

Oil Palm exclusively      

All calls RiparianWidth 0.509 1 0.4756  

 Topography 10.236 1 0.0013 ** 

 CanopyHeight 16.294       1 <0.001 *** 

 TimeafterSunset 6.200 1 0.0128 * 

      

Constant frequency (CF) calls RiparianWidth 0.083 1 0.7739  

 Topography 10.143 1 0.0014 ** 

 CanopyHeight 0.780 1 0.3718  

 TimeafterSunset 7.083 1 0.0078 ** 

     

Frequency-modulated quasi-

constant frequency (FMqCF) 

calls 

RiparianWidth 3.685 1 0.0549  

 Topography 6.009 1 0.0142 * 

 CanopyHeight 20.740 1 <0.001 *** 

 TimeafterSunset 2.793 1 0.0947  

Significance values *p<0.05; **p<0.01; ***p<0.001 
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Table S3.6 Measures for the predictive quality of each hierarchical Bayesian multispecies occupancy 

model 

Measures for the predictive quality of each hierarchical Bayesian multispecies occupancy model. 

MinutesafterSunset was included as a detection covariate, as well as River as a random effort, in all 

models. Bold indicates model of best fit. 

*Lppd = log pointwise predictive density; pD = effective number of parameters; CPO = 

conditional   predictive ordinance (Formulas from Gelman et al. (2013)  

  

Model [no.] Dev. Lppd WAIC pD ΔAIC 

[4] Topography 1168.993 1127.443 1213.404 42.980 0.00 

[5] CanopyHeight + Topography 1160.779 1119.325 1217.353 49.014 3.949 

[2] HabitatType  1167.501 1130.470 1217.777 43.654 4.373 

[3] CanopyHeight  1168.993 1128.942 1221.665 46.362 8.261 

[1] All co-variates  1167.993 1127.276 1225.146 48.935 11.742 
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Table S3.7 Estimated regression parameters, standard errors, z-values and P-values for the Poisson 

GLMM 

Estimated regression parameters, standard errors, z-values and P-values for the Poisson GLMM 

presented in eqn (2:3) for forest and oil, and eqn (5:7) for oil palm reserves. The estimated variance for 

River is 0.024 (± 0. 0.154). 

  Estimate Std. error z value P value  

Forest & Oil Palm       

All species Intercept 0.941 0.509 18.500 < 0.001 *** 

 CanopyHeight -0.197 0.185 -10.660 < 0.001 *** 

 TimeafterSunset 0.118 0.021 5.760 < 0.001 *** 

       

       

Constant frequency 

species  

Intercept 0.824 0.107 7.723 < 0.001 *** 

 TimeafterSunset -0.339 0.039 -8.743 < 0.001 *** 

       

       
Frequency-modulated 

quasi-constant 

frequency species 

Intercept 1.007 0.062 16.225 < 0.001 *** 

 CanopyHeight 0.157 0.025 6.259 < 0.001 *** 

 TimeafterSunset -0.157 0.022 -7.048 < 0.001 *** 

       

       

Oil Palm exclusively       

All species Intercept 1.053 0.721 14.614 < 0.001 *** 

 Topography 0.124 0.040 3.125 <0.001 *** 

 CanopyHeight 0.156 0.029 5.312 < 0.001 *** 

 TimeafterSunset -0.072 0.030 -2.434 0.058  

       

Constant frequency 

species  

Intercept 0.921 0.134 6.850 < 0.001 *** 

 Topography 0.271 0.090 3.023 0.018 * 

 TimeafterSunset -0.262 0.096 -2.733 0.007 ** 

       

       
Frequency-modulated 

quasi-constant 

frequency species 

Intercept 1.156 0.084 13.763 < 0.001 *** 

 CanopyHeight 0.161 0.032 5.039 < 0.001 *** 

 TimeafterSunset 0.092 0.046 2.011 0.125  

Significance values *p<0.05; **p<0.01; ***p<0.001 
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4.1  Abstract 

Bats comprise a quarter of all mammal species, provide key ecosystem services, and serve as effective 

bioindicators. Automated methods for classifying echolocation calls of free-flying bats are useful for 

monitoring but are not widely used in the tropics. This is particularly problematic in Southeast Asia, 

which supports more than 388 bat species. Here, sparse reference call databases and significant overlap 

among species call characteristics makes the development of automated processing methods complex. 

To address this, we outline a semi-automated framework for classifying bat calls in Southeast Asia and 

demonstrate how this can reliably speed up manual data processing. We implemented the framework 

to develop a classifier for the bats of Borneo and tested this at a landscape in Sabah. Borneo has a 

relatively well-described bat fauna, including reference calls for 52% of all 81 known echolocating 

species on the island. We applied machine learning to classify calls into one of four call types that serve 

as indicators of dominant ecological ensembles: frequency-modulated (FM; forest-specialists), constant 

frequency (CF; forest-specialists and edge/gap foragers), quasi-constant frequency (QCF; edge/gap 

foragers), and frequency-modulated quasi constant frequency (FMqCF; edge/gap and open-space 

foragers) calls. Where possible, we further identified calls to species/sonotype. Each classification is 

provided with a confidence value and a recommended threshold for manual verification. Of the 245,991 

calls recorded in our test landscape, 85% were correctly identified to call type and only 10% needed 

manual verification for three of the call types. The classifier was most successful at classifying CF calls, 

reducing the volume of calls to be manually verified by over 95% for three common species. The most 

difficult bats to classify were those with FMqCF calls, with only a 52% reduction in files. Our 

framework allows users to rapidly filter acoustic files for common species and isolate files of interest, 

cutting the total volume of data to be processed by 86%. This provides an alternative method where 

species-specific classifiers are not yet feasible and enables researchers to expand non-invasive 

monitoring of bat species. Notably, this approach incorporates aerial insectivorous ensembles that are 

regularly absent from field datasets despite being important components of the bat community, thus 

improving our capacity to monitor bats remotely in tropical landscapes. 

Keywords: Acoustic monitoring, Chiroptera, echolocation, Southeast Asia, machine learning, 

supervised algorithm  
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4.2  Introduction 

Biodiversity monitoring is critical to informing conservation practice. Still, multi-taxon assessments are 

frequently constrained by resources, time, and survey bias (Gardner et al. 2008). Focusing survey efforts 

on biological indicators is one way to ameliorate these challenges so long as these species or groups 

reflect the needs of others in the system, particularly in the way they respond to environmental change 

and other conservation threats.  

Bats can be effective bioindicators of ecosystem health (Jones et al., 2009). There is a growing literature 

on responses of bat assemblages to various anthropogenic pressures such as forest loss and 

fragmentation (Gardner et al. 2008; Meyer, Struebig and Willig 2016; Park 2015). The use of multiple 

sampling techniques provides the best way to monitor the whole bat assemblage, including live-capture 

methods and acoustic monitoring (Russo, Ancillotto and Jones 2018). However, in the tropics, 

monitoring has been largely confined to live-capture methods (e.g., harp traps and mist-nets). Whilst 

they can be highly effective at monitoring bat species in the forest understory (Tanshi and Kingston 

2021), these methods can be labour intensive, invasive, and are often logistically challenging (Fisher-

Phelps et al. 2017). Moreover, insectivorous bat species that forage in open spaces above forests, or 

around forest gaps or edges, are difficult to catch using these methods. Therefore, key components of 

bat assemblages that could serve as potential indicator taxa are often absent from or are 

underrepresented in field datasets when only one approach is used (Kingston, 2013, 2016).   

Acoustic monitoring, whereby call signatures of biological sounds are compared to reference libraries, 

offers an alternative to bat capture techniques (Walters et al. 2013). Passive acoustic monitoring (PAM) 

techniques can be used to quantify a range of ecological metrics, including species diversity (López-

Baucells et al. 2019), animal movement and activity (Furmankiewicz and Kucharska 2009), population 

dynamics (particularly for roost monitoring; Revilla-Martín et al., 2020), and responses to 

anthropogenic change (Meyer, Struebig and Willig 2016; Yoh, Azhar, et al. 2020). It is used to monitor 

a range of terrestrial species including birds, amphibians, insects, and terrestrial mammals, but is most 

extensively applied to insectivorous bat monitoring (Sugai et al. 2019).  

Two major shortfalls of PAM are the time required to process the large volume of acoustic data 

generated, as well as the availability of reference libraries (Gibb et al. 2019). Individual echolocating 

bats adjust their call structure in response to different habitats, foraging space, and stages of prey pursuit 

(Kalko and Schnitzler 1993). This within-individual and within-species variability are coupled with 

morphological, phylogenetic, and habitat constraints on adaptive call structure, and thus many species 

calls overlap in structure (Pham et al. 2021; Russo, Ancillotto and Jones 2018; Walters et al. 2013). 

There are likewise technical challenges when using PAM for bats compared to other taxa. Most 

terrestrial mammal species produce infrasonic vocalisations (< 20 kHz) whereas most bats produce 
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ultrasonic calls (> 20 kHz) which can be over 200 kHz (Fenton and Bell 1981). As frequency increases, 

so too does atmospheric attenuation, which can lead to incomplete sampling of the call structure (loss 

of higher frequencies) and reduce detection distances. Both can lead to a sampling bias in favour of 

low-frequency species (Lawrence and Simmons 1982; Russo, Ancillotto and Jones 2018). Bat species 

that do not rely on echolocation for foraging cannot be monitored using acoustic surveys (Russo, 

Ancillotto and Jones 2018). In Borneo, this includes 18% of bat fauna (family Pteropodidae; 18 species 

from 11 genera; Phillipps & Phillipps, 2016). For these taxa live-capture methods remain an essential 

monitoring tool.  

To help mitigate some of the challenges associated with monitoring bats acoustically, there has been a 

rise in the development of automated or semi-automated classifiers (Kwok 2019; Tabak et al. 2019). 

Still, between 1990 and 2018, just ca. 19% of studies based on PAM in terrestrial environments 

processed their data using fully automated classifiers, and a further 15% used a semi-automated 

classifier in combination with manual identification (Sugai et al. 2019). Such classifiers, built using 

supervised machine learning algorithms, can determine classifications through pattern recognition of 

call characteristics, and provide a quick and repeatable method of distinguishing between species calls. 

Classifiers can therefore help reduce the processing burden of high volumes of acoustic recordings 

(Valletta et al. 2017).  

Global attempts to assess how bats are impacted by environmental change using acoustic monitoring 

networks (e.g., iBats; Jones et al. 2013) remain constrained by the availability of reference calls needed 

to encapsulate call plasticity within and across species when training these algorithms. As such, acoustic 

classifiers are largely concentrated in Europe (e.g., Parsons & Jones, 2000), North America (e.g., 

Clement et al., 2014), and Japan (e.g., Kobayashi et al., 2021), where bat assemblages comprise 

relatively few species that are intensively studied compared to other regions of the world. This therefore 

hinders our ability to monitor bats effectively in species-rich areas, where the costs of establishing local 

call reference libraries are prohibitively high (Kershenbaum et al. 2016). Consequently, there remain 

important gaps in our understanding of how large numbers of bat species respond to environmental 

changes across the Central African and Asian tropics in particular (Meyer, Struebig and Willig 2016).  

Several developments in recent years show promise for the automated classification of tropical bat calls. 

Software such as Waveman (Chen et al., 2020) demonstrates machine learning can be a viable technique 

for differentiating calls. However, attempts to classify species from Thailand and Vietnam highlight 

how limited training data can restrict confidence in identifications (Hughes et al. 2011; Pham et al. 

2021). This illustrates the importance of manual post-validation when using automated classifiers, in 

order to minimise the risk of incorrect identifications (Russo and Voigt, 2016). Recently, López-

Baucells et al. (2019) proposed a semi-automated approach that combines automated classification with 
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targeted post-validation of files. This provides a low risk, efficient method for automating the 

processing of bat calls in areas with limited reference call libraries. 

Southeast Asia is a global hotspot for bat diversity with at least 388 species (Simmons and Cirranello 

2021b). However, this diversity is highly threatened by rapid land-use changes, with at least 23% of 

Southeast Asia’s bats predicted to be extirpated by 2100 (Lane, Kingston and Lee 2006). So far, bat 

research has been dominated by live-capture studies, and PAM is rarely applied. Bat research is also 

spatially biased (Fisher-Phelps et al. 2017), and as a result, there remain major gaps in our understanding 

of species' responses to anthropogenic threats (Kingston, 2010; Pham et al., 2021). This creates a 

circular problem whereby the lack of tools limits research capacity, which further restricts the ability to 

improve tools. Meanwhile, the International Union for the Conservation of Nature (IUCN) reports that 

at least 97 of these insectivorous bat species are declining (IUCN 2021).  

A way to fast-track the development of bat call classifiers for Southeast Asia is to shift the emphasis 

from species-level identification to identifying call type. Insectivorous bats can be divided into three 

broad foraging ensembles defined by the acoustic and flight challenges of foraging in different 

environments (Denzinger & Schnitzler, 2013; Schnitzler & Kalko, 2001): forest interior, edge/gap, and 

open space.  

Bats foraging in the forest interior must distinguish target echoes of potential prey from those coming 

from surrounding vegetation. Bats in the families Hipposideridae and Rhinolophidae have evolved a 

strategy that enables them to detect insect wing movement against static vegetation. Sound energy is 

focused into a very narrow range of frequencies, almost a single “note”. These are referred to as constant 

frequency or CF calls (Denzinger & Schnitzler, 2013; Schnitzler & Kalko, 2001). As an alternative 

strategy, other species foraging in the forest interior (mainly within the families Vespertilionidae, 

Nycteridae, Megadermatidae) use low-intensity calls that cover a wide range of frequencies in a short 

time, these can be a single harmonic (frequency-modulated calls; FM) or comprise multiple harmonics 

that sweep down (multi-harmonic FM sweeps; Denzinger & Schnitzler, 2013; Schnitzler & Kalko, 

2001).  

Edge/gap foragers (including Emballonuridae and Vespertilionidae) often represent the greatest number 

of calls recorded during acoustic surveys and are adapted to foraging in areas near background 

vegetation, such as the forest edge, where the background can be used for orientation but can mask the 

presence of insects (Schnitzler, Moss and Denzinger 2003). The calls of these species are typically mid 

to high intensity dominated by a narrow-band FM component followed by a short quasi-CF component 

(FMqCF) and are often highly flexible, which allows these bats to maximise their sensory input for a 

range of environmental conditions and to minimise masking effects. Whereas most species calls begin 

with a narrow-band FM component followed by a quasi-CF component, several Emballonurid species 
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(e.g., Emballonura monticola) use calls characterised by a downward sweeping FM or quasi-CF 

component (QCF) to hawk insects in less cluttered spaces (Pottie et al. 2005).   

Open-space foragers hawk airborne prey across large, open spaces, such as above the forest canopy 

(Denzinger and Schnitzler 2013). Their prey is more widely dispersed than within the forest interior, 

and consequently, they need an increased range of prey detection. Therefore, they use narrowband, high 

intensity calls with a long call duration and typically emit frequencies below 30 kHz (Denzinger and 

Schnitzler 2013; Jung, Molinari and Kalko 2014). They also use FMqCF calls, consisting of a long 

quasi-CF component (8-25 ms). In Southeast Asia, this includes species from the families Molossidae 

and Emballonuridae. Although certain bats can adapt their foraging strategy to different environments, 

there are limits to this behavioural flexibility. Therefore, echolocating bats are assigned to a foraging 

ensemble according to which habitat their echolocation call design is best adapted to (Denzinger and 

Schnitzler 2013; Siemers and Schnitzler 2004). 

Here we present a semi-automated method for identifying echolocation calls of bats in Southeast Asia. 

We developed a rapid, autonomous framework for assigning echolocation calls to species or into call 

types/sonotypes representative of different ecological ensembles present in the region (Fig. 4.1-4.2). 

These call types/sonotypes serve as indicators for lesser-known or less conspicuous species. We apply 

the technique to Borneo’s bat fauna, which is relatively well described taxonomically (Simmons and 

Cirranello 2021b). We emphasise how our framework can be applied elsewhere in Southeast Asia with 

comparable bat assemblage composition as reference calls become available. By applying this 

framework to acoustic datasets, more comprehensive information can be generated regarding how 

tropical bats utilise landscapes and respond to environmental change 
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Figure 4.1 The four call types used in the Borneo bat classifier 

Representation of bat ensembles in Borneo, their corresponding call types, and species/sonotypes used 

to train the bat call classifier. (*Identified to species; FMIdentified to call type ‘frequency modulated’; 

FMqCF1Identified to ‘frequency modulated quasi constant frequency sonotype 1’; LFIdentified to 

sonotype type ‘low frequency’).  

.
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Figure 4.2 Sonograms for the four call types used in the Borneo bat classifier 

FM – frequency modulated, CF – constant frequency, FMqCF – frequency modulated quasi constant frequency, QCF – quasi constant frequency.
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4.3  Materials and methods 

Current reference databases are typically insufficient for training species-specific classifiers. 

Hierarchical classifiers help alleviate this problem by classifying calls to ensemble/call type, predefined 

call groups, or to species level when sufficient training material exists. Ultimately, such classification 

limits the volume of acoustic data that requires manual identification by a user. Our Borneo Bat 

Classifier (BBC) incorporates two hierarchical classification stages with three components, each trained 

using bat calls from Borneo. First, calls are identified to one of four broad call types. Second, depending 

on the call type identified, a call may be further classified to species (if an identity can be inferred from 

a call database or the literature), or sonotype (a taxonomic unit described only by its acoustic parameters 

and lacking a referent species identity in databases or the literature).  A corresponding confidence value 

is provided for each assignment. This tiered approach maximises the classification accuracy for the data 

available, by prioritising specific call parameters within the machine learning algorithms for 

distinguishing between species of the same call types. Each species/sonotype is provided with a 

recommended confidence threshold beyond which manual verification is required. This approach 

minimises the manual workload while preserving the overall confidence in identifications.    

4.3.1  Input data 

We collated reference calls from 687 captured bats of 42 species from 23 sites across the three countries 

of Borneo (see Supplementary Notes for the complete methodology for collecting reference calls; Fig. 

4.3). To enhance the variability encapsulated within the training data, we also included calls of free-

flying bats recorded by static detectors (Song Meter 2 BAT, Wildlife Acoustics) in a typical forest-

farmland landscape in Tawau district, Sabah (at the Stability of Altered Forest Ecosystems Project, 

SAFE; www.safeproject.net), hereafter referred to as field recordings. Unlike the reference calls, which 

are tied to the identification of captured bats, calls from field recordings are not linked to in-hand 

identifications. Static detectors were set at 26 locations in the SAFE landscape for 862 hours in multiple 

habitat types (Supplementary Notes). Reference calls and field recordings were collected as WAV 

sound files. The calls from Sarawak contributed to the Asian Bat Call Database and are available from 

the Chirovox library (Görföl et al., 2022; McArthur & Khan, 2021).  
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Figure 4.3 Map for the reference calls used to train the Borneo bat classifier 

Reference calls collected from 23 sites in Borneo, aggregated to political administrative units. In the 

Malaysian states, 17 species were recorded in Sabah, 35 in Sarawak. Ten species were recorded in the 

Indonesian provinces of West and Central Kalimantan, and 21 in the Nation of Brunei. Calls collected 

from Tawau district Sabah are field data (SAFE landscape). Forest cover shown in green is for 2015 

from https://earthenginepartners.appspot.com/science-2013-global-forest. White areas represent non-

forest cover.  

 

4.3.1.1 File Processing 

All WAV files were split into sequences of five seconds with a minimum of two recognisable 

echolocation calls per species/sonotype using Kaleidoscope v.5.1.9 (Wildlife Acoustics Inc, USA). This 

was used to define a bat pass as a measure of activity (Torrent et al. 2018). Files were also filtered 

within a target frequency range between 8 and 250 kHz and call durations between 1 and 500ms to 
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reduce the amount of non-bat ‘noise’ in samples. In each of the total 34,792 bat passes (each five 

seconds long), there were ≥ 2 calls from at least one species/sonotype present.  

Using Kaleidoscope Viewer (FFT size 256, window size 128, Hamming window, and cache size 256 

MB), call parameters within each recording were compared to the relevant literature and against the 

reference calls to determine the species identification (Table 4.1; Supplementary Notes). The 

parameters included: the frequencies (in kHz) at the start and end of the call, the maximum, minimum, 

and frequency of maximum energy (peak freq.), call duration (ms; from start to end frequencies), pulse 

interval (ms), duty cycle (%), and measures of call shape based on slope of the call (see Supplementary 

Notes and Supplementary Table 4.2). Many species in the region produce calls in which parameters 

overlap (e.g., Hipposideros cineraceus and H. dyacorum). Therefore, we grouped species into 

sonotypes or identified them only to call type when there was a risk of misidentification (Table 4.1). 

For the call characteristics for the FMqCF sonotypes see Supplementary Table 4.3. 
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Table 4.1 Number of bat passes used to train and test the Borneo Bat Classifier 

The total number of bat passes/files (5-second-long sequences which include multiple calls) that were available for training and testing the Borneo Bat Classifier 

per call type/sonotype/species, along with the number of calls extracted. Values represent both reference calls and field recordings and where only one species 

was present in the sequence.  

  

      Field Sabah Sarawak Brunei Kalimantan 

ID category Code Files Calls Files Calls Files Calls Files Calls Files Calls 

Constant frequency [CF]                       

H. cineraceus/dyacorum H140 1 2 5 48 12 338 8 49 10 140 

Hipposideros ater  Hate          5 124     2 31 

Hipposideros bicolor Hbic         2 35         

Hipposideros cervinus  Hcer 18 54 14 397 14 487     24 423 

Hipposideros coxi Hcox         2 132         

Hipposideros diadema Hdia 25 313 3 138 3 67         

Hipposideros galeritus  Hgal 78 218 2 146 8 217     6 139 

Hipposideros larvatus Hlar         3 67         

Hipposideros ridleyi  Hrid     9 276 2 50     2 24 

Rhinolophus acuminatus Racu 1 4 3 35 6 699         

Rhinolophus affinis Raff 4 14     5 216         

Rhinolophus borneensis Rbor 143 613 13 545 7 371     14 180 

Rhinolophus creaghi Rcre         6 113         
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Rhinolophus luctus Rluc 645       2 71         

Rhinolophus philippinensis Rphi         10 390         

Rhinolophus sedulus Rsed 2893 25723 8 154 3 80 24 354 12 119 

Rhinolophus trifoliatus Rtri 4312  32576 47 3051 1 41 8 103 14 82 

Frequency modulated quasi 

constant frequency [FMqCF] 

                      

FMqCF sonotype 1   FMqCF1 261 5520                 

FMqCF sonotype 2  FMqCF2 567 9779                 

FMqCF sonotype 3  FMqCF3 1368 14948                 

FMqCF sonotype 4  FMqCF4 2082 24116   2953   225         

Glischropus tylopus       36   1           

Myotis horsfieldii           4           

Tylonycteris robustula         55               

FMqCF sonotype 5  FMqCF5 3350 65102   4869   1090   31   86 

Miniopterus australis           1   1       

Myotis muricola           7   2       

Myotis ridleyi           2   4   4   

Tylonycteris pachypus       10               

Low frequency sonotype  LF 1215 6742       1293         

Chaerephon plicatus           35           

Saccolaimus saccolaimus           1           

Arielulus cuprosus  Acup 4 29     1 92         
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Quasi-constant frequency* [QCF]    5288 71854       9         

Emballonura alecto QCF         1           

Emballonura monticola  QCF         1           

          

Frequency modulated [FM]*  FM 1006 4898   174   420   127     

Kerivoula hardwickii       5       18       

Kerivoula intermedia           2   7       

Kerivoula lenis               1       

Kerivoula minuta           1   7       

Kerivoula papillosa       4   5   21       

Kerivoula pellucida               8       

Murina peninsularis           1   1       

Murina suilla           3   7       

Megaderma spasma           2           

Nycteris tragata           3           

Phoniscus atrox    1    2    

Phoniscus jagorii    2    2    
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Only WAV files with a single species present were used in the classifier design to ensure there was no 

misidentification between calls. Adobe Audition (Adobe Systems) was used to scrub non-target bat 

species from the reference call files that comprised calls from multiple species (e.g., where there was a 

flyby). Calls that were obscured or faint (< 20dB), feeding buzzes, and social calls were also excluded. 

Field recordings were subset to those in which only one species was identified in the manual 

identification process (28,831 of 34,792 files).  

4.3.1.2 Call parameters 

We used the threshold function in the R package “Bioacoustics” (Marchal, Fabianek and Scott 2020) to 

measure 26 call parameters (Supplementary Table 4.2; settings: minimum duration 1.5ms, maximum 

duration 80ms, FFT size = 512, FFT overlap = 0.875, extraction threshold (sensitivity of which 

extraction is triggered) = 4dB, signal to noise ratio threshold (SNR; sensitivity threshold at which the 

extraction stops) = 4dB, and Hanning window). Threshold and SNR threshold parameters were 

calibrated to determine which provided the greatest proportion of calls extracted with the smallest rates 

of noise/error introduced.  
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Figure 4.4 Pipeline for designing the semi-automated classifier 

Pipeline for building the classifier framework to identify bat calls first to call type and then to 

species/sonotype where appropriate. 

4.3.1.3 Call classification via machine learning 

The BBC comprised two hierarchical stages including three components, each based on a separate 

random forest model. In the first stage, calls were classified into one of four broad call-types (‘frequency 

modulated’, FM; ‘constant frequency’, CF; ‘frequency-modulated quasi constant frequency’, FMqCF; 

and ‘quasi-constant frequency’, QCF; Table 4.1). Calls identified as CF or FMqCF underwent an 

additional classification stage. Those classified as CF were classified to species using a second model. 

Similarly, calls classified as FMqCF were subsequently classified into sonotype/species using a third 

model. See Fig. 4.4 for full pipeline.  

4.3.1.4 Subset for training and testing data 

The first model (i.e., call type) was trained using 1000 random calls per call type, as was the second 

model that identified calls to CF species (1000 calls per species). The third model (i.e., FMqCF) was 

trained using 2000 calls per sonotype/species. We compared five training data sizes (250-5000 calls) 

per model to determine the optimum size in terms of accuracy (the percentage of overall correct 

classifications out of the total number of classifications performed) and kappa (accuracy normalised for 

random chance per classification class; Harrell Jr, 2015). The remaining calls not used for training were 

used for testing. Where a call type or sonotype/species had insufficient calls to meet these training 

thresholds, 80% of the available data were used for training to set aside 20% for testing. 

4.3.1.5 Constructing the models 

For the BBC, we used random forest supervised machine learning algorithms as these performed the 

best amongst five other algorithms tested (Supplementary Fig. 4.1). A random forest is an ensemble of 

an arbitrary number of decision trees randomly built using bootstrapped samples of a training dataset 

which is used to assign the classification of highest likelihood (Breiman 2001). Due to their repetitive 

structure, these supervised machine learning algorithms are robust to outliers and can incorporate mixed 

variable datasets (Olden, Lawler and Poff 2008). As a result, they provide the highest certainty for the 

lowest resource requirements and have previously been used to classify echolocation calls in multiple 

species-rich regions, including Amazonia and Central America (López-Baucells et al. 2019; Zamora‐

Gutierrez et al. 2016). Models were constructed using the R package “caret” (Classification and 

Regression Training; Kuhn et al. 2020).  

To determine the optimum number of call parameters to be included in each random forest, we tested 

for overfitting (the process by which too many parameters included in a model reduces its performance) 
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using 10-fold cross-validations for models containing between 1 to 26 call parameters (James et al. 

2013). We also calculated the error rate for the models using between 1 and 500 decision trees to 

determine which provided the least error for the lowest computational power. The optimum number of 

parameters with the mean lowest error rate was 15. However, there was no evidence of overfitting when 

using up to 26 parameters, and the error rate plateaued at approximately 100 decision trees. We therefore 

used 26 parameters and 100 decision trees across all models for consistency. 

4.3.1.6 k-means clustering 

To check whether it was possible to discriminate individual species within the FM call type we applied 

k-means clustering, an unsupervised machine learning approach used to cluster observations without 

prior information of species identity (Hartigan and Wong 1979). However, there was no distinction 

between the species assigned to each of these clusters and therefore we did not classify FM calls beyond 

the call type.  

4.3.2  Performance testing 

4.3.2.1 Testing success rate on bootstrapped data 

We evaluated classification accuracy and predictive power of the models on the testing dataset using 

accuracy and kappa performance metrics, with acceptable agreement determined as > 0.41 (McHugh 

2012). We chose recall (percentage of true positives, e.g., number of correct classifications per class 

out of total classification per class) and precision (probability given the class that the classification is 

correct) as metrics to evaluate the classification success for each call type. Unlike metrics such as 

specificity (percentage of true negatives) or negative predictive value (probability, considering each 

class, that it is correctly identified as not a given class), these metrics highlight the true positives in the 

classification process and are therefore considered the most reliable and conservative performance 

metrics for multicategory acoustic classifiers (Jennings, Parsons and Pocock 2008).  

We assessed the relative importance of call parameters using variable importance scores (James et al. 

2013) and the system runtime required to train the models. This was measured on an Intel i5 2.50 GHz 

core processor with 8 GB RAM.  The “best” models were defined as those at each stage with the greatest 

accuracy and predictive power for the lowest computational expense.   

4.3.2.2 Accuracy thresholds for manual verification 

Each classification was assigned both an automatic identification label and the corresponding accuracy 

of that identification as a percentage (Fig. 4.5). Following López-Baucells et al. (2019), we estimated 

the percentage of bat passes that would need to be manually verified using the BBC depending on eight 
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classification accuracy thresholds between 60-95% in 5% steps. Files with < 60% accuracy were 

discounted.  

 

Figure 4.5 Diagram for the user application of the classifier framework 

Diagram for the user application of the classifier framework. WAV files (pre-processed) are imported 

into R to extract their call parameters, these are then classified to call type. Depending on the call type 

identified, this may be the final assignment or it may be further classified to species/sonotype. Each 

assignment will have a corresponding confidence value. These are compared against confidence 

thresholds for each call type/sonotype/species to determine if the file requires manual verification.   
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The optimal threshold was determined as where the F1-score (harmonic mean of precision and recall) 

was > 0.9 (Kuhn et al. 2020). The optimal threshold was accepted for identification to call type, for 

common species, and where there was adequate testing data in the classifier (> 250 calls). We advise 

manual verification of all rare species, where the threshold was not met, or for species where test data 

was < 250 calls. 

4.4  Results 

4.4.1  Minimum training dataset size 

We found > 85% accuracy in identifying calls to call type using 1000 calls per category (Fig. 4.6), with 

a kappa greater than 0.81 indicating almost perfect agreement. Accuracy was still high (~80%) at 

smaller training data sizes, however there was greater variability in performance with accuracy varying 

up to ~10% and kappa by ~15%. There was little improvement by increasing 1000 calls to 2000 or 5000 

calls compared to the increase in computational power (which ranged from ~3-fold to > 10-fold 

depending on the measure of power and training data size; Supplementary Table 4.4). The second 

model, classifying calls to CF species, showed a similar trend. Training data sizes ≥ 1000 ensured 

accuracy and kappa > 0.9. For the third model that classified FMqCF calls to sonotype/species, 

performance increased incrementally with increasing training data input. To achieve a kappa that would 

be considered substantial agreement (0.61-0.8), the model required 2000 calls per sonotype/species.  
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Figure 4.6 Comparison of different training data sizes for each classification algorithm 

(A) Classification to call type, (B) classification to CF species, and (C) classification to FMqCF 

sonotype/species. Dots are medians, boxes 25% and 75% quartiles and whiskers denote the range. 

 

4.4.2  Call parameter importance 

The random forests prioritised different parameters when classifying to either call type or 

sonotype/species (Fig. 4.7). “Maximum frequency” was the most important parameter for determining 
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call type and differentiating between CF calls. The CF model also shared eight of the ten most important 

parameters as used for classifying to call type, though their importance between models varied. While 

“raw slope estimate” (slope) and “smoothed slope estimate after Kalman filtering” (slope smoothed) 

were not in the top ten for the CF model, they regained importance in the FMqCF model where they 

were the seventh and eighth most important parameters respectively. The “characteristic 

frequency/frequency at which the slope is the flattest” (char. freq.) was the parameter of most 

importance for distinguishing between FMqCF calls and the second most important for determining 

call type.
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Figure 4.7 Comparison of variable importance in each classifier stage 

The importance of each call parameter used in the final random forest classifier - the Borneo Bat Classifier. High values indicate greater parameter importance. 

See supplementary table 4.2 for parameter acronyms. (A) Classification to call type, (B) classification to CF species, and (C) classification to FMqCF 

sonotype/species 
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4.4.3  Success in performing classifications 

To call type, the classifier achieved > 90% balanced accuracy for all call types (Table 4.2). Using the 

bootstrapped data > 85% of the calls were identified correctly to call type (Table 4.3). FM calls were 

correctly identified in 88.5% of cases. Where they were misclassified, they were most commonly 

reported as FMqCF type calls (7.9% of cases) (Supplementary Table 4.5). QCF calls were correctly 

identified in 91.38% of cases but were misidentified predominantly as CF calls (4.05% of cases).  

Across both the second (CF classification) and third model (FMqCF classification), all 

sonotypes/species achieved a balanced accuracy outcome ≥ 80%. A balanced accuracy > 90% was 

achieved for all species included in the CF model, except for Hipposideros bicolor and Rhinolophus 

creaghi, which had a balanced accuracy score of 80% and 86% respectively (Table 4.2). FMqCF 

sonotypes showed the greatest rates of misclassification. However, they were still correctly identified 

in 65.90-73.55% of cases (Supplementary Table 4.6).  
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Table 4.2 Performance (%) of random forest models in each stage of the Borneo Bat Classifier 

Performance (%) of random forest models in each stage of the Borneo Bat Classifier. The optimal confidence threshold was defined as an 

F1-score > 0.9 (NA = testing data < 250 calls; NR = values did not reach > 0.9 F1-score threshold). The percentage of each call 

type/sonotype/species that requires manual verification is given according to this optimal threshold. Total % of calls to verify - all calls 

identified to call type/sonotype/species with given confidence 60-100%. 

ID category Code Recall Specificity Precision 

Balanced 

Accuracy 

 

 

F1-

Score 

Optimal 

confidence 

threshold 

Total % 

of calls 

to verify 

 

Model 1: Classification to call type 

       

 Constant frequency CF 0.88 0.98 0.93 0.93 0.96 60 0 

 Frequency modulated quasi 

constant frequency 

FMqCF 0.88 0.97 0.97 0.93 0.97 60 0 

 Quasi-constant frequency QCF 0.91 0.95 0.88 0.93 0.94 60 0 

 Frequency modulated FM 0.88 0.95 0.21 0.92 0.93 80 53 

 

Model 2: Classification to CF species 

       

 H. cineraceus/dyacorum H140 0.97 1.00 0.58 0.98 0.97 75 20 

 Hipposideros ater  Hate 0.92 1.00 0.61 0.96 0.95 65 16 

 Hipposideros bicolor Hbic 0.60 1.00 0.75 0.8 NA NA 100 

 Hipposideros cervinus Hcer 0.99 1.00 0.88 0.99 0.95 60 0 

 Hipposideros coxi Hcox 1.00 1.00 0.08 1.00 NA NA 100 

 Hipposideros diadema  Hdia 0.97 0.99 0.19 0.98 NR NR 100 

 Hipposideros galeritus  Hgal 0.94 1.00 0.57 0.97 0.98 60 0 

 Hipposideros larvatus Hlar 1.00 1.00 1.00 1.00 NA NA 100 
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 Hipposideros ridleyi  Hrid 0.84 1.00 0.76 0.92 0.94 60 0 

 Rhinolophus acuminatus  Racu 0.99 1.00 0.38 0.99 0.92 60 0 

 Rhinolophus affinis  Raff 0.89 1.00 0.94 0.94 NA NA 100 

 Rhinolophus borneensis  Rbor 0.96 0.99 0.58 0.98 0.91 95 62 

 Rhinolophus creaghi  Rcre 0.71 1.00 0.36 0.86 NA NA 100 

 Rhinolophus luctus  Rluc 0.99 0.99 0.39 0.99 0.94 80 31 

 Rhinolophus philippinensis  Rphi 1.00 1.00 0.22 1.00 0.95 85 49 

 Rhinolophus sedulus  Rsed 0.96 0.98 0.97 0.97 1.00 60 0 

 Rhinolophus trifoliatus  Rtri 0.99 0.9 0.91 0.95 0.96 60 0 

 

Model 3: Classification to FMqCF sonotype/species 

     

 FMqCF sonotype 1 FMqCF1 0.66 0.95 0.33 0.80 NR NR 100 

 FMqCF sonotype 2 FMqCF2 0.69 0.96 0.57 0.83 0.90 75 54 

 FMqCF sonotype 3 FMqCF3 0.74 0.98 0.8 0.86 0.92 60 0 

 FMqCF sonotype 4 FMqCF4 0.69 0.95 0.76 0.82 NR NR 100 

 FMqCF sonotype 5 FMqCF5 0.94 0.95 0.96 0.95 0.98 60 0 

 Low frequency sonotype LF 0.93 0.98 0.65 0.95 0.92 95 52 

 Arielulus cuprosus Acup 0.83 1.00 0.19 0.92 NA NA 100 
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Precision was generally lower for high-frequency calls (> 120 kHz) and/or where there was 

limited training data (e.g., Arielulus cuprosus). There were several exceptions for CF species 

which show less variability than FMqCF calls. Rhinolophus acuminatus was trained using 590 

calls and was correctly identified in 98.7% of cases. A further three CF species achieved a 

balanced accuracy of 100% (all calls correctly identified). However, all three had small test 

data sizes (26-78 calls) constituting only a few individuals. Therefore, it is likely errors would 

occur if a larger testing data with more individuals were available for these species.   

 

Table 4.3 Confusion matrix for correct and incorrect classifications to call type 

Confusion matrix demonstrating the percentage of correct and incorrect bat identifications 

made for bootstrapped test data for call type 1000 model. Grey = correct species identification. 

 True Call Type Identification 

Prediction CF FMqCF QCF FM 

CF 88.5 1.2 4.05 1.7 

FMqCF 2.4 87.9 2.86 7.9 

QCF 3.8 5 91.38 2 

FM 5.3 5.9 1.7 88.5 

N calls 62,170 125,398 69,854 3,619 

 

 

4.4.4  Manual verification 

Manual verification was only needed for a minority of calls for the main classifier: CF, 

FMqCF, and QCF call types all reached an F1 score > 0.9 at the 60% confidence threshold 

(Table 4.2; Supplementary Table 4.7), and while this threshold was higher (80%) for FM calls 

the classifier still reduced the number of calls for manually processing by almost half (Table 

4.2, Fig. 4.8). As FM is the least common call type present, this means that < 1% of the total 

sum of calls identified to call type need manual verification.  

Six CF species also did not require any manual processing, having reached the necessary F1-

score at the 60% confidence threshold. This included the three most common CF species, 

Hipposideros cervinus, R. sedulus and R. trifoliatus (Table 4.2). Of the remaining species, a 

further four reduced processing demands by over 50%, Hipposideros ater (15.4%),  

H. cineraceus/dyacorum (20%), R. luctus (30.8%), and Rhinolophus philippinensis (48.7%). 

Six species required all calls to be checked, either because of low sample sizes/rarity (n < 500; 
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Hipposideros larvatus, H. bicolor, H. coxi, R. creaghi, and R. affinis) or because they did not 

achieve a satisfactory F1-score (e.g., Hipposideros diadema). Overall, this reduced the number 

of CF calls to manually verify to < 1% (536 out of 54,900 calls). 

Two of the seven FMqCF sonotypes, FMqCF3 and FMqCF5, did not require any manual 

processing. For two additional sonotypes, low frequency and FMqCF2, the model reduced 

processing requirements by almost half, with 51.5% and 53.5% of calls requiring manual 

verification respectively. However, two sonotypes did not achieve an F1-score > 0.9 and 

therefore FMqCF1 and FMqCF4 require all files to be manually checked. We also advise this 

for A. cuprosus due to the small training data size (n = 121). In total, this reduced the number 

of FMqCF calls to manually verify down to 27.5% (30,259 out of 110,232). Across all models, 

this means the BBC reduces the number of calls to check by 86.18% (34,006 out of 245,991).  
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Figure 4.8 Percentage of echolocation calls requiring manual verification using the Borneo 

Bat Classifier 

Percentage of echolocation calls requiring manual verification dependent on model and 

sonotype/species by confidence threshold. (A) For classification to call type, (B and C) for 

classification to constant frequency (CF) species divided across two panels, and (C) for 

classification to frequency modulated quasi constant frequency (FMqCF) sonotype. Shaded 

area – the overall proportion of files per model.  
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4.5  Discussion 

We developed a hierarchical classification framework that can be used to develop classifiers 

to greatly reduce the processing of bat echolocation calls, particularly in localities where 

species-specific training data may be limited. Our framework is intended to be applicable to 

bat faunas across Southeast Asia and has demonstrated utility with the bats of Borneo.  

Our approach substantially reduces human input and demonstrates how information on 

different call types and species call characteristics can lead to meaningful classifications of 

acoustic data that represent different ecological ensembles and indicators for lesser-known 

species. The ultimate aspiration for acoustic monitoring and automated classification is to 

differentiate among all species present. However, the urgency for monitoring data, even if 

only a subset of the total community, has never been higher. In many regions of Southeast 

Asia, heavy deforestation is expected to result in over 40% of regional bat species to be lost 

by the end of the century (Lane, Kingston and Lee 2006). The Borneo Bat Classifier 

introduced here provides a means to document populations of some individual taxa (e.g., CF-

calling bats), while also resolving several ensembles of bats from acoustic data.  

A key benefit of the BBC is that it performs best for the most common species and sonotypes. 

For example, over 99% of CF calls recorded in our field dataset could be identified to species 

level. The FMqCF call type, which represents the greatest volume of calls, also displays the 

greatest call plasticity, resulting in both within-sequence variability and interspecific overlap 

in call parameters which makes differentiating between species/sonotypes more challenging 

than CF calls. However, our approach reduces overall processing of this call type by 70% 

(30,259 to check out of 110,232). By grouping calls in this way, future users can rapidly and 

reliably discriminate between edge/gap, open-space bats, and other groups without relying on 

species-specific identifications. Therefore, this tool can vastly reduce the manual processing 

demands of acoustic projects where this level of classification is appropriate. It is important 

to state that this tool is not designed to replace species-specific monitoring and should not be 

used on its own to inform species-specific conservation efforts. It is designed to assess how 

the insectivorous bat community more broadly varies between habitats, management 

strategies, or over time. In this way, it can help inform monitoring efforts where species-

specific monitoring is not possible or can only be weakly undertaken. 

Our results support previous recommendations against differentiating broadband FM calls to 

species in Asian bat assemblages (Hughes et al., 2011; Kingston et al., 1999). Even under 

controlled conditions, calls can be difficult to discriminate between species due to overlap in 

call variation (see Schmieder et al., 2012). Species utilising these FM calls (e.g. Kerivoulinae, 
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Murininae) are typically forest specialists that are well sampled using live-capture methods, 

but are poor candidates for acoustic monitoring due to the low-intensity and high frequencies 

of their echolocation calls, making reliable field recordings very difficult to obtain (Kingston 

2013; Russo, Ancillotto, and Jones 2018). For example, although Kerivoulinae and Murininae 

bats are relatively common in Southeast Asian landscapes, including in our test landscape in 

Sabah (Struebig et al. 2013), their FM calls only comprise a very small portion (4898 calls, 

2%) of files collected by the acoustic recorders simply because they are too quiet and too high 

pitched to be reliably recorded. Therefore, we do not recommend acoustic approaches be used 

to monitor these taxa.  

An additional benefit of our approach is that we were able to create a classifier without access 

to a complete reference call library of Borneo’s echolocating bats. Species that were absent 

from our training data (e.g., the FM echolocator, Kerivoula whiteheadi; FMqCF echolocator, 

Miniopterus medius) will still be encapsulated in the broad call types. A key outcome of using 

representative call types or sonotypes in this way is that it allows classifiers to be developed 

in other regions in Southeast Asia where bat call inventories are less complete. While this 

methodology shows promising results for Borneo, this approach needs further development 

and testing to be applied to other regions in Southeast Asia. Such classifiers should be 

straightforward to develop as echolocating bats in this region share a common community 

structure, dominated by the same families found in Borneo. 

Currently, random forests provide our classifier with the best performing algorithm, but this 

could change as the number of reference calls increases in Southeast Asia. Deep neural 

networks are known to provide the highest classification accuracies for the automated 

identification of bats in Europe (Parsons and Jones 2000) but these methods are 

computationally intensive; requiring extensive reference libraries that are not currently 

available for most species in the tropics (Walters et al. 2013). Kobayashi et al. (2021) required 

54,525 calls to train a classifier to recognise 30 species in Japan. The Hungarian Natural 

History Museum and the Southeast Asian Bat Conservation and Research Unit recently 

launched the Asian Bat Call Database, a repository dedicated to making acoustic recordings 

of bats in Asia more accessible to acoustic researchers (Görföl et al. 2022). Chen et al. (2020) 

have already demonstrated the potential for neural networks to be used for identifying Asian 

species and reference banks such as this would expand their application in the future. 

Considering these future developments, our framework can be easily updated to a neural 

network algorithm as such call databases become widely available.   

There remain important considerations when interpreting results generated by this tool. The 

current classifier framework determines sonotypes/species identification by individual calls 
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(rather than from a string of calls), therefore it cannot recognise call alternation (i.e. alternating 

between two or more call structures, Pipistrellus stenopterus) (Kingston, Jones, et al. 2003). 

Rather, the classifier treats alternate calls as potentially belonging to different species, which 

can inflate the number of calls for verification. Two alternator sonotypes, FMqCF1 and 

FMqCF2, constituted approximately 10% of FMqCF calls. An option for users who have 

limited time to manually process files would be to re-group FMqCF1 and FMqCF5 post-

classification. As the species from each of these sonotypes are producing calls of a similar 

structure above 50 kHz, they are likely to all be utilising their environment in an ecologically 

similar way, and both represent edge/gap foragers. However, FMqCF2, which produces calls 

of a similar frequency to FMqCF4, are more likely to be open space hawkers (Kingston, Jones, 

et al. 2003) and therefore these two sonotypes should not be grouped.  

There are also species not currently included in the training dataset. While most of these 

species are represented within the current call types, our classifier may omit a fifth call type 

typical of open-space foragers of the family Emballonuridae. This includes calls from three 

species in Borneo belonging to the genus Taphozous, all of which are open-space hawking 

insectivores (Wei et al. 2008), and have calls characterised as multi-harmonic, low frequency 

QCF. These calls share similar properties with both the QCF call type and low frequency 

sonotype, therefore it remains to be seen whether they would be classified into these categories 

or whether a new call type would be needed once reference calls became available. 

Nevertheless, it is notable that in our sample landscape none of the calls were manually 

attributed to this group, suggesting that they may be infrequently detected in typical forest-

farmland surveys. 

Only three species utilising CF calls are yet to be included in our classifier (Rhinolophus 

francisi, R. pusillus, and Hipposideros doriae). These are either very rare or have a patchy 

distribution, and thus are rarely captured. R. francisi was only described in 2015, and is only 

reported from five localities in Borneo (Soisook et al. 2015), producing overlapping 

frequencies with the common species R. trifoliatus. Hipposideros doriae and Coelops 

robinsoni are also similarly rare and patchily distributed, and produce very high frequency, 

broadband calls with a very abbreviated or absent CF component (Kingston 2016). On the 

other hand, the CF calls of R. pusillus and H. larvatus should be relatively simple to 

discriminate by the classifier but so far there are no available recordings for these species since 

they are highly localised to karst outcrops (Phillipps and Phillipps 2016). Another 

consideration is CF species are known to express geographic variation in call frequency (Chen 

et al., 2009), however we did not observe substantial variation in call frequencies across the 

geographic range included in this study. Nonetheless, increasing the extent of data used in this 
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tool to date would help its efficacy in other localities. Where the framework is developed for 

other regions, users should assess whether there is evidence of geographic variation in species’ 

call parameters for that area.  

 

4.6  Conclusions 

Our acoustic classification framework and subsequent classifier for Borneo greatly expands 

the capacity for monitoring bats in Southeast Asia - reducing the need for manual processing 

of bat calls in Borneo by seven-fold. Our framework incorporates aerial insectivorous 

ensembles that are regularly absent from biodiversity studies despite being important 

components of bat assemblages. It can be used to design additional classifiers in Southeast 

Asia and the palaeotropics more broadly, where species-specific classifiers are not yet 

possible. Therefore, improving the potential to use bat assemblages as bioindicators in tropical 

environments.    

 

4.7  Availability 

The BBC classifier user script is available open access from the GitHub repository 

github.com/TallyYoh/BorneoBatCalls (doi:10.5281/zenodo.4725680) in the programming 

language R version 3.6.3. The BBC classifier user script v2.0 is provided in Appendix II.   
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4.9  Supplementary information 

Table S4.1 Survey information relating to reference call data 

Survey information relating to reference collection of full-spectrum call recordings for the Borneo Bat Classifier. CF – Constant-frequency call type 

 

Country Location GPS 

Lat 

GPS 

Long 

Trapping 

type 

Detector and 

microphone used 

(sampling rate 

kHz) 

CF 

recorded 

in hand  

(Y/N) 

Flight tent 

specification 

Habitat for 

recording upon 

release 

Associated 

DOI 

Chirovox 

dataset 

and UID 

Malaysia           

 Crocker 

Range 

National 

Park 

5.838 

 

116.147 Mist-nets, 

Harp traps 

Anabat 

Walkabout, with 

uni-directional 

adapter (500) 

 

Y NA Forest clutter, 

Forest edge/gap, 

Open-space 

 

doi:10.339

0/d120200

60 

 

 Mulu 

National 

Park 

 

4.023 

 

114.821 

 

Mist-nets Echo Meter EM3+ 

internal 

microphone (384) 

NA NA Open-space doi:10.147

09/BarbJ.1

4.1.2021.1

1 

Dataset: 

DS04, 

UID: 

A000401

-

A000713 

 Mulu 

National 

Park 

 

4.092 

 

114.895 

 

Mist-nets, 

Harp traps 

Echo Meter EM3+ 

internal 

microphone (384) 

Y Polyester 

mesh: 

2x4x2 m 

Forest clutter, 

Forest edge/gap, 

Open-space 

doi:10.147

09/BarbJ.1

4.1.2021.1

1 

Dataset: 

DS04, 

UID: 

A000401
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-

A000713 

 Bako 

National 

Park 

1.716 

 

110.466 

 

Mist-nets, 

Harp traps 

Echo Meter EM3+ 

internal 

microphone (384) 

Y NA Forest clutter, 

Forest edge/gap, 

Open-space 

doi:10.147

09/BarbJ.1

4.1.2021.1

1 

Dataset: 

DS22, 

UID: 

A003786

-

A003812 

           

 Samunsam 

Wildlife 

Sanctuary 

1.954 

 

109.607 

 

Mist-nets, 

Harp traps 

Echo Meter EM3+ 

internal 

microphone (384) 

Y NA Forest clutter, 

Forest edge/gap, 

Open-space 

 

 Dataset: 

DS11, 

UID: 

A001513

-

A001536, 

A001802 

 Kubah 

National 

Park 

1.612

8 

110.196 

 

Mist-nets, 

Harp traps 

Advanced electret 

(384) 

N Polyester 

mesh: 

100(W) 

×200(L)× 

195(H) (CM) 

Forest clutter, 

Forest edge/gap, 

Open-space 

 

 Dataset: 

DS11, 

UID: 

A001537

-

A001566 

 Sadong 

Jaya Nature 

Reserve 

1.557 

 

110.694 

 

Mist-nets, 

Harp traps 

NA N NA Forest clutter, 

Forest edge/gap, 

Open-space 

 

 Dataset 

DS11, 

UID: 

A001567
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-

A001568 

 Mount 

Silabur 

Cave 

0.969 

 

110.519 

 

Mist-nets, 

Harp traps 

Advanced electret 

(384) 

N Polyester 

mesh: 

100(W)× 

200(L)× 

195(H) (CM) 

Open-space 

 

 Dataset 

DS11, 

UID: 

A001569

-

A001647 

 Kumpang 

Langgir 

1.493 

 

111.689 

 

Mist-nets, 

Harp traps 

Echo Meter EM3+ 

internal 

microphone (384) 

Y NA Open-space 

 

 Dataset 

DS11, 

UID: 

A001648

-

A001667 

 Lambir 

Hills 

National 

Park 

4.198 

 

114.042 

 

Mist-nets, 

Harp traps 

Echo Meter EM3+ 

internal 

microphone (384) 

 Y NA Forest clutter, 

Forest edge/gap, 

 

 Dataset 

DS11, 

UID: 

A001668

-

A001690 

 Niah 

National 

Park 

3.801 

 

113.784 

 

Mist-nets, 

Harp traps 

Echo Meter EM3+ 

internal 

microphone (384) 

Y NA Forest clutter, 

Forest edge/gap, 

Open-space 

 

 Dataset 

DS11, 

UID: 

A001691

-

A001704 
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 Bukit Kana 

National 

Park 

2.666 

 

111.866 

 

Mist-nets, 

Harp traps 

Module’s Ultra-

quiet microphone 

(384) 

N Polyester 

mesh: 

100(W) 

×200(L)× 

195(H) (CM) 

Forest edge/gap, 

Open-space 

 

 Dataset: 

DS11, 

UID: 

A001705

-

A001720 

 Tanjung 

Datu 

National 

Park 

2.055 

 

109.642 

 

Mist-nets, 

Harp traps 

Echo Meter EM3+ 

internal 

microphone (384) 

NA NA Forest edge/gap, 

Open-space 

 

 Dataset: 

DS11, 

UID: 

A001721

-

A001751 

 Mount 

Penrissen 

1.116 

 

110.216 

 

Mist-nets, 

Harp traps 

Echo Meter EM3+ 

internal 

microphone (384) 

NA NA Open-space 

 

 Dataset: 

DS11, 

UID: : 

A001752

-

A001788 

 Long Banga 3.207 

 

115.396 

 

Mist-nets, 

Harp traps 

Echo Meter EM3+ 

internal 

microphone (384) 

NA NA Forest clutter, 

Forest edge/gap, 

Open-space 

 

 Dataset: 

DS11, 

UID: 

A001789

-

A001801 

 Gunung 

Gading 

1.690 

 

109.845 

 

Mist-nets, 

Harp traps 

Echo Meter EM3+ 

internal 

microphone (384) 

NA NA Forest clutter, 

Forest edge/gap, 

 

 Dataset: 

DS11, 

UID: 
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National 

Park 

 A001803

-

A001812 

Brunei           

 Ulu 

Temburong 

National 

Park 

4.448 115.212 Mist-nets, 

Harp traps 

Anabat 

Walkabout, with 

uni-directional 

adapter (500) 

 

Y 3.5m x 3m Forest clutter, 

Forest edge/gap, 

Open-space 

 

  

 Ulu 

Temburong 

National 

Park 

 

4.448 115.212 Mist-nets, 

Harp traps 

Pettersson 

D1000x,  

advanced electret 

microphone (500) 

Y NA Forest clutter, 

Forest edge/gap 

 

doi:10.100

7/s10531-

012-0393-

0 

 

 Andulau 

Forest 

Reserve 

 

4.65 114.516 Mist-nets, 

Harp traps 

Pettersson 

D1000x,  

advanced electret 

microphone (500) 

Y NA Forest clutter, 

Forest edge/gap 

 

doi:10.100

7/s10531-

012-0393-

0 

 

 Tasek 

Merimbun 

Heritage 

Park 

4.583 114.666 Mist-nets, 

Harp traps 

Pettersson 

D1000x,  

advanced electret 

microphone (500) 

Y NA Forest edge/gap 

Open-space 

doi:10.100

7/s10531-

012-0393-

0 

 

           

 Bukit 

Teraja 

Protection 

Forest 

4.3 114.416 Mist-nets, 

Harp traps 

Pettersson 

D1000x,  

advanced electret 

microphone (500) 

Y NA Forest clutter, 

Forest edge/gap 

 

doi:10.100

7/s10531-

012-0393-

0 
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 Sungai 

Ingei 

Conservatio

n 

Forest 

 

4.15 114.7 Mist-nets, 

Harp traps 

Pettersson 

D1000x,  

advanced electret 

microphone (500) 

Y NA Forest clutter, 

Forest edge/gap 

 

doi:10.100

7/s10531-

012-0393-

0 

 

 Peradayan, 

Forest 

Reserve 

4.75  115.166 Harp traps Pettersson 

D1000x,  

advanced electret 

microphone (500) 

Y NA Forest clutter, 

Forest edge/gap 

 

doi:10.100

7/s10531-

012-0393-

0 

 

           

Indonesia Murung 

Raya 

0.086 114.884 Harp trap Pettersson 

D1000x,  

advanced electret 

microphone (500) 

Y NA Forest clutter, 

Forest edge/gap 

 

  

 Nanga 

Tayap 

-1.509 11.706 Harp trap Pettersson 

D1000x,  

advanced electret 

microphone (500) 

Y NA Forest clutter, 

Forest edge/gap 
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Table S4.2 Call parameters used in Borneo Bat Classifier 

Call parameters extracted using the threshold function of “Bioacoustics” R package used to 

train the Borneo Bat Classifier. 

Call parameter Description (unit) 

Peak freq. Frequency of maximum energy (Hz) 

Maximum freq. Maximum frequency (Hz) 

Minimum. freq. Minimum frequency (Hz) 

Bandwidth Total bandwidth (Hz) 

Start freq. Frequency at the start of the call (Hz) 

Center freq. Frequency at the mid-point of the call (Hz) 

End freq. Frequency at the end of the call (Hz) 

Freq. knee Knee/frequency at which the slope is the steepest (Hz) 

Characteristic freq. 
The characteristic frequency/frequency at which the 

slope is the flattest (Hz)  

Freq. BW knee Frequency bandwidth between the knee (Hz) 

Max. amp freq. 
Frequency of maximum energy within the 

characteristic frequency 

Loc. peak freq. Location of frequency of maximum energy (%) 

Loc. min. freq. Location of minimum energy (%) 

Loc. max. freq Location of maximum energy (%) 

Loc. knee Location of the knee (%) 

BW knee FC 
Temporal bandwidth between knee & characteristic 

frequency (Hz) 

Slope Raw slope estimate (Hz/ms) 

Smoothed slope 
Smoothed slope estimate after Kalman filtering 

(Hz/ms) 

Est. slope start Slope estimate at the beginning of the call (Hz/ms) 

Est. slope end Slope estimate at the end of the call (Hz/ms) 

Slope neg. Slope negative antropy (Hz/ms) 

Mid offset Mid-offset (dB) 

SNR Signal to noise ration (dB) 

Harm. distortion Level of harmonic distortion (dB) 

Smoothness Time/frequency regularity 

Duration 
Call duration from the start frequency to the end 

frequency (ms) 
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Table S4.3 Sonotype descriptions 

Descriptions of the call characteristics for the sonotypes classified as the call type 

“Frequency modulated quasi constant frequency” (FMqCF) in the Borneo Bat Classifier. 

Sonotype Description 

FMqCF sonotypes These sonotypes include species from the families 

Vespertilioninae, Miniopteridae, and Emballonuridae. 

Where species straddle a threshold (e.g. if two calls have a 

peak frequency of 40.5 & 39.5) round the FME up. If there 

are only two calls in the file & it is not clear whether it is an 

alternator, assume so or leave blank as one species 

presenting two calls is more likely than two species only 

presenting one call each.   

FMqCF Type 1 

(Edge/gap) 

Call peak frequency alternates:  

Peak frequency - call type 1 > 40kHz &  

Peak frequency - call type 2 > 50kHz 

FMqCF Type 2 

(Open space or 

Edge/gap) 

Call peak frequency alternates:  

Peak frequency - Call type 1 < 40kHz &  

Peak frequency - Call type 2 < 50kHz  

FMqCF Type 3 

(Open space) 

Call peak frequency does not alternate:  

Peak frequency ≈ 35 kHz (31 ≤ 40 kHz) 

FMqCF Type 4  

(Open space or 

Edge/gap) 

Call peak frequency does not alternate:  

Peak frequency ≈ 45 kHz (41 ≤ 50 kHz) 

FMqCF Type 5  

(Edge/gap) 

Call peak frequency does not alternate:  

Peak frequency ≈ 55 kHz (≥ 51 kHz) 
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Low frequency sonotype 

 

This sonotypes represents open-space insectivores and 

includes species from the families Vespertilioninae, 

Molossidae, and Emballonuridae. Species within this 

sonotype may produce FMqCF, multi-harmonic qCF calls, 

or calls that use a combination of call structures. The 

distinguishing characteristic of this sonotype is the low 

peak frequency (⪅ 30 kHz). 
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Table S4.4 Comparison of computational power for each random forest model 

Comparison of the computational power required to execute each random forest model. User 

central processing unit (CPU) time represents the time spent by the R session whereas the 

system CPU time provides the time spent by the operating system. 

 

Model Training data size User CPU  

(secs) 

System CPU 

(secs) 

Elapsed time  

(secs) 

Call type      

 250 9.70 0.92 12.49 

 500 18.44 0.22 20.03 

 1000 38.67 0.31 39.78 

 2000 88.67 2.73 92.31 

 5000 204.36 12.05 221.54 

CF model     

 250 67.48 38.28 138.42 

 500 121.30 20.56 167.78 

 1000 184.22 2.99 190.38 

 2000 329.34 90.70 481.18 

 5000 621.67 2.77 690.07 

FMqCF model     

 250 35.51 1.68 50.44 

 500 73.61 0.58 77.57 

 1000 163.53 3.08 169.20 

 2000 377.39 7.66 392.82 

 5000 1227.67 3.03 1265.59 
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Table S4.5 Confusion matrix for correct and incorrect identifications for the CF classifier model  

Confusion matrix demonstrating the percentage of correct and incorrect identifications made for bootstrapped test data for CF 1000 model. Green = correct species identification; grey = calls originally misidentified to CF call type. 

  FM H140 Hate Hbic Hcer Hcox Hdia Hgal Hlar Hrid Racu Raff Rbor Rcre Rluc Rphi Rsed Rtri 

FMq 

CF1 

FMq 

CF2 

FMq 

CF3 

FMq 

CF4 

FMq 

CF5 LF Acup QCF 

FM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 

H140 0 96.8 8.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0 0 0 0.6 0 0 NA 0.3 

Hate 0 0 91.7 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0 NA 0.2 

Hbic 0 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 

Hcer 6.6 0 0 0 98.9 0 0 0 0 0 0 0 0.2 0 0 0 0.1 0 0 0 0.7 0 0.1 0 NA 0.1 

Hcox 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 1.2 0 1.1 NA 0 

Hdia 0 0 0 0 0 0 96.6 5 0 11.48 0 2.9 0 14.3 0 0 2 0 0 3.9 0 0 0.1 0 NA 0.1 

Hgal 3.3 1.6 0 0 0.5 0 0 93.8 0 1.64 0 0 0 0 0.2 0 0 0 8.6 0 0 6.8 1.3 0.8 NA 0.5 

Hlar 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 

Hrid 0 0 0 0 0 0 2.3 0 0 83.6 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 NA 0 

Racu 0 0 0 0 0 0 0 0 0 1.6 98.7 0 0.9 0 0 0 0 0.1 0 1.9 0.7 1.2 5.3 0 NA 1.2 

Raff 0 0 0 0 0 0 0 1.3 0 0 0 88.6 0.2 0 0 0 0 0 0 0 0 0 0 0 NA 0 

Rbor 0 0 0 40 0 0 0 0 0 0 1.3 5.7 95.8 14.3 0 0 1.1 0.1 0 1.9 3.5 1.2 0.8 1.4 NA 0.1 

Rcre 0 0 0 0 0 0 0 0 0 0 0 0 0 71.4 0 0 0 0 0 0 0 0.6 0 0 NA 0.2 

Rluc 42.6 0 0 0 0 0 0 0 0 0 0 0 0.2 0 99.5 0 0.8 0.4 25.7 51.9 47.6 25.8 10.4 42.6 NA 5.1 

Rphi 1.6 0 0 0 0 0 0 0 0 0 0 0 0.2 0 0.2 100 0 0 5.7 0 1.4 1.8 0.4 28.7 NA 0.4 

Rsed 42.6 1.6 0 0 0.5 0 1.1 0 0 1.6 0 2.9 0 0 0.2 0 96.2 0.2 51.4 30.8 35.7 42.3 39.4 19.1 NA 4.9 

Rtri 3.3 0 0 0 0 0 0 0 0 0 0 0 2.2 0 0 0 0.1 99.1 8.6 9.6 9.8 18.4 41.4 6.3 NA 87 

FMqCF1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 

FMqCF2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 

FMqCF3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 

FMqCF4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 

FMqCF5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 

LF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 

Acup 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 

QCF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 0 

N calls 61 63 12 5 185 1 89 80 13 61 75 35 455 7 545 38 22650 30681 35 52 143 163 753 366 0 2832 

 



139 

 

 

Table S4.6 Confusion matrix for correct and incorrect identifications for the FMqCF classifier model  

Confusion matrix demonstrating the percentage of correct and incorrect identifications made for bootstrapped test data for FMqCF 2000 model. Green = correct species identification; grey = calls originally misidentified to FMqCF call 

type. 

.  FM H140 Hate Hbic Hcer Hcox Hdia Hgal Hlar Hrid Racu Raff Rbor Rcre Rluc Rphi Rsed Rtri 

FMq 

CF1 

FMq 

CF2 

FMq 

CF3 

FMq 

CF4 

FMq 

CF5 LF Acup 

QCF 

BB 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

H140 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hate 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hbic 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hcer 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hcox 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hdia 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hgal 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hlar 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Hrid 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Racu 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Raff 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rbor 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rcre 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rluc 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rphi 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rsed 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rtri 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FMq- 

CF1 

12.3 55.6 NA NA NA 0 NA 16.7 NA 0 4.8 NA 4.4 0 20.3 0 4.9 4 65.9 12.2 4.85 13.5 1.4 0.4 0 8.5 

FMq- 

CF2 

4.9 0 NA NA NA 0 NA 0 NA 0 0 NA 2.2 75 26 0 1.6 5 13.1 69.4 14.41 6.9 0.2 1.7 0 3.5 

FMq- 

CF3 

8.8 0 NA NA NA 0 NA 16.7 NA 0 0 NA 15.6 25 8.2 0 4.4 13.8 4.2 9.2 73.55 3.1 0.6 4.3 0 5.7 

FMq- 

CF4 

24.6 11.1 NA NA NA 0 NA 16.7 NA 20 57.1 NA 28.9 0 0 0 13 17.2 10.2 8.3 4.27 69.2 3.1 0.5 0 27 

FMq- 

CF5 

22.8 33.3 NA NA NA 0 NA 16.7 NA 60 38.1 NA 40 0 0 0 19.7 12.4 6 0.8 0.18 5.8 94.4 0.2 0 34.8 

LF 26.7 0 NA NA NA 100 NA 33.3 NA 20 0 NA 8.9 0 45.6 100 56.4 46.8 0.6 0.1 2.74 1.4 0.4 93 16.7 20.1 

Acup 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0.9 0.1 0 0 0 0 0.1 83.3 0.5 

QCF 0 0 NA NA NA 0 NA 0 NA 0 0 NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N calls 285 9 0 0 0 25 0 6 0 5 21 0 45 4 158 20 631 581 4029 7846 12395 19859 61887 4210 6 2001 
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Table S4.7 Overall classifier performance  

Classifier performance values for each confidence threshold in 5% increments. *Lowest threshold at 

which an F1-score > 0.9 was achieved; NR – threshold not achieved. 

Model ID Threshold Precision  Recall F1-score  

 

Call type  

 

 

  

  

 FM 60 0.498 0.943 0.652  

  65 0.583 0.951 0.722  

  70 0.712 0.962 0.818  

  75 0.790 0.968 0.870  

  80 0.889 0.975 0.930 * 

  85 0.929 0.979 0.953  

  90 0.970 0.986 0.978  

  95 0.988 0.990 0.989  

       

 CF 60 0.973 0.956 0.964 * 

  65 0.978 0.963 0.970  

  70 0.983 0.971 0.977  

  75 0.987 0.975 0.981  

  80 0.992 0.980 0.986  

  85 0.995 0.983 0.989  

  90 0.997 0.988 0.993  

  95 0.999 0.993 0.996  

       

 FMqCF 60 0.990 0.943 0.966 * 

  65 0.992 0.951 0.971  

  70 0.994 0.961 0.977  

  75 0.995 0.966 0.981  

  80 0.997 0.974 0.985  

  85 0.998 0.977 0.988  

  90 0.999 0.982 0.990  

  95 0.999 0.986 0.993  
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 QCF 60 0.919 0.967 0.942 * 

  65 0.926 0.973 0.949  

  70 0.935 0.980 0.957  

  75 0.941 0.985 0.962  

  80 0.951 0.991 0.970  

  85 0.957 0.994 0.975  

  90 0.968 0.997 0.982  

  95 0.977 0.998 0.988  

CF        

 H140 60 0.682 1 0.811  

  65 0.753 1 0.859  

  70 0.795 1 0.885  

  75 0.838 1 0.912 * 

  80 0.873 1 0.932  

  85 0.879 1 0.936  

  90 0.940 1 0.969  

  95 0.956 1 0.977  

       

 Hate 60 0.769 1 0.870  

  65 0.909 1 0.952 * 

  70 0.909 1 0.952  

  75 1 1 1  

  80 1 1 1  

  85 1 1 1  

  90 1 1 1  

  95 1 1 1  

       

 Hbic 60 1 1 1 * 

  65 1 1 1  

  70 1 1 1  

  75 NA NA NA  

  80 NA NA NA  
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  85 NA NA NA  

  90 NA NA NA  

  95 NA NA NA  

       

 Hcer 60 0.915 0.995 0.953 * 

  65 0.914 0.995 0.953  

  70 0.912 0.994 0.952  

  75 0.917 0.994 0.954  

  80 0.914 1 0.955  

  85 0.908 1 0.952  

  90 0.900 1 0.947  

  95 0.873 1 0.932  

       

 Hdia 60 0.272 0.988 0.426  

  65 0.291 1 0.451  

  70 0.296 1 0.457  

  75 0.316 1 0.480  

  80 0.347 1 0.516  

  85 0.344 1 0.512  

  90 0.456 1 0.626  

  95 0.538 1 0.700 NR 

       

 Hgal 60 0.959 1 0.979 * 

  65 0.957 1 0.978  

  70 0.957 1 0.978  

  75 0.969 1 0.984  

  80 1 1 1  

  85 1 1 1  

  90 1 1 1  

  95 1 1 1  

       

 Hlar 60 1 1 1 * 

  65 1 1 1  
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  70 1 1 1  

  75 1 1 1  

  80 1 1 1  

  85 1 1 1  

  90 1 1 1  

  95 NA NA NA  

       

 Hrid 60 0.976 0.909 0.941 * 

  65 1.000 0.975 0.987  

  70 1.000 0.974 0.987  

  75 1 1 1  

  80 1 1 1  

  85 1 1 1  

  90 1 1 1  

  95 1 1 1  

       

 Racu 60 0.847 1 0.917 * 

  65 0.878 1 0.935  

  70 0.897 1 0.946  

  75 0.945 1 0.972  

  80 0.971 1 0.985  

  85 1 1 1  

  90 1 1 1  

  95 1 1 1  

       

 Raff 60 1 1 1 * 

  65 1 1 1  

  70 1 1 1  

  75 1 1 1  

  80 1 1 1  

  85 1 1 1  

  90 1 1 1  

  95 1 1 1  
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 Rbor 60 0.622 0.986 0.762  

  65 0.623 0.985 0.763  

  70 0.634 0.985 0.771  

  75 0.644 0.987 0.779  

  80 0.666 0.989 0.796  

  85 0.715 0.988 0.830  

  90 0.763 0.987 0.861  

  95 0.840 0.986 0.907 * 

       

 Rcre 60 1 1 1 * 

  65 1 1 1  

  70 1 1 1  

  75 1 1 1  

  80 1 1 1  

  85 1 1 1  

  90 NA NA NA  

  95 NA NA NA  

       

 Rluc 60 0.630 0.998 0.773  

  65 0.693 1 0.819  

  70 0.753 1 0.859  

  75 0.818 1 0.900  

  80 0.885 1 0.939 * 

  85 0.927 1 0.962  

  90 0.953 1 0.976  

  95 0.977 1 0.988  

       

 Rphi 60 0.487 1 0.655  

  65 0.529 1 0.692  

  70 0.587 1 0.740  

  75 0.667 1 0.800  

  80 0.795 1 0.886  
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  85 0.897 1 0.946 * 

  90 0.944 1 0.971  

  95 1 1 1  

       

 Rsed 60 0.990 0.974 0.982 * 

  65 0.991 0.976 0.984  

  70 0.993 0.978 0.986  

  75 0.995 0.981 0.988  

  80 0.997 0.984 0.990  

  85 0.998 0.987 0.993  

  90 0.999 0.991 0.995  

  95 1.000 0.996 0.998  

       

 Rtri 60 0.920 0.998 0.958 * 

  65 0.921 0.999 0.959  

  70 0.923 0.999 0.959  

  75 0.924 1.000 0.960  

  80 0.925 1.000 0.961  

  85 0.927 1.000 0.962  

  90 0.934 1.000 0.966  

  95 0.947 1.000 0.973  

       

FMqCF        

 FMqCF1 60 0.700 0.790 0.742  

  65 0.766 0.806 0.786  

  70 0.809 0.814 0.812  

  75 0.825 0.811 0.818  

  80 0.847 0.799 0.822 NR 

  85 0.862 0.776 0.817  

  90 0.884 0.765 0.820  

  95 0.896 0.742 0.812  

       

 FMqCF2 60 0.817 0.827 0.822  
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  65 0.859 0.850 0.855  

  70 0.892 0.868 0.880  

  75 0.927 0.881 0.903 * 

  80 0.946 0.885 0.914  

  85 0.969 0.887 0.927  

  90 0.993 0.856 0.919  

  95 1.000 0.700 0.824  

       

 FMqCF3 60 0.938 0.903 0.920 * 

  65 0.949 0.924 0.936  

  70 0.956 0.937 0.947  

  75 0.965 0.950 0.957  

  80 0.973 0.959 0.966  

  85 0.980 0.965 0.972  

  90 0.985 0.968 0.976  

  95 0.988 0.967 0.977  

       

 FMqCF4 60 0.884 0.837 0.860  

  65 0.901 0.849 0.874  

  70 0.916 0.853 0.884  

  75 0.930 0.852 0.889 NR 

  80 0.945 0.840 0.889  

  85 0.962 0.814 0.882  

  90 0.969 0.748 0.844  

  95 0.983 0.532 0.690  

       

 FMqCF5 60 0.969 0.987 0.978 * 

  65 0.972 0.991 0.981  

  70 0.975 0.993 0.984  

  75 0.979 0.994 0.987  

  80 0.982 0.996 0.989  

  85 0.986 0.997 0.991  

  90 0.990 0.997 0.993  
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  95 0.993 0.997 0.995  

       

 LF 60 0.717 0.970 0.825  

  65 0.732 0.974 0.836  

  70 0.746 0.979 0.847  

  75 0.759 0.985 0.857  

  80 0.774 0.989 0.869  

  85 0.795 0.993 0.883  

  90 0.817 0.995 0.897  

  95 0.845 0.997 0.915 * 

       

 Acup 60 0.556 0.833 0.667 NR 

  65 0.500 0.667 0.571  

  70 NA NA   

  75 NA NA   

  80 NA NA   

  85 NA NA   

  90 NA NA   

  95 NA NA   
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Figure S4.1 Comparison of the performance of six supervised machine learning algorithms 

Comparison of the performance of six supervised machine learning algorithms (bagging, 

boosting, artificial neural networks support vector machines, linear discriminant analysis, 

random forests) using training data of 5000 calls. There was little difference between random 

forests and bagging so either algorithm would have been equally viable for building the 

classifier.  However, the overall variance was lower for random forests so this algorithm was 

chosen for the final design. Dots are medians, boxes 25% and 75% quartiles and whiskers 

denote the range. 
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Figure S4.2 Sonograms for “constant frequency” species 

Echolocation call design from each species included in the call type “constant frequency”.  

Call duration and frequency have been scaled to allow comparison between species. Sonogram 

image is for illustrative purposes and should not be used in isolation for species identification. 

Call amplitude represented here is not standardised between species and therefore should not 

be used as a diagnostic feature.  
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Figure S4.3 Sonograms for “frequency modulated quasi constant frequency” and “quasi 

constant frequency” sonotypes/species 

Echolocation call design from each species/sonotype included in the call types “frequency 

modulated quasi constant frequency” and “quasi constant frequency”. Call duration and 

frequency have been scaled to allow comparison between species/sonotypes. The sonogram 

image is for illustrative purposes and should not be used in isolation for species/sonotype 

identification. Call amplitude represented here is not standardised between species and 

therefore should not be used as a diagnostic feature. Calls displayed in blue/purple are artist 

representations of sonotype calls, not true calls  
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Figure S4.4 Sonograms for “frequency modulated” call type 

Echolocation call design from each species included in the call type “frequency modulated”. 

Calls have been separated by whether they are monoharmonic or multi-harmonic. Call 

duration and frequency have been scaled to allow comparison between species. The sonogram 

image is for illustrative purposes and should not be used in isolation for species identification. 

Call amplitude represented here is not standardised between species and therefore should not 

be used as a diagnostic feature.  
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Supplementary Notes. Information for collecting training dataset for Borneo bat acoustic 

classifier 

Reference calls from captured identified bats were collected from in-hand recordings, upon 

release, or from within a flight tent (Supplementary Table 4.1). For release calls, detectors 

were positioned towards each bat as it was released, and recordings continued until the bat 

was out of range (typically 2 seconds). The first 5 seconds or first ten calls in each recording 

were discarded to remove non-natural calls. Rhinolophid and hipposiderid species were 

recorded in-hand to preclude Doppler Shift Compensation and capture the resting frequency 

of their echolocation signals. Field recordings were conducted in 26 locations in old-growth 

forest (3 locations; 74 hours), twice-logged forest (5 locations; 152 hours), heavily logged 

forest (11 locations; 345 hours), forest remnants (5 sites; 247 hours), as well as oil palm (1 

site; 39 hours) and acacia plantations (1 site; 25 hours). Sites were surveyed acoustically using 

SongMeter 2 (SM2BAT) full spectrum detectors (Wildlife Acoustics Inc, USA). Calls were 

collected in the evening and early morning (18:00-06:20). Detectors were set to automatically 

record bats in real-time with a full spectrum resolution of 16 bit, with a sample rate of 384 

kHz, on an adaptive trigger level relative to noise floor of 18 SNR across consecutive nights 

per location. 
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5.1  Abstract 

1. Logging is the most widespread disturbance in tropical forests, altering ecological 

communities, functions, and services. However, many species can persist in 

logged forests, particularly where disturbance levels are comparatively low. 

Despite a growing knowledge of logging effects on wildlife, there remains little 

information for palaeotropical bats, in part due to major challenges in monitoring, 

particularly for aerial insectivorous species. 

2. We integrated remote sensing data from passive acoustic bat detectors with 

LiDAR-derived measures of forest structure from a human-modified landscape in 

Sabah, Borneo. Our appraisal benefitted from a semi-automated classifier of bat 

calls that vastly speeds up the analysis of acoustic recording data. Across a 

gradient of habitat disturbance comprising old-growth forest, repeatedly logged 

forest, and tree plantations, we recorded 105,576 bat passes from 21 taxa. 

3. We show that logging pressure (as depicted by changes to habitat quality e.g., 

canopy height or forest structure) had negligible impact on the acoustic diversity 

and activity of common bats. However, the extent of high-biomass forest was 

positively associated with bat activity, as was local topography. Logged forest 

supported higher levels of activity for several common taxa compared to old-

growth forest. Across the landscape, plantations supported the lowest levels of bat 

activity, and several species were not recorded from this habitat.   

4. We found different call groups demonstrated different responses to forest 

disturbance. Sheath-tailed bats (Emballonura spp.) were active across all habitat 

types and were the most resilient to logging. Edge hawking bats were more 

prevalent in highly forested and topographically-rugged areas. Horseshoe and 

leaf-nosed bats (Rhinolophoidea) demonstrated idiosyncratic responses to logging 

but were consistently absent from plantations. 

5. Synthesis and applications. Our findings demonstrate how coupling information 

from acoustic detectors, automatic classification algorithms, and LiDAR data can 

be used to assess the impacts of land-use change on underrepresented taxa.  In 

doing so, we show that logged areas can provide an important refuge for many 

common bat species in palaeotropical forest, but do not capture the full breadth of 
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forest-specialist species found in old-growth forests. Nevertheless, logged forests 

provided a substantially better habitat for bats than industrial tree plantations. 

Keywords: Chiroptera; Southeast Asia; acoustic monitoring; land-use change, biodiversity; 

remote sensing
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5.2  Graphical abstract 
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5.3  Introduction 

Tropical forests provide valuable habitat for some of the highest levels of biodiversity in the 

world, while contributing to the livelihoods of millions of people (Edwards, Tobias, et al. 

2014; Meijaard et al. 2005; Putz et al. 2012). More than 25% of the world’s tropical forests 

are allocated to logging (Edwards, Tobias, et al. 2014), making this activity the most 

widespread disturbance for these globally-important ecosystems (Blaser et al. 2011; 

Costantini, Edwards and Simons 2016). As tropical forests continue to be logged, and often 

subsequently converted for other land-uses (primarily agriculture), it is important to 

understand how these developments could impact biodiversity.  

Logged forests are increasingly recognised as valuable wildlife habitats. A pantropical meta-

analysis comprising 48 studies showed that lightly logged forests (e.g. < 10 m3 ha−1) can 

support more species of mammals, amphibians, and invertebrates than old-growth forests 

(Burivalova, Şekercioğlu and Koh 2014). This implies that logged forests should be retained 

or better protected for biodiversity conservation rather than being cleared for other land uses 

(Meijaard and Sheil, 2007; Putz et al., 2012). However, logging disturbance is not uniform. 

The extent of disturbance - and hence impact on biodiversity - depends on the number of 

logging cycles, logging intensity, and extraction techniques (Bicknell et al., 2014). Light 

Detection and Ranging (LiDAR) remote sensing provides a method through which the habitat 

degradation caused by logging activities can be characterised. Using LiDAR, several studies 

have shown how logging can impact tropical forest structure, including reducing above-

ground biomass and impacting canopy structure (e.g., increasing canopy gap area, reducing 

canopy height) (d’Oliveira et al. 2012; Kent et al. 2015; Rangel Pinagé et al. 2019). While 

logging can be much less detrimental than the conversion of forest to other land uses (Gibson 

et al. 2011; Wearn et al. 2017), it can still cause substantial population declines among 

specialist taxa (Burivalova, Şekercioğlu and Koh 2014; Thorn et al. 2018).  

Despite the extensive literature on the effects of logging on biodiversity, there have been 

relatively few studies investigating how logging impacts tropical bats. This is important 

because bats represent the second most diverse mammalian order, with over 1,400 species 

globally (Simmons and Cirranello 2021a). Bats also provide valuable ecosystem services as 

seed dispersers, pollinators, and suppressors of insect populations (Kunz et al. 2011). As such, 

bats are considered important bioindicators of ecosystem health (Jones et al. 2009). Presley et 

al. (2008) outlined three potential demographic responses for bats in logged forests: (1) 

common species remain common but decrease in abundance; (2) common species decline in 

abundance, becoming rare in logged forests; or (3) rare species are locally absent from logged 
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forest.  Studies so far have found that bat responses are highly variable between different 

ensembles of species, particularly dietary guilds (Bicknell et al., 2015; Castro et al., 2021; 

Castro-Arellano et al., 2009; Clarke et al., 2005; Presley et al., 2008). Small, common 

phytophagous species (i.e. frugivorous and nectarivorous species) that rely on pioneering 

plants for foraging opportunities often respond positively to logging disturbance (Clarke, 

Rostant and Racey 2005; Presley et al. 2008). On the other hand, larger, insectivorous or 

animalivorous phyllostomid species are more vulnerable to logging, as well as habitat 

disturbance more generally, and experience declines in diversity and abundance (Brändel et 

al., 2020; Clarke et al., 2005; Farneda et al., 2015).   

The study of bats in tropical regions has been restricted by limitations in sampling techniques. 

Most studies rely on live-capture techniques (primarily mist-netting or harp trapping) which 

are logistically challenging and introduce bias in the taxonomic and ecological coverage of 

focal species sampled. Mist-netting is the main method applied in the neotropics as it is highly 

effective for sampling phyllostomid bats. As a result, most logging-effect studies involving 

bats have been undertaken in the American tropics (e.g., Bicknell et al., 2015; Castro et al., 

2021; Castro-Arellano et al., 2009; Clarke et al., 2005). In contrast, much less research has 

been undertaken in the Asian and African tropics as the bat fauna is dominated by aerial 

insectivorous taxa (i.e. those that use ultrasonic calls for orientation and foraging insect prey), 

which are poorly represented using nets (Castro & Michalski, 2014; Meyer et al., 2016). Of 

the studies undertaken, most have been conducted in Malaysia and Indonesia using mist-nets 

(Danielsen and Heegaard 1995; Zubaid 1993) or harp traps (Joann Christine, Fletcher and Abd 

Rahman 2013; Matthew J. Struebig et al. 2013). These capture-based studies have 

demonstrated that logging impacts community composition, reduces species richness, and 

causes abundance declines (Danielsen and Heegaard 1995; Joann Christine, Fletcher and Abd 

Rahman 2013; Zubaid 1993). The most comprehensive study of bat responses to logging in 

the region examined bat assemblages across a habitat disturbance gradient, comparing old-

growth forest to logged forest areas that had undergone various extraction cycles (Struebig et 

al. 2013). There was no discernible effect of logging on bat species richness, but species 

composition differed significantly between old-growth and repeatedly logged forest sites. This 

shift in community composition mirrors similar changes observed in the neotropical bat fauna 

in response to logging (Castro-Arellano et al. 2009; Clarke, Rostant and Racey 2005). 

However, even harp traps are biased to a subset of the insectivorous bat fauna that can be 

readily captured in cluttered environments such as forests, and so miss many of the 

echolocating fauna utilising other habitats. Therefore, more research is needed to determine 

how different logging disturbances impact bat assemblages in palaeotropical regions.   
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Here, we quantify bat diversity and activity along a disturbance gradient from protected, old-

growth forest, through different degrees of logging pressure, to plantations. Our study is based 

in Sabah, Borneo, which supports high levels of vertebrate biodiversity,  and high-value timber 

species (Brookfield and Byron 1990). The forest landscape has a legacy of high logging 

intensity (cumulative extraction rates between 150 and 179 m3 ha-1) (Matthew J. Struebig et 

al. 2013). As 72% of Borneo’s bat species are echolocating insectivores (Phillipps & Phillipps, 

2016), we use acoustic monitoring coupled with a novel classification algorithm as an 

unintrusive alternative to traditional capture methods. We subsequently examine how bats 

respond to landscape changes using airborne LiDAR of forest metrics. Specifically, we sought 

to use remote sensing technologies to characterise (i) acoustic richness, (ii) community 

composition, and (iii) bat activity in each disturbance type, while also (iv) assessing possible 

relationships between habitat extent and quality and bat activity.  

 

5.4  Materials and methods 

5.4.1  Study area and sampling design 

Fieldwork was undertaken within the Kalabakan and Ulu Segama Forest Reserves in and 

around the Stability of Altered Forest Ecosystems Project (SAFE; www.safeproject.net) 

(443’N, 117o35’E) in Sabah, Malaysian Borneo (Figure 51). The landscape is characterised 

by lowland and hill dipterocarp forest, which was initially logged in the 1970s followed by 

two subsequent rotations in the late 1990s and early 2000s. The forest in Ulu Segama was left 

to recover (‘twice-logged forest’; 3 sampling blocks; LFE, LF2, LF3) (Supplementary Table 

5.1). However, except for designated fragments and riparian reserves, the forest in Kalabakan 

was subject to salvage logging (the removal of all commercially valuable trees: ‘heavily 

logged forest’; 6 blocks; A-F). This highly disturbed forest has a high density of roads and 

skids, few emergent trees, and is dominated by pioneer and invasive vegetation (Struebig et 

al., 2013). The landscape adjoins ca. 1 million ha of continuous forest, including old-growth 

forest in Maliau Basin Conservation Area (‘Old Growth Forest’; 2 blocks; OG2, OG3). The 

forest is surrounded by a mosaic of tree plantations, mostly oil palm (Elaeis guineensis), but 

also Acacia (Acacia mangium; ‘Tree Plantation; 1 block; AC1) planted around 2000.  
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Figure 5.1 Map of the Stability of Altered Forest Ecosystem Project (SAFE) and sampling 

sites in Maliau Basin, Malaysian Borneo 

 (a) SAFE and Maliau in Malaysian Borneo, (b) sample blocks across SAFE and examples 

of two LiDAR variables across multiple survey sites, and (c) the two sampling blocks in 

Maliau with the corresponding LiDAR coverage. 

 

5.4.2  Defining the forest disturbance gradient 

Logging activity varied substantially over the landscape. We characterised the resulting 

structural disturbance to forests using airborne light detection and ranging (LiDAR) products 

to quantify the extent (i.e., habitat quantity) and structure (i.e., habitat quality) of forest, and 
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hence define a disturbance gradient around our sampling sites. Nine covariates were extracted 

from 30 m resolution LiDAR layers produced in November 2014 from a Leica ALS50-II 

sensor (Jucker et al., 2018). Of these, three were ultimately included in the modelling. From 

these data, we utilised information on aboveground vegetation biomass (AGB), which was 

calculated via a Borneo-specific model (see Jucker et al. 2018 for full details). To distinguish 

forest from non-forest, and hence estimate ForestExtent around sample sites (i.e., habitat 

quantity; binary; forest vs not forest), we applied a threshold to the AGB maps above which 

cells were classified as forest. Our definition of forest excluded areas of plantation and highly 

degraded Young Regenerating Forest, and was defined as vegetation biomass ≥160 t ha-1 (i.e. 

equivalent to above-ground carbon ≥ 75 tCha-1; Martin and Thomas, 2011) following the High 

Carbon Stock Approach (HCS; The HCS Approach Toolkit, 2017). We chose a more 

conservative forest categorisation, as areas < 160 t ha-1 biomass were subject to salvage 

logging and therefore, more closely resemble areas of scrub and forest clearance.  

We also extracted two measures of forest structure as proxies of habitat quality: mean canopy 

height (CanopyHeight; a continuous variable) and plant area density shape (Shape; 

continuous; morphological measurement of the relative distribution of vegetation within the 

canopy) (Jucker, Asner, et al. 2018; Swinfield, Milodowski, et al. 2020). There is little 

research regarding bats and LiDAR metrics, but Shape is known to be an important predictor 

of other forest-dependent mammal species (Nicolas J. Deere et al. 2020). Previous research 

highlighted that CanopyHeight and average topographic ruggedness (Topography; 

continuous) can be important predictors for bat occurrence in the project area (Mullin et al. 

2020). Therefore, after the initial exploratory analysis, we included Topography which was 

measured within 50 m of each point using Shuttle Radar Topography Mission data, and 

converted from a digital elevation model to a topographic ruggedness index, according to 

Wilson, O'Connell, Brown, Guinan, and Grehan (2007). All covariates were extracted from 

the maps at a 100, 200, and 500 m buffer radius. Final models were analysed using 100 m as 

these models best fit the data. Spatial data processing was implemented in ArcGIS 10.2.1 

(ESRI). 

5.4.3  Acoustic sampling, processing, and bat identification 

Bats were recorded using SongMeter-2 automated recorders (Wildlife Acoustics) fitted with 

an omnidirectional ultrasonic SMX-US microphone between April and May 2011 and April 

and June 2012 (Supplementary Table 5.1). Recorders were stationed across 47 sample points 

at 1.5-2.0 m height and set to record nightly bat activity (18:15-06:15) between one and three 

consecutive nights. Each recorder was set to record by triggers of high frequency sounds 
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appropriate for echolocating bats in the region (sampling rate 384 kHz, 16-bit resolution; high 

pass filter 12 kHz (fs/32); trigger level 18 signal to noise ratio).  

All preprocessing of the recordings was undertaken using Kaleidoscope v.5.1.9g software 

(Wildlife Acoustics) following procedures outlined in Yoh et al. (2022). Files were divided 

into 5-second long sequences to define a bat pass as a unit of activity (Torrent et al. 2018). 

Calls were automatically assigned to call type, sonotype (a group of species whose calls are 

indistinguishable; López-Baucells et al., 2021), or species, and any calls that failed to meet 

specific confidence thresholds were manually verified (Yoh et al. 2022). Through this process, 

calls were first identified to one of four call types (Supplementary Figure 5.2): frequency 

modulated (hereafter referred to as whispering bats), constant frequency (Rhinolophoidea 

bats), frequency modulated quasi constant frequency (edge/open hawking bats), and quasi-

constant frequency (Emballonura alecto/monticola). Those identified as an edge/open 

hawking bat were automatically classified further to one of six sonotypes. Calls classified as 

a Rhinolophoid species were further differentiated to 17 taxa.  

The classifier identified 158,563 files containing bat passes. Of these files, 71,482 included 

bat passes that required manual verification. All bat passes that did not meet the specified 

confidence thresholds (26,351 out of 71,482), excluding those for whispering bats, were 

manually identified in Kaleidoscope Viewer by a single researcher (NY) to reduce potential 

bias. Whispering bats represented the largest proportion of files to be manually verified 

(45,131 files). We checked 50% of whispering bat passes and found this call type was easily 

mistaken for environmental noise at low confidence and < 1% contained true bat passes. 

Therefore, we discarded whispering bat calls that did not meet the confidence threshold. 

Activity (the sum of bat passes per sonotype/species) was aggregated to date to standardise 

activity across the different sampling points.  

5.4.4  Statistical analysis 

5.4.4.1 Acoustic diversity along a disturbance gradient 

We constructed species/sonotype accumulation curves from activity data to confirm that 

acoustic sampling was adequate for each habitat. Curves were rarefied via 9999 permutations 

in the R package iNEXT (Hsieh, Ma and Chao 2016), and repeated for each site to generate 

richness values and associated 95% confidence intervals. As a sonotype does not necessarily 

represent the same unit of diversity as a species (e.g., a sonotype can represent 2-10 species), 

we use call/sonotype richness to represent the acoustic diversity in the landscape, not the 

overall number of species.  
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5.4.4.2 Bat community composition and habitat association 

We used non-metric multidimensional scaling (NMDS) ordinations based on Bray-Curtis 

dissimilarity coefficients of log10-transformed bat activity data to determine whether the 

structure of bat communities reflected the various habitat type or the disturbance gradient. One 

taxon (Hipposideros cineraceus/dyacorum) was removed from the analysis as it was only 

recorded on a single occasion. Ordinations were based on 9999 permutations in the R package 

“vegan” (Oksanen et al. 2020) specifying two dimensions. We used PERMANOVA from the 

package “RVAideMemoire” (Hervé 2021) to test for differences in bat community 

composition between habitats.  

To determine if there were differences in bat activity between forest sites and tree plantations, 

we first compared activity between habitats using Kruskal-Wallis tests followed by Dunn post-

hoc tests. Tests were implemented separately for each call type and also for overall levels of 

bat activity, and all p-values were adjusted using the Benjamini-Hochberg method to account 

for the risk of false positives in call detection (Haynes 2013). To determine if there was a 

relationship between habitat covariates and bat activity, we constructed Generalized Additive 

Models for Location, Scale and Shape (GAMLSS) appropriate for the Weibull distribution of 

these data (Stasinopoulos et al. 2020) - using the “GAMLSS” package. LiDAR datasets were 

not available for tree plantation sites and so were omitted from these analyses. Covariates with 

high collinearity (r  ≥  0.7) were not included in the same models. Covariates were centred and 

scaled to one unit standard deviation. Models were performed separately for total bat activity, 

call type, and the four dominant taxa. Habitat type (HabitatType; categorical; three levels) was 

included to assess if there were differences in activity not explained by the other measures of 

habitat quality or extent. We then model-averaged the final global models using the dredge 

function from package “MumIn” to identify the best models (ΔAIC < 2; Supplementary Table 

5.2). We inspected the final models for the goodness of fit using residual diagnostics 

(Burnham & Anderson, 2002). All analysis was performed using R version 4.1.1 (2021-08-

10) statistical software (R Core Team 2017).  

 

5.5  Results 

From our data of remotely sensed bat activity, we identified 105,576 bat passes from 21 taxa 

across the landscape. More than 76% of all bat activity was represented by five taxa: 

Emballonura alecto/monticola (18.6% of calls), Sonotype 6 (17.3%), Rhinolophus sedulus 

(15.1%), Sonotype 5 (13.2%), and Rhinolophus trifoliatus (12.2%; Table 1). Two species (H. 
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cineraceus/dyacorum and Rhinolophus philippinensis) were only recorded in heavily logged 

forest, once and on three occasions respectively. For activity, the composition of the top five 

taxa was similar across habitats, consisting mostly of common, generalist species. Sonotype 6 

and E. alecto/monticola were among the top five most active taxa across all habitat types 

(Table 5.1).  

Table 5.1 Total bat passes per sonotype/species in each habitat along the disturbance gradient 

For each habitat type, relative bat passes (total bat passes/total nights surveyed) are provided 

in brackets for comparison.  

  

  Old-

growth  

forest 

Twice-

logged 

forest 

Heavily 

logged 

forest 

Tree 

Plantation 

Total nights surveyed 23 36 73 12 

Total detector sites  8 12 23 4 

 
    

Whispering bats  

(e.g., Kerivoula spp.) 

628 

(27.3) 

1,988 

(55.2) 

2,556 

(35.0) 

49 

(4.1) 
     

Rhinolophoidea bats 
    

 
Hipposideros 

cineraceus/dyacorum 

0 0 1 

(< 0.1) 

0 

 
Hipposideros cervinus 5 

(0.2) 

54 

(1.5) 

9 

(0.1) 

22 

(1.8) 

 
Hipposideros diadema 248 

(10.8) 

36 

(1.0) 

33 

(0.5) 

7 

(0.6) 

 
Hipposideros galeritus 37 

(1.6) 

162 

(4.5) 

36 

(0.5) 

5 

(0.4) 

 
Hipposideros ridleyi 3 

(0.1) 

3 

(0.1) 

0 0 

 
Rhinolophus acuminatus 229 

(10.0) 

165 

(4.6) 

262 

(3.6) 

91 

(7.6) 

 
Rhinolophus affinis 0 0 2 

(< 0.1) 

2 

(0.2) 

 
Rhinolophus borneensis 68 

(3.0) 

822 

(22.8) 

143 

(2.0) 

1 

(0.1) 
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Rhinolophus creaghi 1 

(< 0.1) 

443 

(12.3) 

4 

(0.1) 

8 

(0.1) 

 
Rhinolophus luctus 503 

(21.9) 

80 

(2.2) 

181 

(2.5) 

5 

(0.4) 

 
Rhinolophus philippinensis 0 0 3 

(< 0.1) 

0 

 
Rhinolophus sedulus 196 

(8.5) 

9,558 

(265.5) 

6,069 

(83.1) 

86 

(7.2) 

 
Rhinolophus trifoliatus 1,703 

(74.0) 

1,611 

(44.8) 

9,542 

(130.7) 

42 

(3.5) 

     

Edge/open hawking bats     

 
Sonotype 1 10 

(0.4) 

39 

(1.1) 

271 

(3.7) 

95 

(7.9) 

 
Sonotype 2 

(e.g., Hesperoptenus blanfordi) 

241 

(10.5) 

6,151 

(170.9) 

980 

(1.3) 

108 

(9.0) 

 
Sonotype 3  

(e.g., Pipistrellus stenopterus) 

2,373 

(103.2) 

504 

(14.0) 

2,053 

(28.1) 

100 

(8.3) 

 
Sonotype 4 

(e.g., Glischropus tylopus) 

770 

(3.3) 

302 

(8.9) 

499 

(6.8) 

534 

(44.5) 

 
Sonotype 5 

(e.g., Myotis muricola) 

3,911 

(170.0) 

2,883 

(80.1) 

6,180 

(84.7) 

961 

(80.1) 

 
Sonotype 6 

(e.g., Chaerephon plicatus) 

9,249 

(402.1) 

775 

(21.5) 

7,019 

(96.2) 

1,256 

(104.7) 

      

Emballonura alecto/monticola 
2,590 

(112.6) 

4,634 

(128.7) 

12,410 

(170.0) 

463 

(38.6) 
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5.5.1  Acoustic diversity  

In three of the four habitats, acoustic richness reached or approached an asymptote after 

10,000 bat calls were recorded (Figure 5.2). However, in the heavily logged forest, diversity 

was expected to continue increasing for at least double this volume of activity before levelling 

off. Overall, the acoustic diversity between sites was very similar, ranging between 15.8 and 

17.2 taxa (Supplementary Table 5.3).  

 

Figure 5.2 Species/sonotype diversity along the disturbance gradient 

Rarefied accumulation curves of species/sonotype diversity for each of four habitat types 

based on 9999 permutations. Dashed lines indicate extrapolation beyond the bounds of 

observed data. Shading indicates the lower and upper 95% confidence limits. 
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5.5.2  Bat community composition and association with habitats 

The NMDS ordination of bat activity revealed substantial variation in taxonomic composition 

across the landscape and overlap between the various habitat types (Figure 5.3). The greatest 

variation occurred among twice-logged sites and the least among tree plantation sites. Across 

the landscape, there was a significant difference in bat community composition between 

habitats (PERMANOVA: R2 = 0.17, p = 0.003), driven by differences between the heavily 

logged forest and the twice-logged forest (pairwise comparisons p = 0.02).  

 

Figure 5.3 Nonmetric multi-dimensional scaling showing the (dis)similarities between bat 

communities across the four habitat types. 

 

We found significant differences in bat activity between habitats, for total activity (H(3) = 

10.126, p = 0.018) and for each call type (whispering bat activity - H(3) = 25.483, p < 0.001; 

Rhinolophoid activity - H(3) = 45.251, p < 0.001; edge/open hawking bats - H(3) = 15.763, p 

= 0.001; Emballonura spp. activity - H(3) = 10.039, p = 0.018) (Figure 4). Activity for all call 

types was lower in the plantations compared to forest (Supplementary Table 5.4; Figure 5.4). 

GAMLSS analyses revealed that bat activity levels were similar amongst the three forest types 

(old-growth forest, twice-logged forest, heavily logged forest; Figures 5.4-5.5). Overall bat 

activity was positively associated with ForestExtent but was not associated with any measure 

of habitat quality (Figure 5.5). The activity of edge/open hawking bats was also positively 
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associated with ForestExtent as well as Topography. Both edge/open hawking bats and 

whispering bats were positively associated with Topography. Whispering bats were the only 

call type to show a significant difference between habitat types, and neither Rhinolophoid 

activity nor Emballonura spp. activity exhibited a response to any habitat covariate. We found 

differences between the responses of individual taxa and these did not reflect responses at the 

call type level (Figure 5.6).   
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Figure 5.4 A comparison of overall nightly bat activity across each of the four habitat types.  

Each point represents an individual recording location. (a) Total bat activity, (b) whispering bats activity, (b) Rhinolophoid bat activity, (c) edge/open bat activity, and (d) Emballonura 

alecto/monticola activity. Horizontal lines are median values, the boxes are between the 25th and 75th percentiles, and the whiskers represent the interquartile range. Statistical 

significance of the comparisons is according to the Dunn test results - * < 0.05, ** < 0.01, *** < 0.001.  
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Figure 5.5 Caterpillar plots from the General Additive Models for Location, Shape, and Space (including 95% confidence interval) 

(a) Total activity, (b) whispering bats activity, (b) Rhinolophoidea bat activity, (c) edge/open bat activity, and (d) Emballonura alecto/monticola activity. Significant 

associations are shown with a triangle point and highlighted in blue. Models are listed in Supplementary Table 5.2.
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Figure 5.6 Caterpillar plots from the General Additive Models for Location, Shape, and Space 

(including 95% confidence interval) for the dominant sonotypes/species  

(a) Rhinolophus trifoliatus activity, (b) Rhinolophus sedulus activity, (c) Sonotype 5 activity, 

and (d) Sonotype 6 activity. Significant associations are highlighted in blue. Models are listed 

in Supplementary Table 5.2.   
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5.6  Discussion 

Using a novel approach, pairing a semi-automated classifier of bat calls with LiDAR-derived 

forest structural metrics, we found little evidence that logging disturbance negatively affected 

the diversity or composition of bat communities across a heavily modified landscape. 

Although we observed discernible differences in bat community composition between twice-

logged forest and heavily logged forest, both these disturbed forest types supported similar bat 

communities to old-growth forest. Although bats persisted in highly disturbed logged forests, 

bat activity declined in tree plantations and several taxa were not recorded in this habitat. 

These findings support previous studies of other vertebrate groups that show logged forests 

provide better quality habitat for many forest species compared to plantations, such as oil palm 

and Acacia (Edwards, Magrach, et al. 2014; Gibson et al. 2011). Species most adversely 

affected by logging tend to have narrow niche breadth and are adapted to the stable conditions 

usually found in the forest interior. This includes species dependent on old-growth trees for 

feeding or nesting (including cavity-nesting birds and saproxylic insects), large-bodied/long-

lived species with low fecundity, insectivorous/animalivorous species, or target species for 

poachers (Bicknell & Peres, 2010; Costantini et al., 2016; Edwards et al., 2014; Thorn et al., 

2018). 

Logging pressure (e.g. as reflected by timber extraction rate) is an important determinant of 

how selective logging affects biodiversity (Burivalova, Şekercioğlu and Koh 2014; Nicolas J. 

Deere et al. 2020). Although high numbers of species are reported from twice-logged tropical 

forests (Putz et al. 2012), further logging cycles deteriorate habitat conditions to such an extent 

that forest-specialist species decline and taxa associated with forest edges or gaps proliferate 

to take their place (Cleary et al., 2007; Edwards et al., 2014). These changes in community 

composition have been observed for multiple taxonomic groups and collectively affect 

ecosystem functioning (Burivalova et al., 2014; Cleary et al., 2009; Edwards et al., 2014). In 

contrast, our acoustic study of palaeotropical bats implies that logging pressure does not 

necessarily reduce the habitat value of logged forest for common bat taxa. We found no 

indication that deterioration of habitat quality (e.g., reductions in canopy height) negatively 

impacted acoustic diversity or overall bat activity. Unlike previous studies of riparian forest 

remnants in the landscape (Mullin et al. 2020), we found habitat extent was more important 

than habitat quality for determining bat activity. However, we utilised a more conservative 

measure of forest extent based on LiDAR data that represents high-quality forest and as such, 

excludes young regenerating forests. Therefore, our results imply that once a minimum 

threshold is reached, habitat extent becomes more pivotal in predicting overall bat activity. 
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Species adapted to foraging in more open spaces, such as sheath-tailed bats  

(E. alecto/monticola), were the most resilient to disturbance, as reflected by comparable levels 

of activity within plantations and old-growth forest. Edge/open hawking bats also maintained 

similar activity levels in plantations, but this was positively associated with the availability of 

good quality habitat, as determined by greater forest extent. Bats of all other call types declined 

substantially in tree plantations. We observed one of the demographic responses outlined by 

Presley et al. (2008), the decline of rare species in logged forests. For example, H. ridleyi (a 

forest-specialist species classified as Vulnerable by the IUCN, 2022) was absent from both 

the heavily logged forest and tree plantations, though persisted in twice-logged forest. 

However, we also observed positive demographic responses to logging. Several common taxa 

appeared to benefit from logging disturbance, in line with findings from Joann Christine, 

Fletcher and Abd Rahman (2013). Positive responses to logging have also been observed for 

terrestrial mammals in the same study system (Wearn et al. 2017). We, therefore, suggest an 

additional demographic response, namely that common species remain common and increase 

in abundance.  

Overall levels of bat activity provided a poor representation of how each call type and taxon 

responded to habitat disturbance. Edge/open hawking bat activity was dominated by two 

sonotypes (sonotype 5 and 6) which together constitute 67% of activity for this call type. 

Overall, edge/open hawking bat activity was positively associated with increased habitat 

extent and topography ruggedness. However, it is unclear which sonotype drives the 

relationship at the call type level as neither sonotype exhibited a relationship between habitat 

extent or topography. Different Rhinolophoid species indicated different susceptibility to 

logging disturbance, as indicated by changes in their activity. This aligns with the known 

ecology of this group. Unlike edge/open hawking bats, the call type Rhinolophoidea includes 

forest specialists as well as species adapted to more disturbed areas, such as forest edge/gaps 

(Kingston 2013; Furey and Racey 2016). Therefore, it is to be expected that there would be 

more heterogeneity between the responses of species in this call type, compared to more 

ecologically similar species in the other call types.  R. sedulus and R. trifoliatus collectively 

represented 89% of activity for this call type and exhibited contrasting responses to logging, 

consistent with those observed by Struebig et al. (2013). Repeated logging cycles reduce 

roosting opportunities for forest-roosting species, such as woodpeckers (Picinae spp.). As 

such, forest roosting species are considered to be more susceptible to logging disturbance than 

those that dwell elsewhere (Costantini, Edwards and Simons 2016; Struebig et al. 2013).  

 Logging appeared to positively influence the activity of forest-specialist whispering bats (e.g., 

woolly bats, Kerivoula spp.), though acoustic sampling remains problematic to draw robust 
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conclusions for this group because the low-intensity, high-frequency calls typical of 

whispering bats remain difficult to detect and record (Kingston, 2013; Russo et al., 2018). 

Capture studies using harp traps demonstrate whispering bats are highly sensitive to logging 

and forest fragmentation (Kingston, Francis, et al. 2003; Struebig et al. 2008; Struebig et al. 

2013). This difficulty in detection suggests that for whispering bat species, acoustic 

monitoring is unlikely to fully capture their responses to habitat disturbance and degradation. 

However, for the wider palaeotropical bat species community, our study demonstrates 

acoustic monitoring and semi-automated classification of calls is an effective survey method.  

 

5.7  Conclusions 

Logging continues to be the most extensive disturbance affecting tropical forests worldwide. 

Using remote sensing technologies, we show that even heavily logged forest areas can support 

comparable levels of palaeotropical bat activity to old-growth forest. However, old-growth 

forest remains an important habitat for several rarer, forest-specialist species which do not 

persist in disturbed habitats. We demonstrate how acoustic monitoring methods can be used 

to incorporate aerial insectivores into biodiversity studies, and therefore combining acoustic 

data with live-trapping information could help better evaluate the more subtle, species-specific 

impacts of logging disturbance.   
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5.9  Supplementary information 

Table S5.1 Site descriptions for each of the acoustic survey points in Sabah, Borneo 

Block refers to the Stability of Altered Forest Ecosystem’s (SAFE) site codes during 2011-2012. Supplementary information 
 

Habitat type Site Description Block Point No. of 

nights 

Total 

minutes 

Latitude Longitude Start 

Date 

End date 

 Old-growth 

forest 

The OG2 block of control 

sites consists of old-growth 

forest which has undergone 

no logging 

OG2 1 2 1480 4.746902 116.9683 2012-

Jun-01 

2012-Jun-

03 

    2 2 1480 4.751981 116.9663 2011-

Apr-15 

2011-Apr-

17 

    3 2 1480 4.751261 116.9662 2011-

Apr-19 

2011-Apr-

21 

    4 2 1480 4.748933 116.9661 2011-

Apr-21 

2011-Apr-

23 

  The OG3 block of control 

sites in Maliau Basin has 

OG3 1 1 740 4.735662 116.9546 2011-

May-24 

2011-May-

25 
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undergone limited selective 

logging to increase access  

    2 2 1480 4.734725 116.9542 2011-

Apr-26 

2011-Apr-

28 

    3 2 1480 4.735012 116.9548 2011-

Apr-28 

2011-Apr-

30 

    4 2 1480 4.735926 116.9568 2011-

Apr-30 

2011-May-

02 

    5 1 740 4.735926 116.9568 2011-

May-03 

2011-May-

04 

 Twice-logged 

forest 

Twice logged forest to the 

Northeast of the SAFE 

experimental area. Forest 

has been recovering since 

the early 2000’s. 

LF2 1 2 1480 4.77019 117.698 2012-

May-05 

2012-May-

07 

    2 2 1480 4.768901 117.6982 2012-

May-07 

2012-May-

09 
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    3 2 1480 4.769667 117.6983 2012-

May-09 

2012-May-

11 

    4 2 1480 4.768477 117.7001 2012-

May-11 

2012-May-

13 

   LF3 1 2 1480 4.753733 117.691 2012-

May-05 

2012-May-

07 

    2 2 1480 4.756727 117.6903 2012-

May-07 

2012-May-

09 

    3 2 1480 4.758399 117.6913 2012-

May-09 

2012-May-

11 

    4 1 740 4.757936 117.6932 2012-

May-11 

2012-May-

12 

  Twice logged forest to the 

north of the SAFE 

experimental area and at the 

edge of the continuous 

forest. Forest has been 

LFE 1 2 1480 4.724952 117.5969 2012-

Jun-12 

2012-Jun-

14 
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recovering since the early 

2000’s. 

    2 2 1480 4.726703 117.5962 2012-

Jun-14 

2012-Jun-

16 

    3 4 2960 4.724116 117.597 2012-

May-29 

2012-Jun-

02 

    4 2 1480 4.724393 117.5971 2012-

Jun-02 

2012-Jun-

04 

 Heavily logged 

forest 

Fragment of forest in a 

matrix of repeatedly logged 

forest.   

Frag. A 1 2 1480 4.709926 117.6463 2012-

May-22 

2012-May-

24 

    2 2 1480 4.710397 117.6538 2012-

May-20 

2012-May-

22 

    3 2 1480 4.708927 117.653 2011-

May-24 

2011-May-

26 

    4 3 2220 4.710989 117.6508 2011-

May-19 

2011-May-

22 
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    5 1 740 4.709926 117.6463 2011-

May-26 

2011-May-

27 

 Heavily logged 

forest 

Fragment of forest in a 

matrix of repeatedly logged 

forest.   

Frag. B 1 2 1480 4.72994 117.6197 2012-

Apr-26 

2012-Apr-

28 

    2 2 1480 4.729936 117.6197 2012-

Apr-21 

2012-Apr-

23 

    3 2 1480 4.73543 117.6182 2012-

Jun-13 

2012-Jun-

15 

    4 2 1480 4.730977 117.6185 2012-

Apr-23 

2012-Apr-

25 

   Frag. C 1 1.5 930 4.709915 117.6249 2011-

May-17 

2011-May-

19 

    2 4 2960 4.709754 117.623 2011-

May-12 

2011-May-

17 

    3 2 1480 4.708323 117.6241 2012-

Apr-20 

2012-Apr-

22 
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    4 2 1480 4.708793 117.6238 2012-

Apr-22 

2012-Apr-

24 

   Frag. D 1 2 1480 4.71509 117.584 2011-

May-07 

2011-May-

09 

    

Frag. E 

Frag. F 

2 2 1480 4.71169 117.5926 2011-

May-09 

2011-May-

11 

 3 2 1480 4.71107 117.5875 2012-

Apr-19 

2012-Apr-

21 

 4 1 740 4.71234 117.5859 2011-

May-11 

2011-May-

12 

 1 2 1480 4.693655 117.5814 2012-

Apr-26 

2012-Apr-

28 

 2 2.5 1551 4.690838 117.5759 2012-

Apr-23 

2012-Apr-

26 

 3 2 1480 4.687996 117.5904 2012-

Apr-19 

2012-Apr-

21 
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 4 2 1480 4.695058 117.5783 2012-

Apr-21 

2012-Apr-

23 

 1 2 1480 4.694425 117.5412 2012-

May-21 

2012-May-

23 

 2 2 1480 4.697215 117.5432 2012-

May-24 

2012-May-

26 

 3 2 1480 4.697581 117.5372 2012-

May-16 

2012-May-

18 

 4 2 1480 4.696135 117.5401 2012-

May-27 

2012-May-

29 

        

 Tree plantation Acacia plantations Acacia 1 2 1480 4.66408 117.6519 2012-

May-20 

2012-May-

22 

 2 2 1480 NA NA 2012-

May-22 

2012-May-

24 

 3 2 1480 NA NA 2012-

Jun-12 

2012- 

Jun-14 
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 4 2 1480 NA NA 2012-

May-24 

2012-May-

26 

 5 2 1480 NA NA 2012-

Jun-14 

2012-Jun-

16 
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Table S5.2 Candidate models used to characterise bat activity at the 100m scale.  

Shading represents top models (ΔAICc < 2). 

 

Model df logLik‡ AICc§ ΔAICc¶ wt¥ 

Total Bat Activity ~      

ForestExtent + Topography 4 -870.36 1748.70 0.00 0.47 

ForestExtent 3 -871.91 1749.80 1.10 0.27 

Shape 3 -873.38 1752.80 4.03 0.06 

Shape + Topography 4 -872.56 1753.10 4.40 0.05 

HabitatType + Topography 5 -871.59 1753.20 4.46 0.05 

CanopyHeight 3 -874.11 1754.20 5.49 0.03 

HabitatType 4 -873.20 1754.40 5.67 0.03 

CanopyHeight + Topography 4 -873.37 1754.70 6.02 0.02 

Topography 3 -875.53 1757.10 8.34 0.01 

Null Model 2 -876.84 1757.70 8.95 0.01 

      

Whispering Bat Activity ~      

HabitatType + Topography 5 -508.75 1027.50 7.21 1 

Treatment 4 -518.43 1044.90 24.55 0 

Topography 3 -520.42 1046.80 26.54 0 

CanopyHeight + Topography 4 -519.67 1047.30 27.03 0 

Null model 2 -521.91 1047.80 27.51 0 

ForestExtent + Topography 4 -519.91 1047.80 27.52 0 

Shape + Topography 4 -520.39 1048.80 28.47 0 

CanopyHeight 3 -521.41 1048.80 28.52 0 

ForestExtent 3 -521.72 1049.40 29.13 0 

Shape 3 -521.89 1049.80 29.48 0 

      

Rhinolophoidea Bat Activity ~      

Null model 2 -714.39 1432.80 0.00 0.23 

HabitatType 4 -712.57 1433.10 0.36 0.19 

CanopyHeight 3 -714.16 1434.30 1.53 0.11 

HabitatType + Topography 5 -712.26 1434.50 1.73 0.10 

ForestExtent 3 -714.28 1434.60 1.77 0.10 

Shape 3 -714.36 1434.70 1.93 0.09 

Topography 3 -714.37 1434.70 1.95 0.09 

CanopyHeight + Topography 4 -714.16 1436.30 3.52 0.04 

ForestExtent + Topography 4 -714.26 1436.50 3.73 0.04 

Shape + Topography 4 -714.34 1436.70 3.90 0.03 

      

Edge/open Hawking Bat Activity ~      

ForestExtent + Topography 4 -757.62 1523.20 0.00 0.64 

Shape + Topography 4 -759.37 1526.70 3.50 0.11 

Topography 4 -759.74 1527.50 4.25 0.08 

HabitatType + Topography 5 -758.79 1527.60 4.33 0.07 

ForestExtent 3 -761.73 1529.50 6.22 0.03 

HabitatType 4 -760.73 1529.50 6.23 0.03 

CanopyHeight 3 -762.03 1530.10 6.82 0.02 

Shape 3 -762.06 1530.10 6.88 0.02 

Topography 3 -765.21 1536.40 13.17 0.00 

Null model 2 -769.00 1542.00 18.76 0.00 
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Emballonura alecto/monticola Activity ~     

      

ForestExtent 3 -707.94 1421.90 0.00 0.24 

Null model 2 -709.21 1422.40 0.54 0.18 

ForestExtent + Topography 4 -707.78 1423.60 1.68 0.10 

Shape 3 -708.87 1423.70 1.87 0.10 

CanopyHeight 3 -708.98 1424.00 2.09 0.09 

HabitatType 4 -708.05 1424.10 2.23 0.08 

Topography 3 -709.14 1424.30 2.40 0.07 

HabitatType + Topography 5 -707.21 1424.40 2.54 0.07 

Shape + Topography 4 -708.81 1425.60 3.74 0.04 

CanopyHeight + Topography 4 -708.93 1425.90 3.99 0.03 

      

Rhinolophus trifoliatus Activity ~      

HabitatType 4 -569.04 1146.10 3.98 0.59 

HabitatType + Topography 5 -568.58 1147.20 5.06 0.34 

Null model 2 -574.31 1152.60 10.52 0.02 

Shape 3 -574.18 1154.40 12.26 0.01 

Topography 3 -574.20 1154.40 12.29 0.01 

ForestExtent 3 -574.24 1154.50 12.37 0.01 

CanopyHeight 3 -574.27 1154.50 12.44 0.01 

CanopyHeight + Topography 4 -574.09 1156.20 14.07 0.00 

Shape + Topography 4 -574.13 1156.30 14.15 0.00 

ForestExtent + Topography 4 -574.15 1156.30 14.20 0.00 

      

Rhinolophus sedulus Activity ~      

HabitatType + Topography 5 -527.53 1065.10 0.78 0.68 

HabitatType 4 -529.31 1066.60 2.33 0.31 

CanopyHeight 3 -535.46 1076.90 12.65 0.00 

Null model 2 -536.66 1077.30 13.04 0.00 

Shape 3 -536.12 1078.20 13.95 0.00 

CanopyHeight + Topography 4 -535.45 1078.90 14.62 0.00 

ForestExtent 3 -536.58 1079.20 14.88 0.00 

Topography 3 -536.66 1079.30 15.04 0.00 

Shape + Topography 4 -536.11 1080.20 15.94 0.00 

ForestExtent + Topography 4 -536.58 1081.20 16.87 0.00 

      

Sonotype 5 Activity ~      

Shape + Topography 4 -628.49 1265.00 5.15 0.27 

ForestExtent + Topography 4 -628.76 1265.50 5.69 0.21 

Topography 3 -630.01 1266.00 6.18 0.16 

CanopyHeight + Topography 4 -629.46 1266.90 7.10 0.10 

Shape 3 -630.66 1267.30 7.50 0.08 

ForestExtent 3 -631.21 1268.40 8.59 0.05 

Null model 2 -632.31 1268.60 8.79 0.04 

CanopyHeight 3 -631.48 1269.00 9.12 0.04 

HabitatType + Topography 5 -629.66 1269.30 9.50 0.03 

HabitatType 4 -630.98 1270.00 10.13 0.02 

      

      

Sonotype 6 Activity ~      

HabitatType 4 -629.11 1266.20 0.00 0.71 

HabitatType + Topography 5 -628.99 1268.00 1.76 0.29 

CanopyHeight + Topography 4 -641.32 1290.60 24.43 0.00 
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Topography 3 -643.11 1292.20 26.02 0.00 

Shape + Topography 4 -642.39 1292.80 26.57 0.00 

ForestExtent + Topography 4 -642.92 1293.80 27.63 0.00 

CanopyHeight 3 -645.23 1296.50 30.25 0.00 

Shape 3 -646.83 1299.70 33.45 0.00 

Null model 2 -648.84 1301.70 35.46 0.00 

ForestExtent 3 -648.06 1302.10 35.90 0.00 

‡ The log-likelihood value, an alternative measure of model performance and denotes the 

plausibility of the model. § Akaike’s Information Criterion AICc. ¶ Delta AICc score, the 

difference between the AICc score of each model against the best performing model. ¥ Akaike 

weight. 
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Table S5.3 Biodiversity estimates of acoustic diversity (sonotype) richness summarised at 

for each habitat. 

 
 

t Method Sample coverage est. Acoustic diversity 

Habitat     

 Old-growth forest 20 Interpolated 0.999 16.402 

 Twice-logged forest 20 Interpolated 0.999 17.217 

 Heavily logged forest 46 Interpolated 0.999 15.804 

 Tree plantation 10 Observed 0.999 16.000 

t = reference sample size 
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Table S5.4 Results of the post-hoc Dunn test comparing bat activity between the four habitat 

types 

Significance - * < 0.05, ** < 0.01, *** < 0.001. 

Habitat Z p-value  

Total activity    

Heavily logged forest - Old-growth forest -0.526 0.599  

Heavily logged forest - Tree plantation 2.956 0.019 * 

Old-growth forest - Tree plantation 2.946 0.010 * 

Heavily logged forest - Twice-logged forest 0.766 0.533  

Old-growth forest - Twice-logged forest 1.060 0.434  

Tree plantation - Twice-logged forest -2.298 0.043 * 

   
 

Whispering bats    

Heavily logged forest - Old-growth forest -1.767 0.116  

Heavily logged forest - Tree plantation 3.818 < 0.001 *** 

Old-growth forest - Tree plantation 3.548 0.001 ** 

Heavily logged forest - Twice-logged forest -1.526 0.152  

Old-growth forest - Twice-logged forest 1.139 0.255  

Tree plantation - Twice-logged forest -4.659 < 0.001 *** 

   
 

Rhinolophoidea bats    

Heavily logged forest - Old-growth forest -3.280 0.002 ** 

Heavily logged forest - Tree plantation 1.909 0.068  

Old-growth forest - Tree plantation 3.987 < 0.001 *** 

Heavily logged forest - Twice-logged forest -5.035 < 0.001 *** 

Old-growth forest - Twice-logged forest 1.254 0.210  

Tree plantation - Twice-logged forest -5.281 < 0.001 *** 

   
 

Edge/open hawking bats    

Heavily logged forest - Old-growth forest 0.563 0.574  

Heavily logged forest - Tree plantation 3.137 0.005 ** 

Old-growth forest - Tree plantation 1.056 0.582  

Heavily logged forest - Twice-logged forest 3.219 0.008 ** 

Old-growth forest - Twice-logged forest 0.706 0.576  

Tree plantation - Twice-logged forest -0.739 0.690  

   
 

Emballonura alecto/monticola    

Heavily logged forest - Old-growth forest -0.532 0.595  

Heavily logged forest - Tree plantation 3.003 0.016 ** 

Old-growth forest - Tree plantation 1.999 0.137  

Heavily logged forest - Twice-logged forest 1.222 0.332  

Old-growth forest - Twice-logged forest 1.000 0.381  

Tree plantation - Twice-logged forest -1.992 0.093 ** 
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Figure S5.1 Example sonograms for each of the four call types used in the study 

Call amplitude has not been standardised between species and therefore this image is for illustrative purposes
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Chapter 6 Discussion 

In this thesis, I demonstrate the utility of acoustic monitoring for characterising bat 

biodiversity in a region of the world threatened by accelerating land-use change. I introduce a 

new algorithm to expedite the processing of large acoustic datasets for bats in Southeast Asia. 

The application of this new algorithm was subsequently demonstrated by applying this 

approach to assess how bat species are responding to logging disturbance. Novel technological 

and statistical approaches, including passive acoustic monitoring, machine learning, and 

LiDAR, were used throughout this thesis to review the effectiveness of different management 

strategies for protecting biodiversity, as well as to improve the capacity for ongoing 

monitoring in the future. In this way, this thesis supports species monitoring efforts in 

Southeast Asia and the tropics more broadly.  

 

6.1  Contributions to the research field 

6.1.1.1 Impacts of land-use change 

Studies investigating how tropical bats are impacted by land-use change are increasing 

(Meyer, Struebig and Willig 2016; Frick, Kingston and Flanders 2020). However, to date, 

almost all land-cover change studies involving palaeotropical bats have relied on live trapping 

techniques which miss a substantial proportion of bat communities (Kingston 2013; Meyer 

2015). Chapters 2, 3, and 5 demonstrate how acoustic studies can be used to assess bat 

responses to land-use change and how they can complement knowledge from live-trapping 

studies. To our knowledge, this thesis represents the largest acoustic monitoring study of bats 

in Southeast Asia. In total, there were 1,115 hours of field recordings (Chapters 2, 3, and 5) 

across a spectrum of land-use disturbance types. In this section, I highlight some of the 

empirical contributions made by this thesis to the research field.   

This research demonstrated how habitat disturbance influences bat community composition. 

Although disturbed forests can still support comparable bat activity to old-growth forests, this 

activity does not necessarily represent the same taxa (Figure 6.1). Echolocation call type is 

one of several interconnected morphological traits that determine a species’ ecological niche 

and therefore its sensitivity to disturbance (Farneda et al. 2015; Núñez et al. 2019; Norberg, 

Rayner and Lighthill 1987). Call structures associated with the forest interior (short, high 

frequency, broadband calls) decrease in response to increased disturbance, in exchange for an 
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increase of calls associated with edge or open foragers. This indicates that the activity of forest 

specialist species declines, such as high-frequency Hipposiderids (e.g., Hipposideros ridleyi), 

and is replaced by more generalist species. This shift in community composition is consistent 

with results from previous studies investigating how disturbance impacts bats (Rocha et al. 

2017; Brändel et al. 2020; Estrada-Villegas, Meyer and Kalko 2010; Struebig et al. 2008) and 

several other taxonomic groups (Stork et al. 2017; Woodcock et al. 2011; Cleary et al. 2007; 

Ng et al. 2021; Cleary et al. 2009). However, this study found that bat communities can largely 

persist under low-intensity disturbance (buffer zones in Chapter 2, logged forest in Chapter 

5), but specialist species are lost as disturbance intensity increases (transition zones in 

Chapter 2, plantations in Chapter 5). A global meta-analysis outlined 38 out of 45 studies 

(84%) that found that agricultural intensification had a negative impact on bat 

abundance/activity or species richness (Williams-Guillén et al. 2016). Similarly, the 

abundance of terrestrial mammals in Borneo has been shown to increase in logged forests 

compared to old-growth forests, but substantially decline in oil palm plantations (Wearn et al. 

2017). Low-intensity agroforestry has been shown to support other taxonomic groups, 

including amphibians and reptiles (e.g., Wanger et al. 2010; Indonesia), and bird and ant 

diversity (e.g., Philpott et al. 2008; Latin America) in natural-shade coffee plantations. 

Burivalova, Şekercioğlu and Koh (2014) also showed that most taxonomic groups are resilient 

to low-intensity selective logging (< 10 m3 ha−1). However, the consensus between all of these 

studies is that as disturbance intensity increases, diversity declines.    

 

  

 

Figure 6.1 Visual summary of the main thesis findings.  

Summary of how bats are affected by land-use disturbance in Southeast Asia, as identified in 

this thesis. 
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I did not examine the role of source-sink dynamics or periodic movement between disturbed 

habitats and neighbouring old-growth forest. Maintaining areas of undisturbed forest is 

essential for the long-term persistence of many forest species in disturbed areas, including 

within low-intensity agriculture (birds and invertebrates; Tscharntke et al. 2008; Gilroy et al. 

2014; Sekercioglu et al. 2007). Chapter 3 indicated evidence of movement between habitats 

as the foraging activity of constant frequency species was significantly lower in oil palm than 

in other habitat types. Therefore, it is likely these species can only persist due to foraging 

opportunities in neighbouring forests. Very few studies have examined source-sink 

phenomena in the tropics, particularly in Southeast Asia and Africa (Gilroy and Edwards 

2017). Hence, more research is needed to establish how landscape configuration impacts 

species in human-modified tropical landscapes. Nonetheless, it is well recognised that 

undisturbed forest remains essential for highly sensitive, forest specialists (Barlow et al. 2010; 

Gibson et al. 2011; Chazdon et al. 2009; Edwards et al. 2017; Gilroy et al. 2014). Preserving 

forest remnants and maintaining connectivity between patches is therefore vital to conserving 

tropical biodiversity at the landscape level.  

LiDAR-derived vegetation metrics are recognised as good indicators of ecosystem structure 

and habitat quality (Simonson, Allen and Coomes 2014). Despite this, there is a lack of 

ecological studies in Asia, Africa, and South America that incorporate these measures 

(Acebes, Lillo and Jaime-González 2021). In this thesis, I used LiDAR-derived metrics of 

forest structure to empirically assess the influence of habitat quantity and habitat quality on 

echolocating bat communities (Chapters 3 and 5). This included deriving high-resolution 

measures of forest extent (Riparian Width in Chapter 3; Above Ground Biomass in Chapter 

5) and forest quality (Topography and Canopy Height in Chapter 3; Median Biomass and SD 

Biomass in Chapter 5). The findings further corroborate the importance of habitat quality in 

determining species distribution and persistence in fragmented landscapes (Laurance et al. 

2018; Haddad et al. 2015). This research demonstrates the importance of structural complexity 

for certain bats (e.g., Emballonura spp. and frequency modulated quasi-constant frequency 

(FMqCF) bats), thus highlighting how preserving forest integrity is essential for conserving 

bat assemblages as a whole, not just forest specialists. Similar studies have been conducted 

for birds, large mammals, anurans, invertebrates, and freshwater fish in the same 

fragmentation system (Mitchell et al. 2018; Deere et al. 2022; Wearn et al. 2017). For 

example, Deere et al. (2022) showed that forest extent had a consistently positive relationship 

with species richness or abundance for each of these taxonomic groups. In contrast, the effect 

of habitat quality is more variable between taxonomic groups. For mammals, habitat 

degradation has been shown to reduce species richness in riparian forests in Borneo and Brazil 

(Deere et al. 2022; Zimbres, Peres and Machado 2017). In other fragmented landscapes, 
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habitat quality has a greater impact than habitat extent for determining habitat use by mammal 

and reptile species in Brazil (peccary - Regolin et al. 2021; lizards - Silva et al. 2022). 

However, the relative importance of extent and quality varies between guilds (Ye, Skidmore 

and Wang 2013; Ewers and Didham 2006; Mattos, Zimbres and Marinho-Filho 2021). 

Therefore, the results presented in this thesis support previous conclusions that both habitat 

quality and extent need to be considered in conservation planning. Combining these cross-

taxa studies provides a more comprehensive foundation for informing conservation policies.  

6.1.1.2 Survey design and tool development 

The different survey approaches used in the thesis generated different quantities of acoustic 

data. In Chapters 2 and 3, data were collected using walked transects (where a surveyor 

operates the detector in the field). However, static detectors require less intensive survey effort 

and can be deployed over longer timeframes. As such, > 88% of the field recording hours 

across this thesis were collected from static detectors (Chapter 5). The main constraint of 

large acoustic datasets is the time taken to manually identify taxa within them. The semi-

automated approach was over seven times faster than manual identification alone: 6 weeks to 

process 60 hours of acoustic recordings (Mullin, pers. comm.; 1 week = 10 hours; Chapter 

3), compared to 13 weeks to process 987 hours (1 week = 75.9 hours; Chapter 5). The Borneo 

Bat Classifier introduced in Chapter 4 reduces the time demands of processing acoustic data, 

thereby making acoustic monitoring more accessible to researchers. The fastest data to process 

was for Chapter 2 (68 hours of recording) as these recordings were not identified as 

species/sonotypes. This study used acoustic signatures to examine patterns of response. 

Although it was not possible to investigate taxon-specific responses using this approach, it 

still demonstrated the shift from short calls, high-frequency calls in forest habitats to longer 

calls with higher curvature (FMqCF) calls in more open spaces. Therefore, it can still be 

possible to monitor the impacts of land-use change on bat communities even when it is not 

possible to assign calls to sonotype/species. 

It is important to acknowledge that acoustic monitoring cannot be used to monitor all bat 

responses to land-use change. Across the field recordings, calls from interior, forest specialist 

species Kerivoulinae, Murininae, Nycteridae, and Megadermatidae were consistently low 

despite several species being relatively common (e.g., Murina suilla; Struebig et al. 2008; 

Azhar and Rossiter 2018). In Chapter 3, this group only represented 6.3% of activity (FMb 

and MHFM) and 5.2% in Chapter 5 (whispering bats). However, this group can represent 

over 30% of captures in harp trapping studies (Kingston et al. 1999; Francis 1990). It is well 

recognised that low-intensity, high-frequency calls are difficult to detect using acoustic 

monitoring techniques (Russo, Ancillotto and Jones 2018; Russo and Voigt 2016; Walters et 
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al. 2013). In Swaziland, Monadjem et al. (2017) demonstrated clear calls could not be reliably 

recorded for Kerivoula and Nycteris species even within 0.1m. Therefore, acoustic monitoring 

using current recording technologies should not be used to monitor these species, and live 

capture techniques should be used instead, at least for the time being. Live capture techniques 

are also important to facilitate tagging or marking individuals or collecting tissue samples to 

investigate population dynamics, physiology, or confirmed species’ records (Gannon, Sikes, 

and The Animal Care and Use Committee of the American Society of Mammalogists 2007). 

Chapter 2 reported 8 new species records for Crocker Range Biosphere Reserve using mist 

nets and harp traps. This would not have been possible using acoustic monitoring as one 

species does not echolocate (Cynopterus minutus) and at least four cannot be acoustically 

differentiated into species. Therefore, combining acoustic monitoring with live capture 

methods provides the most comprehensive way to monitor bats across the whole community 

(as shown for Brazil; Silva and Bernard 2017; Appel et al. 2021).  

6.1.1.3 Borneo as a case study 

The northern part of Borneo provides an ideal case study for the effects of land-cover change 

on bats as the region supports high species diversity (that is relatively well understood) and 

has undergone rapid land-use change over the last fifty years, but still retains a high proportion 

of old-growth forest compared to other parts of Southeast Asia (Hansen et al. 2013; Struebig 

et al. 2010; Meyer, Struebig and Willig 2016; Kingston 2013). However, Southeast Asia is 

politically, culturally, and economically a very diverse region (Dunning 2022; Samek et al. 

2004; Dayley 2019). Differences in topography and climate, as well as anthropogenic 

differences, such as population size, economic growth, and political systems, have all 

impacted the relative rates of land-use change across Southeast Asia (Imai et al. 2018; 

Dunning 2022; Samek et al. 2004). Human-wildlife interactions also vary widely. Asia-Pacific 

cultures have many positive cultural associations with bats. However, hunting for 

consumption remains common in many communities (Low et al. 2021). Southeast Asia also 

has extensive karst landscapes, around 10% of the land area, which support a high diversity 

of cave-roosting species (Day and Urich 2000; Suyanto and Struebig 2007; Furey, Mackie and 

Racey 2010; Sedlock et al. 2014). Cave disturbance (e.g., persecution/hunting, mining/mineral 

extraction, and tourism) now affects over a third of threatened bat species globally (Frick, 

Kingston and Flanders 2020). The rates of disturbance and conservation regulations for these 

landscapes vary substantially across Southeast Asian countries (Day and Urich 2000). All of 

these threats are interrelated and so the threats to bats - and biodiversity more broadly - are 

not homogenous across the region. Ongoing multi-national research, by networks such as the 
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Southeast Asian Bat Research Unit (SEABCRU), will provide future insights into how best to 

protect species considering these differences.  

 

6.2  Implications for policy and practice 

The recent development of low-cost, open-source hardware has massively improved the 

affordability of acoustic monitoring initiatives (Hill et al. 2018). The development of 

automatic or semi-automatic processing tools is the next frontier for the large-scale application 

of acoustic monitoring. In Europe, North America, and Australia these tools are already widely 

available to researchers and hobbyists. These include classifiers that work on the user's 

smartphone, such as the free Merlin Bird ID app by Cornell Lab of Ornithology 

(TheCornellLab 2021) and the FrogID app by the Australian Museum Research Institute 

(Rowley and Callaghan 2020). However, in the tropics, the development of processing tools 

has been impeded due to a lack of available species call databases (Gibb et al. 2019). The 

framework presented in this thesis demonstrates how acoustic classifiers can be built in 

regions where training databases or taxonomic knowledge may be limited, thereby making 

acoustic monitoring more accessible in palaeotropical regions. It should be noted that machine 

learning in conservation is still in its infancy. There are concerns as to how well machine 

learning accuracy metrics accurately reflect an algorithm's ability to predict situations in 

practice (Wearn, Freeman and Jacoby 2019) and we are still learning more about the calls of 

species considered to be well-studied (as demonstrated by Montauban et al. 2021). Therefore, 

these tools need to be continually assessed and revised. It is also pivotal that the limitations of 

such techniques are made transparent and widely acknowledged to ensure they do not lead to 

unintended misidentification, and subsequently, negative consequences for wildlife. 

Nevertheless, machine learning has the potential to be hugely beneficial for monitoring and 

conservation research.  

Southeast Asia is a global epicentre for threatened mammal species (Frick, Kingston and 

Flanders 2020; Schipper et al. 2008). Bats use the landscape differently from both non-volant 

mammals and birds. For example, they have a higher vagility than volant mammals and many 

bird species. Thus bat species are often less impacted by fragment isolation and are better able 

to exploit areas of high food availability (Pichler et al. 2022; Helbig-Bonitz et al. 2015). 

Therefore, it is important to include them alongside studies for other taxonomic groups when 

designing management or intervention options. A key finding in this thesis is the importance 

of protecting key landscape features (i.e. riparian reserves) for promoting bat diversity, 

especially where they preserve taller, more structurally complex forest. As such, in Chapter 
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3, I stated that conservation set-asides should be at least 40m wide on each side of the river, 

as recommended for birds (Mitchell et al. 2018). However, new research indicates that edge 

effects can reduce canopy heights up to 92m from the forest edge (Ordway and Asner 2020) 

and reserve widths of 40-100m may be necessary to conserve biodiversity across taxa (Deere 

et al. 2022). Therefore, it is likely reserves greater than 40m are needed to ensure the long-

term integrity of forest and their communities in riparian reserves. Our results also support 

previous findings that conclude areas of high-quality forest are important for conserving 

highly specialised, forest species within human-modified landscapes (Barlow et al. 2010; 

Gibson et al. 2011; Chazdon et al. 2009; Edwards et al. 2017; Gilroy et al. 2014). Hence the 

need to establish heterogeneous, ecological landscapes. In this way, conservationists can help 

design landscapes that conserve tropical biodiversity while still supporting sustainable 

resource use.  

Establishing effective conservation practices is time-critical. There are many new and ongoing 

threats to wildlife in Southeast Asia. For example, the global demand and price of palm oil 

have surged since 2019 (IMARC Group 2022). Promisingly, Gaveau et al. (2022) showed that 

deforestation for these plantations in Malaysia and Indonesia had reduced between 2012 and 

2017 in response to the reduced market value and new deforestation legislation. However, 

rising prices and the relaxation of several forest regulations during the COVID-19 pandemic 

have cast concern that there will be a greater expansion of new oil palm plantations 

(Shigetomi, Ishimura and Yamamoto 2020; Gaveau et al. 2022). In addition, there are grave 

concerns about the potential environmental damage of the planned move of Indonesia’s capital 

from Jakarta to East Kalimantan, Borneo (Teo et al. 2020; Normile 2022). The new city, 

named Nusantara, aims to be “the greenest, smartest and sustainable capital city in the world” 

and to learn from previous relocations of capital cities and established green cities (de Vries 

2021). However, it is yet to be seen how Indonesia is incorporating environmental and 

sustainability assessments into the city planning. Both Indonesia and Malaysia have recently 

restated their commitment to collaborate with other Southeast Asian countries to protect 

biodiversity in this megadiverse region (Association of Southeast Asian Nations 2021). 

Therefore, research such as presented in this thesis can be used to inform strategies to meet 

conservation and sustainable development goals, such as agreed in the Post-2020 Global 

Biodiversity Framework of the Convention on Biological Diversity and the 2030 Agenda for 

Sustainable Development (United Nations 2015; UN Convention on Biological Diversity 

2021). Southeast Asia’s future commitment to environmental best practices will have global 

consequences for species conservation and climate regulation.   
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6.3  Future research 

6.3.1.1 Activity versus abundance 

Acoustic monitoring allows us to monitor many species where it may not otherwise be 

possible. Nevertheless, a challenge of this approach is that activity is often used as a surrogate 

for relative abundance but it does not provide a true measure of the number of individuals 

(Hayes 2000). In addition, it can be difficult to contextualise different rates of activity between 

different sites (e.g., what constitutes an area of high activity). Ecobat (Lintott et al. 2018) 

provides the first web-based tool to standardise assessments of activity rates across the UK 

There is still a lot more development needed before this initiative can be expanded 

internationally. Even so, acoustic activity data can inform conservation because it provides a 

relative activity metric, as well as confirmation of species occurrence (e.g., it has been used 

to document the occurrence of the near-threatened Yellow-bellied Glider Petaurus australis; 

Whisson et al. 2021). It is therefore an important future avenue of research that acoustic 

activity measures better support population metrics, and that these are used to standardise the 

interpretation of high vs low activity (and everything in between). Needless to say, this will 

not be possible where reference calls are not available or where species calls cannot be 

differentiated.  

6.3.1.2 Other landscape factors 

One aspect of conservation areas that was not consistently investigated during this thesis was 

the importance of elevation and topography. Studies investigating the relationship between 

elevation and bat diversity are limited in the tropics. However, research suggests bat diversity 

and activity decrease at higher elevations (Arias-Aguilar et al. 2020; Curran et al. 2012; 

Cisneros et al. 2014). Lok et al. (2021) demonstrated a negative relationship between bat 

species diversity and elevation at Crocker Range Biosphere Reserve, the same survey area as 

in Chapter 2. In Chapter 2, surveys were conducted in hill dipterocarp forest (300-800m) 

and upper hill dipterocarp forest (800-1,300m; Saw 2010). Lok et al. (2021) also included 

lower montane (1,300-1,800m) and upper montane (> 1,800m; Saw 2010). Neither study 

included lowland forest. Therefore, it is still not possible to fully discern whether elevation 

affected the diversity or activity of bats observed between habitat types. By comparison, 

Chapter 3 found that more elevated sites at the Stability of Altered Forest Ecosystems Project 

were positively associated with bat activity, particularly for H. galeritus and H. cervinus. 

Landscape topography is a key factor in determining whether a site is converted for plantations 

and the impact of conservation set-asides (Bicknell et al. 2021). However, rather than being a 

natural pattern of distribution, these sites are less accessible and thus are less disturbed. 
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Therefore, to ensure the benefits of conservation initiatives are not over or under-inflated, 

assessments need to adequately assess how accessible a site was to disturbance before the 

implementation of conservation actions.   

6.3.1.3 Technological advancements 

There have been several significant developments in bioacoustic monitoring in Southeast Asia 

since commencing this thesis in 2018. Most notably has been the recent launch of ChiroVox 

- the largest open-access bat call repository (Görföl et al., 2022). At the time of writing (March 

2022), ChiroVox hosts 3,902 recordings representing 223 species, including nearly half of 

Southeast Asia’s echolocating bats (ChiroVox 2022; Görföl et al. 2022). Unlike previous 

databases, such as Echobank (Collen 2012), these calls are available to the public as an open-

access or consensual-access resource and each recording is assigned a unique identifier that 

can be cited across publications. This provides a global resource for those working with bat 

bioacoustics and improves the repeatability of acoustic analyses. Community sharing of 

acoustic data such as this will ensure it is much easier to develop acoustic classifiers for new 

regions in the future.  

There has also been a change in the way we apply acoustic classifiers to bat calls. Instead of 

classifying calls to species (e.g., Parsons and Jones, 2000), there are new tools that focus on 

classifying calls into representative call groups. Recently, Roemer, Julien and Bas (2021) used 

random forests to develop the first global bat classifier which assigns all echolocating bat 

species into one of eight universal call types. As different sonotypes can be separated by their 

acoustic strategy and spatial niche (Denzinger and Schnitzler 2013), this classifier aims to 

assess the state of bat communities anywhere in the world, including regions without local call 

libraries (Roemer, Julien and Bas 2021). The classifier presented in Chapter 4 provides 

similar benefits (e.g., includes species with no reference calls) but is more regionally specific. 

For example, it combines classification to call type with more refined species identifications 

where possible. One key aspect of the work by Roemer, Julien and Bas (2021) is that the 

authors provide nomenclature that can be used to describe call types universally. Throughout 

the literature and across this thesis (Table 1.1), the nomenclature used for describing different 

call groups or guilds varies substantially. This can make cross-study comparisons problematic 

(as different call types/species are grouped differently) and makes it difficult for non-technical 

audiences to process the information presented. The eight sonotypes presented by Roemer, 

Julien and Bas (2021) provide a solution to the former, but they still do not provide easy, 

recognisable nomenclature for non-technical audiences. Establishing universal names for 

these sonotypes that are ecologically or taxonomically meaningful would be hugely beneficial 

for science communication concerning bat conservation. 
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6.4  Conclusion 

Land-use change continues to threaten global biodiversity and the global climate. To ensure 

successful conservation initiatives, species data must not only be available but also be 

incorporated into conservation decision-making. Such action is needed urgently to curtail the 

sixth mass extinction. New technological methods, such as passive acoustic monitoring and 

machine learning, can complement existing surveying methods and facilitate more extensive 

and rapid species monitoring. Further sharing of resources, such as open-access call databases, 

will enable the future development of these approaches. Studies so far demonstrate how 

different human-modified habitats can be valuable to conservation efforts and offer ways to 

mitigate species losses in habitats that would be otherwise unable to support diversity. Only 

by addressing the underlying mechanisms of anthropogenic disturbance can we ensure the 

long-term protection of remaining biodiversity in a human-modified world.  
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Research article: Edge effects and vertical stratification of aerial insectivorous bats 

across the interface of primary-secondary Amazonian rainforest  

PLOS One: In press (September 2022) 

 

Natalie Yoh, James Clarke, Adrià López-Baucells, Maria Mas, Ricardo Rocha, Paulo E.D. 

Bobrowiec, Christoph F.J. Meyer 

Abstract 

Edge effects - abiotic and biotic changes associated with habitat boundaries - are key drivers 

of community change in fragmented landscapes. Their influence is heavily modulated by 

matrix composition. With over half of the world’s tropical forests predicted to become forest 

edge by the end of the century, it is paramount that conservationists gain a better understanding 

of how tropical biota is impacted by edge gradients. Bats comprise a large fraction of tropical 

mammalian fauna and are demonstrably sensitive to habitat modification. Yet, knowledge 

about how bat assemblages are affected by edge effects remains scarce. Capitalizing on a 

whole-ecosystem manipulation in the Central Amazon, the aims of this study were to i) assess 

the consequences of edge effects for twelve aerial insectivorous bat species across the interface 

of primary and secondary forest and ii) investigate if the activity levels of these species 

differed between the understory and canopy and if they were modulated by distance from the 

edge. Acoustic surveys were conducted along four 2-km transects each traversing equal parts 

of primary and ca. 30-year-old secondary forest. Five models were used to assess the changes 

in the relative activity of forest specialists (three species), flexible forest foragers (three 

species), and edge foragers (six species). Modelling results revealed no evidence of edge 

effects, except for forest specialists in the understory. No significant differences in activity 

were found between the secondary or primary forest but most species exhibited pronounced 

vertical stratification. Our study highlights that forest specialist bats are more edge-sensitive 

than both flexible forest and edge foraging bats and suggests that the influence of edge effects 

on aerial insectivorous bats may exceed 2 km. The absence of pronounced edge effects and 

the comparable activity levels between primary and old secondary forests indicates that old 

secondary forest can help ameliorate the consequences of fragmentation on tropical aerial 

insectivorous bats.   
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Research article: Could Nintendo’s Animal Crossing be a tool for conservation 

messaging?  

People and Nature: 2021, DOI: 10.1002/pan3.10240 

Jessica C. Fisher*, Natalie Yoh*, Takahiro Kubo, Danielle Rundle  

(*authors contributed equally) 

 

Abstract 

1. The current extinction crisis demands worldwide commitment to conservation across 

all sectors of society. By transcending the traditional disciplinary boundaries, 

conservationists can reach new audiences to communicate pro-conservation 

knowledge, education and awareness messages. 

2. There are approximately 2.7 billion video-gamers worldwide, with millions more 

joining as a result of global lockdowns. In March 2020, Animal Crossing: New 

Horizons was released by Nintendo, fast becoming the second-best selling video game 

ever in Japan, and selling over 26.4 million units worldwide. Unlike many popular 

video games, its unique premise involves players creating an island, growing 

vegetation, catching wildlife and donating fossils and species to a museum. The game 

has been praised for its positivity, escapism and measurable benefits to mental well-

being. 

3. Here, we articulate how different features of the game, including the islands, their 

biodiversity and inhabitants, encourage players to exhibit pro-conservation 

behaviours and attitudes (e.g. recycling litter, or planting a diversity of flowers), as 

well as improving players’ knowledge about the diversity of relatively little known 

taxa (marine and freshwater fishes and invertebrates). We also highlight where pitfalls 

exist (e.g. encouraging the collection of threatened species). We principally frame 

these discussions in the context of Japan's cultural relationship with the natural world, 

including its history of insect-collecting and its management of green spaces. We 

conclude by outlining some recommendations about potential improvements to future 

releases, or for similar games, that could further promote conservation messaging. 

4. This perspective sheds light on the avenues through which Animal Crossing: New 

Horizons encourages pro-conservation knowledge, attitudes and behaviours of its 

international audience, with potential for these experiences to translate into real-world 

conservation actions. During a critical time in humanity's history, video gaming could 

therefore provide a huge opportunity for communicating conservation messages to 

billions of people worldwide. 
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Research article: Optimising bat bioacoustic surveys in human‐modified neotropical 

landscapes  

Ecological Applications: 2021, Volume 36(6), e02366. DOI: 10.1002/eap.2366 

Adrià López-Baucells, Natalie Yoh, Ricardo Rocha, Paulo E. D. Bobrowiec, Jorge M. 

Palmeirim, Christoph F. J. Meyer  

 

Abstract 

Edge effects, abiotic and biotic changes associated with habitat boundaries, are key drivers of 

community change in fragmented landscapes. Their influence is heavily modulated by matrix 

composition. With over half of the world’s tropical forests predicted to become forest edge by 

the end of the century, it is paramount that conservationists gain a better understanding of how 

tropical biota is impacted by edge gradients. Bats comprise a large fraction of tropical 

mammalian fauna and are demonstrably sensitive to habitat modification. Yet, knowledge 

about how bat assemblages are affected by edge effects remains scarce. Capitalizing on a 

whole-ecosystem manipulation in the Central Amazon, the aims of this study were to i) assess 

the consequences of edge effects for twelve aerial insectivorous bat species across the interface 

of primary and secondary forest, and ii) investigate if the activity levels of these species 

differed between the understory and canopy and if they were modulated by distance from the 

edge. Acoustic surveys were conducted along four 2-km transects each traversing equal parts 

of primary and ca. 30-year-old secondary forest. Five models were used to assess the changes 

in the relative activity of forest specialists (three species), flexible forest foragers (three 

species), and edge foragers (six species). Modelling results revealed limited evidence of edge 

effects, except for forest specialists in the understory. No significant differences in activity 

were found between the secondary or primary forest but almost all species exhibited 

pronounced vertical stratification. Previously defined bat guilds appear to hold here as our 

study highlights that forest bats are more edge-sensitive than edge foraging bats. The absence 

of pronounced edge effects and the comparable activity levels between primary and old 

secondary forests indicates that old secondary forest can help ameliorate the consequences of 

fragmentation on tropical aerial insectivorous bats.    
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Research article: Echolocation of Central Amazonian ‘whispering’ phyllostomid bats: 

call design and interspecific variation (2020) 

Mammal Research: 2020, Volume 65, 583–597. DOI: 10.1007/s13364-020-00503-0 

Natalie Yoh, Peter Syme, Ricardo Rocha, Christoph F. J. Meyer, Adrià López-Baucells 

 

Abstract 

Phyllostomids (New World leaf-nosed bats) are the ecologically most diverse bat family and 

have undergone the most extensive adaptive radiation of any mammalian family. However 

comprehensive, multi-species studies regarding phyllostomid echolocation are scarce in the 

literature despite abundant ecological research. In this study, we describe the call structure and 

interspecific variation in call design of 40 sympatric phyllostomid species from the Central 

Brazilian Amazon, focussing on general patterns within genera, subfamilies and between 

feeding guilds. All but one species utilized short, broadband FM calls consisting of multiple 

harmonics. As reported for other bat families, peak frequency was negatively correlated with 

body mass and forearm length. Twenty-five species alternated the harmonic of maximum 

energy, principally between the second and third harmonic. Based on PCA, we were unable 

to detect any significant differences in echolocation call parameters between genera, 

subfamilies or different feeding guilds, confirming that acoustic surveys cannot be used to 

reliably monitor these species. We present Ametrida centurio as an exception to this 

generalized phyllostomid structure, as it is unique in producing a mono-harmonic call. Finally, 

we discuss several hypotheses regarding the evolutionary pressures influencing phyllostomid 

call structure. 
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Appendix II Borneo Bat Classifier user script  

The script for processing bat calls using the Borneo Bat Classifier (V2.0), available at 

https://github.com/TallyYoh/BorneoBatCalls 
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