# Novel $Sn-Ce/Al_2O_3$ catalyst for the selective catalytic reduction of $NO_x$ under lean conditions

Zhiming Liu, Kwang Seok Oh, and Seong Ihl Woo\*

Department of Chemical and Biomolecular Engineering, Center for Ultramicrochemical Process Systems, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea

Received 12 May 2005; accepted 21 September 2005

Effect of additives, Ce and Mn, on the catalytic performance of  $Sn/Al_2O_3$  catalyst prepared by sol-gel method for the selective reduction of  $NO_x$  with propene under lean conditions was studied.  $Sn-Ce/Al_2O_3$  catalysts exhibited higher activity than  $Sn/Al_2O_3$  catalyst and the optimum Ce loading is 0.5–1%. The promoting effect of Ce is to enhance the oxidation of NO to NO<sub>2</sub> and facilitate the activation of propene, both of which are important steps for the  $NO_x$  reduction. The presence of oxygen contributes to the oxidation of NO and shows a promoting effect.

KEY WORDS: Sn-Ce/Al<sub>2</sub>O<sub>3</sub>; selective reduction of NO<sub>x</sub>; propene.

### 1. Introduction

Selective catalytic reduction of  $NO_x$  with hydrocarbons as reducing agents (HC-SCR) has received much attention as one of potential technology for reducing  $NO_x$  emissions in the presence of excess oxygen. Since the pioneer work of Held et al. [1] and Iwamoto et al. [2] quiet a few different catalyst systems have been investigated for HC-SCR [3–10]. Among them, the metal oxide catalysts are more desirable because they exhibit high activities at high temperatures, besides they are more stable than zeolite-based catalysts in the hydrothermal conditions [11–13].

Since SnO<sub>2</sub> was firstly reported to be an active catalyst for the  $NO_x$  reduction by hydrocarbons in the presence of oxygen [14], some research was focused on Sn/Al<sub>2</sub>O<sub>3</sub> catalyst [15–19]. For Sn/Al<sub>2</sub>O<sub>3</sub> catalyst, the major disadvantage is that the  $NO_x$  conversion is low at low-temperature region (250-400 °C), However, there is little report about enhancing the low-temperature activity of Sn/Al<sub>2</sub>O<sub>3</sub> catalyst. In the previous research, the higher activity can be observed when feeding  $NO_2$ instead of NO during the HC-SCR over Sn/Al<sub>2</sub>O<sub>3</sub> catalyst [20]. That means the NO oxidation might be a limiting step in NO reduction and strengthening the NO oxidation function of Sn/Al<sub>2</sub>O<sub>3</sub> catalyst should enhance its activity for the NO reduction. CeO<sub>2</sub> was chosen as one of the active components for favouring the NO oxidation because of its well-known function as oxygen storage/activator in three-way catalysts [21]. And recently, Krishna et al. [22] reported that mixed CeO<sub>2</sub>

E-mail: siwoo@kaist.ac.kr

with H-FER zeolite catalyst showed high activity for HC-SCR. Besides CeO<sub>2</sub>, manganese oxide also served as an oxidation catalyst to promote the performance of deNO<sub>x</sub> catalyst [23,24]. So the present work attempts to improve the activity of Sn/Al<sub>2</sub>O<sub>3</sub> catalyst by adding cerium oxide and manganese oxide.

### 2. Experimental

### 2.1. Catalyst preparation

Metal oxide-doped Sn/Al<sub>2</sub>O<sub>3</sub> catalysts were prepared by single step sol-gel method. Ce and Mn were selected as an additive. Aluminium boehmite sol was first prepared by hydrolysis of aluminium(III) iso-propoxide(AIP) in hot water(85 °C) with a proper amount of nitric acid, and then mixed with a solution of tin chloride and metal nitrate of the doped metal oxide. After one day of stirring, the solvents were eliminated by heating under reduced pressure to form a gel. The obtained gel was dried at 120 °C for 24 h, followed by calcinations at 600 °C for 4 h in air. The loading of Sn was fixed at 5% since previous research showed that the optimum Sn loading is 5% for Sn/Al<sub>2</sub>O<sub>3</sub> catalyst [19]. While that of Ce additive varies from 0.5 to 5%. A 5% Sn/Al<sub>2</sub>O<sub>3</sub> was also prepared as a reference sample by the same sol-gel method.

The SBA15 support was synthesized according to a procedure described in the literature [25]. Pluronic P123 triblock copolymer surfactant  $(EO_{20}PO_{70}EO_{20})$  was used as a template, which was dissolved in hydrochloric acid solution. After stirring for a few hours, a suitable amount of TEOS (tetraethyl orthosilicate) was added.

<sup>\*</sup> To whom correspondence should be addressed.

The resulting mixture was stirred for 12 h at 30 °C and then at 100 °C for 24 h. The white product was filtered, washed and dried. Finally, the product was calcined at 550 °C for 4 h to remove the template. AlSBA15 was obtained by impregnating SBA15 with a proper amount Al(NO<sub>3</sub>)<sub>3</sub> solution and the Al percentage is 1.3, dried at 120 °C for 12 h, followed by calcinations at 300 °C for 3 h in air. Then AlSBA15 was impregnated with H<sub>2</sub>PtC1<sub>6</sub> solution, dried at 120 °C for 12 h, followed by calcinations at 500 °C for 3 h in air and yield the Pt/ AlSBA15 catlayst, which was compared with metal oxide-doped Sn1Al<sub>2</sub>O<sub>3</sub> catalyst.

### 2.2. Evaluation of catalyst activity

The activity measurements were carried out in a fixed-bed quartz reactor using a 0.2 g catalyst of 60-80 mesh. The feed gas mixture contained 2000 ppm NO<sub>x</sub>, 2700 ppm  $C_3H_6$ , 3%  $O_2$  and helium as the balance gas. Unless noted, the total flow rate of the feed gas was 100 cm<sup>3</sup> min<sup>-1</sup>, which corresponded to a space velocity of 26,000 h<sup>-1</sup>. The reaction temperature was increased from 250 to 550 °C in steps of 50 °C . All the catalysts were pretreated in the reaction feed gas at 600 °C for 2 h before the activity test, In the previous research we compared the activities of two different 5%Sn/Al<sub>2</sub>O<sub>3</sub> catalysts, one was only calcined in air and the other was pre-treated in the reaction gas after calcining in air. It was found that the 5%Sn/Al<sub>2</sub>O<sub>3</sub> catalyst pre-treated in the reaction feed gas showed much higher activity than that without pre-treatment below 450 °C. And above this temperature there is almost no deactivation after feed gas treatment [19]. For Sn/Al<sub>2</sub>O<sub>3</sub> catalyst, besides  $SnO_2$ ,  $Al_2O_3$  is an active site and contributes to the  $NO_x$ reduction but could be prevented from doing so when its active centers are covered by dispersed  $SnO_2$  [17]. From the TEM photographs it can be seen that pre-treatment leads to the crystallization and growth of the SnO<sub>2</sub> species [19]. Due to the agglomeration, Al<sub>2</sub>O<sub>3</sub> surface sites previously covered by dispersed SnO<sub>2</sub> species are re-exposed. So the activity of Sn/Al<sub>2</sub>O<sub>3</sub> catalyst was improved after pre-treatment in the reaction gas.

The composition of the product gas was analyzed by using gas chromatograph (equipped with Porapak Q and Molecular sieve 5A columns). A molecular-sieve 5A column was used for the analysis of  $N_2$  and CO and Porapak Q column for that of  $N_2O$ ,  $CO_2$  and  $C_3H_6$ . The activity data were collected when the catalytic reaction practically reached steady-state conditions at each temperature. The formation of  $N_2O$  was found negligible in the present study. Thus, NO, conversion was determined by the  $N_2$  produced.

#### 2.3. Catalyst characterization

BET surface areas were measured by  $N_2$  adsorption using a NOVA4200 automated gas sorption system. X-

ray diffraction (XRD) measurements were carried out on a Bruker D8 Discover DADDS X-ray Diffractometer with CuK $\alpha$  radiation.

### 3. Results and discussion

### 3.1. Catalyst characterization

The BET surface areas of all the catalysts are summarized in table 1. No significant difference of surface area can be observed over  $Sn/Al_2O_3$ ,  $Sn-Ce/Al_2O_3$  and  $Sn-Mn/Al_2O_3$  catalysts. Figure 1 shows the XRD patterns of 5% $Sn/Al_2O_3$  and  $Sn-Ce/Al_2O_3$  catalysts. Except for 5% $Sn-5\%Ce/Al_2O_3$  catalyst, only the characteristic lines of  $\gamma$ -Al\_2O\_3 can be observed. In addition to the  $\gamma$ -Al\_2O\_3 phase, small peak assigned to  $CeO_2$  is identified over 5% $Sn-5\%Ce/Al_2O_3$  catalyst. The peak ascribed to  $SnO_2$  was not observed over all the catalysts. This fact suggests the presence of small  $SnO_2$  species on  $Al_2O_3$ .

### 3.2. Activity test

# 3.2.1. Effect of additives on the activity of 5% Sn $/Al_2O_3$ catalyst

The effect of metal additives on the activity of 5%Sn/Al<sub>2</sub>O<sub>3</sub> catalyst is presented in figure 2. It can be seen

Table 1 The specific surface area of the catalysts

| Specific surface area (m <sup>2</sup> g <sup>-1</sup> ) |
|---------------------------------------------------------|
| 170                                                     |
| 185                                                     |
| 177                                                     |
| 175                                                     |
| 178                                                     |
| 176                                                     |
|                                                         |

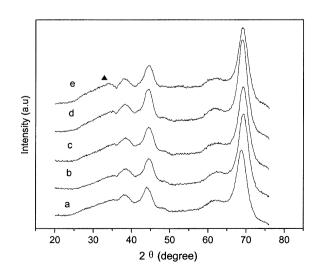



Figure 1. XRD patterns of catalysts: (a) 5%Sn/Al<sub>2</sub>O<sub>3</sub>; (b) 5%Sn-0.5%Ce/Al<sub>2</sub>O<sub>3</sub>; (c) 5%Sn-1%Ce/Al<sub>2</sub>O<sub>3</sub>; (d) 5%Sn-2%Ce/Al<sub>2</sub>O<sub>3</sub> and (e) 5%Sn-5%Ce/Al<sub>2</sub>O<sub>3</sub>. ( $\blacktriangle$ )CeO<sub>2</sub>

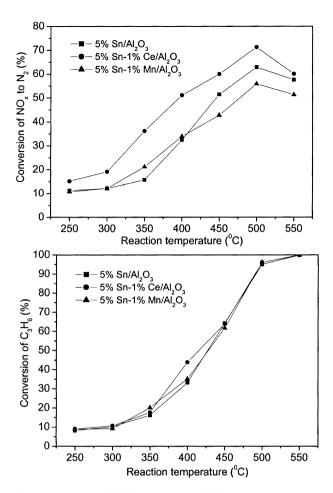



Figure 2. Activities of different metal modified 5% Sn/Al<sub>2</sub>O<sub>3</sub> catalysts for NO reduction at different reaction temperatures (reaction conditions: NO=2000 ppm,C<sub>3</sub>H<sub>6</sub>=2700 ppm,O<sub>2</sub> = 3%,GHSV=26,000 h<sup>-1</sup>).

that the addition of Mn causes a pronounced decrease in the catalytic activity of 5%Sn1Al<sub>2</sub>O<sub>3</sub> catalyst above 400 °C, although the activity of added Mn catalyst at 350 °C was slightly higher than that of 5%Sn/Al<sub>2</sub>O<sub>3</sub> catalyst. On the other hand, the addition of Ce showed a remarkable promoting effect. The added Ce catalyst exhibited higher activity than 5%Sn/Al<sub>2</sub>O<sub>3</sub> catalyst over the whole temperature range. Over the three catalysts, the maximum NO<sub>x</sub> conversion were all obtained at 500 °C, at which the propene was almost completely converted. The facts confirm that the temperature of maximum NO<sub>x</sub> conversion temperature was closely related to that of almost full combustion of reducing agent.

# 3.2.2. Effect of Ce loading on the activity of 5% Sn/Al<sub>2</sub>O<sub>3</sub> catalyst

Since the additive of Ce showed a beneficial effect on the activity of 5%Sn/Al<sub>2</sub>O<sub>3</sub> catalyst, the effect of varying the Ce content on the performance of 5%Sn/Al<sub>2</sub>O<sub>3</sub> catalyst was further investigated and the results are shown in figure 3. The activity of 5%Sn/Al<sub>2</sub>O<sub>3</sub> catalyst hardly changed with increase in the Ce loading from 0.5

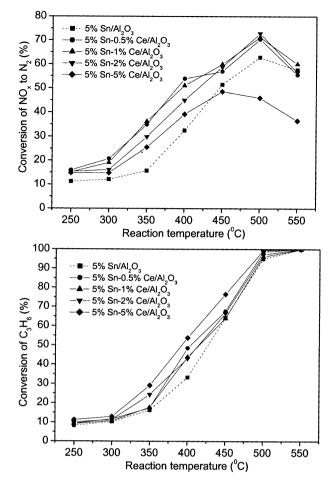



Figure 3. Effect of Ce loading on NO<sub>x</sub> conversion over 5%Sn–x%Ce/Al<sub>2</sub>O<sub>3</sub> catalysts for NO reduction by propene: (Reaction conditions: NO = 2000 ppm, C<sub>3</sub>H<sub>6</sub> = 2700 ppm,O<sub>2</sub> = 3%,GHSV = 26,000 h<sup>-1</sup>).

to 1%. Further increasing the Ce loading leads to the decreased activity and when the Ce loading reached 5%, the NO conversion was even lower than that over 5%Sn/Al<sub>2</sub>O<sub>3</sub> catalyst above 450 °C. However, the low temperature activity of 5%Sn/Al<sub>2</sub>O<sub>3</sub> catalyst was still improved. Thus, a small amount of Ce (0.5-1%) provide the maximum promotion of the SCR reaction. When the Ce loading was low, no peak ascribed to CeO<sub>2</sub> was observed from the XRD patterns. So high-dispersed Ce was present on the catalyst. At higher Ce loading, large CeO<sub>2</sub> particles were formed, which were active for the combustion of propene as a side reaction. Above 450 °C, the side reaction predominated and there was not enough reductant to reduce  $NO_x$ , so the conversion of NO<sub>x</sub> over 5%Sn-5%Ce/Al<sub>2</sub>O<sub>3</sub> catalyst was even lower than that over 5%Sn/Al<sub>2</sub>O<sub>3</sub> catalyst.

## 3.2.3. Comparison of activities of 5%Sn-0.5%Ce |Al<sub>2</sub>O<sub>3</sub> and 2.3%Pt|AlSBA15 catalysts

Among the catalysts tested for the selective reduction of NO by propene, Pt supported catalysts were extensively studied due to its high low-temperature activity [26–28]. So in this work the activities of 5%Sn–0.5%Ce/

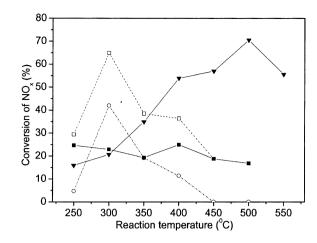



Figure 4. Comparison of activities of 5%Sn-0.5%Ce/Al<sub>2</sub>O<sub>3</sub>( $\nabla$ ) and 2.3% Pt/AlSBA15( $\Box$  total conversion of NO<sub>x</sub>;  $\odot$ : conversion to N<sub>2</sub>O;  $\blacksquare$ : conversion to N<sub>2</sub>) catalysts (Reaction conditions: NO = 2000 ppm, C<sub>3</sub>H<sub>6</sub> = 2700 ppm, O<sub>2</sub> = 3%,GHSV = 26,000 h<sup>-1</sup>).

Al<sub>2</sub>O<sub>3</sub> and 2.3%Pt/A1SBA15 catalysts were compared under identical reaction conditions. As shown in figure 4, the activity of Pt/AlSBA15 catalyst was high at low temperature region and the maximum NO conversion was obtained at 300 °C. However, the high selectivity to N<sub>2</sub>O and the narrow temperature window are the obstacle for practical application. In contrast, the selectivity towards N<sub>2</sub> over 5%Sn–0.5%Ce/Al<sub>2</sub>O<sub>3</sub> catalyst is almost 100%. In view of the conversion to N<sub>2</sub>, 5%Sn–0.5%Ce/Al<sub>2</sub>O<sub>3</sub> catalyst was more active at temperatures above 300 °C and the temperature window was wider, though Pt/AlSBA15 catalyst was slightly more active at 250 °C.

### 3.2.4. Effect of $O_2$

Figure 5 illustrates the changes in NO and C<sub>3</sub>H<sub>6</sub> conversions with respect to O<sub>2</sub> concentration over and 5%Sn-0.5%Ce/Al<sub>2</sub>O<sub>3</sub> 5%Sn/Al<sub>2</sub>O<sub>3</sub> catalysts. respectively. At 350 °C, the increase of O<sub>2</sub> concentration was found to be favorable for  $NO_x$  reduction over the two catalysts. Especially for 5%Sn-0.5%Ce/Al<sub>2</sub>O<sub>3</sub> catalyst, the conversion of  $NO_x$  significantly improved with the increase of oxygen concentration from 1 to 3%. With further increase in oxygen concentration the  $NO_x$ conversion remained almost unchanged, although the conversion of propene was further increased. At 450 °C, with the  $O_2$  concentration further increasing to 10% from 6%, the NO<sub>x</sub> conversion over 5%Sn–0.5%Ce/ Al<sub>2</sub>O<sub>3</sub> catalyst was slightly decreased, which was a little lower than that over 5%Sn/Al<sub>2</sub>O<sub>3</sub> catalyst. The possible reason is that at higher temperatures more reducing agent was combusted and there was not enough reductant to reduce NO<sub>x</sub> over 5%Sn-0.5%Ce/Al<sub>2</sub>O<sub>3</sub> catalyst. The fact indicates that the oxygen plays an important role in the selective reduction of  $NO_x$ . TPD-NO<sub>x</sub> results over Sn/Al<sub>2</sub>O<sub>3</sub> showed that the amount of desorbed species after adsorption of  $NO + O_2$  were much larger than that of adsorption of NO [20]. This means the  $NO_x$ 

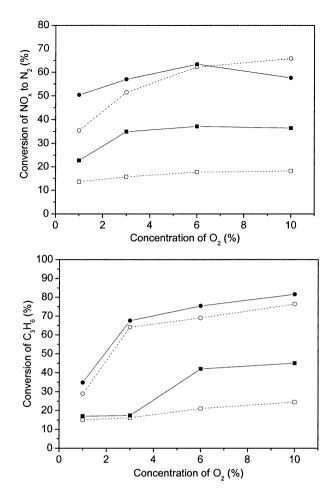



Figure 5. Effect of  $O_2$  concentration on the activites of 5%Sn/Al<sub>2</sub>O<sub>3</sub> (dashed line) and 5%Sn–0.5%Ce/Al<sub>2</sub>O<sub>3</sub> (Solid line) catalysts at 350 °C( $\Box$ ,  $\blacksquare$ ) and 450 °C( $\bigcirc$ ,  $\bullet$ ) (Reaction conditions: NO = 2000 ppm, C<sub>3</sub>H<sub>6</sub> = 2700 ppm, O<sub>2</sub> = 1–10%, GHSV = 26,000 h<sup>-1</sup>).

species are more easily adsorbed on the surface of the catalyst in the presence of oxygen and further converted to surface nitrates, which is an important reaction intermediate for  $NO_x$  reduction [9]. The presence of oxygen also contributes to the oxidation of NO to  $NO_2$ , which is more reactive than NO and as a result is more likely to react quickly with some other key reaction intermediates to form  $N_2$ .

### 3.2.5. Effect of $C_3H_6$

Figure 6 presents the effect of  $C_3H_6$  on the activities of 5%Sn/Al<sub>2</sub>O<sub>3</sub> and 5%Sn-0.5%Ce/Al<sub>2</sub>O<sub>3</sub> catalysts. Over the latter catalyst, the NO<sub>x</sub> conversion was increased when the concentration of propene was increased from 1000 to 4000 ppm. This result indicates that high concentration of reductant is benefical to the reduction of NO<sub>x</sub>. The effect is in accordance with the previous research [29,30] and is attributed to the fact that the larger amount of reducing agent makes more reaction intermidates species formed to facilitate the NO reduction. On the other hand, the NO<sub>x</sub> conversion appeared to decrease over 5%Sn/Al<sub>2</sub>O<sub>3</sub> catalyst as the

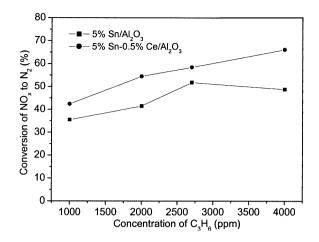



Figure 6. Effect of  $C_3H_6$  on the activites of 5%Sn/Al<sub>2</sub>O<sub>3</sub> and 5%Sn-0.5%Ce/Al<sub>2</sub>O<sub>3</sub> catalysts at 450 °C. (Reaction conditions: NO = 2000 ppm,  $C_3H_6 = 1000-4000$  ppm,  $O_2 = 3\%$ , GHSV = 26,000 h<sup>-1</sup>).

propene concentration was increased from 2700 to 4000 ppm. This phenomenon is similar to the report by L.F.Córdoba et al. [31]. It was speculated that the carbonaceous deposits were more easily formed on the catalyst surface when the propene concentration was high and inhibited the NO<sub>x</sub> reduction [12].

### 3.2.6. Effect of space velocity

Figure 7 shows the effect of space velocity of feed gas on the activity of 5%Sn–0.5%Ce/Al<sub>2</sub>O<sub>3</sub> catalyst. When the GHSV was 13,000 h<sup>-1</sup>, it showed very high activity, 53% NO<sub>x</sub> conversion can be obtained at temperature as low as 350 °C. As expected, the conversion of NO<sub>x</sub> to N<sub>2</sub> decreased with increasing space velocity. However, the maximum NO<sub>x</sub> conversion was only slightly decreased at a space velocity of 39,000 h<sup>-1</sup>.

For the  $C_3H_6$ -SCR of  $NO_x$  over  $Sn/Al_2O_3$  catalyst, SnO<sub>2</sub> was found to promote the formation of acetaldehyde from propene and subsequently the acetaldehyde was oxidized to form acetates[33]. The acetate species are then believed to react with the surface adsorbed nitrates to yield organo-nitrogen species. The formation of the organo-nitrogen species is likely to be the rate-determining step of the reaction. The organo-nitrogen species will be decomposed to CN and/or NH<sub>3</sub> species, which then react with NO and/or NO<sub>2</sub> to form N<sub>2</sub> [9,33]. Kung et al. [33] proposed that acetate species react with the surface adsorbed nitrates to yield organo-nitrogen speices and the formation of N<sub>2</sub> occurred over Al<sub>2</sub>O<sub>3</sub> sites.

For bifunctional catalyst, a key issue related to the development of the NO oxidation function is to avoid the oxidation of hydrocarbon with oxygen.  $Sn/Al_2O_3$  catalyst was regarded as a unique kind of lean  $NO_x$  catalysts [17,32] due to its poor ability to activate hydrocarbons. So a small amount of CeO<sub>2</sub> addition to  $Sn/Al_2O_3$  catalyst did not lead to the combustion of propene but contributed to the activation of the reductant to form hydrocarbon intermediates such as acetal-

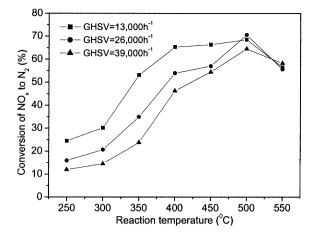



Figure 7. Effect of space velocity of feed gas on the activites of 5%Sn-0.5%Ce/Al<sub>2</sub>O<sub>3</sub> catalyst. (Reaction conditions: NO = 2000 ppm, C<sub>3</sub>H<sub>6</sub> = 2700 ppm, O<sub>2</sub> = 3%, GHSV = 13,000–39,000 h<sup>-1</sup>).

dehyde, which is an important step for the  $NO_x$  reduction to proceed [6,33]. At the same time,  $CeO_2$  catalyze the oxidation of NO to  $NO_2$  [34,35], which is more active species. Both aspects facilitate the formation of  $N_2$ . So Sn–Ce/Al<sub>2</sub>O<sub>3</sub> catalyst exhibited higher activity than Sn/Al<sub>2</sub>O<sub>3</sub> catalyst.

### 4. Conclusions

Sn–Ce/Al<sub>2</sub>O<sub>3</sub> catalysts were more active than Sn/Al<sub>2</sub>O<sub>3</sub> catalyst for the selective reduction of NO<sub>x</sub> and the optimum Ce loading is 0.5-1%. The oxygen dependency of these catalysts is desirable for NO<sub>x</sub> removal of a lean burn engine. The addition of Ce to Sn/Al<sub>2</sub>O<sub>3</sub> catalyst contributes to the oxidation of NO to NO<sub>2</sub> and the activation of propene, thus improving the yield of the whole NO reduction reaction.

### Acknowledgements

This research was funded by Center for Ultramicrochemical Process Systems (CUPS) supported by KOSEF(2004) and Z. Liu was supported by BK21 postdoctoral fellowship.

### References

- W. Held, A. König, T, Richter and L. Puppe, SAE Tech. Paper Ser. No.900496 (1990).
- [2] M. Iwamoto, H. Yahiro, S. Shundo, Y. Yu-u and N. Mizuno, Appl. Catal. 69 (1991) 15.
- [3] L.J. Lobree, I.-C. Hwang, J.A. Reimer and A.T. Bell, Catal. Lett. 63 (1999) 233.
- [4] H.-Y. Chen and W.M.H. Sachtler, Catal. Lett. 50 (1998) 125.
- [5] B. Wen and W.M.H. Sachtler, Catal. Lett. 86 (2003) 39.
- [6] M. Xin, I.C. Hwang and S.I. Woo, J. Phys. Chem. 101 (1997) 9005.
- [7] P. Decyk, D.K. Kim and S.I. Woo, J. Catal. 203 (2001) 369.

- [8] J.Y. Jeon, H.Y. Kim and S.I. Woo, Appl. Catal. B 44 (2003) 301.
- [9] R. Burch, J.P. Breen and F.C. Meunier, Appl. Catal. B 39 (2002) 283.
- [10] N.W. Cant and I.O.Y. Liu, Catal. Today. 63 (2000) 133.
- [11] E. Seker, J. Cavataio, E. Gulari, P. Lorpongpaiboon S. Osuwan, Appl. Catal. A 183 (1999) 121.
- [12] M. Haneda, Y. Kintaichi and H. Hamada, Appl. Catal. B 20 (1999) 289.
- [13] T. Maunula, Y. Kintaichi, M. Haneda and H. Hamada, Catal. Lett. 61 (1999) 121.
- [14] Y. Teraoka, T. Harada, T. Iwasaki, T. Ikeda and D. Kagawa, *Chem. Lett.* (1993) 773.
- [15] T. Miyadera and K. Yoshida, Chem. Lett. (1993) 1483.
- [16] T. Maunula, Y. Kintaichi, M. Inaba, M. Haneda, K. Sato and H. Hamada, Appl. Catal. B 15 (1998) 291.
- [17] P.W. Park, H.H. Kung, D.W. Kim and M.C. Kung, J. Catal. 184 (1999) 440.
- [18] M.C. Kung, P.W. Park, D.W. Kim and H.H. Kung, J. Catal. 181 (1999) 1.
- [19] Z. Liu, J. Hao, L. Fu, T. Zhu, J. Li and X. Cui, React. Kinet. Catal. Lett. 80 (2003) 45.
- [20] J. Li, J. Hao, L. Fu, Z. Liu and X. Cui, Catal. Today. 90 (2004) 215.
- [21] G. Qi, R.T. Yang and R. Chang, Appl. Catal. B 51 (2004) 93.

- [22] K. Krishna, G.B.F, Seijger, C.M.van den Bleek, H.van Bekkum and H.P.A. Calis, *Chem. Comm.* (2002) 948.
- [23] A. Ueda and M. Haruta, Appl. Catal. B 18 (1998) 115.
- [24] L. Chen, T. Horiuchi and T. Mori, Catal. Lett. 60 (1999) 237.
- [25] D. Zhao, J. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka and G.D. Stucky, Science 279 (1998) 548.
- [26] R. Burch and T.C. Watling, Appl. Catal. B 11 (1997) 207.
- [27] J.Y. Jeon, H.Y. Kim and S.I. Woo, Appl. Catal. B 44 (2003) 311.
- [28] A.R. Vaccaro, G. Mul, J. Pérez-Ramírez and J.A. Moulijn, Appl. Catal. B 46 (2003) 687.
- [29] H.-W. Jen, Catal. Today 42 (1998) 37.
- [30] E.F. Iliopoulou, A.P. Evdou, A.A. Lemonidou and I.A. Vasalos, Appl. Catal. A 274 (2004) 179.
- [31] L.F. Córdoba, M. Flytzani-Stephanopoulos and C.M. de Correa, Appl. Catal. B 33 (2001) 25.
- [32] A. Auroux, D. Sprinceana and A. Gervasini, J. Catal. 195 (2000) 140.
- [33] J.-H. Lee, A. Yezerets, M.C. Kung and H.H. Kung, Chem. Comm. (2001) 1404.
- [34] Z. Li and M. Flytzani-Stephanopoulos, J. Catal. 182 (1999) 313.
- [35] T. Sowade, T. Liese, C. Schmidt, F.-W. Schütze, X. Yu, H. Berndt and W. Grünert, J. Catal. 225 (2004) 105.